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1. Introduction
Fast-growing population numbers and climate 

change as a driving force for extreme meteorologi-
cal events lead to an increasing impact of natural dis-
asters on the environment in general and human life 
in particular. Concurrently, technical developments 
strongly enable a better spacecraft-driven earth ob-
servation resulting in an increasing demand for rapid 
crisis mapping products (Voigt, et al., 2016).

Of all globally monitored natural disasters floods 
occurred with a frequency of 39 % in the period from 
1980 to 2015 (Munich RE, 2016). This number em-
phasizes the need for a global time-independent 
flood monitoring followed by information about the 
spatial distribution of flooded areas. This information 
directly serves as an input for end users, e.g. rescue 
forces in the field, insurance companies, planners of 
infrastructure, etc.

In this article, we demonstrate an automated pro-
cessing chain automatically deriving flood informa-
tion from globally acquired Sentinel-1 data. We first 
describe the data used and further elaborate on the 
methodology in more detail. The processing chain 
has been designed to compute global data and cur-
rently operates on different areas of interest all over 
the world. However, we apply the methodology to a 
single-use case in Kerala, India, and discuss the ben-
efits and disadvantages of a radar-based flood detec-
tion system. We conclude this article with the further 
use of the results in the form of a web-based presen-
tation as well as crisis mapping products.

2. Data
The processing chain derives flood information from 

Sentinel-1 data. Due to its physical properties, Senti-
nel-1 as a radar satellite operates independently from 
cloud cover or illumination. This makes it an ideal tool 
for full-time flood observation during extreme meteo-
rological events which are usually accompanied by 
a dense cloud cover and therefore often limit optical 
remote sensing methods.

Sentinel-1 describes a pair of two satellites Senti-
nel-1A and Sentinel-1B, orbiting the earth in the same 

orbital plane 180° apart. Both satellites carry a C-band 
SAR instrument. Each satellite has a repeat cycle of 
12 days (Supplementary Fig. 1). The acquisition fre-
quency highly depends on the region. As a European 
satellite mission within the Copernicus program, the 
acquisition frequency for mainland Europe is 6 days.

By default, Sentinel-1 acquires data in VV polar-
ization mode (vertical emit and vertical receive). The 
polarization mode VH (vertical emit and horizontal 
receive) is widely available but not always provided 
(Supplementary Fig. 2).

3. Methodology
We use an automated processing chain written in 

the high-level programming language Python to com-
pute the flood extent from radar data. The processing 
chain was originally developed for TerraSAR-X data 
(Martinis, Twele and Voigt, 2009; Martinis, Kersten 
and Twele, 2015) and has been extended to also in-
clude Sentinel-1 data (Twele, et al., 2016). The work-
flow is depicted in Fig. 1 and describes the major 
steps from retrieving the raw data through the main 
processing procedure where water masks are gener-
ated. This happens by computing a threshold, sepa-
rating the radar image into the thematic classes water 
and non-water. By targeting two thematic classes as 
output we require a bimodal backscatter distribution. 
Therefore, we do not compute the threshold on the 
entire radar image but on selected image tiles fulfill-
ing the requirement of a bimodal distribution. In a final 
step, we integrate a fuzzy logic approach to refine the 
classification result. This step is followed by a region 
growing implementation to include or exclude fur-
ther locations not covered by the last steps. The final 
product is a binary water mask with the information 
if a pixel holds water or non-water. We distribute the 
results through an in-house web client to be available 
for researchers and project partners.

3.1. Data Ingestion
We use ground range detected (GRD) Senti-

nel-1 data in the VV polarization, acquired in the 
interferometric wide swath mode (IW). The use 
of VV polarization is preferred over VH, as dual-

http://dx.doi.org/10.2312/yes19.01
mailto:christian.boehnke@dlr.de


117

polarized data dominantly accounts for volume 
scattering, e.g. over tree canopies. This scatter-
ing mechanism is currently not investigated and 
would add a substantial processing load.

Data is retrieved either through constantly re-
questing new data from the Sentinel-1 Data Hub 
of the European Space Agency (ESA) or through 
data ingestion directly from one of the facilities of 
the German Aerospace Center (DLR) in Neus-
trelitz, receiving data directly via an antenna. 
The entire processing chain is event-driven, i.e. 
the computation starts as soon as new data is 
available.

3.2. Pre-processing
Pre-processing requires a radiometric calibration to 

sigma naught, thus, converting the digital numbers of 
the input image to physical units, decibels (dB). In a 
second step, we apply a Range-Doppler terrain cor-
rection on the basis of data from the Shuttle Radar 
Topography Mission (SRTM). All of these steps are 
performed through the software snappy, a Python 
wrapper around ESA’s Sentinel Application Platform  
SNAP (ESA 2020). The image output of this step is 
the normalized radar cross section (NRCS) giving in-
formation about the radar backscatter in dB for each 
image pixel.

