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Improved Transferability of Data-Driven Damage Models
Through Sample Selection Bias Correction

Dennis Wagenaar ,1,2,∗ Tiaravanni Hermawan,1 Marc J. C. van den Homberg ,3

Jeroen C. J. H. Aerts,1,2 Heidi Kreibich,4 Hans de Moel,2 and Laurens M. Bouwer5

Damage models for natural hazards are used for decision making on reducing and trans-
ferring risk. The damage estimates from these models depend on many variables and their
complex sometimes nonlinear relationships with the damage. In recent years, data-driven
modeling techniques have been used to capture those relationships. The available data to
build such models are often limited. Therefore, in practice it is usually necessary to transfer
models to a different context. In this article, we show that this implies the samples used to
build the model are often not fully representative for the situation where they need to be
applied on, which leads to a “sample selection bias.” In this article, we enhance data-driven
damage models by applying methods, not previously applied to damage modeling, to correct
for this bias before the machine learning (ML) models are trained. We demonstrate this with
case studies on flooding in Europe, and typhoon wind damage in the Philippines. Two sam-
ple selection bias correction methods from the ML literature are applied and one of these
methods is also adjusted to our problem. These three methods are combined with stochastic
generation of synthetic damage data. We demonstrate that for both case studies, the sample
selection bias correction techniques reduce model errors, especially for the mean bias error
this reduction can be larger than 30%. The novel combination with stochastic data generation
seems to enhance these techniques. This shows that sample selection bias correction methods
are beneficial for damage model transfer.
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1. INTRODUCTION

Over the last decades, both the developed and
the developing world have seen an increase in the
frequency and severity of hydrometeorological dis-
asters and their impacts. Many sectors are affected
and can benefit from improved models to predict
these impacts, so that better decisions can be taken
to reduce, retain, transfer, or absorb the risk (Van
den Homberg & McQuistan, 2019). Natural haz-
ard damage models predict the damages of a dis-
aster given hazard characteristics such as the wa-
ter depth of a flood (e.g., Merz, Kreibich, Schwarze,
& Thieken, 2010) or the wind speed of a cyclone
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(Pielke, 2007). They are used to estimate risk from
natural hazards in order to support decisions about
investments in risk reduction measures. An example
is their crucial role for determining the required pro-
tection levels of the dikes in the Netherlands (e.g.,
Kind, 2013; Van der Most, Tanczos, De Bruijn, & Wa-
genaar, 2014). Damage models are also increasingly
used for providing impact information in early warn-
ing systems (e.g., Bachmann et al., 2016), and many
national meteorological and hydrological organiza-
tions are attempting to move from hazard forecasts to
impact-based forecasts (WMO, 2015) whereby dam-
age models are essential. Several actors, such as
humanitarian organizations, can use these impact-
based forecasts to initiate early actions that reduce
risks just before a hazardous event (Coughlan de
Perez et al., 2015). Once the disaster has hit, sim-
ilar models can be used to prioritize humanitarian
aid (risk absorption) (Van den Homberg, Visser, &
Van der Veen, 2017; Van der Veen, 2016; Van Lint,
2015). Damage models or so-called catastrophe mod-
els are also applied in the insurance sector to deter-
mine premiums (Grossi & Kunreuther, 2005; Merz
et al., 2010; Pielke, Landsea, Musulin, & Downton,
1999).

Traditionally, damage models often follow rela-
tively simple approaches to estimate damages. For
example, flood damage models typically relate a sin-
gle variable “water depth” to resulting damage using
“depth-damage curve” (Merz et al., 2010), whereas
typhoon damage models similarly relate maximum
wind speed to storm damage (Pielke, 2007; Van den
Homberg et al., 2017; Van Lint, 2015). However,
these simple models show considerable uncertainty
in their damage estimates (De Moel, Bouwer, &
Aerts, 2014; Gerl, Kreibich, Franco, Marechal, &
Schröter, 2016; Wagenaar, De Bruijn, Bouwer, & De
Moel, 2016) and do not always perform well when
they are transferred (e.g., Jongman et al., 2012). The
main reason for the uncertainty is that the damage
functions contain implicit assumptions about vari-
ables and processes that are not included in the
model (Wagenaar et al., 2016). Examples of such
variables are: flood duration, flow velocity, building
construction and materials, precautionary measures,
contamination of the flood water, and household
size.

Nateghi, Guikema, and Quiring (2011) intro-
duced machine learning (ML) methods to predict
impacts of natural hazards (electricity outages from
storms). Merz, Kreibich, and Lall (2013) used a sim-
ilar approach to predict flood damages at individ-

ual building level. Since then such techniques have
been applied by many authors to predict all sorts of
impacts from natural hazards (Amadio et al., 2019;
Ganguly, Nahar, & Hossain, 2019; Carvajal et al.,
2018; Mayfield et al., 2018; Nateghi, Guikema, &
Quiring, 2014; Schröter et al., 2014, 2018; Sieg, Vo-
gel, Merz, & Kreibich, 2017; Wagenaar, de Jong, &
Bouwer, 2017; Wagenaar, Lüdtke, Schröter, Bouwer,
& Kreibich, 2018). These data-driven damage mod-
els often use more than one variable to predict the
damage (multivariable models). Therefore, they of-
ten perform better than traditional flood damage
models (Kreibich, Müller, Schröter, & Thieken, 2017;
Wagenaar et al., 2017), particularly when models are
transferred (Schröter et al., 2014; Wagenaar et al.,
2018). In practice, damage models are always applied
in a transfer setting (Cammerer, Thieken, & Lam-
mel, 2013). This is, for example, a model built on
data or knowledge from one location applied in an-
other location (spatial transfer), or data collected at
one moment in time being applied at a different time
(temporal transfer). Detailed data on flood dam-
ages are rarely recorded in a structured and consis-
tent way and are often outdated. Some recent exam-
ples where empirical damage data were collected are
described by Kienzler, Pech, Kreibich, Müller, and
Thieken (2015), Poussin, Botzen, and Aerts (2014),
and Molinari et al. (2014) for cases in Germany,
France, and Italy, respectively.

