

See the following preprint for more information:

- Magnetotelluric multiscale 3-D inversion reveals crustal and upper mantle structure beneath the Hangai and Gobi-Altai region in Mongolia
- Johannes Käufl, Alexander V. Grayver, Matthew J. Comeau, Alexey V. Kuvshinov, Michael Becken, Jochen Kamm, Erdenechimeg Batmagnai, Sodnomsambu Demberel
- DOI: 10.31223/osf.io/5zd3n
- https://eartharxiv.org/5zd3n/

2

ETH zürich **Hangai Mountains** 3000 2500 Bogd and Bulnay Faults accommodate 2000 deformation 1500 / Elevation / Large Earthquakes M>8 in the last 45° N century 1000 Mineralization zone along the South 500 fault, left lateral Hangai Fault fault, right lateral fault, thrust fault, normal ☆ earthquake, M>7 → GPS velocities 90° E 95° E 100° E

Cenozoic volcanism in the Hangai

- Young volcanism (~5 ka to 33 Ma)
- Hot springs
- Shallow lithosphereastenosphere boundary
- Evidence for the presence of melt below the Hangai Dome

ETH zürich

The Hangai Magnetotelluric experiment

- Obtain the first 3-D el. resistivity model of the region
- Understand the Hangai Mountains uplift
- Study intra-continental volcanism
- Electrical resisitivity:
 - Presence of melt / partial melt fraction
 - Fluid content
 - Composition
 - Temperature

The Hangai Magnetotelluric experiment

- Obtain the first 3-D resistivity model of the region
- Understand the Hangai Mountains uplift
- Study intra-continental volcanism

How to bridge the different scales in a single model?

- Large scale geodynamic and tectonic processes
 - Lithospheric & Asthenospheric structure (>100 km)
- Intermediate Scale
 - Crustal structure and geol. terrane boundaries (10 100 km)
- Local features and surface observables
 - Surace fault traces, volcanic provinces, geothermal systems (< 10 km)

Magnetotelluric 3-D Inversion

 3-D finite element forward modelling and inversion code: GoFEM (Grayver, 2015)

Magnetotelluric 3-D Inversion

- 3-D finite element forward modelling and inversion code: GoFEM (Grayver, 2015)
 - Locally refined unstructured meshes

ETH zürich

Inversion Mesh

- Nested multi-scale hexahedral mesh with 321000 cells
- Cellsizes: 2.4 km to 350 km

Inversion Process

ETHzürich Inversion Process

Animation of the final model:

https://osf.io/d9btv/

Conclusions

- First 3-D resistivity model of the Hangai and Gobi-Altai region
 - Complex resistivity structure, from small crustal features to large regional structures
 - Heterogeneously conductive lower crust below the Hangai dome
 - > subsequent talk by Matthew
 - Asthenospheric upwelling in the eastern and southern Hangai, linked to volcanism and mineralization
- Remaining questions (WIP):
 - Link between uplift and upwelling?
 - Driving force behind the asthenospheric upwelling?
- Outlook
 - Joint inversion of MT and global induction methods
 - EM-constrained geodynamic modelling
 - Integrated interpretation with seismology

21

ETH zürich

Field Crew:

Batbileg Tegshjargal, Bayrjarga Bizya, Dominic Harpering, Dorian Sörgel, Eldev-Ochir Bold, Friedemann Samrock, Gantsogt Sukhbaatar, Jörg Schmalzl, Nasan-Ochir Tumen, Neeraj Sudhir, Nomuun Narantsogt, Phillip Kotowski, Robin Mann, Sandra Grazioli, Sukhbaatar Usnikh, Tsagaansukh Halzaa, Tserendug Shoovdor, Zagdsuren Shatar

22