Figure 1: Workflow of the automated Sentinel-1 processing chain.

Figure 2: Selected tiles (green) have a low mean backscatter value and a high standard deviation of children mean backscatter values. 
Two subsets show the effect of these conditions. Subset a1 has a high mean backscatter value and a unimodal backscatter distribution a2, 
not allowing to separate the histogram into two classes. In contrast to that, subset b1 has a low mean backscatter value and also shows 
two distinct brightness regimes as can also be seen in the bimodal backscatter distribution b2. Therefore, subset b1 serves as a suitable 
candidate for threshold computation. The separating threshold is marked with a dashed line.
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3.3. Tiling
After finishing the pre-processing step, the result-

ing NRCS serves as an input dataset for the follow-
ing thematic processing task. However, not all areas 
in the NRCS are suitable for water processing. No-
bre, et al. (2011) produced the HAND layer (height 
above the nearest drainage) to exclude any location 
with a certain vertical distance from the next drain-
age. These areas are mainly subject to direct runoff 
and unlikely to hold enough water for a long period of 
time. Thus, these areas are to be excluded from the 
calculation.

In a further step, we divide the NRCS image into 
quadratic non-overlapping parent tiles and only keep 
tiles with more than 50 % valid pixels where non-valid 
pixels are a byproduct of the HAND based exclusion. 
We then sub-divide each remaining parent tile into 
4 quadratic non-overlapping child tiles and record 
the mean pixel value for each of the sub-tiles. Only 
tiles with a low mean backscatter value on the par-
ent level as well as a high standard deviation of all 
means on child-level are suitable for threshold com-
putation (Fig. 2). Requiring a low mean backscatter 
value corresponds with the physical property of radar 
data where smooth surfaces like water result in a low 
backscatter value. Requiring a high standard devia-
tion of the children means ensures to have a bimodal 
backscatter distribution and thus, a higher probability 
of having both water and non-water in one tile.

3.4. Thresholding & fuzzy logic
Martinis, et al. (2009) have discussed major image 

segmentation techniques to extract water information 
from radar backscatter. In Twele, et al. (2016) they 
concluded that the algorithm of Kittler and Illingworth 
(1986) gives the best results. The algorithm computes 
a cost function and separates the radar backscatter 

information for each tile into two distinct classes, i.e. 
water and non-water in the case of our application. 
The goal is to decrease the effort to separate these 
classes on the basis of the histogram of the back-
scatter values. Thus, the separation optimum marks 
a threshold τ in the unit of the specific pixel value (Fig. 
3a).

The threshold is applied to the entire scene and 
splits the radar image into the two thematic classes. 
However, the class break is naturally rather impre-
cise. We, therefore, use a fuzzy logic approach to 
analyze the membership of any pixel between the 
computed threshold τ and the mean value of all water 
pixels µwater (Fig. 3b). 

Pixels with a value close to µwater are assigned with 
a high degree of membership to the class water as 
they plot well in the class’ regime. Pixel values with 
a greater distance to µwater towards the threshold τ 
share a higher uncertainty of being classified cor-
rectly and are therefore assigned with a low degree 
of membership to the class water, respectively with a 
high degree of membership to the class non-water.

Based on that information the first classification re-
sult is refined to exclude certain locations with a weak 
membership to the class water.

The final image is a binary water mask and will be 
presented in the next section.

4. Use case
In August 2018 the south-Indian state Kerala was 

affected by unusual monsoon rainfall resulting in the 
severest flood in decades. The Government of India 
(2018) reported a deviation in precipitation of 164 % 
for August 2018 and stated the entire state of Kerala 
to be affected. The event triggered the International 
Charter “Space and Major Disasters” for immediate 

Figure 3: (a) The threshold τ is computed from the backscatter distribution and marks the class break between water and non-water. When 
applying the threshold to the entire scene µwater describes the mean backscatter value in the water regime. (b) The mean of all water pixels 
µwater describes locations with a high classification certainty whereas the threshold τ describes locations with a low classification certainty. 
This is due to the fact that pixel values close to τ may also be misclassified as the underlying backscatter value is caused both by the 
presence of water and non-water.
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crisis information on the basis of satellite imagery. We 
took advantage of this situation to check the accuracy 
of the processing chain and promote further thematic 
development.

Due to the event, the ESA tasked Sentinel-1 not 
only to record on the descending path but to also 
acquire data on the ascending path. We present the 
output of our processing chain based on the initial 

Figure 4: Overview of the study area. Background: 4 Sentinel-1A scenes from descending and ascending path (2 each), acquired on 21 
August 2018, VV polarization (© Copernicus data/ESA 2018).

