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1 Introduction
Electromagnetic induction in the time domain is considered as a valuable tool for the
recovery of the electrical conductivity of the sub-surface. Albeit highly sophisticated
3-D forward modelling algorithms exist, often a simple 1-D model parametrization seems
appropriate to sufficiently well fit the observed data. In this paper we consider a 1-D
inversion algorithm for TEM response data. The purpose of this study is two-fold: First,
the desire for a simple but robust and user-friendly code for the interpretation of transient
electromgnetic data has been addressed. Second, the interplay of numerous parameters
associated with, e.g., data scaling, data transformation, convergence control etc. could be
studied. The results of those studies provide good assumptions for the choice of specific
inversion parameters also arising in 2-D and 3-D inversion codes that are based on the
same numerical parameter estimation approach.
The model parameters to be recovered within the inversion are those of a horizontally
layered half-space with isotropic electrical conductivities. Forward responses are obtained
by evaluating Hankel integrals as typically arising in 1-D dipole induction problems. For
the numerical computation of the integrals we apply a Fast Hankel Transform technique
(FHT).

2 TEM forward response
We consider as model parameters the piecewise constant isotropic electrical conductivities
and thicknesses of horizontal layers within the Earth. More precisely, in the case of an
N -layered halfspace, we denote σ1, . . . , σN as the conductivities within the conducting
lower halfspace. In the insulating upper halfspace the electrical conductivity is assumed to
be zero, i.e., σ0 → 0. Hence, jumps in the electrical conductivities occur at the boundary
interfaces at z0, z1, . . . , zN−1. Without loss of generality we set z0 = 0. The thickness of a
layer may simply be calculated by di = zi − zi−1, i = 1, . . . , N − 1.
In the case of land-based TEM, the transmitter dipole is usually placed on the surface of
the Earth, i.e., at z = z0. Receivers may be located at the Earth’s surface, i.e., at z = z0,
or within boreholes at arbitrary depths z > z0.
A typical procedure for obtaining the layered halfspace time-domain response of a vertical
magnetic dipole with dipole moment m located at r = 0, z = 0, i.e., the origin of a
cylindrical coordinate system, can be outlined as follows: We consider as response the
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voltage induced in an induction coil receiver located at r = (r, z), r > 0, z ≥ 0. The voltage
per coil area is proportional to the time derivative of the magnetic flux, i.e., ∂Bz(r, z, t)/∂t .
First, we obtain an expression for Bz(r, z, ω) in the frequency domain

Bz(r, z, ω) = µm

2π

∫ ∞

0

λ3

λ+ a1
e−a1zJ0(λr) dλ , z ≥ 0, (1)

where a1 is the admittance at the surface of an N -layered halfspace. The admittance a1
can be calculated recursively by the following algorithm:

λn =
√
λ2 + iωµσn, 1 ≤ n ≤ N (2)

aN = λN (3)

an = an+1 + λn tanh(λndn)
λn + an+1 tanh(λndn) , N − 1 ≥ n ≥ 1. (4)

The Hankel integral (1) can be evaluated using, e.g., a Fast Hankel Transform algorithm.
Moreover, for a fixed point r = (r, z), the integral (1) can be evaluated for arbitrary
frequencies ω > 0.
Next, we obtain the time domain expression for the vertical magnetic dipole with a current
step waveform. The frequency and time domain responses are Fourier transform pairs. In
the following we demonstrate, how the inverse Fourier transform or Fourier synthesis can
be carried out. The current waveform can be described by the Heaviside step function

H(t) =
{

0 t < 0
1 t > 0.

(5)

Since Bz(r, z, ω) is a complex-valued function, but Bz(r, z, t) is real and causal, i.e.,
Bz(r, z, t) = 0 for t < 0, we can express the inverse Fourier transform equivalently as a
Cosine or Sine Transform

Bz(t) = 2
π

∫ ∞

0
ImBz(ω)

ω
cos(ωt) dω (6a)

= 2
π

∫ ∞

0
ReBz(ω)

ω
sin(ωt) dω . (6b)

The sine and cosine functions can be exactly represented as Bessel functions of half order.
More precisely,

J−1/2(ωt) =
√

2
πωt

cos(ωt) (7a)

J+1/2(ωt) =
√

2
πωt

sin(ωt). (7b)

Using (7), the calculation of ∂Bz(r, z, t)/∂t can finally be obtained by evaluating the
integral

∂Bz(r, z, t)
∂t

=
√

2
πt

∫ ∞

0
Re(Bz(r, z, ω))

√
ωJ−1/2(ωt) dω . (8)

Integrals of the form (8) can also be evaluated using a Fast Hankel Transform (Christensen,
1990).
A typical transient response of a layered halfspace is illustrated in Fig. 1.
In what follows, we denote as forward response the function f(m) := ∂Bz(m, t)/∂t for
any fixed point r = (r, z).
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Figure 1: Time derivative of the vertical magnetic field 100 m from a vertical magnetic
dipole. Transmitter and receiver on the surface of a 100 Ω ·m homogeneous halfspace
with a thin 10 Ω · m layer embedded between 60 and 80 m depth. Dashed line
negative.

