Earth Surf. Dynam., 8, 447—470, 2020

https://doi.org/10.5194/esurf-8-447-2020 Earth Surface
© Author(s) 2020. This work is distributed under Dynamics
the Creative Commons Attribution 4.0 License.

Parameterization of river incision models requires
accounting for environmental heterogeneity: insights
from the tropical Andes

Benjamin Campforts'->3, Veerle Vanacker®, Frédéric Herman®, Matthias Vanmaercke®,
Wolfgang Schwanghart’, Gustavo E. Tenorio®°, Patrick Willems'?, and Gerard Govers’

I'Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences, Potsdam, Germany
2CSDMS, Institute for Arctic and Alpine Research, University of Colorado at Boulder, Boulder, CO, USA
3Research Foundation Flanders (FWO), Egmontstraat 5, 1000 Brussels, Belgium
4Earth and Life Institute, Georges Lemaitre Centre for Earth and Climate Research, University of Louvain,
Place Louis Pasteur 3, 1348 Louvain-la-Neuve, Belgium
SInstitute of Earth Surface Dynamics, University of Lausanne, 1015 Lausanne, Switzerland
University of Liege, UR SPHERES, Department of Geography, Clos Mercator 3, 4000 Li¢ge, Belgium
Institute of Environmental Science and Geography, University of Potsdam, Germany
8Facultad de Ciencias Agropecuarias, Universidad de Cuenca, Campus Yanuncay, Cuenca, Ecuador
9Department of Earth and Environmental Sciences, KU Leuven, Celestijnenlaan 200E, 3001 Leuven, Belgium
19Department of Civil Engineering — Hydraulics Section, KU Leuven, Kasteelpark 40 box 2448,

3001 Leuven, Belgium

Correspondence: Benjamin Campforts (benjamin.campforts @ gfz-potsdam.de)

Received: 13 September 2019 — Discussion started: 27 September 2019
Revised: 20 April 2020 — Accepted: 27 April 2020 — Published: 3 June 2020

Abstract. Landscape evolution models can be used to assess the impact of rainfall variability on bedrock river
incision over millennial timescales. However, isolating the role of rainfall variability remains difficult in nat-
ural environments, in part because environmental controls on river incision such as lithological heterogeneity
are poorly constrained. In this study, we explore spatial differences in the rate of bedrock river incision in the
Ecuadorian Andes using three different stream power models. A pronounced rainfall gradient due to orographic
precipitation and high lithological heterogeneity enable us to explore the relative roles of these controls. First, we
use an area-based stream power model to scrutinize the role of lithological heterogeneity in river incision rates.
We show that lithological heterogeneity is key to predicting the spatial patterns of incision rates. Accounting
for lithological heterogeneity reveals a nonlinear relationship between river steepness, a proxy for river incision,
and denudation rates derived from cosmogenic radionuclide (CRNs). Second, we explore this nonlinearity using
runoff-based and stochastic-threshold stream power models, combined with a hydrological dataset, to calculate
spatial and temporal runoff variability. Statistical modeling suggests that the nonlinear relationship between river
steepness and denudation rates can be attributed to a spatial runoff gradient and incision thresholds. Our findings
have two main implications for the overall interpretation of CRN-derived denudation rates and the use of river
incision models: (i) applying sophisticated stream power models to explain denudation rates at the landscape
scale is only relevant when accounting for the confounding role of environmental factors such as lithology, and
(ii) spatial patterns in runoff due to orographic precipitation in combination with incision thresholds explain part
of the nonlinearity between river steepness and CRN-derived denudation rates. Our methodology can be used as
a framework to study the coupling between river incision, lithological heterogeneity and climate at regional to
continental scales.
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1 Introduction

1.1 Background

Research on how climate variability and tectonic forcing in-
teract to make a landscape evolve over time has long been
limited by the lack of techniques that measure denudation
rates over sufficiently long time spans (Coulthard and Van de
Wiel, 2013). Consequently, the relative role of climate vari-
ability and tectonic processes could only be deduced from
sediment archives (e.g., Hay et al., 1988). However, whether
sediment archives offer reliable proxies remains contested
because sediment sources and transfer times to depositional
sites are often obscured by stochastic processes that shred
environmental signals (Bernhardt et al., 2017; Jerolmack and
Paola, 2010; Romans et al., 2016; Sadler, 1981).

Nowadays, cosmogenic radionuclides (CRNs) contained
in quartz minerals of river sediments provide an alterna-
tive tool for determining catchment-wide denudation rates
on a routine basis (Codilean et al., 2018; Harel et al., 2016;
Portenga and Bierman, 2011). In sufficiently large catch-
ments, detrital CRN-derived denudation rates (Ecry) inte-
grate over timescales that average out the episodic nature of
sediment supply (Kirchner et al., 2001). Hence, benchmark
or natural denudation rates can be calculated for disturbed as
well as pristine environments (Reusser et al., 2015; Safran et
al., 2005; Schaller et al., 2001; Vanacker et al., 2007).

Catchment-wide denudation rates have been found to cor-
relate with a range of topographic metrics including basin
relief, average basin gradient and elevation (Abbiihl et al.,
2011; Kober et al., 2007; Riebe et al., 2001; Safran et al.,
2005; Schaller et al., 2001). However, in tectonically active
regimes, hillslopes tend to evolve towards a critical threshold
gradient, which is controlled by mechanical rock properties
(Anderson, 1994; Roering et al., 1999; Schmidt and Mont-
gomery, 1995). Once slopes approach this critical gradient,
mass wasting becomes the dominant process controlling hill-
slope response to changing base levels (Burbank et al., 1996).
In such a configuration, hillslope gradients are no longer an
indication of denudation rates (Binnie et al., 2007; Korup et
al., 2007; Montgomery and Brandon, 2002), and hillslope
metrics (Hurst et al., 2012) often require high-resolution to-
pographic data that are not widely available.

Contrary to hillslope gradients, rivers and river longi-
tudinal profiles are more sensitive to changes in erosion
rates (Whipple et al., 1999). Bedrock rivers in mountain-
ous regions mediate the interplay between uplift and erosion
(Whipple and Tucker, 1999; Wobus et al., 2006). They incise
into bedrock and efficiently convey sediments, thus setting
the base level for hillslopes and controlling the evacuation
of hillslope-derived sediment. Quantifying the spatial pat-
terns of natural denudation rates in tectonically active regions
therefore requires detailed knowledge of the processes driv-
ing fluvial incision (Armitage et al., 2018; Castelltort et al.,
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2012; Finnegan et al., 2008; Gasparini and Whipple, 2014;
Goren, 2016; Scherler et al., 2017; Tucker and Bras, 2000).

River morphological indices, such as channel steepness
(ksn) (Wobus et al., 2006), have successfully been applied
as a predictor for catchment denudation and thus Ecrn by
Safran et al. (2005) and many others, commonly identify-
ing a monotonically increasing relationship between channel
steepness (ksp) (Wobus et al., 2006) and Ecrn (Cyr et al.,
2010; DiBiase et al., 2010; Mandal et al., 2015; Ouimet et
al., 2009; Safran et al., 2005; Vanacker et al., 2015). Several
authors identified a nonlinear relationship between kg, and
Ecrn in both regional (e.g., DiBiase et al., 2010; Ouimet et
al., 2009; Scherler et al., 2014; Vanacker et al., 2015) and
global compilation studies (Harel et al., 2016). Theory sug-
gests that this nonlinear relationship reflects the dependency
of long-term denudation on hydrological variability (Deal et
al., 2018; Lague et al., 2005; Tucker and Bras, 2000). Hy-
drological variability affects both temporal and spatial vari-
ations in river discharge, and the effect of river discharge on
denudation and river incision rates can be approximated by
theoretical model derivations. However, the impact of hydro-
logical variability on incision rates in natural environments
has, until now, only been successfully identified in a limited
number of case studies (DiBiase and Whipple, 2011; Ferrier
et al., 2013; Scherler et al., 2017).

We identify two limitations hampering the large-scale ap-
plication of river incision models that include hydrological
variability. First, the necessary high-resolution hydrologi-
cal data are usually unavailable. Mountain regions are typi-
cally characterized by large temporal and spatial variation in
runoff rates (e.g., Mora et al., 2014). Yet, most of the obser-
vational records on river discharge in mountain regions are
fragmented and/or have limited geographic coverage. Sec-
ond, large catchments are often underlain by variable litholo-
gies. Studies exploring the role of river hydrology in con-
trolling river incision have hitherto mainly focused on re-
gions underlain by rather uniform lithology (DiBiase and
Whipple, 2011; Ferrier et al., 2013) or they have consid-
ered lithological variations to be of minor importance (Scher-
ler et al., 2017). However, tectonically active regions have
usually experienced tectonic accretion, subduction, active
thrusting, volcanism and denudation, resulting in a highly
variable lithology over >100km distances (Horton, 2018).
Rock strength is known to control river incision rates and is
a function of its lithological composition and stratigraphic
age (Brocard and van der Beek, 2006; Lavé and Avouac,
2001; Stock and Montgomery, 1999), as well as its rheology
and fracturing (Molnar et al., 2007). If we want to use ge-
omorphic models not only to emulate the response of land-
scapes to climatic and/or tectonic forces but also to predict
denudation rates, then we need to account for variations in
physical rock properties (Attal and Lavé, 2009; Nibourel et
al., 2015; Stock and Montgomery, 1999). Even more impor-
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tantly, these variations in rock erodibility can potentially ob-
scure the relation between river incision and discharge (Deal
et al., 2018). Therefore, the climatic effects on denudation
rates can only be correctly assessed if the geomorphic model
accounts for physical rock properties and vice versa. Based
on current limitations, we formulate two main objectives: we
want (i) to assess the impact of lithological heterogeneity on
river incision and (ii) to unravel the role of allogenic (spa-
tial and/or temporal runoff variability) versus autogenic (in-
cision thresholds) controls on river incision. We develop and
evaluate our approach in the southern Ecuadorian Andes, for
which detailed lithological information is available as is a
database of CRN-derived denudation rates (Vanacker et al.,
2007, 2015).

