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Mapping ultramafic complexes using airborne imaging spectroscopy and
spaceborne data in Arctic regions with abundant lichen cover, a case study
from the Niaqornarssuit complex in South West Greenland
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aDepartment of Petrology and Economic Geology, Geological Survey of Denmark and Greenland, Copenhagen, Denmark; bHelmholtz
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ABSTRACT
This study investigates the usage of HyMAP airborne hyperspectral and Sentinel-2, ASTER and
Landsat-8 OLI spaceborne multispectral data for detailed mapping of mineral resources in the
Arctic. The EnMAP Geological Mapper (EnGeoMAP) and Iterative Spectral Mixture Analysis
(ISMA) approaches are tested for mapping of mafic-ultramafic rocks in areas covered by
abundant lichen. Using the Structural Similarity Index Measure (SSIM), the output classification
results from airborne data are quantitatively compared to the available geological map and to
the HyMAP reference data in case of using spaceborne dataset. Results demonstrate the
capability of both airborne and spaceborne data to provide large-scale reconnaissance map-
ping of geologic materials over vast arctic regions where field access is limited. The distribu-
tions of three ultramafic units (dunite, peridotite, pyroxenite) and one mafic unit (gabbro) are
mapped based on analyzing specific visible and near-infrared and short-wave-infrared spectral
features. The extent of peridotite and dunite units mapped using both approaches is consistent
with geological map, whereas pyroxenite abundance maps show different patterns in their
distribution as compared to the geological map. The results suggest that EnGeoMAP method
has a better performance than ISMAmethod for mapping the dunite unit, whilst ISMA performs
better for mapping peridotite and pyroxenite rocks.
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Introduction

Non-invasive remote sensing is a suitable exploration
technique to cover large areas with reduced financial
input, if compared to classical approaches. Considerable
research has been devoted to the use ofmulti- and hyper-
spectral remote sensing technology for geological appli-
cations in arid and semi-arid environments (Buckley
et al., 2013; Gao et al., 2017; Harris et al., 2005; Huo
et al., 2014; Kopačková & Koucká, 2017; Marion &
Carrère, 2018; Notesco et al., 2016); however, less
researchhas beendevoted to the efficacy of thesemethods
formineral exploration purposes in theArctic, and there-
fore, this is still an open field for research.

The remote nature and the challenges posed by the
Arctic environment reduce the capacity of traditional
techniques to economically explore and locate mineral
resources. Greenland for example, is an ideal study area
for the application of remote sensing techniques (Bedini,
2009, 2011; 2012; Budkewitsch et al., 2000; Salehi, 2018).
Large parts of Greenland, that are known for excellent
potentials for natural resources, including zinc, lead,
gold, copper, iron ore, and heavy and light rare earth
elements, are largely underexplored due to the obstacles
created by topography, remoteness and harsh climate

conditions. It is, therefore, very important to aim for
good spatial coverage of the regions of interest and
areas under investigation by applying efficient data
acquisition techniques. Different remote sensing techni-
ques for geologic mapping and mineral exploration have
been studied, developed and applied in areas of difficult
access in Greenland (Salehi, 2018). Satellite remote sen-
sing has been mainly used for delineating the lithological
units and providing key information for early mineral
exploration. Wide-swath spaceborne sensors such as
Landsat-8 OLI, ASTER, and Sentinel-2 enable the repe-
titive coverage of large regions with low/medium spatial
and spectral resolutions at no additional data costs for
potential exploration clients (Salehi et al., 2019a). On the
other hand, narrow-swath commercial sensors such as
Worldview-3 are more suited for a detailed mapping
program at exploration tenement level, due to their
higher spatial and spectral resolutions (Kruse & Perry,
2013). Such data lack the spatial capacity and the finan-
cial viability for greenfield reconnaissance explorations
over larger areas and may be deferred to later project
stages. In addition to the spaceborne data, airborne ima-
ging systems have been successfully used for regional
mapping of rock types and mineral prospecting in
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Greenland over the last two decades (Bedini, 2009, 2012;
Salehi & Thaarup, 2018; Tukiainen & Thomassen, 2010;
Tukiainen & Thorning, 2005). The disadvantages of air-
borne imaging systems are low coverage area and that
these data are produced at substantially high costs per
unit area of ground coverage compared to the rapidly
growing fleet of multispectral, and future full range
hyperspectral spaceborne imaging systems with an
open data policy. Therefore, it is not cost-effective to
map a large area using an airborne system. Other
approaches such as off-nadir helicopter-based (Salehi
et al., 2019b), ship-based (Salehi et al., 2018; Salehi &
Thaarup, 2018) and long-range terrestrial outcrop sen-
sing (Lorenz et al., 2018; Rosa et al., 2017; Salehi &
Thaarup, 2018) have been recently established to expand
the scale of mapping in Arctic regions in a time- and
cost-effective manner as geophysical data suppliers in the
later stage of an exploration project, after regions of
exploration interest have been identified from space-
borne data. Using such scanning setups, steep cliff sec-
tions and quarry walls can be scanned with a more
appropriate viewing direction and a higher image resolu-
tion than can be detained from airborne and spaceborne
platforms (Salehi, 2018).

Another important factor in using remote sensing
technology for mineral exploration is the selection of
the most optimal approaches for mapping based on
environmental conditions. One limitation of current
state-of-the-art methods is the sub-pixel spectral mix-
ture of lichens and rocks that can have an adverse
effect on identifying rocks and minerals using imaging
sensor systems (Salehi et al., 2017b). Since the nineties,
there have been a number of studies that have inves-
tigated the potential of using airborne and simulated
spaceborne hyperspectral data for discrimination of
mafic and ultramafic rocks in the Canadian north,
where rocks are exposed in presence of lichens
(Harris et al., 2005; Rogge et al., 2014b). These studies
have concluded that Spectral Mixture Analysis techni-
ques are useful means of reducing the mixed pixel
problem and acquiring sub-pixel scale information.
However, to our knowledge, no research has been
done on investigating the potential of multispectral
spaceborne datasets for geological mapping applica-
tions in areas with abundant lichens. The problem of
spectral mixing is aggravated by coarser spatial resolu-
tion of these sensors; nevertheless, they represent the
most cost-effective approach to extract geological
information, provided that suitable mapping techni-
ques or indicators to target specific mineral deposit
types are used.

