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ABSTRACT 
The steady increase of ground-motion data not only allows new possibilities but also comes with new challenges in the 
development of ground-motion models (GMMs). Data classification techniques (e.g., cluster analysis) do not only pro-
duce deterministic classifications but also probabilistic classifications (e.g., probabilities for each datum to belong to a 
given class or cluster). One challenge is the integration of such continuous classification in regressions for GMM devel-
opment such as the widely used mixed-effects model. We address this issue by introducing an extension of the mixed-
effects model to incorporate data weighting. The parameter estimation of the mixed-effects model, that is, fixed-effects 
coefficients of the GMMs and the random-effects variances, are based on the weighted likelihood function, which also 
provides analytic uncertainty estimates. The data weighting permits for earthquake classification beyond the classical, 
expert-driven, binary classification based, for example, on event depth, distance to trench, style of faulting, and fault dip 
angle. We apply Angular Classification with Expectation–maximization, an algorithm to identify clusters of nodal planes 
from focal mechanisms to differentiate between, for example, interface- and intraslab-type events. Classification is con-
tinuous, that is, no event belongs completely to one class, which is considered in the ground-motion modeling. The 
theoretical framework described in this article allows for a fully automatic calibration of ground-motion models using 
large databases with automated classification and processing of earthquake and ground-motion data. As an example, 
we developed a GMM on the basis of the GMM by Montalva et al. (2017) with data from the strong-motion flat file of 
Bastías and Montalva (2016) with ∼2400 records from 319 events in the Chilean subduction zone. Our GMMwith the 
data-driven classification is comparable to the expert-classification-based model. Furthermore, the model shows tem-
poral variations of the between-event residuals before and after large earthquakes in the region. 
 
KEY POINTS 
• We incorporate data-driven classification into mixed-effects regressions for ground-motion models. 
• Continuous data weighting requires a regression based on the weighted likelihood. 
• The incorporation of data weighting into mixed-effects models allows for more transparent data selection. 
 
Supplemental Material 

 
 
INTRODUCTION 
The rapid progress and expansion of strong-motion net-
works result in a steady increase of available ground-mo-
tion data that are beyond the limits of manual processing 
and necessitate automated processing. The increasing 
growth of data and the need for reproducible, objective 
(i.e., independent of expert judgment) seismic hazard and 
ground-motion models (GMMs) make classical classifica-
tion methods difficult to use. Indeed, current classifica-
tions used in seismic hazard or ground-motion modeling 
are deterministic in the sense that earthquakes or sites 
are unambiguously placed into a single category (e.g., in-
traplate or interface earthquake). With the growth of 
data, properties and classifications of thousands of sites 
and earthquakes cannot anymore solely be based on ex-
pert opinions and deterministic classification, which are 
neglecting the uncertainties associated with the classifi-
cation. Recently, the community is moving to data-driven 

and probabilistic classifications: for example, for GMM re-
gionalization (Chen et al., 2018) or site classification (Ko-
tha et al., 2018). These classifications have the advantage 
to be fully data driven, transparent, and probabilistic (i.e., 
uncertainties related to the classification are quantified). 
However, probabilistic classifications come new chal-
lenges for ground-motion modelers, because they require 
not only more generalized ground-motion regression 
techniques that consider both measurement errors (un-
certainties of the ground-motion values) but also new 
types of uncertainties resulting from machine-learning 
and data-driven classifications. These new uncertainty 
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evaluations have to be incorporated in the regression 
methods used not only to develop GMMs but also to quan-
tify correlations for the GMM coefficients and the various 
components of the aleatory variability (e.g., between-
event, within-event, and between-path variabilities). 

The limitations of classical earthquake classifications 
and the need for new GMMs are particularly important for 
subduction areas, because GMMs for subduction-zone 
earthquakes show large aleatory variability and epis-
temic uncertainties (Douglas, 2010). One of the key chal-
lenges of the development of new ground-shaking models 
for subduction zones relates to the event classification. 
Subduction-zone GMMs differentiate between interface-
type events occurring at the coupled interface of the sub-
ducting and the overriding plate, and intraslab-type 
events that take place within the downgoing slab. Classi-
fication into different source types into interface- and in-
traslab-type events is performed manually and is usually 
based on the depth of an event, the distance to the trench, 
style of faulting (SoF), and dip angle of the fault plane (e.g., 
Haendel et al., 2015; Abrahamson et al., 2016; Bastías and 
Montalva, 2016). These classifications are discrete, that is, 
an event is unambiguously assigned to a single category 
(“intraplate” or “interface”) neglecting any uncertainties 
or degree of belief. 

Although most reverse events in a subduction zone 
will be related to the interface and most normal events to 
the slab, there are possible exceptions. The behavior of 
earthquake slip in relation to the underlying stress field 
can be well approximated by the Wallace–Bott hypothe-
sis, which states that slip on a pre-existing fault will be in 
the direction of maximum resolved shear stress (Wallace, 
1951; Bott, 1959; Lisle, 2013). However, the resolved 
shear stress decreases slowly with angular distance from 
its maximum, as it is related to the cosine of the angle be-
tween slip orientation and shear stress orientation. It fol-
lows that the slip orientation can be in a range of ±15° to 
the maximum shear stress orientation and still be at 90% 
or more of the amplitude of the maximum resolved shear 
stress (Lisle, 2013), resulting in a wide variety of potential 
slip orientations even on plain interfaces in homogeneous 
stress field. Many additional factors contribute to even 
larger deviations from an ideal slip orientation on the in-
terface, in particular, uneven patches on the interface and 
local variations in the stresses (possibly related to other 
prior major earthquakes, asperities, and barriers). 

In case of faulting in the slab, it is even more compli-
cated, as faults have several origins (formation close to 
the mid-ocean ridges, during the bending before subduc-
tion initiation, and so on) resulting in a wide distribution 
of fault orientations. A slab dipping at a high angle can 
show stress tensor orientations very different from the 
time of fault generation when the slab was still oceanic 
crust near the surface, which may result in reverse 

faulting at large depths that are actually normal faulting 
at an oblique angle. Such apparent faulting reversal has 
been observed in the slab of the Philippine Sea plate un-
der the Ryukyu microplate northeast of Taiwan where re-
verse faulting occurs at depths far below the plate inter-
face (Kao and Rau, 1999). 

In this study, we couple a machine-learning-based 
earthquake classification and a generalized ground-mo-
tion regression model to address data classification and 
selection for complex tectonic environments and the 
proper implementation of the classified data into the re-
gression model. This new framework is tested and ap-
plied to the development of GMMs for the Chilean subduc-
tion zone. We first apply Angular Classification with Ex-
pectation–maximization (ACE), a method to efficiently 
identify clusters of nodal planes from focal mechanisms 
(FMs) as well as the SoF in one purely data-driven algo-
rithm based on expectation–maximization with exten-
sions in optimizing the number of clusters (Specht et al., 
2017). ACE only requires the strike, rake, and dip of both 
nodal planes from FM catalogs to identify clusters belong-
ing to different SoF. The method has been applied by von 
Specht et al. (2018) to stress tensor inversion in northern 
Chile to reduce uncertainties of the stress tensor esti-
mates by selecting events associated with one SoF for the 
inversion. 

ACE classification is continuous, that is, no event be-
longs completely to one class, and classification uncer-
tainty is then evaluated. As stated earlier, it is currently 
not possible to identify with 100% accuracy the SoF and 
associate it with interface and intraslab activity, particu-
larly for exotic events (i.e., with unusual FMs or in unusual 
stress environments). Therefore, with ACE we can say for 
instance that some events with differing FMs are to some 
extent interface as they fit to the bulk group of interfaces 
(intraslabs) but are also outliers in that group. This allevi-
ates problems, in particular, with expert-defined hard 
cuts for rake intervals (e.g., in the 45°–135° range) when 
subduction is more complicated, by being oblique and/or 
several subduction systems that are spatially close. 

In this article, the mixed-effects model is reviewed 
from its theoretical foundation not only to incorporate 
continuous data weights (like the ones from ACE) into the 
governing equations but also to provide a consistent work 
flow in the development of mixed-effects-based GMMs, as 
they are used in strong-motion seismology, in general. 
The parameter estimators of the mixed-effects model are 
derived from its basic assumptions and for different ran-
dom effects (in GMMs namely the between-event, be-
tween-site, and between-path [region] variabilities) fol-
lowing the works of Henderson et al. (1959), Harville 
(1977), Lindstrom and Bates (1988), and Bates et al. 
(2015). Their work forms the basis of the state-of-the-art 
implementations of mixed-effects regression, in general. 
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The data weights are introduced into the model 
through the weighted likelihood (Field and Smith, 1994), 
which avoids weight-related scaling in the model uncer-
tainties (the “sigma” of the GMM) as would be the case 
when the weights are incorporated in the data covariance 
matrix (e.g., Bates et al., 2015). Only data weights directly 
related to the data (i.e., with the same unit [e.g., accelera-
tion] like in measurement errors or residual scaling for 
robust regression) should be included in the covariance 
matrix, as they directly influence and scale the model un-
certainties. Data weights such as the ACE-based classifica-
tion are not directly linked to the data (different units; 
probability vs. acceleration) and thus would inadvert-
ently alter the outcome of the uncertainty estimates if in-
cluded in the covariance matrix. Incorporation of such 
data weights in the likelihood function instead of the co-
variance matrix alleviates this alteration of the uncer-
tainty estimates. 

The algorithmic formulation given here is a generali-
zation of the linear mixed-effects model of which the 
mixed-effects model by Abrahamson and Youngs (1992) 
is a special case. Furthermore, the formulations of the 
mixed-effects model used in this article also form the ba-
sis for the derivation of analytic solutions of parameter 
uncertainties and correlations for the GMM coefficients 
and the random-effects variances. The analytic uncer-
tainty estimates are based on the Fisher information ma-
trix and the Cramér–Rao inequality. This allows to inves-
tigate the role and interactions of GMM parameters for a 
given model and its random-effects variances. 

We present results of the event classification for Chile 
showing the identification of clusters of thrust (associated 
with plate interface activity) and normal events (associ-
ated with intraslab seismicity). In the following step, we 
derive GMMs with events selected by expert judgment 
and ACE as a data-driven method and analyze the corre-
lations not only among GMM parameters, variances but 
also between parameters and variances. We then com-
pare the models with each other and also to the model of 
Montalva et al. (2017). Finally, we investigate the residu-
als and following Socquet et al. (2017), Bindi et al. (2018), 
and Piña-Valdés et al. (2018), we analyze the temporal 
variations of between-event residuals. 
 
METHOD 
 
The weighted mixed-effects model 
The general form of the linear mixed-effects model is 
 

𝒚 = 𝒇(𝒑) + 𝑩𝒒 + 𝜖 (1)
 
in which 𝒇(𝒑) is the fixed-effects model with parameters 
𝒑. The model 𝒇(𝒑) can be a nonlinear function of 𝒑. The 
random effects 𝒒 are linearly linked to the design matrix 

𝑩. This model is stated under the assumption that residu-
als of both the random and the fixed model are normally 
distributed, expressed by 𝜖. The form in equation (1) is 
the most commonly form encountered in strong-motion 
modeling. 

The random effects are normally distributed with 𝒒 ∼

𝒩(0, 𝜎 𝑫), in which 𝜎 𝑫 is the random-effects covari-
ance matrix. The data 𝒚 conditioned on the random effects 
𝒒 are assumed to be 𝒚|𝒒 ∼ 𝒩(𝑓(𝒑) + 𝑩𝒒, 𝜎 𝑪), in which 
𝜎 𝑪 is the data covariance matrix. From the theorem re-
lated to the partition of sums of squares follows that the 
sum of variance(s) associated with 𝒒 (explained sum(s) of 
squares; random-effects variances [between-event resid-
uals, between-site residuals, and so forth]) and the vari-
ance of 𝜖 (residual sum of squares; within-event variance) 
is the total variance (total sum of squares) (e.g., Sahai and 
Ageel, 2000). 

The goal of the mixed-effects regression is to maximize 
the likelihood of both the fixed-effects and random-effects 
models (Henderson et al., 1959; Harville, 1976). The joint 
probability is given by 
 

𝑃(𝒚, 𝒒|𝒇(𝒑), 𝜎 , 𝑪, 𝑫)

=
1

(2𝜋) |𝜎 𝑪||𝜎 𝑫|

× 𝑒
(𝒚 𝒇(𝒑) 𝑩𝒒)𝑻𝑪 𝟏(𝒚 𝒇(𝒑) 𝑩𝒒)𝑻𝒒𝑻𝑫 𝒒  

(2)

 
The maximum-likelihood (ML) estimation of its parame-
ters is given by Henderson et al. (1959), Harville (1977), 
Lindstrom and Bates (1988), and Bates et al. (2015). 

At this point, we generalize the likelihood by introduc-
ing weights into the likelihood function. A weighted like-
lihood (e.g., Field and Smith, 1994; Markatou et al., 1998) 
is given by 
 

ℒ = 𝑃 , (3)

 
and reduces to the ordinary likelihood, if 𝑤 = 1. A gener-
alized likelihood for mixed effects has been proposed by 
(e.g., Wolfinger and O'Connell, 1993). This approach how-
ever has a very broad scope, for example, modifying the 
assumption of normally distributed residuals. Another 
widely used approach to weight incorporation in mixed-
effects models is the penalized or weighted least-squares 
for mixed-effects model by Bates and DebRoy (2004) and 
Bates et al. (2015). They account for weights by stating 
them explicitly in the covariance matrix C. This approach 
requires that the magnitude of the weights is linked to the 
data, that is, the weights have the same unit of measure-
ment as the data, for example, the error measurements of 
the modeled quantity at hand. Nonetheless, the weighted 
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likelihood does not require such direct link between data 
and their weights, because it is less constrained on the re-
lation between weights and data, as the weights in equa-
tion (3) are not applied to the data but their probabilities. 
This less constrained relation between weights and data 
in the weighted likelihood is paramount when combining 
weights and data with different measurement units, for 
instance, probabilities as weights and ground-shaking 
data. 

