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Summary

The author extends and completes his investigations about the
solution of the boundary value problem of Molodenskij found by
means of the identity of Green during the last 30 years.,

These derivations are developsd here in a clear, comprehensive
and systematic order, It is th2 inversion of the fundamental
equation of ‘physical geodesy which is treated here,

The mapping between the telluroid and the karth's surface
happens by vertical point shifts, The final result

allows the calculation of the height anomalies exact to

1 cm; thus, it is usefull for the determination of the
decimeter- and centimeter- geoid,

The solution has the shape of a closed expression.
It does not imply series developments which have a dubions
convergence or which do not allow to evaluate the amount
of the residual term of it, All the hers introduced
gseries developments have a quick, clear and guaranteed
convergence, Iteration proceduvres are avoided. The final
result expresses the height anomalies or the perturbation
potential at the Earth's surface in terms of the frez-air
anomalies of the gravity at ths Earth's surface,

The main term of the solution is the Stoke¢s integral
which has the Faye - anomal ies in the integrand. These
anomalies consist in the sum of the free-air anomalies and
the plane terrain reduction of the gravity.

Further, these Faye - anomalies are supplemented by a small
and smoothed term which can be disregarded in most cases,
which has positive and negative amounts, and which implies
the vertical gradient of the refined Bouguer -

anomalies, Further on, this main term has to be supplemented
by the addition of 3 or 4 relative small terms, only one

of them can reach about 50 cm in extrems cases,

The final solution of the boundary value problem has
a shape which is distinguished by the spascial prop=rty of the additives
that a clear separation between the terms linear and
quadratic in the heights takes place, The terms gquadratic
in the heights can be neglected for test points situated

in plane countries or in low mountain ranges.
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Only for test points situated in high mountains,the terms quadratic in
the heights can be of interest, Even in this case, these terms have
only relative small amounts, and the integration area can be
restricted on the near surroundings of the test point, to a distance
of not more than some tens of kilometers.,

The final solution of the boundary value problem is convenient
for routine applications, and it meets all theoretical requirements,

The physical boundary values are not subsided downwards from the surface to
sonhere, but the geometrical terms come upwards from the sphere to the surface,

Zusammenfassung

Die in den lstzten 30 Jahren, seit 1959, ausgefiihrten Unter=-
suchungen des Autors zum Problem der Darstellung der Losung
des Randwertproblems von Molodenskij mittels der Identitdt von
Green werden erweitert und in eine endgiiltige Form gebracht.
Alle diese Untersuchungen werden hier in systematischer Veise
vollstidndig zusammengefaft, Es handelt sich also um die Inversion
der Fundamentalgleichung der Physikalischen Geod&dsie.
Die Punktverschiebungen zwischen dem Telluroid und der Erd=-
oberfldche erfolgen nur in vertikaler Richtung.

Im Mittslpunkt der Untersuchungen steht die Erfassung aller
Glieder, die den Betrag von etwa 1 cm bei den Hohenanomalien
erreichen, Die Losung wird also soweit entwickelt, daB sie fiir
die Bestimmung des Dezimeter - und des Zentimetergeoids ge=
eignet ist., Die Losung hat die Form eines geschlossenen Ausdrucks,
Es werden keine Reihenentwicklungen eingefiihrt, deren Konvergenz
fraglich ist, und bei denen sich die GroBe des Restgliedes
nicht abschdtzen 1ld8t, Soweit Reihenentwicklungen tatsdchlich
eingefiihrt werden, haben sie eine sehr schnelle und gesicherte
Konvergenz, Iterationsprozesse werden vermieden,

Die erhaltene Losung driickt die Hohenanomalien oder das
Storpotential an der Erdoberflédche als Funktion von den Schwere-
anomalien an der Erdoberfldche aus., Das Hauptglied der Ldsung
wird durch das Stokes-sche Integral gebildet, das liber die
Faye~Anomalien zuerstrecken ist, Bei diesen Anomalien ist zu
den Freiluftanomalien dis ebene Geldndereduktion der Schwere
hinzuaddiert worden,
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Zu diesen Faye-Anomalien tritt noch ein kleiner glatter Ausdruck,
der positiv und negativ sein kann, und der sich aus dem Vertikal-
gradienten der Bougueranomalien ableitet, Ferner treten zum
Hauptglied noch 3 oder 4 kleine Nebenglieder hinzu, eins von
ihnen kann den Betrag von etwa 50 cm erreichen, Bei diesen Ent-
wicklungen wird eine klare Trennung vorgenommen zwischen den
Gliedern die linear und denen die quadratisch in der Hohe sind;
die quadratischen sind nur flir Aufpunkte im Hochgebirge von
Interesse,

Die gefundene Losung ist fiir Routineanwendurgen geeignet,
und sie befriedigt auch die theoretischen Erfordernisse.

Die physikalischen fAandwerte an der ZrdoberflZche werden nicht herab-
gesenkt auf die Bezugskugel oder auf das Bezugsellipsoid, sondern die
geometrischen Ausdriicke unterliegen Prozeduren, bei denen sie von der
Rezugskugel (-ellipsoid) zur Zrdoberfliche kommen.,

Es wird vorausgesetzt, dafl die Gel&dndeneigung endliche und stetige
Werte hat, - so wie man sie aus den topographischen Karten entnehmen kann,
Jeder Funkt an der Krdoberflache hat eine eindeutig definierte Tangen-

tialebene.,

Peswome

ITpoBonumHe 3a nocnepuue 30 JetT, HawHaa ¢ 19689 roma,uccieno-
BAHUSI aBTOpa MO I1polJieme WU3JIOKEHMA DpelleHus KpaeBoii 3a5iaull
MoJIoIeHCKOT'0 OCPENCTBOM MIeHTUUHOCTM ['piiHa FaTCs B pacull-
PEHHOJ ¥ JOBENeHHOH IO OKOHYATEeNBbHOT'O BULA LOpMe. JiaeTcit
[IOJHOE ¥ cHCTeMaTHYecKoe oCbejlHelne BCeX HCCJieNoBaHlii, Peus,
Tau o0pasoM, UIeT o0 UHBEPCHH (UyHlIaMEeHTaJibHO'O yDArHEeHUS

B o0JacTyl ¢HM3UYeCcKoi reoiesun, CrelleHne TOUEK MENIy TeJsiypo-
LTOM U TOBEPXHOCTBI 3€MIM DPeajlu3yeTCd TONBLKO B BepTHKaJBHOI

HanpabBleHiu

B JeHTPe HCCHASUOBaHW! HAXOAUTCA y4eT BCEX COCTWLLVLANWNK, kOTOpLe
I[PV BrCOTHHX AHOMAJIMAX LOCTHI'E0T HPUGIMBKTENBHO: SSJiliMiHE B

i cuM. Pemerue, crej0oBATEJNbHO, Pa3padarTis.aeTcia HO 1Tako.l cre-
[eHH, YTOGH OHO CT&IO IPLTOMHEM JJISA ONPEreseillid e H.ieTOBO~—
TO I CAHTEMETDOBOI'O I'E0KLA. PelieHue BTO HLEe8T (00.y 3axoHYeH-
HOTO BHpazeHHuA, e BBOLUTCA HM ONHO pasvionexiie B DI, LOHBED-
TeHIM:I KOTOPOT'O CTOUT [0, BOIPOCOM H BEIMIMHY OCTTOYHOI'O Wie-
Ha KOTOPOTO He yIaeTCs OIPeleiuTh 34apaHee, lIOCLOMBLY e pal—
JIOiReHUA B DAL MelicTBHTENbHO BBOEATCH, Yy HUX lileeTCA OVeHb

ducTpad M HalerHasg KOHBePreHiusa. OCXomsrcs (e3 MpotecCoB uTe-
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paimiu, IoiydeHHOE pelieHue BHPaxaeT BHCOTHHE aHOMAJIUM WM IO-—
TeHINIaJ] IIOMeX H& II0BEPXHOCTH 3eMIM B KayeCTBe (DyHKIMM TpaBU-—
TAUMOHHHX aHOMaJlMii Ha MOBEpPXHOCTHM 3eMI, [JIaBHOE COCTaBIA-
lollee pelieHua oCpasyeTcA HpK Iomouwu MHTerpana CTokca, KOTODHI
ciielyeT paclpoCTPaHUTh U Ha aHoMammo Pasg. UTo KacaerTca NAaHHHX
aHoOMaJIMil, TO TYyT K aHomMauuAM dad mpucarieHa IJIOCKasl Toilorpa-
(uueckaa MompaBKa Ha TpaBUTAIM0. K 9TO aHomaiuu dast npudaB—
JIAeTCA elle HeOoJblioe IVIIKOE BHDAkEHIe, [OTOPOE MOKET OHTH
Kak IMOJIOKUTEJBHEM, Tak H OTPUIATEJ]BbHHM, 31 KOTOPOe SIRIAETCA
IIPOU3BOIHHEM OT BEPTHKAIBHHX I'DMUEHTOB I'PaBUMeTpPMYeCKoli aHo-
- maJuu Byre.

lianee ¥ TUIaBHOMY WIEHY ,jlo0aBisfioTCcAd elle o Wik 4 HeOOJbUIX
[I0OCOTHHX COCTARLTONUX, OFHO M3 KOTODPHX &l0ieT KOCTIYb IPUGII3H—
TeJBHOU BeJMWIHH B 50 cu, 1pH [aHHOM DA3BUTUU [IPOLI3BOLUTCH
HEeIBYCLiLICJIEHHOE LeJeHUe MeXny JMHeLHIRDM YWieHaMu J WIGHaMH -
KBaNPATHHLM Ha BHCOTE; KiuduPaTHHE COCTaBLIoWKe [IellCTaRifglT
IIHTEePeC TOJIBKO )i HAUYaIBbHHX TOYEK B BHCOKOI'ODBY,

flaliieHHoe pelienyie NPLTONHO IIA PALOBOTO iiCI0JL30BaMUM, OHO

TaKKke OTBeYaeT TEOPeTUYECHUL TpeSoBaHUAM,
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1, Introduction

The boundary value problem of the physical geodesy deals with
the inversion of the fundamental differential equation of the
physical geodesy,

AIgT= -'QE - 2 9

Ar r (1

T is tne perturbation potential,
r is the geocentric radius, and
AgT is the free-air anomaly,

(1) expresses the free-air anomaly in terms of the perturbation
potential, Vice versa, the solution of the boundary value

problem gives the perturbation potential in terms of the free=air
anomalies, Approaching the problem by the consideration of a
spherical model Earth, the solution of the boundary value problem
is reduced to the Stokes formula,

T =

g:ﬁ

SdsT s(p) dl . (2)

1

R is the radius of the globe,

S(p) is the Stokes function,

P is the spherical distance

between the test point P and the point Q running over the
sphere in the course of the integration by (2), 1 denotes the
unit sphere,

Recognizing the great improvements in the precision of the
geodetic measurements, it is no more allowed to introduce a
spherical Earth as a substitute for the 1eal Earth as boundary
surface, It is necessary to consider the boundary ¥alues as
continuous functions along the Earth's surface shaped by the
topography. This type of a boundary value problem is discussed
in the following lines, Thus, the matter to be treated now
consists in the problem to find the inversion of the equation (1),
The empirically obtained boundary values <ﬂgT are given along
the real surface of the Earth u,

The T values along u are to be represented in terms of these
ékT values, At the end of this pudblication, the following
solution of this problem is odbtained, (267), (268),

https://doi.org/10.2312/zipe.1989.097



10

R
T = 7 [AST +C + C1(M)J S(p) 41 + iSP(M)} g (3)
n

1

In case, the test point is situated in low mountain ranges
or in the lowlands, the supplementary temm{SE (M)} can be
replaced by the terﬂl{ggﬁim)} which can be computed more
easily, (272) (273).

In (3), C is the plane terrain reduction of the gravity,
01 (M) results from the vertical gradient of the refined
Bouguer - anomalies, (291) (292),

D)
Cy (M) = - (HQ - HP) 2" AgBouguer =
2 1
%= (- Hp)é%? ol Rngouguer) v 'Gngouguer> Q} a .
00

H is the height above the globe v,
Fig. 2, ®00 is the straight distance
between the two points Q* and Y*

on the globe v,

e = Q* . Y = 2 R sin p/2; (5)

p is here the spherical distance between the two points Q and Y

In the integration of (4), the point Q is fixed and the point Y
is moving.

L]

In the mountains, C can reach an amount of 10 mgal ox 50 mgal;
in extreme cases, C can be greater than 50 mgal., C is always positive,

But, C, (M) has positive and negative amounts,
Only in extreme cases, C1 (M) can reach an amount of 1 or 2 mgal; [ 4 ]pg 12,33,43,
C, (M) has to be computed in terms of the smoothed potential
M or in terms of the smoothed Bouguer = anomalies. M is the perturbation
potential T minus the potential of the mountain masses B, having the
standard density; the potential of these mountain masses condensed at
the globe is in most cases an adequate substitute for B. Thus, the
very small and in most cases negligibly small amount of C, (M) has
the great advantage in our applications that the calculation of
i% can be handled easily. In the computation of C, (M), only the long
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wave=length constituents in the potential M or in the Bouguer-
anomalies have to be included, having a wave=length much more
great than the differences of the topographical heights. Indeed,
these short - wave constituents have a very small impact on

the final result for the T or the Q value, the perturbation
potential or the height anomaly of the test point. The impact
this short -~ wave effect exerts on the final £ value indirectly
by way of C1(M) can be neglected, since it is always smaller

than about 0.1 cm, see [6J .

as to G2 (M), this term can be computed by the expressions
(268) (224) , Probably, the absolute amount of g?(M) will never be
greater than 0,5 m or 1 m. The right hand side of (3) is, in any
case, dominated by the first term of it, being the Stokes integral.

The parentheses {} in (3) stand for the regulation that the
share of the spherical harmonics of the oth and 18t degree is
split off.

As to the philosophy of the equations (1) (2) (3), they base
on a mapping between the telluroid t and the surface of the Earth u
by means of a vertical point shift, Fig. 1.
The length of the point shift vector is equal to the height anomaly.

J
p Surface of the Eartt

o —

Tellur‘Oid' :

Fig. 1,

https://doi.org/10.2312/zipe.1989.097
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The empirically obtained gravity g refers to the surface point P,
the corresponding normal gravity g' is computed for the telluroid
point Pt » FMg. 1. Thus,

dgp, =g -8 = (g)p~- (g")p, . (6)

After the above lines which give a short description of
the Molodenskij type boundary value problem, some other types of
boundary value problems are to be sketched, For instance, the
gscalar gravity potential W and the gradient of W can be introduced
as boundary values along the Earth's surface u,

W and [7 W = (7)

llos

The gravity potential along the surface u,
W= (W), (8)
and the 3 components of the vector

g = (W, = (8)y (9)

represent 4 two - parametric surface functions, If the boundary values
(8) and (9) are given, it is possible to replace the vertical point
shift vector by an oblique point shift vector, This procedure leads

to the determination of the horizontal position of the point P,

However along the continents and especially along the oceans, the

full gravity vector (9) is given by measuremsnts at rare places, only.
Consequently, the boundary value problem having boundary values
according to (8) and (9) is not of great importance in our applications,

A boundary value problem of another type (being in the vicinity of
the Molodenskij problem) has two surface functions as boundary values.
Here, along the svrface u, the scalar gravity potential and the length
of ths gravity vectlor,

(W), and (8), ’ (9a)
establish the boundary values, As to the boundary values of the type
(9a), it is interesting to discuss the version at which (g)u is

substituted by data derived by satellite abservations, The methods
of satellite geodesy allow the precise determination of the

https://doi.org/10.2312/zipe.1989.097
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geocentric radius r of the test point P at the Earth's surface,
exact to some centimeters, On the other hand, precise levellings

lead to precise values of (W)u,(More precise:The difference (W), - (W)Geoid)'
From them, by well = known procedures, precise values of the
normal heights h' can be computed exact to some centimeters,
The following relation is self = explanatory,
r=r(r£,h'»C‘) . (10)
This is the well = known relation which connccts the geocentric
radius r of the surface u , the geocentric radius of the mean
Earth ellipsoid T, the normal height n' , and the height
anomaly £ , A rearrangement of (10) gives the explicit representation
of £ in terms of r, r, 4 h';
&=y r, ,n') . (11)
The /° value of (11) leads to the perturbation potential T by
T=g't=2g""Cr, r, o h') 3 (12)
Thus, the approach considering the couple
(W)u, (r)u or I (r)u (13)

gives directly the local value of T and £ by local
considerations, (12), Hence, the couple (13) seems to have certain
advantages in comparsion with (9a), But this fact is valid, then

and then only, if the special occasion is given in which both the
values r = (r )u and h' are determined within some centimeters,

The solution of the geodetic boundary value problem by the
equation (3) is of use also for the solution of the mixed boundary
value problems [4][ 5] )

In thae subsequent investigations, the mean ellipsoid of the Earth
is replaced by the globe v (with the radius R) being the mean sphere
of the Earth., By a supplementary procedure, it is possible to add the
transition from the sphere to the ellipsoid., Here, the formulas of
Sagrebin and Bjerhammar, fer instance, can be of use.

The equation (3) for the solution of our boundary value problem is free of any
series development of dubious convergence. It is also free of any series develop-
ment the residuum of which cannot be evaluated with sufficient precision., ( See

(4], page (20)...(24) ), It is also free of any series development which does
not allow a clear insight into the upper bound of its residuum. A popular
suggestion about this upper bound does not suffice in our applications.,

Generally, power series developments for T, £, 1, AgT imply certain
difficulties; thus, they have a limited efficiency and a limited field of
appliecation, only.

https://doi.org/10.2312/zipe.1989.097
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As to the here introduced heights H, they consist of the sum
of the normal heights h' and of the height anomalies / ,

th""&a '] (14)

Since here the mean ellipsoid of the Earth is substituted by

the globe v, the H values appear here as the height of the Earth's
surfaces above the globe, In a more pracise ellipsoidal con-
sideration, H is the length of the exterior ellipsoidal normal
describing the surface u. Beforehand, Z’ is an unknown value,
indeed, It is the value to be determined even by our here
discussed procedurz, For the execution of the first step, h' or

h' + Z; are convenient approximative substitutes for H, whereZ?

is an approximative value for & .

For a second iteration st:zp, the /# value obtained by the first
step can be introduced into the precise relation (14)., But, these
considerations are of theoretical value, only, Such an iteration
procedure will change the (/ values computed by (3) by not more
than about O,1 cm, It is the effect the transition from h' +to h'+ § = H
takes on C, C,(M), ig?(m%, further, by it, on the T value, (3).

In case of a spherical Earth, (10) takes the form
r=R+h" + £ , (15)

£ 1is equal to T/g'. The formula for C can be fouad in [4] , page 24, equa-

tion (17);there is valid : Z = Hy - HQ e (h')Y - (h')Q , (see Fig. 2,page 15).

2o The identity of Green

In the following developments, the second identity of Green
is the basing mathematical relation[1] [3] [4] [5] . For a point
P in the mass=free exterior space of the Earth, this identity
has the subsequent shape,

1 0 5 -
) =4 P e I au - 1 T —— |1/e(F,2)| du . (16)
T T“ o(F,) on T TF g( g [1/e®9))
u u

The meaning of the different symbols appearing in the equation (16)
can be taken from Fig, 2,

In the subsequent investigations, the slopes of the terrain are consi-
dered to have finite and continuous amounts; these amounts of this kind can
be taken from the topographical maps, of course, In each point, the surface
-of the Earth u has a clearly defined tangential plane,

https://doi.org/10.2312/zipe.1989.097
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.\\\\i
\\\\\>.G
//
=" /]
/’// n:.Q* \u[ u
P e *‘—'——‘—"—-—i’_—_ = /
H=H B
HP
Q*
B 4”"‘"'—————_; ._Y"

R R
Fig, 2.
us + Surface of the Earth,
v : Mean (geocentric) globe in sea level, R is the radius,
] : Geocentric sphere, R + HP is the radius,
P : Fixed test point at the surface of the Earth u,
Q : A point on u, moving during the integrations with P as fixed test point,
Y : A point on u, moving during the integrations with Q as fixed test point,
P*, Q*, v¥ . The vertical projections of the points P, Q, Y on v,
p*% : The perpendicular projection of the point Q on w,
P : A point perpendicular above the test point P,
e : Straight distance between P and Q, (P and Q),
e', 85t ®00 ! Straight distance between P and Q*x, respe. P* and Q*, resp. Q* and Y*,
Hp. Hg : Height of P, Q above the globe v,
z

: The difference of HQ minus HP'

In (16), we have the 3. identity of Green. This identity contains the oblique derivatives
~ith regard to the normal n of the oblique surface of the Earth u. Thus, in the course

of our deductions, these oblique derivatives give rise to the fact that the slope of the
terrain turns up in the formulas., This slope would be difficultly to handle in numerical
computations. But, by the method of integrations by parts,(A 270), this slope can be
avoided, and, instead of it,
cedure governed by the M potential turns these deflections into very smoothed values

the deflections of the vertical appear. The smoothing pro-
easily to compute. Thus, the "oblique" method makes no principle trouble, finally.

If the relation (16) is assigned to the class of the '"oblique methods" , this is a
more qualitative and mathematical depiction. It is not quantitative, but natural
science is more quantitative than qualitative.
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n is the unit vector normal to the Earth's surface u, it is
heading into the interior of the iarth,

The test point P is subsided down to the surface of the Earth,

Thereby, (16) turns to (17),

1 1 01 1 9
T(P) = o ;{ =P = du - = gg T[Dn STENT

u u

3, The spherical solution

The spherical solution of the relation (17) is obtained if the

height values H are set equal to zero., If H does go to zero, the

strai ght distance e does go to LI Fig. 2,3'

e =2 R sin p/2

(o] !

and the derivation with regard to n turns to the derivation with

regard to r, but with the invarse sign,

Further, PFig., 3,

De
0 Q 1 o
—w— (Vo) T - =5y (/eo) = —m— o
o}
and
de, = sin p/2 = ‘o .
dr 2R
5*'\
i — deO
z \\\ i 0 ¢
a___;:::::——___—-—_—~\~——:::-.:?11//dr
/* —~e_—-—__h" ”
/ P 0 /Q\
Y n Vv
R R
F_Lg_"__}_' A],;'a
o
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Consequently, if the heights H diminish down to zero, the following
transition behavior is valid,

EE . ﬁ

0 n ZeOR

.
—~
n
O
-

With (20), the spherical variant of the relation (17) gets the
subsequent shape,

1 1 T 1 1
| S i cdv - T. cdv ., (21)
2w e, Or 2% . 2 en
v v
The spherical variant of (1) is,
(r = R),
9T 2
dBp = === - — T . (22)
or I
(21) and (22) arc combined to
1 1 3 1
T = — —‘AC,T-dv+ -—— - T - adv . (23)
2 e av i |\ e
] Yo o
v v
T and AgT are continuous functions =along the surface of the tarth,

They have the following sphericnl harmonics developments,

s ) n
il Z Z[Thn.m' Rn.m (T’)/\) *® T2.n.m " Snum (‘F)/‘)] 4 (24)

n=0 m=0

© n
Jay =7 [G‘I.n.m' Rpom (A + G g Lsn.m (‘PIA):' : (25)
L

n=0 m=0
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The corresponding development for the inverse of the distance

betwsen the two points ¥ anda  Q* , PFig. 3,
is,
(s ) o |
1 Z R (26)
— = P (COS p) >0, (2
* X - oy D+l
e (P™, Q") X of , n=o (R+¥)
Pn are the Legendre functions,

The decomposition formula of the spherical harmonics is introduced in
(26). (27) follows,

o0

n

1 _ R ) (27)
e (P, Q%) Lr (H+a¢z)n+7I 2n+ 1 Z
m=0

[IJ

— / )
& = Rn.m (A ) - Rn.m (‘Pi;l )+ sn.m(‘ﬂ/l Ye8, m (pA) . (27a)

T1 oNoM ! T2.n.m and G1 <N ’ qun'm

are the Stokes constants of the developments (24) and (25). ¢ and A
is the geocentric latitude and longitude of the test point f* H

up and /\ are the corresponding parameters for the point Q* -
moving over the globe in the-course of the integration of (23), Fig, 3 .

R..m (¢, 1) and Sn.m (t{),ﬁ) are the well-known normalized

spherical harmonics of the Jegree n and of the order m,

(28)

(0]

0 ;n$+i orm#$ k or both
gf Rpm (@A) By (pA) av }7

\2

AR 3 n=1, m=k

; n*+1iorm#+ k or both

b

. (29)

Snam (\P'A)‘Si'k ((?’A) av 4—’7‘R2 in=i;m=k
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The relations from (24) to (29) are introduced into the integral
equation (23). .

The following equation for the Stokes constants is obtained,

for a& —>0,

, 1 1 B
T4 onom = TEn e Gipom + 4TR +
3 1 I
+ ZEEQ" e 'T1.n.m « 4 W RY, (29a)
or
1
T1onem /e 7 - 1 'G1fn.m . (29pb)
And, in an analogous way,
1
Yoonm ¥ REES=S G . (30)

By way of trial, it is supposed that the Stokes integral of the
form (31) is a solution of the integral equation (23),

T= Aegg - 8(p) + av . (31)

The corrcctness of (31) is easily verified in the following.
Indeed, the Stokes function S(p) has thec relation

i 2n + 1

s(p) = Z + P (cos p) . (32)
n -1

n =2

P (cos p) are the Legendre functions.
The relations (24) (25) (26) (27) and (32) ars put into (31).
The following equation yields

: et 1 47 &2 (33)
T = a— ‘ . . W ’ ]
temem = ygg Temem o p o9 2n 41
or
1 (34)
T =R - G
1.nem n - 1 1.n.m

(34) corroborates (29b) and (30).
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Consequently, it is verified that the Stokes integral (31) is
the solution of the identity of Green for a spherical model Earth, (23).

4, The decomposition of the identity of Green into the spherical
and the topographical constituents

The identity of Green of the shape of (17) refers to the real
surface of the Earth u. The oblique straight line e, the unit
normal vector n of the surface u, and the surface element du
refer to the oblique surface of the Barth u shaped by the
topography. All the two integrands on the right hand side of (17)
come now to be multiplied with and divided through the term
cos (g', n), < (g', n) is the angle defined by the positive
directions of the two vectors g' and n , taken for points
on the surface of the Earth u, +§' is thehvector of the standard
gravity heading into the interio; of the Earth, In case of the
here chosen spherical standard Earth, g' points always to the
centre 0 of this sphere, n is also_heading into the interior
of the Earth, Fig. 4. N

0
et surtaceu —

I

lka

R+H

Fig, 4.
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Along these lines, (17) turns to
1 or 1

- . -du - cos (g', n) =
o e(P,2) On cos (g', n)

u
1 IT?)(H%TU) 1
on
u

T(P) =

- — . . du - cos (g', n) .
27 cos (3', n)

Now, the terms in the two integrands of (35) are decomposed into
their spherical parts and into the residual non - spherical parts
of them. The latter parts vanish if the heights I tend to zero,
Fig. 2.

The following cquations (36) to (39) governe the decomposition
procedure,

01 1 D ,
: == + D(1.1) = Ky + K, i
@n cos(g', n) Dr
: ! ! (1.2) = K K,
S =e—— 4+ D(1. = +
e(P,Q) e e! 2 e -
1 1
o 1 da | ,
. S femee————t 4 D(1,3) kK, + K
©n cos(g', n) or 3 3 ¥
du + cos (g'y n) = dw + D(1.4) = K4 + K4l ;

jon)
=
1

(R + HP)E-cosp cde - aA 5

]
It

2+.(R + HP)-sin p/?2

The meaning of the symbols K1, K1', K,y K2', K3, K3', K4, Kq'
follows even from the relations (36) to (39).
These relations, (36) to (39), are now introduced into (35).

(41) follows,

2T T = (1(2 + 1(2')-(1(1 + 1{1')-(1@‘1 + 1(4') =

=

- ‘L"(I(3 + K3')-(K4 + K4') .

(=
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Generally, the primed terms K1', K2', K3', K4' are much more small
than the terms K1, K2, K3, K4. Hence, the multiplications in the
integrands of (41) should consider only such producte of three factors
which have not more than one primed term K1' or Kz' or K3' or K4'.
There is only one exception, it is the product K2'- K1"K4.

Along these lines, the integrand of the first integral on the right
hand side of (41) gets the form

K2 K1 K4 +K2 K,I K4' + Ky K1' K4 +K2 K1' K4' +

[ ¢ R
4 +K2' K1 K4' +K2' K1' K4 +K2' K1 K4

n
=

Ky' Ky Kt Ky + Kyt KKy o+ Kyt Kt Ky (42)

Analogously, the two braces in the integrand of the second integral
of (41) yield

K,' o+ K3' K, (43)

The introduction of (42) (43) and (36) (37) (38) (39) into (41) gives

o~ o 1
27T = 'ng—g_ . ?3_ - dw = [SF " T -D(1.4) =

ggif; D(1.,2):dw + ;—81—~D(1.1)-dw +

1
g D(1.1) - D(1.2)-dw + gg'r ——— AW+
5
w
g (44)
+ Tt - D(1.4) - T - D(1,3) - dw,

w

The 2nd, 3rd, S5th, 7 th, and the 8th term on the right hand side
of (44) are put together under the denomination D(2,1),
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o1
D(2.1) == (-3-2- D(1.2) 4w = gg-—— e D(1.4) +
Dr Dr e!

w w

? 1
+ 5{ T _(T‘-) D(1.4) = gg T-D(1.3) - dw +

?2r

w w

+ g D(1.1) + D(142) « aw . (45)

The 5 expressions on the right hand side of (45) get individual
denominations,

DT
E () == SS TS D(1.,2) -« dw, (45a)
w
E (2) = = ({’l‘ - D(1,3) + dw , (45b)
w
:
E(3) =- q 9T . p(1.a) , (45c)
Dr e
w
Dar
E (4) = Sf T D(1.4) (454)
Or
w
((
E (5) = )5 D(1.,1) - D(1¢2) + dw (45¢)
w
Consequently, (45),
D(2,1) = E(1) + E(2) + E(3) + E(4) + E(5) (45%)

(44) and (45) are combined to

Sﬁ[ oL J 1
2% T = = ===+ D(1.1) dw  +
or o'
-
gg &
+\\ T - o dw + D(2,1) i (46)
or

w
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The terms on the right hand side of (46) are now rearranged, in order

to bring them into a shape which is convenient for numerical routine
calculations,

In this context, the following relations are of use, Fig, 2
and 3, egquation (1),

N ’%_g =dgy + 2 T F (47)
e' = 2(R + HP) sin p/2 = 2 R' sin p/2, (48)
1 _ 1
o = 2R eInp/? ? (49)
?% = sin p/2 = ’ZR"_O' ) (50)
2(3) L (1 )2 e
S e or ! (51)
1
°ftH . 4. ! : (52)
or F_QT-W 4 R'2Sin p/2
R' = R + Hp . (53)

P is the spherical distance, for instance between the points
P and Q, or between Q and Y, Fig. 2. Hp is the height of the
test point P above the sphere v, having the radius R, Fig. 2.
The sphere w has the radius R', (48) (53), and the surface
element dw 1is

aw = (R")? a1 = (R")? cos p dg dA ; (54)

ai is the surface element of the unit-sphere,  and A is
the geocentric latitude and longitude. With (47) to (53), the
equation (46) turns to (55),

1
2 v = (([oeg +2 1 + Du.nJ__..._....ﬁ -
r 2 R' sin p/2

w

1
= T d D(2.1) .
Sg 4(R1E sin p/2 vor e 29
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Further,
1
4.7 R T = dgp + D(1.1) |- cdw 4
sin p/2
w
2 1 1
+ —_—— — . T . +dw + 2:R'-D(2,1) i (56)
r 2.R! sin p/2
w

The term in the brackets of the second integral on the right hand side
of (56) is transformed and expressed by the heights. The radius r
af the point Q is, Fig. 2,

r=R'"+2=R+H+72 ; (57)
2 = Hy - Hp s (57a)

Hence, (57),

Z
r=R(1+ —) ) (58)
R'
1 1 .
b (1 4+ ——) i (59)
79 R!
1 1 Z Z 2
_=._.1-—+—)- o osaes |y || <1, (60)
r R! R! R! R!
Consequently, for the expression in the second brackets of (56),
2 1 3 2 2 2 Z 2
_ = = - + . . (61)
] ] 1 L}
r 2 R 2 R (R")2 R R
(56) and (61) yield
' 1
47 R'T = ||[dgp + D(1o1)|r =—————— « dw  +
sin p/2
i :
3 |/ 1
+ T v e ¢ AW+ 2.R':D(2.1) 4+
2Ry ) sin p/2
W 5
r| 2 2z Y| 4
F\\ = - aw (612)
R’L R! R? gin p/?
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(61a) and (50) give rise to the following equation (61b) ,

/]
4.0-R'- T = g [43'1' + D('l.'l)]' cdw 4

/ sin p/2
W

1
+ _;T ' T dw + 2:R'" - D(2.1) +
2R sin p/2
w
2
. T 2z z
+ 2-'R! (_._.-) . - —— + 2| m—— — .« dw, (61Db)
R R! RY o'
w

A lot of rearrangements, given in the appendix, leads to an expression for D(2.1) which
is convenient for numerical routine calculations in our applications, D(2.1) has the
gsubsequent development,

D(2-1) = F1 + Fa a (62)

The explicit expression for F1 is represented by the relations (A 484)(A 485)(A 471)
(A 472)(A 473) in the appendix. These expressions of the appendix are convenient for
routine calculations, The amount of F1 is relative small,Obviously, F1 will have

an amount of not more than about a relative change in the height anomalies f by

Z/R . Viith £ =100 m and 2 = 3 km, a F, value of about 5 cm follows, only, By

(4 485), F1 can be computed by a global 10° x 10° compartment division of T, AlgT ’
and H, = or by any equivalent procedure, for instance. The computation of F1 by
means of (A 485), introducing the T -, AﬂgT -, and the H - values, can be handled
easily by a computer, The formula (A 485) demands an extension of these calculations

over the whole globa.
The F2 value of (62) is described by the formula (A 486); the terms on the right

hand side of (A 486) are represented by (A 474) ... (A 477), Also, the F2 valuas are
amall,
For iest point P situated in the lowlands or in low mountain ranges, the F2 valuas

will have negligible amountaz, always. This fact is very probable,

The developuent for F is of gencral importance, It is of importance for both

1
cases, for high mountain test points and for lowland test pcints P ., But, the deve-

lopment for Fé is of practical importance for high mountain test pointe, only.

For test points P situated in high mountains, only in this case, the value of
F2 will reach such amounts which are of interest in our applications, possibly.
But, to be sure and to avoid misunderstandings, also for high mountain test points
P, the F2 values will never take a dominating share on the finally computed T values
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values of the test points., Also in case of a topography with extreme cliffs,
the computation of the F2 term can be handled without any complication
and without any singularity.,

Also for test points B situated in high mountain ranges, the F2
values will exert an impact on the height anomaly of the test point
which is not greater than some centimeters, hardly surmounting the
standard deviation of these [ values in the high mountains,

The calculation procedure of (A 486) giving F, has to cover
only the near surroundings of the test point up to a distance of
100 km or 1 OO0 km about.

These calculations can be handled easily by a computer which is fed
with approximative amounts of T, AﬂgT and 27,

Exterior of the high mountains, the simplifisd expression F1 1

of (A 487) (A 495) (A 497) is always adequate in our applications,
instead of F1 + F2 .
Thus, (62) turns to
D(2.1) ¥ F for : x° D5 (63)
. = Py s for : x° = (Z2/e << 1 3
for test points exterior of the high mountains. The computation
of F1 1 can be handled easily.

The 3rd and 4th term on thz right hand side of (61b) gets
the abbreviating denomination F, aftsr a division through 2 R',

P = D(2.1) + ((%—)[ -z 2(%—,]2](-;—')dw A (64)

w

This expression for F, (64), implies only tovographical terms, i. e.
terms depending on the height differences Z. If Z does tend to zero
all over the globe, in this cas=z, F does tend to zero simultaneously,
The relations (62) and (64) can be combined, {

F =F; + ¥, +g(-§,—)[_ -—i'i + 2(-RZ—')2]<—1'— ) aw ; (65)

w
The reliefs, which follow by the transition from (62) to (63),

are now put into the fore. This transition is governed by the

condition that the test point P has to lie in the lowlands and not

in the high mountains; thus, (A 487),
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2
x° =[Z—,] &1,
e

(66)
Further, this transition implies the neglection of relative
errors of the order of Z/R. The details of this transition are
described in the appendix by the equations from (A 485) to
(A 497), Even these reliefs, ((66) and toleration of relative
errors of Z/R), transform the asquation (65) into the equation (67),
by the transition
*
F — F ) x2 << 1 . (66a)

Thus, (A 499),

Poo= Ty +§§{ﬁ" H' = )'[ e ]'d"’ DX << 1, (67)

or, equating R' with R in sufficient approximation,
*
- T 3 22 , 1 2
o 'F1.1+<<("R_>(' R >(e->‘dw y K 1. (68)

X
y Ty

After this consideration of the functions F, F1, F2, F1 1
now the identity of Grsen is in the fore again. (61b) and (64)
yield, dividing (61b) through 2 R',

2-T T = ggP)gT+D(1.1)]{ ;. )'dw +

+ %' ol -%T +dw + F . (69)

E]

In (69), only the two terms D(1.1) and F depend on the
topographical heights H, All the other tsrms of thelequation (69)
do not depend on the heights H, they are described by pure
spherical expressions,

A short discussion about the topogranhical terms D(1,1)
and F, of (69), seems to be conveni:nt to be addecd.

