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Introduction
Isotropic inversions in an anisotropic medium can result in severe artifacts

and lead to erroneous interpretations. Hence, to achieve appropriate inter-
pretation for realistic Earth models, forward algorithms have to allow for an
anisotropic subsurface.
Recently, the adaptive finite element method (FEM) has been used in solv-

ing anisotropic MT forward problems [1]. However, to our best knowledge,
it has not been used in solving anisotropic RMT problems allowing for both
anisotropic conductivity and permittivity yet. Consequently, based on the
previous work in isotropic case [2], we develop a goal-oriented finite element
approach for MT and RMT problems allowing for anisotropic distribution of
both conductivity and permittivity.

Methods
Boundary value problem for MT and RMT problems
The boundary value problem of electric field is given as

∇× 1
ẑ
∇×E− ŷE = 0 in Ω,

n̂× 1
ẑ
∇×E = gt on ∂Ω,

(1)

where ẑ = −iωµ is the impedivity, ŷ = σ− iωε0εr is the admittivity tensor
and gt = n̂×H0, H0 is the analytical solution of a 1D layered Earth model.

Edge-based FEM approximation with unstructured mesh
By using tetrahedral mesh and edge-based Galerkin FEM, the boundary

value problem in Eq. (1) is discretized into a system of linear equations
KE = F, (2)

where E = {Ei}, i = 1, 2, ..., Ne, Ne is the number of total edges in the
discretized tetrahedral mesh, and

Kij =
∫∫∫

Ω
∇×Ni ·

1
ẑ
∇×Njdv −

∫∫∫

Ω
Ni · ŷNjdv, (3)

Fi =
∫∫

∂Ω
Ni · gtds. (4)

To guarantee the accuracy, the direct LU solver is used to solve Eq. (2).

Adaptive mesh refinement
Two a-posterior error estimators based on the discontinuities of fields are

chosen to guide the mesh refinement. One is
[
ηJ

e

]
named error estimator J:

[
ηJ

e

]2 =
4∑

i=1

1
2

∫∫

Fi

|n̂ · (ŷ−E− − ŷ+E+)|2ds, (5)

and another one is
[
ηH

e

]
named error estimator H:

[
ηH

e

]2 =
4∑

i=1

1
2

∫∫

Fi

∣∣∣∣n̂× ( 1
z−
∇×E− −

1
z+
∇×E+)

∣∣∣∣
2
ds, (6)

where Fi is the i− th triangular face enclosing the tetrahedral element e.
To avoid unnecessary refinement, the goal-oriented strategy [2] is enforced.

Results
Algorithm validation and performance
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Global mesh refinement
Goal−oriented approach J
Goal−oriented approach H
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Figure 1: Errors of ρa and φ responses in terms
of different mesh refinement strategies.

A horizontal anisotropic
half-space model is used.

• f = 10Hz

• ρx/ρy/ρz/ =
10/100/100 Ωm

• Ω =
[−10 km, 10 km]3

The results are com-
pared with closed-form
solutions: ρxy

a = 10 Ωm,
ρyx

a = 100 Ωm, φxy =
−45◦ and φyx = 135◦.

Effect of anisotropic permittivity on RMT response
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Figure 2: Geometry of a conductive rectangular prism
buried in a resistive half-space with permittivity changed
from isotropic to horizontal anisotropic.

• f = 100 kHz

• ε0
r =

5→ 5/20/5

• Ω =
[−1.5 km, 1.5 km]3

• Sites located in:
[−300m, 300m]

• Unknowns:
1296640
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Figure 3: Comparison of apparent resistivities and phases.

The deviation be-
tween isotropic and
anisotropic model
is clearly visible in
the yx-mode. The
reason is that the
responses of yx-
mode are mainly
influenced by the
components of Ey

which is changed
with ε0r,y varied
from 5 to 20.

Conclusion
We have developed a goal-oriented finite element approach for 3D MT and RMT problems allowing for anisotropic distributions of both conductivity and
permittivity. The anisotropic half-space model for MT problem validates the presented algorithm and shows the performances of different mesh refinement
strategies. The rectangular prism model with varied permittivity shows different effects of anisotropic permittivity on RMT responses in different modes.
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