1.2 River incision models

Bedrock rivers are shaped by processes including weath-
ering, abrasion—saltation, plucking, cavitation and debris
scouring (Whipple et al., 2013). However, explicitly account-
ing for these processes renders models too complex at the
spatial and temporal scales relevant to understanding land-
scape evolution of entire mountain ranges. Therefore, a broad
variety of models have been proposed to simplify the com-
plex nature of river incision dynamics (Armitage et al., 2018;
Lague et al., 2005; Shobe et al., 2017; Venditti et al., 2019).
Most river incision models assume a functional dependence
of river incision on the shear stress (t; Pa) exerted by the river
on its bed (Sklar and Dietrich, 1998; Whipple and Tucker,
1999). However, within the family of shear stress—stream
power models, several approaches exist. Most commonly
used is the Area-Based Stream Power Model (A-SPM), ex-
plicitly representing the universally observed inverse power
relation between channel slope and drainage area (Howard,
1994; Whipple and Tucker, 1999). Parametrization of the
A-SPM is purely empirical and involves the calibration of
three incision parameters (an erosion efficiency parameter,
an area exponent and a slope exponent). Given the interde-
pendency of these parameters (e.g., Campforts and Govers,
2015; Croissant and Braun, 2014; Roberts and White, 2010),
there is an ongoing effort to calibrate river incision models
using a process-oriented strategy whereby small-scale obser-
vations and physical mechanisms are upscaled to the land-
scape scale (Venditti et al., 2019). In particular and not ex-
clusively, ongoing efforts evaluate how the three incision pa-
rameters are affected by the presence of incision thresholds
(e.g., DiBiase and Whipple, 2011; Lague, 2014), discharge
variability (DiBiase and Whipple, 2011; Lague et al., 2005;
Snyder et al., 2003; Tucker and Bras, 2000), and the spatial
and temporal distribution of runoff (Deal et al., 2018; Fer-
rier et al., 2013; Lague et al., 2005; Molnar et al., 2006).
In this paper, we evaluate how two of such derived models
(the Stochastic-Threshold and Runoff-Based Stream Power
Model — ST-SPM and R-SPM, respectively) can be used to
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explain measured variations in denudation rates at the land-
scape scale.

1.2.1 Area-Based Stream Power Model

The Area-Based Stream Power Model (A-SPM; Howard,
1994) is a first, lumped statistical approach to represent river
incision:

E=KA"S", (1

in which E is the long-term river erosion (LT™!), K’
(L'=2" T~1) is the erosional efficiency as a function of rock
erodibility and erosivity, A (L?) is the upstream drainage
area, S (L L_l) is the channel slope, and m and n are expo-
nents whose values depend on lithology, rainfall variability
and sediment load. Equation (1) can be rewritten as a func-
tion of the steepness index, kg,

E=K'kl, 2

where kg can be written as the upstream area-weighted chan-
nel gradient:

ks = SA", 3)

in which 8 =m/n is the concavity index (Snyder et al.,
2000; Whipple and Tucker, 1999). In order to compare steep-
ness indices from different locations, 6 is commonly set to
0.45 and referred to as the normalized steepness index, kg
(Wobus et al., 2006). Variations in kg, are often used to infer
uplift patterns by assuming a steady state between uplift and
erosion (Kirby and Whipple, 2012). In transient settings, in
which steady-state conditions are not necessarily met, the kg,
values can be used to infer local river incision rates (Harel et
al., 2016; Royden and Perron, 2013).

When using the A-SPM, the effect of autogenic (caused
by intrinsic river dynamics such as incision thresholds and
changes in channel width) and allogenic (originating from
the transient response of river dynamics to extrinsic changes
such as climate variability) controls is assumed to be ac-
counted for in the model parameters (K', m and n). For ex-
ample, it has been shown that incision thresholds translate
into a slope exponent n greater than unity when applying
the A-SPM (Lague, 2014). Notwithstanding empirical evi-
dence supporting the A-SPM, such as the scaling between
drainage area and channel slope in steady-state river profiles
(Lague, 2014) or its capability to simulate transient river inci-
sion pulses (Campforts and Govers, 2015), the lumped mod-
eling approach of the A-SPM cannot be used to evaluate the
role of autogenic or allogenic river response.

1.2.2 Stochastic-Threshold Stream Power Model

The Stochastic-Threshold Stream Power Model (ST-SPM;
Crave and Davy, 2001; Deal et al., 2018; Lague et al., 2005;
Snyder et al., 2003; Tucker and Bras, 2000) simulates the
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impact of hydrological variability and incision thresholds on
river incision and thus enables us to evaluate the role of au-
togenic or allogenic river response.

The ST-SPM is calculated in two consecutive steps. First,
instantaneous river incision 7 (Lt~!) is calculated as

1(Q")=KQ"k! — v, (4a)
K = kek®kyy®R"; ¢ = ket?, (4b)
y=aa(l —ws); m=au(l —wp); n=ap, (40)

in which Q* represents the dimensionless normalized daily
discharge calculated by dividing daily discharge Q (L3 T~1)
by mean annual discharge Q (L3 T™1), ke (L2 T2m~19) is
the erosional efficiency constant, R (L T™') is the mean an-
nual runoff, a is the shear stress exponent reflecting the na-
ture of the incision process (Whipple et al., 2000), v is the
threshold term (L T_l), and k;, ky, o, B, w; and wy are the
channel hydraulic parameters described in Table 1.

In a second step, long-term river incision is calculated by
multiplying instantaneous river incision, /, calculated for a
discharge of a given magnitude (Q*) with the probability
for that discharge to occur (pdf(Q*)), and subsequently in-
tegrating this product over the range of possible discharge
events specific to the studied timescale (DiBiase and Whip-
ple, 2011; Lague et al., 2005; Scherler et al., 2017; Tucker
and Bras, 2000; Tucker and Hancock, 2010):

on

E=/ 1(Q*)pdf(Q*)dQ™, &)
o

in which QF is the minimum normalized discharge required

to exceed the critical shear stress (t¢), and QF is the max-

imum possible normalized discharge over the time consid-

ered.

1.2.3 Runoff-Based Stream Power Model

The Runoff-Based Stream Power Model (R-SPM) is a sim-
plified version of the Stochastic-Threshold Stream Power
Model (ST-SPM). The R-SPM assumes that the incision
thresholds are negligible (¥ = 0) and that discharge is con-
stant over time (Q* = 1), simplifying Eq. (5) to

E =Kk (6)

In the following sections, we first describe the study area,
characterize the lithological configuration by developing a
lithological erodibility index and compile a database to rep-
resent runoff variability. Second, we present the methods and
assumptions used for calibrating and simulating river inci-
sion. In a third section, the modeling results are presented
at the catchment scale: we start by evaluating the impact
of lithological heterogeneity on river incision rates using an
area-based river incision model (A-SPM). We then evaluate
to what extent the variability in denudation rates can be ex-
plained by spatial and/or temporal runoff variability and the
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Figure 1. Geomorphic setting of the Paute catchment. The num-
bered dots indicate the sampling locations for the CRN-derived
erosion rates and their corresponding watersheds (Table 2). Solid
black lines indicate the major faults. PF: the Peltetec Fault, CF: the
Cosanga Fault, SA: the sub-Andean thrust fault. Concealed faults
separating major stratigraphical units are indicated with dashed
lines. The location of Quaternary faults is derived from the in-
ternational lithosphere program (http://geology.cr.usgs.gov). Major
knickpoints are indicated as red diamonds. The color scale indi-
cates elevations, which were derived from the 30 m SRTM v3 DEM
(Farr et al., 2007). The main map is produced with Topo Toolbox
(Schwanghart and Scherler, 2014). The inset map is made in QGis
30.

existence of incision thresholds using the R-SPM and ST-
SPM. In a final section, we discuss our findings, highlight the
implications of our work and discuss further perspectives.

2 Study area

2.1 Tectonics and geomorphic setting

The Paute catchment is a 6530 km? transverse drainage basin
(2.9° 8, 79° W): the Paute River has its source in the eastern
flank of the Western Cordillera, traverses the Cuenca intra-
montane basin and cuts through the Eastern Cordillera before
joining the Santiago River, a tributary of the Amazon (Fig. 1;
Hungerbiihler et al., 2002; Steinmann et al., 1999). Where
the Paute River cuts through the Eastern Cordillera, the to-
pography is rough with steep hillslopes (90th percentile of
slope gradients: 0.40 mm~") and deeply incised river valleys
(Guns and Vanacker, 2013).

The oblique accretion of terranes to the Ecuadorian mar-
gin during the Cenozoic resulted in a diachronous exhuma-
tion and cooling history along the Ecuadorian cordillera sys-
tem (Spikings et al., 2010). South of 1.5° S, where the Paute

https://doi.org/10.5194/esurf-8-447-2020
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Table 1. Constant model parameters.
Parameter Model Description Value  Unit
a R-SPM/ST-SPM  Bed shear stress exponent, with 7¢ representing unit stream power if @ = 3/2 3/2  dimensionless
k; R-SPM/ST-SPM  Flow resistance factor 1000 kg m~7/3s—4/3
kw R-SPM/ST-SPM  Scaling parameter between bankfull river width and discharge 3.7 m 0654055
o R-SPM/ST-SPM  Flow resistance exponent (Darcy—Weisbach) 2/3  dimensionless
B R-SPM/ST-SPM  Flow resistance exponent (Darcy—Weisbach) 2/3  dimensionless
Oref R-SPM/ST-SPM  Reference concavity 0.45 dimensionless
Os ST-SPM Sediment particle density 27 g em ™3
ow ST-SPM Fluid density 1 gem™3
To* ST-SPM Shield’s number 0.045 dimensionless
wp ST-SPM Downstream channel width variation exponent 0.55 dimensionless
ws ST-SPM At-a-station channel width variation exponent 0.25 dimensionless

basin is situated, three distinct periods with a higher cooling
rate have been reported during the Paleogene at 73-55, 50-30
and 25-18 Ma, corresponding to a total cooling from ca. 300
to ca. 60° C (Spikings et al., 2010). In the Western Cordillera,
no elevated cooling is observed during the Paleogene and ex-
tensional subsidence of the Cuenca basin allowed synsedi-
mentary deposition of marine, lacustrine and terrestrial facies
until the Middle to Late Miocene (Hungerbiihler et al., 2002;
Steinmann et al., 1999). The collision between the Carnegie
ridge and Ecuadorian trench at some time between the Mid-
dle to Late Miocene (Spikings et al., 2001) resulted in uplift
of the Western Cordillera and caused a tectonic inversion of
the Cuenca basin (Hungerbiihler et al., 2002; Steinmann et
al., 1999). Based on a compilation of mineral cooling ages
available for the Cuenca basin, Steinman et al. (1999) esti-
mated a mean rock uplift rate of ca. 0.7mmyr~! and a cor-
responding surface uplift of ca. 0.3 mmyr~! from 9 Ma to
present. Uplift patterns are assumed to be reflected in the
river steepness and not explicitly simulated in this paper.