The term D(1,1) in (69) refers to the potential 7. This
speciality is denoted by the suffix T in the following linss,
Dy, (1.1), since later on)D(1°1) ig also undershood to vefer Lo

another potentisl. PFrom the appendix , by the equation (4 21),DT(1.1) is

Dp(ie1) = @-g-tan(g'y, n)-cos (A'" = AY) (70)
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In the above equation (70), the symbol ©) is introduced, it is here the
absolute amount of the plumb-line deflection, for the potential T,

g7 = E° + p° ’ (71)

f and no the north-south and the east-west component of the plumb-line deflection

at the Earth's surface u,

1 1 or
o . (72)
€ R' + 2 g d¢ ’
1 1 1 oT

i A ' ' ' . 73
7 R' + 2 cos ¥ g DA §2%)

¢ and A are the geocentric latitude and longitude, in (72) and (73). Here, the

globe v was taken as reference figure, ¢ and /I refer to this globe v, also,

R' + 2 1is the geocentric radius r of the moving point Q at the Barth's surface u,
Fig. 2. g is the real gravity at this point Q. A' is the azimuth of the slope of the
terrain, counted clockwise from the north, ( see Fig. A 1). A" 1is the azimuth of

the plumb-line deflection ] , counted clockwise fTrom the north.
T-e north-south and the east-west derivatives of the perturbation potential T
are understood that they are takea in horizontal direction ; thus, r is constant

during these derivations of T,

As to the expression for TF(T) , being equal to the function F of the equation
(6u), the detailed, complete, and comprehensive development for it, valid also in
the high meuntains, is given by (64), (A 461), (A 462) to (A 468), and from (A 471)
to (4 477, Along these lines, the following universally valid formula for F(T)
is found , neglecting the powers of (Z/R')2 in 2. term on the right hand side of (64),

T 2-2 1
F(T) = D(2.1) + —_— | = ——| — - aw s
R! R! e!
w
8
P(T) = ) £,(T) i (74)
i=1
Z 1 1
M@ () degogs = | 2w o v S g (74a)
T Z 2 1
f‘?(T) = ._—-i-_"_; 1 - ——-—2 ;-'— cdw (74b)
' Yy +y
w
T v,
£f_(T) = e dw ’ (74c)
3 R R
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2

fu(T) = - gg /DT .—1—— . LCO'S 2122 'b,7 . dw y (74(1)

R fap R sin p

w
X2

fS(T) = - ABT % v+ y2 + de!' - dA ] (748)
£ (T) = __T_ [ - i + v . de'. dA (74f)
2 R y o+ ¥° ? ,

/DT '
f?(T} = g§ e (v, = by, ) v ode'.dA ’ (74g)
fg(1) = - gg gz +Q (x*f ,xf7 ) + de' - dA . (74n)

A is the azimuth, variating during the integration from the north, from zero
to 27 , counted clockwise.
f

In the expressions for f f,+, the integration covers whole the globe.

t]) 2’ f}!
But in the integrals for f5’ f6, f.7, f8, the integration has to be extended over

the surroundings of the test point P, only, up to a distance of not more than about
100 km.

The equations from (74) up to (74h) contain the following abbreviations, (i 39)
(A 40) (A 393) (& 395) (a 375),

X 2 e'-x | . 1

2 - [x .o ] e : (75)

x = e ’ (76)
el

' = 1 + 2 4 —?; s (77)

Poe 1w ; (78)

The considerations connected with the transition procedure described by (66&),and
also the deliberations about the validity of the equation (6’7), have demonstrated that
the expression for F, (64), can be replaced by the more simple expression for p* 3
(68), — at least in the lowlands and in not too rugged mountains. Only in high moun-

tains, the universally valid formula (64) will be better than the simple form (68) of Ff
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Thus, (66s), F¥ has the following detailed expression which is convenient
for routine calculations, (A 497) (68),

FX = F¥(T) = gi% B ) s (79)

g fahilen.
W

£ (1) = ﬁ x & iT dw | (79b)
w

£ (T) = g o 2 2208 PRy o (79¢)

In the above lines, by the relations from (35) to (69), it was discussed how
the pure spherical constituents (being free of the heights H) in the identity of
Green can be separated from the topographical constituents D(1.1) and F (which
tend to zero if the heights H tend to zero).

The functions Vi Vo Vg b7, bll‘ which appear in the relations from (74) to

(74h), should be given in detail, here. From (A 307) to(A 346) follows:

v, = (1/2):(x + arsinh x) ; (80)
v, = - x:(1/y) + arsinh x + (sin p/2)-{1 = (3/y) + 2:v] |

, ~o € x € 400 , e' € 1000 km ; (61)
vg = 1w (1/2)-y = (3/2)(1/y) + x2-(1/2){ = (1/v) + (am)P]

+ x3(1/y)3 (sin pr2) + XY (172) ()%,

, 0 £ x £ +00 , e' € 1000 km ; ( (82)

i_)j, # arsinh Xx ; (83)
" 3 . (e').x° 1

by = xx¥(P0) = {x% e Lo b : (84)

x'e Y x*

b11 comes from (75) and (A 439),
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5. The representation of the perturbation potential T by the Stokes
integral and the topographical supplements

It is generally acknowledged that the Stokes integral (31) is a
good approximation to the precise shape of the solution of the
integral equation (69),

Therefore, it is intended here to bring the onrecise solution of
(69) in such a form which has the Stokes integral as the dominating
main term, and which has to be completed by the addition of some
supplementary topographical terms., The latter go to zero if the
heights go to zero. Following up this problem, it is convenient to
bring the relation (69) into the subsequent form,

1 o 3 T

M = «dw + td\V + ﬁ 7 (85)
45R! gin p/2 8 N[R,J2 sin n/2

w w

Here is, Fig. 2,

o = Azp  + Dy (1.1) ’ (86)
1
f = —=F . (87)
2
R' = R + Hp i (88)
dw = R'E: cosy «dp ai ' (89)
i) .
dw = @'+ sinp . dp . dA . (90)
R' is the geocentric radius of the test noint P at the Barth's

surface, Fig. 2., (85) can be brought into the following shape,

T 1 oL 3 4 1
= 4l + . Al 4 — ) (91)
R! 45 sin p/2 8 R sin p/2 R!
1 1
with
1 2
dl = |e=—— | . dw = cosyp -dy - an . (92)
Ry
3 T
The functions o —— — and sin p/2, appearing in (91),
R R?

can be represented in terms of the geocentric latitude and longi tude,

w and A , of the running point, Fig. 2. These functions can be
given by series developments in spherical harmonicsy because ¢ and (/8/R'),
and (T/R') are continuous functions of  and A, (94) (95) (96) (97).
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For the sake of briefness and clarity in the further deductions, the following harmonics
developments are not written down up to the last detail. Considering the harmonics of
the degree n, not all the concerned zonal, tesseral and sectorial harmonics of the de-
gree n are written down in the following lines. As usual, to have expressions easily to
handle and to survey, only the zornal harmonics are written downj; the tesseral and the
sectorial harmonics of the same degree fulfill analogous relations, in this context,

With the substitution given by (93) , ( see also (24) and (27) ) ,

RpolerA)  —>= Y .(¢,2) . _ (93)
the following developments for o, /3 ) Z- yield,
of = i an"fn(up,/]) ) (9%)
n=0
)
& - 2.~.FR' - Z cn  Yalysd) ; (95)
n=o
e _
;o = . Z a, Y (g, 1) . (96)

n=o
In analogy to (27), the subsequent relation (97) is here introduced. This relation is
of use for the representation of the inverse of sin p/2 which appears in (91);Fig.2, 3.
The functions ef (94)(95)(96) can be considered to be distributed alomg the unit sphere.
The point P has the same latitude and longitude as the point p¥* ; the same is valid
for the points Q and Q% . Thus, with Pig. 3,

o oo a n+1 2
- . Do s Y (0, Aok Y (o, A ) (97)
%) Z R’ % 5 2n + 1 nt PXnf 2
n=o0o

For ¢ >0, the point ?* subsides down to the point P*,tand the left hand side of

(97) turns to the inverse of sia p/2, Fig. 3.
Furthermore, the relation (96) is inserted in (91), the equation (98) yields,

1 o 3 : A
/J\ = et »dl + - JH - dl o+ L o (98)
0w sin p/2 81 sin p/2 R?
1 1

Further on, with (97), and accounting for (98a),

2R 1

lim e —— R ,
e(P¥,2%) sin p/2

(98a)

2 —>0

the expression (99),for the spherical harmonics developments,follows
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co 1 &= 2

n =20 n =20
3 = 2 o)

g DA & Y * 4+
3 I:: " 2n + 1 ntfi4 e

n =20

o

+Ecn' Yo (g A dpx

n =20

The orthogonality velations for Y — are, (92), (93), (28) (29),

¢ 0, if i ¢ j
Y5 (pA) - ¥y (pA)-dl = { ’ ' } .
E 47, if i=]
i!
(99) and (109) yield
2 3
d. = a_- + —_—rd + © s
n n 2n + 1 2n + 1 n L
(n = D, 1, ?, -u') °
(101) leads to
0 =2a, + (2 n+ 1) B, = 2 (n -~ 1) dn i

(n = O, 1, 2, nno)

For n=29 and n = j follows
0 =2 a5+ C + 2 dO »
Q = 2 a, + 3 Cq .

Thus, the identity of Green,(91), yields the condition equations
(103) (104) for the Stokes constants of the developments for
‘jGT + DT(1.1) , Tor F/(?T(R'))and for T/R',

For a moment, the relation (107) is supposed to be the solution

of the system (103). This supposition is verified below by the
relations from (103) to (114).
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T 1 3 F(T) F(T)
—_— = =\t —— S(p) .41 + . (107)
R' 4% 47T R? 2% R'
1

S(p) is the Stokes function, (32).

(107) has the character of an explicit representation of T in
terms of oo, since F(T) on the right hand side of (107) comes
from rough approximations of the iy values) = for instance
obtained by (31).

As to the verification of (107) by (103), the Legendre functions
155 (cos p) of (32) have the expression (108), according to the
decomposition formula,
n

1
P, (cos p) = Z l:Rn.m(‘f)JA)P*' Ryom (YJA)Q* *
2n+1
m=20
+ Sn.m (‘f,A)P*‘ Sn.m (?’A)Q*] . (108)
Hence, the here preferred brief mammer of wiriting gives, (93),
[se)
1 -
s(p) = E TT Yn (%A)P* . Yn (‘fJ/\)Q* . (109)
n=2

(103) is valid for the harmonics of all degrces, but (107) and (110)
are valid for the harmonics of the degrees n = 2,3,4, ..., only,
The harmonics of the degree n=0 and n =1 will be discussed
later on in the special chapter 6,

From (107) follows, with (94) (95) (96) (109),

Zdn'yn=zann_1 Yn+E-;cnn_1Yn+
n=2 n=2 n =2
(o o)
+ E onYy (110)
n=2
(110) gives
d(n=1) = +c 2 +n-1> (111)
n = 8y n 3 )
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and further on 3

0=2a;, +(2n+1)c =-2(n=-1)4a , (112)

(n = 2) 3, 4, oc-) (113)

(112) is identical with (103), for n =2y 3, 4, «.. s

Consequently, the relation (107) is verified to be the unique
solvtion of the problem formulated by the equation (103) and (85).

The final form of (107) is obtained by the introduction of
(86), Further, by putting the surface functions T and F(T)
into parentheses {}, the fact is marked that the constituents

represented by fthc spherical harmonics of O0th =and 1 st degree

in the surface functions T and F(T) are split off. Hence,

R 3 F(D) fr(m}
{1} e— \\| e + Dp(1.1)  + s+—— |+ S(p)-dl + . (114)
4% * 47 R* 2%
1
dl is the surface clemcnt of the unit sphere.

With (A9), the relation (115) which is specified 3 1lines below

follows for DT(1.I), if the suffix T denotes the fact that

the operator D(1.1) is applied to the perturbation potential T,

DT 1 T
(115)

DT(1.1) = . + -
@n cos(g',n) dr
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6. The spherical harmonics of Oth and  1st degree

The perturbation potential T is the difference between the gravity
potential W and the standard potential U , in the exterior
space and on the Earth's surface u, This is the definition of T,

T=W-U, (115a)
This harmonic perturbation potential T has the following

uniform convergent series dsvelopment in spatial spherical harmonics
for test points in the exterior of the body of the Earth, [4] [5],

[e =] n
/. \R+1 -
T = Z ( ) Z [T1,n.m ’ Rn.m ('f’,/\) + T2.n.m. Sn.m (P’Ail, in F(HG)

n=o m =0

M

T7 denotes both the extzrior space of the Earth and the surfacs of the
Barth u. r,¥5l are the spatial polar co-ordinates. The origin of
this co-ordinate system is choszn in such a way that it doss coincide
with the gravity cent2r of the Earth, (barycenter).
Hence, the Stokess constants of ths spherical harmonics of the 1st
degrec are equal to zero, (116),
T

T = 7 = 0 i : (117)

1.1.0 & F1,1.4

Whole the gravitating scources which give rise to the standard
potantial J have a total mass which is equal to the mass of
the Farth, Thus, also the Stokes constant of the spherical harmonic
of Oth degree (n = 0) is equal to zero,

Ty.0.0 = O F (118)
Whether the T values obtained from the boundary value problem,
(114), are compatible with the four conditions (117) (118) or not,
that is the open question now to be discussed, It is intended to
formulate certain criterions which make it possible to find out
whether the conditions (117) and (118) are fulfilled by the T
values of (114) or not., Furthermore, these criterions will make
it possible to determine certain supplements to the harmonics of
the Oth and 1st degree of the T values obtained by (114).

Of course, in the surface values of T obtained by (114), the
constituents described by the harmonics of the Otb and 1st
degree are equal to zero, per definitionem, The addition of certain
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supplements to the T values of (114) completes the T values
of (114) in such a way that (117) and (118) are observedyin the spatial
of the T values given by (116).

CIf o =¢ (fﬁh) is equal to the geocentric radius of the
Earth's surface u, then, the series development (116) takes the
following shape for test points situated on the surface u,

n+l 2 ‘
Z [Thn.m ‘Rpom (%’\) + To mem “Snem (‘P;A )—I .

—

oo

O

n=0 m=0

All the functions of the manifold
R n+1 R n+1
(%J % . (% A)  and Ié} - Sy.m (p A) »

(n - 0| 1' 2’ n-n) ’ (m= O’ 1' 2’ ey n) ’
are linear independent functions, [4], [5‘] pg. 162 aand 163,

Henceforth, the functions of (120) get now a running numeration,
as given by (122),

a)k=wk(%A)’ (k=1’ 2’ 3’ ‘ll)l

Thus, the development (119) for the surface values of the potential

T can be written in the following form,
oo

My = ). b0, (pA) :
k=1

tk s (k=1,2, 3, ...), are the constant coefficients of this
development,

The relations (117) (118) (123) give

1 T1.0.0 i
to® Tiq.0 ’
3= Ty '
tp® To1a .
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The Schmidt orthonormalization procedure leads from the functions
oy (¢4 ), (122), to the system of the orthonormalized functions cdz )
o (¢, ), since the functions @y (¢, 4) are linear independent, [4] [SJ 5

X
(48]
@y 1
K “@
o = B .
W,y = ) ; (128)

or, in short, in vector form,

¥ w
W = .
- £ : (129)
The Gram determinants implied in (129) arz never equal to zero.
Consequently, (129) can be inverted,
= 2
w - B s w
= = = » (130)
with
det B F 0 . (131)
The right hand side of (123) can be written in the form of a
scalar product,
o _ T (w
(Bhy, = £ = i (132)
tT = (tg, b ) (133)
Z = 1; 2, eadw L]
In (132), the subscript u danotes the fact that the test point lies
on the surface u, and the superscript T is the symbol for the
transposition. (130) and (132) yield
T -1 *
= . W
(1), £ B - . (134)

The systecm of the base functions ) (?,A ) , (i22), 1is complete,
as 80 as the system of the functione<di (e, 1), (129))at least
in Lhe space of the continuous functions; the proof is given in [5
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Thus, the base functions Wy (¢, A) can be developed in surface
spherical harmonics w:*((,, L A) s and these relations have a
well-defined inversion., The same is valid for the representation of the
orthonormal functions a)’; (¢,1 ) in terms of the functions (,\.)9;)6(‘}7 s A ). i

Hence,
O m p o ¥ ; (135)
ST T @ , (136)
(Jg‘ﬂ’(: éT. B. @ . (136a)
% X

The vector w comprises the surface spherical harmonics C‘Jk** (9:3/1)

as its componsnts. A and QT are certain infinite orthonormal matrices,
[5] »e. 166...170,

det &4 = det AT = 1, (136b)
A ,i.T = E . (136c)
E is a unit matrix,
The combination of (134) and (135) gives
(M, =& 8" -4 @

u

. (137)
Writing, abbreviating,

T -1

%%y T 710 4 , (138)

( %

i

the following form of (137) is obtained

(m, = T W - (139)

el LI ¢ SRS ot S S (159a)
XX NN xx XN :

(1), =t "W +ty Wy +  ases (1390)

(139) and (139b) is the development of the surface values of the
potential T 1in terms of spherical harmonics, These T  values
come from (114), from the boundary value problem,

https://doi.org/10.2312/zipe.1989.097



4

Along the surface of the Earth u, the amounts of {T} are known
by the gravity anomalies AgT , using (114), From these {T} values,

the cosfficients t{KX of the surface spherical harmonics series
development (139) (139b) can be computed, it is self-explanatory,

Thus, the vector 2%% is known,

tfé¥
265 t;é)é
it = )
2 65

t3

2 x

- 1 . X .
b S _,,.—g My i (pd)-an
it 1
XX XX pr
gg i '(A)j ! dl = 41/ éioj -

Ji 3 is the Kromecker symbol,(141 r), (28) (29).

1 is the unit sphere, (92).

By definition, the {T} values obtained by (114) are free of the
spherical harmonics of O th and 1 st degr:2e, Hence, the first four

el=ments of (140) are equal to zero, (117)(118), (124)...(127),

¢ s K RV
t‘! = t2 = t3 = t4 = 0,

The relation (138) can be transformed, using the fact that the

matrices g and é are non-gingular; thus,

XX )'I" T T

( "B = ¥ .

et
n»

By (129), B 1is a subdiagonal matrix. The transpositiom of (141a)
yields

Gy KN

t = B8

et
o

The relation (141b) shows how to compute the vector t , (132),
from the vector 2**& (140), and from the matrices B ard A .
This vector t 1is the vector of the coefficients ti of the
harmonics development (123),
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Simultaneonsly, these ti values are also the coefficients

of the spatial spherical harmonics series development (116),

Consequently, the relation (141b) gives automatically the

amounts of the coefficients T and T

1enem 2.n,m
which yield from the solution of the boundary value problem, (114),
With that, the four amounts T, , o (for the Oth degree),(aad for n=1)

Ty.1.0* T1.1.1» Tp,1,q are known, (124) to (127). These

four amounts have to satisfy the constraints (117) and (118),

The relation (141b) gives the desired criterion convenient to
check whether the constraints (117) (118) are fulfilled or not,.
The conditions (117) (118) can be brought into the following
form,

1;1 =t2=t3=t4 =0 2 (141¢)

In case, these equations (141c) are not fulfilled by the %y
values of (141b), (i = 1,2,3,4), the measure turns out to be
necessary that the center of the reference ellipsoid has to

be shifted in the three~-dimensional space until the 3 condition
equations for t,, t3, t, are satisfied, (141¢) (117).

Eventually, further on, the spherical symmetric constituent of
the standard potential U has to be modified also until
the condition equation for ty is fulfilled, (141c) (118) (115a).

In case, the four equations (141c) are not observed by the
ti values (i = 1,2,3,4), obtained from the t vector deduced
from {"}, (141b) (114), (140a),in this case, it is possible to
reach the fulfillment of (141c) afterwards, by the subsequently
described procedure of (141c) to (141 v)., Here, the equation (141b)
is in the fore. In (141b), the vectors %t and géé* are amplified
by the supplements JE and 52** , which have to bring about

an adjustment of the T potential with intent to observe the
constraints (141c).,
Thus,
K 2%
t + 6t = BL. A (f + df ) . (1414)

-
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JE obeys the following conditions, a priori valid,

é‘ti == ti’ (i = 1g253|4)- (1416)

The relations (141e) make the left hand sids of (141d) equal to
zero, for i = 1,2,3,4, in accordance with (141c), (ti values of (141e) taken from(141b)).

X¥
62 fulfills the subsequent conditions, a priori valid.
(see (114)),

X

(Sti = 0, (i = 5,6,7, ooo)l (141f)

The following amounts of (141g) and (141h) have to be detsrmined,
a posteriori,

6ti s (1= 5,6,7y eve)y (141g)

and

XK
Sty (1 =1,2,3,4). (141h)

These values are a priori unknown, they have to be det:zrmined in
such a way that (141d) (141e) (141f) are valid.

Putting, abbresviating,

dt = 1 ' (1414)
HH¥
dt 1, . (1413)
Bha = L ; (141k)
denoting the vector of the four a priori known components of
(141e) by
(1411)
111 Y
and denoting the vector of the four a priori unknown components
of (141h) by
3_;2.1 f (141m)

then the equation (141n) follows from (141b) (141d) (1411)
(1413) (141x) (141m), - since the relations (141b) and (141k) yield

K

ot
i
ngt
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=

L.j'

=

1 2

or, by a self-explanatory rearrangement,

Ly,

Lo,q

The determinant of

. (141n)
PR

(1410)
Lo

LI is the minor in principal position

(covering the indices i = 1,2,3,4) of the matrix L.
(141f) is introduced into (1410); thus the r=lation
1,5 = 0 (141p)
has to be cornsidarsd, treating ths matrix equatiom (1410).
Obviously, (141q) is the rasult,
L. * Lo o Lo . (141q)
21 1 is about a unit matrix, in close approximation,

This fact can be evidenced by the sbtructure of
idsntical with the of (122),

functions w i
¢ (fA ) of the surface of the Earth u equal

the terms (120) which are
Putting the radius

to the radius R by

the neglection of relative errors of the order of Z/R, the following
relations for the first four functions of o.)i(‘p)/l ),(‘0;“)é (‘P) 1),
and R (q)/)\ ),and S o (gfz,)\) are obtained,

ey = B0 = (‘_)1*% ’
Wo = By 6 = w;* ’
wy = Ry,p = 0% '
LW F = = w4** - [

A comparison of (141r) with (136a) (141k) (1410) yields the following

relation,

"

e
O O O =
O O = O
o = O O
- O O O
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Consequently,
det L, 4 + 0 . (
(141t) shows that the matrix 21 1 has a wsll-defined inverssa,
Thus, the inverse of (141q) is
1 = (L -1 1 (
22,1 21,1) 'S *
(141u) allows the computation of 1 4 from 1 4 .
The vector ;1.2 is the oth:r vector, which is to be
det2armined, besides of ;2 10 (141u)., ;1 > is obtained by
(1410) (141p) (1410),
- . —1 .
Bz ® Doy v logg B Doy Mya) L s

The relations (141u) and (141v) solve the here discussed problem,

The surface potential (T} along the surface u, according to (114),
has to be amended by an alt2ration that consists in the addition of the
constituents formed by the spherical harmonics of o th and 1 st degree.
The Stokes constants of these harmonics ars well-defined by the relation
(141u),

Further on, in the harmonics series development for the spatial
potential T, (116), the Stokss constants of the degr-e n> 2
undergo certain amendments and alterations by the values of (141v),

But, the surface harmonics of the degr:e n > 2 1in the T
potential of (114) remain unchanged, They conserve the values obtainsd
(in t2rms of the rravity anomalizs) by the computations according to
(114).,

Furthermore, in the spatial development (116), the Stokds
constants of O th and 1 st degree fulfill after these am2zndm~nts
the required constraint that they have to be equal to zero, finally,
(117) (118), as demanded in our applications,
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T. The superposition of the perturbation potential T wupon the
potential B of the mountain masses with standard density

The here discussed mountain masses are the masses which are situated
above the msan Earth-ellipsoid in the domain of the continents,
Thus, they lie between the mean ellipsoid of the Larth and the surface
of the Earth u, In the here discussed boundary value problem, the
flattening of the Earth is neglected; the ellipsoid is replaced by
the globe v, Fig, 2, Consequently, in this context, the mountains
and ths h=2ights H rise above the globe v, but not above the mean
ellipsoid of the Zfarth., Further facilities and computation reliefs,
conneccted with this model of the mountains,consist in the fact that
th=se masses have the standard density fﬁ: 2 650 kg m-3 and not
the real density,

The gravitational potential B of these mountain masses can be
expressed by the following integral, Fig, 5,

B = ¢9 e av . (142)
e

v
V is the volume of the mountain masses considesred above; the
integral (142) cov:rs the continsntal domain only. f 1is the
rravitational constant,
e repres-nts the straight distance between the running volum:z element

dV and the test point P in the exterior of the body of the Earth,
Fig. 5.

Fis. 5.
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The hers considersd mountain masses fill the crosswise hatched
domain, shown in Fig. 5, Pa:rpendicular below the test point P and, moreover,
in the level of the globe v, tha point p¥ is situated, Fig., 5,
The volume elemznt dV has the ecquation

av = rzcsin p ¢+ dr .dp . dA A (143)

In (143), r 1is the distance which the volume element dV has to the
barycentér of tha globe v ( v having the radius R) , p 1is here the

spherical distance between the volume elem:nt dV and the point p* ’Flg. S0
A 1is the clockwise counted azimuth., It is defined as the angle,

which has the point p* as the virtex, and which measures clockwise

the direction the volume elem:znt dV shows with regard to the north.

The height of the surface of the ®arth u above the globe v is H,
(see Fig, 2 and Fig, 4). Hence, the integral (142) turns to

1
— - r%.sin p - dr.dp -dA ' (144)

3 27 R + H
g

ot S (
=0 A =0 r

P R

Now, the potential M is introduced by the equation
M = T - B . (145)

M 1is a harmonic and continuous potential in ths ext=zrior space of
the body of the farth, The potential M has about the same structure
as the vciesntial T, The amounts of |M/G| will not be greater than
about ten times the amounts of |T/G| , at least in the global
average., G 1is here th:= global mean of the gravity. If it is

intended to compute M by the relation (145), the pot:ntial B

on the right hand side of (145) com:s from (144), But, the integration
according to (144) do2s not imply thz isostatic compenéabion masses,
situated below the isostatic compansation depth of 30 km, in case

of the Airy - Heiskanen system,

Because (144) does not imply the compensating mountain roots, the
amount of | M | will generally be greater than the amount of (o],

(145). IM/G| can amount up to 1000 m,about.

At this place, before a further discussion about the potential N, it shoulc
be stressed that only the coming equation (15 1)on the next ﬁage defines the term
zﬂgM ! ispecially ia (6), it is not allowed simply to substitute T by !, azd g
by g''' , without any inclusion of any additives. Replacing zﬂg“ by g''' - g' ,

this procedure will be wrong, or, more precisely, it will not be ;ufficient
precise., A term quadratic in (M/g') has to be added as a more or less important
additive. The deeper reason is the fact, that (N/g') is in its absolute amount

5 time or 10 time greater than I(T/g') \ . In the subsequent deliberations and
deductions about the boundary value problem, these additives do not occur, The
following deductions make no mention of these additives, - But in (6), the anza-
logous term quadratic in (T/g') can be neglected, according to common use. The
reason is, that | (T/g") | is generally considerably smaller than | (i/ey] .
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It is possible to apply the equations (114) and (115) to the potential
M, defined by (145). Thus, if M serves as substitute for T,

oo ff 3 F(M) fran}
{“‘}= ‘Z?) dSM + DM (1.1) + E‘—;- S(p) - dl + ™ .

The relation (115) turns to

DM 1 M
DM(1.1) & . + =
©n cos (g', n) Dr

The fundamental equation of Physical Geodesy gives, (1),

D 2
4 = - - — 7T
&e or T ;
OB 2
ng = hai bl p— B L]
Dr b

Thus, (145),

Aey = deg - degy !
oM

2 ;
dgM = "'5;"' T = M '
QT ©B 2

AEM=- + — ~. ., (T -~ B)

Dr Pr r

The transformations of (147) happen along the same way as those of
(1i5); but, considering (147), the fact has to be in view that the
amounts of lM/G [ can reach about 1000 m, whereas the amounts of | T/G
hardly reach 120 m, The concerned rearrangements of (115) can be
found in the appendix, by the equations from (A9) up to (A 21), Some
hints at the amounts of | M/GI can be found in the following
publication: Veroff, d. Bayerischen Komiission f, d, Intern, Erdmessung,
Astr,.-Geod. Arbeiten, Heft Nr, 48, Minchen 1986, S. 153,

As to the rearrangements of (147), taken in the potential field M,
&, ig the plumb ~ line deflection component at the surface of the Earth u,

taken in the north - south d:‘Lract:'Lon.(M2 is the corresponding east - west

component, (71) (72) (73).

o 1 1 oM
1 - R|+Z lgtll ,C)IP 8
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_ 1 . 1 _oMm 1
f2 7 TTRTEZ g core o : (o0

A :the absolute amount of this plumb - line deflzction,

= p5 +/4§ . (155)

Ko M ,ftz have smoothad values, but th: functions of © ,5’?
are not smooth:d, (71) (72) (73).

2

/‘

The standard gravity g' 1is the amount of the gradient of the
standard potential U, The amount of g''' 1is the intensity of the
gravity in the pot:ntial fi@ld U + M; U and U + M are rotating
potentials. Thus, by the gradient, (Fig.a 1),

g''' & ‘[7(U+M)] . (156)

A''' is the azimuth of the plumb - line deflection A4 , As it is

found in the above mantioned Bavarin publication Nr. 48, the

horizontal alt-ration of the amounts of ]M/GI is maximal about 0,5 km
for a distances-of 2 000 km. Here, the fact has to be regarded, that, in
this Bavarian oublication, the mountains have the density - surplus of

2 670 kg m—3 and the ocean basins the density-defect of = 1 640 kg m_3.
But, in the her2 discussed calculation of the M values, the mass
deficiency in ths domain of ths oceans has to be discarded. Consequently,
the amounts of | M/G will be a little greater, in reality, than the
valu:s taksn from the above cited publication Nr. 48, Summarizing, the

maximal amount offx can be charactzrized by

Moo= 0.5 km/2000 km = 2,5 - 107% (157)

Obvicusly, the rslation (157a) is valid,
M = (U +HM -U, (157a)

Introducing M asa substitute for T )and U + M as asubstitute
for W (being equal to U + T), the reslation (A 14) turns to, (156),

oM

2 = g'''.cos (g''', n) - g'.cos (g', n) : (158)
On

Analogously as (A 15), the equation (159) can be obtainzd,
cos (g''', n) = cos (g', n)'cosfl + sin (g', n)'sin/A-cos (Av'r = Av) . (159)

This above relatioa (159) can be obtained also from Fig.A 1 and the cosine
formula of a spherical triangle, In Fig. 4 1 on the page 95,

the vector
(-g")°

is the normalized vector of —§"' y thus, ,(-g"‘)o( = 1a

In Pig. A 1, the normalized vectors (. a)O

g

’ (~2)0 ’ (-%)0 , and (-§"')O

are the radii of a unit sphere with the surface point Q as center ,
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Considering
1 3
sinfl:lu—-g-}b + = eue 2 (160)
1 2
COS/I= 'I-Tﬂ + = eue y (161)
the relation (162) follows from (159),
) 2
cos (g''', n) = cos (g', n) ~ = M -cos (g', n) +
2
+ M +sin (8", m)rcos (A''" = av) =
1 3
= —g-‘u * sin (', n)-cos (A''' -~ 4'), (162)
The relation (157) yields
(/umax)2 = 6. 107 . (163)

The relation (163) makes it clear, that the 4 th term on the right hand
side of (162) is insignificant in comparison with the 3rd term. Thus,

1 2
cos (g'''y n) = cos (g'y n) ~ — - < cos (g', n) —+
2

+ /»i-sin (g'y n).cos (A" = A") (164)

The combination of (158) with (164) gives (165),

oM 1 1 2
A :gvlv,,gv_,__,/J, . gt -+
Ddn cos (g', n) 2
+ pMoep'''etan (g', n).cos (A''' - A') s (165)
Jt is the angle the direction of g''' makes with the radius r j; thus,
(166) follows
© (M + U)
gvn,cos/u S m ’ (166)
Dr
or, with (161),
DG+ U) 1 2
g'' = - T+ — M . (167)
or 2
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Further, (A 13),
DU

Qr

g = -

The difference of (167) and (168) is, in sufficient approximation,

g'll _g' = e —— = e a0 ~ i
or or 2
or, (168),
m 1 2
glll_g'=_ + — . g a
Pr 2 ~
(165) and (170) are combined to
1 o
/_(‘)iV[_“—__ = —— +/.l-g"'°tan (gv’ n),cos (A - A') .
on cos (g', 1) r
In (171), the amount of
1 2 )
— » L. t1t
> M g g
was neglected, since it is considerably smaller than 1 M gal.

The 2nd term on the right hand side of (171) contains the gravity value

of g'''. Replacing here g''' by the standard gravity g', a relative

error of (g''' - g')/ g' is the consequence., Putting the amount of

lg"' - g'l equal to 0,3 gal and g' equal to 103 gal (i. e,
1O3 cm/sec”), this relative error amounts to

gt - gt _
— 23 .10 4 .
g’

The neglection of such a small relative error of the order of (173)

can always be tolerated in the second term on the right hand side of

(171). Obviously, the admissibility of this neglection is due to

mere the fact that the plumb-line deflection can never be determined

empirically better than within a relative error of 3 - 10-4. Thus,
(171) turns to

AM 1 QN
QDn ’ cos(g', n) 9r
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In (174), g' (or better g''') was put equal to G, G is the global
mean value of the gravity, (174) and (147) yield

Dy (1.1) =G-1.L-tan (g'y n)icos (A''' = A') (175)

Summarizing the details of the three mathematical expressions
representing the three symbols AgM, Dy (1,1) and F(M) on the right
hand side of (146), the following is found: In (146), AgM ig

obtained by (151). Dy (1.1) comes from (175). F(M) is represented by (cu), and by
(74), (74a) to (74h), (rzplacing AgT by dgy s+ T by M,
and further E, P by My Mo )

8., Gauss' integral theorem

The tsrm DM (1.1) exerts the following impact on the integral on
the right hand side of (146), in the computation of {M} , (175),

J = -527 ngM (1.1) - 8(p) - a1 (176)

1

This expreseion for J undergoes now some rearrangem=nts using the

Gauss' integral theorem, in order to bring the exprsssion for J
into a shape more convenient for numerical routine calculations,

(175) and (176) yield

J= G g</,utan (g'y n)rcos (A*''' = A')-S(p)-dw . (177)
4R
W
A' is the azimuth of the slope of the terrain, A''' that of the
plumb - line deflection Ko Fig, A1, The north - south and the
east - west componant of the plumb = line deflection [ are

denoted by K, and M, , (153) (154) ,

Moo= ZU« cos A''t' : (178)
fo = poemin £ (179)
The expressions for s My and #2 are functions which

represent these values along the surface of the Earth u,

512= c‘"$ + }Lg = ) (179a)
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Thus, the values x¢, Mo and ro have two - parametric functions

of P and A They can be understood as functions the values of
which are distributed along the unit sphere or along the sphere w
having the radius R,

In the point Q situated at the suvrface of the Earth u, in the
direction of growing p - values, (i, e. in the direction the great

circle connecting P and Q is heading for,in the point ), the componcnt

of the plumb - line deflectionu has the following relations (153) (154),

Moo= - 1 " 1, 9
p R" + 2 g'"! 9P -
-, 1 . 1 . om -
= RY + 2 g|v| P =
u
s - 1 . aM
R™- G P :
u
P is here again the spherical distance from the test onoint P (fixad
within one integration) and the point Q , which is variable within one
integration covering whole the sphere w , (177). Taus, also }‘p
igs a two = parametric function, similarly as /4, Mo and /12 K
Hence,
M= e ) ’
M1 =# (e 2) '
o = My (9 A) ,
/up =(up ((P,?() .
In (153) (180), the derivations of M have to be taken

in horizontal directionj that is to say, these derivations happen along
the horizontal plane of the considered Earth's surface pbint, in

north - south or east = west,or in radial direction. The values of (131)
(182) (133) (184) refer to points situated on the surface of the

Earth u,

The values M and Mo can be considered as the components of a

sector Vo which is tangential to the sphere w (having the radius R').