ML methods assume that the training data to
build the model consist of randomly drawn samples
from the same distribution as the test samples for
which the learned model needs to make predictions
(Zadrozny, 2004). In a spatial and temporal trans-
fer setting, this is often not the case. For example,
damages from moderate typhoons may be used to
predict the damage of an extreme typhoon. In such
cases, the ML algorithms need to rely on outlier ob-
servations in the data to build the most crucial part
of the model. This problem is called the “sample
selection bias.” This received considerable attention
in econometrics for the application to linear regres-
sion (Zadrozny, 2004). In the year 2000, Heckman
(1979) received the Nobel prize in economics for de-
veloping a correction method. This “Heckman” cor-
rection, however, only applies to linear regression
models. Cortes, Mohri, Riley, and Rostamizah (2008)
provided two techniques to correct for this problem
in case other ML methods are applied: these tech-
niques are cluster-based estimation (CBE) and ker-
nel mean matching (KMM). In this article, we apply,
to our knowledge for the first time, sample selection
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bias correction techniques (also known as domain
adaptation) to damage models for natural hazards
and show their potential benefits. We also introduce a
variation of the CBE method that we call single vari-
able distribution matching (SVDM), which only uses
the most relevant variable.

Sample selection bias correction techniques give
weights to the training data to make the most rel-
evant samples more important during the training
of the ML models. However, such techniques can
result in very high weights given to single observa-
tions. In our analyses, we therefore explore a new
combination of techniques where very high weights
are smoothed out before they are included in the
ML model. This is done by resampling the data after
the sample selection bias correction with a statistical
model. The resulting synthetic data are used to then
train the ML models. This synthetic data generation
in combination with sample selection bias correction
methods is a new approach.

Sample selection bias correction techniques have
never been applied to correct multivariable data-
driven models to predict the impacts of natural haz-
ards. The objective of this research is therefore to
evaluate how three sample selection correction tech-
niques (CBE, KMM, and SVDM) reduce the sam-
ple selection bias for multivariable data-driven dam-
age models and improve their performance when
they are transferred between different events and
between different geographic locations. These meth-
ods are evaluated with and without resampling of
synthetic data and with two different ML methods:
artificial neural networks (ANNs) (Breiman, 2001)
and random forests (RFs) (Rumelhart, Hinton, &
Williams, 1986). In total, 12 different model setups
are compared. These methods are applied to two dif-
ferent case studies where data-driven multivariable
damage models are transferred in time and space.
The first case study is based on a data set with ty-
phoon damages in the Philippines on macrolevel
(municipalities). The second case study is an exten-
sion of the paper of Wagenaar et al. (2018), where
multivariable microscale (buildings) flood damage
models are transferred between the Netherlands and
Germany. This article starts with an explanation of
the methods, including an introduction to the case
studies, the data and the evaluation metrics used to
assess the model performance. Next, the results are
presented and discussed, and finally the conclusions
are presented.

2. METHODS AND DATA

Fig. 1 presents our method with six steps to im-
prove damage estimation in transfer settings with
data-driven multivariable models based on ML tech-
niques. The first step consists of selecting and devel-
oping training data for the damage models. These
data come from different events than the applica-
tion (test) data for which the model needs to predict
the damages. The second step is to apply three dif-
ferent sample selection bias correction techniques on
a training data set. The corrected training data are
subsequently either directly used in two ML tech-
niques (RFs and ANNs) to estimate damages (steps
4 and 5), or is first resampled using a statistical
model (step 3). Step 3 is only applied to test the in-
fluence of generating synthetic data. The resulting
damage estimates are evaluated with various error
metrics (mean absolute error [MAE], mean bias er-
ror [MBE], and symmetric mean absolute percentage
error [SMAPE])(step 6). This approach is applied to
both case studies (flood damage and typhoon wind
damage). Below, the data-driven approaches are fur-
ther described (Section 2.1), the case studies are in-
troduced (Section 2.2), the specific model setup to
apply the data-driven approaches to the case stud-
ies is shown (Section 2.3), and finally the evaluation
metrics are specified (Section 2.4).

2.1. Data-Driven Methods

2.1.1. Sample Selection Bias Correction

2.1.1.1. Kernel mean matching. KMM (Cortes
et al., 2008) assigns a set of weights to the training
data, so that the mean of each variable in the training
data becomes as close as possible to the mean of each
variable in the test data. This is called a covariate
shift. These weights are determined with an optimiza-
tion algorithm. The optimization problem is shown in
formula 1 (Cortes et al., 2008). The data need to be
normalized before applying the KMM algorithm.

min
γ
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where γ is the vector with weights that is determined
by the optimization algorithm, G(γ ) is the distance
between the means of the weighted training data and
the testing data that is minimized, xtr

i are the indepen-
dent variables only of the training data, xte

i are the
independent variables only of the test data, n is the
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Fig 1. Overview of the approach for developing multivariable damage models from observational data, including the testing procedure.

number of observations in the training or test data,
and �(x) is the kernel function that maps x to a re-
producing kernel Hilbert space (Berlinet & Thomas-
Agnan, 2004). A weakness of KMM is that it gives
equal importance to all independent variables. An-
other weakness of KMM is that the algorithm only
matches the mean but not the entire distribution be-
tween training and test data. There are many differ-
ent solutions to get to a matching mean. Some might
not lead to a better match of the entire distribution,
for example, when large weights on error prone out-
liers are applied to shift the mean. Since the dam-
age models are sensitive to extreme values, it would

be desirable that the sample selection bias correc-
tion method leads to a better match of the entire
distribution.

2.1.1.2. Cluster-based estimation. In CBE, the
entire data set (training and test data) is first split into
several clusters. These clusters are made by combin-
ing the independent variables of the training and test
data and then applying an unsupervised learning al-
gorithm to find clusters of observations that lie rela-
tively close together. After the clusters are identified,
both the training and test data are split into these
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clusters. The weights are then determined in such a
way that each weighted cluster appears as frequently
in the training data as it appears in the test data. See
the following formula:

CWx =
Nx,test

Ntest

Nx,train

Ntrain

, (2)

where CWx is the cluster weight to be applied on each
sample in the training data that belong to the spe-
cific cluster. Nx,test is the number of samples in the
test data that belong to that cluster, Ntest is the total
number of samples within the test data. Nx,train and
Ntrain are the same but for the training data.