An illustrative example for the difference of weights in 
the covariance matrix and in the likelihood is given in Ta-
ble 1 for the estimation of the weighted mean and vari-
ance, respectively (derivation is in Appendix A). The ex-
ample represents the two fundamental components of the 
mixed model, namely the mean as representative for the 
fixed-effects part and the variance for the random-effects 
part. Although the mean estimators are identical under 
both weighting methods, the variance estimators show a 
small but important difference: for both variance estima-
tors scale, the squared sums linearly with the weights, but 
the covariance-based weighted estimator normalizes by 
the number data, whereas the likelihood-based weighted 
estimator normalizes by the sum of weights. This means 
that the covariance weighted variance scales with the 
weights, whereas the weighted likelihood does not show 
such scaling behavior; a property of high importance in 
the development of GMMs and their subsequent applica-
tion in probabilistic seismic hazard analysis. 

The difference in both weighting methods implies that 
they are not mutually exclusive. On the contrary, both can 
be used simultaneously, each representing a different as-
pect of uncertainty, for example, measurement error and 
degree of belief. 

Here, we specifically introduce weights for earth-
quakes, illustrated with a set of earthquakes, but the idea 
of weighting can be applied to any other setting. The oc-
currence of an earthquake can be viewed as a random ef-
fect (event) 𝑒 , and it is recorded at 𝑁  random stations, 

that is, we have 𝑁  records 𝒚 = 𝑦 , 𝑦 , … , 𝑦 . If we 

observe 𝐸 earthquakes, we have for the 𝑖th earthquake 𝑁  
records 𝒚 . The number of records of an earthquake de-
pends on several factors, for example, earthquake loca-
tion, magnitude, and seismic station network, and the rec-
ord quality can vary with each event and to some extent 
also with each station. When developing a GMM from 
these 𝐸 earthquakes, the records 𝒚 are usually selected 
per earthquake. For GMMs, the selection of earthquakes 
often relates to the event type; particularly interface and 
intraslab events. Therefore, the seismologist (or some al-
gorithm like ACE) applies a weighting per earthquake, 
that is, the 𝑖th event gets weight 𝑤 . This weighting repre-
sents the seismologist’s (or ACE’s) degree of belief 
whether an event is interface or intraslab (or something 
else). The main difference between the seismologist and 
ACE is that the seismologist selects events on binary basis 
- an event is in or out - whereas ACE assigns continuous 
weights based on a probabilistic model. To summarize, 
the seismologist wishes to develop a GMM from 𝐸 earth-
quakes, in which the 𝑖th earthquake is recorded at 𝑁  sta-
tions, that is, with the total number of records 𝑁 =

∑ 𝑁 , and all records of the 𝑖th event are weighted with 
weight 𝑤 . This exemplifying scenario is probably the 
most widely encountered in ground-motion modeling in 
terms of mixed-effects regression. 

The variations between earthquakes and between sta-
tions are random. Let 𝒆 = (𝑒 , 𝑒 , … , 𝑒 )  be the random 
effects of the earthquakes, and 𝒔 = (𝑠 , 𝑠 , … , 𝑠 )  the ran-
dom effects of all seismic stations, where 𝑆 is the total 
number of stations. All random effects are assumed to 
have arisen from a normal distribution: 𝒆 ∼ 𝒩(𝟎, 𝜎 𝑫 ) 
and 𝒔 ∼ 𝒩(𝟎, 𝜎 𝑫 ). The random-effects covariance ma-
trices 𝜎 𝑫 , 𝜎 𝑫  are diagonal matrix with 𝑫𝑬 = 𝑰  and 
𝑫𝑺 = 𝑰  (𝑰  is a unit matrix of size 𝑋 × 𝑋), that is, 𝜎  is the 
variance between earthquakes (the variance associated 
with the between-event residuals), and 𝜎  is the variance 
between stations (the station-to-station residuals). In line 
with these definitions, the covariance matrix 𝜎 𝑪 - intro-
duced in the beginning and equation (2) - is set to 𝜎 𝑰. The 
variance 𝜎  is therefore the variance of the data 𝒚 condi-
tioned on the random effects 𝒆 and 𝒔; the remaining vari-
ance in the data after accounting for earthquake and sta-
tion variations. 

The 𝐾 random effects 𝒒 , 𝒒 , …, 𝒒  can be summarized 
into a vector: 
 

𝒒 =

𝒒
𝒒
⋮

𝒒𝑲

, (4)

 
and 𝑀 = 𝑁 + 𝑁 + ⋯ + 𝑁  is the total number of ran-

dom effects. The summarized covariance matrix is a block 
diagonal matrix: 

TABLE 1 
Expression for Weighted Mean and Variance Based on Covari-
ance Weighting (Left Column) and Weighted Likelihood (Right 
Column) 

Parameter Covariance Weights Likelihood Weights 

Mean �̂� ∑ 𝑤 𝑥

∑ 𝑤
 

∑ 𝑤 𝑥

∑ 𝑤
 

Variance 𝜎  ∑ 𝑤 (𝑥 − �̂�)

𝑁
 

∑ 𝑤 (𝑥 − �̂�)

∑ 𝑤
 

While the weighted mean estimators are identical, there is a difference 
in the normalization of the weighted variances. The covariance-based 
estimator of the variance scales with the weights 𝑤 , the weighted like-
lihood based not. Derivation of the estimators is given in Appendix B. 
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𝜎 𝑫 = 𝜎

𝜏 𝑰 𝟎 ⋯ 𝟎
𝟎 𝜏 𝑰 ⋯ 𝟎
⋮
𝟎

⋮
𝟎

⋱ ⋮
⋯ 𝜏 𝑰

, (5)

 
in which the 𝑖th block matrix is of size 𝑁 × 𝑁 . The ele-

ments 𝜏 , 𝜏 , …, 𝜏  are variance factors for the respective 
random effects; introduced for computational conven-
ience. The 𝑖th random-effects variance is given by 𝜎 =

𝜎 𝜏 . The random effects design matrix is 
 

𝑩 = (𝑩 𝑩 ⋯ 𝑩𝑲) (6)
 
in which the 𝑖th design matrix is of size 𝑁 × 𝑁 . With co-

variance matrices defined and the incorporation of 
weights according to equation (3), the event-weighted 
likelihood of equation (2) is 
 

ℒ (𝒇(𝒑), 𝜎 , 𝑪, 𝑫|𝒚, 𝒒)

=
1

(2𝜋|𝜎 𝑫𝒊|)
𝑒

𝑽𝒒,𝒊𝒒𝒊 𝑫𝒊
𝟏𝑽𝒒,𝒊𝒒𝒊

×
1

((2𝜋) |𝜎 𝑪𝒊|)

× 𝑒
𝑽𝒊 𝒚𝒊 𝒇𝒊(𝒑) 𝑩𝒊𝒒𝒊 𝑪𝒊

𝟏 𝑽𝒊 𝒚𝒊 𝒇𝒊(𝒑) 𝑩𝒊𝒒𝒊 , 

(7)

 
in which the event-based weights are expressed in matrix 

form 𝑽𝒊 = 𝑤 𝑰  for the residuals and 𝑽𝒊 = 𝑤  for the 

random effects. See Appendix C for a detailed description 
of the weight matrices. 

The ML estimator for 𝒑 and ML predictor for 𝒒 are de-
rived from the derivatives of the log likelihood in equation 
(7) (detailed derivation in Appendix B). The estimators 
for the GMM parameters are given as the parameters of 
the fixed-effects model 𝒇(𝒑). Because 𝒇(𝒑) can be a non-
linear function of 𝒑, the parameter estimators 𝒑 are found 
by nonlinear regression: 
 

∆𝒑 = 𝑿𝒓, (8)
 
With 
 

𝑿 = (𝑱𝑻𝑽𝑺 𝟏𝑽𝑱) 𝑱𝑻𝑽𝑺 𝟏𝑽, (9)
 

in which 𝑱 is the Jacobian 𝑱 =
𝒅𝒇(𝒑)

𝒅𝒑
 and 𝑿 is the generalized 

least-squares estimator with covariance matrix 𝑽𝑺 𝟏𝑽 
(Aitken, 1936), and the best linear unbiased estimator 
(Henderson, 1975). 

The predictor for the random effects, 𝒒, is based on the 
fixed-effects model parameters: 

 
𝒒 = 𝑽𝒒

𝟏𝑫𝑩𝑻𝑺 𝟏𝑽(𝒓 − 𝑱∆𝒑) (10)
 
which is the best linear unbiased predictor of 𝒒 (Hender-
son, 1975). 

The variance estimators of the mixed-effects model 
dependent on the estimator 𝒑 and predictor 𝒒 of the fixed-
effects model. It is well established that ML variance esti-
mates are biased downward by 𝒑 and 𝒒, that is, variances 
are underestimated Patterson and Thompson (1971), 
Harville (1974, 1976), Lindstrom and Bates (1988), Bates 
and DebRoy (2004), and Bates et al. (2015). To obtain un-
biased variance estimates, the likelihood is defined in 
terms of error contrasts, resulting in the reduced ML 
(RML). Details of the concept are described in full detail 
by Patterson and Thompson (1971) and Harville (1976). 

The RML estimator of the residual variance (within-
event variance) 𝜎  is found from the derivative of equa-
tion (B25): 
 

𝜎 =
𝒓𝑻𝑽𝑺 𝟏𝑽𝒓

1 −
𝑃
𝑁

𝑡𝑟(𝑽𝑽)
. (11)

 
By normalizing the weights such that it holds, that 
 

𝑡𝑟(𝑽𝑽) = 𝑉 = 𝑁, (12)

 
then the variance estimator can be stated as 
 

𝜎 =
𝒓𝑻𝑽𝑺 𝟏𝑽𝒓

𝑁 − 𝑃
. (13)

 
This is the unbiased estimator of the variance and appears 
frequently with the denominator 𝑁 − 1, that is, for 𝑃 − 1 
(resulting from the sample mean estimation). The estima-
tor corrects the bias for the loss of degree of freedoms, 
which is equal to the number of parameters 𝑃 in the GMM 
parameter estimator 𝒑. For generality, the variance for-
mulation in equation (B29) is used in the following equa-
tions. 

The RML estimators of the variance factors 𝜏  are 
linked to the variance 𝜎 . There are no analytic solutions 
for the random-effects variances, and the likelihood must 
be maximized numerically, for example, by gradient as-
cent based on the log-likelihood derivatives of the vari-
ance factors: 
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𝜕 ln ℒ

𝜕𝜏

=
1

2
−𝑡𝑟 𝑽𝑺 𝟏𝑩𝒌𝑩𝒌

𝑻𝑽

+ 𝑡𝑟 (𝑱𝑻𝑽𝑺 𝟏𝑽𝑱) 𝑱𝑻𝑺 𝟏𝑩𝒌𝑩𝒌
𝑻𝑺 𝟏𝑽𝑱

𝑡𝑟(𝑽𝑽)

𝑁

+
1

𝜎
𝒓𝑻𝑽𝑺 𝟏𝑩𝒌𝑩𝒌

𝑻𝑺 𝟏𝑽𝒓 . 

(14)

 
The first and last term correspond to the basic ML estima-
tor. The second term is the effect of the RML estimation, 
that is, this term corrects for the bias of the ML estimator, 
if GMM parameters and random-effects variances are de-
rived from the data. 

The variance factor estimates are found by iteration of 
 

𝝉( ) = 𝝉( ) + 𝛾∇ℒ , (15)
 
in which 𝝉 is the vector of variance factors, that is, with 
equation (5) 𝝉 = (𝜏 , 𝜏 , … , 𝜏 ) . The factor 𝛾 is chosen 
such to guarantee convergence and is updated at each it-
eration (Barzilai and Borwein, 1988). The algorithm 
starts from some initial values and is repeated until suffi-
cient convergence of the parameters is reached. At each 
iteration, 𝜎  and 𝒑 are updated before the factors 𝝉 are 
updated. Finally, the ML estimates of the variances are as 
follows: 
 

𝝊 = 𝜎 𝝉. (16)
 
Estimator uncertainties of GMM parameters and ran-
dom-effects variances 
The mixed-effects regression assumes that any kind of re-
siduals are normally distributed. This property allows for 
the derivation of analytic expressions for parameter un-
certainty estimates, that is, computationally intensive 
methods such as bootstrapping and jackknifing are not 
necessary. The (co)variance of a parameter is related to 
the Fisher information 𝑰 of the parameters, expressed by 
the Cramér–Rao bound: 
 

cov 𝜽 > 𝑰 𝜽 . (17)

 
If the previous relation becomes an equality, the estima-
tor 𝜽 is said to be an efficient estimator. Hartley and Rao 
(1967) showed for the mixed-effects model that the pa-
rameter estimates 𝒑 are efficient and the variance estima-
tors 𝝉 are asymptotically efficient, that is, converge to-
ward efficiency with increasing number of data. This (as-
ymptotic) equality of the Cramér–Rao bound allows the 
derivation of parameter uncertainties from the Fisher in-
formation. 

The Fisher information 𝑰 of a parameter estimator 𝜽 is 

a matrix related to the likelihood ℒ. Its components are 
given by 
 

𝐼 = 𝔼
𝜕 ln ℒ

𝜕𝜃 𝜕𝜃
, (18)

 
in which 𝔼[∙] is the expected value operator. For the 
mixed-effects model, the Fisher information is given as 
3 × 3 block matrices: 
 

𝑰(𝒑, 𝜎 , 𝝊) = −𝔼

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝜕 ln ℒ

𝜕𝒑𝜕𝒑

𝜕 ln ℒ

𝜕𝒑𝜕𝜎

𝜕 ln ℒ

𝜕𝒑𝜕𝝊

𝜕 ln ℒ

𝜕𝜎 𝜕𝒑

𝜕 ln ℒ

𝜕𝜎 𝜕𝜎

𝜕 ln ℒ

𝜕𝜎 𝜕𝝊

𝜕 ln ℒ

𝜕𝝊𝜕𝒑

𝜕 ln ℒ

𝜕𝝊𝜕𝜎

𝜕 ln ℒ

𝜕𝝊𝜕𝝊 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

 (19)

 
The inverse 𝑰(𝒑, 𝜎 , 𝝊)  - which is asymptotically equiv-
alent to the covariance matrix as 𝑁 → ∞ - is stated as  
 

𝑰(𝒑, 𝜎 , 𝝊) ~ cov(𝒑, 𝜎 , 𝝊)

=

⎝

⎜
⎛

𝜎 (𝑱𝑻𝑷𝑱) 𝟎 𝟎

𝟎
2𝜎

𝑡𝑟(𝑽𝑽)
+ 𝑻𝑴𝑻𝑻 𝑻𝑴

𝟎 𝑴𝑻𝑻 𝑴 ⎠

⎟
⎞

, 
(20)

 
in which 𝑷, 𝑻, and 𝑴 are matrices related to the random-
effects variances and the first and second derivatives of 
the mixed-effects likelihood (see Appendix D for the defi-
nitions and a detailed derivation of the covariance ma-
trix). The terms related to the covariance for a single ran-
dom effect without weighting reduces to the terms used 
by Abrahamson and Youngs (1992; equations 11–13). 
The covariance matrix shows that the covariance of the 
model parameters (upper left block) is independent of the 
covariance of the random-effects variances (four lower 
right blocks), that is, the model parameters are independ-
ent of the variances. Furthermore, equation (20) shows 
that the variances of the random-effects variances are not 
necessarily independent from each other, as there are 
nonzero off-diagonal terms relating to the variances. 

