

On the LOTEM and semi-airborne CSEM 2D joint inversion

J.Cai, B. Tezkan, P. Yogeshwar, W. Mörbe, M. Smirnova, A. Haroon

Content

- I. Introduction & Motivation
- II. 1D joint inversion
 - Limitation of 1D joint inversion

III. 2D joint inversion

- Synthetic data
- Field data

Introduction & Motivation

- Single EM method

 → advantage & weak points
 - Ground based EM (e.g. LOTEM):
 larger offset sparser stations
 - Air-borne EM (e.g. Semi-airborne): denser data coverage fast & convenient smaller offset
 - Helicopter EM (HEM): limited depth of investigation high resolution for shallow layers
 - Joint inversion
 - → combine the advantages.
 - → See deeper and more accurately.

1D joint inversion for HEM, LOTEM and Semi-AEM

- HEM (Blue)
 - improve resolution of shallow layers.
- LOTEM (Yellow)
 - recover deep structures.
- Semi-airborne EM (Semi-AEM) (Cyan)
 - high spatial data density.
- Joint inversion (red)
 - combine resolution advantages of all three EM methods.
 - reveals true model perfectly.

Occam, roughness 1

10³

Resistivity (Ohm-m)

104

10²

Synthetic Example

10

1D joint inversion for HEM, LOTEM and Semi-AEM

- HEM (Blue)
 - \succ $\;$ improve resolution of shallow layers.
- LOTEM (Yellow)
 - recover deep structures.
- Semi-airborne EM (Semi-AEM) (Cyan)
 high spatial data density.
- Joint inversion (red)
 - combine resolution advantages of all three EM methods.
 - > reveals true model perfectly.

But, NOT perfect for field data !

Convergence Problem

- Problem :
- → Each single EM method (Semi-AEM or LOTEM) 1D inversion show a good convergence and a good data fitting.
- → However, 1D joint inversions of field data often do not converge.

Convergence Problem

- Problem :
- → Each single EM method (Semi-AEM or LOTEM) 1D inversion show a good convergence and a good data fitting.

Anisotropy?

- → However, 1D joint inversions of field data often do not converge.
- What limits 1D joint inversion ?

2D effects?

IP?

Convergence Problem

- Problem :
- → Each single EM method (Semi-AEM or LOTEM) 1D inversion show a good convergence and a good data fitting.
- → However, 1D joint inversions of field data often do not converge.
- What limits 1D joint inversion ?

2D effects in 1D joint inversion ?

- Problem :
- 2D effects limit 1D joint inversion ?

2D effects in 1D joint inversion ?

- Problem :
- 2D effects limit 1D joint inversion ?

2D effects in 1D joint inversion ?

- Problem :
- 2D effects limit 1D joint inversion ?

2D effects in 1D inversion – 2D model

Investigate 2D effects for Rx locates at different positions

2D effects: Rx locates above conductive layer

Of set (m)

Of set (m)

Offset (m)

Тх Ω·m LOTEM Ê 400 Ω·m Depth 500 Ω·m Good data fitting Reveal target × 5 ⁰ **Tx** Ω·m Semi-AEM Ê 400 Ω·m Depth 009 500 Ω·m Good data fitting **Reveal target** ≈ 5 ⁰ [**T**x 500 Ω·m **1D** Joint Ê 400 Ω·m Depth (500 Ω·m Good data fitting Reveal target ≈ 10

2D effects: Rx locates above 2D boundary

2D effects: Rx locates above background rocks

1600

1600

1

2D effects in 1D joint inversion

- When 2D effects are strong:
- → Lead to different artifacts in different single EM method inversion.
- → 1D joint inversions can not converge.
- → 2D Inversion is needed !

Develop 2D Joint inversion algorithm

Develop 2D Joint inversion algorithm

Develop 2D Joint inversion algorithm

Develop 2D Joint inversion algorithm

Synthetic model

- Real topography + field configuration (Schleiz, 2016)
- 2D resistivity model based on 2D inversion results
- Advantage of joint inversion : better resolution & more flexible configuration

Synthetic model – Semi-AEM inversion

Synthetic model – LOTEM inversion

Too much LOTEM stations?

→ Semi-airborne : fast & convenient

offset <= 2000m

→ LOTEM :

more work for each Rx

offset \rightarrow 4000m

Too much LOTEM stations?

→ Semi-airborne :

fast & convenient

offset <= 2000m

- > Reliable for depth down to roughly 1000m
- → LOTEM :

more work for each Rx

offset \rightarrow 4000m

> Advantage for deeper structure detection (> 1000m)

Too much LOTEM stations?

- → Semi-airborne : fast & convenient offset <= 2000m</p>
 - Reliable for depth down to roughly 1000m
- → LOTEM :

more work for each Rx

offset \rightarrow 4000m

Advantage for deeper structure detection (> 1000m)

Reduce the number of LOTEM stations with small offsets ?

Reduce the number of LOTEM stations

Former LOTEM configuration, offset from 500 to 4000m, 1650 data points

Reduce the number of LOTEM stations

Former LOTEM configuration, offset from 500 to 4000m, 1650 data points

Remove Rxs with offset < 1500m</p>

Reduce the number of LOTEM stations

Former LOTEM configuration, offset from 500 to 4000m, 1650 data points

LOTEM configuration with less Rxs, offset from 1500 to 4000m, 810 data points

2D inversion of field data from Schleiz, 2016

- Red dots & lines
 LOTEM profile
- Blue dash
 Semi-AEM region
- Part of the profile for 2D joint inversion

• Five conductive bodies in result are marked by red circles.

2D inversion of field data – 2D joint inversion

Summary

- Strong 2D effects in data lead to the 1D inversion converge to different models for LOTEM and semi-airborne methods.
- 2D joint inversion of LOTEM and semi-airborne data is realized
 - Advantage: resolution & configuration possibility
 - Combines the characteristics of single inversion results of LOTEM and semi-airborne.

Thank you for attention !