The unsupervised learning algorithm k-means
clustering is applied. This algorithm splits the data in
K clusters based on the nearest means by placing K
points in the spectrum of the data. It then clusters
each data point based on which of the K points it is
most close to (Kanungo, Mount, Piatko, Silverman,
& Wu, 2002). The algorithm then optimizes the po-
sition of the K points in such a way that the total
distance of all data points to the locations of the K
points is minimized. The data need to be normalized
before applying the algorithm.

Just as the KMM method, the disadvantage of
CBE is that all variables are equally important, while
in fact the variables differ in their importance for pre-
dicting the damage. For example, wind speed is often
a more important variable than the economic growth
of a municipality, in the case of wind damage esti-
mation. Since all variables are assumed to have the
same importance in the clustering, this may lead to
clusters that are not particularly relevant for reduc-
ing the sample selection bias.

2.1.1.3. Single variable distribution matching.
The CBE method is normally trying to match the
distributions of all different variables. Some of these
variables are, however, less important for the damage
estimation than others. The CBE method is unaware
of this difference in importance and will only try to
match all available variables with equal importance.
Matching the distributions for each variable perfectly
is not possible on such small data sets, so compro-
mises are made. These compromises reduce the qual-
ity of the match in the more important variables and
therefore may reduce the model performance com-
pared with a method that focusses on the most im-
portant variable.

Therefore, we introduce a special configuration
of the CBE, which we call SVDM. This method
makes use of the expert knowledge on the most im-
portant variable for the damage model. This works
by just supplying the CBE method with the most im-
portant variable, such as water depth for floods or the
wind speed for typhoons.

A disadvantage of adjusting for the most impor-
tant variable only is that sometimes a transfer needs
to be made over multiple variables. For example,
a transfer in both building styles and water depth
would be impossible with this approach. It is, how-
ever, possible to optimize this method by using sev-
eral important variables rather than only the most
important one. Such configurations are not explored
in this research and rather only the two most ex-
treme configurations are applied: that is, all variables
in common CBE or only the most important variable
in the case of SVDM.

2.1.2. Synthetic Data Generation

The sample selection bias correction methods
sometimes generate high weights for specific obser-
vations, for instance when one observational value
is 30 times more important than another. Generat-
ing synthetic training data by resampling can cre-
ate new data with similar statistical characteristics
to the weighted training data. This results in many
data points similar to the observation with the high
weight rather than one specific point with a very high
weight. This can be done with synthetic data genera-
tion techniques that are applied for example to mete-
orological or river discharges data (Diermanse, Car-
roll, Beckers, Ayre, & Schuurmans, 2012).

This synthetic data generation approach to
smooth out the high weights has been inspired by
a similar method called synthetic minority oversam-
pling technique (SMOTE) (Chawla, Bowyer, Hall, &
Kegelmeyer, 2002). This technique helps to correct
imbalanced training data in classification problems,
for instance, when rare observations in the training
data need to be predicted.

Synthetic data are generated by building a statis-
tical model that represents the sample selection bias
corrected training data. From this statistical model,
new data points are sampled. This procedure can be
summarized as follows:

• A Kendall’s rank correlation matrix (T) is de-
rived from the training data. The matrix is a
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Table I. Comparison of the Random Forest (RF) and Artificial Neural Networks (ANN) Machine Learning Methods

RF ANN Reference

Capture nonlinear relationships Nawar and Mouazen (2017)
Overfitting may occur when too many splits

in a tree are made
Overfitting may occur when too many

hidden layers are included
Ahmad, Mourshed, and Rezgui (2017),

Breiman (2001)
Has few tuning parameters, which are often

insensitive
Has more tuning parameters Ahmad, Mourshed, et al. (2017),

Breiman (2001)
When applied to the same data set, typically,

faster to train
When applied to the same data set,

typically, slower to train
Ahmad, Hippolyte, Mourshed, and

Rezgui (2017)
Cannot extrapolate Can theoretically extrapolate Tyralis et al. (2019)
Provides probabilistic predictions Provides deterministic predictions

square matrix with the size of the number of
variables.

• A matrix P is derived through Cholesky decom-
position, in which P × P – 1 = sin(phi T/2)
(Fang, Fang, & Kotz, 2002).

• For each variable, sample values with the stan-
dard normal distribution function are generated
using its mean and standard deviation.

• Correlation is introduced between these indi-
vidual samples. Such correlated samples are cal-
culated based on multiplication between the
transpose of matrix P and the sample values for
each variable.

• To go from the normally distributed to the origi-
nally observed distributions in the training data,
an inverse transformation is applied to the nor-
malized correlated sample based on the vari-
able’s empirical distribution.

2.1.3. ML Techniques

ML is a field of artificial intelligence that pro-
vides computer systems the ability to learn from data
without being explicitly programmed. ML algorithms
are classified into (i) supervised learning, (ii) unsu-
pervised learning, and (iii) reinforcement learning.

This study focuses on the application of super-
vised learning algorithms (Praveena & Jaiganesh,
2017) to build models that can explain the complex
relationships between damages and the variables that
can explain damages, such as water depth or wind
speed. We applied RF and ANNs in this study. RFs
are chosen because they have a good track record
in damage modeling (e.g., Amadio et al., 2019; Gan-
guly et al., 2019; Schröter et al., 2018; Sieg et al., 2017;
Wagenaar et al., 2017; Wagenaar et al., 2018), ANNs
have also been used before in flood damage models
(Amadio et al., 2019; Ganguly et al., 2019), and in

this study they were selected because of their abil-
ity to extrapolate and at the same time find complex
nonlinear relationships. Table I provides a compari-
son between the ML methods. The K-means unsuper-
vised learning algorithm is applied within the CBE
sample selection bias correction technique.