The research presented in this article is primarily
focused on the mapping of ultramafic rocks, as they
are an important host rock for nickel, platinum group
elements (PGE) and chromium, minerals that have
been identified as critical elements for the develop-
ment of new green technologies. The study carried out

by Mielke et al. (2014) shows some examples for
mapping PGE related mine waste near Rustenburg
South Africa, focussing especially on the visible and
near-infrared (VNIR) for the characterization of mafic
and ultramafic mine waste material. This approach has
not been tested in an Arctic environment, neither has
it been used for the direct exploration of ultramafic
complexes, giving a direct link to the geological map of
the area. On the other hand, successful mapping stu-
dies in Canada have been limited to hydrated minerals
(Harris et al., 2005; Rogge et al., 2014b). Rogge et al.
(2014b) have focused on few short-wave-infrared
(SWIR) spectral features associated with antigorite
(2285, 2325 nm), actinolite (2245, 2315, 2386 nm)
and clinochlore (2345) minerals to discriminate the
mafic and ultramafic rock units. According to Rogge
et al. (2014b), ferrous (Fe+2) and ferric (Fe+3) features
within the VNIR spectral range are heavily suppressed
by the various lichen species in their study area and
therefore the VNIR bands were deployed to map non-
geological materials rather than differentiating mafic
and ultramafic rocks.

Given the limitations discussed earlier in the text, the
objectives of this study are to: (1) evaluate the potential
of airborne hyperspectral imagery and spaceborne mul-
tispectral data for producing lithological–compositional
maps under Arctic conditions and in areas with abun-
dant lichens; (2) expand the possible use of spectro-
scopy for discrimination of mafic-ultramafic rock types
by considering both primary (olivine, pyroxene) and
secondary (amphibole) mineralogy; and (3) evaluate the
performance of two unmixing approaches for mapping
different mafic-ultramafic bodies potentially associated
with PGE and/or Ni-sulfide mineralisation.

The results of this study should have considerable
potential to evaluate the use of hyperspectral and
multispectral remote sensing for geological purposes
in the Arctic regions.

Materials and methods

Sentinel-2, ASTER and Landsat-8 OLI data are eval-
uated as a first-order tool to obtain reconnaissance
level information from the study area in South West
Greenland. The analysis of airborne HyMap imagery
is carried out to obtain detailed complementary litho-
logical–compositional maps.

The performance of two mapping approaches: the
Iterative Spectral Mixture Analysis (ISMA) (Rogge
et al., 2006) and the EnMAP Geological Mapper
(EnGeoMAP) (Mielke et al., 2016; Rogass et al., 2014) is
investigated for mapping the distribution of mafic-
ultramafic units. These two approaches represent inter-
esting candidates for a comparison of twodifferent purely
data-driven unmixing approaches. To enhance compar-
ability, the same set of endmembers was used for ISMA
and EnGeoMAP generated from Spatial–Spectral
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Endmember Extraction (SSEE) approach (Rogge et al.,
2012, 2007). In addition, band selection is used for opti-
mizing the spectral unmixing. This is achieved by apply-
ing a knowledge – driven band selection routine, as in
case of ISMA; and a purely data – driven band selection
technique as in case of EnGeoMAP.

X-ray fluorescence (PANalytical AXIOS Advanced
RFA) and in situ and laboratory spectral measure-
ments of representative samples are carried out to
describe mineralogical composition and spectral char-
acteristics of the mafic-ultramafic rocks. In addition,
the report published by 21st North exploration com-
pany provides insights to the mineralogical composi-
tion of the samples, which are largely dominated by
olivine (dunites) and pyroxene (pyroxenites) (Simard
et al., 2014). The accuracy of the final mapping pro-
ducts is validated by a direct comparison of the results
to the ultramafic units of the geological map for the
airborne data and to the HyMAP reference image for
the spaceborne dataset and by using the Structural
Similarity Measure method (Wang et al., 2004).

Study area

The southern part of the Palaeoproterozoic Nagssug-
toqidian orogen (SNO) in West Greenland is dominated
by tonalitic to granodioritic reworked Achaean orthog-
neisses interleaved with sulphide-graphite rich belts of
Paleoproterozoic supracrustal and anorthositic-ultrabasic
intrusive rocks occurring within E-W trending high-
strain zones (Figure 1). The region is mostly known for
hosting an important alkaline intrusive event that includes
the Sarfartoq carbonatite complex and an associated
swarm ofmostly contemporaneous lamprophyre and dia-
mond-bearing kimberlite dykes (Jensen et al., 2002;
Larsen & Rex, 1992; Secher & Larsen, 1980).

In addition, several mafic-ultramafic bodies/
intrusions/complexes hosted in Archean gneisses
and composed of massive dunite, peridotite, and
pyroxenite have been identified over the past years
within the SNO. The Niaqornarssuit complex is the
best known of the ultramafic complexes within this
region, which was briefly visited by Kryolitselskabet
Øresund (KØ) Company in 1977. The complex is
located at approximately 8 km east of the ice-free
Sarfannguit Fjord and 65 km southwest of
Kangerlussuaq and at an altitude of approximately
400 m (see black oval in Figure 1). It was described
as an 1 × 3 km elliptical massif of E-W oriented
ultramafic rocks composed of homogeneous dunite
with a relatively thin zone of gabbro along with the
contact (Gothenborg & Keto, 1980). The area ter-
rane is characterized with moderate relief hills,
commonly without any significant vegetation except
in low-lying, south-facing slopes and depressions
where shrubs may reach 1–2 m of height. Rock

encrusting lichens are predominant on bedrock sur-
faces and cover from 0% to 90% of exposed surfaces
depending on rock type (Figure 2). This complicates
the remote sensing-based mapping of mafic to ultra-
mafic rock units in the region.

