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Basics
Goal: Develop a 3D inversion code for MT data, based on:

3D forward modelling code [1]
general inversion framework EMILIA [2]

Details of the forward modelling code:

• Edge-based FEM, unstructured tetrahedral mesh (Tetgen [3])
• Goal-oriented mesh refinement, guided by discontinuity of J
• Curl-curl equation of total E, direct LU-solver PARDISO [4]

The boundary value problem in frequency domain for MT:

∇× 1
ẑ
∇×E− ŷE = 0 in Ω,

n̂× 1
ẑ
∇×E = gt on ∂Ω,

(1)

with ẑ = −iωµ, ŷ = σ − iωε, gt = n̂×H0 and H0 the plane wave solution
for the background model.

What’s new: H0 can be the plane wave solution for 3D background model.

Boundary Conditions
• calculate 2D solution for independent models at all 4 sides
• to obtain full solution, always solve for 2 source polarisations
• use only tangential fields as boundary conditions for 3D problem [5]
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Then interpolate the recovered fields onto the boundary nodes of the 3D
mesh to use as boundary conditions.

First Results
Validation: compare to semi-analytic solutions for a specific model [6], [7]

Model used by [6] and [7]
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Comparison of Weaver’s solution (dashed lines) to ours (solid lines), with relative error (black lines);
Plotted fields are normalised by a reference B0

Our 2D solution matches Weaver’s solution, but our 3D solution still shows some differences (probably
due to too coarse mesh, that we used so far).

Outlook
• Compare 3D model results of finer mesh to semi-analytic results
• Combine the 3D forward modelling code with inversion framework
EMILIA [2]
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