2.1.3.1. Random forest. RF, an ML method
developed by Breiman (2001), has been used in flood
damage modeling (e.g., Amadio et al., 2019; Ganguly
et al., 2019; Schröter et al., 2018; Sieg et al., 2017;
Wagenaar et al., 2017; Wagenaar et al., 2018). RFs
are ensembles of regression trees where the data for
each tree are generated by a bootstrapping resam-
pling method. In each tree, branches are formed by
splitting the data set based on binary recursive par-
titioning, for instance, a partition of data based on
whether the average wind speed is higher than a cer-
tain value. The RF algorithm does not use all ex-
planatory variables for each tree, but it seeks the best
splits within a limited number of sampled explana-
tory variables. The number of sampled features is the
square root of the total number of features in the data
sets. The best splits refer to regression trees that split
the training data in such a way that there is as little
variation as possible within the resulting leaves. The
predicted value for the entire RF is the mean value
of the predictions from each regression tree.

A disadvantage of an RF is that they can never
make a prediction that is higher than the values
seen in the training data, hence it cannot extrapo-
late (Tyralis, Papacharalampous, & Langousis, 2019).
This is because each regression tree has a set num-
ber of leaves. When making a new prediction it will
place the prediction in an existing leaf. It cannot
create a new leaf with a higher damage value. In a
damage model transfer setting, this inability to ex-
trapolate can be a disadvantage as extrapolation is
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sometimes required. An advantage of RFs is that
they can make probabilistic predictions, which is,
however, not used in this article.

2.1.3.2. Artificial neural network. An ANN is
an ML framework inspired by how the human brain
processes information (Hassoun, 1995). It was first
introduced by Rumelhart et al. (1986), ANNs gain
knowledge through learning the relationships be-
tween variables in a data set without any given infor-
mation about the system. The model built based on
ANNs consists of several (hidden) layers of neuron-
like processing units connected with each other. Each
neuron is connected to all other neurons in the layer
before it and after it. The connections work through
coefficients that weigh each value that comes through
the neuron. The coefficients of the neurons are de-
termined with an optimization algorithm that mini-
mizes the error on the training data set. A strength
of ANNs is that they can simulate complex nonlin-
ear patterns. Larger ANNs with more neurons can
represent more complex nonlinear patterns but are
also more prone to match the training data so well
that it works poorly on new cases (overfitting). The
model built in this study is based on a multilayer
perceptron (MLP) ANN, which consists of an input
layer, two hidden layers, and an output layer (pre-
diction). For transferring multivariable damage mod-
els, ANNs may have an advantage over RFs in that
they can extrapolate. In an ANN inputs are multi-
plied with coefficients. When the input value in the
test data (e.g., water depth) is larger than the inputs
in the training data, the predicted value will be also
larger. A general disadvantage of ANNs is that their
predictions are deterministic and hence less suitable
for applications that would benefit from having prob-
abilistic estimates.

2.2. Case Studies

A case study approach was used to quantitatively
assess the improvement of the spatial and temporal
transferability of damage models based on an ANN
or an RF upon applying the three sample selection
bias correction methods. Two case studies were used
to allow a deeper insight into the application of dam-
age models at two different spatial scales: macrolevel
(municipalities) and microlevel (buildings).

Macrolevel damage models predict the damage
based on the aggregated data within one adminis-
trative boundary (e.g., village, district). This detailed

level is sufficient for many applications and the data
are easier to collect. For the macrolevel, a case study
with typhoons in the Philippines on municipality
level was adopted. The models in this article are an
extension of macrolevel data-driven multivariable
models that were developed to support humani-
tarian aid organizations with the prioritization for
distributing humanitarian aid after or just before
a typhoon. The models aim to provide timely and
unbiased information after a disaster, which are
often difficult to obtain using current practices (field
surveys).

Microlevel damage models, on the other hand,
predict the damage on disaggregated level (e.g., per
building). Microlevel models are often used for disas-
ters that require a detailed spatial resolution such as
in our case for damage from fluvial floods in Europe.
Such level of detail is required in insurance applica-
tions when risk premiums need to be determined per
building, or for flood mitigation policies when mea-
sures on building level are considered. Even though
for many such applications the results are later aggre-
gated, the calculations are often done on microlevel
because macromodels can lead to considerable spa-
tial uncertainty (Wagenaar et al., 2016).

The data used have been selected after an assess-
ment of the data quality on different attributes, that
is, timeliness, source (reliability), accuracy, and gran-
ularity/spatial coverage (Van den Homberg, Monné,
& Spruit, 2018) as will be explained for each case
study. Obviously, the data for both the independent
and dependent variables need to be available at the
same granularity and spatial coverage. Table II sum-
marizes the characteristics of the two case studies.
In both cases, the data are always used in a trans-
fer setting. It means the data are applied on an
event or a location that was not part of the training
data.

Apart from the spatial scale, the cases use differ-
ent types of variables, damage mechanisms and type
of transfer. The macro case study has more vulner-
ability type variables such as poverty and building
materials, and has in some cases more damage mech-
anisms, such as floods due to a storm surge caused by
the typhoon. The transfer for the macromodel was
over time since all data come from the same larger
study area. In the micromodel there is both a time
(different events) and space transfer (between the
Netherlands and Germany). These large differences
are an ideal test to see whether the sample selection
bias correction techniques work under different cir-
cumstances.
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F 2.2.1. Macrolevel Model: Philippines Typhoons

On average around 20 typhoons strike the Philip-
pines annually and more than half of them make
landfall in the country (Reliefweb, 2017). Typhoon
Haiyan (local name Yolanda), which hit the Philip-
pines in 2013, is considered one of the strongest trop-
ical cyclones ever recorded. The fatalities caused by
the typhoon amounted to about 6,000 people, around
14 million people were affected and more than 1 mil-
lion houses were damaged (World Bank, 2014).

510, an initiative of the Netherlands Red Cross
collated the typhoon damage data in this case study
through desk research and in-country visits of key
stakeholders. The purpose of collating these data is
to populate 510’s community risk assessment dash-
board and to develop a model that can be used to
predict the areas with the highest damage either just
before the disaster to trigger early action or just after
the disaster to improve efficiency in the aid distribu-
tion process.

2.2.1.1. Data. Data have been gathered on 12
typhoons in the Philippines at the municipality level.
The median number of households in a municipal-
ity is around 6,600. The data set contains about 1,600
damage records, with 40% of those damage records
corresponding to the two typhoons that cover the
largest extent. This does not necessarily mean that
they have the largest aggregate damages.