In 2010, following on KØ’s work on the
Niaqornarssuit complex, 21st North Exploration
Company proceeded with a nine-day field reconnais-
sance program. Around 160 samples were collected
from the dunitic intrusions (Figure 3) and were
further analysed to obtain whole-rock geochemical
data. A much more detailed description of the com-
plex combined with a 1:10 000 geological map was
produced by the company in the same year.

The exploration work carried out by the 21st North
Exploration Company suggests that the complex is domi-
nated by two main dunite bodies characterized by yellow-
ish-green weathered outcrops: The West dunite and the
East dunite (Figure 3). According to a confidential report
presented by the company (Simard et al., 2014), a rough
outline of the stratigraphy comprises the following rock
units: (1) a chilled margin at the basal level of the intrusion
mostly of peridotitic composition, directly overlying base-
ment gneisses and granites at the contact, (2)magnetite and
chromite-rich, homogeneous and medium-grained dunite
grading into more pure dunite (the dunite hosts numerous
peridotite-pyroxenite layers and dykes and small minera-
lized gossans are locally present in the southeastern part of
the dunite), (3) peridotite composed of olivine-peridotite at
the bottom and more evolved pyroxene-rich peridotite at
upper levels, (4) coarse-grained to pegmatitic pyroxenite
forming a massive and homogeneous unit in the north-
eastern part of the complex, and (5) a discontinuous layer of
medium-grained and banded metagabbro or hornblende-
gneiss interleaved with, and possibly intruding into, the
upper part of the pyroxenite. Surface mineralization in the
Niaqornarssuit complex is almost entirely restricted to
small rusty beds in the East dunite where it forms discon-
tinuous and strongly weathered gossans (Simard et al.,
2014). The size of such zones is rarely more than
10 m long and 0.3 to 0.5 meters wide. The rusty lenses
are mostly hosted by peridotite/pyroxenite layers and veins
within the dunite, suggesting remobilization of a primary
sulphide source into narrow zones at surface. Due to the
weathered nature of these zones, fresh sulphide mineraliza-
tion is often not observed at surface but rather consists of
(a) strongly rusted malachite-stained gossan boulders, and
(b) small conspicuous ridges partly buried in the sandy
slopes of the dunite (Simard et al., 2014). The sulphide
paragenesis consists of pentlandite, pyrrhotite and chalco-
pyrite (Simard et al., 2014).

Regional airborne hyperspectral data

A regional airborne hyperspectral dataset was acquired
using a HyMap sensor (Cocks et al., 1998) in 2002,
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covering an area of approximately 7500 km2 between
Sisimiut and Kangerlussuaq (Søndre Strømfjord) in
South West Greenland (Tukiainen & Thorning, 2005).
Due to the rugged terrain of the survey area, the ground
spatial resolution varies from 3 to 5m depending on the
altitude from the surveyed ground. The sensor has 126
channels over the 0.45–2.5 µm wavelength range with
average spectral resolution of ~10 nm.

The aim of the survey was to investigate the potential
of airborne hyperspectral dataset for finding diamond-
bearing kimberlite dykes (Tukiainen & Thorning,

2005). Further processing and interpretation of
HyMap data revealed a number of mafic and ultramafic
complexes (Salehi & Thaarup, 2018) (see pink ovals in
Figure 1). One such complex occurs to the east of the
head of the fjord Kangerluarsuk, a feature confirmed by
field work in 2016 (Salehi & Thaarup, 2018). A portion
of this survey data (~3.5 X 2.5 km2 region) coincides
with the Niaqornarssuit complex.

The data were geometrically corrected and geocoded
by Tukiainen and Krebs (2004) using the PARGE
(Parametric Geocoding) software (Schläpfer & Richter,

Figure 1. General 1:500 000 geological map across the southern Nagssugtoqidian Orogen simplified from Garde and Marker
(2010). The location of number of mafic and ultramafic complexes mapped by processing of regional HyMAP data are shown in
pink ovals. The Niaqornarssuit complex is highlighted by a black oval.
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2002). This procedure reconstructs the scanning geome-
try for each image pixel using position, attitude, and
terrain elevation data. The geocoded radiance data were
converted to at-surface reflectance values using
Atmospheric and Topographic Correction for airborne
imagery (ATCOR-4) program in rugged terrain mode
(Salehi, 2018; Tukiainen&Krebs, 2004).Adetailed digital
elevationmodel for the entire survey area produced at the
Geological Survey of Denmark and Greenland’s photo-
grammetric laboratory was used in this step. The rural
model was chosen, 3000 m above sea level with water
vapour column of 2.0 gcm−2 from sea level to space.
Maritime aerosol type or mixed rural/maritime options
may give better results for the coastal areas. Furthermore,
higher values for the water vapour column may be justi-
fied for the areas adjacent to and/or dissected by fiords.
At-surface reflectance values from the ATCOR-4 proces-
sing were adjusted by an empirical line approach using
ground-based reflectancemeasurements fromcalibration
sites measured with an Analytical Spectral Devices
FieldSpec®3 HiRes Spectroradiometer (ASD). ASD data
were collected during the hyperspectral scanner over-
flights from numerous pseudo-invariant features (PIFs)
thatweremainly homogenous, vegetation and lichen-free
exposures of alluvial material (Tukiainen & Krebs, 2004;
Tukiainen et al., 2003) (Figure 4(a)). Reflectance mea-
surements for one PIF locality are shown in Figure 4(c).
The locality is a part of a major flat area composed of silt
deposited in an ice-dammed lake (Figure 4(b)) and is
measured both in sunlight and using a tungsten-halogen
lamp (Tukiainen et al., 2003).

Remaining albedo differences due to imperfect fore-
going atmospheric correction and global bidirectional
reflectance distribution function (BRDF) suppression
can still lead to sinusoidal perceptible albedo differences
between the data takes (Figure 5). To reduce these
remaining data trends, the detrending approach was
applied that helped to significantly suppress those trends

(Figure 5). It was assumed that data trends, which do not
reflect surface reflectance distribution, might bias suc-
ceeding data analysis such as spatio-spectral classification
and segmentation. Other approaches were not tested but
might be also applicable.