The Paute basin is characterized by a tropical mountain
climate (Muiioz et al., 2018). Despite the presence of moun-
tain peaks up to ca. 4600 m (Fig. 1), the region is free of per-
manent snow and ice (Celleri et al., 2007). The region’s pre-
cipitation is regulated by its proximity to the Pacific Ocean
(ca. 60 km distance), the seasonal shifting of the Intertrop-
ical Convergence Zone (ITCZ) and the advection of conti-
nental air masses sourced in the Amazon basin, giving rise to
an orographic precipitation gradient along the eastern flank
of the Eastern Cordillera (Bendix et al., 2006). Total annual
precipitation is highly variable within the Paute basin and
ranges from ca. 800 mm in the center of the basin up to ca.
3000 mm in the eastern parts of the catchment (Celleri et al.,
2007; Mora et al., 2014).

2.2 Lithological strength

The erodibility map was developed using an empirical, hy-
brid classification method: it combines information on the
lithological composition (Aalto et al., 2006) and the age of
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non-igneous formations assuming higher degrees of diagen-
esis and increased lithological strength for older formations
(see Kober et al., 2015). Adding age information to evalu-
ate lithological strength has advantages because lithostrati-
graphic units are typically composed of different lithologies
but mapped as a single entity because of their stratigraphic
age. The lithological erodibility (Lg) is calculated as

Lg = %L,
7
1 { M, non-igneous rocks (72)
%, igneous rocks.

LA is a dimensionless erodibility index based on strati-
graphic age (Fig. 2a), and Ly, is a dimensionless erodibil-
ity index based on lithological strength (Table 3), similar to
the erodibility indices published by Aalto (2006). Note that
L varies between 1 (Carboniferous) and 6 (Quaternary),
whereas L ranges between 2 (e.g., granite) and 12 (e.g.,
unconsolidated colluvial deposits). The lithological strength
thus has a double weight, resulting in L’ values ranging be-
tween 1 and 6. For igneous rocks, only Lt is considered,
assuming that the lithological strength of igneous rocks re-
mains constant over time. For river incision parameters to
be comparable to other published ranges, L is finally scaled
around 1 by multiplying L’ with 2/7. Lg therefore ranges be-
tween 2/7 and 12/7. A description of the lithological units,
the age of the formations and their lithological strength (La,
Ly, and Lg) is provided in Supplement Table S3.

Using Eq. (7), we developed the erodibility map of
Ecuador (Fig. S1) and the Paute catchment (Fig. 2c) based on
the 1M geological map of Ecuador (Egiiez et al., 2017). The
lithological erodibility values were compared with field mea-
surements (n = 9) of bedrock rheology by Basabe (1998). An
overview of measured lithological strength values is provided
in Table S4 (e.g., uniaxial compressive strength). Figure 2b
shows good agreement (R? = 0.77) between the lithological
erodibility index, Lg, and the measured uniaxial compressive
strength.

Earth Surf. Dynam., 8, 447—-470, 2020
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Figure 2. Development of empirical lithological erodibility index (Lg) and its application to the Paute catchment. (a) Proposed lithological
erodibility index based on lithological age (L A ). Detailed sub-classifications per lithology can be found in Table S1. (b) Field measurements
of uniaxial compressive strength (Basabe, 1998; Table S4) versus the empirical erodibility index calculated using Eq. (7). Note that two of
the nine observations overlap on this plot. (¢) Spatial distribution of Lg in the Paute catchment. The underlying topographic map is based on
the 30 m SRTM v3 DEM (Farr et al., 2007). The lithological erodibility map for Ecuador was used to delineate different lithostratigraphic
units and is based on the 1M geological map of Ecuador (Egiiez et al., 2017; see also Fig. S1 in the Supplement). The map is produced with

Topo Toolbox (Schwanghart and Scherler, 2014).

2.3 CRN-derived denudation rates

Catchment-wide denudation rates are derived from in situ
produced '“Be concentrations in river sand. At the outlet
of 30 sub-catchments (Fig. 1, Table 2), fluvial sediments
were collected. We refer to Vanacker et al. (2015) for de-
tails on sample processing and derivation of CRN denudation
rates taking into account altitude-dependent production, at-
mospheric scaling and topographical shielding (Dunai, 2000;
Norton and Vanacker, 2009; Schaller et al., 2002). CRN con-
centrations are not corrected for snow or ice coverage be-
cause there is no evidence of glacial activity during the in-
tegration time of CRN-derived denudation rates (Vanacker
et al., 2015). Three data points were excluded from model
optimization runs: two catchments with a basin area smaller
than 0.5km? (MA1 and SA) and one catchment with an ex-
ceptionally low '°Be concentration that can be attributed to
recent landslide activity (NG-SD; see Vanacker et al., 2015).

2.4 River morphology

Based on a gap-filled SRTM v3 digital elevation model
(DEM) with 1 arcsec resolution (Farr et al., 2007), we cal-
culate river steepness for all channels with drainage ar-
eas >0.5km” and average it over 500 m reaches. The opti-
mized concavity 8 for the Paute catchment (0.42; Text S1) is
close to the frequently used value of 0.45, so we fix concav-
ity to the reference value of 0.45 and report river steepness

Earth Surf. Dynam., 8, 447—470, 2020

as normalized river steepness (kg,) in the remainder of this
paper. The spatial pattern of kg, values (Fig. 3) is a result
of the transient geomorphic response to river incision initi-
ated at the Andes Amazon transition zone (Vanacker et al.,
2015). To evaluate the extent to which transient river fea-
tures influence simulated denudation rates, chi plots (x) for
all studied sub-catchments are calculated following Royden
and Perron (2013) and given in the Supplement (Text S1;
Fig. S4; Royden and Perron, 2013).

To constrain the value of k., used in the process-based in-
cision models (Egs. 4 and 6), we calibrate the relationship
between bankfull river width (Wp) and discharge (Leopold
and Maddock, 1953):

Wy = kwawb, ¥

in which ky, (L'=3@0¢®) and wy, are scaling parameters regu-
lating the interaction between mean annual discharge Q and
incision rates (Eq. 4). We constrain ky, by analyzing down-
stream variations in bankfull channel width for a fraction of
the river network (see Scherler et al., 2017). River sections
are selected based on the availability of high-resolution op-
tical imagery in Google Earth, and river width was derived
using the ChanGeom toolset (Fisher et al., 2013; Fig. S5).
The power-law fit between Q and W yields a value of 0.43
for the scaling exponent, wp, with an R? of 0.51 (Fig. 4).
The value of this exponent lies within the range of published
values of 0.23-0.63 (Fisher et al., 2012; Kirby and Ouimet,
2011). To maintain a dimensionally consistent stream power
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Table 2. Characteristics of the sub-catchments studied in this paper. IDs correspond to the numbers indicated in Fig. 1. The 10Be cosmogenic
nuclide erosion rates were derived from Vanacker et al. (2015)2. Coordinates are given in decimal degrees in the WGS84 datum, LE is the
average lithological index for the catchment, kg, is the normalized catchment average steepness, PRipw and Rripw are respectively the
downscaled catchment average precipitation and runoff, and k is the optimized discharge variability coefficient (see Eq. 9).

ID  Sample Latitude Longitude  Area 10B¢ erosion LE ksn  PrRiDW  RRIDW k
° ° km? mmka~! m?? myr_1 myr~!
1 BQ —2.94 —78.93 186.3 53+4 144 41.78 1.06 0.55 1.18
2 CH —-3.22 —78.74 86 88+8 0.34 187.79 1.59 0.87 0.87
3 CJ —2.92 —78.88 19.5 95+£11 143 60.45 1.02 0.54 1.04
4 DE2 —2.77 —78.93 39.1 105+9 1.61 80.96 1.14 0.58 1.04
5 JA21 —2.89 —78.89 276 50+4.5 145 48.96 1.05 0.55 1.19
6 MAR —-3.04 —78.95 49.8 30£2 143 3597 1.07 0.56 1.08
7 NA1 —2.70 —78.92 57.1 1424+18 1.54 96.36 1.04 0.53 1.05
8 NA4 —2.67 —78.90 4.9 222+33  1.69 69.19 0.87 044 1.11
9 NG-DW —2.73 —78.40 686.8 163+16 0.57 184.21 2.25 1.33 092
10 NG-SDP —2.73 —78.39 33 3959+3801 0.89 231.84 2.62 1.60 091
11 NG-UP —2.78 —78.46  679.1 179+16 055 176.77 2.21 1.31 091
12 PA —2.52 —78.56 4244 229426 1.13 142.61 1.14 0.60 1.16
13 PAL —2.65 —178.61 6.2 31832 0.69 192.24 1.89 .11 0.88
14 PT-BM —2.65 —78.46 6.8 219422  0.60 236.09 2.50 1.51 091
15 PT-QP —2.61 —78.57 34 2164+£20 052 231.77 2.01 1.16 0.94
16 PT-SD —2.61 —78.46 11.1 399+53  0.60 210.28 2.52 1.51 0.93
17 QU —2.99 —78.92 16.7 778 143 55.32 1.02 0.53 1.17
19 RGI1_2 —2.96 —78.89 0.9 265+2 143 48.87 1.01 0.53 1.13
20 RG2 —2.94 —78.91 29.2 616 144 53.96 1.01 0.53 1.12
21 RGDI1 —2.94 —78.80 2.2 30+£3 0.64 105.63 1.03 0.55 1.14
18 RGST —-2.97 —78.90 20.2 282 142 45.55 1.00 0.52 1.08
22 sab —2.96 —78.93 0.5 1524+19 149 0.04 1.05 0.55 1.16
23 SF1_2 —2.89 —78.77 84 72+7 0.56 110.46 1.42 0.78 0.83
24 SF2 —2.98 —78.69 1.3 118+9 0.50 147.45 1.60 0.89 0.80
25 sIb -3.16 —78.81 0.6 101 0.29 57.09 1.34 0.72  0.95
26 SI2 -3.14 —78.81 18.3 30£3 0.58 70.42 1.38 0.74  0.99
27 SI3 -3.14 —78.81 49.2 88+ 11 1.30 43.63 1.28 0.68 1.03
28 SIS —3.00 —78.81 6 34403 090 86.62 0.99 0.53 1.09
29 TIl1 -3.01 —78.57 62.1 125+11 033 142.87 1.97 1.13  0.84
30 TI2 -3.01 —78.61 21 577 033 151.34 1.86 1.06 0.83