Thus, .

ne

1t Mo

ne
N
-

g
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e, and e, are orthogonal unit vectors, Fig. A1,

Each point on the sphere w has a vector g4 which is tangential to
the sphere w and which is heading to the north. The same is valid
for the vector g5 which is heading to the east, Hence,

2 2

1 2 = 1 ¥ (186)

noe

n
no

2 2

= /

1
g
It
~
N
+
i
T
o
-

(187)

The slope of the terrain is described by tan (g', n), Pig. 4,
Fig. A1, This expression allows certain developme:nts which are similar
to the above developments for s, from (178) to (187), The north -
south and the east - west component of the slope of the terrain are
denoted by 8, and 8, they have the following expressions,
(see Fig., A1 of the appendix ),

]

8, tan (g', n)-cos A' (148)
CI tan (g', n) - sin A' , (189)

The height difference Z is equal to HQ minus HP , (57a),

whereat HP is fixed because P is the fixed test point, but,
whereat HQ is variablz bscauss the point Q varies over the
whole globe, 8, and 8, can bz obtained by the derivation of the
height HQ of the point 9 1in ths north = south and in the cast =
west diraction,

Therefore, it is possible to find 84 and B, also by derivations
of this kind but with regard to the height difference 2, instead of
HQ. Hence for the point Q,

o 1 , _92 i (190)
2 " + 2 D

S 8 o 1 . 1 . 27 ‘ {191)
2 RT + Z cos p 2N

L
The integral J is a relative small supplemzntary term, (177).
Thus, in the integrand of J and, cons=quently, also in the
expressions for 8, and 8, , a relative error of the order of
Z/R' or Z/R can be tolersted. Z/R reaches not more than about
102 to 1074, (see also the appendix, (A386) to (A 387b) .
Consequently,

V]
N

(192)

n

— 1 .
1 R 3

-5

9z

1 . (193)
RrY cos p 22
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(192) and (193) are valid for the point Q.
A vector 8 can be constructed,

.

na
I
w
—
.
no
-
+
no

8, o e (194)
The height differences Z, taken with regard to the fixed test point B
construct a scalar field of two - parametric values along the sphere w

(having the radius R'). Obviously, the vector s can be represented

by the gradient of the scalar Z field, taken along the sphere w

(192) (193),

g =~ V'HQ s V.z . (195)
Or,

g, == (V- 2). ¢ " (196)

5, =- (7. 2 es : (197)
(196) and (197) follow from (194) and (195) .

For any scalar function q, defined on the surface W , the gradient
has the subsequent shape,

1 9 q 1 D q
. 5 - e. + e (138)

ZER! RY D = R cos¢ 7 22 .
v, A: the geocentric latitude and longitude., (199) is self —
explanatcwy, (188) (189) ,

82 = % - (tan (g', M= 8 &+ &5 ‘ (199)
s ig the slope of the terrain.

The decomposition formula for the cosine function gives for (175)
DM(1.1) = G-L,uvtan (g', n). l:cos A''' cos A' + sin A''' sin A':l » (200)
with (178) (179) and (188) (189), the relation (200) turns to

Dy(1e1) =G ( pyrsy  + pp v 85) . (201)
The inner product of the two vectors /L=L and g leads to , (185)
(194),
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Dy(141) = QL g (202)

Thus, the imtegral expressiom for J takes the followimg shape,
(176) (202),

G
47 R'

J =

M-8 8(p) - dw . (203)

w
With intemd to rearrange the imtegrand of (203), a new vector
is imtroduced,

no

g, = z-S(p) - " (204)

In (204), the scalar value 2 and the expression S(p), and the
components of the vector K are all comtimuous fumctioms of

and A , (182) (183). They can be considered as fumctions distributed
along . the sphere w, In this context, they are umderstood that they
are functioms of the variable co-ordinates of the poimt Q , only,
But, im this context, the co-ordimates of the point P are constant,

The gradient of a scalar functiom q has the relatiom (198),
for a fumctiom q distributed alomng the surface of the amphere w,

Further,
aw = R . a1 =, (205)
Now, a vector q is introduced; it has the compoments Q4 and

P in the directiom of ¢4 and g5 o The divergence of this vector
qQ y defined for poimts on the surface of the sphere w, cam be described

Gy a4 and q, (im the spherical co-ordimates @, A ; for points
with the radius R' of the sphere w). (206) follows,

i . 1 @q»] : 9‘12 o o
v o= V'S = F'—'/O(P +R"cosgf) A R a4 .

Thus, the divergence of the vector field 8, distributed over the
sphere w, has the form, (204) (205),

[/ . a, =div a, =div (2'8(p) &) =/ @-s(p) M) =

1
o

]

(/- 2)s(p)- +z~(]7-s(p))/g+ z-s(p)-(V-/g) ¥ (207)

The functiom S(p) has a peculiarity. Im case of approaching the
test poimt P, the parameter p does tend to zero amd S(p) does tend
to infinity: If p->0; foliows S(p) =(2/p)—>oco . Simce omly contimuous
functions are tolerated im (207), the close neighborhood of the point P
is separated, avoidimg the above discussed singularity of S(p), Fig. 6.
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This mear environment of the poimt P has the shape of a spherical cap,
named LA is comceatric to the poinmt P, it has the spherical
radius R'po measursd alomg the sphers w , and the circular bounds

of v are denoted by Coe That part of w which is complemertary

to L is demoted by Yoo ° Thus, the sum of g and Y00 is

equal to w. In the domaim w,,, 2 arnd S(p) amd the compomemts of K
are comtimuous functions, Comsequently, the vector a2, of (204)

is comtimuous im the domainm Yoo * Therefore, it is allowed to apply

the imtegral theorem of CGauss (for the domain "OO) to the vector field

8,+ The equatiom (208) follows,

north

Woo
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(( ([7- 20) dw = = S a, Jgoﬁ de (208)

(g&°is the unit vector of the moxmal of the circle o which is the
boundary of the spherical cap Vo thie positive directiom of (gof is
heading to the exterior of Vo Fig, 6.

The circulatory integral om the right hand side of (208) does
vanrish, if the radius of ths spherical cap does vanish, R'p0 — 0 .,
This transition behavior is easily proved alomg the followimg limes,
The defimitiom of the inner product leads to

0

g, *(8) < )

g || (20) . (209)

a, comes from (204), In {(204), the height differemce Z does vanish
in case the point Q approaches the point P, Purther, the quotient
Z/(R'-po) has a finite value it R{p0 does vanmish approaching the
point P, whatever the azimuth A of the approach may be, Fig, 6,
But, the Stokes fumctiom S(p) of (204) has another transition
behaviour. For small values of p, S(p) cam be approximated by 2/p.
Thus, the Stokes function tends to imfimity as 2/p, if p tends

to zero., Consequently, for small values of p, the product Z-S(p)

has the limit (for a star-shaped Earth with finite slopes of the

terrain)
11im|2-S( i = in |2
. = . - = i [a) []
m[ P)j =lni2 o= Ljee— 2R . (209a)
- P
p —20 p =0 p —>0

Simce Z/(R'p) has a finite value if p  tends to zero, the limit
value of (209a) is a fimite amount, also., Further on, the amount of
the vector éf is also always finite, obviously. Consequently,
approching the test point P, the amount of the vector a, of
(204) is always finite. As to the inequality (209) amnd the vector [gof
of this relation, ths amount of the vector (g&? being (gdﬂ A

is by definition always equal to the unity., Thus, the absolute

amount of the integrand of the circulatory imtegral on the right hand
side of (208) has an upper limit if p,  temdr %o zero,
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1im < N . (210)

P, ™0

Hence, (208) (210), for p, tending to zero,

e

11 °a < 2% R'N
m o * (my) + deg I P, . (211)

Do 0

In case, p, tends to zero, the right hand side of (211) temds to zero and,
consequantly, the left hand side of (211), too.

Thus, fimally, (211) and (208) yield,

1lim S{ ([/-ag)-aw | =0, (211a)
P> 0 |vwgg

or, abbreviating the demotatiom, Fig. 6,

SS (Vg am =0 . (212)

w

The integrand of (212) comes from (207). Im (207), the gradiemt of
the Stokes functiom is equal to

V. sp) = _R,f{_ségl__.gp . (213)

LI is a umit vector, distributed over the sphere w as a tamgent
vector of it. It is heading into the directiom of growing values of the
parameter p,., Thus, the combinatiom of (207) (195) (213) leads to,

=0 =

dv s = - g S(p) + Ez'—'dd_Sp(L)'SP o 2:5(p)-( [/« ) ; (2130)

further, with (203) (212), and with

Mp = g ¥ , (213b)
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Z ds(p)

g-#-S(P)'dw = Z“(V/é— )‘S(p)-dw +gg§‘1p—v’1p cdw . (214)
w

/“p is the component of the vector /-é/ pointing into the direction of

the unit vector gp .

Hence, the here needed integral J turns to, (203),

5 G ( e 13 . as(p) " (215)
= - —— YA |7 LY . p)+-dw + . . A 21
4% R /= 47 R'C dp tp -V >
w w

With (206) and (A 444), the expression for V 4 takes on the following

shape,
4 Oty 1
- ‘ - s . (216)
@( H1’ [1'2) = T "()‘P + R"COB?-OA - /,11 tan 14
@( [U~19 [4"2) = V . /,=L . (217)

In the here discusssed applications, /11 and 1“2 are understood that
they are the components of the plumb-line deflection at the Earth's
surface u, i. e, M and Moo s (153) (154).

Thus, more precisely written than in (216),

D gy ) = QCpq 0 Mpy)

1 @/11.11 ’ 1 /é)/uZ.u 1
= ? . a\P + R'-oos P - @A - F.tan ‘P o /L"',].u . (2175.)
My po) = ol Fraw Mo = 7 K i S,

The value of /—tp can be transformedin the following way, (180)
(215) gkt l“p is understood that it is the radial component of the

plumb-line deflection for the potential M taken @t the Earth's surface u,

,‘ﬁ, = Moou 4 (21%¢)
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1 oM

Zup G R ap ‘
u

Introducing the relations from (216) to (218) into (215), the
expression for J turns to,

G

v w S(Z D pgy pp)stoream -
w 1
1 ds(p) 1 oM
- '2"' Z' . [J ‘dW e
: dp R’ dp

w

With (176) and (219), the relation (146) for the potential M
takes on the following shape,

1 3 F()

4% R a4y

{M}: ———— ([Agm + GZ-@ ( 2L ["“2) + -_.RT:] S(p) - dw +

ds(p) 1 oM

1 .
-:-——-{F(M)}- v 2 . — .odw .
27 awR'C dp R' Op

9, The model potential M represented by the Stokes integral and the
supplementary topographical terms

9.1, The formula for test points in high mountains

With regard to the further developments, the equation for M of
the form (220) undergoes some rearrangements., The topographical terms
of (220) are now denominatéd by new symbols,

They are given by (221) and (222),

C,Mm) = Gz B gy py) ’
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n

w
1 as(p) 1 oM

- __:__é(( . : .odw o, (222)
4 5 R! dp R! op

w

1 3 F(M) 1
Q1 (M) = — gf . +S(p) - dw  + — .{F(M)} -
4 R! 45 R! 211
2.

(220) (221) (222) yield the final expression,

]
{M}? R gﬂdgm + Gy (1) J S(p) - aw +EQ1(M)} . (223)
w

i

Q1 (M) has the following explicit expression, convenient for numerical
routine calculations, (74) (222), (75) to (78), (80) to (84),

3
Q1 () gg F(K)-S(p) + dw +

(4 % R\

+
N
=y
=
===
N
s
=
o |
1
n
]
<
+ -
<
A
| S
(o] -
[N
=
+

w
1 g( M A 2 1
+ — — N — 1 - ™ odw +
217 R R y+ ¥ e'
o
1 i V1
+2—17— gg-—g- --;- o dw +
w
1 oM 1 (cos p/2)2 2 - d4s(p)
* 27 gg R/Dp.--;—. gin p 'b7-m.T . *
w
1 -x2
+F§(Agm';+_yz_. de' + dA  +
1 M —2X2
+-27g?[y_:2_— +v3:l de' . dA +
1 oM
" Q_ﬁ_gae' (v = byq) de' + dA 4+
+ ?1’;— (( ( = GZ)'@(X*-‘[-‘P ;#2) © de' . dA . (224)
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In ( 224), - if, there, dw is used as integration element - , the integra-
tion has to cover whole the globe. But, s if the product de':-dA . 1is the integra-
tion element =~ , the integration can be limited to the near surroundings of the

test point P, up to a distance of some tens of kilometers, only.

As to the function F(M) in the integrand of the first term on the right hand side
of (224), the values of F(M) can be computed by (74) and by the relations from (74a)
up to (74h). But now, T has to be replaced by M, and AgT by ﬂgM , furthermore,

‘g and 7 have to be replaced by 1 and /12 . These modifications lead to

the relations (225), (225a) to (225h) ,

8
F(M) = Z £, (u) ; (225)
i=1
) A Z 1 1
f1(M) = 8y T 2 - ;*:-;Z- --e—-" . dw . (225a)
W
) M Z 2 1 :
f (M) = —_—— |1 - o — d 225b)
2 R R v+ y2 o w o, ( 5
w
M 2
Fo (M) = - . dm - (225¢)
3 R R
w
- 2M 1 (cos p/2)° N 4 ( )
£, (%) = - o — . dw 2254
4 R ’ap R sin p 4 ’
w
x2
fs(M) = - Adey - 77 52 © de'-dA ' (2250 )
M -2x‘2
£,(M) = — + Vg de' - dA ) (225¢)
R Yty
oM
f7(M) = { B ) (V2 - by ) ~de'- dA ’ (225g)
( L * ) »de' - d
gg(M) = - ¢z - Qx-py ,x My e A . (225h)

The expressions x* T Y Vs Vo V3, b.7 A b’l'] are explained by (75)(76)
(78), (8o) up to (84). Again, the symbol dw stands for the global coverage by the
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integration, de"éA for the coverage of the near surroundings, only,

The universally valid formulas, from (223) to (225h), can be
applied wherever the test point P may be situated, even in high
mountains, The relations (223) to (225h) can be handled without any
complication, they have no singularity and no divergences,

9.2, The formula for test points in low mountain ranges or in the lowlands

The detailed universal formulas (224) and (225) for 991(M) and for
F(M) will find an application in seldom and extreme situations, only,
They will be of use if the cliffs in the surroundings of the test point
will reach an inclination of 30° or 450, and more, They are valid
for all finite inclination values, since a star-shaped Earth was
presupposed,

Exterior of such regions, the formulas (224) and (225) can be
simplified enormously. Such a simplification, often permitted, was
already discussed in connection with the transition from the formula
(74) to the formula (79), (i. e. from P(T) to F™(T))., These
simplifications are governed by the constraint, that the inequality

x> &K 1 (2251)

has to be fullfilled, (66), Only in high mountains, the inequality
(225i) will be violated., Besides of (225i), these simplifications
imply also the neglection of a relative error of the order of 2/R

in the small topographical supplements (i, e. F(M) and 521 (M),

A relative error of 10~ to 10-4 is permitted in these supplements,
which do not reach an amount of about 1 m, An error smaller than

10™3 m can be tolerated in any case,

In the course of these simplifications, caused by the transition
from the high mountains to the lowlands, F(M) of (225) can be replaced
by the simple lowland expression F*'(M), described by (227), Further
on, 521(M) of (224) turns to the lowland expression S?{¥ (M) »
described by (226) (230)., Thus, accounting for (225i) and neglecting
relative errors of the ordsr of Z/R, (225) and (224) change to the
simple shape of (227) and (226) for the lowland expressions,
) —= R m (2258)

F (M) —>= F*(M) . (225k)
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Thus, (222) turns to

* 1 3 F (M)
Q,](M) = - === ¢+ =————— . S(p) - dw +
4% R 4% R

1 { d S‘(p)z 1 oM
- m—— . »  ——— b e— d "
LHT’R§ dp R dp " (22
w
Further on, by (79),
3
2% *
F (M) = Z fi(M) ’ (227)
1=1
¥ 2 3 1
£,() = Agy ¢ SHS Hwem B odm (227a)
e0
w
X M 2 1
£ (M) = - — . d ,
2( ) - i n (227b)
o
w
‘)f'[ , oM Z cos p/2’
(M = = . ¥ « d s 22
z RQp 4R (sin p/2)° ) (fare)
W
e = 2-R -sin p/2 B (228)

The third term on the right hand side of (226) and the term of (227¢), multi-
plied with (1/2% ), can be combined to the following expression, (229),

1 DM ) cos p/2 d s(p)
- .z - b 2 e - d . 22
8 7R R Op (sin p/2)-2 dp y (229)

The relations (227), (227a) to (227¢), and (229) are introduced into (226).
Along these lines, the fingl form of Qq(m) is reached, (230).,
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a(_
Q(M)- > : g( E*(M)'S().d
1 = p" '2' P w +
(4% R) .
1 yA 1
+ ™ Sg AgM ‘B '% ' -eo— + dw +
w
1 M.z .1
o g R'R "o W -
w
1 RYf [ cos p/2 a s (230)
- . . | L0, 2 . d B
8 7 R® Sg F20 2| Tain p/2)? * 1—‘%22 !
w

In the integrand of the first term on the right hand side of (230),
the value of P *(M) can be computed by the formulas described by (227),
(227a) to (227c).

Consequently, in the most fregquent cases of our applications, if
the test point P 1is not situated in the peak area of the high mountains: about
the following form,it is emphasized that it is convenient for routine
calculations, (223) (221) (227) (230); it is the lowland form,

. «
{m} = ! K [AgM +C, () } S(p) - dw + {5?1 (M) } . (231)

49T R

W
Later on, this formula undergoes a rearrangement, transforming the left

hand side back, from ths potential M to the potential T, (see
chaptar 11),

10, The Helm2rt condensation method

Now, the mountain masses situated above the mean globe v having
the radius R ( or above the mean ellipsoid of the Earth, to be more
precise) are condensed along this sphere v. The real mountain masses
of the real density cannot be considered here, since the precise
values of these real density values are unknown. But, for the here
discussed problem, it is possible to substitute the real density
of the mountain masses by the standard density having the amount of
S = 2650 kg m'3, (142), (sez Fig. 5).4As to the use of the standard density, this
easy substitution is opportune, and it makes no trouble, The crucial
point for the introduction of the potential B of the visible mountain
masses is the fact that, in the main, the gravitational force caused by
the difference potential T - B has no perceptible correlation with
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the topographical heights, This peculiarity is right, may the potential

B be computed in terms of the real density values, or in terms of

the standard density, The here executed derivations make use of the

letter version,

If the density of these masses changes over from the real values to -

the standard value, the accompanying alteration of the gravitational

force is relative small, it has no clear correlation with the heights,

A long wave residual correlation of this kind is discussed by the relations (289)(290),
For a test point Pj: situated on the spherical surface v,

the gravitational potential BJ¥ of these condensed mountain masses

has the following representation, (condensed at the sphere v; R : Radius),

X

B® = (L, +1I )P* W (232)

For this potential B;k, the derivative with regard to the radius r
has the following expression, if approaching the test point Pir at
the surface v  from the exterior space of the globe v, Fig, 5, Fig. 2,

8%

r P

The symbols L,, Ly, L, L, of (232) and (233) have the following
equations,

(L1)P* = 4.7 £.9 R+ Hp ; (234)

(L) y = £ gg z . ;0 Cav (235)
v

(L3)P* = = 4TS Hp ; (236)

1), = =28 f 7+(sin p/2) f;_oﬁ_z . Av (237)

f is again the gravitational constant, R is the radius of the
sphere v, Fig., 2,

6, = 2R-sinp/2 . (238)
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As it is evident from Fig. 2, Hp ig the height attached to the

test point Péé , within the scope of the condensation method., Obviously,
the density of the surface distribution underlying the potential BX

is equal to ,9,-HQ. The equations (234) (235) (236) (237) represent

the val ues L1, L2, L3, L4, taken for the test point P*’.

Q?é

For the moving point at the sphere v, the following relations

are valid, analogous to the above relations for p¥ , Fig. 2,

(Ldgx = 4@ f-«gs-R‘HQ , (239)
1
[e]e]
v
(LB)Q* g - 4.',;'.f~9w-}{Q . (241)
-y Hy =Hy
(L4)Q* = =- fg’%g-‘—_— . (sin (p/z)oo) + dv . (242)
2
Cod

v

The values e, and sin p/2 refer to the distance between the two

points Q* and PX . But, the valucs ey, and sin (p/2)Oo
relate to the distance between the points y* and ol y Fig. 2,
€oo = 2°Resin (p/2) (243)

In chapter 3, a detailed solution was derived for ‘the problem of a
spherical boundary surface, This solution is rigorously valid, It can be
applied to the potential B¥ which has a spherical surface distribution
as the underlying gravitating scource, (31), (232) (234) (235), The
potential B¥ causes certain gravity anomalies in the exterior of the
aphere v. Along the spherical surface v, these gravity anomalies are
represented in terms of the potential Bf by the relation (244),

(see also (22)),

oB* 2 :
- —.3B . (244)
or R

AgB* = =

The integral relation (31) leads to
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B = e dggx S(p) - dv ’ (245)

<

or, writing it with a more clear distinction of the different points
the various values refer to,

( éﬂgB* )Q* S(p) « dv ., (246)

The relations from (232) to (244) are introduced into (246),
ence,

fap pbe fap ot -

1 5 o
4TR g( [’ Bk = (Bydgx = § (Iydox - ﬁ(Lz)Qx]- S(p) - dv.  (247)
v

In the relation (247), the parentheses stand for the direction that
the constituents described by the surface spherical harmonics of the
O th and 1 st degree are split off.,

11. The retransformation from the model potential M Dback to the
potential iy

The essential property and the very important advantage of the
relations (223) (231) is the fact that, in the integrand of (223) (231),
the smoothzd and small term C1(M) does appear,

Whereas in (114), th: relative grzat and rugged term Dq (1.1) gives
rise to a lot of trouble, if it is intended to compute this term.

The transition from Dp (141) to C, (M), that is the main reason
for the introduction of the modez1l potential M. However, not M 18
the requiresd potential, but T is the potential to be determined.
Consequently, in (223), a retransformation from M back to T

is necessary. But, in the course of this retransformation, the term
C1(M) keeps to be unchanged. it is not retransformed,

In this context, the equations (145) and (150) are introduced
into (223), Hence,
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+SQ1 (M)} . (248)

The equation (142) gives the possibility to compute the potential B
for the test point P at the Earth's surface u, as it is needed in .
(248).

In case of the condensed masses, the potential Bx can be computed
by (232) (234) (235) for the test point PX situated at the spherical
surface v , Fig, 2. On condition that P* lies perpendicular below
the point P, the difference between B in the point P and B*
in the point P* is introduced by [B] ", (248a),

X

B, - %) 4 = [3]" . (248a)

In an analogous way, the radial derivatives of these potentials B
and B¥ have the following equations, (233) (236) (237),

(ﬁ_) 3 {__@ik ] . [_DL‘J " (248b)
or 2 QDr Qr =
P P*

Taking the liberty to omit the suffix P at both the term B and
the radial derivative of B, further, omitting also the suffix P* which
appears at BX and the derivative of it (or at Lyy Ly, L3, L4),
the subsequent relations are obtained,

B=I, +L, + [B]" ; (249)
D) . o " . (250)
BT “L3tIy+ ['75‘?‘]

The combination of (249) and (250) with (149) gives

2 2 e l" 2 1"
= @ i =L, = =L, = c L, = - - |B
Aey g =Wy =<8 == Ty [T)r] B [ ] 4 (251)

https://doi.org/10.2312/zipe.1989.097



71

r is the geocentric radius of the surface of the Earth u,
r=R+ HP +2 .

(252) leads to

2 2 Hp4 2 2 Hp + 2
—_— | 1 am—— = - _2.—§———
r R R R R
(253) is introduced into (251),
) 2
dgg == Ly=1L, = = 1 - —I -

i

[ZBJ ] +

+ 2 cpmem—m— (L1 + L2) .
R

HIN oy

Now, the relations (249) and (254) are put into (248). The amount
l - -

of (2/r) « EB}’ docs not surmount some microgal (10 cm sec 2); thus,
a relative error of the ord:sr of H/R or Z/R can be neglected there,

[4] (5] . consequently, (248) turns to (255),
i

fu} = {7} - §(L1§%E - i(L?Px% ’{[jB] } :
g 0 {( X' 3(p) dw + { g21(M)} s

47 R*

w

with

, 2 2
X =dgy + (L3)Q* + (L4)Q* +-7;»(L1)Q* +-§— - (L) Q* *

I
B 2 [ g Hp + 2 ; )
| —| + -—-B_] ~ 2 ¢ eegg—— (I + L * +
5 R R? 1 27Q
+ C 1 (M) .

to R , and from the surface w

The transition from R'

to the surface v, has the following equations, Fig, 2,
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H
1 1 1 P
—_— ot — ¥ . , (256)
R! R + Hp R R®
d
an Y Hp
AW = | — Ldv ¥ odv 4 2. e edv : (257)
R R

The relations (256) and (257) are introduced into (255), neglecting
a relative error of the order of HP/R in the amount of {Q1(M)}'.
These rearrangements lead to the equation (258),

{1} - {@pexl - f@px]} - {[B]"g ,

1
Bl e X-S(p) - 4 + Q (1) E
4% R ( P v i L g
v
Hp Hp
- My o+ 2= m) o, (258)
R R

with, (255a) , replacing in (254) the multiplier (2/r) by (2/R),at [B]" ,

HP + 2
X=X' 42 + e [ (L; + I )ox - B|T X', (258a)
2 2°q
R
In the transition from X' to X , the errors of the kind already discussed by
the lines between the equations (254) and (255) are neglected,
The potential B in the brackets on the right hand side of
(258a) refers to the point Q at the Earth's surface u, Q 1lies

vertical above Q*, Fig, 2.

The relation (247) of the condensation method and the equation

(258) yield
{T%: X1-S(p) . dv +{Q1(M)z+ { -M}-ﬁ-{[B]"g 9 (259)

H

This above equation (259) is important. As to the topographical addi-
tives appearing in (259) completing the original shape of the Stokes
integral, these additives are now expressed in terms of the smoothed

M potential and the smoothed anomalies dgM , instead of the T poten-
tial, and instead of the anomalies AgT which are not smoothed in the

mountains. The term K,‘ appearing in (259), this term has the follow-
ing expression (259a) ,
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OB 2 i H,
X, =dg, + ¥ - Pﬂ "4, () - 283 i
1 Or _ R R2 . .259a)
In case the test point P at the surface of the Earth u is not

situated in high mountain ranges, the relation (225j) and (225 k) can
be applied in (259), Then, §?1 (M) can be replaced by Q?1 (M),
according to (230). The computation of g21(M) is much more easy
than that of g?1 (M) .

12, The final formula for the perturbation potential T in terms of
the gravity anomalies

12,1, The perturbation potential pL expressed by the Stokes integral
and the topographical supplements

In the expression for X described by (259a), the sscond and
the third term on the right hand side depend on the potential B,
These two terms can be expressed by the plane terrain reduction of
the gravity which is generally denoted by the symbol C, (sze [:4]
page 38, equation (97))., The following relation is valid

aB " 5 )
o [B] “«C + dC (260)
Or R
with
dc = d.c + d, ¢ + 630 4 64 ¢ . (261)

In seldom cases only, the first three terms on the right hand side of
(261) will surmount the amount of 1 pgal, [4] .

Therefore, these terms can be neglected. As to dﬁc, it has the
rather simple formula
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é,c = 4ﬁ’f:9:HQ — " (262)

as can be taken from [4] ‘
TFor HQ = 2 lkm, the expression of (262) leads to an amouni for
<54C vhich is equal to 0.1 mgal (i. e. 1074 cm sec™?).
Thus, also the term 640 seems to be within the noise of the method(gravity data noise)
in the routine applications, generally. To be complete, 640 is

taken along; with (260), and with (262), we have the following relation, thus,

I Il
9B 2 H
e +-—-[B] ¥C o+ 41rf8,}1Q = . (263)
or R R

Purther on, the last term on the right hand side of (259a)
undergoes a rearrangement and a combination with (263),
Considering (232) (239) (240), the followingdevelopment is found,

H

8 W s Hg
- 2 B *-1;2- = - vt (L1 + L2)Q;¥ "'Ez“‘ =
g iy
= = 8 fS) HQ ——R— - 2 (LZ)Q* —EZ— ° ) (26[{)
In (264), the term
2 " HQ
= [BJ T (264a)

was neglected, since it will not be greater than about 10_3 /ugal
(i. e. 1077 cm sec-z), (see [4], page 36).

The combination of the 2 nd, the 3 rd, and the 5 th term on
the right hand side of (259a) giveg (265), accounting for (263)

(264’)9 - // P B
OB 2 / Hy
S [BJ I S (265)
Qr R RE
\'v’i'th H HQ
= - v . - g " (266
Gy 4% £ H, 2 (L) — (266)
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The relations (259) (259a) (265) (266) lead to the following final
result for the solution of the boundary value problem

1

A7 R [AgT +C +C, (M):, S(p) - dv + {Q (M)f. (267)

v

The topographical supplement of (267) has the following eXpression

HP I} 1
Quy = Qan +u. 2 4 [B] Al cyrs(p) - av (268)
R 47V R

v

As to  (267), C1(M) comes from (221) and (216), (217a) and (217b) ,

D My . 9 py _ tany
R'"9¢ (R"-cos y) DA R’

C1(M) = GZ+ M 5 (269)

As to (268), G2,(M) is described by (224), valid also in the high
mountain ranges.In (269),/11 and (L, stand for the surface values p, s 4, (2178).

The potential M is computed by (145), with approximative values
of T and with B according to (142) (144) .
The M valuzs along the surface of the Farth u are computed by

3
M=T-f8§g--dv A (270)
) _

\'4

The 1st and the 2nd term on the right hand side of (268) depend on
the M values of (270), valid for points along the surface u,
In (270), e 1is the straight distance between the test point P
at the surface of the Earth u and the volume element dV, The
potential M influences the expression (268) after multiplication
with the very small factor (HP/R'), Thus, in (270), approximative
values can be accepted not only for T, but also for B. Hence,
B is replaced by the potential B¥* of the condensed masses,
(270) turns to, (232) (234) (235),
1
MET -9 g( Hy - : - dv > (271)

o

v

A precision of + 10 m to + 50 m in the computed amount of M/G

will suffice, in any case, computing the amount of (M/G) by the formula
(271); =~ since later on, in the relation (268), this amount of (M/G)
comes to be multiplied by the factor (HP/R) the amount of which reaches
about (1/1000) or (1/10000) , only,
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As to the 3rd term of (268), the amount of [B]"/G will seldom
- n
surmount some centimeters, LB] can be computed by the formulas given in
[4] , page 35, 36; (see also [ﬂ, chapter B).,

The 4th term on the right hand side of (268) can easily be
calculated by (266),

The relation (267) is the high mountain variant of the solution of
the boundary value problem, The much more simple lowland variant of
the solution has the following shape,

v
I:AgT +0+ c1(M)]- s)-av + { QD an}, (272)

v
(225j) (225k) (226) (227) and (230) , with

* H n
QR = Qf(m) b Mo & [B] &
R

Sg C,8(p) - dv. (273)
47 R

v

The expression (267) should be applied for test points situated
in high mountains, For test points situated in the lowlands, the
simple shape (272) will bring a computation relief,

The relation (273) is derived from (268) under consideration of
the substitutions described by (225]) (225k)’and applying (230);(see also [ﬁ] e

12,2, The supplementary term C1(M)

Beforehand, the structure and the main properties of the term
C1(M), appearing in (267) (269) (272), should be sketched. Seldom
only, the amount of C1(M) will be greater than 1 mgal (1. e, 1073 cm/secz);
further, it will be positive and negative, Thus, the C1(M) values
will generally not surmount the noise of the free-air anomalies ‘ng .
Further, the C1(M) values will generally not exel the noise of
the errors committed in the determination of the C values, obtained by
numerical computations in terms of the heights, Consequently, in
most cases, the neglection of C1(M) in the brackets of (267)
and (272) will be justified, before the background of the noise of
the 4dgT and C values,
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Now, the details of the computation of the C1(M) values are to
be discussed,

The formula (269) representing the 01(M) values in terms of the
deflections 541 and pz was applied in the Austrian Alps. Along the
lines of (269), the following results were obtained, if

HQ-EP=Z = 1 km :

a) The mean value of ’ C, (M)l over a distance of 300 km was
about 0,1 mgal,

b) The mean value of |C1(M)’ over a distance of 200 km was
about 0,1 mgal.

¢c) The mean value of ‘01 (M)[over a distance of 40 km was
about 0,8 mgal,

d) The mean value of ]C1(M)l over a distance of 20 km was
about 0.5 mgal, )

These above results can be found in: [4] y page 42, 43, 44, 45 of chapter B,

As to the relation which connects the radial derivative of the M
potential with the Bouguer anomalies, the investigations of [5] , chapter
D, section 5, contain all the nzeded deliberations, In [5] , the
following equation was obtained, (eq. (67) in another place),

oM
e ngouguer t 0 e
with
1
s = 2T(f3f-_2RG_ + lf«Q»Rq Hy —— dl. (275)
2 0
1

In [5] , chapter D, section 5 and 6, it was shown that & has a

small amplitude and a great wave length, Thus, the height gradient of
OM/©r can be identified with the height gradient of the Bouguer
anomalies, in sufficient approximation, (see eq. (131), page 140, at another

place , [5] ).
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The determination of C1(M) by the plumb-line deflections M Mo
according to (269) allows to get an idea of the amounts of C1(M).
But, this method is not convenient for a general application in

the routine detzrminations of 01(M), since there is not a
sufficient dense net of the global Fqr Bo values, Therefore,
(269) is now rearranged expressing C1(M) in terms of the

Bouguer anomalies (the refined Bouguer anomalies are here considered
implying also the plane terrain reduction of the gravity, C).

The Mg values are tinderstood that they are distzi buted along the
surface of the Earth u, Fig, 7. In the derivations of 1

(resp. ((1_2), the way from P1 to P2 conducts via P1.2 » The two points pl]

and P2 are situated on the oblique surface of the Earth u; Vx is the inclination
of the terrain in the vertical plane thraugh P,] and P2 . In Fig. 7 , these
two surface points are situated in the north-south direction.

P2 dx /

Fig. 7,

The following lines are self-explanatory, (153) (154) (269), (217a) and (217b),

DM,y Cfadp, (1),
—_— = lim =
4a4x->0
oM a Op
L . (276)
oz dx dDx
iz az t Y (277)
—— = tan VY = .tan B
dx x ? dy ¥

The arc element dx has horizontal direction, Fig. 7. Thus, dx is equal
to the value of R :-®vy . Analogously, the other arc element is horizontal
in the east-west direction, i.e. the arc element dy . Hence, dy is equal to

the amount of R-cos cg-a;\ .
In (276), the deflection u, . (resp. (u'2.u) is the value of the deflection

of the plumb-line (u,] (respe. (f"’2) taken on points situated on the oblique

surface of the Earth u,
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Neglecting the 3rd term in the brackets of (269), (it amouts to not
more than some tens microgals), the subsequent velations yield,

¢, = Ci.a * Cqp (278)
ch
7 2
C1'a = GZ [-—’D_X + 2 y] ’ (279)
’ Gl
(o =qz|=-".tan Yy_ + tan Y Y (280)
1.b [’jz x Dz Y]
1 oM Ta.
vl = - — y — 281
M g ox
1 I o
S 282
2 5 2y
dM 2 %
Cia=2] - - 5 (283)
D x° dy°

and, with the Laplace equation,

a2l/I
Cia = z-—: . (284)
A

And with (274), considering the fact that the vertical gradient of
& can be neglected (sce [SJ, chapter D, section 6 ,page 139,140;3eq.(124)...(133) ),

Ci,a =" Z',aT ( AgBouguer) . (285)
9% 91
C, . =2 |~ -tan \’x - Stan Y : (286)
Vel %9z ?ydz y
C1.b = C1pa1 * Cqlba2 ’ (287)
5 =7 —2—- A tan Y (288)
1.be1 ~ 7 [ D x €Bouguer x ’
( ngouguer)o -4 AgBouguer)u [-(H)o - (H)
Cipa1 =2 (289)
1ebs AX J- Ax

CA"b.2 follows in a similar way, as C1.b.1’ exchanging x and y .

In (289), the differential quotient was replaced by the difference
quotient; this procedvre is allowed, since the Bouguer anomalies have
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the advantage to have not a pronounced correlation with the heights,

in any case if short distances are considered, O¥er longer distances,

in the areas of isostatic mountain roots, a certain correlation of

these values can be observed, possibly., It is brought to bear by

the formula (289).,

As to (289), the parameters 2 = 1 km, (H)° - (H)u = 1 km,

Ax = 50 km, and a value of 60 mgal for the difference of the

Bouguer anomalies in the first nominator of (289) (these Bouguer anomalies,
perhaps, are caused by the isostatic mountain roots of the Alps) lead to a value of

lc1_b.1 |= 0.02 mgal. (290)

ForlC1 b.2|’ a similar amount can be awaited, Consequently, |C1.b1

will be smaller than 0,04 mgal, for the here underlying parameters,
C,,p can be neglected, therefore. C1(M) can be replaced by C,
L] L]

a ?