Of the 126 atmospherically corrected channels of
HyMAP data, 106 channels over the 0.47- to 2.46-μm
spectral range were selected for further analysis.
Channels not used are associated with the large water
vapor absorption features near 1.4 and 1.9 μm.The images
were mosaicked using ENVI (ENvironment for
Visualizing Images; Harris Geospatial Solutions,
Broomfield, Colorado). To improve the quality of the
mosaic image, each flight line was subject to masking for
clouds, cloud shadows, water, snow\ice and areas of
poorly illuminated steep terrain (steep slopes facing
away from the incident solar radiation). Water, snow\ice
and low albedo pixels show lower reflectance values
within the short-wave-infrared range as compared to
rock outcrops. The mean reflectance value was calculated
for all the pixels of each flight line throughout the SWIR
range (1.5–2.46 μm) and a single band image (here
referred to as mean reflectance image) was generated.
Based on the statistics of the mean reflectance at wave-
lengths 1.5–2.46 μm, a threshold was set to mask out
pixels related to water, snow\ice and cast shadow.
A pixel containing cloud or cloud shadowwas determined
by comparing reflectance levels for five channels (corre-
sponding to wavelength positions 0.5, 1.01, 1.23, 1.54, and
2.11 μm) against threshold values. Bright pixels were
flagged as cloud contaminated and dark pixels were
flagged as cast shadow. The two aforementioned masks
were then combined into a singlemask for each flight line.

ASD and fluorescence spectroscopy

Of 160 samples collected by 21st North exploration com-
pany, 18 were processed for X-ray fluorescence
(PANalytical AXIOS Advanced RFA) analysis to deter-
mine the major (wt % oxides) and trace elements (ppm)
and to extract qualitative mineralogical composition
information for each rock sample (Figure 3, Table 1).
Each sample was prepared as glass disks for homogeneous
element distribution within the sample. XRF data from
21st North field report were also used, as they carried out
CIPW Norm calculations of the samples (Østergaard,
2011). The mineralogical analysis confirmed that the gab-
broic units are dominated by amphibole, some pyroxene
and minor magnetite. Pyroxenite samples are comprised
primarily of pyroxene, olivine, magnesium-rich amphi-
bole (anthophyllite) and chromite. Peridotite samples
observed to have olivine, pyroxene, minor serpentine
and accessory iron minerals such as magnetite, some of
which are Cu, Ni and Cr-rich (Østergaard, 2011). Dunite
samples contain mainly olivine ± phlogopite ± chromite
minerals.

Figure 2. View of the Niaqornarssuit complex, highlighting
characteristic features of the study area terrane (e.g. variability
in spatial continuity of exposed outcrop, lichen coatings, and
low-lying vegetation cover).
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Next, the reflectance spectra of the sample powders
were obtained in the laboratory using the ASD spectro-
meter within the spectral range of 350–2500 nm and
using a contact probe enabling surfacemeasurements of
1 cm diameter. An overall of 100 measurements per
powder were averaged to obtain a representative spec-
trum of what would be observed from a remote plat-
form. The data are exported in generic 1 nm resolution
as by the manufacturer software.

Spatial–Spectral Endmember Extraction (SSEE)

The Spatial–Spectral Endmember Extraction method
is used on HyMAP data to derive quality spectral
endmembers for the study area (Rogge et al., 2012,

2007). Inherent to SSEE is the ability to retain end-
members with low spectral contrast that are spatially
independent. This is unlike many other spectral-based
extraction methods that ignore the spatial distribution
of materials in a scene and use infrequently occurring
pixels at the extreme outer fringes of a N-dimensional
scatterplot.

This method works by analyzing a scene in parts
(subsets), such that the spectral contrast of low con-
trast endmembers increases. This enables the assess-
ment of subtle lithological variability across a given
study area (Rogge et al., 2012, 2007). Endmember
extraction approach starts by first dividing the image
into equal sized non – overlapping subset regions
where a set of eigenvectors is calculated via singular

Figure 3. True color HyMAP image and detailed geological map of the Niaqornarssuit complex produced by 21st North Exploration
Company. Yellow dots show the locations of surface samples that have been collected for reconnaissance work and mapping over
the area. Samples that are selected for XRF and ASD analysis are indicated by red color.
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value decomposition (SVD) to determine the spectral
variance within each subset. Next, image data are
projected onto the local eigenvectors compiled from
all subset regions. Pixels that lie at either extreme of
the vectors are retained as possible endmembers.

These endmembers are then sorted based on expert
knowledge of known spectral features (vegetation,
lichen, and geological materials) followed by a more
detailed sorting within each category into individual
classes. The resulting sorted endmember classes are

Figure 4. (a) Field localities where spectroradiometric measurements were carried out. The area covered by the airborne
hyperspectral survey is indicated by the red line. K = kimberlitic rocks, L = lamproitic rocks, LG = local geology, S = rocks of
the Sarfartoq carbonatite complex, P = pseudo-invariant fields, Plant = vegetation; (b) locality P3 on the silt formation in the
vicinity of Kangerlussuaq airport; (c) individual measurements from the locality P3.

Figure 5. Airborne HyMAP data before and after removal of remaining albedo differences using detrending approach.
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subsequently averaged to produce a final endmember
set. Image endmember spectra are compared with
laboratory spectral measurements taken from field
samples to determine if spectral features of key rock
types were well represented.

Iterative Spectral Mixture Analysis (ISMA)

Fractional abundances predicted using linear spectral
mixture analysis are most accurate when the optimal
set of endmembers that comprise a given pixel are
used. Larger errors are observed if either too few or
too many endmembers are used (Heinz, 2001). To
overcome this problem, this paper makes use of itera-
tive spectral mixture analysis, which is designed to
unmix each pixel using an optimal per-pixel endmem-
ber set (Rogge et al., 2006). Previous studies by Rogge
et al. (2014b) suggest that SSEE and ISMA can be used
with expert knowledge to explore large-scale airborne
and satellite surveys and generate lithological maps
independent of ground truth data. This is essential in
arctic regions, where ground data may not exist, field
access is limited, and costs are the limiting factor.