2 Catchment MA1 from Vanacker et al. (2015) is not listed because its area (<0.1 kmz) did not allow us to accurately calculate the catchment properties

listed here.  Catchments excluded from model optimization runs (see text).

model, wp was fixed to a value of 0.55. When doing so, the
fit remains good (R? =0.5) and we obtained a ky, value of
3.7m~065 5035 that is used in the remainder of the paper.

2.5 Runoff variability

Evaluating the role of spatial and temporal runoff variability
(Egs. 5 and 6) requires estimates of catchment-specific runoff
(R, spatial variability) and discharge (temporal variability).
Although measured runoff data and discharge records are
available for the Paute basin (Molina et al., 2007; e.g., Mora
et al., 2014; Muifioz et al., 2018), the monitoring network
of existing hydrological stations does not capture the spa-
tial variability present in the different sub catchments of the
6530 km? Paute basin (Fig. 1). To estimate runoff variability
for all 30 sub-catchments, we use hydrological data derived

https://doi.org/10.5194/esurf-8-447-2020

in the framework of the Earth2Observe Water Resource Re-
analysis project (WRR2; Schellekens et al., 2017) available
from 1979 to 2014. Specifically, we use the hydrological data
calculated with the global water model WaterGAP3 (Water —
Global Assessment and Prognosis: Alcamo et al., 2003; Doll
et al., 2003) at a spatial resolution of 0.25° and a daily tem-
poral resolution (http://www.earth2observe.eu, last access:
19 May 2020). Uncertainties associated with the WaterGAP3
data originate from hydrological model assumptions and spa-
tially distributed input data (Beck et al., 2017). We revisit
the impact of uncertainties in the climatological data on our
model runs in the Discussion section of this paper. In the
following paragraphs, we explain how we derive (i) a high-
resolution runoff map by spatially downscaling these coarse
data and (ii) catchment-specific magnitude frequency distri-

Earth Surf. Dynam., 8, 447—-470, 2020
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2°30'S

790 W i 78930' W

Figure 3. Normalized steepness (ksp) for the Paute basin. Calcu-
lated kg values for the Paute basin are overlain with a hillshade
map (based on the 30 m SRTM v3 DEM; Farr et al., 2007). The
highest values can be observed in two major knickzones located in
the lower part of the Paute basin. In these zones, topographic reju-
venation started and a transient incision pulse has propagated from
east to west (see also Fig. S3). The map is produced with Topo Tool-
box (Schwanghart and Scherler, 2014).

200 ‘ Bin
W = 7xQ043 counts
R? = 0.51
150 1 _ __ w=37xQ"% b
R?=05
2000
E L
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10° 102
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Figure 4. River width (W) as a function of the mean annual
discharge (Q). W represents bankfull channel width for a se-
lected number of river sections. These were digitized in Google
Earth using the ChanGeom toolset (Fisher et al., 2013; Fig. S5).
Mean annual water discharges (Q) were derived from the down-
scaled Rripw WRR2 WaterGAP3 data (available from http://www.
earth2observe.eu; see Sect. 2.4).
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Figure 5. Calibration of the precipitation (P) versus runoff curve

(R). Mean annual runoff versus the mean annual precipitation for

all WaterGAP3 pixels in Ecuador (0.25°; 1979-2014; WaterGAP3
data available from http://www.earth2observe.eu).

butions of discharge (pdf_Q¥*) characterizing the temporal
variability of runoff.

2.5.1 Spatial runoff patterns

A global hydrological reanalysis dataset such as WaterGAP
provides daily runoff data over several decades and makes
our methodology transferable to other regions. However, a
spatial resolution of 0.25° is insufficient to represent highly
variable regional trends in water cycle dynamics over moun-
tainous regions (Mora et al., 2014) and in small catchments.
Therefore, we downscale the Ecuadorian WaterGAP3 data
to a resolution of 2.5km by amalgamating rain gauge data
with the reanalysis product. The procedure consisted of the
following steps and is presented in Figs. 5 and 6.

The relationship between precipitation (P) and runoff (R)
is constrained from the fit between monthly mean values for
P and R available for all Ecuadorian WaterGAP 0.25° pixels
(Fig. 5).

A high-resolution mean annual precipitation map ( PRipw)
is calculated by downscaling the WaterGAP precipita-
tion data (P) using a series of rain gauge observations
(338 stations, 1990-2013) from the Ecuadorian national
meteorological service (INAMHI; available from http://
www.serviciometeorologico.gob.ec/biblioteca/, last access:
19 May 2020). A residual inverse distance weighting
(RIDW) method is applied to amalgamate mean annual
gauge data with the mean annual WaterGAP3 precipitation
map. First, the differences between the gauge and WaterGAP
data are interpolated using an IDW method (Fig. S6). Sec-
ond, the resulting residual surface is added back to the orig-

https://doi.org/10.5194/esurf-8-447-2020
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o

Figure 6. Downscaling of WRR2 WaterGAP3 rainfall and runoft products to high-resolution regional maps. (a) WRR2 WaterGAP3 precip-
itation (P) at the original resolution of 0.25°. (b) Corresponding runoff (R) at the original resolution of 0.25°. (¢) Downscaled precipitation
(PripW) at a resolution of 2500 m, and (d) corresponding downscaled runoff (Rripw) at a resolution of 2500 m. WaterGAP3 data were
derived from earth2observe.eu. The underlying hillshade maps are based on the 30 m SRTM v3 DEM (Farr et al., 2007). The maps are

produced with Topo Toolbox (Schwanghart and Scherler, 2014).

inal P data. A similar approach is often applied to integrate
gauge data with satellite products, and we refer to the litera-
ture for further details on its performance (e.g., Dinku et al.,
2014; Manz et al., 2016). Figure 6a shows P for the Paute re-
gion, and Fig. 6¢ shows its downscaled equivalent (PRipw)-

Daily precipitation data (12 784 daily grids between 1979
and 2014) are downscaled to 2.5 km using the ratio between
Pripw and P, thereby assuming that the mean annual cor-
rection for precipitation also holds for daily precipitation pat-
terns.

The relationship between P and R (Fig. 5) is used to derive
daily runoff values from the downscaled precipitation data
for every day between 1979 and 2014.

The mean annual runoff map for the Paute basin is shown
in Fig. 6b and its downscaled equivalent in Fig. 6d. Mean
annual values are further used to calculate mean catchment
runoff (R) and the discharge variability (next paragraph)
for every sub-catchment described in Table 2. The mean
catchment-specific runoff averaged for all catchments equals
0.82+0.35myr .

https://doi.org/10.5194/esurf-8-447-2020

2.5.2 Frequency magnitude distribution of orographic
discharges

Runoff variability is typically cast in terms of spatial
runoff variability (Sect. 2.4.1). However, the temporal pattern
of runoff might also influence river incision and is typically
represented by discharge magnitude frequency distributions.
Constraining the shape of these distributions is important be-
cause the number of large storm events determines the fre-
quency with which thresholds for river incision to occur are
exceeded (see Sect. 1.2.2 and references therein).

The probability distribution of discharge magnitudes con-
sists of two components: at low discharges, the frequency
of events increases exponentially with increasing discharge
(Lague et al., 2005), whereas at high discharge, the fre-
quency of events decreases with increasing discharge follow-
ing a power-law distribution (Molnar et al., 2006). An inverse
gamma distribution captures this hybrid behavior and can be
written as (Crave and Davy, 2001; Lague et al., 2005)

Earth Surf. Dynam., 8, 447—470, 2020
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in which T is the gamma function and k is a discharge vari-
ability coefficient; k represents the scale factor of the in-
verse gamma distribution and (k + 1) the shape factor. Pre-
vious studies used a single average k value to characterize
regional discharge: DiBiase and Whipple (2011) use a con-
stant k value for the San Gabriel Mountains, whereas Scher-
ler et al. (2017) use a constant k£ value for high and low
discharge but distinguish between eastern Tibet and the Hi-
malaya. However, given the strong variation in temporal pre-
cipitation regimes in the Paute basin (Celleri et al., 2007;
Mora et al., 2014), we explicitly evaluated the role of tempo-
ral runoff variability by calculating catchment-specific dis-
charge distributions from the WRR2 WaterGAP dataset.