0

01(M) - Z'zyg— ( AgBouguer

) B (291)

The above equation is equivalent to the relations (122) (132) of [5_] .
chapter D, section 6, As demonstrated in [5] ) (291) leads to,
(eq., (123c) at another place),

- 2 (dg )y = ( dg )
¢, (0 = - 2.5 Bouguer ¥ Bouguer ” Q. . 4; , (292)
20 e

(o]¢]

It may be stressed that in (291) a neglection of terms with higher
powers of Z, (i. e. ZE, Z3, ees), did not take place. The right
hand side of (291) comes not from a truncation of any series development

of rising powers of 7Z.

The impact that C1(M) exarts on T can be found by (267)
and (291), It is denoted by K,

1 7. 0
A7 R OH

( ‘ngouguer)'S(p)' dv E (293)

The following very useful and instructive deliberation should
be added to the relation (293),
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The Bouguer anomalies are caused by certain density anomalies in
the crust., The deviation of the real mass density from the standard
density h , that is the underlying gravitational source, In reality,
these underlying mass anomalies &m  have the depth t below the
surface of the Earth u. The impact that dm exerts in reality on
the T value of the tes't point P can be approximated by the
consideration of a spherical model.

A globe with the radius R is introduced., The test point
lies on the surface of this globe'. The mass anomaly Jdm lies
below the svrface of this globe, in a depth of t o The spherical
distance between dm and the test point P has in the
spherical model the same value as in reality. Thus,_the impact
of dm on T 1is about, Fig. 8,

K = f-e—‘ém . (294)

e, is the straight distance between the test point P and the
mass anomaly, Vertical above dm, at the surface of the globe, Jdm (or its potential)
causes a gravity anomaly of about ( AgBouguer)1 . Hence,

R B i ( ), +8(p) - dv . (295)

% gBouguer

A second variant of this spherical model is now considered,
The test point has the same position as before, but dm is
shifted downwards to a depth of t o+ IZI . For this second
variant, the relation (296) follows, instead of (294), - ( t is positive, always ),

K =f - — -dm . (296)

(295) turns to

;
Ky, = g ( Bepuguer)e *S(P) - av. (297)
n
v

As to the gravity anomalies in (295) and (297), they follow in a self-explanatory
may by the surface values of K

s

. and K, for the test point vertical above dn

Ky = £.(1/t) - dm s K3 o= £( /2l ) ) ~dm (297a)

These potantials K,‘l and Kz' are inserted intc the fundamental equation of the

nhysical geodesy. We find, (Fig. 8),

(AE’LJuguer )’I = - (QK% / 9w} =~ (E/R)K»'] = - (’DK,‘ / Or) . (297b)

A similar formula is valid for (AgBouguer )s
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Fig, 8,

——l 22,
Obviously,
~ ()
( AgBouguer)Z =X _AgBouguer)1 e ]Zl'_,a'-H ( ngouguer)1 & (298)
Thus, (295) (297),
1 (’
)
K, - K, = |2 |- ( Je |- s(p) - dv . (299)
2 1 47 R) QH Bouguer’s
v
Whereas,the relations (294) and (296) give
1 1
Ky =Ky =f+( — = — ) dm . (300) -
ey 84
The oblique distances e and e have the following equations (see

1
[ 4] page 35, [5] [6] )» ( the t value is always positive, here ) ,

2 2 2 2 t

E.! = eo + t - eo 4 -R— 9 (301)
. t+ |2
2 2 2

e5 = e o+ (¢ +ZD° -~ el - - 5 (302)

Generally, the amount of N is here much more great than t or
[2| . Hence,

1 1 |2

e = 2 o ——— : (303)

en 4 2 e, R
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Consequently, (293) (300) (303), ‘:6] ’

K - K| = || % __giiéflgglél ; (304)

Finally, the order of the amount of | K| is to be estimated
approximatively, The isostatic mountain roots, compensating the
mountain masses situated above sea level, are the underlying
sources of a great part of the Bouguer anomalies, These mountain
roots have always a density defect of about - 600 kg m‘3; the
sign of this value is always negative, thus, it can give rise to
an accumulating effect which can cause biases,

The model computations may use the following parameters. The
mountain roots have a horizontal extension of a square of 100 km x
100 km side length., The vertical extension of the mountain roots
is 10 km. The amount of | 2| is equal to 2 km, For the value of
e,» in the denominator of (304), the amount of 2 000 km is
introduced, If one single mountain rcot of the above parameters
is the underlying source, an amount of

K] i

8C = 3 - 10

cm ' (305)
G

is obtained for the effect exerted on the height anomaly at the
test point Bl

In case of a global extension of the considerations, for the
total number of these mountain roots, a total number of
N = 1 000 of such mountain roots seem to be a plausible
basis. In our applications,here discussed, the amount of dm
has always the same sign; the same property can be valid also for

Z . Consequently, the amount of (305) has to be multiplied by N

and not by the square root of N, in order to obtain the global
effect, The amount of N« 3 - 10"3 cm = 3 cm follows for the
global effect,

Thus, summarizing the above considerations, the share that
C1(M) exerts on the height anomaly T/G of the test point P
is not more than about 3 cm, as long as the integration by
(267) covers areas which are more than about 1 000 km distant

from the test point P, (e, > 1 000 km in (304)).
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But, for the estimation of this Cq(M) effect resulting by the integration over

the surroundings of the test point P up to a distance of 1 ooo km, a special
and individual computation appears to be desirable.

It may be stated that the publication [6_] does contain a discussion of the
impact that the short wave constituents ( or,better, the constituents having short
wave lengthes ) of C1(M) exert on the height anomaly [° of the test point P,

In [6] , 1t is shown that this impact will not reach the amount of 1 cm 1in the
height anomalies f « There, for the global distribution of the Bouguer anomalies,
a convenient model with plausible parameters was introduced ( See {6]

» page 25,40
27, equations (38)e..(41) ).

12435 The supplementary term 02

Some lines about the term C, of (266) (268) and (273) should be added.

The relations (240) and (266) give

~ 2 '
c = = f.,g’,_g_ . 4-01-H + a - Y—"'Q" e d.V L (306)

Ia the brackets of (306), the potential B can be represented by B*’ in sufficient
approximation, (232) (239) (240). Thus,

C = O q - 2~B-—R—§— ' (307)
with
C 47t YH i!_ ( )
= M . . 308
2.1 Q g
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12,4, The supplementary term 6 (M)

As to the term gB(M) of (267) and (268)}the amount of this
term should now be considered. The first term of (268) is 521(M),
it has the development (224),

The 4., term on the right hand side of (224) is,mith (80), (v, ¥ x =12/e"),

(for x2 = o and y2 = 1), (see also the term (1/2 ﬁ)-f;(m) of equation (227b) ),
1 Mo,z , 1 . (309)
2"‘7’ R R ? dw ,
w
(309) requires an integration over whole the globe, Therefore, x2

is put equal to zero. Consequently, y2 is equal to the umity,
(76) (78). The integral (309) is transformed into the shape of a sum,

I
2oV (whow)
1 g
1

In (310), the multiplication with 1/G transforms from the perturbation

potential T to the height anomalies, The following parameters are
introduced: Jdw = 2 000 km x 2 000 km, M/G = 0.3 km,
2 = 1 kn, R = 6 000 km, e' = 3000 kmy, I =130,

For the above parameters, a single summand of the sum described by
(310) is computed., This summand is multiplied with the square root of
I, being the total number of the members of the sum given by (310).
Along these lines, for the global average of the amount of (310), a
value of about 0,02 m is computed. It approximates the average amount
of the integral (309). Thus, the amount of (Q,02 m, found above, is
a good estimation of the impact which the 4, term on the right hand
side of (224) exerts on the final height anomaly g of the test point.,

The corresponding- impact, which the 2nd, the 3rd, and the Sth
term on the right hand side of (224) exert on the final height
anomaly, can be computed in a similar way., Similar amounts will result for them,
but the 3rd term will be considerably smaller since the value in its brackets
is very small,

As to the 6th term on the right hand side of (224), it has the
subsequent form,
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2

1 -x . 11

L dgy + ———5—— - de' - dA . (311)
y+y

This integration requires not a global coverage, an integration over the
near surroundings suffices, In the evaluation of the amount of (311), ==
or better, of the order of this amount — , 12 may be equal to the
unity and y2 equal to two, (76) (78). Thus, cliffs of extreme
inclinations are considered in the near surroundings of the test point P,
Integrating in (311) up to a radius of 3 km, ‘dgM can be introduced as

a constant value of 100 mgal (i. e. 0.1 cm sec ).

With these presuppositions, (311) turns to (312), considering the
absolute amount,

i - Adgy ¢ 0.3 de' - dA = 0.09 m (312)

The division through the mean global gravity G gives the impact which
the 6th term of (224) exerts on the height anomaly of the test point P,
It will not be more than about 0,09 m.

The 7th, 8th, and the 9th term on the right hand side of (224) have
an amount that can be estimated in a similar way; a similar amount will
yield.

The first term on the right hand side of (224) is, in a rough
approximation, the global average of such valuss as given by (309) and
(311) . Thus, probably, this term will not be greater than some
centimeters, integrating globally over F(M) according to (225).

The lowland variant of the expression in the brackets of the 5th
term on the right hand side of (224) was discussed already in [11] (Xg/C): pg. 45;
page 29. There, a graph shows ths dependence of the kernel function S' on the spherical
distance. This term of the lowland variant is equal to the _4th
term on the right hand side of the development (230), This 5th term yields about 2 cm.

After the above discussion of the term §? (M) in the expression
for Q2 (M), the second term of this expre981on is now in the fore.
It is equal to (MHp)/R, (268). With M/G = 0.5 km, H, = 2 lm,

= 6 000 km, the following value is obtained,
M HP

——— = 0,17 m . (313)
G R
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The effect, which the 3rd term on the right hand side of (268) takes
on the height anomaly of the test point P, can be estimated by

Lg;L = 0,03 m ’

(314)
for an extreme topographical situation ,
as can be found in [4] s page 36,

At last, the 4th term on the right hand side of (268) is to be
considered, It has the shape of a Stokes integral, 02 stands here for a
kind of gravity anomslies which covers whole the globe v. The height
anomalies which are obtained from the field of the 02 values, this
are the values here to be estimated. The 02 values are in the vicinity of
the following value,

i) : (315)
R R

(see (232) (239) (240) (306) (307)).

With B =G+ 0.5 km, H.= 0.8 km, the amount of (315) is 0,02 mgal
(i. e. 0,02 . 107> cm sec'z).Q

Since a global field of gravity anomalies of about 20 mgal gives rise to
height anomalies of about 30 m, the above obtained field of global

values of 0,02 mgal exerts an effect on the height anomalies by about

0.02

WG m e ———— = 0,03 m F (316)
20

This is a very small amount,

By (308), the share of 02.1 has about the same amount as 02 , by (316),

12.5. On the superposition with the potential of the isostatic masses

By the relation (145), the superposition of the perturbation potential T
with the potential B of the visible mountain masses was introduced into the
mathematical developments, in order to represent the additive to the Stokes

integral by a functional depending on smoothed arguments, only,

Following up this idea, it is also interesting to take into consideration
the superposition of the perturbation potential T with the potential I, being
the potential of the isostatic masses. In the course of these developments
about the isostatic potential, the Faye-anomalies in the Stokes integral
change over to the smoothed isostatic anomalies; furthermore, the topogra=-
phical additive of the Stokes integral comes out to be expressed in terms
of smoothed arguments, but, to be sure, these additives have to be supple=-
mented by the I potential of the test point P computad from the isostatic
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masses.

These isostatic masses are undarstood that they consist of the following

parts:

a.) The mass surplus of the mountains situated above the sea level; here, the
/ masses have the standard density 2 650 kg m=3,

b.) The mass defect of the ocean basins; this density defect is the density

of ths water minus the standard density 2 650 kg n=3,

c.) The mass defect of the compensating mountain roots situated below the
depth of 30 km, if the Airy-Heiskanen isostatic model is applied.
d,) The mass surplus of the anti-roots in the area of the ocean basins,

In a way similar as that followed up by the introduction of (145), we have

N = T = I. (317)

Further on, in the expression representing the T potential, (114), the T
potential can be replaced by the N potential given by (317). This thus ob-
tained version of (114) undergoes some rearrangements which lead, finally,
to a representation of the T potential in terms of the isostatic gravity
anomalies and of the isostatic potential I.

Also in this case, applying the isostatic superposition, the finally
obtained T values have the property to be situated on the Earth's surface u,
[see also: Arnold, K,: Die Methoden der Freiluftreduktion und der isostatischen
Reduktion in ihren gegenseitigen Beziehungen. Gerlands Beitr., z. Geophysik, 70
(1960), 131-136; cf. also: Bulletin Géodésique, 65 (1962), 259-264/.

Before the background of the above chapters, the details of this super=-

position with the isostatic masses is intended to be dealt with anew, later
on, at another place.
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14. Appendix

14,1, The expression for the term DT(1.1)

The equation (46) of the section 4 1is the starting point,

T 1 /0"
271 = ]} e + D(1.1) ] — dw + T o E!)dw + D(2.1) (a 1)
Qor e' or

w w
The equation (45) gives the expression for the term D(2.1) of
(A 1), The fundamental equation of the physical geodesy is

T 2
dg, = - rc.)__ - = T (A 2)
dr r
it leads to
27 2
—— Y AgT - —T ° (A 3)
or r

By means of (A 3), it is possible to substitute the radial derivative

of the perturbation potential by the free-air anomalies. Hence,

2 1
2T = [AgT+— i +D(1.1):l — dw +
T

e!

w
1 1
+Sg T ,a(/e)dw + D(2.1). (A 4)
or
w

In the second term on the right hand side of (A 3), the term r
is replaced by R,

T 2
§L- =- Adgy - =T + D(2.2) (A 5)
or R

Further, for abbreviation, the suffix T affixed to the free=-air

anomalies is no more taken alongj hence, we have this subsequent substitution by (A Sa),
- ( In our applications, the slopes of the terrain are considered to have con-

tinuous functions; this property is found in the topographical maps, of course,
Thus, each point et the surface of the Eerth u has a clearly defined tangential
plane., ) =
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AgT = Ag . (A 5a)
For D(2.2), the difference of (A 3) and (A 5) yields the relation (A 6),

2
D(2,2) = = ( =— = =) T, (A 6)
r R

(A 4) and (A 6) are combined to (A 7), accounting far (A 5a),

2 1 /e
2% T = dg + — T + D(1,1)| — dw + \{T—aw + D(3,1), (A7)
R e' . ®r
w w
1
D(341) = = D(2,2) — dw + D(2.1) , (A 8)
e'
w
The equation (36) of the section 4 gives
QA 1 DT
D(1.1) = DT(1.1) = —_ + - (3 9)

©®n cos (g',n) Or

Here, the suffix T is affixed calling special attention to the

fact that DT(1.1) has to be comouted for the potential T,

W is the r2al gravity potential,
U ig the standard potential, The perturbation potentinl T

has the equation
T=-TU, (A 10)

In the exterior of the body of the Farth, T obeys the Laplace
differential equation.
By means of the gradient operation, (A 10) leads to (4 1),

T

—— =(grad T) e n =(grad W) e n - (grad U) « n . (a 11)
n = -

n is the unit vector of the normal of the Earth's surface, u ,

heading into the interior, (see: section 2, Fig. 2). Accounting
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for (A 12) and (4 13),

2
g s (4 12)

(grad W)

(grad U) g2, (n 13)

the relation (A 11) turns to
T
On

= g..cos (g,n) = g'-cos (g', n) . (A 14)

(g,n) and (g', n) symbolize the angles spanned by the two vectors
within the concerned braces, i, e. the vectors grad W and 1
grad U and 1.

,Tesp.

Now, the angle (g,n) is expressed in terms of the inclination angle
of the terrain, which is denoted by (g', n).
At the surface of the EFarth, the three vectors - g, - g , = n

can be defined, They are heading into the mass - free snace, and they
construct the spherical triangle which is shown by Fig., A 1.

As to this spherical triangle of Fig. A 1, a unit sphere is constructed
having the surface point Q as center, Fig. 2. Then, the vectors -g' s =D, and

-g at the point Q are plotted from the center Q of this unit sphere.In Fig. A 1 ,
=
the points at the normed vectors (-g')° , (—1_1)0 being equal to =-n , and (-g)o’ they

mark the places where these three vectors, or these three normed vectors, pierce this
above defined unit sphere., They are the projections of these three veciors on this
unit sphere .

Narth (—

(9n)

£
)
¢}
=t )
\} i
(_g",)o g; East

Fig, A 1
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In Pig. A 1, A' is the azimuth of the slope of the terrain, and A" is
that of the plumb = line deflection, Both of them are measured clocﬁwiée
from the north., But, Q denotes the full absolute amount of the plumb=-
line deflection, tnken at the surface of the Earth., £ and 7 are the
north - sovth and the east - west component of this deflaction (in the
potentisal field T)., The cosine law for the side of a spherical triangle
leads to the relation (A 15), Fig., A 1,

cos (g, n) =cos (¢, n)-cos @ + gin (g',n) + (sin O ) - cos (A" -2, (A 15)

. t

In cnre, ® h=s an amount of about 10 , the following approximations are
valid,
-4
sin@® z @ - 10" ¢" =05 10
2 -8
cos® ¥ 1-(1/2)- 6 £ 1-(1/8) - 10 " (A 16)

(A 15) and (A 16) are combined to (A 17),

A 2
cos (myn) = cos (' ,n) + B sin (¢’ ,n) - cos (4"-n"y = (172) - @ - cos (g',n). (A 17)

Thus, the relation (A 14) turns to

T
— = (g - 2')-cos (g',n) + g - sin (g',n) - cos (" - Ay =
on

2

- (1/2)-® - g - cos (2',n) , (A 18)

Neglecting some microgals only

(1 to 2 ueel, i, e. 1 to 2 « 10 gal),
the relation (A 18) 1leads to

Pn {" - g 4+ B tan (g',n) - cos (A" = A')}" cos (g',m). (A 19)

In (A 19), = and g’ refer to the same moving point ) at the
surface of the Earth v, Fie¢., 3 2, Wig, 2, It is emphasized, that
the amount of &' in (A 19) is not the standnrd gravity at the
telluroid t, point P.; (see: section 1, Tig. 1).

Nepglectine the flattening of the best-Titting ellinsoid of the
Tarth, the relation (A 10) smives ,(considering (A 16), and considering that

(g,8') = O and cos(g,g') =cos & T 1 - (1/2)- B2 .

and considering that the direction of r is the direction of -g' , gince

we have a sphere as reference figure),
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D7 oW U | , .)
= == = = e 4+ —= = [grad W|.cos (g,g ) = [grad U]=
dr dr Or ’ l )
I ! 1 1 2 ~ ‘
=g cos (gg) -8 =g-8 - — &" 0 ¥ g-¢' . (A 19)

Here, in (A 19a), the fact is considered that the angle (g,z’) is equal to
the deflection # , Fig. A 1,
Accounting for (A 16), the developments of (A 19a) are easily understood.
(A 19a) yields,

: 1

g ~5 == 25- ' (A 20)
T

The reader is asked to compare also the deductions given by the equations
from (158) to (174) of the section 7,

¥ith (A 1) (A 20), the relation (A 20a) is obtained,

QT 7T
—_ [ 1/cos (g',n)] == — +(-g - tan (g’,n) ccos (A" - a") (A 208)
Qn Dr L
(see also (165) (179) (170) of the section 7).
The two equations (A 9) and (A 20a) are combined to
Dp (151) = E-2 - tan (2',n) - cos (4" = 4"), (a 21)
In (A 21), the nerlection of terms smaller than sbout 1 microsel
tonk place,
14,2, The impact of the term D(1.2) and the representation of it by the
expression for (1) . o e
Now, an expression for the term D(1.2) of the relation (37) of
the section 4 is intended to be found, Further, an exnrassion for E(1)
will be found, E(1) depends on D(1,2) by the relation (45a) of the
section 4, The relation (37) and Tig, A 2 yield,
D(1.2) =1/e = 1/’ = (¢' - 2) [ ee ; (A 22)
e/ - 2R' sinp/2 = 2-(% +H').sin p/2 . (i 23)
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Fig. 4 2.
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The oblique distsnce e is understood as the distance between the
two points P and Q, Pig, A 2, Z 1is the difference of the

1
heights of the two points Q@ and P, Z = HQ -H,(H'= Hp , 2 = HQ - Hp o
The cosine law gives, Tig, A 2,
2 2 2
e =6 +Z-2-e’~Z«cos(e',g') i (A 24)
Forther, from Fig, A 2 and with
' = r 4+ uw |,
cos (130° = (e, g')) ==-cos (&', &') = e’/(2:R") . (A 25)
(4 24) and (A 25) are corbined to
2 2 2
e -e2 . 7 4+ e . am ; (A 26)
Abbreviating, the symbol x denotes the quotient 2Z/e’,
x = 2/¢’ i (A 27)
(4 27) =and (A 26) give
? 2 2 2
=o'/ = xT s am (8 28)
Trom (A 26) follows
' 2 ne .
(e ~e) (e +e) =~ 2 -¢ - Z/R i (A 29)
2 )2 , , -1
e' ¢ = =(2 + e -Z/R") -(e’ + @) ” (A =0)
The symbol x’ is intrdnced now, it has the fnllowing meaning,
2 ’
x! = 1 + x + 2/R i (A 31)
Thus, combining (A 26) =nd (A 31),
2 2
e = e . % . (A 32)
1/2
e = e (x" . (A 33)
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e + e = e’ {} +

100

1/2
(x') .}

3 , 1/2
e-e! (e +e') = &', [}x ) + x! ] .

(A 22), (A 20) and (A 36)

-3
n(1.2) = = ()

are combined fto

2 2 =1,
C (2 +e 7R '{x' + (x')1/2 } -

In the expression for D(2.1), in the first intesral on the
right hand sile of (45), (in the section 4),

appear, Therefore, it is necessary to develop a convenient expresecion

for E(1) , see (45a) ,

2(1) = - D(1.,2) .+ dw,
2

r

W

Tor the sake of abbrevistion, the swnbol

the following meaning,

a
y2 = 1 + X ; 1 .
Thus, (A 21) turns to
2 7
x! = ¥y + Z/R .
, , 172
For the inverse of x - (x")

intenied, now, to find ~» =series developmznt of risine nowsrs of

N

the term D(1,2) does

ig introduced;

Because the inequality (3 41) is ~lways fulfilled,

IZ//R'I S ‘

the binominel sgeries leads

to

2 2 2
/=y o+ oam =y ~{1»FZ/%R/'y )} :

1/2

' 2
(x" i y-{1 + %/(2 Ry )l

(A 42) and (A 42) yield
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' y 1/2 B N
X+ (x) = y-[ 1+ vy +2/(2Ry ) + Z//(R~y) . (n 44)

Hence, if 1 +y is put before the brackets,
) L2 ? 1 1

x o+ (x) =(y+y‘)»1+_2..-('1+
VA 2-y

). 2/R 4 (A 45)

Heglacting a relative error, which is smaller than

%/ I € 2wm /€000 km = 1/2 000, (A 46)

the followinz rela‘*ion is obtainad,

: , 172 >
y o+ ¥ . (4 47)

k4

x + (x)

Tow, the squation (4 38) for %(1) is consiiered, For D1/9r
amnarine in the intesvand of (A 38) follow the suvbsequent lines, with
«(4 2) (A=) (4 5), in a self - expleanatory way, ( Fig. A 2 ) ,

97°/9r =~ do, - (2/r)-T . (4 47a)

i
r=12+72 4+ 1

(
2+ U
R(1 4 et Y
R

-
il

!
1/r 2 (*/R){1 - (Z + 1) /R g

, .
- [(?/r) - ( 2/R) ] 5 (2/R)'[ (% +H)/ R jl . (A 4Tb)
(A 47=) =nd (A 47b) yie=ld

1
9T 72 +H
Y S S S S (A 470)
?ar > R R R .

The relations (A 37), (A 45), and (A 47c) are combined to (A 474),

QT
- =—.D(1,7) = a:b . (A 474d)
or
I
2 2 2 + H
N = e - — T —
AP}T R + R R ’
12 1 142y
b = em-(xX + Z/R) - 1 - - (Z/R) | .
. y+y? 2.y°+ 2.y
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In the term represented by (A 47d4), relativa ervors of the order

1/2 000 can be neglected, (A 46), Thus, if in (A 47d) the gravity
anomalies and the T wvalues aremultiplied with coefficients of

the order of

2
x - (2/R) (A 47e)
or with
2
(2/R) . (s 47F)

it is allowed to neglect these amounts. Hence,

m

-— D(1,2) = c-4 i (A 47g)
Or
vith
2
= - A‘T - —_ T
(¢} ?'T R ]
1 2 1
4 = _—T~.(x + Z2/R) 7t — .
€ v+ y°

Thus, finally, the exnression for T(1) follows to be, see (A 38),

1 2 )2 } 1
E(1) = = <Arr+2T/R>-—,—- 7 +8 -« B/ |oi————i @ AW (y 23)
o' 3 v + y?
v

And vith (4 27), nerlecting the suffix T affixed to the rravity
anomalies,

2 1 ) -1
(1) = - [Ag + 2 T/R]-(x + Z/R) ¢ ——— . (2 ) - dw, (A 49)

2
y+v
wr

It ie convenien® to divide T(1) into two prts,

(1) = T(1.,1) o+ E(1.2) (3 50)

> )
2(1.1) = - (Ar 3 2’[‘/‘?2)-5(- S ) . dw (+ 51)

y+vy
\'\Y

B(1.2) = - (ﬂg + 2 1/2) * (2/R) - (e )+ oaw (A 52)

w

https://doi.org/10.2312/zipe.1989.097



103

14,3, The representation of cos (e, n)

The relation (38) of the section 4 dJdetermines the term D(1,3),

D1/e , D1/e’
D(1.3) = 1/cos (g', n) |+ = ” (A 53)
Dn or

The normal Aderivative of the inverse of the oblique distance e

is equal to,(Fig.2,page 153 Fig.3,page 16; Fig.A 2,page 98 ) ,

(1/6) | = = cos (e, n) . —= . (A 54)

In (A ~4), first of all, the term cos (e,n) has to bs developed in terms
of th: slope nf the terrain,

In this context, n spherical triangle is considered, It is
cornstructad by the foll owing 3 vectors, (see Fig., A 3), The first
vector is tht nerative vactor of the standard gravity in the surface
noint A, 1. 2. - 5' . The second vector is the negative vector of

the normnl of the surface of the Farth in the surface point Qy

i, e, -n . Since the vectoar n is heading into the interior

of the Tarth, the veector - 1n points into the exterior of the

body of the Farth, The third vector has the spatial direction of

the oblique strairht line e which connects the two surface

noints P and 2, Mg, A 2, This vector e is. heading from the
point P to the point Ne Tig, A 3 show§~this spherical triangle
spanned by the 3 vectors - gl, -n, and

no

In Fig.A 3, the 3 vectors (-5')0, (-n)°, and (e)° are the normalized vectors of

our 3 vectors -g' y =0 , and e o They meet our unit sphere ( having the

point Q at the surface of the Barth u &s center point ) at the dots plotted
in Fig.A 3 .
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Some gimple goniometric equations and some well-knovn relations from
the spherical trigonometry lead to the following developments, (4 55), (A S56a ... €),
and (A 57), TFig. A 3,

cos (e, -n) = cos (e,-g') cos (g’, n) + sin (e, ~g') sin (g', n) cos 6~ , (A 55)

cos (e, -n) = - cos (e, n) , (A 56a)
cos (e, =&') = = cos (e, g') |, (A 56b)
gin (e, -g') = sin (e, &) , (A 56¢)
cos (-g!, -n) = cos (g’, n) , (A 564)
sin (-g', -n) = sin (g', n) . (A 56e)

The relations (A 55), and (4 56a) to (A 56e)’yie1d
cos (e,n) = cos (e,g') « cos (gl, n) -~ sin (e, g')- sin (gl, n) - cos 6, (A 57)

The cent-r of tha Farth =2nd the points P and 9] at the
Farth's surface determine a certain plane, (se- Fig., A 2,
L] L]
Tig., A 4, Fig., A 5), The 3 vectors -2, &, e are situated

in even this plane, Thus, also these three vectors s €

[}
nx
uo

or at least two of them, define this plane here conesidered,
1]
Consequently, the vector e having the direction of the straight

1
line e' of Fimp, A 2, (the positive Airection ~f e is shown

by Fig. A 5 and Fig. A 2), is situated in the plane spanned by the
L
vectors - and

i

.

1
Further, the sph=rical representation of the vector e is gituated

L]
on the great circle spanned by the two vectors e and -2,

Fig. A 3. The two added figures show this situation, Fig., A 4, Fig. A 5.

As to the spherical representation of a vector, this representation is defined
in the following way : The vector ( e.g. &' ) is translated in such a way that the
starting point of this vector coincides with the center of the unit sphere. In
this case, the vector e' ( or the prolongation of it ) pushes through the
surface of the unit sphere in a certain point; this point is the spherical
representation of the vector e' .

In Fig., A 4 , the vectors ( g' )o “y, (e 2 , and ( -g' )° are the

unit vectors of the vectors e' , e , and -g' ,
= =
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surface

/_\
Fthe Eort/h

Fig. 4 5,
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In the here conaidered case, the teel point P lies higher than
the moved point 2 is ncgative; Fig. A 4, Pig., A 5,
Thus, for all spherical dietances p between tho two poiats P and Q ; (A 58) is valid,

i
(ey =z ) = (', =2") + (e, ") ., (A 58)
(A 56b) and (A 58) yield
' I} ' ' Y R ¢
cos (e, g ) =cos (e, g') +cos (e, ¢ ) + win {c , g)«sin (e, ") , (A 59)
and, furthar on,
sin (e, ') = sin (ei, ') - cos (e, e!) - cos (el, g’).sin (e, e’y |, (A 60)

The combination of (A 57) (4 59), and (A 60) gives

cos (e, n)

= a+b+c , (A 61a)
cos (g', n)

viith
. v = cos (e', «').cos (e, e’) + sin (e/, ) - sin (e, ¢’), (A 61b)
| b =~ sin (e!, g’)+ con (e, e’) * tan n', (A 61c)
' ¢ = cos (2!, g') -sin (e, e') - tan n! , (A 614)

In the above equations, (A &1c) and (A 514), the following relation
is valid from the rnles of the sohericnl trigonometry (see: Fig., A 3,
Fie. A 5),

tan n = t{an (g', n) » cog & , (2 62)
Th~ meaning of n' is shown in Fig, 4 3 and Fig, A 6,

n' is = component of the slope of the terrain. n' is understood

that it ie taken for the moved point Q; n' is thie component of the

slope of the terrain measvred in the direction of *the line EE: in

radial div-ction, for growing Adistances from the tast noint 128

Pig. A 3, Tig. A ~, If, 2t the point 9Q, the toposravhical heights

diminish for growing distances to the point P, the amount of n'

is positive. Fucther, in this case, the angle 6@ of Fig. A 3 1is smaller
than 90° + this fact is also evidenced from the equation (4 62) . The latter
fact is also corroborated by the following deliberation : Per definitionew,

- the angle (g', n) 1is always smaller than 900, since we have a star-shaped
Zarth. Consequently, tan (g', a) is always positive. Thus, in (A 62), the
sign of tan n' is the same a&s that of cos & s
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14,4, The development of sin ( e, e') and cos (e, e') in terms of
the heights

On the right hand eide of (A 61a), the terms cos (ef, #!), sin (e!, g'),

cos (e,e') ,and sin (e,e') appear, They have to be expressed as functions )
which depend on the spherical distance hs) from the test point P and, further,
on the hright difference Zo

From Pig, A 5, it is learnt that

(¢!, 7") =a0® + pr2 . (A 63)
Hence,
I [ E
sin (e, g) = cos p/2 =1= (1/8) D + = aes (A 61)
If the distances ! are small, if e! ig smaller than about

50 km, the following relation is valid

- e 50 km 5
U = —'_ 4\<‘: A ———— = L]
R 6 000 km 609
Thus,
-5

e

sin (e', g') 1-10 , (' =50 ¥xm). (A 65)
Turthermore, from (4 63),

cos (e', g') = = 8in p/2 == (p/2) ~+ - ... (4 66)

From Fig., a4 5 and from the sine law of plane trigonometry, and from
(A 27), it is learnt that

- (2/e') =-x= sin (e, e') / sin (e, g') . (A 67)
Further on, Fig, A 4, Fig, A 5,
(e, o) + (e, &) = (!, &N . (A 68)

(A A7) and (4 68) are combined to

. ]
sin (e, e')

-x -sin[:(e', gy - (e, e')] . (A 69)

Thus,

n

sin (e, e’) - x + 8in (C’, ﬁ') + cos (e, 9') + X - cos (e',g')- gin (e,ﬂ’)’(A 70)
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tan (e, e') = = x-s8in (e', g’) + x-cos (e’, g') -tan (e, e'),
1
tan (e,e)[1- X +cos (e',g')]: - x .8in (e',g’) .

With

X = x-cos p/? , (A 70a)
and with (A 64) and (A 66), the relation (A 71) yields,
n

tan (e, e')-( 1+ x-8in p/2) =- x ., (A 71)

(A 23) and (A 27) give for an expression on the left hand sile of (A 71)

x -sin p/2 = (z/e') -sin p/2 = 2/ (2:7) . (A 72)
(A 71) and (A 72) are ~ombined to

tan (e, e’)-[1 + Z/(2-R’):l = = X ¥ (A 73)
or,

=1

tan (e, e') = x"'[1 + 72 /(2-R'):| 3 (A 74)
or,
tan (e,el) = - x”-[1 - 2/(2-R") + = ese }. (A 75)

After tan (e, e!) s represented in terms of the heights, by
1
(4 75), the function of sin (e, e ) in terms of the heights is
easily found by tan (e, e ). In the interval

!
-a0° < (e,e ) < + 90°
the subsequent formula is valid,

- 1/2
2 .
sin (e, el) = tan (e, e') [1 + tean (e, e') . (A 75a)

Neglecting terms of the ovder of (Z2/ R')2, the combination of (A 75)
and (A 75a) leads to
> -1/2
sin (e, ¢') ¢ - x'-‘-{1 - z/(2-r )Pl 1+ (xl’)-{1 - Z/Rlé . (A 76)

As to (A 76), since =~x" has the sign of -2 ( because we have the following
equatiomr : =x" = =(Z/e')-cos p/2 ), since the term in the parentheses {} of
(A 76) 1is always positive, and since the term in the brackets [ ] of (A 76) s
always positive, too, therefore, sin (e,e') has always the sign of -2Z. The same
is valid for the function tan (e,e')
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Some self-explanatory rearrangements yield, in the brackets of (A 76) ,the ensulng form,
=-1/2

[1 + (x")z.{j - z/R'} ] @
-1 1-1/2
=[;1 + (x"?}-{1 - (x")2' (1 + (xm? ) C (Z/R)i] =
-1/2 -1 ‘
=[1 N (xu)QJ ] [1 . (xll)2'(1 i (xn)2 ) , (Z/(?'R)):] . (A 77)

(A 77) 'is introduvced into (A 76), the equation (A 78a) follows,

sin (e, e') = a-.b i (A 782)
" " = 1/2
a=-x'[1 + (x )2] s (A 78b)
n ’ -1
b=t {1 @2 ] <Z/(2~R))}- (7/(2-R)). (2 78c)

The second and the third term on the right hand side of (A 78c¢) can
be substituted by one term, only. We have

(x")2 1
| & = T S— .
1 + (x")é 1 + (:lc")2

Thus, instead of (A 78a, b, c¢),

sin (e, ') = = x"-l:1 + (x")g]- 1/2-[1 -4 M2} "1~{z/(2-R)}]. (4 79)

As to the function cos (e, e') of the relations (A 61b) and
]
(A 61c), it can be obtained from tan (e, e ) by , ( 90° > I(e,e')‘ )

1 ] = 1/2
cos (&, e ) = [1 + tan 2 (e, e ):l R (A 80)

(A 75) and (A 80) yield

[1 " (x")E-{1 & z/(2‘R)§ ? :l ) 1/2.

X ]
cos (e, e )
or

]
cog (e, e )

[1 + (x")g-{‘l s z/R}]_ LEp.

The last expression on the right hand side is already known from (4 77).
Coneequently,

cos (e, e') = ¢.d % (A 81a)
" -~ 1/2 i
¢ = [1+(x )2] ’ (A 81b)
" " -1
d=14+ (x )2-[1 + (x )Z:l . {Z/ (2-R)} . (A 81¢c)
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A special discussion about the sign of tan (e, e') and that of
sin (e, e') obtained by (A 75) and (A 79) is necessary. The sign
of tan (e, e') and that of sin (e, e’) is positive if the
straight line e lies above the straight line e - o, if 2 is
negative, i. e, if the point Q is deeper than the point Py ( see Fig.A 5 ).