The correlations among the parameters (the off-diag-
onal elements) can be expressed by Pearson’s correlation 
coefficient. The correlation between parameters 𝜃  and 𝜃  
is given by 
 

𝜌 , =
𝐼

𝐼 𝐼

, (21)

 
in which 𝐼  is the element in the 𝑖th row and 𝑗th column 

of the inverse of the Fisher information matrix. The Fisher 
information matrix provides therefore a powerful tool to 
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assess the linear dependence of parameters and thus 
helps with model design and evaluation and allows to 
check for the linear independence of the variance compo-
nents. 
 
DATA 
We use the strong-motion flat file for Chile published by 
Bastías and Montalva (2016) for the exemplary applica-
tion of weighted ground-motion modeling. Seismicity in 
South America is dominated by two linked processes: (1) 
thrust events at the interface between the South Ameri-
can plate and Nazca plate and (2) normal faulting in the 
subducting slab of the Nazca plate. The events associated 
with either process are clearly separated spatially and by 
their FM and provide, therefore, a suitable data set for the 
investigation of different data classification methodolo-
gies. 

The flat file of Bastías and Montalva (2016) contains in 
total 477 events range from 𝑀  4.6 to 𝑀  8.8 with 3572 
three-component records, with distances measured with 
several metrics (rupture plane distance, 𝑅 , and hypo-
central distance, 𝑅 ). Peak ground acceleration (PGA) 
and pseudospectral accelerations (PSAs) with 5% damp-
ing are available for each accelerometer component for 
oscillator periods between 0.01 and 10 s. Bastías and 
Montalva (2016) classify events in the flat file as interface, 
intraslab, and crustal. Interface events are defined by a 
depth of less than 50 km and a maximum distance of 2.5° 
from the trench (equivalent to 260 km at 20°S and 210 km 
at 40°S) and with a reverse SoF. Intraslab events are all 
events deeper than 50 km and events shallower than 
50 km with normal faulting within 2.5° distance to the 
trench. Crustal events are shallower than 50 km and have 
a distance more than 2.5° from the trench. 

Because ACE requires FM for classification, we use a 
subset of the flat file events for which also Global Centroid 
Moment Tensor (CMT) catalog solutions exist (Ekström 
et al., 2012). This subset contains 319 events with 2443 
records with a magnitude range of 𝑀  4.9–8.8 (Fig. 1). 
 
DATA-DRIVEN EVENT CLASSIFICATION 
The weighted mixed-effects regression introduced in this 
article allows for a more general treatment of data selec-
tion. Besides the classical approach of deterministic selec-
tion, more sophisticated data selection is feasible with the 
weighted mixed-effects regression. We use ACE to classify 
earthquakes on the basis of their FMs (Specht et al., 2017; 
von Specht et al., 2018). ACE is based on expectation–
maximization and fits a mixture distribution to the FM 
data in the strike–rake–dip domain. Because ACE consid-
ers both nodal planes, a separation into rupture and aux-
iliary plane is not required. The number of mixture com-
ponents is optimized as part of the parameter estimation. 

The underlying principle of ACE is the assumption that 
in a homogeneous background stress field only random 
variations in the stress field exist locally and FMs of a 
given SoF will tend to be similar to each other. Kagan 
(1991) showed that the minimal rotation angle between 

Figure 1. Map from Chile and adjacent regions showing events 
used in this study from the flat file of Bastías and Montalva (2016). 
Our catalog is a subset of the flat file with reported focal mecha-
nisms (FMs) and contains 319 events (circles) recorded at 176 sta-
tions (triangles) with a total of 2443 records (lines). The map pro-
jection is Universal Transverse Mercator (UTM) zone 19S. The in-
set shows the study area in South America as green box. 
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two FM in a homogeneous stress field follows a double 
couple rotational Cauchy distribution. FMs from regional 
catalogs tend to have small rotation angles, that is, the 
FMs of a particular stress field form clusters in terms of 
their parameters (strike, dip, and rake). 

For the Chile region, ACE identifies three event types 
in five clusters: two clusters for either nodal planes of in-
terface and intraslab events, respectively, and one cluster 
for unclassified events (Fig. 2). The probability densities 
of the mixture distribution are used as weights in the de-
velopment of the GMM and their square roots populate 
the matrix 𝑽. 

Event classification of the Chile database based on ex-
pert judgment and ACE are shown in Figure 3a,c. Both 
event classifications are near identical with few differ-
ences, and only six out of 319 events have opposite SoF 
assigned (Fig. 3b). 
 
GROUND-MOTION MODEL 
We apply the GMM of Montalva et al. (2017) to model the 
strong-motion data of Bastías and Montalva (2016). The 
model is related to the BC Hydro model by Abrahamson 
et al. (2016) with few modifications. The model consists 

of several terms related to the source, path, event type, 
event depth, and site, and is defined for interface and in-
traslab earthquakes: 
 

𝑦 = 𝜃 + 𝑓 + 𝑓 + 𝑓 / + 𝑓 , (22)
 

𝑓 = 𝜃 ∆𝐶 + 𝑓 , (23)
 

𝑓 =
𝜃 𝑀 − (𝐶 + ∆𝐶 ) if 𝑀 ≤ 𝐶 + ∆𝐶

𝜃 𝑀 − (𝐶 + ∆𝐶 ) if 𝑀 > 𝐶 + ∆𝐶
, (24)

 
𝑓 = 𝜃 + 𝜃 𝑓

+ 𝜃 (𝑀 − 7.2) ln 𝑅 + 𝐶 𝑒 ( ) + 𝜃 𝑅, 
(25)

 
𝑓 / = 𝜃 + 𝜃 (min(𝑍 , 120) − 60) 𝑓 , (26)

 

𝑓 = 𝜃12 ln
𝑉𝑆

∗

𝑉𝑙𝑖𝑛

+

⎩
⎪
⎨

⎪
⎧

𝑏 ln

𝑃𝐺𝐴1000 + 𝑐
𝑉𝑆

∗

𝑉𝑙𝑖𝑛

𝑃𝐺𝐴1000 + 𝑐
if 𝑉𝑆30 < 𝑉

𝑏 ln
𝑉𝑆

∗

𝑉𝑙𝑖𝑛

if 𝑉𝑆30 ≥ 𝑉𝑙𝑖𝑛

, (27)

 
𝑉∗ = min(𝑉𝑆30, 1000), (28)

 

in which 𝑦 is either ln(𝑃𝐺𝐴 𝑃𝐺𝐴 ) or 

ln 𝑃𝑆𝐴 (𝑇)𝑃𝑆𝐴 (𝑇)  with 𝑇 as the oscillator period. 

PGA and PSA are given in units of 𝑔 = 9.80665m/s2. The 
parameters 𝜃 are fitted to PGA and PSA depending on: 
1. moment magnitude (𝑀 ) as reported in the Global 

CMT catalog (Ekström et al., 2012), 
2. hypocentral depth in kilometers (𝑍 ), 
3. source-to-site distance in km (𝑅), defined as: 

a) closest distance to the rupture plane (𝑅 ) for 
interface earthquakes 

b) hypocentral distance (𝑅 ) for intraslab earth-
quakes 

4. PGA1000 is the median PGA value for a site with 
𝑉 = 1000 m/s, 

5. event type (𝑓 ); for interface 𝑓 = 0, for in-
traslab 𝑓 = 1, 

6. modified 𝑉  with a maximum value of 1000 m/s 
(𝑉∗). 

 
The parameters ∆𝐶 , 𝐶 = 7.2, and 𝐶 = 10 are taken from 
the BC Hydro model. The site-related parameters 𝑉 , 𝑏, 
𝑐, and 𝑛 are computed directly from the nonlinear site-re-
sponse function of the Peninsular model of Walling et al. 
(2008) (as has been done in the BC Hydro model). 

The BC Hydro model also includes a fore-arc (back-
arc) term, but Montalva et al. (2017) noted that no back-
arc events are present in the flat file. We, therefore, drop 
that term from the BC Hydro model and refer to Abraham-
son et al. (2016) and Montalva et al. (2017) if a fore-arc 

Figure 2. Distribution of nodal planes of FM for Chile from the 
Global Centroid Moment Tensor catalog between 1976 and 2019. 
FMs are represented in the strike–rake plane (lower right). The 
shape of the clusters depends on the dip, the shallower the dip, the 
more elongated the clusters. The model based on Angular Classifi-
cation with Expectation–maximization (ACE) identifies four clus-
ters: two for interface (in the upper half, with positive rakes) and 
intraslab (in the lower half, with negative rakes), respectively. The 
remaining scattered data are unclassified. Those events have 
mainly hypocenters in the South American crust. The color satu-
ration corresponds to the probability of a nodal plane to be in a 
certain cluster. For each event, the probabilities of both nodal
planes are averaged and used as weights for the event classifica-
tion used in ground-motion modeling. 
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(back-arc) term is required. Consistent with Montalva 
et al. (2017), we do not include the quadratic magnitude 
of the original BC Hydro model. 

The choice of event type is straightforward in the ex-
pert classification by setting 𝐹 = 0 for interface (IF) 
events, 𝐹 = 1 for intraslab (IS) events, as provided in 
the flat file. For the ACE-based classification, the 𝐹  
term is defined as the probability of an event being inter-
face (𝑃(𝐼𝐹)) or intraslab (𝑃(𝐼𝑆)) conditioned on the prob-
ability of an event being related to subduction (𝑃(𝑆) =

𝑃(𝐼𝐹) + 𝑃(𝐼𝑆), i.e., either interface or intraslab): 
 

𝐹 = 𝑃(𝐼𝑆|𝑆) =
𝑃(𝐼𝑆)

𝑃(𝐼𝐹) + 𝑃(𝐼𝑆)
, (29)

 

1 − 𝐹 = 𝑃(𝐼𝐹|𝑆) =
𝑃(𝐼𝐹)

𝑃(𝐼𝐹) + 𝑃(𝐼𝑆)
. (30)

 
In case of ∆𝐶 , which takes different values for interface 
and intraslab events, we define the weighted average: 
 

∆𝐶 = 𝐹 ∆𝐶 + (1 − 𝐹 )∆𝐶 . (31)
 

As in Montalva et al. (2017), we augment the model 
with two random effects for between-event residuals, 
with standard deviation 𝜏, and between-station residuals, 

Figure 3. (a) Style-of-fault (SoF) classification of events according to the flat file (deterministic expert judgment). (b) Difference between 
expert-based and ACE classifications ranging from identical classification, through subduction interface or intraslab) against other (crus-
tal or unclassified), to interface against intraslab. (c) Event classification based on ACE. SoF classification is continuous, that is, no event 
belongs completely to one class. This is implemented by assigning weights to each event and shown as color saturation. Automated SoF 
assignments are very similar to the expert-based classification. The map projection is UTM zone 19S. 
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with standard deviation 𝜙 . The residual standard devi-
ation is 𝜙. 

Montalva et al. (2017) treated 𝜃 , one of the parame-
ters related to the magnitude-scaled distance term, as a 
fixed value taken from Abrahamson et al. (2016). We treat 
𝜃  as free parameter in the parameter estimation for PGA 
and similarly to Abrahamson et al. (2016) constrain it in 
the parameter estimations for the PSAs. However, instead 
of fixing 𝜃  for all spectral periods to the 𝜃  of PGA, we use 
𝜃  of PGA as a priori information with variance estimated 
from the Fisher information matrix. Thus, 𝜃  will diverge 
into unreasonable ranges as it would to if left uncon-

strained, as we have seen from trials. Other than the treat-
ment of 𝜃 , we follow the procedure of Montalva et al. 
(2017) and invert all 𝜃 parameters without any smooth-
ing or conditioning as has been done by Abrahamson et al. 
(2016). 

For outlier detection, we use the extreme studentized 
deviate test for multiple outliers Rosner (1975, 1983). At 
the 5% significance level, we identified a single event with 
outlying acceleration values and remove the event com-
pletely from our catalog and rerun all parameter inver-
sions. 