This algorithm starts with an iterative-unconstrained
unmixing, which removes one endmember per iteration
based on minimum fractional abundance until a single
endmember remains (Figure 6). Analysis of the change
in the root-mean-square error in each iteration allows
the algorithm to locate the critical iteration defining the
optimal endmember set. The result is a set of abundance
fractions for the optimal endmembers. Resulting frac-
tional abundance maps allow subsequent detailed geo-
logic interpretation. In addition, it is possible to
generate thematic maps showing the distribution of
specific geological materials by assigning each pixel to

the geological endmember with the maximum frac-
tional abundance.

The EnMAP Geological MAPPER (EnGeoMAP)

EnGeoMAP in its application EnGeoMAP Base is
a modular processing framework for the detection
and characterization of geological surface material
from future Environmental Mapping and Analysis
Program (EnMAP) hyperspectral satellite data. It
builds on the conceptual framework of expert systems,
where a well-known spectral library, supplied by spec-
troscopy experts, is automatically compared (Mielke
et al., 2016) to the unknown image spectra (Clark
et al., 2003; Kokaly, 2012).

Its system is divided into a pre-processing module,
a spectral module, a spatial module and can be supplied
with additional mineral deposit-specific information in
the mineral exploration module (Mielke et al., 2016)
(Figure 6). The pre-processing module uses the geo-
metric hull absorption feature characterization techni-
que (Mielke et al., 2015) to retrieve the characteristic
absorption bands in an image spectrum as well as in the
reference library spectra that are supplied by the user.
This automated band selection process, produces simi-
lar results to that being generated by an expert labora-
tory spectroscopist (Mielke et al., 2016). Previous
studies have shown this by directly comparing the char-
acteristic absorption features extracted manually by
expert knowledge versus fully automated geometric
hull technique (Mielke et al., 2016). In this study, the
reference library is supplied by the aforementioned
SSEE algorithm, which provides the necessary consis-
tent data base to both algorithms EnGeoMAP and
ISMA. The spectral module performs a best-weighted
fit analysis of the pixel spectrum to the reference library,

Figure 6. Schematic representation of the workflow for ISMA and EnGeoMAP mapping methods.
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taking into account the position depth and overall shape
of the characteristic absorption features only. Fitting
with the full data spectrum is avoided to reduce erro-
neous results. The weighted fit values are retrieved for
each library entry per image pixel spectrum. Next,
a bound value least squares unmixing (BVLS) is per-
formed with only those library endmembers that pass
a user given threshold of 50% (Mielke et al., 2016). This
process excludes endmembers from entering the
unmixing process of each individual pixel, which falls
under the 50% absorption feature correlation threshold.
The spatial module creates the material maps from
a user-supplied color table. Here the best fit and BVLS
results are color-coded based on the highest best-
weighted fit value (best-fit material map prior to the
unmixing) and the highest abundant endmember
(BVLS map after correlation thresholding and unmix-
ing). In addition, spatial-spectral gradients are calcu-
lated from the unmixing results. Additional metadata
maps are also computed that illustrate the position of
the strongest absorption feature in the VNIR (up to
1 μm) and in the SWIR range (1–2.5 μm), as well as
its value at the absorption maximum.

Results and discussion

Spatial–Spectral Endmember ExtractionThe derived
endmembers represent mixtures of minerals in which
iron content and lichen cover have a strong effect
(Figure 7). Lichen and stunted vegetation grow selec-
tively on specific lithologies, including gabbros, perido-
tite and basement gneiss. The most distinct spectral
signatures were derived from vegetation, which in this
area only, are a good proxy for gabbro and lherzolite
rocks. It is apparent that the spectral mixture of rocks
and vegetation are similar to the vegetation spectra
where a slight peak at 0.56 µm and weak absorption at
0.64 µm are indicative of vegetation (Figure 7(c)). The
spectral curves of lichen-covered mafic and ultramafic
rocks show lichen-masking effects on spectral features
in the 0.4–2 μm region; however, some absorption
features from the underlying mineralogy are discernible
in the 2.1–2.4 μm region (Figure 7(c)).

To better assess and interpret the image endmem-
bers, reference spectra of hornblende, anthophyllite,
actinolite, phlogopite, antigorite, olivine, enstatite,
hypersthene and diopside minerals were selected
from the USGS spectral library (http://speclab.cr.
usgs.gov/) and convolved to response function of
HyMAP data (Figure 8). It should, however, be
noted that spectral mixing with vegetation and lichen
endmembers as well as confusion between minerals
with subtle differences are undoubted considering the
course spatial resolution of HyMAP data, i.e. 20 m.

Mafic rocks have a higher reflectance than ultra-
mafic rocks, with a maxima around 1.76–2.13 μm and
distinct Fe features in VNIR around 0.64 and 0.88 μm

(Figure 7(a)). Maxima around 1.76 μm is indicative of
actinolite while maxima around 2.13 μm is indicative
of hornblende. The shape of spectral as well as the
wavelength position of Fe feature helps in differentiat-
ing these minerals. Actinolite Fe feature is around
1.03 μm while this feature is around 0.64 and
0.88 μm for hornblende. The Fe feature around
0.88 μm is usually masked by lichen coverage (Figure
7(c)). The SWIR spectral characteristics of these rocks
are dictated by amphibole minerals as exemplified by
hornblende in Figure 8. These SWIR absorption fea-
tures are at 2.32 and 2.38 μm and both features are of
the same order of magnitude (Figure 8(a,b)).

Ferrous (Fe+2) and ferric (Fe+3) iron in ultramafic
rocks show distinct absorption features around 1.03
and 0.64 μm owing to minimal lichen cover on those
substrates. Furthermore, a third absorption feature close
to 0.88 μm is related to Fe+2/Fe+3 intervalence charge
transfer (Figure 7). The ferrous iron content in the ultra-
mafic rocks is dominant and complies with the deeper
absorption band around 1.03 µm. For dunite, containing
almost all olivine, only iron absorption feature at 1.03 µm
is exhibited (Figure 8(g)). Pyroxene-rich peridotites show
ferrous and minor ferric features (Figure 8(e,f)), while
pyroxenites show an Fe+2/Fe+3 feature (Figure 8(c,d)). In
SWIR, pyroxenites exhibit an Mg-OH feature around
2.30 µm related to anthophyllite (Figure 8(c)). The strong
Mg-OH feature at 2.32 µm in peridotites is associated
with serpentine (Figure 8(e)). Here, the image endmem-
ber that has been used for mapping dunite units shows
two features around 2.30 and 2.38 µm, which are prob-
ably due to the presence of phlogopite/actinolite (Figure
8(g)). According to (Østergaard, 2011) quartz-rich gneiss
xenoliths and diopside-mica-anthophyllite-actinolite
alteration occur within pegmatitic pyroxenite unit in
the northeastern part of the complex.