(In case, the reader prefers the more mnemonic conception that

tan (e, e') and sin (e, el) should have the same sign as 2,
the following formulas yield, (A 75),

v (o, o) = o [1 ~2/(2R) 4 = v ] ,

and, (4 79),

" n 2 -1/2 " ol
sin (e, e') = x -[1 + (x) ] . [ 1 - {1 + (x)?2 } ' { z/(2 R)}]-

In this latter case, further on, (A 58) turns to
] 1] t [}
(ey =g) =(e,=g) = (e, e) ’

But, the coming formula (A 82) is not changed, may the first or the
1
second variant for the sign of (e, € ) be introduced),

14,5, The terms X1, X2, X3, X4

Now the relation (A 61a) is in the fore. The eyuations (A 64), (A 66),
(A 79), and (A 81a) are introduced into (A 61a). The following reletion
is found,

cos (e, n)

o =X + X + X3+ X, ; (a 82)
X1 = cos (e', g') + cos (e, e') " (A 82a)
X, = sin (', &) - sin (e, ') , (A 82b)
X3 = = gin (e', g') . cos (e,e') + tan n' ” - (A 82¢)
x4 = cos (e', g') « gin (e,e') + tan n' . (A 824)
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By (a 64), (A 66), (A 79), and (A 81a), the terms Xi, (i =1, 2, 3, 4),
turn into the following shape, '

¥ s = gin b/ J’ (2 - 1/2
. = sin p/? —1 + (x a 1.1 N
. . -1
X, =1+ )2{1 + (x )QJ f {Z/(QR)}
1 - 1/2 u
X2 = - cos.p/2 [1 4 (x')2 ] A S X2.1 3
B 1= 1 g
X, =1 - [1 1 (X)J , {/J/(zR)} ,
n e~ 1/ ]
X3 = .- Gos p/2 [ 1+ (x )2 ] 2, X1°1 . tan n ,
-1/
X = sin p/2 [1 {«(X")2 } ! 2 . X . tan n'
4 2.1

Later on, in the coming investigations, in the integrations over the
globe, it will be convenient to distinguish between the integration cver
the whole globe and that over the near surroundings of the test point P,
up to a distance of about 100 kin or 1 000 km from P,

Now, the terms Xi, (i =1, 2, 3; 4), are brought into a special
form which does suffice for the integrations over the near surroundings
of the test point. In the near surroundings, the following inequality
is right;

er << R R

Further, the integrations over the ncar surroundings are governed by

the fact that such integrands are taken along which are proportional
to x2, x3, ... .Indccd, if e > 100 km or e' > 1 000 km, the
amounts of x2 and x3 are extremasly small. they are so small that
they can be neglectcd in the domain beyond the near surroundings of

the test point P, ihis i1s the underlying mechanism which allowis a
restriction of the intecgrations to the near surroundings, only.

Later on, it will be found that the-integrations over the near
surroundings of the test point P have to be executcd only for test
points situated in the higher mountains; and they will share to the

hei ght anomaly at the point P by not more than about a deciumeter.
For lowland points, the impact of these integrende proportional to
b 4 or x3 will be smaller than a centimeter , - negligibly small

amounts in most cases, iWherefore, it is allowed to neglect reclative
errors of the order of Z/R, in any case, in these above discussed
integrations over the near surroundings.

Thus, introducing the approximations
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(A 86)

(A 86a)



14 (2/R) T 1,p% ¥ (e'/R)?

ne

o, (A 86b)

the expressions of (A 83), (A 84), (A 85), and of (A 86) turn to

2 ~-1/2
X, = =sinp/2 [1+ (x)?] , (A 87)
-1/2
X, = =xv[14+ (2] 777, (A 88)
-1/2
Xy = - [1 + (x..)Z] + tan n' , (A 83)
5 -1/2
X4 = sin p/2 [1 + (x™) ] © x"+tan n' ; (A 90)
The above 4 equations are valid if
(e'/R)2 << 1, |z/R| <¢<¢ 1 . . (A 90a)

Fig. A 6
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The function tan n' and the sign of tan n' are defined by (A 62),
For a star-shaped Earth, tan (g', n) is always positive, Thus, the sign
of tan n' is that of cos € : If the height of the terrain diminishes
for rising values of p at the point Q, in this case,tan n'is positive as cos g-,
also. (See Fige A 3, Fig. A 6),

—0

The unit vector (g) of Fige A 6 and of Fig. A 3 is the projection
of the unit vector of the normal of the Earth's surface (pointing into the
interior of the body of the Earth) into the plane constructed by the points
P, Q, O,

Now, the term  tan n', appearing in (A 85), (A 86) and (A 89), (A 90),

is expressed by a formula depending on =x and (Z2/R'). The following
differential relation is easily obtained, Fig. A 6,

tan n' = - dz / [(R*' +2)-dp] . (A 91)
Here, R' has to be considered as a constant value. (A 91) can be brought in

the form of an integral,

P
72 = = S' (R* +2)-(tan' n') - dp . (A 92)

p=0

The spherical distance P and the straight line e!' are connected by a one = one
mapping. Thus, in (A 91), dp can be expressed by de', and inverse, It is
easily found that

e!' = 2 -R' + gin p/2
de' = R' - (cos p/2) - dp,
-1
dp = [-R" (cos p/2) ] . de! . ! (A 93)
The combination of (A 91) and (A 93) yields
a2/ de' == (1 +2/R') - (cos p/2) ~1. (tan n') ; (A 94)
(A 27) gives, for x = x (H', e'), H' = const., and for Z=Z(e'),(for x= Z(e') /e' ),
ox/e' = =~ (2/e'?) + (1/e') (dz/ De'), (A 95)
and further, (A 94) (A 95},

Dx/de' = = x/e! ~ (1/e') (1 + Z/R') - (cos p/2)~ - (tan n') . (A 96)

(A 96) leads to the following expression for tan n',
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tan n' = -~ (cos p/2)-(1 ~ Z/R')-,- e' - (9x/ DPe') + x ] . (A 97)

Now, regarding the simplified formulas (A 88) and (A 89) for X,

and X3, they offer to get combined to one single expression. With the

constraints (A 90a), this fusion of X, and X3 is, considering (A 70Oa),
» =172
X, + Xy = - ['l + (x*) ] - (x'' + tann') . (A 98)
The following rearrangements of (A 97) are self-explanatory,

tan n' + x'' = = (cos p/2)-(1 = Z/R'") . e' . (Ox/De') + x''-Z/R',
(tan n' + x'*')«(1 + Z/R') ¥ - (cos p/2).e'«(9x/De') + x''-Z/R'

¥

and, neglecting relative errors of the order of Z/R!' in the two
expressions (tan n' + x'') and x" ,(A 90a), the following relation is obtained

- (cos p/2) - e' - (9x/ Pe'),

"

tan n' + x'!

This above equation turns (A 98) to
-1/2
X + X3 = [1 + (x")2:] . e' +(cos p/2) + (@x/0ve'), (A 99)

for the constraints (A 90a),

Wwith (A 87), (A 99), (A 90), and (A 97), the simplified form of (A 82)
turns to (A 100), - observing the range of validity of the constraints (A 90a) -

[){14-)(2+X3+X4 ]O =

=1/2
=[1 + (x")2J vl:— gin p/2 + e'-(cos p/2) - (@x/De') =

-~ (sin p/2) . (cos p/2) - x"c{e'-(’ax/’ae') + x} J W (A 100)

In (A 100), the suffix [ ]0 behind the brackets denotes that the
simplified form of the sum X1 +X2 + X3 + X4 is specified here,
The relation (A 100) is allowed to be applied only if it appears as a factor

which is multiplied with x, (n =2, 3, «..). Thus, (A 100) has the restriction
to appear only within the forms

T
x -['x1 + Xy + Xy + Xy ] o 3 (A 100a)

for

n =2y 3, eee . (A 100b)
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x2 diminishes quickly for growing distances from the test point P, since x= Z/e' .

This is the reason why integrations over integrands of the form (A 100a)
need to be extended over the near surroundings of the test point P,
only, up to a distance of about 1000 km, perhaps,

The integrations over this near surroundings, up to 1000 km distance from P,
are accompanied by the following approximation (A 102);Further, (A 101) 4is applied.

sin p/2 = e' / (2'R'), (A 101)
cos p/2 ¥ 1, (e' < 1000 km) (A 102)

(A 70a), (A 101), and (A 102) are introduced into (A 100)., The relation
(A 103) is the consequence,

[x1+x2+x3+x4]o = a-b , (A 103)

a=[1+&n? ] -1z ) (4 103a)

b = -{e'/ (2-R')}+Ee"[1 - x.e'/ (2-R')]-(’Dx/’ae')}-fx-zev/(z-av)}, (A 103b)
valid for

e' < 1000 km . (A 103c)

In the brackets of the second term on the right hand side of (A 103b), a
rearrangement leads to

1 -{x-e/ (281} = 1 -{2/ (2:R")] ;  1b3a)

A relative error of the order of Z/ (2+R') can be neglected in the second
term on the right hand side of (A 103b),(for (A 103c))s Hence,

[x1 +x2+x3+x4]o
- [1 s 0?2 | '1/2-[- 14 2R - @x/Pe") = 28] -{er/ (R0} (A 104)

In the above equation (A 104 ), the terms of the relation (A 103d) are inserted after
they are put equal to the unity, neglecting relative errors of the order of 2/R' in
the relations (A 103d) as well as in the second term in the second brackets on the
right hand side of (A 104). Sure, these approximations are allowed before the back-
ground of the constraints (A 90a) as well as before the background constructed by
the fact that, in the course of the coming investigations, the expression of (A 104)
will come to be treated after multiplication with the factors x2, x3, ees , in any
case , (A 100a) (A 100b), Here, it is essential that the amounts of xe, x3, o0e
diminish rapidly for growing distances e!' +to the test point P at the oblique
surface of the Earth u.
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14,6, The representation of E(2) by a sum of 3 terms

(A 53) and (A 54) yield for D(1,3)

(eyn) 1/e!
D(1.3) wim (1f6B) 5 omnem)  @ll/el) (A 105)
cos(g',n) @r

This form is inserted into the relation (45b) of section 4,
E(2) = - g( T.D(1,3) - dw (A 106)
w
(A 105) 1is divided into the spherical and into the topographical part, (Fig.A 2,A 5),

1762 = 1/e'2 4 (e'2 = e?) / (e2.6%2) . (A 107)

(A 105), (A 106), (A 107), and (A 82) result

E(2) = E(2,1) + E(2.2) + E(2.3) , (A 108)
with
E(2.1) = || 2+ (e'? e2)-(e-e')-2‘(X1 F Xy Xy 4 Ky cdw o, (A 108a)
w
E(2.,2) = (( T'(1/e'2)'(X1 + X, + X3 + X4) +dw 3 (A 109)
w
P (/e")
E (2.3) = = ( T . .odw ., (A 110)
oOr

w

14,6.1. The developments and decompositions of the expression for E(2.1)

E(2.1) is given by (A 108a)., From (A 28), (4 31), (4 32) follows

(e'? = e?) /e'? - x% - z/m, (A 110a)
62 = o'2, x ’
x' =1+ 12 + Z/R' .
Thus,
(6'% = 62) - (e-e")™2 = = (x° + Z/R") / 5e'2-x'>. (4 111)
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The following decomposition of E(2.1) is recommended,

E(2.1) = E(2.1.1) + E(2.1.2) (A 112)
with
E(2.1.1) = = T-(x1 + X, +Xy + X4)‘[x2/ (er?. x')J codw (A 113)
w
and
E(2.1.2) = - g To(Xy + Xy + Xy X4)-[Z/(R'-e'2-x')] Caw . (A 114)
w

14.6014ts The formula for E(2.1.1)

2

In the integrand of (A 113), the term x stands in the numerator of

the fraction in the brackets. x2 diminishes quickly for growing distances
el from the test point P. For e' = 1000 km, x2 will be of the order
of 10-6 , for instance. Thus, in (A 113), the integration has to cover
only the area with

e!' < 1000 ¥m , LA 115)
(see also: (A 100a), (A 100b)).
Consequently, in (A 113), the sum over the four X, values can be replaced

by the simplified expression (A 104). With(A 104), (A Toa), (4 39), (A 40),
neglecting relative errors of the order Z/R!' and (e'/R')°,

x' ¥ x "
Y oy o= 1+ x
and, with the constraint (A 115), we find the subsequent equation (A 115a) ,
[X1 + X2 + }(3 + X4}O' [xz/ (e'2- x')] 24
2 %2 (1 +x2)-3/2~ [Z-R"(Bx/’c)e') -1 -xz]‘{1/(2-e"-R')§‘ . (A 1158).
(A 113) and (A 115a) lead to
E(2.1.1) = E(2.1.1.1) + E(2.1.1.2) , (A 116)
with

=3/2
E(2.14141) = = \\ T-x2:(1 + x2) ~ - @x/De') - (1/e') - dw , (A 117)

=
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and

=-1/2
E(2.141.2) = \T'x° (1 + x°) a{1/(2e' R') }vdw g

14,6,1¢1e1. The formula for E(2.1.141)

The formula (A 117) undergoes some transformationsconsidering the fact
that the integration has to cover only the near surroundings, (4 115),
Thus, the spherical surface element dw can be substituted by the plane
surface element,

dw —=— e'-de'- dA ,

A is the azimuth counted clockwise from the north, (A 117) turns to

2%
E(2.141.1) = < E' - dA
A=0
with
' -3/2
E' = - T.x2. (1 + %9) . (dx/De')  de'
e'=0

An integration by parts is introduced. It uses the substitutions (considering

@3.1/’86' = = DI/ De',

(2 2,73/2
by = g x“ (1 + x%) + (Ax/et) . de'

e'=0

in the above integrand, x is understood that it is a function of e', only,

x =x (e') .
Thus,
-3/2 '
’Db1/’8e' = x%-(1 + x2) « (Qx/de')
-1/2
b.l=—X'(1+x) + arsinh x ,
with

®b1/’c)e' ={(d by)/ (@ x)z‘(ax/@e') .

The integration by parts gives
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] 3 e‘
o €0 o

E' = S 51-(‘9b1/‘ae').de'

e'=0 e'! e

the upper and the lower bound have the following transition behavior,

/ . [

ey >0 eq —. 1000 km ,
Hence
’ e'o
> -1/2

E' = (= T)f (= =)(1 + x) + arsinh x +

e'0 e'u

> =1/2

+ l:(- )1 + x9) + arsinh x (dT/det) rde' . (A 120)

According to (A 118a), E' has to be integrated with regard to the azimuth A.
Thus, the first term on the right hand side of (A 120) leads to

2% e!
p=1/2 |
(= T) (- x)(1 + x%) + arsinh x ¢« dA . (A 121)
A=0 eou

In case, approaching the test point P, e'u-—>o, the T value tends
to its value at the test point P, Thus, if e'u—>0, it follows that
Tl;2 —>TP = constant. Q 1is the moving point, Fig. A 6. The slopes of the terrain
are considered to be continuous functions , as found in the topographical maps.
Purther, if e'u ->0, the moving point Q at the surface of the Earth
u tends to lie more and more close on the surface element of the tangential
plane of the surface u at the test point P, Thus, on this supposition,

the X value tends to an expression of the following shape,
b4 =(Z/e')'="n1 rcos A + n,-sin A, (e'u—"-O) 5 (A 122)

In (A 122), the coefficients n, and n, denote the north = south and

the east = west component of the slope of the terrain in the test point P.

A is in (A 122) the azimuth. The term b, (A 119), appearing in the brackets

of (A 121), is expressed by an odd function of =x, b1(x) = = b, (- X) ¢ This fact
has the following consequence., For small values of e& y» in the azimuth A = Ay
the function T-b1 ,(see (A 119) ), will have an expression of the following shape

Teb. = ka f Xk + ka.2 . (e&)2 + eee o Further, for small values of e\; y in

1
1 a.1 " %u
the azimuth A = A, + 180° , the function T-b,I will have an expression of the

2
ensuing type : T:b, = - k, + ké.q SCRENES ké.g-(e&) + e¢e¢ , Thus, considering the

limit of T-b,] for el'1 —— 0, in the azimuth Aa ,we find T-b,] —*ka % and’in the

azimuth Aa + 180° ) we will obtain T-b,]—e—- ka o (For & terrain of continuous slopes),
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Before the background of these deliberations for e'u-%’o, the two
equations (A 119) and (A 122) lead to the fact that the following relation
is valid, (A 121),

2w
- g (T'b1) s+ dh —=0 , (A 123)
e'=e!
A=0
if
e, —™ 0 . (A 123a)

Herewith, the consideration of the relation (A 121) for the lower value of
the argument e'y (i.e. e'u), is already settled,

The relation (A 121) for the upper value of the argument e', (i, e. e'o),
is now in the fore, e'O is the amount of e' for the periphery of the circle with
the radius e'O = 1 000 km, and with the test point P as center,

The following inequality is valid,

| x] <1, if e's = 1000 lm. (A 123b)
In case of (A 123b), the function b1 has the following convergent
series development, (A 119),
b= (/3% =4 e ;22T (A 124)

Consequently, for the upper argument e! the relation (A 121) takes the

following shape,
2

- (1/3) (1 x3) . da . (A 124a)

e'=e!
0

O’

=

A=0

With x = (2 km)/ (1000 km) = 2 - 10'3, and estimating the height anomalies

with & = T/g* = 100 m, the term (A 124a) influences the final result of the
height anomaly { at the test point P by less than (1/1000) millimeter:,

(see equation (44) of section 4).

For the model potential M (according to the equation (145) of the section 7),
the subsequent version of the parameter data is chosen: & = M/g' = 1000 m,

x = (10 km)/ (1000 km) = 10'2; thus, by (A 124a), for the effect on the

final £ value, the amount of 0.3 millimeter follows, This latter amount

can be taken as the maximal amountsof (A 124a).

Finally, (A 118a) (A 119) (A 120),
2w ,
E(2.14141) = % b1'(aT/ae')- de! - dA . (A 125)

A=0 e'=0
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In order to shorten the writing , the following abbreviating
symbolism is now introduced,
2%
(4) (B) - V- de'- dA = ( { Y de'-da . (A 125a)
A=0 e' =0
Here, the upper bound of the integration over e' 1is e' = 1000 km.

If in the relations of the kird of (A 125a) the differentials d e' and
d A appear, in this case, necessarily, the integrati on area extends

to e' = 1000 km, only.

The combination of (A 125) and (A 125a) leads to

E(2.141.1) = (4) (E) b1-(3T/ae')- de' . dA (A 125b)

The essence of the rearrangements of E12.1.1.1) by the relations from
(A 118a) to (A 125b) is the fact that the derivative of =x with regard to
e' 1is replaced by the derivative of T with regard to e'!, The latter
derivative is much more smoothed than the first one, a great relief for the
numerical computations is the consequence. The right hand side of (A 125b)
needs no further transformations, it can be introduced in the calculations,
directly.

1466e161.2, The formula for E(2¢1.142)

After E(2.1.1 .1) has a form convenient for numerical computations,
(A 125b), the consideration of E(2.1.1.2) is now in the fore, (A 118).
The form of the right hand side of (A 118) has already a form convenient
for numerical calculations,
Similarly as in the integrand of (A 117), the term x2 appears in the
integrand of (A 118). The amount of x2 diminishes quickly for growing.
values of e', Thus, the integration area on the right hand side of
(A 118) can be restricted to the near surroundings of the test point ‘Pry
of not more than 1 000 km distance from P, as in case of (A 125b),
Again, plane polar co-ordinates are introduced. Thus, (A 118) twurns to

-1/2
E(2.1.1.2) = (A) (E) (1/2)-(T/R')-x%. (1 + %°) de'-dA . (A 126)

Wwith (A 116), (A 125b), and (A 126), the following form for
E(2.1.1) is obtained,

E(2,141) = (A) (E) b, (9T/"') d e'-d A +

-1/2

+ (A) (E) (1/2)-(T/R')-x°-(1 + x2) de' daA., (A 127)
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1446414 1¢3. The integrand proportiomal to x2 in areas a great distance
away from the test point

Considering the integral for E(2.1.1), (A 113), it is obvious that x°

has very small values if e! 1is greater than 1000 km, In (A 127), it is
intended to integrate only as long as e' is smaller than 1000 km. The
following lines intend to verify that the restriction to e'-values smaller
than 1000 lm is justified., A reliable evidence will be given,

However, in this context, not the simplified form for the sum of the
four X; terms will be applied, (A 104), simplified by superposition with(4 90a). But,
it is necessary to base on the precise form for the four Xi terms,
(A 83) to (4 86). But, of course, relative errors of the order of (Z/R")
can be neglected in the expressions from (A 83) to (A 86), at least in
this context discussed in this sub-section. Along these lines, the
following formulas are found,

X, = = ain p/2 [1 + (x")2] -1/ , (A 128)
X, = = cos p/2 [1 + (x")2 J -7z x", (A 129)
X = - cos p/2 [1 + (xm)?2 ]'1/2 T (4 130)
X, = sin p/2 [1 + (xm)? J-Vz- X" «(tan n'); (4 131)

in the above lines, relative errors of the order of 2Z/R' are neglected,

Z/R" << 1 . (A 132)
Considering (4 132), the relation (A 97) turns to

tan n' = - e' (cos p/2) (Ox/QDe') - (cos p/2) - x (A 133)
Consequently, with (A 70a),

tan n' = = e'-(cos p/2)+ (Ax/t) - x" , (A 134)

Thus, if the distance e' is allowed to have values greater than
1 000 km, the equation (A 99) is transformed to

»7-1/2 2
X, + X = [ﬁ + (x") ] - e'-(cos p/2) : (x/De') (A 135)

The relations (A 128), (A 131), (A 135) yield
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"2 -1/2
[x1+x2+x3+x4] =[1+(x):l . {q1+q2+q3}, (A 135a)
00
with
qq = - sinp/2 (A 135Db)
qp = = (sin p/2)-(xm? (4 135¢)
ay = [(cos p/2)2ve' - (sin p/2):(cos p/2)-x" - e! ]'(ax/’ae') . (A 1354)

The relation (A 135a) derives from the universal formulas (A 83), (A 84),
(A 85), and (A 86),by neglecting relative errors of the order of Z/R, only.
(A 135a) is valid for whole the glohe, for all values of p between

0° and 180°.
With
sin p/2 = e'/ (2 R'") P (A 135e)
| x|=]2rer]| << 1, (A 135¢)
l xﬂ, = |x . cos p/2|<<1 y (A 135 g)
£ =1+x°+2/R" T 1, (A 135h)
e!' > 1 000 kam (4 1351)

the equation (A 135a) turns to

[k1 + X, + X3 + Xé] T (er/(2 R'))i} 1 + (cos p/2)2-2~R'-(@x/ae'%}. (A 136)
- 000

In the construction of (A 136), the following development for the expression
in the brackets of (A 135d) is taken into account,

(cos p/2)2-e' - (sin p/2)-(cos p/2)-x"-e' =

e’ (cos p/2)2 [1 - (sin p/2) - x]

ne

e'. (cos p/2)2 [} -7/ (2 R')]

1

e'-(cos p/2)2
The relation (A136), (the second term in its brackets on the right,only),is put
into (A 113). Instead of (A 117), the following expression is obtained for

E(2¢1e141)y in order to check the impact exerted by the integration area of (A 1351i),

E(2.101.1) = = || T-(cos p/2)2-%x%. (@x/9e'). (1/e') - d w . (4 137)
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Similarly as in case of (A 117), the integration by parts allows to
transform the relation (A 137). The following rearrangements of (A 137)
are self = explanatory,

dw=(R')?sinp .dp -da

"

R ¢ (sin p) » dp « dA

(R2- gin p+d p rd A)/ (2R +8in p/2),

LES

(1/et)-d w

(9x/Qe') = (9x/op).(dp/ de'),

(dp/ de') £ 1/ (R cos p/2) ,
(0 x/000) T (0x/0p)-{ 1/(R+ cos /2]
(@x/2e')-(1/e') . dw :fax/ @(R-p)] R-dp -dA ;
consequently, (A 137) turns to the subsequent relation, putting 1+(Z/R) ¥ 1 ,

E(2¢1e1e1) = = gST-(cos p/2)2c xz-['ax/a(R-p) :’ +R.dp-dA

A step, analogous as that from (A 117) to (A 125), leads from the above
equation to the following one

(1/3) gg x3~[29{'r-(cos p/2)2}/’c) (R-p)]-n.dp Cd A,

BE(2416141)

]

or,

E(2e1e141)

(1/3) %3 -[@{T'( cos p/2)2g/@(R-p)] '{1/(R-sin p)g -dw , (A 137a)
Here, the following amounts for the different parameters are introduced, now ,

3.10712

"

(1/3)-x> = (1/3)- (2 ¥m/ 10 000 ¥m) >

(1/G)['a{'l‘-( cos p/2)2} / D(R-p):,

(G is the global mean value of the gravity), further, if Aw is the

[k

10" ¥ (1/72) - 1074,

"z

size of the surface compartments,
(a w)'(1/(R-sin p)) Y Aw+(1/(R-sin p)) ¥

40 km ,

e

Y (500 ¥m - 500 km)/ 6 000 km

The global total number of the compartments Aw of the constant size of

500 km - 500 km is 2 - 103 o Summing over the values of the integrand for the
individual compartments by the square root law, the amount of E(2.1.1.1) is
estimated as follows, if integrating over distances greater than e' = 1000 km
by means of (A 137a),

5 1/2
3-10"12 . (1/2) - 1074 - 40 ¥m - (2 - 107) = 3.10"7 millimeter.
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In case, the model potential M according to (145) of the section 7 is
implied, instead of T,

T M ,

a multiplication with the factor 10 will be necessary. But, also the thus
obtained amount of 3 ~1O-6 millimeter is absolutely insignificant in our
applications.

Hence, it will be of no use to extend the integration domain of
E(2.1+141) according to (A 125b) up to a distance e' from the test point P
which is beyond of e' = 1 000 km,

Now, the term E(2.1.1.2) is in the fore, (A 118). The share of the
integrations covering the domain e' > 1 000 km is to be evaluated., In
this context, the first term in the brackets on the right hand side of (A 136)
ig introduced into (A 113). The global form for E(2.1.1.2) is obtained,
instead of (A 118),

E(2e16142) = S; 7.x2. (1/e')-(1/ x') « (1/(2°R")) - daw ,
w
and with (A 135 h),

E(2¢1¢1.2) = T-x2-[1/(2'e'-R') ] cdw e (A 138)

W

The integrand of (A 138) has already a shape convenient for numerical evaluations
about the impact of the area beyond of e' = 1 000 km, The following parameter
values are int roduced, globall y averaged,

/¢ ¥ 0,05 km,

2

x (2 \m/ 10 000 xm)2 = 4.10°8 ,

Y (1/ 12 ooo)km*7,

"

(R*sin p) / (2'R'-e')

2-R!
Aw -|:1/(R-sin p):| Y 40 xm .

Thus, summing in (A 138) over the individual compartments™ (of total number 2 - 103)
by the square root law, (A 138) gives

1/2
=1 40k -(2-10%3) ",

0.05 lm + 4 +107C. (1/12) - 107> km

or,
301070 xm = 3.10™% millimeter .
This amount is absolutely insignificant,
In case, instead of T, the potential M 1is applied, a multiplication by

10 will be necessary; but the thus found amount of 3. 10'3 millimeter is
also negligible,
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In (A 118), it is not necessary to extend the integration areas beyond
of e' = 1000 km., The same is valid in case of the relation (A 117).

14,66162o The formula for E(2.1.2)

The expression for E(2.1.2) is now in the fore, it is given by (A 114).
In the brackets of the integrand of (A 114), the very small factor Z/R' turns
up, the amount of this factor is of the order of about 1073 or 1074,
In the sum of X1 + X2 + X3 + X4 in the braces of (A 114), it is allowed,
consequently, to neglect relative errors of the order of %/R'., They share
to that terms in the integrand of (A 114) which are of the order of T(Z/R')z,
an amount not greater than about T 010'6 or T -10_8. A relative error of
smaller than 10~ can be neglected in the T potlential values in any case,
since the impact of it on the height anomalies c , being equal to T/g', will be
smaller than 0.1 millimeter. A relative error of smaller than 10°° in the
amount M/G will be smaller than 1 millimeter, because | M/Gl will be smaller
than 1000 m, if M 1is the model potential T - B,

Consequently, the Xi values here to be applied are not the universal
expressions by (A 83), (A 84), (A 85), (A 86)., Here; for the computation of
E(2.1.2), the expression (A 135a) for the sum [X1 + Xy + Xy + X ] is

3 4450

recommended, (A 135a) represents the prccise values of the Xi terms, globally
valid within the interval ogp <;180°, but free of terms which cause a |
relative change by the order of Z/R. Along these lirnes, the following formula
for £(2,1.2) is obtained,
5 -1/2 5
BE(2e1¢2) = = T'[1 + (x") - (sin p/2) - a‘{Z/(R“e' 'x')}-d Vi, (4 139)
w

with

a==1=(xM24 2-R'~{( cos p/2)2 - (sin p/2):(cos p/2).x" g'(Qx/"De') . (A 139a)

The reader is remembered that

n

x" = x-(cos p/2) , (A 140)

2

x' = y% + Z/R' = 1+ x° + Z/R' (A 141)

n

The expression for the term a is now considered, (A 139a). It contains
amounts as - 1 and 32-3'~(cos p/2)2. (@Dx/De') }. - 1 1is constant, and
2'R' (cos p/2)2 has not an expressed tendency to go to zero for growing values
of p. But, the amounts of = (x)2 and{- 2.R'-(sin p/2)-(cos p/2)-x"- (D x/?De‘)}
appearing in (A 139a) have a clear tendency to go to zero for growing distances
e' from the test point P, on the strength of the fact that these amounts
contain- x" and (x")2, (A 140). Consequently, in (A 139), it will be of use
to separate such terms, which diminish rapidly for D >180° .
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This division into two parts is described by the following relations,
(A 1412) (A 142) (A 143),

E(2e142) = E(2e142e1) + E(2.142.2), (A 141a)
with

-1/2
E(2,142.1) = gng + (x")g:] © (ein p/2)+q, {2/(Re'Zx)] . dw, (4 142)

w
a =(x")2 + xv.e'-(cos p/2)-(dx/De"); (A 142a)

-1/2
E(24142,2) = i[T'[1 + (x")2J . (sin p/2)-q5 '{Z/(Rle'z-x')}-d w o, (A 143)

i

g = 1 = 2-R':(cos p/2)2- (Ox/ @e') . (A 143a)

1446¢1.261. The formula for £(2.1.2.1)

In the near surroundings of the test point P, for e'<1 000 km, it is
allowed to put cos p/2 % 1, x" ¥x, x* % 1+ x° o With these
simplifications, the relation (A 142) turns to

5 =1/2 1 )
E(24162.1) = (1 + x7) - (sin p/2) -qu-{x/(ﬂ'-e')}r—?'dw ) (A 144)
+ x
w
with
q = x2 + x.e'. (dx/De') . (A 144a)

And further

-3/2
E(2e142.1) = g<’r-x2-(1 + x2) ‘[x + e"(’ax/ae')]'(1/(2-R2))-d w . (A 145)

The relation (A 145) offers 1itself to get divided into two parts,

£(2410201) = E(241.2.1.1) + E(2.1.2.1.2) , (A 146)
with
E(2.1.2.1.15 =m0 4 x2)-3/% (1/(2-r%)-a w, (A 147)
w
and
E(2.1.2.1.2) =\\ T+ x2: (1 + 22 (Ox/E)e‘)-g e'/(2-R2)f-d Wy (A 148)
W
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for
e' < 1000 km ., (A 148a)

The form of (A 147) is in close neighborhood to the relation (A 126).
The introduction of plane polar co = ordinates and of (A 135e) turns (A 147) T

~-3/2
B(2.1420141) = (&) (B) T-x7-(1 + x°) - (gin p/2)+(1/R)-d e' - d A « (A 149)
(A 149) has already a form convenient for the calculations,

The reader is already acquainted with the above used abbreviating writing
style, (A 125a).

Wow, the expression for E(2.1.2.1.2) is considered, (A 148).
The representation by plane polar co-ordinates yields, (A 125a),

E(2.1+2.162) = (A) -E" . d A § (A 150)
with

~3/2
2)

E" = (£) 2:7x°%-(1 + x . (sin p/2)%. (9x/ de') - d o' . (A 151)

In (A 150), this following relation is valid,

27
(1) - T -d a = g‘l/-dA 5 (A 151a)
A:O
and in (A 151),
)V - ae = S J.aer ; (A 151Db)
e' =0

the upper bound of the integration by (A 151b) is e' = 1 000 km,
(see (A 125a)).

The integral of (A 151) is integrated by the method of the integration by parts.
The following substitutions are used, ( In (A 152b), dp/de' comes from (A 93) ) ,

a, = 27 (sin p/2)2 (A 152a)
da,/de' = 2-(sin p/2)%. (3T/de') + 2+T (sin p/2) +(1/R'), (A 152b)

and, with (A 119),

-1/2

b, =b, ==~ X (1 + xz) + arsinh x = (1/3)013 S &5 500 . (A 152¢)

at the end of the above relation, (A 152c), a series development for the fupction b2
appears : (1/3).;;3 ~+ eee o This series development is walid for x2 < 1, only,

( see (A 124) ) 3
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2 2 2
3b2/’8e' = X (1 + x9) - (9x/0e?) . (A 1524)

The integration by parts turns (A 151) into

E" = Ef + BY) " (A 153)
e'o
E1“ = |2+T:(sin p/2)2' b2 = (A 153a)
e!
e! =
0

E", ==2 | b, |T:(sin p/2)-(1/R') + ( sin p/2)2. (@1/ Pe') |-d e' . (A 153b)

In case that e'u tends to zero, the amount of T and that of b2
is finite, since T has continuous values, and since a star-shaped
Farth is introduced(the slopes of the terrain of it having finite values) .
Further, if e'u tends to zero, the amount of sin p/2 ternds to zero,
simultaneously., Consequently, (A 153a), the following {ransition behaviour
is right,

[2~T - (sin p/2)2 © b, ] —= 0 , (A 154)
e! & evu

if e'u tends to zero,
As to the upper bound of (A 153a), this bound is defined by e'y = 1000 km,
Here, the following data are useful,
2 2w
( sin p/2)? = [:evo/ @wy ] ¥ (& 154a)

and, (A 152¢),

by = (1/3):x% =+ +.. ¥ (1/3)-(2 km/ 1 000 km)” = 3- 1070 (4 154D)
with (T/G) = 0.1 km, the following self - explanatory developments
are right,sure,for the upper bound e appearing in (A 153a), ( see (A 15%a)(A 154b) ),
[2-@(1/0) - (sin p/2)°- bq] ¥ 10 m ¥ o . (A 154¢)
=Je'!=g
= 0

In case, T is replaced by the model potential M = T - B, (see
(145) of section 7), the amount of (A 154c) has to be multiplied with a factor of about
10 ; a negligible amount reveals,furthermore .
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Summarizing, the amount of E? can be neglected,

Hence, with (A 150) (A 151) (A 153) (A 153b),

E(2¢1.241.2) = (&) (E) (-2)<b, vqg -de'-aa , (A 1544)
with
9 = T-(sin p/2)- (1/R*) + ( sin p/2)2-('aT/'a€') s (A 154e)

The estimotion of the average amount of E(2.1.2.1.2) is now the work
which is to be done,
In this context, the following parameter values are introduced in the
integrand of (A 154d) (4 154e): /G = 0,05 km; sin p/2 = (20 km/ 6000 km) ;
1/R' = (1/6000 km); (1/G)-(91/ de') = (0,05 kn/ 1000 kn);
by, = (1/3)-x> = (1/3)-(3 km / 30 km)?; d e' = 100 ln.

These data reved

g /G ¥ (0.05 km)- (1/300) - (1/6000 km) + (1/300)° - 5. 1072
thus,
@/ 6 T (1/8) - 07T,

Consequently, (A 154d),

n

(1/G) -‘(1/2%‘)-E(2.1.2.1.2)’ 2-(1/3) -(1/1000) +(1/4) - 10~ 100 km,

or
(1/6)+10™2 millimeter.

(1/6) | (1/2% ) E(2.14241,.2)

If 1T/G is replaced by M/G, again, a multiplication by the factor 10 will
bring about this transformation.A valuve of (1/60) millimeter is now the result,
always to be neglected.

In order to avoid misleading deliberations, the nearest surroundings of
the test point P, up to a distance of 1 km or 2 km, are now especially
considered, for the case of steep cliffs of |x| >1. For |x ‘>1, the
series development for b, cannot be applied, (A 1529). The closed
expression on the right hand side of (A 152c) is now of use,

For

= —1’

(A 152¢) leads to

b, = (1/2)1/2 + arsinh  (=1),
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or,

b, = 0,707 = 0.881 = = 0,174 (A 154fF)

Integrating in (A 154d) over the interval 0 <€ e' €2 km, we choose thege data:
b, = = 0,174, ©/G = 0,05 km, d e' = 2 km, sin p/2 = (0.5 km/ 6 000 m) = (5/6)+107%,

With these data, it follows that the integration over the domain e' £ 2 km
takes the following share on the amount of |(1/2ﬁ’)'3(2.1.2.1.2)l « (1/G)
(see (A 154d)), .

?

(=2):(=0.174) - (0.05) - (5/60000) - (1/6000) «+ 2 km = 5 - 107% il dmeter .

The transition from 7/G to M/G leads to 5 ~‘|O"3 millimeter.