Figure 4. (Top row) Ground-motion model (GMM) for Chile obtained for expert-based data classification for (a) interface and (b) intraslab. 
Only interface and intraslab events are used. (Bottom row) GMM for Chile obtained for ACE-based data classification for (c) interface and 
(d) intraslab. All events are included with weights proportional to the color saturation in the map of Figure 3 (middle). The size of the 
events corresponds to their weights (only visible in bottom row). The thin lines show the model of Montalva et al. (2017) for comparison, 
which is based on the entire data set in the flat file of Bastías and Montalva (2016), while we used only a subset with available FMs. All 
models are shown for 𝑉 = 500 m/s and a hypocentral depth of 25 km for interface events and 50 km for intraslab events. PGA, peak 
ground acceleration. 
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TABLE 2 
Ground-Motion Model (GMM) Coefficients with Error Standard Deviation in Parentheses 

𝑻 (s) 𝜽𝟏 (×100) 𝜽𝟒 (×100) 𝜽𝟓 (×10-1) 𝜽𝟐 (×100) 𝜽𝟑 (×10-1) 𝜽𝟏𝟒 (×10-1) 

PGA 5.8674 (1.2740) 0.4950 (0.5866) −2.2046 (8.0350) −1.7698 (0.2649) 1.6360 (1.0567) −5.2715 (1.0541) 

0.010 5.8161 (1.2150) 0.4810 (0.5557) −1.8416 (7.8436) −1.7632 (0.2547) 1.6441 (1.0069) −5.2814 (1.0498) 

0.015 5.8208 (1.2210) 0.4737 (0.5588) −1.8212 (7.8682) −1.7682 (0.2559) 1.6514 (1.0122) −5.3293 (1.0538) 

0.020 5.9893 (1.2235) 0.4923 (0.5596) −1.5992 (7.8718) −1.8018 (0.2565) 1.6094 (1.0136) −5.3288 (1.0584) 

0.025 6.4368 (1.2218) 0.5940 (0.5574) −0.4667 (7.8105) −1.9225 (0.2564) 1.4171 (1.0099) −5.4280 (1.0648) 

0.030 6.8574 (1.2114) 0.5688 (0.5506) −0.8310 (7.8052) −1.9879 (0.2546) 1.4685 (0.9994) −5.1905 (1.0634) 

0.035 7.3422 (1.2103) 0.5580 (0.5491) −0.8042 (7.8025) −2.0946 (0.2544) 1.4878 (0.9971) −5.0808 (1.0650) 

0.040 7.8314 (1.2122) 0.5415 (0.5498) −0.7798 (7.8009) −2.2023 (0.2548) 1.5087 (0.9978) −4.9494 (1.0664) 

0.045 8.2305 (1.2114) 0.5553 (0.5497) −0.7216 (7.7680) −2.2879 (0.2546) 1.4775 (0.9965) −4.8228 (1.0628) 

0.050 8.4476 (1.1988) 0.6339 (0.5414) 0.0320 (7.7317) −2.3203 (0.2523) 1.3314 (0.9830) −4.3758 (1.0604) 

0.055 8.5743 (1.2000) 0.6415 (0.5421) 0.0419 (7.7253) −2.3337 (0.2525) 1.3160 (0.9835) −4.0219 (1.0590) 

0.060 8.8950 (1.1919) 0.6735 (0.5365) 0.2996 (7.6921) −2.3886 (0.2510) 1.2494 (0.9742) −3.3732 (1.0569) 

0.065 8.9273 (1.1806) 0.7279 (0.5298) 0.9664 (7.6721) −2.3797 (0.2488) 1.1427 (0.9633) −3.4130 (1.0525) 

0.070 8.7764 (1.1759) 0.7512 (0.5265) 1.4416 (7.6841) −2.3264 (0.2480) 1.0912 (0.9584) −3.3608 (1.0536) 

0.075 8.5963 (1.1699) 0.7284 (0.5243) 1.3214 (7.6411) −2.2752 (0.2466) 1.1269 (0.9537) −3.1250 (1.0435) 

0.080 8.6032 (1.1771) 0.6716 (0.5281) 0.9820 (7.6637) −2.2663 (0.2480) 1.2265 (0.9601) −2.7275 (1.0466) 

0.085 8.2809 (1.1921) 0.5969 (0.5378) 0.1143 (7.6956) −2.1835 (0.2507) 1.3628 (0.9752) −2.5891 (1.0472) 

0.090 8.1957 (1.1902) 0.6219 (0.5366) 0.2989 (7.6768) −2.1520 (0.2504) 1.3079 (0.9730) −2.3130 (1.0465) 

0.100 8.3754 (1.1441) 0.8456 (0.5078) 2.9281 (7.5367) −2.1583 (0.2419) 0.8785 (0.9278) −1.9401 (1.0405) 

0.150 7.2582 (1.1650) 0.8739 (0.5166) 3.2938 (7.6380) −1.8534 (0.2465) 0.7890 (0.9453) −1.3569 (1.0661) 

0.200 5.7616 (1.2188) 0.8596 (0.5478) 2.9418 (7.8989) −1.5154 (0.2571) 0.8593 (0.9998) −3.4052 (1.0972) 

0.250 5.6332 (1.2254) 0.8377 (0.5506) 2.8095 (8.0245) −1.4842 (0.2586) 0.9351 (1.0065) −3.7360 (1.1092) 

0.300 4.9557 (1.2771) 0.7201 (0.5817) 0.6172 (8.2869) −1.3344 (0.2682) 1.2317 (1.0584) −4.4337 (1.1232) 

0.350 4.7701 (1.2898) 0.8106 (0.5888) 1.0139 (8.3252) −1.2999 (0.2710) 1.1308 (1.0727) −5.6683 (1.1377) 

0.400 4.4297 (1.3066) 0.7826 (0.6007) 0.3432 (8.3403) −1.2346 (0.2739) 1.2519 (1.0922) −6.0518 (1.1380) 

0.450 5.0066 (1.2652) 0.9050 (0.5739) 2.0495 (8.1713) −1.3903 (0.2669) 1.0699 (1.0523) −6.4750 (1.1487) 

0.500 5.0001 (1.3061) 0.8548 (0.5984) 0.7301 (8.2260) −1.4041 (0.2745) 1.2468 (1.0912) −6.9011 (1.1596) 

0.550 5.0753 (1.2612) 1.0224 (0.5739) 2.3350 (8.0092) −1.4361 (0.2660) 1.0068 (1.0512) −7.5842 (1.1459) 

0.600 5.0252 (1.2637) 1.0755 (0.5774) 1.9901 (7.9155) −1.4443 (0.2662) 0.9743 (1.0550) −8.4424 (1.1413) 

0.650 4.5525 (1.2735) 1.1247 (0.5843) 1.9026 (7.9155) −1.3516 (0.2678) 0.9388 (1.0652) −8.7213 (1.1431) 

0.700 4.3106 (1.2770) 1.1714 (0.5867) 2.4084 (7.9005) −1.3163 (0.2685) 0.8949 (1.0689) −9.0489 (1.1468) 

0.750 3.8901 (1.2747) 1.2216 (0.5867) 2.9205 (7.8362) −1.2353 (0.2679) 0.8195 (1.0674) −8.8897 (1.1417) 

0.800 3.6938 (1.2725) 1.2229 (0.5871) 2.9233 (7.7854) −1.2143 (0.2671) 0.8456 (1.0667) −8.9814 (1.1346) 

0.850 3.5633 (1.2700) 1.2362 (0.5878) 2.7339 (7.7263) −1.2048 (0.2663) 0.8681 (1.0660) −9.2110 (1.1275) 

0.900 3.2986 (1.2659) 1.2481 (0.5876) 2.7478 (7.6786) −1.1619 (0.2652) 0.8841 (1.0641) −9.5303 (1.1208) 

1.000 3.3155 (1.2449) 1.3389 (0.5757) 3.2240 (7.5239) −1.1932 (0.2612) 0.7967 (1.0440) −9.4543 (1.1089) 

1.500 2.6015 (1.2033) 1.3838 (0.5605) 1.4172 (7.1554) −1.1624 (0.2517) 1.0609 (1.0129) −9.2607 (1.0541) 

2.000 2.4436 (1.1320) 1.4227 (0.5219) 1.9606 (6.8129) −1.2189 (0.2375) 1.1946 (0.9501) −7.9194 (1.0004) 

2.500 2.2367 (1.1250) 1.2530 (0.5243) 0.3137 (6.7084) −1.2370 (0.2349) 1.6664 (0.9502) −6.8786 (0.9542) 

3.000 2.5146 (1.0952) 1.2553 (0.5122) −0.9866 (6.4283) −1.3512 (0.2283) 1.8296 (0.9258) −7.0437 (0.9159) 

3.500 2.6802 (1.1046) 1.1771 (0.5202) −2.1898 (6.4795) −1.4582 (0.2300) 2.0883 (0.9378) −7.4402 (0.9112) 

4.000 2.4227 (1.1596) 1.0033 (0.5465) −4.4772 (6.7164) −1.4491 (0.2421) 2.4946 (0.9812) −7.2274 (0.9282) 

4.500 2.3244 (1.1932) 0.8978 (0.5654) −5.2766 (6.8931) −1.4829 (0.2485) 2.7164 (1.0129) −7.2125 (0.9449) 

5.000 2.2971 (1.2098) 0.8539 (0.5733) −5.2659 (6.9956) −1.5287 (0.2520) 2.8025 (1.0274) −7.4060 (0.9637) 

5.500 2.2951 (1.2154) 0.9456 (0.5746) −4.0559 (7.0018) −1.5647 (0.2536) 2.6083 (1.0311) −7.5188 (0.9809) 

6.000 2.5763 (1.2296) 0.8563 (0.5817) −4.8554 (7.0255) −1.6801 (0.2562) 2.8225 (1.0419) −7.7617 (0.9857) 

6.500 2.7858 (1.2401) 0.9014 (0.5860) −4.5313 (7.0705) −1.7585 (0.2588) 2.7583 (1.0509) −7.8432 (0.9998) 

7.000 2.7613 (1.2371) 1.0118 (0.5857) −3.3955 (7.0366) −1.7762 (0.2582) 2.5457 (1.0498) −7.9832 (1.0030) 

7.500 2.5966 (1.2374) 1.0584 (0.5859) −2.5575 (7.0372) −1.7637 (0.2584) 2.4468 (1.0501) −8.3864 (1.0059) 

8.000 2.6657 (1.2552) 1.1398 (0.5840) −1.2996 (7.0720) −1.8105 (0.2634) 2.3318 (1.0489) −8.8907 (1.0690) 

8.500 2.4218 (1.2730) 1.0996 (0.5963) −0.9746 (7.2275) −1.7836 (0.2669) 2.3663 (1.0711) −9.1883 (1.0806) 

9.000 2.1284 (1.2772) 1.0666 (0.5993) −0.6946 (7.2672) −1.7389 (0.2677) 2.4033 (1.0761) −9.1426 (1.0809) 

10.000 1.8182 (1.2780) 1.0765 (0.5995) 0.2892 (7.2782) −1.7097 (0.2681) 2.3489 (1.0774) −9.4484 (1.0982) 

 
(continued) 
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TABLE 2 (Continued) 

𝑻 (s) 𝜽𝟔 (×10-3) 𝜽𝟗 (×10-1) 𝜽𝟏𝟎 (×100) 𝜽𝟏𝟏 (×10-3) 𝜽𝟏𝟐 (×100) 

PGA −1.2238 (0.9858) 4.9767 (3.6185) 3.5868 (0.5572) 4.3855 (3.3146) 0.7695 (0.0829) 

0.010 −1.2464 (0.9651) 4.9188 (3.3413) 3.5856 (0.5540) 4.5251 (3.2998) 0.7651 (0.0865) 

0.015 −1.1860 (0.9693) 4.8861 (3.3648) 3.5929 (0.5559) 4.4666 (3.2944) 0.7369 (0.0868) 

0.020 −1.0913 (0.9731) 4.8268 (3.3208) 3.6035 (0.5584) 4.6072 (3.3099) 0.7418 (0.0871) 

0.025 −0.6731 (0.9782) 4.5928 (3.1567) 3.6771 (0.5617) 4.8661 (3.3257) 0.9283 (0.0877) 

0.030 −0.3573 (0.9737) 4.7907 (2.9395) 3.6099 (0.5617) 4.7691 (3.3611) 0.8402 (0.0873) 

0.035 0.0864 (0.9747) 4.7752 (2.7825) 3.5984 (0.5632) 5.1243 (3.4068) 0.8999 (0.0874) 

0.040 0.5188 (0.9769) 4.6889 (2.6747) 3.5955 (0.5647) 5.3125 (3.4569) 0.9467 (0.0875) 

0.045 0.8522 (0.9762) 4.5188 (2.6260) 3.5665 (0.5640) 5.8549 (3.5112) 0.9739 (0.0875) 

0.050 0.7933 (0.9724) 4.5993 (2.5116) 3.3830 (0.5639) 6.0284 (3.5677) 1.0034 (0.0879) 

0.055 0.6624 (0.9729) 4.5020 (2.5321) 3.2453 (0.5641) 5.8933 (3.6170) 1.0848 (0.0879) 

0.060 0.6999 (0.9705) 4.5417 (2.4311) 2.9286 (0.5639) 5.9331 (3.6485) 1.1272 (0.0884) 

0.065 0.4999 (0.9652) 4.6465 (2.3693) 2.9548 (0.5626) 5.9506 (3.6963) 1.1691 (0.0883) 

0.070 0.0861 (0.9643) 4.7961 (2.3593) 2.8994 (0.5633) 6.5910 (3.7025) 1.2144 (0.0885) 

0.075 −0.1803 (0.9574) 4.7581 (2.4216) 2.7869 (0.5586) 6.2094 (3.7068) 1.2324 (0.0882) 

0.080 −0.2574 (0.9613) 4.7443 (2.4634) 2.5900 (0.5598) 5.9205 (3.6829) 1.2716 (0.0886) 

0.085 −0.6946 (0.9662) 4.5748 (2.6807) 2.5474 (0.5596) 5.2657 (3.6558) 1.2990 (0.0888) 

0.090 −0.9089 (0.9658) 4.5535 (2.7193) 2.4230 (0.5593) 4.4761 (3.6521) 1.3255 (0.0891) 

0.100 −1.2061 (0.9490) 5.1153 (2.3475) 2.1577 (0.5558) 5.0288 (3.6078) 1.4195 (0.0889) 

0.150 −2.5819 (0.9688) 5.2204 (2.7466) 1.6818 (0.5662) 3.4786 (3.4937) 1.6790 (0.0909) 

0.200 −3.3174 (0.9981) 5.0754 (3.6576) 2.5305 (0.5773) 3.2097 (3.2837) 1.8329 (0.0924) 

0.250 −3.0028 (1.0033) 5.3831 (3.6179) 2.5617 (0.5831) 2.8218 (3.2998) 2.0038 (0.0917) 

0.300 −2.9509 (1.0228) 5.3015 (4.3939) 2.8167 (0.5879) 1.7432 (3.1887) 2.0825 (0.0922) 

0.350 −2.4565 (1.0344) 5.3074 (4.5422) 3.2966 (0.5936) 2.0886 (3.1169) 2.0823 (0.0936) 

0.400 −2.3093 (1.0368) 5.2575 (4.9625) 3.4168 (0.5923) 1.9612 (3.0302) 2.0806 (0.0923) 

0.450 −1.1773 (1.0296) 5.7167 (3.8948) 3.5859 (0.5971) 1.8007 (2.9802) 2.1086 (0.0916) 

0.500 −0.7313 (1.0464) 5.2249 (4.3093) 3.7784 (0.6019) 1.9144 (2.9651) 2.1462 (0.0904) 

0.550 −0.3505 (1.0248) 5.4198 (3.8778) 4.1098 (0.5955) 1.8721 (2.9931) 2.1187 (0.0885) 