ISMA and EnGeoMAP Classification ResultsUsing
the full range of spectral bands limits the overall spectral
contrast between rock types. This presents a problem
for spectral mixture analysis, where collinearity
amongst endmembers can cause errors in abundance
fractions. Improving spectral contrast, and in turn,
minimizing potential collinearity problems requires
band selection (Rogge et al., 2014b) that is weighted in
favor of key spectral features (Figure 7(b,d)). This is
achieved by applying a knowledge – driven band selec-
tion routine for ISMA and a purely data – driven band
selection technique for EnGeoMAP method.

For ISMA method 16 VNIR and 16 SWIR bands
(Table 2) are selected based on expert knowledge and
field and laboratory spectral measurements (Figure 7
(b,d)) to discriminate key rock units and map broad
material classes (e.g. vegetation and lichens). The pri-
mary merit of selected VNIR bands is to differentiate
between mafic and ultramafic units using the broad
features around 0.88 and 1.03 μm in case of ultramafic
units and 0.64 μm in case of mafic bodies. Other
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selected VNIR bands allow capturing the shape of
overall spectral to map non-geological materials
including rock incrusting lichens and vegetation that
supress bedrock mineralogy. To capture the broad
absorption features related to lichens the 1.73, 2.11,
2.30 µm are included in the selected bands (Rogge
et al., 2014a; Salehi et al., 2017b).

Using the selected bands for the image and the
extracted endmembers from SSEEmethod, the unmixing
process is then applied on the continuum removed
HyMAP image mosaic that was aggregated to 20 m
spatial resolution to simulate the ground sampling dis-
tance (GSD) of a spaceborne sensor, such as Sentinel-2.
Figure 9 shows a comparison of classification results
obtained from ISMA and EnGeoMAP approaches.
Here ISMA classification map is generated by assigning
each pixel to the geological endmember with the max-
imum fractional abundance (Figure 9(c)). The best fit
and BVLS results are color-coded based on the highest

best-weighted fit value and the highest abundant end-
member, respectively (Figure 9(d,e)).

RGB color composite of continuum removedHyMAP
image generated from ferric iron (0.64 µm), ferrous iron
(1.03 µm) and Mg-OH (2.32 µm) bands highlights the
exposed mafic and ultramafic units (Figure 9(a)). Within
the ultramafic complex in the eastern dunite body, fer-
rous iron shows a high abundance, depicted as yellow
color, whereby the ferric iron is lower abundant as com-
pared to the western dunite. The reason could be that the
eastern dunite block is less weathered than the residual
part of the ultramafic complex since the Fe3+ is the
product of Fe2+ oxidation resulting in rock weathering
at the surface. Olivine-poorer peridotite zone (lherzolite
and harzburgite) is shown by orange color due to deep
antigorite feature around 2.32 µm, higher reflectance
values around 0.64 µm and low reflectance values for
ferrous iron (1.03 µm). The areas manifested in dark
blue and purple colors (Figure 9(a)) are associated with

Figure 7. Spectral end-members used for ISMA and EnGeoMAP mapping methods. Outcrop related endmembers using (a) full
range of spectral bands and (b) knowledge-based band selection. Vegetation and lichen related endmembers using (c) full range
of spectral bands and (d) knowledge-based band selection. See Table 2 for detailed description of the selected spectral bands.
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oversaturation of the absorption bands with vegetation
and partially lichen coverage (see red pixels in
Figure 9(b)).

Figure 10 shows a comparison between the abun-
dance maps generated for the main mafic and

Figure 8. Comparison of HyMAP endmembers (solid lines) derived from SSEE with best matches from laboratory sample average
spectra and mineral spectra taken from the USGS spectral library for (a,b) gabbro, (c,d) pyroxenite, (e,f) peridotite and (g,h) dunite
samples. See Table 1 for detailed description of mineralogical composition of each sample determined from X-ray fluorescence
analysis.

Table 2. Spectral bands used for SSEE and ISMA, wavelength in
µm.

VNIR
0.562, 0.571, 0.586, 0.617, 0.633, 0.648, 0.663, 0.678, 0.740, 0.785,

0.888, 0.936, 1.030, 1.076, 1.091, 1.279

SWIR 1.658, 1.670, 1.732, 2.098, 2.116, 2.204, 2.220, 2.257, 2.274, 2.308,
2.324, 2.340, 2.357, 2.373, 2.389, 2.405
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ultramafic endmembers (see geo2 to geo6 in Figure 7)
using ISMA and EnGeoMAP methods. It is evident
from Figure 10 that the map patterns of the ultramafic
and mafic units for the entire study area are slightly
different using each of these approaches. Comparison
of RGB composites of abundance maps obtained from
ISMA and EnGeoMAP for endmembers mafic-gabbro
(geo2), peridotite (geo6) and dunite (geo5) shows
a clear distinction of these units (Figure 10(f,l)).

The mapping results achieved for mafic – gabbro
(geo2) unit are consistent with the existing geological
map (Figure 10(a,g)). On the other hand, mafic (geo3)
endmember shows correlation with both gabbro and
peridotite units. There is also a lot of overlap with the
quaternary unit using this endmember due to the
lichen cover, which affects spectral recognition of its
associated lithologies by imparting a subtle chloro-
phyll absorption feature near 0.6–0.7 μm. The results

Figure 9. (a) HyMAP continuum removed RGB color composite highlighting the main mafic-ultramafic units. Red – ferric iron
(0.64 μm); Green – Mg-OH (2.32 μm); and Blue – ferrous iron (1.03 μm). (b) False-colour composite image highlighting the
abundance of vegetation in the area. Classification results for HyMAP data generated from (c) ISMA, (d) best fit and (e) BVLS
methods.
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indicate that ISMA approach is less sensitive to this
effect as compared to EnGeoMAP (Figure 10(b,h)).