Also the very extreme case of X = - 10 brings no trouble., b2 is computed
by
b, = 10-(101)"12  _ arsinh 10,
or,
b, = 0,995 - 2,998 = ~ 2, (A 1548)

arsinh x 1is an odd function.
A comparison of (A 154f) and (A 154s8) shows that now, for % =-10, the amount of
the integration over the domain e' 2 km 1is about ten times zreater,
A value of 5 - 10"3 millimeter, resp, 5 - 10"2 millimeter) is now the consequence,
It is always negligible - this amount of (1/G)-2(2.1.2.1.2) -, even in case of very
steep cliffs of x =-10, too.

Thcrefore, in the subsequent deductions, it is allowed to put

s

£(2e1.2,1.2) = O, (A 154h)

Consequently, (A 146) (A 149) (A 154h),

-3/2
E(2.1.2.1) = (4) (E) Tex3 (1 + x2) - (gin p/2)-(1/R) - de'-da (4 155)

e' < 1000 km,
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1456,1,2.2. The formula for E(2.1.2.2)

E(2¢1¢2¢1) according to (A 155) is the first term in.the expression far
E(2.1.2), (A 141a). The second term is E(2.1.2.2), it is defined by the
equation (A 143). E(2,1.2.2) is divided into two parts, since a5
consists of two parts of different kind, (A 143a). Hence, the decomposition is
E(2¢14242) = E(2:1424201) + E(2414242.2), (A 156)

with the condtituents

E(241624241)

=-1/2
g( T'[1 + (x")z} « (sin p/2) . {Z/(Rte'2~x')g < dw . (A 157)

w
and

E(2¢1424242)

~-1/2
- %’I‘ -[1+(x")2J « (sin p/2):(cos p/2)2-_ (9x/ ’c)e')~{ 2-Z/(e'2.x') zdw.

Y (4 158)

At first, the consideration of E(2.1.2.2.1) is in the fore, (A 157).
In the integrand of (A 157), the height dependence is brought to bear by the
expressions Z/R, (x“)2, and by x'. There do not appear any derivatives
of height dependent terms, as 9x/ Qe for instance., But, to stress the
essence of the deliberations about (A 157), it is of great importance for
our applications that the form (A 157) can be divided into two parts of
different kind. The constituent of the first kind needs only an integration
over the near surroundings of the test point P, (A 148a). But, the
constituent of the second kind requires an extension of the integration over
whole the globe; p covers the interval from O0° to 1800, in the latter kind.

The rearrangements of (A 157) happen along the following self- explanatory
lines,

e! = 2:R''sin p/2 ,

sin p/2 = e' / (2:R') ,
x=2/¢e', y2 =1+ x° =21,
x' =1 4+x° +2/ R, (A 158a)
x" =

x~(cos p/2)

The above 6 equations are rigorously valid. Neglecting a relative error
of the order of 2Z/R', x' follows as

¥ 1 4+x o (A 159)
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Further on,

(x" )2 = x%-(cos p/2)° = X2~[1 - (sin p/2)° J ’

14 (M2 =1+ x° = x2. (sin p/2)°2 .

-1
1+ (xM2 = (1 + xz)‘[1 -x%.(1 + x%) - (sin p/2)° ] ’
o (o] 2
x? (sin p/2)? = (z/eN)%-(e'f2-r)? = [2/(2R) ] 7,
' -1 2
1T+ M2 = (1 + xz)'[ 1= (1 +x%) -{Z/(Z-R’) } J . (A 159a)

(2 lan/ (2 - 6000 m)? & 3 - 1078,

e

2
{z/(2.r")}

2
Thus, neglecting a relative error of smaller than {Z/(Z'R') } ¥ 3,108 ,

1 + (x")? has the following approximate formula valid over whole the globe
1+ @M% 2 14x% 5 (p= 0% ..., 180° ). (A 160)

With (A 159) and (A 160), (A 157) turns to

=3/2
E(241.2.2.1) = «1 {(1 4 x2) e 1} + 'I}(Z/R')-[1/(2'R"e')]-dw . (4 161)
w

The integrand of (A 161) is right within relative errors of the arder of Z/R', (see
the precision of (A 159)). '

The expression in the parentheses H of (A 161) diminishes rapidly for
growing di stances from tte test point P, It gives rise to the constituent
of the first kind in the integrand of (A 161). Further, it is satisfied with
a limitation of the integration domain to the near surroundings of thec test
point P, only.

The rest of the integrand of (A 161) gives rise to the constituent of the
gsecond kind, it requires an extension of the integrations over whole the
globe,

The division of (A 161) into these two constituents leads 1o the following
form,(A 162), considering (A 125a) and

() @® Veaw = (( Toae 5 (4 161a)

Thus, such a form as that on tht left hand side of (A 161a), which contains

the surface elemnt dw, -~ even by putting the symbol dw - , this form points
out the necessity that it requires the extension of the integrations over

whole the globe, )
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Hence,
2 -3/2
E(2.1424241) = (A) (E) T+| (1 + x°) - 1| (Z2/R")-(1/42RY) - de' . dA +
+ (A) (B) T-(Z/R')-[1/(2-R'-e')]- aw e (A 162)

Some short lines will show that the first integral on the right hand
side of (4 162) can be neglected, always; since, substantially, it does
contain products of x° time Z/R',

Sure, in this first integral on the right hand side of (4 162), the
integration is intended for the near =surroundings, only, (if e'> 1000 km: (xaz/R')§ 0),

e' < 1000 km, (A 163)

In the concerned integrand, the ierm in the brackets diminishes rapidly
for growing values of e', llow, the amount of this integral is

evaluated. At first, the domain (of the first integral on the right of (A 162) )
0ge' € 5 km (A 164)

is congidered. The pavameter data are chosen og follows: ©T/G = 0.1 km,

-2/2
|(1 + x°) -1 I 0.5 (for steep cliffs), IZI = 2 km,
Integrating over tie area of (4 164), the first integral on the risht hand

side of (a 162) yields, multiplied with (1/4),

e

(0.1 Xm)-0.5-(2 Xm/6000 km)-(1/12 000 km)-5 lan ¥ 0,001 cm (a4 165)
low, the same intezral is =vaeluated, but for the domain
10 km £ ¢ £ 100 km ’ (i 1606)

Here, the parameter data are as follows: T/G = O.1 km,
1+ Xz)—':’/2 - 1‘ ¥ (3/2). x° 20,01 (the here applied series is valid for

7% 1) ,) Zl = 2 km, Intesrating over the area (i 166), tre firet

integral on the right hand side of (4 162) contributes, (multiplied with

1/a),
(0.1 Xm)-0,01+:(2 km/6000 km) -(1/12 000 km))- 90 km :’0.000Q cm = (A 167)

Summarizing (A 164) (A 165) (A 16G) (A 167), the first integrand on
the right hand side of (4 162) will hardly surmount the val ue of 0,001 cm.
It can be neglected, consequently.

In case,the perturbation potential T is replaced by the model
potential K (according to equation ( 45) of the section 7), we have to
mul tiply with a factor of about 10 in the results of (A 165) and (A 167).
The thus obtained results amount to 0.01 cm resp. 0,002 cm; they are
negligible, likewise .
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Considering the above lines, (A 165) (A 167), the relation (A 162) turns to
£(2.1.2.2.1) = (4) (B) T-(z/u).[v(zu-e')] Cdw .
(4 168) has a shape convenient for numerical calculations.

Now, the expression for £E(2.1.2.2.2) is in the fore, (A 158).
With (A 159) and (A 160), the subsequent relation comes out, neglecting

rclative errors of the order of 7Z/R.,

135

E(2e1426262) = = (4) (8) T-(1 + x°) + (cos p/2)- (Z/r)-(1/e') - (Ix/ De') . dw. (A

Further, it follows

B(2.14242.2) = = (8) (¥) (T/R)-(cos p/2)% x-(1 + x

""he following lines are self - explanatory,

dw = R'2-(sin p) - dp . da,
de' = r':(cog p/2)-dp ,
de'/ dp = R' «(cos p/2),
dp/ de' = 1/(R'.cos p/2) ,

dx/De' = (Dx/7Dp) - (dp/ de')

9x/3et = Gx/9p) [1/® - cos pr2 )] ;
The relations (A 170), (A 171), and (A 174) are combined td
2 -3/

E(241424242) = = (&) (£) T-(cos p/2)+(sin p)- (1 + x)

If, in (A 175), only the integration with regard to the parameter
considered, before the integration over the azimuth A, the following

integral is obtained,

[

=3/2
E'' = - S T-(cos p/2)-(sin p)-(1 + x°) + x-(9x/®p) -dp

p=0

The relation (A 176) is transformed by the method of the integration by

parts, avoiding forms as ©x/dp . Hence,

~
P =% ]

Eree = a3,b3 - b3-(3a3/ap)'dp;

p= p=0
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- (x /De') - dw.

2
- x:(0x/Dp) * dp * dA.
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with
ay = = T . (cos p/2).sin p,
'Da3/’3p = - (@7/79p):(cos p/2) - sin p + (1/2)-T+(sin p/2)-sin p ~ T-(cos p/2)cos p,
by= 1 = (1 a2, (A 178)
~3/2
9by/Dp = x-(1+x) " . (@x/ ),
Consequently, for (A 177), p=T
> -1/2
Ev't = |- 7+(cos p/2)-(sin p)*| 1 = (1 + x°) -
1] &
- S by (Day/ Op) - dp. (A 179)
p=0
As to the first term on the right hand side of (A 179), in the two cases
p =0 and p =%, the function (sin p) is equal to zero., Thus, the first
term on the right hand side of (A 179) is equal to zero. The relation (i 179)
turns to ~
]
B o= S b3 . t1 - (sin p) » dp (A 180)
p=0
with
b, =(cos p/2)(91/dp) + [(Cos p/2) -(cot p)=- (1/2):(sin p/2)]- T s (A 180a)
(A 171), (A 175), and (A 1380) yield
B(2.1.2.2.2) = (&) (£) by-t, - (1/R'?) - dv . (A 181)
This above integral)(A 181),is now evaluated for the more distant area of
e' > 1000 km » (A 182)

In the integrand of (4 181), the function by = by (x) appears.
The averaged value of b3 according to (A 178), averaged oVver the exterior
domain of (a4 182), can be computed by the following self - 2xplanatory line,

2
(1/2)-x% & (1/2)-(2 ¥m/ 10 000 km) ,

o7
e

b, ¥ 2.1078
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Further,
(1/G)-(9T/dp) = R-(1/6)- (O1/ (R Ip)

on the right hand side of the above equation stands a component of the plumb-line
deflection, multiplied with the Earth's radius R. For a deflection component
of 20'', it follows,

(1/G)-(3T/@p) = R-(20''/ 206 265'') =~ R-10"%.

In the computation of a rough mean value of t1, (A 180a), averaged over the
domain of (A 182), it is aliowed %o operate with the subsequent mean values
for cos p/2, cot p, and sin p/2,

~

cos p/2 1, cotp % 1, sinp/2 & 1 ,

Thus, for (1/G) % 0.1 km , the concerncd averagzed value of (1/G) -t1 is,
(A 180a),

(1/6)- 5, == R [10‘4 + (041 km/ 6000 km)] ,

or,
(1/8) " ¢, =R - 107"
The concerned averaged value of (1/G) - b3 © by follows by
(1/6) » by + £y =2 R+ 10712 (i 182a)

The integration according to (4 131) is now replaced by a summation over
the compartments Aw of a division of the Earth's surface by a n:t of meshes
of 1000 km x 1000 km size, Thus, it is self-explanatory,

2
(1/8'2) - dw —=>(1/R'2%) Aw = (1000 km/6000 km) = 1/36 . (4 132b)
Hence, (A 1£2a) (A 182b),
(1/6) + b, « £, = (Aw/R'®) = (1/18) « R + 10712, | (4 183)

A comparison of (A 183) and (A 181) shows that the term of (A 183) is the
averaged amount a single compartment of 1000 lm x 1000 km size exerts on
the value of (1/G)'E (2¢1.2¢2.2); here, a value of (1/3) - 10—3 millimeter
is reached. Whole the surface of the Earth has an extension of about

500 millions kmz. Thus, a number of about 500 compartments of 1000 lan x 1000 km
size come into question., It will be justifiable to introduce the hypothesis
the function t1/G to vary between the individual compartments similarly as
a random variate, (A 180a), ''hus, the error-effects of the individual 500
compartments propagate to the impact on the sum of these 500 compartments by
the squarc root law, it is plausible, llence, in (& 183), we have to muliiply
with (500072 ¥ 22
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in order to find the average amount of E(2.1.2.2.2), according to (A 181).
This amount results to be equal to 0,007 millimeter,

67 g
g S b3-t1~(1/R'2) «dw -> 0,007 mm (A 184)
A=0 Pq

p, = (1000 xm/ R) ¥ (1/6) ¥ ufyg% (A 184a)

A transition from the perturbation potential T to the model
potential M =T - B in (A 180a) and (A 184) is accompanied by a multi=-
plication with a factor of about 10, since the order of M is about 10
times the order of T, (see ecquation (145) of the section 7). Thus, this
substitution tuims the amount according to (A 184) from 0.007 millimeter
to 0,07 millimeter, always ncgligible, too.

Thercfore, it is not necessary to integrate in (A 181) over the domain
(A 132), Thus, the integration of (A 181) has to cover only the near surroundings
of the test point P,

e' < 1000 km . (A 184b)

The integrand of (A 181) has still to be adapted to this speciality,
putting

cos p/ 2 Y 1,

cos p Y o1,

sin p/2 = e' / (2 R'),
sin p £ et/ R',

dw T e'.de'.dA .

With the above lines; t, of (A 180a) turns to
ty 201/9p + [(R1/e) = (1/4) (e /m) ] 2 (A 1840)
In the brackets of (4 184c), the first term dominates the second one; hence,

t, ¥J1/9p + (R'/ e').T . (4 1844)

1

(A 181) and (A 184d) give = for the constraint (A 184b) given above ~

~t

byt byt (/R'2) raw %

3
b3 [:(’a'l‘/’ae').(e'/R') + T/R']' de' - dA .
E(2¢142¢242) turns to

E(2e1424202) = (4) (E) b3~[( 91/ de').-(e*/R) + T/RJ*- de'.- dA . (A 185)
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With (A 168), we have reached E(2,1.2.2.1). With (A 185), E(2.1.2.2.2) is
found. Thus, E(2,1.,2.,2) is obtained, it is the aim of this sub~sectiony - (see (A 156)).

It will be of interest to know the order of the amount of E(2.1.2,2.2)
according to (A 185), Here, a test point P situated in the high mountains
comes into question, only, since/thz upper bound of the value of E(2¢1.2¢2.2)
should be evaluated. This evaluation of the amount of [!(2.1.2.2.2) for steep
cliffs happeus by the following data: e' <2 lam, x° = 1,
b3 = 0.3, (1/G)(@1T/ Pe?t) = 20"/ 206 265%, /G = 0,05 km, and

(e*/R) = (1 lm/ 6000 km) as an averaged value. (A 185) yields in a self=-
explanatory way,

tv

(1/6) < (1/247) » E(241.2:2,2) = 0.3-[10“4—(1/6000) + (0.05 ku/G300 km)]'Z km,

In the brackets, the sccond term dominates,
(1/8)  (1/2 ) 2(201.242.2) ¥ 0.3:(5/6)-1072 - 2 ;km € 0.5 cm . (a 186)

The exchange of the 1 potential by the model potential i gives here,(A 180), a
value of about 5 cm.

In very rugged mountains only, (1/G)-(1/2%) » 8(2.1.2.2.2) will summount
the value of 1 cm.

in (4 186), the fterm E{2+.1.2.2,2) is considered aftecr the multiplication
with the Cactor (1/G)-(1/2% ). On the strength of this fact, the amount of
0.5 cm obileined by (A 18€) gives directly the full impact which E(2,1.242.2)
exerts cn the heizht anomaly of the test point P, as can be geen hy the
equation (44) of the section 4  and by (A 106)s (1/27W)-E(2.1.2.2.2) 1is
identical with the effect that E(2,1.2.2.2) takes on the T value at the test
point P,

1he equations (A 156), (& 168), and (A 185) yield
BE(2414242) = (A) (&) b3 -Ir(’c)'x‘/’ae')‘(e'/R) + 'L‘/R]-de’ - dA o+

+ (A) (B) T+(Z/R)- 1/(2-R'e')]vdw . (A 187)

14.0¢1.2 3 The Tinal expression for i#(2,1.2)

The relotions (A 141a), (A 155), and (A 187) are combined. They give

E(26142)

]

(a) (&) ('c)’l‘/'ae')-b3~(e'/R)‘de' < dA 4+

+

(&) (¥) (T/R)-[b3 % b4:|vde'- dA +

-+

(A) (&) 'r.(z/R)-[u(z?a-e')].dw , (4 188)
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with
o =-1/2
b3=1-(1+x) . (A 189)
b, = x (1 + x9) « (sin p/2) . (A 190)

14466163s The final formvla for E(2.1)

The expressions (A 112), (A 119), (A 127), and (A 138) lead to the subsequent
formula for E(2.1),

B(2.1) = (&) (8) (91/3e'):[b, + b3-(e'/R)]-de" dA 4

+ (a) (BY (T/R)-[b3 + by b5].de-. da +

+ (A) (B) T-(Z/R)'[1/(2-R-e'):|-dw i (4 191)
o =1/2
b, = arsinh x - x.(1 + x°) ’ (A 192a)
0. =1/2
b3 =1~ (1 +.x°) s (A 192b)
b4 = x3-(1 + x2)- + (sin p/2) , (A 192¢)
> o =1/2
by = (1/2)+ x“« (1 + x°) . (A 192d)

14,6.,2, The developments and decompositions of the formula for E(2.2)

1446,2,1. The decomposition of ii(2,2) into expressions in terms of V1, V2, V3

The equations (A 108) and (A 109) deliver the following expression for
E(2.2),

. _ nolat)=2. (5

E(2,2) -ng (e') (Xy + X5 + X3 + X4) vdw (a4 193)
w

In case, the integration has to cover whole the globe, the integration

element is formed by the surface element dw., Here, the subsequent
abbreviating form is used again, (A 161a),

S( V.aw = (&) () YV-aw , (A 194)

w

where the arguments cover the domain

ogp < ¥, (A 195a)

0 A 2% (A 195b)

https://doi.org/10.2312/zipe.1989.097



141

But, if the integration extends only over the near environment of the
test point P,

0<p < (1000 m/ 6000 km) |,

we have, (A 125a), instead of the writing style on the right hand side of
(A 194), the following form, .

() ) V-aer - aa .
(A 193) and (A 194) yield

E(2.2) = (A) (B) T-(e")™2.(X, + X, + Xy Xy)  aw
As to (A 197), the precise expressions for the X; terms have to be
introduced. They are given by (A 83), (A 84), (A 85), and (A 86).
It is convenient to introduce a bifurcation of the sum of the Xi terms;
the first branch U1 ig free of a horizontal derivation of the x term,
but the second branch Ué involves the slope of the terrain,

X,|+X2+X3+X4=U1 +U2 .

The following developments are self-cxplanatory,

. oy =1/2 ' .
U1 = =(s8in p/2)[{1 + (x") } . }(1.1 - 1] - sin p/2 =
-1/2
- (cos p/2).x“-{1 + (;:")2 _2 . X2.l ‘
=1/2
U2=-{1+(x")2}‘ -q - tan n' ,

q = (cos p/2)-X1.1 -~ (sin p/2)-x". X594 9

Xj =1+ (X")z-[1 + (X")ZJ-?{Z/ (2-R)} :

o= = [0 0] M Cam

The term tan n', appearing in (A 200), has the following development,
(4 97),

tarm == e p/2)~[1 - Z/R':I~(ax/ Det) =

~(cos p/2)'|:1 - Z/R'] N S
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The relations (A 199), (A 200), and (A 201) imply the following abbreviations,
(A 1588.)'

X =2/e! " (A 202)
x' =1+ x° + 2/R', (A 203)
x" = x-cos p/2 , (A 204)
v = 14 %2 . (A 205)

Neglecting relative errors of the order of Z/R', the term x' changes
into these forms,

-1
(1 +x2)-|:1 + (1 + x°) ~{Z/R'}] ’

xl

x' 2 1+ x =y : (4 206)

and with (A 159a),
2 2 2,~" 2
1T+ (x")° = (1 + x99 1 = (1 +x°) <(2/2°RY) i (A 207)
1+ (xM)? = y? [1 - y2 {z/(evﬂ'ﬂgJ ; (4 208)
neglecting relative exrors of (Z/R)2 5
1+ xM2 ® 4P . (a4 2C9
n
[1 i (xu)2 ] o y2n S (4 u%a)
The relation (A 201) is introduced into (A 200)., The form for U, ,
which is found in thig way, is combined with U1, (A 199), The development
for U1 + U2 found along these lines is brought into a certain order
classifyinz the terms into three types, The first type is free of ths

topography, V1. The second type depends on Z, x, and x", but it depends
not on the horizontal derivative of_x,(z.typezva).’l‘he third type is lavelled by V, ,V,1s

proportional to 9x/ Qe' « Thus, (A 198), the following relati ons are
found,
g+ Xy + Xy + Xy =V 4V, + Vg (A 210)
vV, = - sinp/2 , (& 211)
V, = qq-(sin p/2) + q, " (cos p/2) + q3-(cos p/2)2 + q4-(::in p/2)-{cos p/2), (& 212)
Vy= ag- (cos p/2)% + qg-(sin p/2) (cos p/2) . (a 213)
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The dovelopments for Qqs dps Q30 9y have the following exprossions,

q = - [1 s 2] Ve [1 -1 MY e, 2 1+ (xm? }-j(z/zRJ, (a 213a)
qQ == [1 + (x")z:[ -1/2- x" I: -51 + (x")2}_1-(Z/(2=R))] ) (4 213b)
ay = [1 . (x")z'] e 43,1 , (A 2130)
43,1 = [1’ v M2 {1 4 (x»)2}".1 {Z/(z-R){’.P - (z/n)] , (a 213d)
G = [1 - {1+ 2} {z/(z-n)}]lp - am] , (a 213£)
1 = [1 + (x")2]-1/2. qg ¢ - e -[1 - (z/xzﬂ:{ax/ae'z , (A 213g)
ag,q =1+ (x2 01 4 (x)?] . fa/2R)} (A 213h)
qg = - [1 + (x")2]-1/2. 94,1 e'~[1 - Z/R].x“. (9x/dse') (A 2131)
9,1 = 1 - [1 + (x")2] . {z/2)} . (A 2133)

The relation (A 209a) is inserted into the expressions of (213a) to (2133).

Hence it follows, neglecting relative errors of the order of (2/R)° as

in (4 2092),
q =- (1/y)-[1 -y o+ (xM2 (1/y)2. {z/(2:R)} ] ' (A 214a)
B = - [t - am?fueni] (4 214%)
a5 = (1/y)-x-[1 + (x")z-(1/y)2-{Z/(2<R)Z}[1 - z/n] , (A 214c)
q = - (1/y) - x-x"'[1 - (1/y)2~{Z/(2‘R)}:|'[1 - Z/R] ; (A 214d)
a5 = (1/y) - e'-[1 + (xm2, <1/y)2-{Z/<2-R>}]-[1 = Z/ﬂ-{ax/ de'} (A 215a)
g = -~ (1/y)+ x"- e -[1 - (l/y)za{z/(Z'R)}]‘l:1 - z/R].{ax/ de'} . (A 215b)

q5 turns to, (A 215a),
ag = (1/y) - e -I:1 +f-2+ 2 (1/y)2'E5Z/(2-R)?:,{Dx/ae'£ . (4 216)

In the course of the transition from (A 215a) to (A 216), relative errors of the
order of (Z/R)‘2 , = being about 10-7 - , are neglected. The same is valid for

the transition from (A 215b) to (A 217), described subsequently.
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q¢ changes into, (A 215b),

qg = - (cos P/2)-(1/y)-‘x~e'li1 - {2+ (1/y)2}-{z/(2R){}~{3x/ dett .« (a21T)

From now, the q; values of (A 214a) to (A 217) are used instead of the forms from
(A 213a) to (A 213)).

Considering the relations (A 213), (A 216), and (A 217), it is possible
to distinguish into terms which are free of the factor Z/R or not. Along
these lines, V3 gets the following shape

v3 = (1/y)-q7.(9x/’ae') + (1/y)-e'-(cos p/2)2-q8-(Z/R) (dx/Pe') . (a 218)
a7 = e'.(cos p/2)2 - e%+(gin p/2) - (cos p/2)2- b'e ; (A 218a)
qg = = 1 + (1/2)'(:(")2'(1/:/)2 + (sin p/2)-x-{1 + (1/2)~(1/y)2} . (A 218b)

The cexprescion (A 218) for V3 can be rearranged according to rising
povers of x, Hencelit follows, considering

7 = x .c! p (A 219)
\‘-3‘5' = 4q + Q40 + Q49 +Q12+Q13 § (A 220)
with
4g = (cos p/2)2 - et - (dx/De') ' (A 220a)
449 = = (sin p/2)-(cos p/2)%. et v x - (9x/De') (A 220b)
@9 = = (cos p/2)% + e'® - (1/R) - x - (Dx/Jc') , (A 220c)
412 = (sin P/Z)-(cos p/2)2 -elg - (1/R) -« x2-[1 + (1/2)~(1/y)2}~('ax/EDe'), (A 2204)
992 = (1/2) (cos p/2)4. e'?. (1/R) - x> -(‘I/y)2 - (Jdx/Je') (A 220e)

hs already mentioned,- see also (4 214a) to (A 215h) - , the expression
(A 220) for V3 neglects guch terms which cause relative errors of the
order of (#/R)% in vy, (a 209),

9 Nt - -
(z/m)°  ® 97t (a 221)
The neglection of auch terms is justified.
ifter the expression (A 213) for V

(4 220), the expreesion (A 212) for V, undergoes a similar rearrangement, too,
al which the coefficients q4, qp, 43s Q4 come from (A 214 a, b, c,d),

is brought into the shape of

-
El
-

Hence, the rearrangement of V2 according to rising powers of x leads to
(a 222),
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Vor¥ =9+ Q5 + g + U7 + Qg ¥ 99 * dp0 t dpq o

(A 222)

The terms on the right hand side of (A 222) have thz following representations,

94
45
46
447
418
419
920

d21

i}

L}

(sin p/2)«(y - 1)

- (cos p/2)-x" ,

(cos p/2)%- x

- (sin p/2):(cos p/2) » z-x" ,

- (sin p/2) - (xM2-(1/y)2-{z/(2-0)}

(cos p/2)-x" - (1/y)%. {z/(2-R)} *,

(cos p/2)2 - x-{(x2- (/2 - 2ffz/2anf

(sin p/2) - (cos p/2)'x-x"-{(1/y)2 + 2;-{2/(2-3)} .

From the terms Qeg *** dpq s it serves the purposes to construct
the following four couples, regarding (A 204),8180,

q
Q23
d2q

do5

22 %

* %5 T 46

ayq + 7 (gin p/2)-{y SRIN= (x")2 } i

0 s

Qg * Qpq = (sin p/2).(cos p/2)%-x% - (3/R) ,

449 + 4pg = (cos p/2)% x -{(1/2)'(|/y)2 - 1% @/ 4

(1/2) - (cos p/2)* %3 - (1/y)2 - (@/R) .

The relations (A 222), (A 223), (A 224), (A 225), (& 2252) can
be combined to

Vo ¥ = Qpp * dpg + dpg .

Returning back to the right land side of (4 210), which zives the
sum of Vo o+ V, +V3: V1 has the development (A 211), V, is represcented

by (A 225b), (A 223), (A 225), (A 225a), and, finally, V; hos the
expression (A 220), (4 220a,b,c,d,e).

Thus, returning back to (A 197) and (4 210 ), obviously, ©(2.2)

can be decomposed into 3 terms,

£(2.,2)

= E(2.241) + E(2.2.2) + E(2.2,3) =
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With (A 197), (A 210), (A 211), (A 225b), and (A 220), the individual
parts on the right hand side of (A 226) have the following expressions,

E(2.2.1) = (A)(B) T-(1/e)? » V, - aw , (A 227)
E(2,2,2) = (A) (E) T-(1/e)? - V,-aw , (A 228)
E(242.3) = (A) (E) T-(1/e')? - v, av . (A 229)

14 ,6.2.2., The forumula for £(2.2.1)

The relations (A 211) and (A 227) yield
E(2.2.1) = = (&) (E) T-(1/e*)% (sin p/2) * dw (A 230)
Obviously,Z(2.2,1) is a pure spherical term, it does not imply the

topographical heights Z,

14,6423, The formula for £(2,2,.2)

The treatment of the procedure that shows the way how to compute
E(2.2.2) is a short work only. The consideration of the structure of the
expression (A 225b) representing V, is in the fore, here, (A 228),
V2 has the essential property that the amount of it diminishes quickly
for growing distances e' from the test point, It diminishes as
quick as x°, a fact that will be delivered by the further linee, (A 234) , (A 236).
For e' = 1000 km, the amount of x°  will be of the order of
about 10-6 . In the expressions (A 223), (A 225), (A 225a), which appear
on the right hand side of (4 225b), it is convenient to undertake some
transformations. Considering

sin p/2 =e' / (2:R') , (A 231)

dw ¥ e'- de'-dA i (a 232)

Z/R' = (x-.e')/ R , (A 233)
and

14+ MY 2, (A 233a)

( the latter relation neglects relative errors of the order of ( Z/R )2,
according to (A 209) ), the expression (A 225b) for V, in terms of gy,
dpg0 25 turns to the following representation of V2 in terms

of dogr dp70 dpg» it is self=explanatory,
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(1/e')2. Y -V2~ dw = (1/R)-(q26 + Qpg + dpg) + de' - dA (A 234)
here is,
4 = (1/2)(y = ¥9) » (A 234a)
apy = x3-(sin p/2) -(cos p/2)° (A 234Db)
2 2
Qpg = X «(cos p/?2) " dpg 3 (A 234c)
Qg = § (1/2)- (/% = 1)+ (172) - 52 - (cos p/D% - (1P, (& 2344)

The abbreviating symbol b6 is introduced,
be = (1/3) - (qpg + apg + qpg) : (A 235)
(see also (A 343), being a scries for be with rising powcrs of x:b6=-(3/4)x2+~'-v).

The relations (A 234) and (4 235) are combined with (4 228). Hence it
follows

B(2.2.2) = (A) () (2/R) “bg - de' - dA . (A 236)

The expression for b6 diminishes for growing wvalues of e', as the
expression Xz, (A 343)+ Thus, tle integrsl for E(2.2.2) must not be
integrated for the area e' > 1000 km, (see the integral (i 138) and,
at that place, amnexed to (A 138), the deliberations about the extension
of the integration domain). For the integrations according to (i 236), the
coverage of the interval 0<e' £ 71000 km will suffice,

Consequently, the relation (A 236) is the final form of E(2.2.2),
convenient for numerical integrations.

144662s4s The formula for E(2.2.3)

The integral for E(2.2.3) is given by (A 229). The intezrand
contains the term V..

3

14.6.2.4,1. The decomposition of the formula for :(2.2.3)

According to (A 220), V3 is represented by the sum of 5 terms.
(A 220) is introduced into (A 229); with this, the two temms q,, and q4,
are combined. Along these lines, E(2.2.3) gets a form which consists
of the sum of § terms. Hence it follows

E(2.243) = E(2424341) + B(2624342) + E(2+243.3) + 8(2.243.4) ’ (A 237)
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with,

E(2.2.3.1) = (A) (B) T-(1/e)%. (1/y) - ag - dw ,

B(2.243.2) = (&) (B) 7:(1/e1)%- (1/y) (aqq + qq9) + dw
E(2.2.3.3) = (&) () T-(1/e")2-(1/y) - aqp - dw
E(2.2.3.4) = (A) (B) T-(1/e)-(1/3) " qq53 - dw .

Ths relations (A 237) and (A 237a,b,c,d) define the decomposition of
£(2.2+3) into 4 parts,

1446.2e4.2o The formula for £(2.2.3.1)

(A 237a) and (A 220a) give the expression for E(2.2.3.1),
E(2,2¢3¢1) = (&) (&) T-(1/e') - (cos p/2)2'(1/y)-(9x/8e') cdw

In the main, the integrand of (A 238) is linear in x. Substantially,

(A 238) is not square in x. Thws, we have to take into account a global
extension of the integration areca. The independent variable e' is
replaced by p. In (A 238), by means of (A 174), the derivative 9x/ De!

is replaced by 9x/ dp. A short rearrangement follows. Hence, from (A 238),

E(2¢2¢361) = (4) (E) T:(1/2)(cot p/2)-(1/R)2-(1/y)~(E)x/E)p) codw .
The term 9x/ 9 p variates considerably. Therefore, it is recommended to
replace this term by 97/ dn, which variates within narrow limits, only.
Following up this aim, the integration of (A 239) has to happen by the
method of the integration by parts. In this context, dw has to be
expressed by the differentials dp and dA. With

42 .

dw = R'S -(sin p)-dp - dA i
the relation (A 239) turns to
E(2.2.3.1) = (&) (B) T-(cos p/2)%-(1/y)-(dx /dp) - dp - dA .

The integral on the right hand side of (A 240a) will be treated
later on, by the method of the integration by parts with the argument P
ranging from 0° to 180° . In this context, the two functions aq
and b7 are concerned. The product

a7-(®b7/ dp )

is defined to be the integrand, of (A 240a). Hence it follows
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a; = T (cos p/2)° , (A 241)
da,/ dp = (91/p) +(cos p/2)% = T-(1/2) - sin p (4 242)
v,/ ¥ = (1/y)-(dx/ dp) (n 243)

b; = arsinh x 3 (A 244)
bp= x = (1/6). %7 4 = eee, 2 <1 . (4 244a)

The last line corroborates the fact that the integrand on the right
hand side of (A 240a) is linear in x, in the main,

1466426443, The formula for E£(2.243.2)

E(24243.,2) is defined by (A 237b).
Here is, (A 220b) (A 220c),

(1/y)'(q1O + q11) = - (3/2) -(cos p/2)2'(e')2-(1/R)-(1/y)-x'(’Dx/’ae') . (A 244b)

The above expression (A 244b) is square in the height 2, since the
product

x-(9x/de")

appears, Thus, in the integration, the argument e' ranges from O to
1000 Ikm, only. In this area, a plane co-ordinate system is an adequate
approximation, Consequently,

dw € e' . de' .- dA (4 244c¢)
(1/e¢')2. aw ¥ (1/e')% 2-R" - (sin p/2) - de' - dA. (A 244d)
The combination of (A 244b) and (A 244d4) yields
(1/61)% - aw - (1/y) - (a9 + Qg9 ) =
= = 3.(sin p/2) +(cos p/2)2'(1/y)~ x - (Ix/Det) . de' «dA . (4 244e)
Hence,

2

E(2.2.3.2) = (A) (E) (=3)-T-(sin p/2)-(cos p/2) - (1/y)-x-(®x/e') . de'. dA. (A 245)

Here, the integration by parts has the following substitutions (regarding
the relation (A 173) for dp/ de') ,

ag = - 3.7-(sin p/2): (cos p/2)2 - (A 246)

- 3.(91/e*). (sin p/2) -(cos p/2)2 -

Dag/ de!

3.7. {Dﬁsin p/2)- (cos p/2)2]/49p}‘(dp/de') . (A 246a).

For the term in the parentheses {} of the above equation, the following
rearrangement is self-explanatory,
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’a{(sin p/2) - (cos p/2)2}/9p &

(1/2) “(cos p/2)« (cos p/2)2 - (sin p/2):2-(cos p/2)(sin p/2) -(1/2) =

(1/2) - (cos p/2)°> = (sin p/2)2+(cos p/2) =

1}

(cos p/2)~{(1/2)-(cos p/2)2 - (&in p/2)2} &

(cos p/2)-(1/2)+{1 = 3-(sin p/2)2} .
With (i 173), the second term on the right hand side of (4 246a) turns to
- (/2 (1/R) {1 - 3 (sin /)2 ) (A 246b)

(4 246b) is introduced into (A 246a),
hence -it follows

Qay/Qet = - 3:(901/De’)- (sin p/2) (cos p/2)% - (3/2)- (T/R)-{1 - 3+(sin p/2)2§ A 247
Further, regarding (4 245),
'Bba/"(-)e' = (1/y) x-(0x/De') , (4 248)
bg = ¥y =1 ; (A 249)
the serieec development for by is

by = (1/2) - k2 b (1/8) - L , x° <1 ) (A 24%9a)

[ 2]
(™)

(o]

(4 24%) corroborates that the term bg diminishes as quick as x“ ,
for rising e' valucs,

14,6,2.4.4. The formula for 2(2.2.3.3)

F(2.2.3.3) has the expression of (A 237c), Tke term 4., comes from
(A 220d). (4 220d) and (a4 244d) are combined to

(1/e)%:1/) gy « dw =
i 2 22 & .
= 2-(sin p/2)“-(cos p/2)“ x '(‘I/y)-{1 + (1/2)-(1/y) ]Z<(®x/’c)e') -de'. dA . (A 249b)

Since (a4 249b) implies the term x2, the integration must not range further
thar to e' = 1000 km. (A 237c) and (A 249b) lead to

B(2.2.3,3) = (4) (2) £:(1/2)-(sin P2 (/3. {1+ (1/2)-(1/9)2}x2 @x/ et - det « da,
(a 250)
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llere, the integration by parts makes use of the following substitutions:
ag = (1/2)-1(sin p)? ; (A 251)

in the derivation of ao with regard to e', (A 251), the following
expression appears, obviously, (see (4 173)),

{(sin p)2/0p |- (ap / ae") =
= 2-(sin p)‘(cos p)~{1/ (R-cos p/2)g= (4/R) - (sin p/2)-cos pe

ilence it follows,
?)aq/’ae' = (97/ Det) (1/2) - (sin p)2 + (T/R)-2-(sin p/2)-cos p . (A 252)

The rest of the integrand of #(2.2.3.3), (A 250), left over by the
term a

g9 is
g/ Vet = f(1/3) - %2 + (1/2) (1) x| @x/Det) (4 253)
The integration gives
by = (172) « x% . (1/y) , (s 254)
it has the series development
bg = (1/2) %% 4 meee, X <1 (4 234a)
The amount of b9 diminishes very quickly for growing values of e

Thus, the limitation of the integration to the cap of e!' < 1000 km
is justiticd, (A4 250).