0.600 −0.0647 (1.0234) 5.0993 (4.0247) 4.5210 (0.5926) 2.0976 (2.9638) 2.0859 (0.0874) 

0.650 −0.3912 (1.0276) 4.9361 (4.4455) 4.6488 (0.5933) 2.0772 (2.9719) 2.0109 (0.0874) 

0.700 −0.3798 (1.0308) 4.8600 (4.6174) 4.8012 (0.5951) 1.9504 (2.9801) 1.9422 (0.0873) 

0.750 −0.6758 (1.0288) 4.7312 (4.9954) 4.6981 (0.5925) 1.8820 (2.9720) 1.8932 (0.0876) 

0.800 −0.5877 (1.0242) 4.6562 (5.1449) 4.7533 (0.5890) 1.3784 (2.9703) 1.8054 (0.0870) 

0.850 −0.4422 (1.0190) 4.5382 (5.2731) 4.8885 (0.5855) 0.7438 (2.9833) 1.7187 (0.0858) 

0.900 −0.5595 (1.0140) 4.5003 (5.5016) 5.0596 (0.5821) 0.4064 (2.9769) 1.6474 (0.0853) 

1.000 −0.3677 (1.0031) 4.4912 (5.2274) 5.0329 (0.5760) −0.0075 (2.9378) 1.4923 (0.0856) 

1.500 −0.1422 (0.9582) 4.5107 (5.3076) 4.8824 (0.5474) 0.4718 (2.7923) 0.6833 (0.0810) 

2.000 −0.0189 (0.9018) 5.1552 (4.3872) 4.2165 (0.5200) 0.2934 (2.6677) −0.1004 (0.0756) 

2.500 −0.2975 (0.8723) 5.2047 (4.4814) 3.7073 (0.4969) 0.0802 (2.6111) −0.4225 (0.0750) 

3.000 0.2826 (0.8450) 4.9119 (4.1666) 3.7782 (0.4778) 0.1242 (2.5626) −0.4079 (0.0733) 

3.500 1.2547 (0.8508) 4.8181 (4.0037) 3.9819 (0.4752) −0.0077 (2.5380) −0.4145 (0.0729) 

4.000 1.3908 (0.9380) 4.8722 (4.2993) 3.8955 (0.4829) −0.2255 (2.4982) −0.4439 (0.0750) 

4.500 1.7688 (0.9571) 4.8395 (4.4007) 3.8911 (0.4905) −0.1485 (2.5014) −0.4584 (0.0770) 

5.000 2.1116 (0.9720) 4.8548 (4.3236) 4.0259 (0.4993) −0.7652 (2.5205) −0.4643 (0.0782) 

5.500 2.2480 (0.9813) 4.6786 (4.2584) 4.0979 (0.5080) −0.8335 (2.5393) −0.5014 (0.0786) 

6.000 3.1817 (0.9949) 4.5478 (4.0776) 4.1635 (0.5152) 0.5619 (2.6354) −0.4961 (0.0790) 

6.500 3.6233 (1.0092) 4.4139 (3.9542) 4.2051 (0.5219) 0.4891 (2.6306) −0.4862 (0.0805) 

7.000 3.5816 (1.0115) 4.1887 (3.9868) 4.2891 (0.5237) 0.0857 (2.6543) −0.4653 (0.0815) 

7.500 3.5051 (1.0153) 4.1406 (4.0215) 4.4842 (0.5257) 0.1012 (2.6944) −0.4559 (0.0817) 

8.000 3.8776 (1.0466) 4.2468 (3.8273) 4.7190 (0.5588) −0.1272 (2.7277) −0.4092 (0.0823) 

8.500 3.8256 (1.0579) 4.2901 (3.9610) 4.8394 (0.5638) 0.1772 (2.6961) −0.4048 (0.0842) 

9.000 3.5976 (1.0610) 4.3540 (4.0723) 4.8069 (0.5633) 0.1897 (2.6534) −0.4082 (0.0855) 

10.000 3.5188 (1.0670) 4.3974 (4.1084) 4.9927 (0.5699) −0.5129 (2.7015) −0.4146 (0.0864) 

PGA, peak ground acceleration. 
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RESULTS AND DISCUSSION 
The GMMs for Chile based on deterministic and ACE clas-
sifications (Fig. 3) show minor variations (Fig. 4). These 
two models based on events with reported FMs only are 
also in agreement (Fig. 4) with the model of Montalva 
et al. (2017) for the entire flat file data. 

The random-effects variances of the new models are 
also comparable (Table 2) with variances of Montalva 
et al. (2017). Although the uncertainty estimates of the 
parameters are stable with frequency, the variance uncer-
tainties are frequency dependent (shown in terms of 
standard deviations in Fig. 5 and Table 3) and peak to-
gether with the random-effects variances around 0.1 s. 
The total variances are near identical for deterministic 
and ACE classifications (Fig. 6), whereas the random-ef-
fects variances show differences in the partition, which 
can be attributed to the different weighting methodolo-
gies. Although the between-event residuals have compa-
rable variances, the between-site and within-event vari-
ances are decreased and increased for all periods, respec-
tively. The difference ratios are nearly constant for all pe-
riods (Fig. 5). 

To test the predictive power of the two weighting 
methodologies, we performed 𝐾-fold cross validation 
with 𝐾 = 10 to estimate the predictive error of the mod-
els when applied to data not used in the parameter esti-
mation (Hastie et al., 2009). The overall predictive errors 
reflect the total uncertainties of the GMMs (Fig. 6). Differ-
ences in the predictive error of the expert- and ACE-based 
models are small and decrease with increasing period and 
are within each other error bands. The slightly increased 

predictive error may be attributed to the fact that ACE dis-
cards more data than the expert, because the ACE-based 
inversions uses effectively only 85% of the data that are 
used in the expert-classification-based inversions. 

The new methods developed in this article give also 
the opportunity to analyze the correlations among GMM 
parameters and variances. The parameter covariance 
shows intricate correlations among GMM parameters, 
while virtually no correlations exist between the random-
effects variances (Fig. 7). The two random-effects vari-
ances (𝜏 , 𝜙 ) correlate with the residual variance 𝜙 , 
which is a consequence of equation (20). The correlation 
of random effects is usually assumed to be negligible but 
is rarely tested (e.g. Al Atik et al., 2010). For the model 
presented here, the random-effects variances have negli-
gible correlations. As can be seen from equation (20), the 
covariance matrix (and thus the correlation) is dependent 
on the data set and the GMM, therefore systematic evalu-
ation of the model covariance matrix is important. The 
GMM parameters and the variances have vanishing corre-
lations, as implied by the covariance matrix in equation 
(20) and shown in Figure 7. The correlation matrix indi-
cates the trade-off between the model parameters and 
help identify those that are poorly resolved. Ground-mo-
tion parameters related to the magnitude scaling and 
near-source ground-motion saturation (𝜃  to 𝜃 ) are 
strongly correlated as expected. The correlation matrix 
also confirms the fact that the site term (parameter 𝜃  in 
equation 28) is weakly correlated with other parameters, 
as suggested by Fourier spectra parameter inversion (e.g., 
Drouet et al., 2008).

Figure 5. Model standard deviations (random-effects variances + residual variance) with oscillatory period of the mixed-effects regression 
with (a) deterministic weights and (b) probabilistic weights (ACE). Thick lines are standard deviations from this study with 95% confidence 
regions shown as bands. Thin lines are the standard deviations of Montalva et al. (2017). 
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TABLE 3 
GMM Random-Effects Standard Deviations with Error Standard Deviation in Parentheses 
𝑻 (s) 𝝓 𝝉 𝝓𝑺𝟐𝑺 
PGA 0.4304 (0.0064) 0.4862 (0.0264) 0.5315 (0.0444) 
0.010 0.4304 (0.0064) 0.4865 (0.0265) 0.5314 (0.0443) 
0.015 0.4322 (0.0064) 0.4849 (0.0263) 0.5343 (0.0448) 
0.020 0.4341 (0.0065) 0.4873 (0.0266) 0.5344 (0.0449) 
0.025 0.4366 (0.0065) 0.4895 (0.0268) 0.5380 (0.0455) 
0.030 0.4359 (0.0065) 0.4964 (0.0275) 0.5325 (0.0447) 
0.035 0.4361 (0.0065) 0.5049 (0.0283) 0.5323 (0.0447) 
0.040 0.4361 (0.0065) 0.5142 (0.0292) 0.5330 (0.0448) 
0.045 0.4338 (0.0065) 0.5250 (0.0303) 0.5381 (0.0454) 
0.050 0.4323 (0.0064) 0.5358 (0.0314) 0.5484 (0.0469) 
0.055 0.4311 (0.0064) 0.5454 (0.0323) 0.5512 (0.0472) 
0.060 0.4296 (0.0063) 0.5515 (0.0329) 0.5638 (0.0490) 
0.065 0.4277 (0.0063) 0.5609 (0.0339) 0.5667 (0.0494) 
0.070 0.4284 (0.0063) 0.5618 (0.0340) 0.5693 (0.0498) 
0.075 0.4238 (0.0062) 0.5639 (0.0341) 0.5753 (0.0505) 
0.080 0.4249 (0.0062) 0.5591 (0.0336) 0.5819 (0.0516) 
0.085 0.4247 (0.0062) 0.5541 (0.0331) 0.5884 (0.0525) 
0.090 0.4242 (0.0062) 0.5535 (0.0330) 0.5948 (0.0535) 
0.100 0.4233 (0.0062) 0.5455 (0.0322) 0.5965 (0.0537) 
0.150 0.4351 (0.0065) 0.5208 (0.0298) 0.6078 (0.0558) 
0.200 0.4511 (0.0070) 0.4769 (0.0259) 0.5979 (0.0548) 
0.250 0.4573 (0.0072) 0.4783 (0.0261) 0.5666 (0.0503) 
0.300 0.4646 (0.0074) 0.4552 (0.0242) 0.5628 (0.0499) 
0.350 0.4728 (0.0077) 0.4389 (0.0229) 0.5698 (0.0512) 
0.400 0.4746 (0.0077) 0.4221 (0.0215) 0.5429 (0.0473) 
0.450 0.4815 (0.0079) 0.4108 (0.0207) 0.5188 (0.0441) 
0.500 0.4868 (0.0081) 0.4064 (0.0204) 0.4903 (0.0404) 
0.550 0.4814 (0.0079) 0.4136 (0.0209) 0.4691 (0.0374) 
0.600 0.4803 (0.0079) 0.4084 (0.0204) 0.4555 (0.0357) 
0.650 0.4815 (0.0079) 0.4094 (0.0206) 0.4529 (0.0354) 
0.700 0.4837 (0.0080) 0.4102 (0.0207) 0.4479 (0.0348) 
0.750 0.4815 (0.0079) 0.4091 (0.0205) 0.4563 (0.0358) 
0.800 0.4784 (0.0078) 0.4097 (0.0205) 0.4513 (0.0351) 
0.850 0.4754 (0.0077) 0.4131 (0.0208) 0.4380 (0.0334) 
0.900 0.4730 (0.0076) 0.4125 (0.0207) 0.4346 (0.0329) 
1.000 0.4674 (0.0075) 0.4067 (0.0201) 0.4495 (0.0346) 
1.500 0.4444 (0.0068) 0.3864 (0.0182) 0.4166 (0.0301) 
2.000 0.4203 (0.0061) 0.3703 (0.0167) 0.3779 (0.0253) 
2.500 0.3966 (0.0054) 0.3662 (0.0161) 0.3941 (0.0266) 
3.000 0.3790 (0.0050) 0.3622 (0.0156) 0.3988 (0.0267) 
3.500 0.3757 (0.0049) 0.3583 (0.0153) 0.3929 (0.0262) 
4.000 0.3797 (0.0050) 0.3473 (0.0146) 0.4146 (0.0289) 
4.500 0.3840 (0.0052) 0.3450 (0.0145) 0.4354 (0.0315) 
5.000 0.3883 (0.0053) 0.3456 (0.0147) 0.4228 (0.0304) 
5.500 0.3909 (0.0055) 0.3465 (0.0150) 0.4059 (0.0288) 
6.000 0.3893 (0.0055) 0.3406 (0.0146) 0.4085 (0.0292) 
6.500 0.3909 (0.0056) 0.3383 (0.0145) 0.4235 (0.0312) 
7.000 0.3902 (0.0056) 0.3421 (0.0148) 0.4369 (0.0329) 
7.500 0.3905 (0.0056) 0.3478 (0.0153) 0.4360 (0.0329) 
8.000 0.3902 (0.0058) 0.3454 (0.0154) 0.3968 (0.0290) 
8.500 0.3929 (0.0059) 0.3389 (0.0151) 0.4152 (0.0314) 
9.000 0.3927 (0.0059) 0.3312 (0.0145) 0.4313 (0.0335) 
10.000 0.3943 (0.0060) 0.3223 (0.0140) 0.4301 (0.0334) 
PGA, peak ground acceleration. 

 

 



15 

Several past crustal earthquakes studies (e.g., Abra-
hamson and Silva, 2008) have suggested that aftershocks 
generate weaker ground motions than the associated 
mainshock. Some recent analysis of ground-motion resid-
uals have not only confirmed such lower shaking associ-
ated with aftershocks but have also suggested that 
ground-motion residuals computed using a backbone 
model may change several months before large earth-
quakes (Piña-Valdés et al., 2018). The detection and quan-
tification of these time dependencies are important, be-
cause they may reveal changes in the signature of earth-
quake spectra, the long-term preparation phase of large 
earthquakes or postseismic healing processes (Socquet 
et al., 2017; Bindi et al., 2018; Piña-Valdés et al., 2018). 
Because of this recent and stimulating literature, we have 
computed (Fig. 8) the time dependencies of between-
event residuals 15 yr before the Maule earthquake and 
5 yr after. The results suggest a slight decrease of between 
events before the mainshock, which is consistent with the 
progressive decrease of the released energy at high fre-
quencies observed before the Iquique earthquake (Piña-
Valdés et al., 2018). These observations may indicate a 
change on the subduction interface that may be related to 
a long-term nucleation process of the megathrust earth-
quake (Socquet et al., 2017). Figure 8 shows, however, 

that these preseismic changes are still poorly constrained 
because of the lack of data and the variability of the ob-
served residuals. 