Daily variations in discharge at the sub-catchment outlets
(Fig. 1) were calculated by weighing flow accumulation with
runoff (Rrpw; see Sect. 5.1.1). For every catchment, the
complementary cumulative distribution function (CCDF) of
the daily discharge was fitted through the observed discharge
distribution as

CCDF(Q*) =T (k/Q*,k+1), (10)

where I' is the lower incomplete gamma function. Figure S7
illustrates the fit between the WaterGAP-derived discharge
distribution and the optimized CCDF for one of the catch-
ments. Site-specific discharge variability values (k) are calcu-
lated for all catchments and listed in Table 2. The obtained k
values range between 0.8 and 1.2 with a mean of 1.0140.12.

3 Methods

The presented river incision models (A-SPM, R-SPM and
ST-SPM in Sect. 1.2) all depend on river steepness, kg,
which is known to correlate well with Ecry (DiBiase et al.,
2010; Ouimet et al., 2009; Scherler et al., 2017; Vanacker et
al., 2015). Moreover, EcrN integrates over time spans that
average out temporal fluctuations of denudation rates and
over spatial extents that are sufficient to average out the er-
ratic nature of hillslope processes. Therefore, Ecrn can be
used to constrain models of river incision provided a set of
assumptions that we first describe below.

3.1 CRN-derived denudation rates to calibrate river
incision

The use of CRN-derived denudation rates to calibrate river
incision relies on three main assumptions, summarized
by Scherler et al. (2017). A first assumption is that the
catchment-wide denudation rates derived from CRN are rep-
resentative for long-term fluvial incision. Positive correla-
tions between river steepness, ks, and CRN-derived denuda-
tion rates support this assumption (Vanacker et al., 2015),
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except for very small catchments where CRN-derived de-
nudation rates are sensitive to the occurrence of deep-seated
landslides during which material shielded at depth is sup-
plied to the river (Niemi et al., 2005; Yanites et al., 2009).
A second assumption when using CRN data to calibrate river
incision models is that the sediment cosmogenic nuclide bud-
get is at steady state at the catchment scale so that the input
of CRN via in situ production equals the export of CRN via
sediment export and radioactive decay. Given the size of the
studied basins, this assumption seems to be reasonable. A
third assumption, in particular when using the process-based
R-SPM and ST-SPM, is that the runoff data used to calibrate
the incision parameters are uniform within the sampled sub-
catchments and representative of the time span over which
CRN data integrate (1-100kyr). This is a challenging as-
sumption given that available hydrological data only cover
the recent past. While spatial patterns of runoff, mainly con-
trolled by orographic precipitation, could be assumed to be
broadly similar over the integration time of CRN-derived de-
nudation, this is not necessarily true for the temporal varia-
tion in runoff. We will revisit the validity and implications
of these three assumptions in the Discussion section of this

paper.

3.2 River incision models

In a first set of model runs, we evaluate the performance of
the area-based SPM (A-SPM) in predicting Ecrn rates. To
account for rock strength variability Eq. (2) is rewritten as

E =k, LEKD,, (11)
where k, (L1=27 T~1) is the erosional efficiency parameter
and L, is a dimensionless catchment mean lithological erodi-
bility value. Given its empirical nature, wherein the effect of
allogenic (e.g., runoff variability) and autogenic (e.g., inci-
sion thresholds and river width dynamics) controls of fluvial
processes is integrated within the empirical scaling parame-
ters (K, m and n), the A-SPM does not enable us to iden-
tify the role of spatial or temporal runoff variability and inci-
sion thresholds. Note that, at any point in the paper, litho-
logical heterogeneity within the Paute catchment is repre-
sented using the average values of Lg for the individual sub-
catchments indicated with Lg and listed in Table 2. If litho-
logical heterogeneity is not considered, L is fixed to a value
of 1.

In a second set of model runs, we evaluate to what extent
more advanced SPMs can be used to understand the role of
these allogenic and autogenic processes. We start by evalu-
ating the performance of a runoff-based SPM (R-SPM). To
account for rock strength variability Eq. (6) is rewritten as

E = KLgk!. (12)

An overview of the parameter values required to solve the
R-SPM is given in Table 1. Only the value of k, is based

https://doi.org/10.5194/esurf-8-447-2020
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on a regional calibration of the hydraulic geometry scaling
(see Sect. 2.3). Other parameters are set to theoretical val-
ues (reported by Deal et al., 2018; DiBiase and Whipple,
2011; Scherler et al., 2017). Actively incising bedrock chan-
nels are often covered by a layer of sediment (Shobe et al.,
2017). Therefore, we assume that river incision is scaled to
the bed shear stress as for bedload transport (Meyer-Peter and
Miiller, 1948) and set a to 3/2 (see DiBiase and Whipple,
2011; Scherler et al., 2017). We use the Darcy—Weisbach re-
sistance relation and coefficients (o = 8 = 2/3) to calculate
shear stress exerted by the river flow on its bed and assume
a friction factor of 0.08, resulting in a flow resistance fac-
tor k; of 1000 kg m~7/3s=4/3 (e.g., Tucker, 2004). The use
of Darcy—Weisbach friction coefficients in combination with
a =3/2 results in a value for the slope exponent equal to
unity (n = 1; see Eq. 4). Based on these theoretical deriva-
tions, we fix n to unity when constraining the R-SPM. Note
that this contrasts with the first set of model runs (applica-
tion of the A-SPM) in which we allow n to vary. By fixing
n to unity, we want to verify whether spatial variations in
runoff (incorporated in K from Eq. 12) can explain varia-
tions in incision rates otherwise ascribed to nonlinear river
incision. The only parameter not fixed to a constant value is
the erosivity coefficient k., which is optimized as described
in Sect. 3.3.

In a final set of model runs, we apply the Stochastic-
Threshold SPM (ST-SPM) to evaluate the role of temporal
precipitation variability and thresholds for incision (Eq. 4).
Here, we adjust the ST-SPM to account for rock strength
variability as

I =KLgQ* k! — . (13)

To derive long-term erosion rates (E), Eq. (13) is in-
tegrated over the probability density function of discharge
magnitudes (Eq. 5), which requires values for the lower
(QF) and the upper (Q}) limit of the integration interval.
Constraining Q7 is difficult based on observational records
alone as they might miss some of the most extreme flooding
events. However, when simulating incision rates over long
time spans and thus considering long return times of QF
(> 1000 years), the solution of Eq. (5) is insensitive to the
choice of Q} (Lague et al., 2005). We therefore set Q7 to
infinity in all our model runs. The critical discharge (Q}) for
erosion to occur can be derived from Eq. (13) by setting /
equal to O:

1
. 14 !
o) ( o LEk?ﬂ) (14)

The impact of spatial variations in runoff and discharge
variability is evaluated by setting R and k to the sub-
catchment-specific values or the mean of these values (listed
in Table 2; Eq. 4). The parameters left free during optimiza-
tion are the erosivity coefficient k. and the critical shear
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stress 7). Parameter values of both variables are optimized
as described in Sect. 3.3.

3.3 Optimization of model parameters

We propose three metrics to evaluate the performance of the
river incision models. The first one is the commonly used
model error (ME),

. PR . 2
ME:Z;:b <—(0’ M‘)) , (15)

i

where nb is the number of Ecry data points, O; represents
the catchment-specific measured Ecrn denudation rates, M;
represents the catchment-specific modeled river incision and
o; represents the catchment-specific standard deviation of
Ecrn. The advantage of the ME is that it explicitly incor-
porates the error on the analytical data (Ecrn) by weighing
the model error with the analytical error. However, errors on
CRN data are heteroscedastic: they systematically increase
with increasing denudation rates. Although the ME thus pro-
vides a good metric to evaluate overall model performance,
the metric is not well suited to optimize model parameters
in an optimization procedure: too much weight will be given
on optimization of the model in the lower regime of the de-
nudation spectrum in which measured errors on Ecrn are
low, whereas higher measured Ecrn data will not be approx-
imated well because of large associated errors. To compen-
sate for the effect of heteroscedasticity we rescale values O;,
M; and E; using a logarithm with base 10 when calculating
ME (Herman et al., 2015). In this paper, ME will be used to
evaluate model performance but not to optimize model pa-
rameters.

A second metric is the coefficient of determination, R?:

i=nb,~ _ r\2
R=1o Lz O ) (16)
Y21 (0 — 0y
where f; represents the fitted Ecrn denudation rates. Con-
trary to ME, R? evaluates the explained variance of the model
by giving all observations the same weight, regardless their
analytical error. However, when model parameters result in
an offset between simulated and observed data (i.e., the in-
tercept of the fit), this can still result in a high R?.

We therefore use the Nash—Sutcliffe model efficiency to
optimize model parameters (NS; Nash and Sutcliffe, 1970):
i1 (0; — M)

0i-o0yp

The NS coefficient ranges between —oo and 1, where 1 in-
dicates optimal model performance explaining 100 % of the
data variance. When NS = 0, the model is as good a predictor
of the mean of the observed data. When NS < = 0, the model
performance is unacceptably low. The NS coefficient was de-
veloped in the framework of hydrological modeling but has

been applied in a wide range of geomorphologic studies (e.g.,
Jelinski et al., 2019; Nearing et al., 2011).

NS=1-

a7
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Table 3. Lithological erodibility index values based on the litholog-
ical strength (Ly; Eq. 7). Detailed sub-classifications per lithology
can be found in Table S2.

Ly
Igneous 2-3
Metamorphic (igneous) 2
Metasedimentary 2-4
Strong sedimentary 4
Weak sedimentary 10-12
Unconsolidated 12

4 Comparing model results with CRN-derived
denudation rates

In the following sections, we compare simulated erosion
rates, obtained with the river incision models presented
in Egs. (11)-(13), with measured CRN-derived denudation
rates. We start with the use of the A-SPM (Eq. 11) to eval-
uate the extent to which lithological variability controls de-
nudation rates. Once the impact of lithological heterogene-
ity on river incision is clarified, we evaluate whether runoff
variability and incision thresholds can explain variations in
Ecrn-derived denudation rates. To this end, two river inci-
sion models are evaluated (the R-SPM and ST-SPM, pre-
sented in Eqgs. 12 and 13, respectively). The optimized pa-
rameters and model performance of all model scenarios are
listed in Table 4. Best-fit results of a selected number of
model runs are presented in Figs. 7 and 8. An overview of
model fits for all the scenarios listed in Table 4 is given in
Figs. S8, S9 and S10.