14,042¢445. The formula for £(2.2¢3.4)

The term E(2.2.3.4) is represented by (a 237d). The term 443
appearing in (A 237d) has the expression (4 220e),
Consequently, (A 2444), ’
1) 2 -
(1/7e")°-(1/¥) « qyq-« dw =
13
(sin p/2)-(cos p/2)* (1/y)2- %3 (9x/De') » de' -da . (4 254b)

Hence it follows,

B(2.2.3.4) = (&) (E) T-(sin p/2)-(cos p/2)% (1/y)3-x3. (dx/Dcr) - det - dy . (A 255)
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Here, the integration by parts comes about by the following substitutions
a; = (sin p/2)-(cos p/2)* (A 256)

In the derivation of a419 with regard to e', the following expression is
needed, (A 173),

[@{(m p/2)-(cos p/2)*} /Dp|-( ap/ aer ) = ay, 1/ R-cos p/2)}
with
Q35 = (1/2)"(cos p/2)(cos p/2)* + (sin p/2)- 4-(cos p/2)>. (- sin p/2)-(1/2).
Thus,
130 [1/(R-co0 p/2)} = (1/R):{(1/2)- (com B/2)* = 2(sin p/2)2 (cos p/2)%}=
- (/R (1/2) - fteos p/2)* - (ein pZ } .
Hence, it follows by the derivation of (A 256)
Dayo/ et = (B2/De')- (sin p/2)-(cos p/2)* + {1/(2-R)]-§ (cos p/2)* = (sin p)2] (A 257)

The rest of the integrand of E(2.2.3.4), left over by the term ay» had the
following chape,

Db,/ Det = (1/)7x7. @x/De’) . (4 258)
The integzration of (4 258) gives
b o=y + (1/y) - 2 i (A 259)
it has the series development
by = (1/8) - xt -+ s, 221, (A 259a)

4. Thus, the integration range does not nced

b10 implies the term x
to surpass an upper bound of e' = 1000 lm,

14.6042s4.6. The integration by parts

Low, the integration by parts of the integrals for E(2.2.3.1),
©(2.2,2.2), E(2+2.3.3), and £(2,2.3.4) is discussed, (A 239) (A 245)
(4 250) (A 255). If the integration ranges from p = O° to p = 180°,
the cpherical distance p serves as the independent variable argument.
If integration procedure covers only the cap around the test point P
of 1000 km radius, the length e' of the chord is the independent
variable argument,
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In the course of these different examples of an integration by parts,

now to be developed, in the first step, the integration over the values
of the azimuth A 1is not considered. This integration is considered in
the succeeding second step, later on, During the first step, it is
split off.

Considering (A 194) and (A 196a), the symbolic relation (A 260) is

introduced,
2w 21
— il
4 = (A) - dA g or, [ vaa =@ [ 7. aa
A A

The four expressions E(2.2.3.i), (with i = 1,2,3,4), are represented

by four integrals. If the integration over the azimuth A is split off,
the remaining integrals W(i), (i ='1,2,3,4), have the integration with

regard to p or e', only. Hence, the expressioms for E(2.2.3.i) can be

written in the following chape, (A 260), (A 240a)(A 245)(A 250)(a 255),

E(2.2.3241) (o) w(1):.da

E(2.2.3.2) = (A) W(2) * dA

i

E(2.2.3.3) = (A) W(3) -dr

E(2.,2.3.4) = (4) W(4) -da .

The integrations in the global domain O<pg®, or , alternately,

in the domain of the cap O0<e' £ 1000 km, are denoted symbolically by
i
(E) dp = g dp; resp., (B) de' = { de' .
p=0 e'=0

Thus, the 4 functions W(i) can be brought into the following shaps,
(A 261) to (A 264), (A 241) (A 243), (A 246) (A 248), (A 251) (A 253),
(A 256) (A 258),
W(1) = (E) 8.7 ' (®b7/ ap) ‘ dp,
W(2) = (E) a8-('ab8/’ae') +de'

w(3)

(E) a9~(®b9/®e') ¢« de'

W(4)

() a5 (dbyo/Pe’) - de',

The procedure of the integration by parts is governed by the
following velation, it is well-known from the text-books,
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gu’v’-dx = uv - gv.u"dx °
(A 266) and (A 270) give
(1) = W(1s1) + W(1e2)
W(1.1) = | ag - by )
p=0
W(1.2) = =(8) by -(a;/dp): dp ;

W(2) = W(2.1) + W(2.2)

2R
W(2.1) = |ag - bg ’

e't=0
W(202) = =(B) by-(Day/Det) - de' ;

W(3) = W(3.,1) + W(3.2) ;

oR¢
W(3.1) = 8q + by ;
et=0
W(3.2) = ~(E) b9-(aao/acl) . def 3

W(4) = W(4o1) + W(4.2)

2R'
W(4e1) = |asq: byq .

e'=0
W(4,2) = =(2) by, (Dayy/de’) » de'

At first, W(1) is considered, (A 271),

The formula for W(1.1) contaimns the term(a7- b7) for the upper
bound p = 180°. The cosine function (cos p/2) is equal to zero for
p = 180°, Thus , aq is equal to zero at the upper bound, also.
Consequently,(a7- b7) is equal to zero for p = 180°, Hence,it follows

W(1e1) = ~ {T-(cos p/2)2 . arsinh x} i

p=0
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The term on the right hand side of (A 275) necessitates special
deliberations, similar as (A 121) and (A 122), These deliberations are
governed by three facts. At first, {T-(cos p/2)2} tends to the constant
value (T)P, the value of T at the test point P, if p tends to
zero, Secondly, the function arsinh x_ is an odd function,

arsinh x = = arsinh (-x) . (A 276)
Thirdly, the expression =x tends to the value of the slope of the
terrain in the azimuth A, at the place of the test point P, if hs)
tends to zero,

Thus, (A 275),

W(1e1) = = ('I‘)P ~{arsinh x} i (A 277)

p-0
And, considering (A 122),
[
W(141) = = (P), <arsinh (n, + cos A + n, - sin A) (4 278)
P 1 2

n, and n, are constant values, Before the background of (A 276), the
following equations are important, g

cos (A + 180°) - cos A, (A 278a)

n

sin (A + 180°)

- sin A . (A 278b)
Consequently, regarding (4 276),
arsinh (n1- cos A + 1n, - gin A) =
= -~ arsinh (n1- cos (A + 180°) + n, + sin (4 + 180%)) . (A 279)
Thus, (A 278) (A 279), if ¢ is the value of W(1.1) for the azimuth A,
then, = ¢ is the value of W(1.1) for the azimuth A + 180°. Corscquently,
it is obvious that. the integration of the expression (A 278) over the full
range of the azimuth A,( 0 < A < 360°), will lead to the following relation,
(A 261),

(A) W(1.1)- aa = 0 . (A 280)

(A 280) is right, because the % (1.1) value for the azimuth A and for
the azimuth A + 180° will cancel each other,

Hence, the expression for T(2.2.3.1) given by (4 261) turns to (A 281),
regarding (A 271) (A 280) (A 271b) (A 244) (A 242),
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(A) W(1) - dh = (&) W(1)g - dA + (4) w(1)OO -dA (A 281)

with the following two equations (4 281a)(A 281b), integrating over whole the globs,

W(1)y = = (B) (91/9p):(cos p/2)%- (arsinh x) - dp , (A 281a)

W(1)Oo = (E) (1/2):T-(sin p):(arsinh x) -dp . (A 281b)
Now, W(2) is considered, (A 272).

The formula (A 272a) for W(2.,1) contains the product (38- ba)for the
argument e' =0, (i, e¢e p = 0), For p = 0, bg 1is finite, (A 249);:(etar-shaped Earth),
For p =0, ag is equal to zero, since sin p/2 is equal to zero in
this case, (A 246). Jhus, the product (ag:. bg) is equal to zero, for
e' = 0. For e' = 2'R' or for p = 180°, by is finite, (A 249).
FPurther, for p = 1800, ag is equal to zero, since cos p/2 is equal to
zero in this case, (A 246). Thus, the product (88‘ bg) is equal to zero
also for the upper bound e' = 2:R',

Consequently,
ag * bg = |ag - bg = 0 & (A 282)
e' =0 e!' = 2R!
Thus,
W(2.1) = 0 g (A 283)

Hence, ths relations (A 272) and (A 272b) lead to
(A) W(2) - dA = (A) W(2)y - dA + (&) Vi(2)y, - dA ' (A 284)
with, (A 247) (A 249),
W(2) = (E) 3-(97/De') - (sin p/2) - (cos p/2)% (y = 1) - de' (A 284a)
W(2)op =(B) (3/2)- (2/R)-{1 = 3-(sin p/2)%} ety = 1) - e (A 284D)

The integration described by (A 284) covers the spherical cap defined
by e' <1000 km, only.

The next step is the consideration of W(3), (A 273). According to
(A 273a), the expression for W(3.1) is govermed by the product ag * bge
by has always finite amounts, (A 254). At the lower bound, at e' =0
or p =0, 8g ig equal to zero; it is evidenced from (A 251), since we have the fact:
sinp= 0 if p = O . At the upper bound, at e' = 2:R' or
p = 1800, the same property is found for ag * namely ag = 0 « Thus, for a

star-shaped Earth, being an Earth of finite slopes of the terrain,

https://doi.org/10.2312/zipe.1989.097



157

Hence it follows, (A 273a),
W(3.1) = 0 .
Finally, the relations (A 273) and (A 273b) yield
(A) W(3) +dA = (A) W(3)y - dA + (A) W(3)y, - da,
with, (A 252) (A 254),
W(3)g - - (BE) (?)T/'De')-F1/4)-(sin p)2- x> - (1/y) - de'
W3 == (E) (I/R)-(sin p/2)-(cos p)- x>+ (1/y) + de' .
3 in the expressions for W(B)o and W(B)OO diminish
rapidly for growing values of e'. Far e' = 1000 km and 2 = 2 km,
x has the amount 2 -107° . Thus, x> is not move than 8 .1079,

Consequently, it is out-of —=place here to think on an integration
over distances e' of more than 1000 km, in the relation (A 287).

The terms x

As the last one of the W(i) values, for i = 4, the term W(4)
has to be developed into a shape convenient for routine calculations,
substituting the horizontal derivatives of x by the derivatives of the
two-dimensional surface values T of the perturbation potential.
The meaning of W(4) is explained by (A 274), (A 274a), and (A 274b).
The first part in the expression for W(4) is W(4.1), (A 274). This term
igs defined by the product aqg ° b10. The amount of b10 is always
finite, for a star-shaped Earth, (A 259). At the lower bound of (A 274a),
at e' =0 or at p = 0, the amount of a9 is equal to zero; it is
evidenced from (A 256), since:(sin p/2) = Q if p = O,
At the upper bound, for e' = 2:R' or for p = 1800, the amount of
cos p/2 1is equal to zero. Hence, the relation (A 256) leads to the
fact that 210 is equal to zero at the upper bound, also. Consequently,

810 * P10 ajp * Pyo = 0 o

e!' =0 e'= 2R!
The equations (A 288), (A 274a), and (A 274) yield
q(4.,1) = 0
and

W(4) = wW(4.2) .
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Hence it follows
(A) W(4) - da = (4) W(4)o - dA + (4) w(4)OO < da, (A 290)

with, (A 274b) , (A 289a), (A 259), (4 257),
W(4)y == (B) (OT/9e') (sin p/2)-(cos p/2)4~{y + (1/y) - 2}~ de' (A 290a)

W(4)yy = = (E) (1/2)'(T/R)'{(cos p/2)* - (sin p)Zz-{y + (1/y) - 2}~de' . (A 290Db)

14.642.4,7, The final formula for the calculation of E(2.2.3)

E(2.2.3) has the expression of a sum of 4 constituents, (A 237).
The detailed formulas for the calculation of these imdividual 4 constituents
can be taken from the above derivations. They are obtained in the following
way.

F(2,2.3,1): By (A 261), (A 281) (A 281a) (A 281b).

E(2¢24342): By (A 262), (A 284) (4 284a) (i 284b),

E(2.243.3): By (A 263), (4 287) (A 287a) (A 2387b).

E(2.2.3.4): By (A 264), (A 292) (A 290a) (A 290Yv).

From the above sources, the comprechensive expression for the numericsl
calculation of the amount of E(2.2.3) is found. It gives this amount in

terms of 9T/dp, 9T/ Ve', and T. The topography of the Earth comes
from the 4  terms Dbgy, bgy by, big (A 244) (4 249) (A 254) (A 259),

Hence it follows,

E(242.3) =

() (Z) (= 97/ dp) - (cos p/2)2 . by - dp - dA +

+ (A) () (1/2)-7-(sin p) - by - dp - dA +

+ (A) (&) 3.(91/Qe')-(sin p/2)-(cos'p/2)2- by - de' - dA +
+ (&) () (3/2)(2/R)-{1 = 3 (ein p/z)z}. bg - det: dn +

+ () (2) (= 1/2)-(91/De') - (sin p)?. by - de' + aA +

+ (47 B) (-2)-(T/R)(sin p/2)-(cos p) - by - de' - dA =+

+(2) (2) (=92/De)-(sin p/2) (con p/)¥- by« der - an 4

< de' . dA . (4 291)

+ (4) (L) (-1/2)'(T/R)‘{(cos p/2)4 - (sin p;22 "big
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As to the integrationg on the right hand side of (A 291), in the first
and second term, the intagration has to cover whole the globe, But, from
the 3, to the 8, term, the. integrations can be limited to the interval
0O0<ge' = 1000 km,

14,6425, The final shape of the formula for the computation of E(2.2)

The relation (A 226) represents the amount of E(2,2) as the sum of
three constituents., E(2.2.1) comes from (A 230)., E(2,2.,2) is obtained
from (A 236), E(2.,2.3) has the expression (A 291), It is

E(2.2,1) = (&) (B) (=1)-(1/e")2-(sin p/2) - aw , (a 292)
and

£(2.2.2) = (&) (E) (T/R) * bg * de' - di, (4 293)
Hence, (A.226),
E(242) =
= (4) (B) (=1)-(1/e")2.(sin p/2) + dw +
+ (1) (8) {- 90/ D(&p)} (1/R) -(cos p/2)2 (1/8in p) - by - aw
+ (A) (E) (T/R)-{1/(2 R)} "by codw 4
+ (a) (¥) (91/Qe') - u, - de'- dA +
+ () (E) (2/R) - u, « de' -da . (A 294)
The abbreviations wu, and u, of (A 294) have the following meaning
uy = 3-(sin p/2)-(cos p/2)% - by -

- (1/2)+(sin )2+ by =

- (sin p/2)(cos p/2)* + b, . (A 295)
u, = bg + (3/2)-{1 - 3-(sin p/2)%} vy -

~ 2:(sin p/2):(cos p)-b9 -

- (1/2)-{(008 p/2)* - (ein p)zg by e (A 296)
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According to (A 294), the terms u, and u, appear in the integrations
over the cap of the near surroundings of the test point P, only. Therefore,
in (A 295) ard (A 296), (cos p/2) and (cos p) can be replaced by the

unity,.

14,6.3. The formula for E(2.3)

The chapter 14.6.1. gives the expression for E(2.1), it has the shape
of (A 191). The chapter 14.6.,2. gives the expression for E(2,2), by
(A 294), Now, in this chapter 14.6.3., the expression for E(2,3) is to
be developed; the developments start from (A 110). This relation gives

E(2.3) = = (&) (E) T-{an/e')/ Ar } Caw . (A 297)
Hence,
E(2.3) = (A) (B) T-(1/e')2.(Qe'/dr) - aw . (A 298)

The equation (19) of the chapter 3, (The spherical. solution), yields,(Fig. 2,3,A 2,A 5),
Qe'/Pr = sinp/2 = e' /(2 R') . (A 299)

(A 298) and (A 299) are combined to

E(2.3) = (&) (E) T-(1/e*)2-(sin p/2) -dw . (A 300)
Obviously, E(2.3) is a pure spherical term, free of any impact caused

by the topography, which, for instance, could be brought to bear here by
the term X. Here, it is certainly true, the relation (A 300) is free of x.

14,7, 'The formula for E(2)

14.,7.1., The expression for the computation of E(2
E(2) is a sum of three terms, (A 108),
E(2) = E(2.1) + E(2.2) + E(2,3) . (A 301)

The relations (A 191), (A 294), and (A 300) give, wita (A 301),

E(2) =

)

(1) () §=32/3p)} - (1/8) (con p/2)% (1/atn p) by - aw +

+

(4) (E) (T/R)-{1/(2R)}-(b7 + x)-dw 4+

+

(1) ) (B De) {uy + by + (/B by Jaor - an

+

(a) (E) (T/R):(u, + by + by + bg) «de' - dA (A 302)
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For abbreviation, the symbols Vs Vo and vy are introduced, now,
In the 2,, 3., and 4, term on the right band gside of (A 302), the
topography is implied by these expressions: Vis Voo v3 . Hence,

v (1/2)'(b7 + X)

1

' .
v, u1+b1+(e /R) b3,
v3=u2+b3+b4+b5 .
The se relations are introduced in (A 302).
The final form for E(2) is found,

E(2) =

]

(a) (&) -1/ 2@p)} (1/1) - (05 +/2)2-(1/cin ) - b

- dw o+

+

(a) (B) (/) -(1/r) - vy oodw o+

+

(A) (B) (91/e') v, . de' - da +

-+

(a) (E) (/7). v, .de'. dA,

-

(A 303)
(4 304)

(A 305)

(A 306)

In the 1, und 2, term on the right hand side of (4 306), the integration

has global coverage; the 3. and 4, term covers the surroundings of e!
only, in the course of the intvegration,

14.7n2. The tel‘ms b.l, bg, ceey b1O

< 1000 km,

The individual funciions b1, b?, ...,b‘|O ,Which appear in the relations
(A 295) (4 296), and from (i 303) to (4 306), have thse following representations,

b,: By (4 119), (4 124),

b - x-(1/y} + arsinh =z ,

o'
]

1 (1/3)%° = 4eee s x2 <1 .

b,: By (A 152¢),

b =b1 3

= (1/3) 0 %2 = # eee , X < 1 .

no
I
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byt By (A 178),

by =1 - (1/y) (A 311)
by = (1/2)x% = 4o, 221, (4 312)
b,: By (A 195)v

b, = x2-(1/y)% - sin p/2 : (4 313)
b, = (sin p/2)4{x3 - (3/2) X% 4= ... E, %2 < 1 . (A 314)

bs: By (A 1924) ,

[=2
1

5 = (1/2) 2 (1), (A 315)

(1/2) %% = (1/8)-x% + =v0s ,x2 <1 (4 316)

o
W,
1

be: By (4 235),

be = (1/3) - (1/2) - (3=y2) + (1/y)-x%.(cos p/2)2. be 1» (A 317)
2

be 4 = x-sin p/2 + (172)-(1/9)% = 1 + (1/2).%°-(cos p/2)2-(1/y) . (A 318)
bo: By (4 244) (4 244a),

b, = arsinh x, (A 319)
by =x = (1/6)%% + = er , X021 (4 320)
bg: By (A 249) (A 249a),

bg=y-1 , _ (a 321)
bg = (1/2)-x2 = (1/8)-x* 4= eer, %% < 1 (A 322)

bg: By (A 254) (A 254a),

by = (1/2)-x3-(1/y) (A 323)
bg = (1/2): %7 + meee , x° < 1, (A 324)
b5t By (A 259) (A 259a),

b=+ 1/y=-2, (a 325)
big = (/A)x? e vees [ 5% < 1, (4 326)

The term y has the relation

y2 =14 %2 : (A 326a)
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14,7¢3. The term V4

The expression for v, appears in (A 306), in an integral of global
extension, By (A 303), the complete expression is, (A 319),

vy = (1/2) - (x + arsinh x) , (a 327)

it has the series development

2

v1=5c-(‘l/12)-x3 + =ese , X° < 1, (A 327a)

144,74, The term v,

The full expression for v, is explained by (A 304). But, in (A 306),
vV, appears only in an integral which covers the cap of the near surroundings,
(e' < 1000 km), of the test point P, solely. Thus, it is allowed to put hefe

ne

(cos p/2) cos p ¥ 1, a'<1000 km, (A 328)
and
(sin p/2)2 ¥ (sin p)2 ¥ 0, e'< 1000 lm. (A 329)
Regarding (A. 328) and (A 329), the form (A 295) for u,
uy = 3+(sin p/2)-bg = (sin p/2) *byg . (& 330)
(A 330) and (A 304) yield
vy, = by + (sin p/2) - 2-b3 +3bg - b‘loz ’ e' <1000 km (a 331)
This is the value of Vs which ig to be applied in the near
surroundings of the test point P, universally, for all amounts of x,
even for stcep cliffs in the near vicinity of the point P. In (& 331),
x 1is allowed to be greater than the unity. The extensive expression
for (A 331) has the following shape, (A 307) (A 311) (A 321) (A 325),
v, = = x-(1/y) + arsinh x + (sin p/2)'{1 - (3/y) + 2-yz ’ (A 332)
valid for
e!' £ 1000 km , (A 332a)

and for a star~shaped Earth,

- < XL + 0O, (A 332Db)
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Now, in the consideration of v,, (A 332), the inequality (A 332b) is
ignored, but (A 332a) is still valid, The reason is the intention to
specialize (A 332) for the case that the absolute amount of x has relative
small values, Thus, (A 332b) is replaced by the inequality

X2 <« 1 " (A 333)

Along these lines, the series developments for b1, b3, b8’ and b1o
are introduced in (A 331) and (A 332). The relation (A 332) turns to,
(neglecting x4, x5, vee ),

Vo = (1/3) - x> & (sin p/2)-(5/2):x% + = ++s (a 334)
valid for
e' < 1000 km , (A 334a),
and for
2 << G . (a 3340)

14.,7.5. The term v2

The term v, undergoes a similar treatment as Vo e The underlying
constituents are shovm by (4 305). According to (4 306), and similarly
as v,, the v, values are necded far the argument domain e' <1000 I,
only. Thus, it is allowed to take over the approximations (A 328) and
(4 329), These approximations are introduced into (A 296), Hence,

u, =bg + (3/2)-bg = 2:(sin p/2)-bg = (1/2):B15 (A 335)
And, with (A 305),
Vy = Dby + by + bg o+ bg o+ (3/2):bg = 2-(sin p/2)-b9 - (1/2)+byq . (A 336)
(A 33G6) is valid for
e! <1000 km . (A 336a)

With b, from (A 311), b4 from (A 313), b5 from (A 315), bg from (A 317),

bg from (A 321), b9 from (A 323), and b, from (A 325), the equation
(A 336) turns to, (with (A 328), (A 329)),

1

1= (1/y) + x2-(1/y)>- (sin p/2) +

+

(1/2)- x5 (1/3) + (U/3)-(1/2) - (y = ¥°) +

4

(1/y) x2'{x~(sin p/2) + (1/2)-(1/9)2 = 1 + (1/2)- %% (1/y)? } +

(3/2)-(y = 1) = 2-(sin p/2)-(1/2) - x3-(1/y) =

e

1

(1/2)-{y + (1/y) - 2 } i ' (A 337)
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Some self-explanatory rearrangements of (A 337) lead to, (for e' < 1000 km),

vy = (1/2) = (3/2)- (/) w3+ kB - (/20 (/) /2) /P L
#2273 (oin p/z>} + x4 {(172). (1/y)3} +(1/2) = (1/2)y . (4 338)

A short step leads from (A 338) to (A 339), it is the final complete
shape of Vs '

vy =1+ (1/2)y - (3/2)-(/y) + 221720 - /y) + (7 Fs
+ x2.(1/y)3 (st ) 3
-(1/y sin p/2) + x*.(1/2)-(1/y) - (A 339)
(A 339) is valid for
e' < 1000 km (A 339a)
and
-~ < x < +o0o0, (A 339b)
(A 339) is the full expression for v,, valid for all values x of a
star-shaped Earth, (A 339b). (A 339) has only one sole restriction, that
is (A 339a). (A 339) is valid, however great the steepness of the cliffs
in the vicinity of the surface test point P may be,
At many places of the area described by (A 339a), thc absolute amount
of x will be considerably smaller than the unity. This fact leads to
a relief for the computations of Vi Thus, in (A 339), the condi tion (A 339Db)

is abandoned, it is replaced by the inequality (A 333), But (A 339a) is
still valid.

Obviously, along these lines , v, is expressed as a series development
with rising powers of x. Starting from (4 336), the power series developments
for b3, b4, b5, b8’ b9, and b0 lead to ths following form for
vy (A 312) (A 314) (a 316) (A 322) (A 324) (A 326),

vy = (1/2)-x% + (sin p/2)-x7 + (1/2)-x% + bg +
+(3/2)-(1/2) %% = 2-(sin p/2) «(1/2)- %> + = vee  , X2 < 1, (4 340)
The higher powers x%, x°, «++ are neglected in (A 340).
A simple rearrangement of (A 340) leads to
vy =bg o+ (T/8) %% 4~ eee X2 < 1, (A 341)

For (A 328) and (A 329), the relation for b glven by (A 317) (4 318)
turns to

b = (1/2) = (1/2)-3 + (1/y).x2.{x.<sin p/2) + (1/2)- (1/y)%- 1+(1/2)'X2'(1/y)2}.(A 342)

Neglecting highor powers of x (as x4, xS, .ee)y (A 342) changes to (A 343),for xa<1,
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b = (1/2) =(1/2)y + (sin p/2)-x> = (1/2)-%% 4 = ves y X°< 1. (& 343)
(A 341) and (A 343) are combined to
. 3 2 2 g
vy = (1/2)=(1/2)y + (sin p/2):x” + (5/4):x" + = ves , * < 13 (A 344)
and with
~ 2 2

y T 1+ (1/2)-x° , (<< 1),
vy = (sin p/2)-x3 4-{- (1/4) + (5/4)} x° 4+ - cess < 1 ’
and, introducing

sin p/2 = ¢'/ (2-8') T e'/ (2-R),
and, rcgzarding

x=2/¢c'

v3 sets the following shape,

e'/ (24()}{2/-3'}-;:2 +X2 + = soe 4 x2 < 1

V3 L H
or

vV, = x2-'{1 + Z/(Z-R)z + - x° < 1

3 -r e ’ @

The rezlection of relative errors of the order of 2Z/R can be %olerated.
Thus, finally,

Vg o= X0 4= e, x> << 1 i (4 345)
(A 345) is velid for the following constraints,

e' < 1000 kn, x° << i (4 346)

14,8. ‘The formule for E(3)

The formula for E(1) is given by (A 50) (A 51) (A 52). The formula
for E(2) has the shape of (A 306). Now, the second term on the right
hand side of the rcpresentation of D(2.1), given by the cquation (45)
of the calicr secction 4, has to be transformed. It is to be brought into
a shape suitable for routine computatiors. It is denoted by E(3), (see (45c),section &),

E(3) = - (4) (£) (92/Dr)-(1/e') » D(1.4) . (A 347)
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The ejuation (39) of the earlier treated section 4 leads to the following
relation,

du - cos (g', n) = dw + D(1.4); (A 348)
du is the surface element of the oblique surface of the Earth u,
dw is the surface element of the sphere w  which docs pass through
the test point P, (ses Fig. A 7). (g8', n) is the anglc of the slope
of the terrain, Hence, (A 348),
D(1.4) = du -'cos (g'y n) - adw . (a 249)
Further, the following denotation is intiroduced,

H' = Hp 5 (4 349a)

Hy 1is the height in which the test point P does lie, above the
geocentric sphere v  having the radius R, (see Tig. & 2). Thus,

dw = (R + H')2~ (cos ) - dyp - al ; (A 350)
nd with
R' =R+ H' (4 350a)
follows
aw = (R') - (cos @) « dgp - d2 . (a 351)

The Formula (4 349) is transformed, now, It is rearranged in
order to find such an expression for D(1.4) that develops in terms of the
following three exprescsions:
dw s the height difference 2 takcn with regard to the test point P,
and the radius R' of the sphere w,

w : @;NJ/ Spherical surface containing
\l the test point P,w
\y R'= R+H’
gWCenter
Fig. A 7.
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The interdependence between the surface elemsnt du and the surface
element dw of the globe w 1is visualized by Fig.A 7. This inter-
dependence is constructed by the 8lope of the terrain described by the
inclination angle < (n, g'), further, by th® geocentric radius of the
sphere w, (being R + H' = R'), and, finally, by the radius of the point Q on the
surface u, (being R + H' + Z). An infinitesimal cone is introduced., The
vertex of this cone is identical with the gravity center @ of the
Earth., This cone is introduced on the umderstanding that the vertex angle
of it has an infinitesimal small amount, or, to be more precise, that the
cone cuts out an infinitesimal small area out of the concentric umit sphere,
Fige A T, Out of the sphere w passing through the test point P, this
cone cuts out the horizontal surface element dw, (A 350) (A 351), Out of the
oblique surface of the Earth u, even the same cone cuts out the surface
element du, situated at the point Q. The oblique surface element du 1is
projected into the horizontal plane which passes through the surface point
Qs Out of this horizontal plane, the considered cone cuts out the surface
element of the following amount,

cos (g', n) - (du), (A 352)

It is learnt from Fig. A4 7, the following relation connects the amount
described by (A 352) and the surface element dw, it is self-explanatory,

cos (g'y, n)-(du) = aw-(R + H' + Z)2/ (R + H‘)2 i (A 353)

Regarding (A 350a), the relation (A 353) turns to

cos (g', n)-(du) = d\r.'-{(i\" + 22/ @)%} . (A 354)
Hence it follows
(au)-cos (g', n) = (1 + 2/R")2 aw = {1 + 22/R' 4 (z/R-)Q}.dw ) (A 355)

(A 349) and (A 355) yield

D(1.4) ={2-Z/R' + (2/r")? } oy (A 356)

For the points Q situated at the surface of the Earth u, the fundamental
‘equation of the physical geodesy has the following shape ,(see equation (4 2) ),

Asy = - (d1/dr) - 2:1/r (A 357)
hence, recgarding Fig. A 7,
Agp = - (90/Qr) = 2.7/ (R + H' +2) . (A 358)

As to (A 358), we have,by (A 350a), the following series development
('I/R')['l/ {1 + (Z/R')}] = (1/R") {1 - (Z/R') +=- } = (1/R') - iZ/(R')az F=eve 3

(4 358a)
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Considering (A 350a), the second term on the right hand side of (A 358)
turns to the term described by (A 359), accounting for the relation (A 358a),

- 2.7/(R + H' +2) = = 2.7/R' + 2:2.T /(R")? . (& 359)
The two relations (A 358) and (A 359) are combined giving

- (R1/91) =dgy + 2 /R - 227/ (R")? (4 360)
The relation (A 356) for D(1.4) and the expression (A 360) for the radial
derivative of the perturbation potential T are now utilized for a transfor-
mation of the expression (A 347) representing E(3). Thus,
E(3) = (4) (E){AgT + 2:T/R' = 2-z-T/(R')z}-(ve')-{z-z/n' + (Z/R')Z}dw . (a361)
Some simple rearrangements of (A 361) lead to (A 362), neglecting powers of (Z/R')3,..,
E(3) = (&) (E) AST'(VC')-{ZZ/R' 2 (Z/R')2}-dw +

£ @ ® @/mn-a/en e/ - 2@l (4 362)

e' is equal to

¢' = 2-( + H'").8in p/2 = 2.R*-sin p/2 . (A 363)

(A 362) is a form of E(3) convenient for routine calculations,

14,9, The formula for E(4)

In the chapter 4, the equation (45d) represents the term £(4).
It appears also as thc third term on the right h=nd side of the relation
(45) of that chapter. This term %5(4) is now in the fore., The cited
rela tions give

E(4) = (a) (E) T‘{Q(Ve') /Qr}-D(1.4). (A 364)

The expression for D(1.4) is taken from (A 356), Further, as to the term

in the braces{} of (A 364), the radial derivative of e' is considered, now.,

In this context, ths point J* is introduced, (Fig. A 2, A 8), This point

lies perpendicular below the moving surface point Q, amd, moreover, on the spherical
surface w, Now, the rcader is asked to imagine that this point Q**does

move upwards, in vertical direction, by an enlargement of the radius of it

from the amount R' up to the amount R' + dr.

https://doi.org/10.2312/zipe.1989.097



170

The impact this upwards movement exerts on the length of e' is now
dcscribed by the radial derivative of e', i, e.
D¢'/Qr; Fig. A 8.

Pig. A 8,

Fig. A 8 shows how the derivation of e' with regard to r is constructed,

This Jerivation is taken at the point Q"‘%which is situated on the sphere w,

The following lines are self-explanatory, Fig. A 8,

D(1/e")/dr = = (1/e")? . (%' /A 1),
De'/Qr = sin p/2 = e'/(2'R') ,
hence,

D(1/e')/ 9 = -1/ (2.c'-R')
Regarding (A 356) and (A 367), the expression (A 364) for E(4) turns to
E(4) = =(a) (B) T-{E'Z/R' + (Z/R')EE'{V(Z'e'-R')}' aw .
A short transformation gives finally
E(4) = - (a) (B) (T/R'-')-(1/e')~{Z/R' + (1/2)~(Z/R)2i’ cdw .

This expression is good for numerical routine calculations.
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14,10, The formula for E(5)

Finally, considering the relation (45) representing the term D(2.1),
(see chapter 4), the 5. expression on the right hand side of this equation
is to be brought into a shape which suits to calculation purposes, This
term is denominated by E(5), as shown by the relation (45e) of chapter 4,

Hence,
E(5) = (4) (E) D(1.1):D(1.2) - adw (4 370)

At this occasion, a principle remark may be given., In the computation of
the height anomalies ¢ in terms of the gravity anomalies, the integration
of the traditional Stokes integral contributes the main share, Here, the
Faye-anomalies are inscrted; they are defined to be the frece-air anomalies
supplemented by the plane topographical correction C: cf. equation (2)
and (3) of the chapter 1, being the introduction into this publication. This
integratibn calculation ranks at the first place. The formulas for E(3)
and E(4) rank at the second place. They are given by (A 362) and (A 369), and
they necessitate a global integration. Further, the effect the expression
C1(M) exerts on the height anomaly ¥ constructs a term which does rank at
the sccond place: cf, the equation (3) of the chapter 1, These terms of the
second rank will contribute to the £ values by an amount being smaller than
1 meter, in general,

But, as to the term E(5) treatcd now, (A 370), it will be of the third
rank, This term will have an amount which is generally much more small than
tle smount of E{(3) and £(4),and the effect of C1(M). The reason why,in the following
lines,the term E(5) is transformed into a shape convenient for numerical calculations
lies also in the intention to follow up another aim, this is the intention to
show that the formulas (2) and (3) of chapter 1 can be completed by very small and tiny
terms: The theoretical error of the solution of the geodetic boundary value
problem according to (2) and (3) can be depressed down to arbitrary small amounts.
The intention to depress this theoretical error down to any arbitrary small
amount has no principle limitation, it is a procedure frec of any fundamental
difficulty. The demonstration of this fact is one of tho aims followed up by the
deliberations of this chapter, (theoretical error = neglected residuum).

The definition of the term D(1.1) of (A 370) comes from the relation (36) of
the 4, chapter,

D(1.1) = ( 91/®n)-(1/cos (g', n)) + %/ r, (A 371)
whereas the term D(1.2) is found with (37),

D(1.2) = 1/e = 1/e' = (A 372)
e is the oblique distance between the two surface points P and J,

Fig, A 2. e! is the length of the cord between the point P and

the point QXX on the sphere w, Fig. A 2, A 8., Some rearrangements of -

(A 371) result the following relation, (4 21),
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D(1e1) = Dy(1e1) = O-g - tan (g', n).cos (A" ~ A') (a 373)

@.is here the full amount of the deflectiion of the vertical in the fiecld
of the potential T, the O values refer to the surface of the Earth u,

Also, the term D(1,2) given by (A 372) is transformed; the relation
(A 37) yields,

D(1.2) = - (e')’B'{ZZ + e'e(z/R')}-[x' + (x0)1/2 } - (A 374)

with, ( see (A 39),(A #0), and (A #1)) ,

2

X' =1+ x° + 2/R' . (A 375)

In (A 373), A" is the azimuth of the deflection of the vertical @ y
Fig, A 1. A' 1is the azimuth of the inclima tion of the terrain, tan (g', n)
is the amount of this inclination.