One particular aspect usually neglected in mixed-ef-
fects regression within seismology is the scaling of the 
variances. When performing mixed-effects regression for 
both parameters and random-effects variances, then the 
RML should be used to avoid an underestimation of the 
random-effects variances by accounting for the reduction 
of degrees of freedom (Patterson and Thompson, 1971; 
Harville, 1974). The reduction of degrees of freedom de-
pends on the number of free parameters in the model 
(e.g., equation B29); and probably the most famous exam-
ple is the 𝑁 − 1 divisor in the unbiased estimate of the 
sample variance with unknown mean (the mean is the 
free parameter, hence the degrees of freedom are reduced 
by one). Thus, when neglecting the reduced freedom of 
degrees, the underestimation decreases with increasing 
data size for a given number of model parameters. The in-
troduction of the mixed-effects model into the strong-mo-
tion seismological community is closely linked to the 
work by Abrahamson and Youngs (1992). Their widely 
cited mixed-effects algorithm is based on Searle (1971, ch. 
8b, p. 462). However, RML for mixed effects in a general 

Figure 6. Cross-validation (CV) based estimates of the predictive 
errors of the GMM for Chile with deterministic (expert-based) 
weights in red and probabilistic (ACE) weights in blue. Bands in-
dicate uncertainties (two standard deviation) of the predictive er-
ror estimates. The predictive errors are similar to the total stand-
ard deviations of the GMMs for all investigated periods (Fig. 5) and 
both weighting methodologies perform virtually identically and 
are within each other uncertainty ranges. The slightly broadened 
uncertainty bands for the ACE-based cross validation are most
likely due to the slightly lower data size used, as ACE excludes ap-
proximately 12% less data than in the expert-based catalog. 

Figure 7. Correlation coefficients of the mixed-effects regression 
for PGA from the covariance matrix (equation 20). No correlations 
between the GMM parameters and the model variances exist by 
definition. However, many parameters of the GMM are correlated 
with each other, while some are not: the event-type-dependent 
path parameter 𝜃  and the event-type parameter 𝜃  only corre-
late with each other, while the depth parameter 𝜃  and the site 
parameter 𝜃  correlate with no other parameter. 
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definition has been introduced by Patterson and Thomp-
son (1971), that is, simultaneously to Searle (1971). Sev-
eral works related to the RML for mixed effects followed 
Patterson and Thompson (1971) (e.g., Harville, 1974; 
Lindstrom and Bates, 1988), and it is widely applied in 
many fields (Sahai and Ageel, 2000). Implementations of 
both types of likelihoods have been realized in several 
software packages: lme4 in R, statsmodels in python, fitlme in 
MATLAB (see Data and Resources) to name a few. In case 
of lme4, RML is automatically included when crossed ran-
dom effects are used (as is the usual case with site and 
event random effects). Although the bias decreases with 
increasing data size, using the RML ensures better com-
parability between different GMMs. 
 
CONCLUSION 
This article introduces the basis for a generalized mixed-
effects regression by incorporating data weights through 
a weighted likelihood. The type of weights is more general 
and can be used in addition to data weights in the data co-
variance matrix. Although the latter type of weights 

usually represents uncertainties related to the dependent 
variable, for example, measurement errors (uncertainties 
of the ground-motion values) or a different weighting of 
residuals (e.g., robust regression), the former type of 
weights can represent not directly related uncertainties, 
for example, degree of belief, event classification (either 
data-driven or expert judgment). With ACE-based data se-
lection as a data-driven and automatic determination of 
SoF classes, we provide a fully machine-learning-based 
GMM. The performance of the automatically derived GMM 
with regard to its parameters is comparable to the expert-
based event classification of Montalva et al. (2017). 

The total variances are near identical for the models 
based on deterministic and ACE classifications at all in-
vestigated periods that demonstrates that the data 
weighting in the likelihood function does not alter the to-
tal model uncertainty. The difference between covari-
ance-based weighting and likelihood-based weighting for 
the mixed-effects model is analogous to the basic 
weighted mean and weighted variance estimators in Ta-
ble 1. Although there is no difference in the estimators of 
the weighted mean (compare with the fixed-effects esti-
mator), the variance estimators differ by their normaliza-
tion constant: sum of weights versus number of data 
(compare with the estimators for the within-event vari-
ance and the random-effects variances). In the particular 
case of ACE-based weights with a value range between 0 
and 1, we would underestimate all model uncertainties by 
approximately 12% for the shown Chile example in the 
covariance-weighted approach, because the sum of all 
ACE weights is 88% of the total number of data used in 
the regression. This difference in uncertainty estimates -
which can be of arbitrary size - demonstrates the neces-
sity of the formal incorporation of data weights through 
the weighted likelihood if the weight units (e.g., no unit as 
in case of ACE) differ from the data units (e.g., meters per 
second squared for ground shaking). 

The cluster model of ACE can be directly implemented 
in modeling ground motion as weights for the events in 
the catalog. Once the mixture model has been learned 
from FM data set, new data can be classified instantly 
without a new cluster analysis. This opens the possibility 
to update ground-motion models in an automated way 
and can augment other updating routines as the Bayesian 
GMM approach of Stafford (2019). 

We provide here a weight-augmented mixed-effects 
model that can be applied to both deterministic classifica-
tion (expert judgment) and probabilistic classification 
(ACE). However, ACE treats data objectively and requires 
FM data alone, whereas expert judgment is subjective and 
may require additionally the event location. For large-
magnitude events, hypocenters may not be suitable for lo-
cation-dependent event classification due to the large ex-
tent of the rupture plane and the lack of any preferred 

Figure 8. Temporal variations of the between-event residuals of 
the GMMs based on ACE-weighted mixed-effects regression. The 
residuals follow the same trend and drop after major earthquakes, 
in particular, after the 2010 Maule earthquake. The cumulative 
seismic moment of the earthquake catalog as step-line plot with 
the 2010 Maule earthquake having the single highest increase in 
released moment. 
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nucleation point of the rupture (Mai et al., 2005), which 
may result in mislabeling events. 

The formulation used for the mixed-effects model is 
kept as general as possible and allows for an arbitrary 
number of linearly combined random effects and is there-
fore suitable to design GMMs with a single framework. 
This facilitates hybrid models that partially incorporate 
mixed-effects regression (e.g., Anderson and Brune, 1999; 
Sahakian et al., 2018). The incorporation of weights al-
lows for smooth continuous spatial variations in regional 
GMMs - similar to the varying coefficient model by Land-
wehr et al. (2016) or the mixed-effects model with spatial 
correlation by Ming et al. (2019) - thus opening the possi-
bility for the development of nonergodic GMMs with 
mixed-effects regression. 
 
DATA AND RESOURCES 
The Chile strong-motion data file (Bastías and Montalva, 2016) 
is available at https://datacenterhub.org/resources/14342 
(last accessed January 2020). The focal mechanism data of the 
Global Centroid Moment Tensor (CMT) catalog was downloaded 
at https://www.globalcmt.org/CMTsearch.html (last accessed 
January 2020). The supplemental material contains the coeffi-
cients and standard deviations of the ground-motion model 
(GMM) in equation (28) for peak ground acceleration (PGA) and 
periods between 0.01 and 10 s. The MATLAB is available at 
www.mathworks.com/products/matlab (last accessed May 
2020). lme4 is available at https://cran.r-pro-
ject.org/web/packages/lme4/index.html (last accessed May 
2020) for the R language (https://www.2r-project.org/, last ac-
cessed May 2020). Statsmodels is available at 
https://www.statsmodels.org/stable/index.html (last accessed 
May 2020) for the python language (https://www.python.org/, 
last accessed May 2020). All ground-motion models derived in 
this study were computed with the linear algebra library arma-
dillo (http://arma.sourceforge.net/docs.html, last accessed May 
2020) for C++. All graphics were designed in gnuplot 
(http://www.gnuplot.info/, last accessed May 2020) and LaTeX 
(https://www.latex-project.org/, last accessed May 2020). 
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APPENDIX A 
Effect of different weighting methods 
To show the difference between generalized (weighted) 
least-squares and weighted likelihood estimators, both 
types of estimators for the mean and variance are derived, 
respectively. The weighted least-squares estimator of a 
parameter minimizes the log likelihood for 𝑁 independ-
ent and identically distributed samples each with 

probability 𝑝 : 
 

ln ℒ = ln 𝑝  (A1)

 
Least squares are based on the assumption of normally 
distributed variates and the log likelihood is 
 

ln ℒ = −
𝑁

2
ln(2𝜋𝜎 ) −

1

2𝜎
(𝒙 − 𝜇) 𝑾(𝒙 − 𝜇). (A2)

 
The minimum of the log likelihood is attained when the 
derivatives 
with respect to mean and variance vanish: 
 

𝜕 ln ℒ

𝜕𝜇
= 0, (A3)

 
= 𝑾(𝒙 − 𝜇), (A4)

 
and 
 

𝜕 ln ℒ

𝜕𝜎
= 0, (A5)

 

= −
𝑁

𝜎
+

1

2𝜎
(𝒙 − 𝜇) 𝑾(𝒙 − 𝜇). (A6)

 
Using sum representation, the weighted mean follows 
 

�̂� =
∑ 𝑤 𝑥

∑ 𝑤
, (A7)

 
and the weighted variance 
 

𝜎 =
1

𝑁
𝑤 (𝑥 − �̂�) . (A7)

 
Although the weighted mean is normalized by the 
weights, the weighted variance is not. 

Now, we derive the estimators from weighted likeli-
hood: 
 

ln ℒ = 𝑤 ln 𝑝 . (A9)

 
For the normal distribution holds 
 

ln ℒ = −
1

2
𝑤 ln(2𝜋𝜎 ) +

(𝑥 − 𝜇)

𝜎
. (A10)

 
The minimum of the log likelihood is attained when the 
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derivative vanishes: 
 

𝜕 ln ℒ

𝜕𝜇
= 0, (A11)

 

= 𝑤 (𝑥 − 𝜇), (A12)

 
and 
 

𝜕 ln ℒ

𝜕𝜎
= 0, (A13)

 

= 𝑤
1

𝜎
−

(𝑥 − 𝜇)

𝜎
. (A14)

 
The weighted mean follows as 
 

�̂� =
∑ 𝑤 𝑥

∑ 𝑤
, (A15)

 
and the weighted variance 
 

𝜎 =
∑ 𝑤 (𝑥 − �̂�)

∑ 𝑤
. (A16)

 
The weighted mean is identical for both approaches, 
while only the weighted likelihood variance is (properly) 
scaled by the sum of weights and not by the number of 
samples. 
 
APPENDIX B 
Derivation of the coefficients of the mixed-effects model 
based on weighted likelihood 
The estimators for the ground-motion model parameters p 
and predictors for the random effects q. The maximum-
likelihood (ML) estimator for 𝒑 and ML predictor 𝒒 are 
derived from the derivatives of the log likelihood in equa-
tion (7). Replacing the constant factors independent of 𝒑 
and 𝒒 by 𝑐, the log likelihood is 
 
ln ℒ = 𝑐

−
1

2𝜎
𝒒𝑻𝑽𝒒𝑫 𝟏𝑽𝒒𝒒

+ 𝑽 𝒚 − 𝒇(𝒑) − 𝑩𝑽𝒒𝒒
𝑻

𝑪 𝟏 𝑽 𝒚 − 𝒇(𝒑)

− 𝑩𝑽𝒒𝒒 . 

(B1)

 
The weight matrices for the random effects, 𝑽𝒒, and the 

residuals, 𝑽, are related to each other (see Appendix C). 
Because 𝒇(𝒑) can be nonlinear, the problem cannot be 
solved directly. The least-squares solution of a nonlinear 

problem is obtained by iteratively updating the parame-
ter estimates from a start condition. The parameter up-
date, ∆𝒑, is calculated from the Taylor expansion of the 
model function truncated after the first derivative term. 
Thus, the residual term 𝒚 − 𝒇(𝒑) is approximately linear-
ized: 
 

𝒓 = 𝒚 − 𝒇(𝒑) ≈ ∆𝒚 − 𝑱∆𝒑 (B2)
 
in which 𝜟𝒚 = 𝒚 − 𝒇(𝒑(𝒊)) with 𝒑(𝒊) as the parameter esti-
mate in the 𝑖th iteration. The matrix 𝑱 is the Jacobian with 
the derivatives of 𝒇(𝒑(𝒊)) with respect to 𝒑. The parameter 
update ∆𝒑 describes the difference between the current 
parameter estimate 𝒇(𝒑(𝒊)) and the updated parameter 
estimate 𝒇(𝒑(𝒊 𝟏)). Using the relation in equation (B2), the 
derivatives of equation (B1) with respect to ∆𝒑 and 𝒒 are 
given by 
 

𝜕 ln ℒ

𝜕∆
=

1

𝜎
𝑱𝑻𝑽𝑪 𝟏 𝑽(∆𝒚 − 𝑱∆𝒑) − 𝑩𝑽𝒒𝒒 , (B3)

 
𝜕 ln ℒ

𝜕𝒒
=

1

𝜎
𝑩𝑻𝑪 𝟏 𝑽(∆𝒚 − 𝑱∆𝒑) − 𝑩𝑽𝒒𝒒

− 𝑽𝒒𝑫 𝟏𝑽𝒒𝒒 . 
(B4)

 
Setting both derivatives to zero leads to the equations for 
the weighted mixed-effects model: 
 

𝑱𝑻𝑽𝑪 𝟏𝑽∆𝒚

𝑽𝒒𝑩𝑻𝑪 𝟏𝑽∆𝒚

=
𝑱𝑻𝑽𝑪 𝟏𝑽𝑱 𝑱𝑻𝑽𝑪 𝟏𝑩𝑽𝒒

𝑽𝒒𝑩𝑻𝑪 𝟏𝑽𝑱 𝑽𝒒𝑩𝑻𝑪 𝟏𝑩𝑽𝒒 + 𝑽𝒒𝑫 𝟏𝑽𝒒

∆𝒑

𝒒
 

(B5)

 
Solving the second row for the ML predictor of the ran-
dom 
effects 
 

𝒒 = 𝑽𝒒𝑩𝑻𝑪 𝟏𝑩𝑽𝒒 + 𝑽𝒒𝑫 𝟏𝑽𝒒 𝑽𝒒𝑩𝑻𝑪 𝟏𝑽𝒓, (B6)

 
with 𝒓 = ∆𝒚 − 𝑲∆𝒑. The following matrix substitution is 
given by Henderson and Searle (1981) 
 