The vulnerability and exposure variables in a
municipality are the same for all typhoons while the
hazard features are specific to a typhoon. The vul-
nerability and exposure may have changed over time
in the period from 2012 to 2016, due to, for exam-
ple, population growth and land use change. These
changes, however, are typically relatively slow. Re-
covery efforts are an exception because damages
could be lower in an area that was recently affected
and has not recovered yet. This can be a source of
variation in the data but is expected to be limited.

The data set collected by the Red Cross consists
of more than 40 variables from which damage is to be
predicted. Table III presents the variables that were
used to build the damage models for the macro case
study. It is essential to have data on these indepen-
dent variables with national spatial coverage and at
the same administrative levels. The municipality level
was chosen as the smallest geographic level because
this is the lowest resolution on which all the data are
available.



Improved Transferability of Data-Driven Damage Models 45

Table III. Variables Available for the Macro Case Study

Variable name Unit Source(s) Remarks (Model Scale)

Completely destroyed
buildings(damage)

% National DRR and
Management Council
(NDRRCM)

Percentage of the houses that are entirely destroyed
and unfit for habitation or without any remaining
structural features. Data collected for Emergency
Shelter Assistance program (DSWD, 2019)

Average wind speed mph Tropical Storm Risk
(UCL, 2018)

Maximum three seconds sustained gust speed over
the event in the particular municipality. Every
municipality has a unique wind speed calculated
based on the forecasted maximum wind speed on
the track and the method from Holland (1980) to
calculate it for the specific municipality.

Accumulated rainfall mm Meteorological data
from Global
Precipitation
Measurement (GPM)
(Huffman et al., 2015)

Total accumulated rainfall during the typhoons
period from satellite data (Huffman et al., 2015).

Number of households Philippines National
Census

2010 data, unique value available for each
municipality in the country.

Population density people/km2 Philippines National
Census

2010 data unique value available for each
municipality in the country.

Area km2 GIS analysis Area within the official municipality boundaries.
Elevation (average and

weighted on population)
m STRM (NASA, 2013) 30-Meter Elevation Data

Slope m/m SRTM (NASA, 2013) Based on QGIS (2020) applied to 30-Meter
Elevation Data.

Roof types (wood, iron, straw,
concrete, semiconcrete) in an
area

% Philippines National
Census

Based on 2008 data, unique value available for each
municipality in the country.

Wall types (concrete, makeshift,
wood, concrete, iron,
bamboo) in an area

% Philippines National
Census

Based on 2008 data, unique value available for each
municipality in the country.

Population under poverty line % Philippines Statistics
Authority

Available per province, each municipality has the
province value.

Length coastline m GIS analysis Based on official municipality boundaries.
Ruggedness m SRTM (NASA, 2013) This is the Terrain Ruggedness Index, defined as the

mean difference between a central pixel and its
surrounding cells, calculated on 30-m SRTM
elevation data with the QGIS (2020)

Population living 500, 1,000, and
1,500 m from the coast

% WorldPop (Gaughan,
Stevens, Linard, Jia,
& Tatem, 2013)

Based on a GIS analysis combined with WorldPop
data (worldpop.org.uk)

Economic growth % Philippines Statistics
Authority

Annual growth for the year 2018. Available per
province, each municipality has the province value.

Population growth % Philippines Statistics
Authority

Annual growth for the year 2018. Available per
province, each municipality has the province value.

2.2.1.2. Model setup and validation. The arti-
cle proposes to build data-driven damage models that
can be part of a model set-up used for operational
purposes on newly predicted events. The evaluation
can be carried out by using one of the observed ty-
phoons as test data and use the rest as training data.
The damage caused by a historical typhoon is pre-
dicted by a model built based on the data from the
other 11 typhoons. As there are data about 12 ty-
phoons recorded in the data set, 12 prediction mod-

els were built in total with each typhoon serving
once as the test data for which the model is then
tested.

Data-driven damage models were developed
to predict the percentage of completely destroyed
buildings in an affected municipality based on the
variables shown in Table III. The most interesting as-
pect about the damage data is that the average of
damage varies between the 12 typhoons. The aver-
age value over all typhoons is 6% of the buildings
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Fig 2. The distribution of completely
destroyed houses per municipality for
the Haiyan typhoon compared to the
other typhoons that were used to build
a model for Haiyan.

completely destroyed, which is nearly six times
smaller than the average for typhoon Haiyan.

From Fig. 2, it can be seen that the distribution of
the damage to buildings caused by typhoon Haiyan
is much higher than for the other 11 typhoons. This
indicates that the damage data from the other 11 ty-
phoons that are used to build the prediction model
for Haiyan are not fully representative for this ty-
phoon and hence a major model transfer is required
that includes extrapolation. This is a typical example
where advances in the transferability of models may
improve damage predictions.

2.2.2. Microlevel Model: European Flood Damage
Models

Damage data and independent variables for the
microlevel case study were selected for six past river
flood events in Germany between 2002 and 2013 and
for one river flood event in the Netherlands in 1993.
These data have been used for several data-driven
models in the past (Wagenaar et al., 2017, Wagenaar
et al., 2018, Schröter et al., 2014; 2018, Merz et al.,
2013. In the current microlevel case study, a multi-
variable flood damage model made based on Dutch
data is transferred to Germany. The same model
transfer was done in the paper by Wagenaar et al.
(2018), which showed that this model transfer could
potentially be improved, as it was the model with
the lowest performance, owing to the low variabil-
ity of the damage data in the 1993 flood event in the
Netherlands. The expectation therefore is that the
model can be improved by correcting for the known
sample selection bias. The flood damage model pre-
dicts the relative damage on building level based on
the variables shown in Table IV.

2.2.2.1. Data. The Dutch training data in this
case study are derived from observed flood dam-
ages after the 1993 flood in the Meuse River in Lim-
burg reported in WL Delft (1994), supplemented
with data on building and flood characteristics doc-
umented in Wagenaar et al. (2017).

The model is applied to predict the damage from
six different flood events in Germany. Damage from
these floods including relevant building and flood
characteristics were collected using phone interviews
(Thieken, Kreibich, Müller, & Merz, 2007, Kreibich
et al., 2017). The German data set contains a wide
range of values for the different flood characteris-
tics and circumstances (Kreibich et al., 2011, Kienzler
et al., 2015), the Dutch data are on the other hand
more homogenous because they are based on only
one flood event (Wagenaar et al., 2018).