3 The TEM inverse problem
The TEM data are either observations of electric fields or voltages induced in an induction
coil for arbitrary, generally non-equidistant times t > 0. In this paper we consider as data
the induced voltage which is proportional to the time-derivative of the magnetic induction,
i.e., ∂Bz/∂t . We collect the data in a vector

d ∈ Rn

corresponding to the observation times t1 < t2 < · · · < tn at which the data has been
sampled.
The vector m ∈ RN stores the values of the model parametrization for a layered half-space.
In the following, however, we keep the layer thicknesses fixed and use the transforma-
tion mi = log σi, i = 1, . . . , N to ensure the positivity of the reconstructed electrical
conductivities during the inversion.
The inverse problem can then be stated as follows:
Find a parameter distribution m which minimizes the functional

Φ(m) = 1
2‖d− f(m)‖22. (9)

The necessary conditon for the existence of a minimum is

∇Φ(m) = 0. (10)

This gradient has to be computed numerically. In our case, we approximate the partial
derivatives by finite differences. We denote the n×N matrix of the partial derivatives

J(m) = ∂fi(m)
∂mj

, i = 1, . . . , n, j = 1, . . . , N (11)

as sensitivity matrix or Jacobian.
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The damped Gauß-Newton method yields a search direction p ∈ RM by solving the system
of normal equations

[J(m)>J(m) + λI]p = J(m)>(d− f(m)). (12)

The large dynamic range of the data d requires a proper mathematical transformation. As
the data exhibit a logarithmic scaling and possibly sign changes, a transformation of the
form

g(f(t)) = asinh(f(t)/a) (13)

is appropriate.
Further, it is advisable to check the validity of the derivatives of f(m) appearing in the
gradient ∇Φ(m) by a simple test (Taylor test):
We choose m and a random vector ∆m with ‖∆m‖2 = 1. For h→ 0+ there holds

e0(h) :=‖f(m + h∆m)− f(m)‖2 = O(h) (14)
e1(h) :=‖f(m + h∆m)− f(m)− hf ′(m)∆m‖2 = O(h2). (15)

The above algorithm generates numbers illustrated in Fig. 2. Note that for small values of
the step size h (for h < 10−6), the expected behaviour deteriorates due to the accumulation
of round-off errors in floating-point arithmetics.
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Figure 2: Result of the Taylor test applied to f(m).

Once a descent search direction p is obtained, then a parameter α is selected to fulfil the
so-called Armijo condition

Φ(mk + αp) < Φ(mk)− γαp>J>(d− f(mk)) (16)

where γ ∈ (0, 1) is a given constant (here, γ = 10−4).
Finally, to obtain a stable solution of (12), the value of the regularization paramter λ has to
be choosen carefully. We propose a scheme in which the decrease of λ is controlled by the
convergence rate, i.e., the relative drop of the functional (9) for subsequent Gauß-Newton
iterations. More precisely, the value of λ will be decreased by, e.g., a factor of 10 as soon
as the relative drop falls below a pre-defined threshold ξ with 0 < ξ < 1, i.e, ξ = 0.2. For
small values of ξ we observe more Gauß-Newton iterations carried out at a fixed value
of λ, while for ξ → 1 the value of λ will be reduced at every Gauß-Newton step, until a
pre-defined lower bound of λ is reached.
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4 Numerical experiments
To provide an experimental data set, we consider a thin conductive layer with an electrical
resistivity of 10 Ω ·m embedded in a homogeneous half-space of 100 Ω ·m. The layer is
located at a depth of 60 ≤ z ≤ 80 m. Synthetic transient data d have been computed for
31 logarithmically equidistant times t with 10−6 ≤ t ≤ 10−3 s. The synthetic data have
been contaminated with noise, i.e.,

di := di(1 + εi
√
ti), i = 1, . . . , n,

where the εi are random numbers from a normal distribution with zero mean and a standard
deviation of 10−1. The horizontal offset r between the vertical magnetic dipole transmitter
source and the receiver is 100 m. Both transmitter and receiver are at the plane z = 0 m.
Hence, a horizontal co-planar configuration is considered (cf. Fig. 1).
For our numerical experiments we have choosen a layered half-space with 10 layers, i.e.,
N = 10. The layer thicknesses have been kept fixed and choosen small enough such that
the late time data still has sufficient sensitivity to recover the substratum.
The inversion results (Fig. 3) reveal that the convergence of the functional Φ(m) has a
pronounced dependency on the starting model m0.
Independent of the actual choosen values for this experiment, the model reponses can be
well fitted to the noisy synthetic data.
Further, the convergence and model roughness are controlled by the regularization param-
eter. As can be seen from Fig. 3 (right column), a small value of λ = 10−6 has already
established after a few Gauß-Newton iterations. The numerical solution of the system of
normal equations (12) yields oscillating model parameter updates, which introduce, e.g.,
the highly resistive layer above the conductive layer.

5 Summary
An implementation of a TEM data inversion scheme based on a damped Gauß-Newton
approach has been presented. The algorithm is able to recover model parameters of a
layered half-space with fixed layer boundaries. The method works well for noisy data.
The regularization parameter can be modified during the inversion to improve the rate of
convergence.
The MATLAB implementation will be made available from the author at www.github.
com/ruboerner/tem1dinv.
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Figure 3: Inversion results for two different homogeneous starting models m0 and two
different regularizaton control parameters ξ. Top row: Transient data (red) and
model response (blue). Middle row: Estimated model (red) and true model (blue).
Bottom row: Convergence (blue) and regularization parameter history (red). Columns
correspond to the combinations (100 Ω ·m, ξ = 0.2), (100 Ω ·m, ξ = 0.8), (10 Ω ·m,
ξ = 0.2), (10 Ω ·m, ξ = 0.8).
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