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In finite element (FE) method, there generally exist two strategies for improving the 
model accuracy: to refine grids (h-type) and to raise the order of interpolation 
functions (p-type). Between the two strategies, the grid refinement has been more 
widely used, especially with the application of the adaptive unstructured FE method 
(Ren & Tang 2010). The other strategy, namely the high-order interpolation method 
including spectral element method (SEM) is combined with the finite element method 
and the spectral method. The classic SEM uses the Gauss-Lobatto-Legendre (GLL) 
polynomials for interpolation functions with the numerical integration realized on 
GLL nodes. In this way, one can obtain a diagonal mass matrix for the modeling and 
enhancing precision (Komatitsch & Tromp 1999). Since GLL polynomials can only 
be applied to rectangular or hexahedron, to fit irregular interfaces, one needs to use 
triangle or tetrahedron element which can well model the complex interfaces with 
relatively homogeneous grids. This stimulates the research to develop a spectral 
element method based on tetrahedral grids (TSEM). Meanwhile, the spectral element 
method can be applied to the 3D forward modeling DC resistivity method for 
verifying its effectiveness.

Tetrahedral spectral element method (TSEM)
      Basis function (n-th order) :  Proriol-Koornwinder-Dubiner (PKD)

Where                                                             , Corresponding to the permutation of i, j, 

k, we have                      and              are orthogonal Jacobian polynomials of i-th order 

with the orthogonal weight                              . PKD polynomials cannot be used 

directly as interpolation functions for not satisfying                     , thus a Vandermonde 

matrix V is needed to connect PKD polynomials and interpolation functions

where                                   is the number of interpolation points in tetrahedral
  
Interpolation nodes:  warp and blend nodes (Warburton 2006)
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Figure 1. Distribution of interpolation nodes in a right-angle tetrahedron for the order of 
n=2, 5, and 8. The red points are nodes at vertexes, the yellow ones are for edge nodes, the 
green ones are for surface nodes, while the blue points are for interior nodes.  

• 2D valley  model
Resistivity : 100           
Configuration:  dipole-dipole

mΩ 
mΩ 

m100m100 

In figure 2, note that with increasing order, the contours become more and more 
smooth and circular that is close to the true distribution of potential for a point 
source. Moreover, we compare our modeling results with the analytical solutions 
given by Wait (1990). From Fig. 3, it is seen that with the increasing order the 
relative errors decrease sharply. The maximum error for n=1 is 451.5%, while it is 
2.3% for n=4. 

Figure 2. Electrical potentials for a 
point source at the surface of a 2-layer 
earth. The TSEM order is changing. (a) 
n=1 (b) n=2 (c) n=3 (d) n=4. 

Figure 3. Errors E in percentage related 
to the 1D analytical solutions for the 
model in Fig. 2 for different order of 
TSEM. (a) n=1 (b) n=2 (c) n=3 (d) n=4.

Figure 4. Modeling results of 
our TSEM in comparison to the 
analytical solutions along the 
profile z=0m, x=0m for the 
layered model given in Fig. 4. 
(a) Apparent resistivity; (b) 
relative errors.

Then we calculate the model in Fig.5 with 
TSEM and get the relative error with Ren & 
Tang (2010) in Fig. 6. When n=1, average 
relative error is 14.538%; n=2, relative error 
decreases sharply to 2.387%; for n=3 and n=4, 
relative error is very close, that is 1.161% and 
1.044%, respectively, the numerical results 
almost converge. Whereas with our algorithm, 
TSEM also has good processing result to the 
terrain problem.

Order/n 1 2 3 4 5 6 7 8

Nt 4 10 20 35 56 84 120 165

Ni 0 0 0 1 4 10 20 35

Table 1. Number of total nodes Nt and interior nodes Ni for n-th order interpolation.

mΩ 

Meanwhile, we have chosen a profile along the y-axis to present our model results 
and the relative errors against the analytical solutions in Fig. 2. From the figure, we 
can draw the same conclusion that with increasing order in our TSEM the accuracy 
is vastly improved.

Figure 5. 2D valley model

Figure 6. Relative percentage error of 
the apparent resistivities between 
different interpolation order and 2 
times adaptive refined in mesh. (a) n=1 
(b) n=2 (c) n=3 (d) n=4.

It is demonstrated that the method we presented about the application of TSEM to 
DC forward modeling is very advantageous in highly accuracy which depart from 
the conventional finite element method, especially suit for complex models and 
rough meshes.
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• Two layer  model 
        Layer 1    resistivity : 1             thickness : 10m
        Layer 2    resistivity : 100
        Point current source:  1A
        Receiving points area:                                interval :  1m 

Numerical examples
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