Figure 5: (a) Fuzzy logic-based refinement of NRCS values. Locations with a higher backscatter value are assigned with a low membership 
degree and thus, a low fuzzy value (close to 0). Locations with lower backscatter are assigned with a high fuzzy value (close to 1). Low 
fuzzy values mostly plot along edges and are likely to be water-lookalikes. Lower and medium fuzzy values in the center of potentially 
water patches are usually caused by rough water surfaces, e.g. from wind-induced waves resulting in higher backscatter values. (b) 
Categorical result of the fuzzy logic-based refinement. Locations with a certain fuzzy value are likely to be water whereas locations with 
very low fuzzy values are unlikely to be water. Those areas are to be excluded. Locations with medium fuzzy values are subject to region 
growing and may be re-included.
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data and focus on a Sentinel-1 scene in the northern 
part of the study area (Fig. 4).

Based on the tiling procedure and the thresholding 
algorithm we get information about water locations. 
Through the fuzzy logic-based refinement we further 
exclude location with low certainties of being water 
(Fig. 5).

5. Discussion
Like every derived dataset, the resulting water 

masks are not without errors and are highly depen-
dent on the in-situ situation.

The following conditions are likely to cause misclas-
sifications: wind-induced waves roughening the sur-
face and non-water objects with similar backscatter 
patterns like water, e.g. sand surfaces.

Fig. 5a shows that water bodies are slightly dis-
turbed rather than perfectly smooth, whereas the lat-
ter is the ideal behavior. 

Wind-induced waves are a common source for 
misclassifications, especially during extreme meteo-
rological events which are also responsible for flood-
ings. As water surfaces are usually smooth compared 
to the surrounding area, an increase in surface rough-
ness has a significant impact on the final threshold 

value. Rough areas within water bodies actually be-
ing water by ground truth can have a low fuzzy value, 
thus, a decreasing certainty for a correct classifica-
tion.

Water-lookalikes such as sandy features and dunes 
tend to have similar surface geometries compared to 
water. Thus, the signal return of water and sand fea-
tures is nearly the same, challenging the distinction of 
these classes. Problems arise when observing water 
objects adjacent to sandy features. In this case, the 
transition is rather fuzzy and both features may not 
be differentiated properly. It is also not unlikely to mis-
identify sand features as water since their fuzzy logic 
values tend to be similar.

These points underline the fact, that the use of 
fuzzy logic as an intermediate step helps to refine the 
initial classification but should not be used solely as a 
tool for error classification.

In order to solve these challenges, we developed a 
second processor analyzing Sentinel-2 optical data 
(Wieland, 2019a; Wieland, 2019b). Sentinel-2, as an 
optical sensor, has the advantage of being less sensi-
tive to surface disturbances compared to Sentinel-1, 
as water bodies are detected based on their spectral 
signature. However, a limitation of the optical system 
is their sensitivity to cloud cover.

Figure 6: (left) water either detected by Sentinel-1, Sentinel-2, or both. Further subsets show the corresponding Sentinel-2 patch (middle) 
and Sentinel-1 patch (right). The upper row clearly shows the limitation of radar systems being sensitive to higher surface roughness 
resulting in non-detected water areas. In contrast to that, the lower row shows the limitation of optical systems where areas are not 
specifically cloud-covered (see black cloud mask). However, the occurrence of very fine clouds in the center of the path results in a 
significant change of the spectral signature and thus non-detected water areas.
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Fig. 6 shows a comparison of Sentinel-1 and Senti-
nel-2 water masks. Both systems have their benefits 

and disadvantages, which are highlighted in the sub-
sets.

Figure 1: Flood duration map for the area around Buzi, Mozambique. In March 2019 the cyclone Idai made landfall on the east coast of 
Mozambique resulting in severe floods. Colors of red depict locations with flood duration up to 9 days.
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Further accuracy can be added through the exploi-
tation of VH polarized data, being a frequent effect 
over tree canopies. By that, flooded vegetation could 
be detected as well which is to the current state not 
sufficiently mapped with VV data solely.

6. Conclusions
In connection with extreme meteorological events 

causing flooding, SAR sensors have proven to give 
good results. By using an automated system we are 
able to reduce human interaction and provide a 24/7 
data production service. We further distribute the re-
sults of the processing through a web client, which is 
automatically equipped with the latest results when-
ever available. In the current stage, this web client is 
not publicly exposed but available to project partners 
and users of the Center for Satellite Based Crisis In-
formation (ZKI) of the DLR. 

A direct use of the results is as input for the com-
putation of flood frequency and flood duration maps 
(Fig. 7). This information is especially useful for the 
evaluation of infrastructure as well as which areas 
were flooded for the longest time and may be sensi-
tive to outbreaks of flood-related diseases.

However, radar sensors have certain physical limi-
tations. Our goal is to enhance the pre-existing pro-
cessing chain to also include optical data, thus elimi-
nating the disadvantages of both sensor systems.

7. Supplementary material
Supplementary data to this article can be found on-

line at http://doi.org/10.2312/yes19.01. 
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