Can a conceptual model of fluid focusing explain lower-crustal conductors?

Matthew J. Comeau¹, M. Becken¹, A. Grayver², J. Käufl², A. Kuvshinov²

1) Universität Münster, Germany 2) ETH-Zürich, Switzerland

Figure 1: Top: Photographs from magnetotelluric (MT) measurement campaign in Mongolia.
Bottom: Map of the study area, Bolnay region, central Mongolia. Location of MT measurement sites
(circles; see Käufl et al., 2019; km long and separated by 50-100 km; P6 has 21 sites and an average spacing of ~10 km, P3 has 13 sites and spacing of 7-18 km, P2 has 30 sites and spacing of 3-11 km. Black lines mark fault segments (Calais et al., 2003; Walker et al., 2007).

Figure 2: Oblique view of three 2-D resistivity models created with the algorithm of MARE2DEM (Key et al., 2016). Full inversion details (parameters, testing, etc), and data fit are presented elsewhere.
Anisotropic modelling can not explain the model. The upper crust (<25 km) is highly resistive (10,000-
Cm); explained by near-surface conductive anomalies.

Figure 3: A full 3-D model (Käufl et al., 2019) confirms the elongated tube shape of the anon

Figure 4: Schematic of resistivity model section. The conductive anomalies, interpreted to be hydraulic
domains: are oblate in shape, have width of 20-25 km, thickness of 5-10 km (bottom not well resolved
with MT), located have an elongated tube shape in 3-D. Some heterogeneity observed between domains and across profiles. Furthermore, the fault appears to be independent, that is no lower crustal fluid drainage occurs to the fault; it is sealed. All of these features can be explained by a Hydromechanical Model for Lower Crustal Fluid Flow, as proposed by Connolly and Podlachikov (2012; 2017).

Figure 5: Two-phase equa estimate fluid fraction in the lower crust and within the hydraulic domains (Hashin and Shtrikman, 1962). Saline fluids are though to exist in the lower crust, with 100 S/m plausible (Manning, 2018).
Case A (hydraulic domains; red):
Conductor of 25 Ωm requires fluid
electrical data. Case B (fluid-poor
blackground; blue): Conductor of 200 Ωm requires fluid content of 60 ppm to explain electrical data. Note: interconnected zones of fluid also significantly lowers the viscosity

> Lower crustal fluid is produced by a source. For example, metamorphic devolatilization reactions generate fluids (e.g.,
Manning, 2018). Fluids are then
distributed along grain edges
connected network. The fluid
propagates upwards because of
propagates upwards because of
expelled by ductile compaction
"squeez gradient below the BDTZ, fluids
stall 4-10 km below (Connolly stall 4-10 km below (Connolly and Podlachikov, 2004). This explains the observed location of the "trapped" fluids in the

lower crust.

Figure 6: Numerical models modified from Connolly and Podlachikov (2012). Panel A shows an initial
porosity distribution that is smooth; 1-D sill-like waves propagate from the source. Panel B shows an
initial porosity di focusing is a consequence of heterogeneity in the porosity distribution. This may be due to a lithological
heterogeneity, or to variations in fluid production. In 3-D, the fluid zones are predicted to be spherical.
However However, then p
lithological variat
(tectonic motion).

Figure 7: Hydraulic domain size is controlled by the fundamental compaction length scale (δ), which is a function of rock rheology and fluid properties (Connolly and Podlachikov, 2017). MT measurements give
porosity; rock viscosity can be geophysically estimated (e.g., post-seismic slip measurements); pore fluid
viscosity is Therefore, in this case, the prediction for hydraulic domain size is: width of ~22 km and thickness of ~5
km. This matches very well with the observations from the MT-derived resistivity model. Therefore, fluid-
focusing m

Citations

 $\Phi = 1$ $\Phi = 10$

Käut, J., Grayer, A., Comeau, M.J., et al. (2019) Magnetoelluric multiscale 3-D inversion reveals and upper mante structure beneath the Hangal and Gobi-Atta region in Mongolia. EPSL 487:201-209.
Comeau M.J., Käut, J., Beck Calais E., Vernolle, M., Sankov, et al. (2003). GPS measurements of crustal deformation in the Baikal-Mongolia area (1994–2002): Implications for current kinematics of Asia. JGR 108:1-14. Walke, R.T., Nisosn, E., Molor, E., eta. (2007) Reintspretation of the active faulting mortal Mongola: Geology 35:799-762.
Key, K. (2016) MARE2DEM: a 2D inversion code for controlled-source electromagnetic and many region. Cunningham, W.D.(2001) Cenozoic normal faulting and regional doming in the southern Hangay region, Central Mongolia: implications for the origin of the Baikal rift province. Tectonophysics 331. Connolly, J., Podladchikov, Y. (2012) A hydromechanical model for lower crustal fluid flow. In: Metasomatism and the Chemical Transdommers on Rock (Harloy, Austheim), pp. 599–658. Springer.
Connolly, J., Podladchikov, Y. (iassm and the Chemical Transform
I variational permeability and fluidizatic
J. Mech. Phys. Solids 11:127–140. Manning, C. (2018) Fluids of the Lower Crust: Deep Is Different. Annual Review of Earth and Planetary Sciences 46:67-97.