Multi-dimensional Modelling of RMT Data Observed in a Mining Environment in Kiruna, Sweden

ÍGN

University

of Coloane

Matthew Iyobosa Oviawe1*, Pritam Yogeshwar1, Bülent Tezkan1

¹Institute of Geophysics and Meteorology, University of Cologne; *Contact: moviawe@smail.uni-koeln.de, www.geomet.uni-koeln.de

Introduction

Radio Magnetotellurics technique (RMT) was conducted in the northern most town of Sweden (Kiruna), a very prominent mining city as a result of the presence of vast mineral deposits. The basis of this survey was to model the multi-dimensional nature of the subsurface and also to detect the width of these electrically conductive structures over the survey location. The mineral deposits (anomalies) are as a result of the past tectonic activi-ties experienced by the research location . These conductive anomalies are good target for electromagnetic induction method.

The RMT soundings was done using the RMT-F device^[3]. Three RMT profiles spanning an approximate total distance of 5 km was covered. Sounding stations spacing was 10 m and 20 m respectively.

Fig 1: Yellow colour indicate international boundary of Sweden, Norway and Finland, green box signifies the Kiruna district and the red box indicates the survey area with all three different RMT profiles (blue = profile one, orange = profile two and the yellow = profile three).

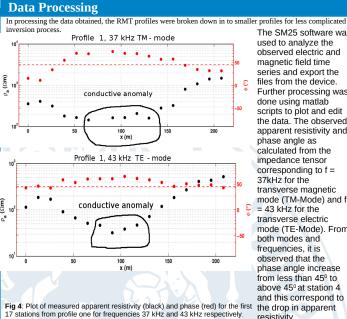
As observed from the geological map of the survey area, the RMT profiles cut across several geological structures. The dashed lines in the geological map indicates fracture/deformation zones, the small circles present on some of the geological figures are the conglomerates, the blue structure is the quartzite formation the greyish structure is the metagreywacke formation, the vellowish structure is the metarhyolite and bordering, the pinkish structure is the hematite ore formation, the lite vellowish structure is the metarhyodacite formation, the fainted green structure is the metatrachyandesite, the greenish

structure is the metabasalt and

lastly the lite blue structure is the

Fig 2: RMT profiles overlay on geological map of survey area

Ouartzite

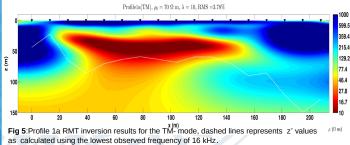

Data Acquisition

The data was collected using the RMT-F de which is a five nel electromagchannel channel electromag-netic induction device with two component electric field sensors (Ex and Ey), and three component magnetic field coils (Hx, Hy and Hz) for a duration of 5 non-consecutive days^[3]. Total of 338 soundings could be realized. The frequency range served in Kiruna ob from 16 kHz to 360 kHz

metaconglomerate.

Fig 3: RMT-F device set-up showing all component of the electric field and the magnetic field. The length of the E-field antenna is 10 m

The SM25 software was used to analyze the observed electric and magnetic field time series and export the files from the device. Further processing was done using matlab scripts to plot and edit the data. The observed apparent resistivity and phase angle as calculated from the impedance tensor corresponding to f = 37kHz for the transverse magnetic mode (TM-Mode) and f = 43 kHz for the transverse electric mode (TE-Mode). From both modes and frequencies, it is observed that the phase angle increase from less than 45° to above 45° at station 4 and this correspond to the drop in apparent resistivity.


2D Inversion results

The data was inverted using the 2D magnetotellurics inversion code by Rodi and Mackie were the Tikhovnov regularization parameter is applied^[2]. The algorithm is a formulation of the Maxwell's equation applying the finite difference scheme and using the the non linear conjugate grate gradient (NLCG) to minimize the objective function TE, TM and TE - TM joint inversion are realized. Fig 5 shows the TM mode of the inversion of profile 1 for the data shown in fig 4. Inversion error floor for apparent resistivity = 5.0 %

Inversion error floor for phase = 2.5 %

Depth of investigation was estimated with the z* equation of Schmucker[1]

$$z^* = \sqrt{rac{
ho_a}{\omega\mu_0}} sin\phi$$

Conclusions

From the inversion results, a conductive anomaly is detected along profile 1a (first 17 stations of profile 1) by both TE and TM-mode. The conductive body lies below an approx 10 m thick resistive top layer. We could also deduce that the conductive anomaly might possibly have originated from a greater depth considering the shape and probably got trapped few meters below the subsurface. The conductive anomaly is a graphite body already detected by a previous un-published survey trapped in the quartzite formation is further validated by the 2D RMT data inversion.

References – size 40

Schmucker, U. (1987). Substitute conductors for electromagnetic response estimates, in pure and applied geophysics 125.2-3, 341–367. [1] Schn

[2] Rodi, W. and R. L. Mackie (2001). Nonlinear conjugate gradients algorithm for 2-D magnetotelluric inversion, in Geophysics 661, 174–187. [3]Tekan, B. and A. Saraev (2008). A new broadband radio-magnetotelluric instrument: applications to near surface investigations, in Near Surface Geophysics 6.4, 245–252.

177