4.1 Area-based stream power model

In a first set of model runs we evaluate the use of an area-
based stream power model (A-SPM) to explain observed
variations in CRN-derived denudation rates (Ecrn). We op-
timize river incision parameters for four scenarios (Table 4:
A-SPM scenarios 1-4): in the first two scenarios, the slope
exponent, n, is left as a free parameter. In the second two
scenarios, the slope parameter is fixed to unity (n = 1). Fig-
ure 7 illustrates both the ks, — Ecrn (Fig. 7a and b) and cor-
responding Enod — Ecrn relationships, wherein Eyjog repre-
sents the simulated river incision (Fig. 7c and d).

In A-SPM scenario 1 (Table 4, Fig. 7c), we assume a spa-
tially uniform erodibility (L fixed to 1 in Eq. 11) and leave
the erosion efficiency coefficient (K”) and the slope parame-
ter n as free parameters during model optimization. The op-
timized fit between simulated erosion (E; Eq. 2) and Ecrn
is shown in Fig. 7c. The optimized fit results in a high de-
gree of data scattering, resulting in an NS model efficiency
of 0.5, an R? of 0.5, an ME of 3.25, and optimized values
for K’ and n of respectively 0.73m%! s~! and 1.07. The fit
between kg, and Ecrn (Fig. 7a) or simulated river incision
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Figure 7. Best fit between CRN-derived erosion rates (Ecrn) and river steepness index (ksp) or modeled river incision (Epjoq) using the
Area-Based Stream Power Model (A-SPM). (a) Measured Ecrn versus ks (Table 2). Observations are colored according to the average
lithological erodibility of the sub-catchment (Lg). Low values for Lg represent strong rocks that are resistant to erosion. High values for
LE represent weak rocks that are susceptible to erosion. (b) Measured Ecry divided by Lg versus kg, (Table 2). By correcting the ECrN
values for lithological heterogeneity, the ksn — Ecrn relationship becomes significantly nonlinear (n = 1.63 £0.5). (¢) A-SPM scenario 1
(see Table 4). Modeled erosion rates for catchments consisting of strong rocks (blue) are mostly overpredicted and plot below the 1 : 1 line.
Modeled erosion rates for catchments consisting of weak rocks (red) are mostly underpredicted and plot above the 1: 1 line. (d) A-SPM
scenario 2 (Table 4) in which spatially variable lithological erodibility is explicitly accounted for. A complete overview of all best model fits

for A-SPM scenarios 1-4 is given in Fig. S8.

and measured denudation rates (Fig. 7c) hints at the exis-
tence of a correlation between Ecry and river incision rates.
The fit shown in Fig. 7c illustrates that modeled erosion rates
for catchments with a low mean erodibility index (high re-
sistance to erosion) are mostly overpredicted (plotting below

https://doi.org/10.5194/esurf-8-447-2020

the 1: 1 line), whereas modeled erosion rates of catchments
with a high erodibility index are mostly underpredicted (plot-
ting above the 1 : 1 line).

In A-SPM scenario 2 (Table 4, Fig. 7d), we quantify the
impact of varying lithology by using sub-catchment-specific
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values for the lithological erodibility (Lg in Eq. 11) and leav-
ing k, and n as free optimization parameters. The optimized
fit between simulated river incision (E, Eq. 11) and Ecrn
is shown in Fig. 7d. Optimization results in an NS model
efficiency of 0.73, an R? of 0.73, an ME of 2.23, and opti-
mized values for k, and n of respectively 0.07 m%! s~! and
1.63. Considering lithological erodibility strongly reduces
data scatter surrounding the fit. The importance of litholog-
ical strength in controlling the A-SPM and the ks, — ECrN
relation (Fig. 7b) confirms that strong metamorphic and plu-
tonic rocks erode at slower rates than lithologies that are less
resistant to weathering such as volcaniclastic deposits. The
erodibility index appears to provide an appropriate scaling of
relative rock strength: analysis of residuals did not reveal any
significant relation of residuals with lithology. When using
spatially variable, sub-catchment-specific lithological erodi-
bility values (Lg) (Fig. 7d), the n coefficient of the SPM is
considerably larger than unity (n = 1.63) and the kg, — EcrN
relationship becomes nonlinear (Fig. 7b), corroborating ear-
lier empirical findings (DiBiase et al., 2010; Harel et al.,
2016; Lague, 2014; Whittaker and Boulton, 2012). To eval-
uate the impact of a variable n exponent on the performance
of the empirical A-SPM, we executed two more model opti-
mizations.

In A-SPM scenario 3 (Table 4, Fig. S8c), we assume a
spatially uniform lithology and erodibility (Lg fixed to 1 in
Eq. 11), fix n to 1 and only leave K’ to be optimized as a
free model parameter. With an NS model efficiency of 0.5,
an R? of 0.5, an ME of 3.2 and an optimized value for K’
of 1.00m%! s~1, the model fit and performance are similar to
the values obtained in scenario 1.

In A-SPM scenario 4 (shown in Table 4, Fig. S8d),
lithological variability is considered (using sub-catchment-
specific values for L in Eq. 11), n is fixed to 1 and K’ is a
free model parameter. With an NS model efficiency of 0.51,
an R? of 0.56, an ME of 3.05 and an optimized value for K’
of 1.4m%!s~1, the model performance is much lower than
when leaving the slope exponent n as a free parameter (A-
SPM scenario 2).

The results from the four scenarios show that a nonlin-
ear relationship between river steepness (kg,, representing
river incision rates) and Ecry is unveiled when the litholog-
ical heterogeneity is explicitly taken into account (Fig. 7b).
Likewise, a nonlinear river incision model (A-SPM scenario
2; Fig. 7d) in which lithological heterogeneity is considered
outperforms the other evaluated A-SPM scenarios (Table 4).

4.2 Runoff-based and stochastic-threshold stream
power models

The previous analysis shows that the explanatory power of
the A-SPM model, and therefore the ks, — Ecrn relation-
ship, improves when considering spatial variations in lithol-
ogy. Moreover, when considering variations in lithological
erodibility, river incision is found to be nonlinearly depen-
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dent on the channel slope (), with n = 1.63. In a next step
we evaluate whether this nonlinear relation can be explained
by spatial and/or temporal rainfall variability and/or the ex-
istence of thresholds for river incision (Table 4: R-SPM sce-
narios 1-2 and ST-SPM scenarios 1-8; Fig. 8).

4.2.1 Runoff-Based SPM (R-SPM)

In a first set of model runs, we evaluate the performance of
the Runoff-Based Stream Power Model (R-SPM Egq. 12) to
evaluate the role of spatially variable runoff using catchment-
specific values for mean runoff (R derived from the Water-
GAP data; reported in Table 2 and shown in Fig. 6).

In R-SPM scenario 1 (Table 4, Fig. S9a), lithological vari-
ability is not considered (Lg fixed to 1 in Eq. 12). With an NS
model efficiency of 0.49, an ME of 3.57 and an R? of 0.51,
model performance is comparable to the regular A-SPM un-
der uniform lithology with n fixed to 1 (NS = 0.5). This il-
lustrates that studying spatial runoff variability is not feasible
when ignoring the confounding role of lithological erodibil-
ity in controlling denudation rates.

In R-SPM scenario 2 (Table 4, Fig. 8a), lithological vari-
ability is considered (using sub-catchment-specific values for
Lg in Eq. 12). With an NS model efficiency of 0.7, an ME of
2.61 and an R? of 0.75, model performance is close to that
of the regular A-SPM under uniform lithology with n >> 1
(NS = 0.72). This model simulation therefore suggests that
spatial variations in runoff can account for the nonlinear-
ity in the ks, — Ecrn relationship: while slope dependency
in the R-SPM is fixed to unity (see derivation in Eq. 4a—c),
the model is capable of explaining the spatial pattern in de-
nudation rates. This implies that orographic rainfall and thus
runoff gradient as shown in Fig. 6 influence the efficiency
of river incision. The offset between the RZ (0.75) and NS
(0.70) values can be attributed to the way in which these met-
rics work: whereas R? evaluates the goodness of the linear
fit between modeled and measured observations, NS evalu-
ates the absolute differences between modeled and observed
denudation rates. Hence, for the NS model efficiency to be
high, observations must fit on the 1:1 line (Fig. 8a). How-
ever, most of the simulated values for low denudation rates
are overestimated when using the optimized parameter val-
ues of the R-SPM and plot below the 1:1 line (Fig. 8a).
Therefore, we conclude that the R-SPM performs well in pre-
dicting measured denudation rates but low denudation rates
are overestimated, resulting in an NS and ME value respec-
tively slightly lower and higher than those of the empirical
A-SPM. In the following section we evaluate whether intro-
ducing temporally variable runoff coefficients and/or incision
thresholds can further improve the performance of a river in-
cision model.
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Figure 8. Best fit between CRN-derived erosion rates (Ecryn) and modeled river incision (Epjoq) using the Runoff-Based and Stochastic-
Threshold Stream Power Model. (a) R-SPM scenario 2 (Table 4) using the average lithological erodibility (Lg) and runoff R values per
sub-catchment (both listed in Table 2). (b) ST-SPM scenario 7 (Table 4) using the average lithological erodibility (Lg) and runoff (R) values,
as well as an incision threshold (7o = 14 Pa). Numbered observations in (b) correspond to catchment IDs as listed in Table 2 (see also the
discussion in Sect. 5). A complete overview of all best model fits for R-SPM scenarios 1-2 and ST-SPM scenarios 1-8 is given in Figs. S9

and S10, respectively.