2.2.2.2. Model setup and validation. There are
895 damage observations from the German data that
can be used to test the model developed based on
the 4,398 damage observations from the Dutch data.
To reduce the randomness in the predictions due to
the specific selection of training samples, bootstrap-
ping is applied (Efron & Tibshirani, 1993). In boot-
strapping, a random sample of the training data is
taken to train the model, and then a random sam-
ple of the test data is taken to test the model. Sam-
ples are taken with replacement. This is repeated
several times, so that many models are trained and
tested on such subsets of the data. For each boot-
strap run, 4,000 training samples from the Dutch data
and 350 testing samples from the German data were
randomly picked. Bootstrapping reduces the chance
that a difference between the two samples is due to
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Table IV. Variables used in the Microlevel Case Study (for More Information, see Wagenaar et al., 2018)

Variable Name Unit Source Dutch Data Set Source German
Data Set

Remark

Relative building damage – Inspection and building
value estimate

Phone interview Relative to potential
damage.

Relative content damage – Inspection and content
value estimate

Phone interview Relative to potential
damage.

Water depth relative to ground
floor

m Inspection Phone interview

Building type Inspection Phone interview Two types available,
attached or unattached.

Footprint area building m2 Cadastre Phone interview
Water depth relative to DEM m Model For German data equal to

water depth relative to
floor.

Basement Inspection Phone interview
Household size # Inspection Phone interview
Flow velocity m/s Model Phone interview For German data estimated

from score
Building age Year Cadastre Phone interview
Floor area for living m2 Cadastre Phone interview
Flood duration hour Hydro-dynamic Model Phone interview
Return period year Statistical model Statistical model Definition in: Wagenaar

et al. (2018)

randomness rather than because of an improvement
in the prediction method. For the RF, 100 bootstrap
samples were taken. On the other hand, only 20 boot-
strap samples were taken for ANN due to the greater
calculation time. Less samples were taken for the
ANNs, as differences between the calculated errors
were shown to be minor, while the calculation time
was much longer for the ANN than for RF.

2.3. Model Parameters

Damage models built based on RF and ANNs
have been developed using the Python 2.7 library
“Sci-Kit learn” (Pedregosa et al., 2011). For the dam-
age model based on RFs, 100 regression trees were
grown. More regression trees need more computa-
tion time but also typically give better results. This
improvement from adding more trees becomes neg-
ligible after a certain number of trees. For this study,
the same number of trees is applied as in Wagenaar
et al. (2018) and the model errors could not be re-
duced by adding more than 100 trees. The number
of splits and minimum number of observations per
leaf were optimized. For the prediction model based
on ANN, learning rates and number of neurons in
the first hidden layer were optimized. The number of
neurons in the second hidden layer was fixed to be
half of the neurons in the first layer.

This optimization was carried out by randomly
splitting the data set into 60:40 for the training and
test set. The tuning of the parameters for both mod-
els was carried out to result in the smallest MAE on
validation data that did not involve a model transfer
(splitting the training data randomly).

The CBE and SVDM methods have one parame-
ter to tune: the number of clusters used. This was cho-
sen to be 12 clusters for both case studies. The KMM
method has only one parameter to be optimized also:
the kernel to be used. Linear kernel was chosen be-
cause of its simplicity. For SVDM, the most impor-
tant variable to predict the damage chosen was wind
speed for the macromodel and water depth for the
micromodel. Both variables are widely used in sin-
gle variable damage models (e.g., Pielke, 2007; Merz
et al., 2010; Gerl et al., 2016). Furthermore, the fea-
ture importance analysis carried out within the RF
confirms this choice.

For the synthetic data generation, the number
of synthetic data points to be generated can be op-
timized. More synthetic data points generated gen-
erally gives better results, but after a specific point
they do not considerably affect the results anymore.
For the macromodel, the number of synthetic data
points to be generated is always twice the weight
of the training set after the sample selection bias
correction methods are applied. This is based on a
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Table V. Criteria Applied to Evaluate the Model Performance

Evaluation Criteria Formula

Mean absolute error
(MAE)

MAE = 1
N

∑ |RLsim,n − RLobs,n|

Mean bias error (MBE) MBE = 1
N

∑
RLsim,n − RLobs,n

Symmetric mean absolute
percentage error
(SMAPE)

SMAPE =
∑ | RLsim,n−RLobs,n|∑ | RLsim,n|+|RLobs,n|

minimum weight of one, so the sample selection bias
correction increases the number of data points. This
typically turns out to be between 3,000 and 10,000
synthetic data points. For the micromodel, a simpli-
fied approach was applied with a fixed number of
samples because the training set is always the same
size, this fixed number of samples is 5,000. The num-
ber of samples to be taken was estimated based on in-
creasing the number of samples until the evaluation
metrics would no longer improve.

2.4. Evaluation Metrics

To evaluate the model performance, three dif-
ferent error metrics were used: MAE, MBE, and
SMAPE. Table V shows the formulas for the differ-
ent evaluation criteria.

The MAE is suitable to evaluate the accuracy
for individual predictions. This is important when the
individual model results need to be applied, for ex-
ample, for insurance or for macrolevel models. The
MBE shows whether there is a bias in the model,
for instance, whether it consistently makes over or
underestimations. This is important when the aggre-
gated results are used. For example, in a micromodel
used for a cost–benefit analysis for an infrastructure
investment, only the total sum of all predictions is im-
portant rather than individual prediction per build-
ing. In such a case, the MBE is the most important
evaluation criteria. The SMAPE is used in the same
manner as the MAE but is a relative error metric.
This allows to compare the errors of different order
of magnitude events. For example, some models have
predicted damages in the order of 50–80% while oth-
ers have a maximum of 20%. A 20-percentage-point
error on a damage of 80% is much lower relatively,
than a 20-percentage-point error on a damage of
10%.