𝑽𝒒𝑩𝑻𝑪 𝟏𝑩𝑽𝒒 + 𝑽𝒒𝑫 𝟏𝑽𝒒 𝑽𝒒𝑩𝑻𝑪 𝟏

= 𝑽𝒒
𝟏𝑫𝑽𝒒

𝟏𝑽𝒒𝑩𝑻 𝑪

+ 𝑩𝑽𝒒𝑽𝒒
𝟏𝑫𝑽𝒒

𝟏𝑽𝒒𝑩𝑻 𝟏
, 

(B7)

 
= 𝑽𝒒

𝟏𝑫𝑩𝑻(𝑪 + 𝑩𝑫𝑩𝑻) , (B8)
 
and with 
 

𝑺: = 𝑪 + 𝑩𝑫𝑩𝑻 , (B9)
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the predictor for 𝒒 is 
 

𝒒 = 𝑽𝒒
𝟏𝑫𝑩𝑻𝑺 𝟏𝑽𝒓 (B10)

 
which is the best linear unbiased predictor of 𝒒 (Hender-
son, 1975). Substituting 𝒒 in the first row of equation 
(B5): 
 

𝑱𝑻𝑽𝑪 𝟏(𝑰 − 𝑩𝑫𝑩𝑻𝑺 𝟏)𝑽𝒓 = 0, (B11)
 
with 𝑰 being the identity matrix, 
 

𝑱𝑻𝑽𝑪 𝟏(𝑺 − 𝑩𝑫𝑩𝑻)𝑺 𝟏𝑽𝒓 = 0 
𝑱𝑻𝑽𝑪 𝟏𝑪𝑺 𝟏𝑽𝒓 = 0 

𝑱𝑻𝑽𝑺 𝟏𝑽𝒓 = 0 
(B12)

 
and solving for the parameters of the fixed-effects model: 
 

∆𝒑 = (𝑱𝑻𝑽𝑺 𝟏𝑽𝑱) 𝟏𝑱𝑻𝑽𝑺 𝟏𝑽𝒓, (B13)
 
which is the generalized least-squares estimator with co-
variance matrix 𝑽𝑺 𝟏𝑽 (Aitken, 1936), and the best linear 
unbiased estimator (Henderson, 1975). 
 
The variance estimators. The variance estimators of the 
mixed-effects model dependent on the estimator 𝒑 and 
predictor 𝒒 of the fixed-effects model. It is well estab-
lished that ML variance estimates are biased downward 
by 𝒑 and 𝒒, that is, variances are underestimated Patter-
son and Thompson (1971), Harville (1974, 1976), 
Lindstrom and Bates (1988), Bates and DebRoy (2004), 
and Bates et al. (2015). To obtain unbiased variance esti-
mates, the likelihood is de_ned in terms of error contrasts. 
Details of the concept are described in full detail by Pat-
terson and Thompson (1971) and Harville (1976). 

The basis for the variance estimators is to marginalize 
out the random effects 𝒒 of the probability function from 
equation (2). First, completing the square for 𝒒 in the ex-
ponential part: 
 

(𝒓 − 𝑩𝒒)𝑻𝑪 𝟏(𝒓 − 𝑩𝒒) + 𝒒𝑻𝑫 𝟏𝒒

= (𝒒 − 𝒖)𝑻𝑷(𝒒 − 𝒖) + 𝒗, 
(B14)

 
with 
 

𝑷 = 𝑩𝑻𝑪 𝟏𝑩 + 𝑫 𝟏 
𝒖 = 𝑷 𝟏𝑩𝑻𝑪 𝟏𝒓 

𝒗 = 𝒓𝑻𝑪 𝟏𝒓 − 𝒓𝑻𝑪 𝟏𝑩𝑷 𝟏𝑩𝑻𝑪 𝟏𝒓. 
 
The integral over 𝒒 is given by 
 

𝑒 (𝒒 𝒖) (𝒒 𝒖)

ℝ

𝑑𝒒 =
2𝜋

|𝑷|
, (B15)

 
and the marginal probability of equation (2) is 
 
𝑃(𝒚|𝒇(𝒑), 𝜎 , 𝑪, 𝑫)

=
1

(2𝜋) |𝜎 𝑪||𝜎 𝑫||𝜎 (𝑩𝑻𝑪 𝟏𝑩 + 𝑫 𝟏)|

× 𝑒
𝒓𝑻 𝑪 𝟏 𝑪 𝟏𝑩 𝑩𝑻𝑪 𝟏𝑩 𝑫 𝟏 𝟏

𝑩𝑻𝑪 𝟏

. 

(B16)

 
Using the identities in equation (B8), equation (B9), as 
well as equations (B11) and (B12), the matrix expression 
in the exponential term reduces to 𝑺 𝟏.With the general-
ized matrix determinant lemma (e.g., Harville, 1997, the-
orem 13.3.8) and the identity |𝑘𝑴| = 𝑘 |𝑴| (in which 𝑴 
is of size 𝑛 × 𝑛), the determinant is restated as 
 

|𝜎 𝑪||𝜎 𝑫||𝜎 (𝑩𝑻𝑪 𝟏𝑩 + 𝑫 𝟏)|

= 𝜎 |𝑪||𝑫𝑩𝑻𝑪 𝟏𝑩 + 𝑰|

= 𝜎 |𝑪 + 𝑩𝑫𝑩𝑻|

= 𝜎 |𝑺|. 

(B17)

 
Thus, the marginal probability is 
 

𝑃(𝒚|𝒇(𝒑), 𝜎 , 𝑺) =
1

(2𝜋𝜎 ) |𝑺|
𝑒

𝒓𝑻𝑺 𝟏𝒓
. (B18)

 
This probability distribution is given in terms of 𝒑 – the 
unknown population parameter - and any ML estimates 
of the variances will be biased (Patterson and Thompson, 
1971). Because 𝒑 is unknown, its estimator 𝒑 (equation 
B13) is used instead, which is based on the same data as 
used for the variance estimators which also introduces a 
bias (Harville, 1974). This dependence reduces the de-
gree of freedoms by the number of parameters 𝑃 in 𝒑(𝒑). 
Patterson and Thompson (1971) and Harville (1974) in-
troduced the reduced ML (RML), which provides unbi-
ased estimates of the variances by transforming the data 
to linearly independent error contrasts. Furthermore, the 
RML definition of Harville (1974) also expresses the like-
lihood in terms of the known estimator 𝒑 instead of the 
unknown population parameter 𝒑. The RML is commonly 
used in mixed-effects regression and should be used 
when both fixed model parameters and random-effects 
variances are estimated from the data (e.g., Lindstrom 
and Bates, 1988; Demidenko, 2013; Bates et al., 2015). 

The (unweighted) likelihood of equation (B18) ac-
cording to Harville (1974, 1976) is 
 

ℒ(𝒚|𝒇(𝒑), 𝜎 , 𝑺)

=
|𝑱𝑻𝑱|

(2𝜋) |𝜎 𝑺||𝜎 𝑱𝑻𝑺 𝟏𝑱|
𝑒

𝒓𝑻𝑺 𝟏𝒓
, 

(B19)

 
in which 𝒓 = 𝒚 − 𝒇(𝒑) are the residuals with respect to 
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the estimator 𝒑. The determinant |𝜎 𝑱𝑻𝑺 𝟏𝑱| results 
from the transformation of the likelihood as a function of 
p to the likelihood as a function of 𝒑. The likelihood in 
equation (B19) cannot be split into event-wise terms as 
shown in equation (7), because the covariance matrix 𝑺 
has off-diagonal elements (equation B9). An eigendecom-
position of 𝑺 provides the necessary transformation, such 
that the likelihood is compliant with equation (3). To en-
sure that the weight matrix 𝑽 remains diagonal as well, 
both matrices are eigendecomposed with 
 

𝑽𝑺 𝟏𝑽 = 𝑸𝑲𝚲 𝟏𝑲𝑸𝑻, (B20)
 
in which 𝑸 is the eigenvector matrix of 𝑽𝑺 𝟏𝑽 with the 𝑖th 
column corresponding to the 𝑖th eigenvalue in 𝑲𝚲 𝟏𝑲. 
The eigenvector matrix 𝑸 of a symmetric matrix is or-
thonormal, that is, it holds 𝑸𝑻 = 𝑸 𝟏 and with  
 

𝑽𝑺 𝟏𝑽 = 𝑸𝑲𝑸𝑻𝐐𝚲 𝟏𝑸𝑻𝑸𝑲𝑸𝑻, (B21)
 
the eigendecomposition is factorized. Furthermore, the 
eigenvector matrix simultaneously diagonalizes 𝑺 𝟏 and 
𝑽, that is 
 

𝑽 = 𝑸𝑲𝑸𝑻, (B22)
 

𝑺 𝟏 = 𝑸𝚲 𝟏𝑸𝑻. (B23)
 
Replacing 𝑺 with its eigendecomposition gives 
 

ℒ(𝑸𝑻𝒚|𝑸𝑻𝑱𝒑, 𝜎 , 𝚲)

=
|𝑱𝑻𝑸𝑸𝑻𝑱|

(2𝜋) |𝜎 𝚲||𝜎 𝑱𝑻𝑸𝚲 𝟏𝑸𝑻𝑱|
𝑒

−
1

2𝜎
𝒓𝑻𝑸𝚲 𝟏𝑸𝑻𝒓. 

(B24)

 
This can be expressed by the product: 
 

ℒ(𝑸𝑻𝒚|𝑸𝑻𝑱𝒑, 𝜎 , 𝚲)

=
|𝑱𝑻𝑸𝑸𝑻𝑱|

(2𝜋) |𝜎 𝑱𝑻𝚲 𝟏𝑸𝑻𝑱|

×
1

𝜎 𝚲𝒊

𝑒
𝒓𝑻𝑸𝚲 𝟏𝑸𝑻𝒓

. 

(B25)

 
From the previous expression, the record-wise weight for 
the weighted likelihood can be inferred by comparing 
equation (B25) with equation (2) and equation (7), and is 
given by the diagonal elements of 𝑲, that is, 𝑲𝒊. Thus, the 
weighted likelihood in terms of its logarithm is expressed 
as (summarizing constant terms): 
 

ln ℒ (𝑸𝑻𝒚|𝑸𝑻𝒇(𝒑), 𝜎 , 𝚲) = const. (B26)

−
1

2
𝑲𝒊

1

𝑁
ln|𝜎 𝑱𝑻𝑸𝑲𝚲 𝟏𝑲𝑸𝑻𝑱| + ln|𝜎 𝚲𝒊|

−
1

2𝜎
𝒓𝑻𝑸𝑲𝚲 𝟏𝑲𝑸𝑻𝒓. 

 
The RML estimator of 𝜎  is found from the derivative of 
equation (B26): 
 

𝜕 ln ℒ

𝜕𝜎
=

1

2𝜎
𝒔𝑻𝑲𝚲 𝟏𝑲𝒔 −

1 −
𝑃
𝑁

2𝜎
𝑲𝒊

𝟐. (B27)

 
Setting the derivative to zero, solving for 𝜎  and substi-
tute the expression using equation (B20): 
 

𝜎 =
𝒓𝑻𝑸𝑲𝚲 𝟏𝑲𝑸𝑻𝒓

1 −
𝑃
𝑁

𝑡𝑟(𝑲𝑲)
, (B28)

 

=
𝒓𝑻𝑽𝐒 𝟏𝑽𝒓

1 −
𝑃
𝑁

𝑡𝑟(𝑽𝑽)
, (B29)

 
the trace is used in equation (B29) and results from the 
identity 
 

𝑡𝑟(𝑲𝑲) = 𝑲𝒊 = 𝑡𝑟(𝑽𝑽) = 𝑽𝒊 . (B30)

 
If the sum of weights is equal to the number of data and 
the variance can also be expressed as 
 

𝜎 =
𝒓𝑻𝑽𝐒 𝟏𝑽𝒓

𝑁 − 𝑃
. (B31)

 
This is the unbiased estimator of the variance and appears 
frequently with the denominator 𝑁 − 1, that is, for 𝑃 = 1. 
The estimator corrects the bias for the loss of degree of 
freedoms, which is equal to the number of parameters 𝑃 
in the ground-motion model parameter estimator 𝒑. For 
generality, the variance formulation in equation (B29) is 
used in the following equations. 

The RML estimators of the variance factors 𝜏  are 
linked to the variance 𝜎  and to the eigenvalue matrix, be-
cause it is a function of the variance contrasts, that is, 
𝜦(𝜏 , 𝜏 , … 𝜏 ). The derivative of equation (B26) with re-
spect to 𝜏  is 
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𝜕 ln ℒ

𝜕𝜏

=
1

2
𝑲𝒊

𝟐 1

𝑁

𝜕

𝜕𝜏
ln|𝑱𝑻𝑸𝑲𝚲 𝟏𝑲𝑸𝑻𝑱|

+
𝜕

𝜕𝜏
ln|𝚲𝒊| −

1

2𝜎
𝒓𝑻𝑸𝑲

𝜕𝚲 𝟏

𝜕𝜏
𝑲𝑸𝑻𝒓. 

(B32)

 
The derivative of a determinant is given by Jacobi’s for-
mula, which expresses the derivative of the determinant. 
With the chain rule, the derivatives of the log determi-
nants are 
 

𝜕 ln|𝚲𝒊|

𝜕𝜏
= 𝑡𝑟 𝚲

𝜕𝚲𝒊

𝜕𝜏
, (B33)

 
and 
 
𝜕 ln|𝑱𝑻𝑸𝑲𝚲 𝟏𝑲𝑸𝑻𝑱|

𝜕𝜏

= 𝑡𝑟 (𝑱𝑻𝑸𝑲𝚲 𝟏𝑲𝑸𝑻𝑱) 𝟏𝑱𝑻𝑸𝑲
𝜕𝚲 𝟏

𝜕𝜏
𝑲𝑸𝑻𝑱  

(B34)

 
From equations (5), (6), (B9), and (B23), the derivative of 
𝚲𝒊 is 
 

𝜕𝚲𝒊

𝜕𝜏
= 𝑸𝒊

𝑻𝑩𝒌𝑩𝒌
𝑻𝑸𝒊, (B35)

 
and the derivative of the inverse is 
 

𝜕𝚲 𝟏

𝜕𝜏
= −𝚲 𝟏

𝜕𝚲

𝜕𝜏
𝚲 𝟏 = −𝚲 𝟏𝑸𝑻𝑩𝒌𝑩𝒌

𝑻𝑸𝚲 𝟏. (B36)

 
Because 𝚲𝒊 and 𝐊𝒊 are of size 1 × 1 the sum of weights in 
equation (B32) and the trace of the derivative of the de-
terminant in equation (B35) can be combined 
 

𝑲𝒊

𝜕

𝜕𝜏
ln|𝚲𝒊| = 𝑲𝒊 𝚲𝒊

𝟏𝑸𝒊
𝑻𝑩𝒌𝑩𝒌

𝑻𝑸𝒊𝑲𝒊

= 𝑡𝑟 𝐊𝚲 𝟏𝑸𝑻𝑩𝒌𝑩𝒌
𝑻𝑸𝑲 . 