4.2.2 Stochastic-Threshold SPM (ST-SPM)

In a final series of model runs, we use the Stochastic-
Threshold Stream Power Model (ST-SPM, Eq. 13) to eval-
uate the role of spatially variable runoff (catchment-specific
R; reported in Table 2 and shown in Fig. 6) in combination
with catchment-specific runoff variability (k; reported in Ta-
ble 2) and the presence of incision thresholds (7. in i in
Egs. 4 and 10). Table 4 reports details on the different model
scenarios in which ST-SPM is optimized to the observed
Ecrn data considering all possible combinations (4) of uni-
form or spatially variable catchment mean runoff (R) and
uniform or spatially variable catchment mean runoff variabil-
ity (k). For reference, the four scenarios include both uniform
and spatially variable lithological erodibility, Lg (eight sce-
narios in total).

In ST-SPM scenarios 1-4 (Table 4, Fig. S10a—d), the ST-
SPM is optimized assuming a constant erodibility (Lg fixed
to 1). Similar to what has been found for the R-SPM, model
performance is not any better compared to the use of a simple
A-SPM when not considering lithological variability. This
confirms that optimizing more complex river incision mod-
els (such as the ST-SPM) has little added value when the het-
erogeneity in environmental conditions (lithological hetero-
geneity) is not considered.

In ST-SPM scenarios 5 and 6 (Table 4, Fig. S10e—f), catch-
ment mean runoff (R) is fixed to the average value of all
catchments (0.82myr_1) in order to evaluate the role of
(i) variations in observed temporal runoff variability (k) and
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(ii) optimized values for the incision threshold (z.). In sce-
nario 5, k is fixed to the average value for all catchments
(k =1.01), whereas in scenario 6, k is set to the catchment-
specific values as listed in Table 2. Both scenarios (5 and 6)
perform well with an NS value equalling 0.71, indicating that
temporal runoff variability (k) is not influencing model per-
formance. Regardless of the lack of spatially variable runoff
(R), both scenarios perform as well as R-SPM scenario 2,
in which runoff variability was considered. The good perfor-
mance of ST-SPM scenarios 5 and 6 can be attributed to the
presence of an incision threshold (¢ >0 in Eq. 13) at which
7. is optimized to a value of ca. 30 Pa (Table 4). The fact that
the use of the ST-SPM with constant runoff values yields a
good model fit suggests that part of the nonlinear relationship
between river steepness, ksn, and Ecrn can be attributed to
the presence of thresholds for river incision to occur (Lague,
2014).

ST-SPM scenarios 7 and 8 (Table 4, Figs. S10e—f and 8b)
are similar to scenarios 5 and 6, with the difference that
spatial runoff variability is considered by using catchment-
specific values for runoff (R; Table 2). Similarly to scenarios
5 and 6, using catchment-specific values for k£ does not im-
prove model performance, resulting in a similar model per-
formance for scenarios 7 and 8. Overall, ST-SPM scenarios
6 and 7 result in the highest model performance of all tested
scenarios, with an NS model efficiency of 0.75, an ME of
2.22 and 2.21, and an R? of 0.75. The optimized model fit for
ST-SPM scenario 7 is shown in Fig. 8b and corresponds well

Earth Surf. Dynam., 8, 447—470, 2020
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with the 1 : 1 line between modeled and observed denudation
rates. Optimized values for 7, are ca. 14—15Pa, which is in
the range but at the lower spectrum of earlier documented
values for critical shear stress (e.g., Shobe et al., 2018, report
7. values between 10 and 1000 Pa). Contrary to the R-SPM
with which low denudation rates are overestimated (Fig. 8a),
the ST-SPM does predict low denudation rates better due to
the consideration of an incision threshold that mainly influ-
ences simulated river denudation rates at the lower end of the
spectrum.

ST-SPM scenarios 7 and 8 have a model error (ME of 2.22
and 2.21, respectively) similar to the model error of A-SPM
scenario 2 (ME = 2.23). Hence, we conclude that an ST-SPM
considering spatial variations in runoff and simulating a criti-
cal threshold for river incision performs as well as an A-SPM
with the effect of allogenic (runoff variability) and autogenic
(incision thresholds) response cast in the lumped empirical
incision parameters. While the R-SPM and ST-SPM do not
necessarily predict spatial patterns in observed Ecrn rates
better than an A-SPM, they do enable one to simulate the
effect of runoff variability and incision thresholds, therefore
providing an operational tool to simulate past and future cli-
mate changes. Note that differences in model performance
between R-SPM scenario 2 and ST-SPM scenarios 5-8 are
existent but not very pronounced. To evaluate the signifi-
cance of these differences, our analysis should be repeated
on larger datasets capturing a wider variability in denudation
rates and hydrology.

5 Discussion

5.1 Equilibrium between river incision and hillslope
denudation

In theory, rates of hillslope denudation equal rates of river
incision if landscapes are either in a steady state or if tran-
sient landscapes are characterized by rapid hillslope response
(e.g., threshold hillslopes). Steady-state landscapes can only
be achieved under stable climatic and tectonic settings that
prevail over millions of years. Such stability is rarely met in
tectonically active regions where landscapes continuously re-
spond to environmental perturbations (Armitage et al., 2018;
Bishop et al., 2005; Campforts and Govers, 2015).

The downstream reaches of the Paute catchment are a good
example of a transient landscape where a major knickzone
is propagating upstream, resulting in steep threshold topog-
raphy downstream of the knickzone (Fig. S3 and Vanacker
et al., 2015). Facing a sudden lowering of their base level
after river rejuvenation, soil production and linear hillslope
processes (Campforts et al., 2016) are no longer in equi-
librium with rapidly incising rivers (Fig. 15 in Hurst et al.,
2012). In steep topography, hillslopes may transiently evolve
to their mechanically limited threshold slope whereby any
further perturbation will result in increased sediment deliv-
ery through mass-wasting processes such as rockfall or land-
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sliding (Bennett et al., 2016; Blothe et al., 2015; Burbank
et al., 1996; Larsen et al., 2010; Schwanghart et al., 2018).
Given the erratic nature of landslides, not all threshold hill-
slopes will respond simultaneously to base-level lowering
depending on local variations in rock strength, hydrology,
land use and seismic activity (Broeckx et al., 2020; Guns and
Vanacker, 2014). Therefore, catchments in transient land-
scapes might experience hillslope denudation with highly
variable rates (Vanacker et al., 2020).

We argue that CRN-derived denudation rates in the Paute
basin both overestimate and underestimate long-term inci-
sion rates in these catchments. Overestimation may result
from the occurrence of recent, deep-seated landslide events,
that deliver sediments with alow CRN concentration to rivers
(Tofelde et al., 2018). Underestimation, in turn, may occur
if long-term hillslope lowering is accomplished by rare and
large landslides whose return periods exceed the integration
time of CRN-derived denudation rates (Niemi et al., 2005;
Yanites et al., 2009).

Longitudinal profiles of rivers draining to the knickzone in
the Paute catchment show marked knickpoints. This is partic-
ularly evident in catchments 9-16 (Fig. 1) where kg, values
are high (Fig. 2) and knickpoints appear in the longitudinal
profiles (Figs. S3 and S4). Simulated erosion rates for some
of these catchments deviate from CRN-derived denudation
rates (Fig. 8b; IDs 13, 14 and 16), whereas for others (e.g.,
IDs 9 and 11), predictions from the stochastic-threshold river
incision model show good agreement with Ecrn data. For
catchments with a sufficiently large drainage area, modeled
incision rates correspond well with Ecrn (IDs 9 and 11 being
both ca. 700 km?), most likely because the mechanisms that
potentially cause overestimation and underestimation cancel
each other out at this scale. For smaller catchments (IDs 8,
13, 14 and 16 all being < 12km?) there is a discrepancy be-
tween simulated river incision rates and EcrN.

Although river incision models can be used to simulate de-
nudation patterns in large transient catchments (> 10km?),
there is a need to develop alternative approaches includ-
ing landslide mechanisms in long-term landscape evolution
models such as the TTLEM (Topo Toolbox Landscape Evo-
lution Model; Campforts et al., 2017) or Landlab (Hobley et
al., 2017).

5.2 Integration timescales of Ecry and ksp

Our analysis reveals the potential role of temporal and spatial
variations of rainfall in long-term landscape evolution. Inte-
gration times of CRN-derived denudation rates measured in
the Paute basin are of the order of 1.5-175kyr. In contrast,
response times of longitudinal river profiles generally range
0.25-2.5Myr (Campforts et al., 2017; Goren et al., 2014;
Snyder et al., 2003; Whipple, 2001; Wobus et al., 2006).
During thousand-year to million-year timescales, it is un-
likely that temporal rainfall distributions remain stationary.
Thus, there is little reason to assume that the hydrometeo-
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rological data that we inferred from 35 years of data fully
capture rainfall variability over the response times of river
profiles and hillslopes. Contrary to temporal variations, the
spatial patterns in orographic precipitation are characteristic
of the formation of a mountain range at geological timescales
(Garcia-Castellanos and Jiménez-Munt, 2015). In the south-
ern Ecuadorian Andes, moist air advection via the South
American low-level flow generates pronounced patterns of
orographic precipitation (Campetella and Vera, 2002). These
patterns might have persisted since at least the most recent
phase of Andean uplift in the Late Miocene (Spikings et
al., 2010; Spikings and Crowhurst, 2004). Present-day rain-
fall and runoff spatial gradients (Fig. 6) are thus deemed
to be informative for spatial patterns of discharge at longer
timescales (Sect. 3.1). The performance of the stream power
models underscores this interpretation. While accounting for
spatial patterns in runoff improves the performance of a
stochastic-threshold SPM (Table 4 and Sect. 4.2.2), incor-
porating proxies for temporal discharge variability leads to
no improvement of model performance (the role of k in
Sect. 4.2.2).