For the macromodel, the errors were evaluated
for 12 different typhoons. Then the weighted mean
of their errors was calculated. The weights were as-

signed based on the number of predicted damages
in each model. For the MBE, the absolute values
are taken before the mean is calculated over the 12
events. This is done in order to ensure that a posi-
tive bias in one test cannot cancel out a negative bias
in another test. Consequently, all bias errors are posi-
tive. To obtain the mean that represents the quality of
the 12 models, the criteria to evaluate errors should
be independent from the extent of the damage they
predicted. SMAPE is particularly useful for this case
study, as the errors for different models are compared
with each other. For the micro case, the variation be-
tween the damage cases is less extreme and therefore
a SMAPE approach is not necessary.

In this article, no evaluation metrics are applied
to validate the quality of the probabilistic estimates
of the RF and to see whether these probabilistic esti-
mates improve because of sample selection bias cor-
rection methods. This is not done because ANNs are
not able to make such probabilistic predictions. This
could be a topic for future research.

3. RESULTS AND DISCUSSION

Table VI compares the performance of the pre-
dictions of the different ML models as measured by
the evaluation metrics described in Section 2.4. It is
apparent from the highlighted numbers in this table
that the best performing models in both case stud-
ies and for all evaluation criteria always have some
form of sample selection bias correction included.
Furthermore, on the basis of MBE evaluation crite-
ria, all sample selection bias correction methods al-
ways outperform the reference models. The improve-
ments on the MBE metric can be as large as 85%
(e.g., MBE content damage), where many different
sample selection bias correction methods result in
large improvements. It is promising that the sample
selection bias correction methods lead to improve-
ments in both case studies, despite the large differ-
ences between the phenomena and data in the case
studies, as discussed in Section 2.2.

For the MAE metric, the results are a bit more
varied. For the micromodel, the improvements are
minor. On the other hand, every sample selection
bias correction method provides improvements for
the macromodel on the MAE criteria. The improve-
ments for the SMAPE are, however, much smaller
and are more in line with the improvements seen
on the MAE for the micromodel. Some sample se-
lection bias correction methods are also not better
than the reference models without sample selection
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Fig 3. The performance per municipality for the model to predict damages for the Haiyan typhoon. Left: A comparison of the ANN method
with and without sample selection bias correction and synthetic data generation. Right: A comparison of the RF and ANN methods with
sample selection bias correction and synthetic data generation.

bias correction for the SMAPE. The performance on
the MAE for the macromodel is mostly based on the
model performance on the extreme observations, be-
cause these observations have large errors, improving
them has a relatively large impact on the MAE. For
the SMAPE error metric the large and small damage
observations have a more equal weight in the error
metric calculation. The sample selection bias correc-
tion methods therefore seem to be most relevant to
predict outlier observations. These results seem to be
consistent with the general idea that the sample se-
lection bias correction is mostly suitable for extreme
observations, which is very relevant for some of the
applications of damage models.

In theory, these techniques should not work in
a situation without a model transfer because there
should not be any bias in the data when the training
and test data come from the same source (i.e., same
variable distributions). The weights calculated by the
sample selection bias correction methods should in
that case be close to one and therefore the meth-
ods do not correct for anything. To test this, the best
performing sample selection bias correction methods
were also applied to settings without a model trans-
fer. For the micromodel, independent test data come
from the same source as the training data (Dutch
data). For the macromodel, all observations are put
together and then split into training and test data.
In this setting, the sample selection bias correction
methods had hardly any influence on the results for

the macromodel (data not shown). A reduction was
seen only in the MBE on the micromodel, but with-
out a model transfer this MBE is negligible (close to
zero). Therefore, the reduction is very minimal in ab-
solute terms.

The sample selection bias correction methods
lead to a larger reduction in the MBE in combina-
tion with the ANN methods then in combination with
the RF methods. Without sample selection bias cor-
rection methods, the ANN model performs less well
than the RF model. This occurs consistently in both
the micro and the macro case. The reason for this is
not entirely clear, but we speculate that this could be
due to the sensitivity of the different ML methods to
the data.

3.1. Macro Case Study

For the Philippines case study, sample selection
bias correction methods have considerably improved
predictions from the 12 damage models. Fig. 3 (left)
visualizes an example of the improvement in predic-
tions for the extreme typhoon Haiyan after employ-
ing the SVDM method in combination with synthetic
data generation to the ANN. It shows that without
sample selection bias correction the model consis-
tently underestimates the damage as all estimates are
below 30%. After implementing the sample selection
bias correction method, this consistent underestima-
tion is largely solved and damages are predicted up to
60%, as they were also observed for typhoon Haiyan.
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Fig. 3 (right) provides an insight on how the dif-
ferent ML methods result in varying improvements.
It can be seen from the figure that the ANN model
results in more accurate predictions for the Haiyan
typhoon compared to the RF model after the sample
selection bias correction methods are applied. The
results also further support the theory that a model
built with an ANN is better able to predict the dam-
age by extrapolation, compared to the RF model.

Table VI shows that the predictions from 12
models built using RF as basis ML method provide
the smallest errors on average. This implies that most
of damage caused by other typhoons than an extreme
typhoon such as Haiyan can be better predicted by
an RF that can only interpolate and not extrapolate.
This makes sense because the extrapolating capacity
of ANN is not required for most of the data points,
apart from data points of extreme typhoons.

A possible explanation for why the ANN models
perform worse for average model results than the RF
models is that RF works better on a relatively small
data sets. Another likely explanation is that the ANN
model is quite sensitive for parameter tuning while
the RF model is not. The procedure for tuning the pa-
rameters could be improved. The tuning should not
be carried out for all models at once based on the
randomly split data (See section 3.3), but for each
of the 12 models separately. The tuning of parame-
ters that result in the smallest weighted mean error
for the 12 models together then should be applied to
all the 12 damage prediction models to be evaluated.

In general, the macro case study is limited by
the lack of information on exposure and vulnerabil-
ity variables. Adding more variables could be help-
ful. Also, the data on the explanatory variables were
the same for all events regardless of the year in
which the typhoon hit. Over time these characteris-
tics may have undergone change, requiring changes
in the variables. For example, houses might have
been built back better after a typhoon with differ-
ent materials. In particular, locally this is expected to
lead to some error, for instance, when large damages
have occurred recently and people have responded
by abandonment or much stronger building construc-
tion. These errors are, however, expected to have a
negligible effect on the aggregated results of this case
study.