As mentioned earlier, the study area host three
ultramafic units, i.e. peridotite, pyroxenite and dunite
rocks. EnGeoMAP maps both east and west dunites,

while ISMA picks up only the eastern dunite (Figure
10(d,j)) and classifies the western dunite as peridotite
(Figure 10(c)). Based on our observations from
HyMap data the southern part of the western dunite
shows characteristic features related to peridotite,

Figure 10. Spectral unmixing results from ISMA and EnGeoMAP showing abundances for (a,g) geo2 – mafic (amphibole +
pyroxene); (b,h) geo3 –mafic (amphibole – hornblende); (c,i) geo4 – peridotite (olivine + diopside + antigorite); (d,j) geo5 – dunite
(olivine ± phlogopite/actinolite); and (e,k) geo6 – pyroxenite (enstatite/hypersthene + anthophyllite) endmembers. RGB color
composites of abundances for (f) ISMA and (l) EnGeoMAP highlighting the main mafic-ultramafic units. Red – mafic (geo2);
Green – peridotite; and Blue – dunite.
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while the rest of the outcrop is highly mixed with
vegetation pixels (Figure 9(b)). Peridotite abundance
map derived from EnGeoMAP corresponds better
with the geological map, however there are slight
differences between the geological map and the peri-
dotite abundance maps regardless of the applied
unmixing approach.

The HyMAP data are then convolved with the
spectral response functions of Sentinel-2, ASTER and
Landsat-8 OLI to evaluate the capabilities of these
large swath width sensors in mapping ultramafic
rocks in the Arctic region and in presence of abundant
lichens. The extracted endmembers from SSEE
method are resampled to the spectral response func-
tion of the simulated ASTER, Landsat-8 OLI, and
Sentinel-2 data. The generated unmixing results are
then compared to that from the 20 m HyMAP refer-
ence base (Figure 11). Direct comparison between the
real multispectral dataset and the airborne HyMAP

data was not carried out here. This is mainly because
the time gap of at least 10 to 13 years between the
airborne data (acquired in 2002) and actually available
Landsat-8 and Sentinel-2 data is too large. To over-
come this problem, we have tested the mapping
approaches on the simulated datasets. Figure 11
shows the classification result for the different simu-
lated multispectral data using BVLS unmixing
approach, where the highest pixel abundance value
determines the color of the pixels class, as in case of
the USGS Tetracorder (Clark et al., 2003), MICA
(Kokaly, 2012) and EnGeoMAP (Mielke et al., 2016).
The visual resemblance between all sensors for the
ultramafic class is striking. All sensors show a good
overall performance in locating the major ultramafic
bodies.

Figure 11. Classification results generated from BVLS for simulated ASTER, Landsat-8 OLI, and Sentinel-2. HyMAP BVLS and ISMA
data are used as a reference base and similarity scores for each endmember and sensor to the HyMAP reference are indicated in
the plot.
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Structural Similarity Index Measure (SSIM) for
characterizing ISMA and EnGeoMAP

For HyMAP data, the binarized dunite, pyroxenite
and peridotite images generated from the geological
map are used as ground truths. The binarized outputs
of ISMA, the EnGeoMAP weighted fitting (BFIT) and
BVLS for these endmembers are quantitatively com-
pared to the related ground truth, using the SSIM
method (Wang et al., 2004). This method represents
a sensitive measure to compare subtle differences
between two images and provide a robust and quanti-
tative similarity measure that considers the structure

of the image as well (Wang et al., 2004). To assess the
results for the whole ultramafic complex; the dunite,
pyroxenite and peridotite abundance maps are merged
and compared to the equivalent ground truth derived
from the geological map (Table 3). The results imply
that BVLS performs better than BFIT and ISMA for all
classes. The similarity of ISMA to the dunite ground
truth is 62.22%, whilst the similarity to EnGeoMAPs
BVLS and best-weighted fit results are 75.37% (see
Figure 12 & Table 3 for the results).

On the other hand, the BVLS results for pyroxenite
endmember yield 83% similarity with the ground
truth, while the related abundance map in Figure 10

Table 3. Quantitative comparison between the results generated using different processing approaches with the reference image.

High Medium Low

Structural Similarity Index Measure (SSIM)
Ground Truth

Dunite Peridotite Pyroxenite Ultramafic

dohte
M

gnissecorP

IS
M

A

Dunite 62.22%
Peridotite 41.75%
Pyroxenite 27.28%
Ultramafic 11.20%

B
FI

T

Dunite 75.37%
Peridotite 66.98%
Pyroxenite 71.23%
Ultramafic 31.69%

B
V

L
S

Dunite 75.37%
Peridotite 67.35%
Pyroxenite 82.70%
Ultramafic 31.69%

Positive binary (total(image1*image2))/total(image2); image2=reference
Ground Truth

Dunite Peridotite Pyroxenite Ultramafic

dohte
M

gnissecorP

IS
M

A

Dunite 18.97%
Peridotite 5.41%
Pyroxenite 6.30%
Ultramafic 24.73%

B
FI

T

Dunite 32.81%
Peridotite 3.93%
Pyroxenite 0.00%
Ultramafic 21.40%

B
V

L
S

Dunite 32.81%
Peridotite 1.47%
Pyroxenite 0.00%
Ultramafic 17.06%

Correlation
Ground Truth

Dunite Peridotite Pyroxenite Ultramafic

dohte
M

gnissecorP

IS
M

A

Dunite 26.40%
Peridotite 3.42%
Pyroxenite 1.35%
Ultramafic 18.41%

B
FI

T

Dunite 39.19%
Peridotite 2.55%
Pyroxenite -0.65%
Ultramafic 23.06%

B
V

L
S

Dunite 39.19%
Peridotite 0.66%
Pyroxenite -0.48%
Ultramafic 23.86%

EUROPEAN JOURNAL OF REMOTE SENSING 171



implies differently. The reason is that if the image
structure is mostly void (as in our case), SSIM over-
estimates the zero-valued non-class pixels. To over-
come this problem, a direct correlation-based
comparator is used for characterizing the results
achieved from ISMA and EnGeoMAP (Table 3).
Furthermore, to exclude the no-class pixels and only
counting the similarity of the outputs with binary one
from the ground truth image; we propose a hard mea-
sure, namely positive binary. Here a sum ratio between
the product of result and reference and the reference
sum is calculated as a measure for similarity between
the two images (Table 3). The results suggest that
EnGeoMAP performs better for mapping the dunite
unit, while ISMA yields higher similarity for the other
three classes.