(B37)

 
With the diagonalized matrices replaced according to 
equation (B20) and the fact that the trace is invariant un-
der circular permutation, the eigenvector matrix 𝑸 disap-
pears 
 

𝑡𝑟 𝐊𝚲 𝟏𝑸𝑻𝑩𝒌𝑩𝒌
𝑻𝑸𝑲

= 𝑡𝑟 𝑸𝑻𝑽𝐒 𝟏𝑩𝒌𝑩𝒌
𝑻𝑽𝑸

= 𝑡𝑟 𝑸𝑸𝑻𝑽𝐒 𝟏𝑩𝒌𝑩𝒌
𝑻𝑽

= 𝑡𝑟 𝑽𝐒 𝟏𝑩𝒌𝑩𝒌
𝑻𝑽 . 

(B38)

 

Thus, the derivative can be expressed without the eigen-
decompositions by replacing the remaining diagonalized 
matrices in equation (B32) according to equation (B20): 
 

𝜕 ln ℒ

𝜕𝜏

=
1

2
−𝑡𝑟 𝑽𝐒 𝟏𝑩𝒌𝑩𝒌

𝑻𝑽

+ 𝑡𝑟 (𝑱𝑻𝐒 𝟏𝑽𝑱) 𝑱𝑻𝑽𝐒 𝟏𝑩𝒌𝑩𝒌
𝑻𝐒 𝟏𝑽𝑱

𝑡𝑟(𝑽𝑽)

𝑁

+
1

𝜎
𝒓𝑻𝑽𝐒 𝟏𝑩𝒌𝑩𝒌

𝑻𝐒 𝟏𝑽𝒓 . 

(B39)

 
The second term is closely related to the fixed model esti-
mator 𝒑 (equation B13). 

The derivative with respect to the variance factors has 
no analytic solution for maximization and must be max-
imized numerically, for example, by gradient ascent: 
 

𝜏( ) = 𝜏( ) + 𝛾∇ℒ , (B40)
 
in which 𝜏 is the vector of variance factors, that is, with 
equation (5) 𝜏 = (𝜏 , 𝜏 , … 𝜏 ) . The factor 𝛾 is chosen 
such to guarantee convergence and is updated at each it-
eration (Barzilai and Borwein, 1988): 
 

𝛾 =
𝜏( ) − 𝜏( ) 𝑻

∇ℒ 𝜏( ) − ∇ℒ 𝜏( )

‖∇ℒ (𝜏( )) − ∇ℒ (𝜏( ))‖
. (B41)

 
The algorithm starts from some initial values and is re-
peated until sufficient convergence of the parameters is 
reached. At each iteration, 𝜎  and 𝒑 are updated before 
the factors 𝜏 are updated. Finally, the ML estimates of the 
variances are as follows: 
 

𝝊 = 𝜎 𝝉 (B42)
 
 
APPENDIX C 
Data weighting matrices 
In equation (B1), we introduced two weight matrices: one 
for the random effects, 𝑽𝒒, and one for the residuals, 𝑽. 

The two matrices are related via their entries. First, we 
consider the random-effects weights: we can therefore 
split the random-effects weight matrix into 𝐾 submatrices 
of different sizes, each for one type of random effect: 
 

𝑽𝒒 =

𝑽𝟏 0 0 ⋯ 0
0 𝑽𝟐 0 ⋯ 0
⋮
0

⋮
0

⋮
0

⋱ ⋮
⋯ 𝑽𝑲

 (C1)

 
The random effects used in ground-motion modeling usu-
ally include - but are not restricted - to random station 
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effects and random event effects. In this case, the weight 
matrix looks like 
 

𝑽𝒒 =
𝑽𝑬 0
0 𝑽𝑺

 (C2)

 
in which 𝑽𝑺 is the weight matrix for the station random 
effects and 𝑽𝑬 for is the weight matrix for the event ran-
dom effects. Because the data weighting introduced here 
is weighting the events only, we set 𝑽𝑺 = 𝑰, that is, all sta-
tions are unweighted. The entries of 𝑽𝑬 are the data 
weights for each event: If Angular Classification with Ex-
pectation–maximization is used for event weighting, then 
each entry on the diagonal is related to the probability 
given in equation (30). 

The relation of 𝑽𝑬 to the residual weight matrix 𝑽 can 
be illustrated by the following expressions: 
 

𝑽𝑬 =

𝑣 0 0 ⋯ 0
0 𝑣 0 ⋯ 0
⋮
0

⋮
0

⋮
0

⋱ ⋮
⋯ 𝑣

, (C3)

 

𝑽 =

𝑣 𝑰𝟏 0 0 ⋯ 0
0 𝑣 𝑰𝟐 0 ⋯ 0
⋮
0

⋮
0

⋮
0

⋱ ⋮
⋯ 𝑣 𝑰𝑴

, (C4)

 
in which 𝑣  is the square root of the 𝑖th event weight and 
𝑰𝒊 is an identity matrix with the size of the number of rec-
ords of the 𝑖th event. This formulation assumes that rec-
ords are sorted by events, however, any permutation of 
the data is possible and the ordered representation is 
used for illustrative purposes only. 
 
APPENDIX D 
Fisher information matrix 
Here the entries of the Fisher information matrix in equa-
tion (19) are given. The matrix has six independent deriv-
atives (the matrix is symmetric and the off-diagonal ele-
ments are related by their transpose). The residual vector 
is given by 
 

𝒓 = 𝒚 − 𝒇(𝒑) ≈ ∆𝒚 − 𝑱∆𝒑. (D1)
 
All derivatives of the log likelihood are related to the 
weighted precision matrix 𝑷 and/or its derivatives: 
 

𝑷 = 𝑽𝐒 𝟏𝑽, (D2)
 

𝜕𝑷

𝜕�̂�
= −𝑽𝐒 𝟏𝑩𝒌𝑩𝒌

𝑻𝐒 𝟏𝑽, (D3)

 
𝜕 𝑷

𝜕�̂� �̂�
= 2𝑽𝐒 𝟏𝑩𝒍𝑩𝒍

𝑻𝐒 𝟏𝑩𝒌𝑩𝒌
𝑻𝐒 𝟏𝑽. (D4)

 
For the variance factors, 𝝉, follows from equation (B42): 
 

𝝉 =
1

𝜎
𝝊. (D5)

 
With the chain rule, the derivatives can be represented in 
terms of the random-effects variance vector 𝝊: 
 

𝜕𝑷

𝜕𝜐
=

𝜕𝑷

𝜕�̂�

𝜕�̂�

𝜕𝜐
, (D6)

 

=
1

𝜎

𝜕𝑷

𝜕�̂�
, (D7)

 
𝜕 𝑷

𝜕𝜐 𝜕𝜐
=

𝜕

𝜕�̂�

𝜕𝑷

𝜕�̂�

𝜕�̂�

𝜕𝜐

𝜕�̂�

𝜕𝜐
, (D8)

 

=
𝜕 𝑷

𝜕�̂� 𝜕�̂�

𝜕�̂�

𝜕𝜐
+

𝜕𝑷

𝜕�̂�

𝜕 �̂�

𝜕𝜐 𝜐

𝜕�̂�

𝜕𝜐
, (D9)

 

=
1

𝜎

𝜕 𝑷

𝜕�̂� 𝜕�̂�
, (D10)

 
and the second derivatives of the log likelihood are 
 

𝜕 ln ℒ

𝜕𝒑𝜕𝒑
=

1

𝜎
𝑱𝑻𝑷𝑱, (D11)

 
𝜕 ln ℒ

𝜕𝒑𝜕𝜎
=

1

𝜎
𝑱𝑻𝑷𝒓, (D12)

 
𝜕 ln ℒ

𝜕𝒑𝜕𝜐
=

1

𝜎
𝑱𝑻

𝜕𝑷

𝜕𝜐
𝒓, (D13)

 

𝜕 ln ℒ

𝜕𝜎 𝜕𝜎
=

𝑡𝑟(𝑽𝑽) 1 −
𝑃
𝑁

2𝜎
−

1

𝜎
𝒓𝑻𝑷𝒓, (D14)

 
𝜕 ln ℒ

𝜕𝜎 𝜕𝜐
=

1

2𝜎
𝒓𝑻

𝜕𝑷

𝜕𝜐
𝒓, (D15)

 
𝜕 ln ℒ

𝜕𝜐 𝜕𝜐

=
1

4
𝑡𝑟

𝜕𝑷

𝜕𝜐 𝜕𝜐
𝑺 −

1

2𝜎
𝒓𝑻

𝜕 𝑷

𝜕𝜐 𝜐
𝒓

−
𝑡𝑟(𝑽𝑽)

2𝑁
𝑡𝑟 𝑯

𝜕𝑷

𝜕𝜐
𝑯

𝜕𝑷

𝜕𝜐
+ 𝑯

𝜕 𝑷

𝜕𝜐 𝜐
, 

(D16)

 
with 𝑯 = 𝑱(𝑱𝑻𝑷𝑱) 𝟏𝑱𝑻. (D17)

 
For the expected value, it holds: 
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𝔼[𝑱∆𝒑] = 𝒓 (D18)

 
𝔼[𝒓𝑻𝛀𝒓] = 𝜎 𝑡𝑟(𝛀𝑺) (D19)

 
for some nonstochastic matrix 𝛀. From and equations 
(D1) and (D18) follows immediately for equations (D12) 
and (D13) that their expected values vanish: 
 

𝔼
𝜕 ln ℒ

𝜕𝒑𝜕𝜎
= 0 (D20)

 

𝔼
𝜕 ln ℒ

𝜕𝒑𝜕𝜐
= 0 (D21)

 
that is, the model parameters are independent from the 
variances. With equation (D19), the expected value of the 
“normal term” reduces to 
 

𝔼[𝒓𝑻𝑷𝒓] = 𝜎  𝑡𝑟(𝑷𝑺) = 𝜎  𝑡𝑟(𝑽𝑽). (D22)
 
Let 𝑻 be the 1 × 𝐾 vector associated with the expected 
value of the derivatives of equation (D15): 
 

−𝔼
𝜕 ln ℒ

𝜕𝜎 𝜕𝜐
= −

1

2𝜎
𝑡𝑟

𝜕 𝑷

𝜕𝜐
𝑺 , (D23)

 

= −
𝑡𝑟(𝑽𝑽)

2𝜎
𝑇 , (D24)

 

𝑇 =
𝜎

𝑡𝑟(𝑽𝑽)
𝑡𝑟

𝜕𝑷

𝜕𝜐
, (D25)

 
and 𝑼 is the 𝐾 × 𝐾 matrix associated with the expected 
value of the derivatives of equation (D16): 
 

𝑈 = −𝔼
𝜕 ln ℒ

𝜕𝜐 𝜕𝜐
, (D26)

 

=
1

4
𝑡𝑟

𝜕 𝑷

𝜕𝜐 𝜕𝜐
𝑺 . (D27)

 
The Fisher information matrix is 
 

𝑰(𝒑, 𝜎 , 𝝊)

=

⎝

⎜
⎜
⎛

1

𝜎
𝑱𝑻𝑷𝑱 𝟎 𝟎

𝟎
𝑡𝑟(𝑽𝑽)

2𝜎
−

𝑡𝑟(𝑽𝑽)

2𝜎
𝑻

𝟎 −
𝑡𝑟(𝑽𝑽)

2𝜎
𝑻𝑻 𝑼

⎠

⎟
⎟
⎞

. 
(D28)

 
This matrix can be seen as a block diagonal matrix of two 
blocks (with sizes 1 × 1 and 2 × 2). The inverse of a block 
diagonal matrix is again a block diagonal matrix in which 
each block is inverted separately, allowing a simplified 
computation of the entire matrix inverse. An arbitrary 
2 × 2 block matrix has the inverse (e.g., Harville, 1997) 
 

𝑨 𝑩
𝑪 𝑫

= 𝑨 𝟏 + 𝑨 𝟏𝑩𝑮 𝟏𝑪𝑨 𝟏 −𝑨 𝟏𝑩𝑮 𝟏

−𝑮 𝟏𝑪𝑨 𝟏 𝑮 𝟏  
(D29)

 
in which 𝑮 = 𝑫 −  𝑪𝑨 𝟏𝑩 is a nonsingular matrix, and 𝑨 
and 𝑫 are square matrices. The inverse of the block sub-
matrix of the variances (bold italics block in equation 
D28) is 
 

𝑡𝑟(𝑽𝑽)

2𝜎
−

1

𝜎
𝑻

−
1

𝜎
𝑻𝑻 𝑼

=

2𝜎

𝑡𝑟(𝑽𝑽)
+ 𝑻𝑴𝑻𝑻 𝑻𝑴

𝑴𝑻𝑻 𝑴

, (D30)

 

with 𝑴 = 𝑼 −
(𝑽𝑽)

𝑻𝑻𝑻 . (D31)

 
The inverse of the Fisher information - which is asymptot-
ically equivalent to the covariance matrix as 𝑁 → ∞ - is 
stated as 
 

𝑰(𝒑, 𝜎 , 𝝊) ~cov(𝒑, 𝜎 , 𝝊)

=

⎝

⎛

𝜎 (𝑱𝑻𝑷𝑱) 𝟎 𝟎

𝟎
2𝜎

𝑡𝑟(𝑽𝑽)
+ 𝑇𝑀𝑇 𝑻𝑴

𝟎 𝑀𝑇 𝑴 ⎠

⎞. 
(D32)

 
The upper left block matrix is equivalent to the model pa-
rameter covariance matrix; only the covariance matrix of 
the random-effects variances is asymptotically equivalent 
to previous expression. 

 
 