3.2. Micro Case Study

Sample selection bias correction methods have
reduced the MBE for all cases in the micromodel

case study. In 4 of 12 cases this reduction is even
larger than 50%. The MBE is the most relevant
metric when the aggregated results of micromodels
are used. The MAE improvements for the micro-
model are rather small but in line with the SMAPE
improvements of the macromodel. This is probably
because outliers have a smaller influence on the ag-
gregated MAE metric for the micromodel than for
the macromodel in which large differences between
damages were presented. Another possible explana-
tion is the difference in data quality of the micro-
model. The macromodel consists of municipality av-
erages while the micromodel has values per building.
The average values per municipality can correct
overestimations and underestimations and hence the
aleatory uncertainty is reduced. For individual build-
ing values, however, aleatory uncertainty is very high,
and no such evening out of errors by averaging ex-
ists. This aleatory uncertainty cannot be reduced
by sample selection bias correction methods and
therefore the reductions in MAE are smaller in the
micromodel.

3.3. Performance of New Sample Selection Bias
Correction Methods

In this article, two innovations in sample selec-
tion bias corrections were introduced: using a sin-
gle variable correction in the CBE method (SVDM
method) and synthetic data generation. These inno-
vations were compared to two other correction meth-
ods (KMM and CBE) with and without synthetics
data generation.

3.3.1. Single Variable Distribution Matching
Method

The CBE method applied to only a single vari-
able (SVDM) often performs better than the CBE
method applied to multiple variables, according to
the MAE criteria. The likely reason is that a bet-
ter match can be made for the most important
variable when variables of minor importance to the
damage prediction are not considered for determin-
ing the weight, and including all variables in the CBE
method leads to the best performance on the MBE
criteria compared to SVDM.

In practice, a transfer will often need to be made
over several important variables. For future research,
multiple variables could be used to determine the
weights for the training data. In this way, a bal-
ance needs to be created between not diluting the
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influence of the most important variables on the
weight, and correcting for biases in multiple variables
rather than one. In addition, the user needs to de-
termine whether absolute or average errors are most
important for the application of the model.

3.3.2. Synthetic Data Generation Method

The synthetic data generation combined with a
sample selection bias correction method generally
performs better than just the sample selection bias
correction. This is especially the case for the MAE
evaluation criteria. The reason this works is proba-
bly because ML methods can create very sharp de-
cision boundaries. This means that when a few data
points have very large weights the ML models can
infer that only under the specific conditions of these
data points the related high damage occurs but not
with similar values. For example, according to the
model, a large damage could only occur at 4 m wa-
ter depth but not at 3.9 m or 4.1 m. This is a form
of overfitting. The synthetic data generation meth-
ods introduce some variation in these high weighted
samples and hence increase the decision region for
which the ML method assigns a high damage. This
is the same reason why the similar SMOTE method
performs well (Chawla et al., 2002).

The disadvantage of the synthetic data gener-
ation methods is that information inside the data
might be lost while building the statistical model to
draw synthetic data points. A future method would
be desirable that also increases the decision region
but minimizes the loss of information from the orig-
inal data. A possible approach that could be con-
sidered is the use of differential privacy techniques
(Khatri, 2017). These techniques add small pertur-
bations to the data to reduce privacy concerns. Re-
cently, Khatri (2017) found that these perturbations
work to prevent overfitting also.

4. CONCLUSIONS

Recent advances in damage models include data-
driven methods to estimate damages caused by natu-
ral hazards. An important quality of such methods is
their ability to capture complex, nonlinear relation-
ships between multiple variables related to hazard,
exposure, and vulnerability. However, data-driven
methods are usually limited by the availability and
quality of the data required to build such models. As
a result, transfer of the models (i.e., using data from
one location to build a model for another location)

is often required. This raises a problem, the sam-
ple selection bias, as the collected data are often not
fully representative for the situation it needs to be
applied on.

This study was undertaken to improve such
methods to correct for this sample selection bias, and
to evaluate the quality of the predictions. Such cor-
rections were applied on two different case studies:
(i) a macrolevel damage model for typhoons in the
Philippines and (ii) a microlevel damage model for
European river flood damages.

Two ML techniques were used: RFs and ANNs.
They were then improved by using the three different
methods to correct the sample selection bias: KMM,
CBE, SVDM, which apply weights to the training
data. As sometimes very high weights are assigned to
specific observations, additionally, a statistical model
was built to generate a larger set of synthetic training
data before the ML techniques were applied.

We conclude that multivariable data-driven dam-
age models should correct for the sample selection
bias that arises from a model transfer setting, as es-
pecially on the MBE large reductions are possible,
amount to more than 30% error reduction. For a
large model transfer (e.g., data from small typhoon
to predict damages from an extreme typhoon), the
ANN method seems to further improve the predic-
tions compared to the RF method, probably because
the method is better capable of extrapolation. These
sample selection bias correction methods are espe-
cially important in reducing MBEs for the micromod-
els and lead to up to 50% reduction on MBE, com-
pared to reductions up to 10% on the MAE. For
macromodels the correction methods are shown to
also reduce the MAEs, with a reduction up to 20%.

Synthetic data points generated from the sample
selection bias correction methods are shown to con-
siderably improve the models for the MAE criteria,
and more than half of the improvement is introduced
by the synthetic data for the MAE metric. Future
studies that correct for a sample selection bias should
therefore consider extending the data set using syn-
thetic data generation after the sample selection bias
correction.

This study shows that in the future, data-driven
damage models should consider sample selection
bias correction methods when a model transfer is re-
quired. This helps to reduce the MBE and to better
predict outlier observations. To correctly predict
these outlier cases synthetic data generation or
similar techniques can be used. In transfer cases
where the simulation of extreme values beyond the
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observational data is required, ML techniques should
be considered that can allow extrapolation, such as
ANN in this study.

Further research could help establish a reli-
able impact-based forecasting system based on data-
driven multivariable models. This system would be
of great help for several sectors, ranging from insur-
ance industry to humanitarian aid organizations. The
insurance industry can apply this model to estimate
risk premiums. Humanitarian organizations can use
data-driven predictions to prioritize faster and better
their preparation and aid distribution process in the
early warning /early action phase, and after a disaster
strikes.
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