5.3 Impact of lithological heterogeneity on long-term
river incision rates

In all our simulations, model efficiency improves when in-
corporating rock strength variability (Table 4), which is con-
sistent with earlier studies (Lavé and Avouac, 2001; Stock
and Montgomery, 1999). In the absence of generally ac-
cepted metrics of erodibility, we employ an empirically de-
rived lithological erodibility index (Lg; Eq. 7) based on the
age and lithological composition of stratigraphic units. Ow-
ing to its simplicity, this or a similar index can potentially be
applied at continental to global scales at which information
on rock physical properties is usually lacking the detail avail-
able at smaller spatial scales (Attal and Lavé, 2009; Nibourel
et al., 2015). Notwithstanding, river incision also depends on
other rock properties such as the density of bedrock frac-
tures, joints and other discontinuities (Whipple et al., 2000).
Fracture density has in turn been linked to spatial patterns of
seismic activity (Molnar et al., 2007). Given the limited vari-
ability of seismic activity within the Paute basin (Petersen et
al., 2018; Fig. S2), seismicity was not considered in our re-
gional analysis but could be considered when applying our
approach to other regions characterized by more spatial seis-
mic variability.

Incorporating spatial patterns of rock strength not only
reduces the scatter surrounding the modeled river incision
versus Ecrn-derived denudation rates, but also controls the
degree of nonlinearity between river steepness (ks,) and de-
nudation rates, expressed by the slope exponent n in the A-
SPM (Fig. 7). Omitting rock strength variability results in a
ksn — Ecrn relation that is close to linear in the Paute catch-
ment (with n = 1.07). This contradicts other studies in which
lithology was assumed to be uniform and » has been reported
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463

n>1
(a) 0.75

n=1
0.65
0.55
0.45 I
0.35

(b) 335

NS

2.95

Y]

s 255
- I I
1.75

A-SPM | A-SPM  R-SPM  ST-SPM

Uniform erodibility

- Sub-catchment erodibility
based on lithological heterogeneity

Figure 9. Comparison of model performance for four selected river
incision models. (a) Nash—Sutcliffe model efficiency (NS) for dif-
ferent model scenarios without (grey bars) or with (red bars) consid-
ering lithological heterogeneity; (b) the corresponding model error
(ME). The A-SPM model scenario corresponds to the Area-Based
Stream Power Model (see Fig. 7). It performs well when lithological
heterogeneity is considered and all parameters are freely calibrated,
resulting in a slope steepness exponent (n; see Eq. 1) of 1.63 (for
a full overview of model parameters, see Table 4). In an A-SPM
scenario in which n is fixed to 1, the model performance strongly
deteriorates. In the R-SPM and ST-SPM models, 7 is fixed to the
theoretically derived value of 1. The R-SPM model explicitly incor-
porates runoff variability (see Fig. 8a), and the ST-SPM model also
includes an incision threshold (see Fig. 8b). Both models perform
well when lithological heterogeneity is accounted for. Overall, the
best model performance (highest NS and smallest ME) is obtained
under the ST-SPM scenario in which lithological and runoff vari-
ability, as well as river incision thresholds, are considered.

to be larger than 1 (e.g., DiBiase et al., 2010; Lague, 2014;
Whittaker and Boulton, 2012).

5.4 Impact of runoff variability on long-term river incision
rates

The A-SPM performs well in explaining Ecry when lithol-
ogy is considered and n > 1 (Fig. 9; high NS model effi-
ciency, low ME). For n = 1, the performance of the A-SPM
is low. The result is consistent with earlier studies reporting
n > 1 (e.g., DiBiase et al., 2010; Harel et al., 2016; Ouimet
et al., 2009; Scherler et al., 2014), which Lague (2014) at-
tributes to discharge variability and incision thresholds. We
tested this hypothesis using the R-SPM and ST-SPM. Our
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results underscore the fact that the nonlinear relationship be-
tween kg, and Ecrn can be attributed to the spatial variabil-
ity of mean annual runoff. Figure 9 shows that the R-SPM
(in which 7 is fixed to the theoretically obtained value of 1)
performs better than an A-SPM when 7 is fixed to 1. In tec-
tonically active regions, steep river reaches often spatially co-
incide with the edge of the mountain range over which mean
annual rainfall rates are highest. Accordingly, if variations
in runoff are not considered, the effects of orographic pre-
cipitation will be partly accommodated by a nonlinear rela-
tionship between river steepness and denudation rates. The
R-SPM accounts for this effect but results in an underesti-
mation of low river incision rates (Fig. 8a). Moreover, the
model error (Fig. 9b) shows that the R-SPM does not per-
form as well as the A-SPM. In a final set of model runs, we
apply the ST-SPM with the explicit simulation of a thresh-
old, which improves model performance, especially for low
denudation rates, resulting in an overall model error equal to
the one obtained with the A-SPM with n > 1 (Fig. 9). This
finding points to the potentially important role of thresholds
for river incision to occur.

The model performance of the ST-SPM equals the perfor-
mance of an empirical A-SPM with a slope exponent > 1
(Fig. 9). Our interpretation is that (i) spatial variations in
runoff and (ii) the incision thresholds are the causes of an
observed nonlinear relation between kg, and Ecrn. With a
seemingly equal model performance, one could wonder what
the benefit of the more complex ST-SPM model is over a
simple, nonlinear A-SPM. The aim of using an ST-SPM is,
however, beyond fitting observed denudation rates: we want
to identify to what extent the system is forced by internal
allogenic dynamics such as the presence of incision thresh-
olds or external autogenic forces such as runoff variability.
The use of the ST-SPM illustrated that both processes can
be accounted for in a quantitative way so that future studies
can explicitly consider their role when reconstructing past
landscape response to external perturbations (e.g., climate
change).

To further explore the interdependency between incision
thresholds and spatial runoff variability, our approach can be
applied to CRN datasets covering regions characterized by
more pronounced rainfall gradients (e.g., in Chile: Carretier
et al., 2018). Accounting for spatial variations in temporal
discharge distributions (with k characterizing the stochastic
flood occurrence) did not improve or deteriorate model per-
formance (ST-SPM scenario 8 in Table 4). This is likely due
to data limitations: the necessary data to characterize tempo-
ral variations in discharge within a given catchment over a
timescale that is relevant for CRN-derived denudation rates
are, at present, not available.

Our finding that spatial patterns in precipitation are re-
lated to river incision patterns corroborate findings in Hawaii
(Ferrier et al., 2013), the Himalaya (Scherler et al., 2017)
and in the Andes (Sorensen and Yanites, 2019). Sorensen
and Yanites (2019) evaluated the role of latitudinal rainfall
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variability in the Andes in erosional efficiency using a set
of numerical landscape evolution model runs. They show
that erosion efficiency in tropical climates at low latitudes,
where the Paute basin is located, is well captured by the spa-
tial pattern of mean annual precipitation and thus runoff. At
higher latitudes (25-50°) where mean annual precipitation
decreases but erosivity is still high due to the intensity of
storms (Sorensen and Yanites, 2019), river erosivity is likely
better captured by spatial patterns in storm magnitude and
frequency.

6 Conclusions

Numerous studies report a nonlinear relationship between
channel steepness and CRN-derived denudation rates. Based
on the growing mechanistic understanding of river incision
processes, this nonlinear relationship is often attributed to in-
cision thresholds. Rainfall variability controls the frequency
of river discharges that exceed incision thresholds. Although
the dynamic interplay between stochastic runoff and incision
thresholds theoretically results in a nonlinear relationship be-
tween channel steepness and denudation rates, coupling the-
ory with field data has been challenging. We address this is-
sue in the Paute basin where we scrutinize the relationship
between CRN-derived denudation rates and river incision us-
ing three different stream power models. We show that litho-
logical variability obscures the relationship between channel-
steepness-based river incision and CRN-derived denudation
rates.

In order to account for rock strength variability, which for
the Paute basin is mainly ascribed to variations in lithologi-
cal strength in the study area, we propose the use of an em-
pirical lithological strength index that is based on the lithol-
ogy and age of lithostratigraphic units. Including lithological
variability in the models increases the correlation between
river steepness and denudation rates and reveals a nonlin-
ear relation, which we seek to explain using a stochastic-
threshold SPM (ST-SPM). Using a downscaled version of a
hydrological reanalysis dataset, we show that the combina-
tion of spatially varying runoff and incision thresholds ex-
plains the observed nonlinear relationship. We do not detect,
however, an impact of temporal discharge patterns on river
incision. We attribute this to the integration time of CRN data
and response times of river longitudinal profiles, which ex-
tend beyond the timescales at which discharge distributions
can be assumed to be stationary.

Our study shows the potential of an ST-SPM to infer re-
gional and, potentially, continental to global differences in
rainfall variability. However, we emphasize that its applica-
tion needs to account for confounding environmental vari-
ables such as rock strength. Simplified process representa-
tion of stream-power-based incision models (e.g., lack of
sediment—bedrock interactions) might explain part of the re-
maining scatter between predicted and measured denuda-
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tion rates. However, residual analysis shows that most of the
remaining scatter occurs in small transient catchments (up
to 10km?) where sporadic mass-wasting processes on hill-
slopes likely obscure the relation between measurements and
predictions. Elucidating this relation further could potentially
be fostered by dynamic numerical landscape evolutions mod-
els that explicitly simulate the coupling between transient
river adjustment and hillslope response.

Data availability. All data used in this paper are freely available
from the referenced agencies. The hydrological data used in this
paper were created in the framework of the Earth2ObserveWater
Resource Reanalysis project (WRR2; Schellekens et al., 2017)
and are available from 1979 to 2014. Specifically, we use the
hydrological data calculated with the global water model Water-
GAP3 (Water — Global Assessment and Prognosis: Alcamo et
al., 2003; Doll et al., 2003) at a spatial resolution of 0.25 and
a daily temporal resolution (http://www.earth2observe.eu, last ac-
cess: 19 May 2020) (Schellekens et al., 2017). A high-resolution
mean annual precipitation map (PRIDW) is calculated by down-
scaling the WaterGAP precipitation data (P) using a series
of rain gauge observations (338 stations, 1990-2013) from the
Ecuadorian national meteorological service (INAMHI; available
from http://www.serviciometeorologico.gob.ec/biblioteca/, last ac-
cess: 19 May 2020) (INAMHI, 2020). Topographic data are avail-
able from NASA (Farr et al., 2007). Lithological data are provided
in the Supplement. Calculations were done in MATLAB using the
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