The same approach is used for comparing the
performance of spaceborne ASTER, Sentinel-2 and
Landsat-8 OLI results with HyMAP reference data.
Similarity scores for each endmember and sensor to
the HyMAP reference are given in Figure 11.
Considering the different sensors potential to map
certain surface cover types, there are noticeable
differences in the sensors overall similarity to the
HyMAP reference data (Figure 11). ASTER per-
forms well for all endmember entries with notice-
able changes in the SWIR, whilst Sentinel-2 and
Landsat-8 are mostly limited to a good perfor-
mance in the VNIR. The numbers for the overall
sensors performance for mapping the last two spec-
tral endmembers, representing the ultramafic mate-
rial are comparable to those from Platinum tailings
in South Africa in (Mielke et al., 2014).
Furthermore, EnGeoMAP shows higher similarity
to the HyMAP BVLS reference image for the
mafic units (endmembers 11 to 13, i.e. geo1, geo2
& geo3 in Figure 7), whilst ISMA performs better
for mapping the ultramafic units (endmembers 14
to 16, i.e. geo4, geo5 & geo6 in Figure 7).

Conclusions

This study examines the possibility to extract valuable
mineralogical and lithological information from air-
borne hyperspectral and spaceborne multispectral
data where abundant rock encrusting lichens mask
bedrock mineralogy. An airborne hyperspectral data
covering 3.5 × 2.5 km2 region coinciding with the
Niaqornarssuit complex in West Greenland are aggre-
gated to 20 m resolution that resembles the GSD of
spaceborne sensors to provide a testbed with
a reasonably large spectral mixing for the performance
tests of ISMA and EnGeoMAP algorithms. In addi-
tion, band selection is used for optimizing the spectral
unmixing using a knowledge – driven band selection
routine, as in case of ISMA; and a purely data – driven
band selection technique as in case of EnGeoMAP. For
assessment of the results, we made extensive use of
laboratory and field spectral measurements as well as
XRF analysis to obtain geochemical data.

The map products generated from the aggregated
scene capture the broad geological patterns and much
of the lithologies shown in the geological map though
some spatial and lithological discrimination is lost, as
expected. Mafic (gabbro) and ultramafic units (dunite,
peridotite, pyroxenite) are distinguished based on gen-
erally intense Mg-OH feature in short-wave-infrared
(SWIR) and ferric and ferrous-iron absorption fea-
tures in the visible and near-infrared (VNIR).
Ferrous (Fe+2) and ferric (Fe+3) features around 1.03
and 0.64 μm are key indicators of the ultramafic units
owing to minimal lichen cover on those substrates.
Furthermore, a third absorption feature close to
0.88 μm is related to Fe+2/Fe+3 intervalence charge
transfer. For dunite, containing almost all olivine,
only Fe+2 feature at 1.03 µm is exhibited. This unit
often shows SWIR features around 2.32 and 2.38 μm
related to phlogopite and-or actinolite minerals.
Pyroxene-rich peridotites show Fe+2 and minor Fe+3

features, while pyroxenites show an Fe+2/Fe+3 feature

Figure 12. a) The binarized dunite class from the geological map is used as ground truth. The binarized classification results for
HyMAP data generated using b) ISMA, c) best fit, and d) BVLS methods for the dunite endmember.
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around 0.88 μm. Antigorite and anthophyllite miner-
als are critical for discrimination of peridotite and
pyroxenite units with slightly different Mg-OH fea-
tures around 2.32 and 2.30 µm, respectively. Mafic
rocks have a higher reflectance than ultramafic rocks,
with a pick around 2.13 μm and distinct Fe features in
VNIR around 0.64 and 0.88 μm. The Fe feature
around 0.88 μm is usually masked by lichen coverage.
The SWIR spectral characteristics of these rocks are
dictated by amphibole minerals with absorption fea-
tures at 2.32 and 2.38 μm. These results indicate the
importance of analyzing the spectral shape and albedo,
as well as analyzing specific VNIR and SWIR spectral
features for mapping mafic-ultramafic units in weath-
ered terrain.

Next, the performance of aforementioned unmixing
approaches is tested for simulated ASTER, Landsat-8
and Sentinel-2 spaceborne dataset. The results suggest
that unmixing methods applied to ASTER data are
more effective in differentiating mafic and ultramafic
rocks as compared to the Landsat-8 and Sentinel-2 data.
The dunite and peridotite ultramafic rocks are deli-
neated using ASTER data. In addition, one of the lichen
endmembers (EM7) shows a good correlation with
olivine-peridotite unit in the southern part of west
dunite. The presence of abundant vegetation and lichen
is more problematic in landsat-8 and sentinel-2 data
and only dunite ultramafic unit is mapped using these
sensors. For these two sensors, lichen endmember
(EM8) partially corresponds with the peridotite unit.

The achieved results demonstrate that aggregated
data will be able to provide a large-scale reconnaissance
(e.g. less detailed) mapping capability and useful
exploration information of geologic materials (discri-
mination of mafic and ultramafic rock units in weath-
ered terrain), showing the usefulness of next generation
hyperspectral spaceborne sensors such as HISUI,
EnMAP and PRISMA. Furthermore, we were able to
assess the value of satellite sensor systems to support
geological mapping and mineral exploration of ultra-
mafic complexes in the arctic regions that become ever
more important as more sophisticated spaceborne sen-
sors become available, with NASA and ESA leading the
way to new earth observation missions such as
HySPIRI, Landsat-9 and new additions to ESA’s
Copernicus Sentinel fleet.
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