Now, the plumb-line deflcction O is dccomposed into its north-south
amd its cast-west component, i.e. t and t

1 2?
ty = Q-cos A", (A 376)
t, =0 sin an, (A 377)

The text-boolks on physical geodesy show that t1 derives from T by

£y = - [(1/g'>-<9T/arc )] ; (4 378)
u 1
and t2 by
ty =~ [(7an) (92727 ] ; (4 379)
u

the symbol u denotes here that the valies of t1 and t2 arc to be
computed for points situated on the Earth's surface uv. The horizontal arc
elements dX, and dy of (A 378) and (A 379) are here understood
that they are plotted at the points of the Earth's surface u; hence it
follows for the horizontal differentials dX and d?,at the moving surface point Q on u,

ax

i

(R* +2) dp (A 379a)

ay

(R' +2) (cos p ) ai v (A 379b)

In a similar way, the component of the plumb-line deflection in the radial
direction (that is the direction of a constant azimuth A plotted at the test
point P) has the following relation, which is given by (4 380),

( As to the horizontal arc elements dX and dy, they are found in the following
way : Through the point Q at the oblique surface of the Earth u, the geocent-
ric sphere , having the radius of R + HP + 2 =R'" + 2 , is constructed. Along this
sphere , the two arc elements dx and dy are plotted even in our special point Q.
Thus, in the point Q, dX and dy lie also on the tangential plane « In order to
avoid misunderstandings, it may be stated : dX and dy lie not on the obliqus surface

u of the Earth, unless u is horizontal in the point Q I ).
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¥ = - [(1/@')' ( 9T/ (' + Z)~’c9p)} . (4 380)
u

Thus, t is the component of the plwmb-line deflection at the surface

point Q taken for the direction in which only the p values do grow,

ho} is the spherical distance between the fixed test point P and the
point Q (which is moving during the integrations), Fig. A 2.

Consequently, dX and d¥, and (R' + Z) « dp are horizontal arc elements
plotted at the point Q situated at the surface u of the Earth.,

dx is heading to the north, d¥ points to the east, and (R' + 2) -dp is
directed into the direction in which the p values grow (This is the
direction of the tangent of the great circle through P and J, taken at Q).

By means of t, and t,, (A 378) (A 379), it is possible to construct
a vector 1. In this context, 1;1 and t2 are two-parametric surface functions

along the surface u, 1;1 = t,](gp,)() and t, = te(np,ﬂ ). The t

value at the point Q is mapped into the point Q**)by an identical
mepping. -‘4*'* lies vertical below the point d on the surface w, Fig, A 2.
Thus, after this mapping, the t.] value of the point 2 1is now =tcached to
the point < .

1

The amount of t2 " undergoes a similar mapping from the point ™ dovwn to
the point Q%*. Furthe rmore, on the spherc w which has the radius R',
two unit vectors £ and L5 are introduced. They are horizontal vectors,
Consequently, they ore tangential vectors with regard to the sphere w, They
are plotted at the point Q**. &1 is heading to the north, & is heading

to the east. By means of the values t1 and t2 at the point Q**,

it is possible to construct a vector t which is situated on the spere w,
as a tangential vector. Hence it follows,
i B by ¢ gy = Vg e . =
Here is,
2 2
‘=g_-1 = 1, =02 = 1 ~ (“

Considering (4 376) (A 377) (& 331), and introducing , by the symbol 1,
the length of the vector t, the following relation is obtained,

2
2 = 12 - 0% = ¢ + .2, (s

Here, the expressions for 1, t1, t2, and t are functions of Y and
R. They can be understood as functions distributed along the sphere w,
Hence,

t o=t (pd ), (4
ty =t (g, A) (A
t, = t, (pA) (A
t, o=t (pA) . (a
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In a similar way as the vector t can be decomposed into a north-south
and an east-west component, (4 376) (A 377), the slope of the terrain

tan (g', n) can be decomposed also into a north-south and an east-west
component, 8, and 859 Fig. A 1. The following relations can be constructed,
regarding the fact that the angle A' is the azimuth of the slope of the
terrain in the point 2,

tan (g'yn) : cos &' , (A 384)

81

8, tan (g', n).sin A'. (A4 385)

Or, describing 59 and s by the horizontal derivatives of the heisht

difference 2, (Z = H. - HP; in these derivations, Hp is constant‘and H

4 Q

is variable),

- (1/(R* +2))(92/ ) ¥ (A 386)

51

]
V]

]

- (/R +2)) (d2/(cosp) dA) (4 237)

For tie derivatives of 2, given by (A 336) end (a4 387), the following relations
are valid,

(®2/9¢) = Aty - Hp) /dp= 1,/ dp . (4 3872)

(22/9X)

AH, - Hp)/QA = ai«;l/aa ? (A 337b)

In most cases, in the relations (& 386) and (4 387), a2 relative error of
the order of Z/R! can be tolerated in the amounts of 84 and S5 .
The question is here a factor of about 1/1000 or  1/10 000. Witk these
cimplifications, (A 386) and (A 387) change to

sy = = (./R")-(22/2¢) ' (a 28Tc)
s, = - (1/(R'-cos@)) - (2/d0) . (4 3874)
In a similar way, as the functions t1 and t2 did lead to the vector

%, (A 381), it is possible to construct a vector B8, by means of the
functions s; and s, ,» (A 384) (A 385).
Hence,

8 = 8y gy + 8, &5 o (A 388)

The operator of the gradient of a scalar field distributed along the
sphere w is now introduced,

[/ = grad = + (1/R') -{5——-}»31 + (1/(R'-cos ¢)) {582—}32 . (A 388e)
PR
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This gradient operator is applied to the scalar field of the HQ values.
In this context, the HO values are understood that they are distributed
along the sphere w, haging the radius R', Consequently, the operator of

(A 388a) leads to
grad Hg = + (1/R')-(c)HQ/c')(p)-__@1 +(1/(R"-cos 9))-(8HQ/OR)-22 - (A 388b)

In this context, HP is a constant value . Thus, considering the scalar

function Z = Hy - Hp , the derivatives of Z with regard to the latitude

and longitude are egaul to the derivatives of Hy with regard to these
arguments, consequently., Along these lines, the relation (A 388b) can be
transformed into the following shape,

grad Z = + (1/R')(32/J¢) 8, + (1/(R'+cos ¢)) (9Z/IA) e, . (A 388¢)

A comparison of (A 388c) with (A 387c), (A387d), and with (A 388) shows
that the vector s «can be represented by the gradient of the Z field,

B ow - grad zZ , (A 389)
s 1is the length of the vector S .

s = s 3 (A 389a)
Regarding (A 384) (A 385) (A 388) (A 389a), the following equation is found

- - 9 2 2 2 .

s = s = {tan (g", n)} = 8, + S5 v (A 390)
Before the background of the above vector developments, the expression

(A 373) for DT(1.1) can be brought into the form of a scalar product or

of an inner product of two vectors.,

In this context, (A 373) is rearranged, as follows
DT(1.1) = ©-g-tan (g',n) {cos A" cos A' + sin A" sin A'} . (A 390a)

Regarding (A 376) (A 377), and in view of (A 384) (A 385), the above

expression for DT(1.1) turns to
DT(1.1) = g (tl-s1 + t2-52) . (A 391)
g 1is here the real gravity intensity for the real potential W, taken
at the surface u of the Earth. The braces on the right hand side of
(A 391) contain the scalar product of the two vectors t and s , (A 381)
(A 388), Hence it follows
DT(1.1) = g:t-s o (A 392)
Now, after the rearrangement of DT(1.1), the expression (A 374) for
D(1.2) is trensformed; this transformation happens by the introduction of

the quotient

x = 2/e (A 393)
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which was already of service before now., (A 393) and (A 374)are combined to
= '
D(1.2) = = (1/e') - (x° + e'.x/R')-|x' + (x')1/2] . (A 394)

For the product of the tem in the second braces of (A 394), on the one hand,
and of the term in the brackets of (A 394), on the other hand, a sign of
abbreviation is introduced, now,

w
x*(P.Q) = (%% + e"X/R')-[X' + (X.)1/2] - (A 395)
or,
-1
X (2,2) = (x2 + 2/RY) -[x' B (x')1/2:| . (& 39%a)

Consequently, (A 394) changes to

D(1.2) = = ( 1/e") « x X(2,3). (A 396)
This is the final cxpression for D(1.2).

In view of (A 392) and (A 396), the development (A 370) for #(5)
transforms into

B(5) = - & (&) (2) 5-g+(1/2") x (2, @) - aw 4 (a 397)

t and S are the above defined vectors, (i 381) (A 338). x¥ (B, i) is a scalar

function, it is evidenced from (A 395a); in our anplications, this function is
understood that it varies with the movinz point i, only, in the course of onc

integration. #/ithin such an integration, the test point P is fixed. The vcctor

% and the function X;F(P,

Q) arc combined yielding the vcctor k

=2

=
I

(P, ) « 1 4 © (4 298)
The equations (A 297) and (a4 398) lecad to

B(G) =~ (1) (1) k. s-(1/e") » dw . (4 399)

Il ©

Regarding (A 38S), ii(5) takes the following shape
2(5) =g (A) (L) k-(grad 2)-(1/e') - dw (i 399a)

This above expression for £(5) offers the possibility for essential
rearrangements., They have the aim to avoid the horizontal derivatives of
the topographical hsights which are implicd in the toerm (grad 2). In the
course of thesc rearrangemcnts,(grad Z) comes to be replaced by 2, and,
further, instead of k, the horizontal derivatives of the components of the
vector k appear. The horizontal derivatives of k are much more
smoothed than the corresponding amounts of 2, Even‘ths fact is the esscnitial
reason for the coming rearrangements of E(5).
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Following up this aim of these rearrangements,a new vector a is introduced

by

a = (2/e) k &

As to the 3 symbols on the right hand side of the equation above, the

scalar functions Z, e', and the two components of the vector k

have values which are understood (in the now discussed rearrange& nts of
E(5) )  that they are distributed along the surface w of the
sphere with the radius R'. They are functions of the two variable co=

ordinates of the swurface point Q, at least in the here discussed problem,
The co-ordinates of the point P are constant, Z has finite values, as so

as the componecnts of the vector k. In (4 398), the components of %
are always finite, since the componcnts of the plumb-line deflecti on are

finite, always; and x*(P,Q) is also always finite, (A 395a), it tends to
the unity if x2 tends to infinity, a property ecasily verified before the
background of (A 203) (A 206) for x'y (see also (A 414) and (A 415) ) ,

(A 400)

Now, a short excursion into the field of vector analysis is to be undertaken,
Along the sphere w, a general continuous scalar function q, having continuous

first derivatives, is introduced,
q = a (¢, ) .

¢ and A are the geocentric latitude and longitude. The gradient of the
function q has the following shape, (A 388a),

grad q = (‘]/R')-(@q/D\P)-g,I +(1/(R'-cos‘?))'(a(I/9/1)'=e2 .

Along the sphere w, 1t is possible to introduce the two arc elements ax

and dy, being defined by

dx = R'. d¢p , 4y = (R'-cosp). dA .
With (A 401a), the expression of (A 401) tumms to
grad q=(9¢/®%) -y +(2a/ ) g,

The meaning of 21 and 22 was already explained, some lines before
the equations (4 381), (A 382), Furthermore, besides of the function q,
tangential vector of the sphere w is introduced. It is denoted by q,

LK RN TR S P ;

Q4 and 95 are continuous functions of ¢ and R y they have
continuous firet derivatives,

n

44 (“P)A) 2

99

qz(Lp,/‘t) .

Az
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The scalar product of the gradient vector, (according to (A 388a)), with the
vector q gives the divergence of the vector field q,

div. g = [/-q = grad - q . (A 402d)

The divergence of a vector field is a scalar function. Thws,

1 E)q1 1 an tan P ( )
div q = e + . - - q . A 403
= R' 7D R‘-cos? DA R 1

After this excursion into the field of the vector analysis, demonstrated
vith the help of the function o] and the vector q, wo return now back to
the vector field a, (A 400)., The divergence of the fr;ector field g‘ is
obtained by (A 420) and (4 403), h:nce

~

div a = div I:(Z/c') lz] = (A 403a)

and further,
V-Ez/c')- }Z:J: V.a-
(V2)-(1/c')-k + 2 [V-u/u')]l; * <Z/e')-[V'

1]

div a

nx

L}

:I . (4 404)

Now, the sinzularity of the funciion 1/c¢' hag to be considered., In coce,
the length ¢! tends to zcro, the function 1/¢!' tends to iafinity. But, in
(A 404), the function (1/¢') can be tolzrated only ot long as it is a
continuoue function . In order to avoid this discrepancy, the function
div a is not trsated for wholec the surface w of the sphere with the

radius R', (4 404). iround the test point P, an sresa w" which does surround
this point P is separated from the surface w ; w has &lobal extension,
The remaining part of v is w!, Thus,
wo=w' o+ w" " (4 404a)

As long as div a according to (A 404) is discussed for tie partial area
vi' only, any singularity of the function 1/e' doecs not ecxist, since the
distance betwean the point P and the margin of the areca w" has ncver
to be equal to zero, = this is a necessary constraint.,
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From Fig, A 9, the reader learns that the boundary-line between w'
and w" is denominated by ¢, dc is the arc element. 2: is the unit
normal vector of the line ¢, 23 is simultaneously a tangential vector
along the sphere Ww. 23 is heading into the exterior of the domain w',

amd , , thus, into the interior of w",

Obviously, it is allowed to apply the integral theorem of Gauss to
the vector field a. Here, this theorem is specialized on the area w!' and
its boundary c, Hence it follows

()( ‘ng ) de . (A 405)

(div g)g dw d

i

w' (e}
Here, w' 1is a part of the surface w;and ¢ is the boundary-line of w'.

Usually, in the text-books, the Gaussian thocorem is described for a
three-dimensional space and its boundary-surface, The transition from the
three-dimenional case to the two-dimensional case of (A 405) is easily done
by conéidering the fact that the vector a  has two horizontal components,
only, further, that a does not depend on the distance r to the
center of the Farth, s;d, finally, that a has no component in the radial
direction., these special properties transform the problem from the three-
dimensional case to the two-dimensional one, (4 405).

The validity of the integral theorem of Gauss for the two -dimensional
vector field a, (see (A 405)), is easily proved along the following lines,
Just to take an example, one arbitrary infinitesimal mesh is singled out
from the co-ordinate grid covering the area w'., This mesh is constructed by
lines of Gauss' co-ordinates p = const. and A= const., spread out over the
area w', Thus, the boundary-lines of this mesh are lines of constant latitude,

on the one hand, and lines of constant longitude, on the other hand. The
situation is shown by Fig. A 10, The area of this mesh is equal to dw; the

side lengthes of it are equal to R'-de, R'-(cos«p)3~ Aad, and R“(COS\p)4 .dA .
If (A 405) is applied to this infinitesimal mesh (instead of the domain w')

-and to the vector field g, described by (A 402a) (A 402b) (A 402c), (instead

of the vector field a), the relation (A 405) turns to

4
(div gq) - dw = Z Eq-ng)-dc:l F (A 405a)
= == i

Here, in equation (A 405a), dw denotes again the surface element of the
spherical surface w . And, dc 1s again the arc element of the boundary-line c
which separates the two partial areas w' and w" of the spherical
surface w,

The smaller the amount of dw , the better valid the equation (A 405a). In (A 405a),
the summation over the suffix i, ( £ = 1,2,3,4 ), means the summation over
the four sides of the infinitesimal trapgzoid represented by Fig. A 10, For these

4 sides , thae concerned values of g , a. and de have to be quoted. Thus, these

4 values are as follows ,

(a)y » (o) » (de)y 5 (1=1234) .
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(q1)q
l ¢ = const.
R'(cos tp)“ dA
o
(qz)1 o dw _%- (qz)?_
Qz (%4
R'(cos ¢), da ¢ = const.
a3 (q‘)3 -+
§ §
I "
< <
Fig. A 10,

44 is the component of the vector q in the north-south direction,
a5 is tho component in the east-west direction,

Now, ths validity of (A 405a) is easily proved by the developments
of (A 405b).

The summation on the right hand side of (A 405a) refers to the four
sides of the mesh, represented by Fig. A 10, The sum on the right hand side
of (A 405a) develops in the following way, it follows from a look on
Fig. A 10.

2 Jame], -

i=1

= (q2)1~R'.d~P + (q2)2 - R'-dy - (q1)3. R"(COB‘P)B .ax o+

+

(Q) 'R"( ) -dﬂ =
14 COS\P4

|:(f12)2 -(q2)1:|R' U d\P + [(Q1)4 - (q1)3J R"(COB\P)B * dA +

+ (q1)4-n'.d/\ ,l:(cos«l:)tF - (cosp)BJ &
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]

(3q2/9A)-dh “R'-d¢ + (9q /9¢) - dp R'-(cos ¢) -dA o+

+

(q1)4 « R'» dA-(- sin ) - dy =

[(1/R')-(?:)q1/8up) + (1/(R'-cos ¢)) - (qy/IA) =

(tan ) - (1/R") 'q1]~R'2 * (cos ¢) - dep ar =

(div g) Cdw . (A 405b)

The developments given by the above lines are self-cxplanatory. They prove ,by (A 403 ))
the validity of (A 405a). The integration over the wholec of the infinitesimal

meshes of the domain w!' leads from (A 405a) to (A 405). Thus, the validity

of (A 405) is corroborated.,

Now, we rzturn back to the relations (A 404) and (A 405), and to the
specialities connected with the division of the surface w into two parts,
w! and w", Fig. A 9. For the subsequent mathematical deliberations, the
close surroundings w" arourd the test point P get the form of a small
spherical cap with the spherical radius RS . This cap is concentric to the
test point P, and it is siwated on the sphere we Thus, the figurc A S changes
to the figure A 11,

x|

<||

Pige A 11,
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In Fige. A 11, the symbol A is again the azimuth measured clockwise
from the north. The line % leads to the north, the line ? to the east,
The vertex of the azimuth A is the center point P of the cap w".

Consequently, if (A 404a) is considered, the relation (A 406) follows,
(div a) - dw = (div a) -« dw . (A 406)
w! A A

with (A 406), (A 405) turns to

m (div a) - dw = g (___c_l . Eg)-dc . (s 407)

w=w!" ]
In (4 407), we refzr to ths specizl situation shown by Fig. a4 11,

In case, the radius SH of <the czp w" tende to zero, the area of w"
tends to zero simultancously., Hsre, the radius was measured by the geoczntric
angle > which belongs to w", Fig. 4 11. Low, the speccialitiss arc to be
considered which set in during the transition to zn infinitecsimal small area for
w", 1This transition procedure comcs z2bout if 9 tends to 2eY0,

R'- 8 =0 . (4 408)
The integzral on the left hand side of (A 407) covers the arca il = w - w",
The coverage of the area w" necds a snucial consideration, since tne integrend

contains the inverse of ¢'. In cacse of (4 408), this inverse does tend to
infinity. Hence, it is necessary to show that the integral

K = g (div g) . dw (1 409)

wit

tends to zero, if the transition (A 408) takes place. For a sufficient small
value of RS , th: surface element dw has the approximative plane-geometry-
representation ( the precise shape of dw  1is: (R')2- (sin p)- dp-d4Aa ) by (& 410)

dw = &' - de' . dA + 11 (e') 4 (A 410)

11(e') symbolizes a relative error of the order or (e'/R')2 in the value of
dw., 11(e') is a function depending on e'.(sin p =(e'/R") = ('1/8)-(e'/R')3+ - eee ),

(A 404) is introduced into (A 40S). In doing so, K divides into three
constituents,

K=K, +X, +K (A 410a)

1 2

3 ®
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They have the following expressions, regarding (A 410) (A 404), (neglecting
the term 1,(e'), i.e. relative errors of the order of (e'/R')2 in the integrands ),

K

1 g( (V-2) c Xk - de' - da ’ (A 411)

wt

=
]

2 Z~[l7-(1/c'):] ke' . det . dA . (A 412)

(A 413)

=
s ]

]
\_/\
—

o
—

S|

Il =
(I

aQ

[¢]

o
=

\-Jll

The surface of the Parth was presupposed to be that of a star-shaped
Earth, the slopes of the terrain have never infinite amounts. Thus, Z2, x, and
V-2 have always finite amounts., If (A 408) is applied, 2 tends to zero.

The- length of k is viewed by (A 398). The length of the vector X is
always finite, because the plumb-line deflection & has finite amounts, always,
(A 383), (& 376) (A 377), and, because, moreover, =x*(P,Q) is a function of
finite values, too. The latter fact is evidenced by (A 395a). Regarding (A 206),
the relation (A 395a) yields

1/2 7 -1
x*(P,Q) o (%% + Z/R')-]:‘l + %%+ (1 + x9) } . (A 414)
In casc, the topographical heights tend to zero, the x values tecnd to zero
simultaneously (for finite values of e'). Consequently, (A 414) tends to zero,
in this c¢ase, And, furthermore, in the adverse case, if the x2 values tend

to infinity, the amount of (A 414) tends to the unity. Thus, obviously,
o < |=%¥| < 7 ¢ (A 415)
Hence, the length of the vector k is finite,

Furthermore, the amount of the scalar value V-g, being equal to div Kk,
has to be discussed, since this amount appears in (A 413). In this context, the
question is in the fore whether div k has finite valwe s. Regarding the
relations (A 398) (A 378) (A 379) (A 411), and substituting th® vector q in
(A 403) by the vector g, the following rslation is obtaired, =

div k = V'_L‘. =
(1/8*) {9( *5.)/0 } - YKty /PA b= (e t.)(ban @) -(1/R') .+ (4 416)
= x" by P +(1/(R-cosxp)) x 2)/ - (x -t an " 4

As it is evidenced by (A 414), the function x*(P,Q) is a continuous function
with continuous first derivatives, since b'd is a continuous function of 2,
and since Z is a continuous function with continuous first derivatives,
depending on the latitude and longitude,
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t1 and t2 are the components of the plumb-line deflection, It is well-known that
these functions are continuous with continuous first and higher derivatives, Thus,
the values of x¥. tys the values of the derivative of (x* t, ) with regard to
the latitude, and the values of the derivative of (x’-‘ t2) with regard to the
longitude, (which appear in (A 416)), all these threc values have finite amounts,
Consequently, it can be taken for granted that the amount of (div l=c) in (A 413)
has finite amounts. In case of P= 900, the right hand side of (A 416) has’(tan .p—»m)) a
removable singularity, It can be removed by the choice of another convenient pole for
co~ordinate system. Ths operator ( div k ) depends not on the choice of the
co-ordinate’ system, -

As to the here discussed properties of the integrands appaarlng in (4 411),
(A 412), and (4 413), finally, the amount of the scalar

[grad (1/e')] ket (4 417)
appearing in (A 412) is to be considered, and that in case of the transition

described by (A 408).
Obviously, the gradicnt vector of  1/¢! has the following shape, (A 402),

grad (1/e') = [9(‘1/6')/?)§]-__e_1 + [’3(1/0')/9§]§2 . (4 418)
Here is
[@(1/3')/’3_‘?{];1 =~ (1/c")?. (ac-/'ai).& . (A 419)

The cxpression (A 419) is understood that it is taken far a point in the near
surroundings of ths test point P. The values of (A 419) cover the arca of W' Pig.A 11,
The differential quotient Dec'/ DX can be interpreted as the cosinus of the

angle & between the dircctions of de! and d%. Thus, for e' < R' D .
de'/ DX = cos & i (A 41%2)
36'/9? = sin o a (A 419b)

Hence, (4 418) turns to

(]

grad (1/e') = - (1/0')2'[(005 & ) 8yt (sina) - ¢ :l . (A 420)

In casc of approaching the point P, the value of coso tends to cos A,
and sin« tends to sin A. & is here the azimuth clong which the
approach to P happens, ( See Fig. A 11 ) .,
%
Returning back to (A 417), the vector k = x.1 has to be considercd also,
(A 398). The following rclation is obtained ;—eferring to (A 381) and (A 398) ,

* X !
k = x -t - . (4 421)
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Regarding (A 417), the product of (A 420) and (A 421) needs to be considered,now.
This product is multiplied with 2 and with the length ef,
Hence it follows, for the values within the area w",

Z'[grad (1/e')]-£ e!' = - x’{x-l}c1 ccos X + t, - sin QLJ = (A 422)

After these investigations about the integrands of K1, K2’ KB’ conducted
from (A 414) to (A 422), it is possible to estimate the amount of (A 411),
(A 412), and (A 413), for the special case that the areca of w" +tends to zero,
or, that the transition (A 408) is carried out.

At first, the integral for K1 is considered., Because the two vectors
(grad 2) and k  have limited lengthes, as proved in the lines above, the scalar
or imner produc? of these two vectors has a limited scalar amount, too. This fact
follows from the Schwarz inequality, which has the following form in the here
discussed problem,

(o) x| < |7z |k . (A 423)
Since the two factors on the risht hand side of (A 423) have finite amounts,
the left hand side of this inequality yields a finite amount , also., If k1 is

the upper bound of the amount of ‘(grad Z) -k | , obtained within the area wh,
the relation (A 411) gives for the absolute amount of K1

‘1{1, < 2.7 kg - R -8 : (A 423a)

4 = fin sup|((grad 2) -k ) [ . (A 423h)

The smaller the value of Sx, the more precise the relation (A 423a).

If D tends to zero, (A 408), |K1| tends to zero, too, because 2:7-k, - R
_has an upper bound. Thus,
K, =0, if (4 408) is valid, (A 323e)

At the second place, the integral for K2 comes into the fore, (A 412),
The relations (A 412) and (A 422) yield
X .
K, = - X ¢ Xe|t,-cos 4 t, . sin o|-de' - dA , (A 424)
\V"
as it was found above, the tsrms x , x, t1, t2, cos ¢, and sinol which
appear in the integrand of K2 have finite amounts. Consequently, the

absolute amount of the integrand of (A 424) has an upper bound, k2. Hence it
follows

>
lc2=finsup x'x-[t1-coso(+ t2 - gin N.:|l . (A 424a)
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The relation (A 424a) is inserted into (A 424)% the transition behaviour
described by (A 408) is regarded. The inequality (A 424b) is the consequence
|k, < 2k RO - ; (4 424b)
If 3 tends to zero, the absolute amount of K2 tends to zero, too.

This behaviour follows from (A 424a) and (A 424b). Thus, the following
relation is obtained,

K2 -0, if (A 408) is valid, (A 424c)
At the third place, the integral for K is evaluated, for an area
w"  which tends to zero, (A 413)., Within the area w", Z was proved to be

a finite value. In case of the transition procedure (A 408), the amount of
Z  tends to zero, Further, in the lines which follow the relation (A 416),
it was shown that div k has always finite amounts, Thus, if k is
the upper bound of the absolute amount of the integrand of (A 413),

ky = fin sup | z-(aiv k)| , (A 4244)
the relation (A 413) 1leads to
K 1< 2.7 ky + R': S, (A 424e)
3 3
Hence it follows
! x3| —— 0, if (A 408) is velid. (A 424f)

Regarding (A 423c), (A 424c), and (A 424f), the relation (A 410a)
gives

K -— 0, if (A 408) is valid, (A 425)
Hence, with (A 407) and (A 409),

g( (div =a)-dw - (( (div é) cdw (A 425a)

w=w" w
if (A 408) is valid.

Returning back to the equation (A 407), the relation (A 425a) describes
the transition behaviour of the left hand side of (A 407), for a vanishing
area of wity ,
Now, the transition behaviour of the right hand side of (A 407) is in the fore,

K' = g(g-gg ) - de. (A 425b)

[¢)
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The vector a in the above integrand comes from (A 400) and (A 398),

* -

o
]

b- D k = X = X

Il
-

(A 425c)

*
The above investigations, (A 414) (A 415), did show that the 4 terms x, x , and
%, and Xk have finite amounts. Thus, the length of the vector a, along the
spherical circle c¢, has always finite amounts., The Schwarz inequality gives

(22| < |2| ] -1zl (a9e50)
the vector gg was introcuccd as a unit vector. The inequality (A 4254)

shows that the absolute amount of (a 228) has an upper bound, because lg_
has an upper bound, since we consider a star-shaped Earth with finite amounts
of the slopese. k' denotes this upper bound,

. (A 425¢)

k' = fin sup | a 'Egl

(A 425e) is introduced into (4 425b), Hence, it follows

IK'||$gk"-dc=k'§dc " - (A 425f)

Cc c

The relation (A 425f) yiclds

2%
|| ¢ w | (R'D) - da =27k -R'- h, (A 425g)
A=0
Thus,
K' =0, if (A 408) is valid, (4 425h)
Pinally, roegarding (A 425) and (A 425h), the Gauss' integrol relation
(A 407) turns to
S}( (div g) cdw = 0, (4 4251)

w

if the radius of the area w" tends to zeroe. In (A 4251), (A 425a) was used, also.
Now, we return back to (A 404). The relation (A 404) develops the
expression (div g) into 3 terms, Thus, the introduction of (A 404) into

(A 425i) yields

0 = (a) (E) (div a)-dw = By + B, + By . (A 426)
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For B1 follows

By = (&) (£) (grad 2).(1/e') - k - aw § (A 427)
accounting for (A 389) and (A 399a), the relation (A 427) turns to
£(5) is the term for which an expression convenient for routine calculations
is to be found.,

32 has the following expression )

By, = (4) (B) Z2 - x"(grad (1/e ))-;E < dw . (A 429)

In (A 429), the vector grad (1/e') is a tangential vector of even those groat
circles of the sphere w  which are plotted through the point P. grad (1/¢')
is here the gradient vector of the field of the (1/e') values taken along the
sphe re w, (A 401). If eq is this unit tangential vector heading into the
direction of growing o) values, it follows

grad -(1/e') = = (1/e1)2.(1/R")-(Re'/Dp) - o5 . S0

The component of the vector %t in the direction of the above defined great
circles is, (A 380),

ty 23 . (4 431)
With

e' = 2-R'* sin p/2 (A 432)
the following derivative is obtained

(1/2'). (Qe'/p) = cos p/2 . (A 433)

Regarding (A 380) (A 430) (A 433), the scalar product in the expression
(A 429) takes the following shape

[srad (1/e')]-; = (1/8)-(1/g")-(1/e")?  (cos p/2)-(D2/Qp)  » (4 434)

Inserting (A 380) in (A 434), relative errors of the order of Z/R are
neiplected, here. A comparison of (A 429) and (A 434) gives

*
B, = () () Z-x - (cos p/2)-(l/ﬂ)‘(1/8')-(1/0')2 (91/p) -« dw . (A 435)
In (A 435), a simple rearrangement is now undertaken., Considering

x =12/e! 5 (A 436)
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and accounting for (A 432), we find
z-(1/6")2 = x-(1f2-R") - (1/(sin p/2)) ; (& 437)
hence it follows
Z - x*-(1/e')2 = x- xef(w{z-a'))'u/ (sin p/2)) (A 438)
The symbol b,, serves as an abbreviation , (A 395),
*

i -1
by = x-x = x(x2 + Z/R) | x' + (x')1/2:| . (A 439)

Thus, B, has the following final shaps conveniesnt for routine calculations ywith R¥RY)

8, = (a) (B) ['D’l‘/(R-ap)]-(1/&;')'(1/(211))'(008 p/2)'{1/(sin p/2)i-b11 - dw ., (4 440)

The term B3 of (A 426) has the following expression, introduvcing the
third term on the right hand eide of (A 404) in (i 426),

By = (a) (E) (2/e')-(div k) -dw . (4 441)

The relation (A 3938) gives

*

div = div (x.1) , (A 442)

I=
"

where the vector Xk is divided into 2 components, 1{1 and 1{2,

X
bd -t1 lc1
k = = . (A 443)
X
bid . t2 k2

In the numericel calculations, the vector k  appoars in form of its

components k1 and 1c2, the numerical valucs of which can be treated,if wanted, in

the computations. Conscquently, in the following investigations, the

divergence operator for the vector Xk is now replaced by an operator for

the components k1 and k2’ adapting the symbolic expression of the divergence to the

specialities of the numerical applications., Hence, regarding (A 403),and with R & R' ,
div k = V.x = §2(k1, ky ) =

= (1/R)- ( 9k, /) + (1/(R-cos )+ (DUy/DA) = (1/R)- (tan p)oley o (A 444)

A comparison of (A 441) and (A 444) leads to the following expression for B,

By = () (B) 2 -« ®(ky, kp)-(1/e') - dw . (& 443)
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It is the aim of this chapter to find an expression for E(5) which is
convenient for routine calculations, (A 370). This aim is reached by (4 426) (A 428)
(A 440) and (A 445). Hence,regarding,in addition to (A 446),the formulas for B, and By,

E(s) = - g'Bz -, 8‘33 » (A 446)

E(5) = - (A) (B) g2 D (kyy ky)-(1/e*)-dw -

~ (A) (B) [a‘r/(R op) ]'(1/2R)'(cos p/2)[1/(sin p/2)]~ biy s dw . (A 447)
With (A 443), we find (A 448)
Bligs k) = Bt x-t, ) . (A 448)

Usually, in the geodctic text-books, t1 is denominated by %, and 1,
by 72 ;  thus, pulting

ty= € ¢ ty = B (A 449)

the relation (A 450) follows
@( k1’ kg) = @(X* E s x*v) =
' * X _ , X
= (1/R) l: (= é )/axp]+ (1/(R.cos ?))'[—a(x -7)/@)]— (1/R)- (tan lP)«x é . (A 450)

The amount of x’\4 diminishes rapidly for growing distances from the test
point P, sgince X* ig quadratic in x. Consequently, the amount of the

operator
@ ( ‘X’\" é’ ’ xxj 7?)

diminishes also rapidly if the distances from ths point P are growing,
Therefore, in the Tirst term on the right hand side of (A 447), the integration
can be limited to the near surroundings of the test point P. Further, in the
sccond torm on the right hand side of (A 447), the following rearrangements can
be carricd out, (A 439),

11 dw = x - x%- dw = Z . x%~ (1/e') « dw (A 451)

b
Hera, in (A 451), the factor X’\‘ appears, also. Thus, it can be taken for
granted, that the integrand of the second term on right hand side of (A 447)
diminishes rapidly, too. Consequently, the integration of this term can be
limited to the near surroundings of the test point P, too. Therefore, in
(A 451), the plane surface clement e' - de' . dA can he substituted
for dw; hence

byy-dw ¥ z - X'+ do' . da 4 for e' < 1000 km , (A 452)

Along these lines, accounting for (A 452), (A 447) can be transformed into
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E(5) = - (A) (B) g2 8(x"f, xon) - de'-aa-

- (A) (B) (Qt/De'):(i/2)-(2/R) (cos p/2)‘{1/(sin p/z)}x*- de' . dA . (A 453)

n

Here is, putting approximately R'

* _ -1
x = G2 owa/R) [ a0 <x-)1/2] . (A 454)

R,

14,11, The formulae for D(2.1)

1441141+ The universal formula for D(2.1)

Now, we return baclk to the expression for D(2.1), which is described by
the cquations (45) and (45f) of the section 4., Hence it follows, (45f), on page 23,

D(2.1) = E(1) + E(2) + E(3) + E(4) + E(5) . (A 455)

The detailed developments for the 5 terms on the right hand side of (A 455)
can be fourd at the following places of this publication;

E(1): (A 50) (A 51) (A 52),

E(2): (A 306),
E(3): (4 362),
E(4): (A 369),
£(5): (A 453).
In order to have these formulae easy to survey, they are here put together.

-1
E(1) (a) (B) Ag~(-x2)-(y + y2) . de'. dA +

-
+ (&) (B) (D/R)-(=2:%%)(y + y°) - de' -dA +
-1 =
+ (A) (B)dg-(= 2/R)-(y + ¥y2) » (e') + aw +

-1
+ (8) (B) (T/R)- (-~ 22/R)-(y + y2) - (a') - dw . (A 456)

E(2)

n

(a) (&) (T/R)-VB - de' . dA +
+ (A) (E) (’aT/?‘)e'%vz . de' « 44+
+ (a) (E) (*/R)-(1/R) v, ~ dw +

+ (a) (B) (@7/dp)- (= 1/R?) - (cos p/2)2- (1/sin p) - by v dw (4 457)
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E(3) = (A) (E) dg - (2:2/R)-(1/e"') - dw +
+ (a) (E) (2/R)-( 4-2/R)-(1/e') . dw . (A 458)
E(4) = (A) (E) (T/R)-(= Z2/R)-(1/0') - dw . (A 459)

E(sN= (A) (E) (9T/Dec') - (-1/2R)-(cos p/2)<1/(sin p/%>~b11.e'- de' - dA +

(A) (B) (-g2)  B(ZF, $'p) - de' - an . (A 460)

+

In the above formulae for E(1), E(2), E(3), E(4), E(5) , relative errors
of the order of Z/R are neglected.

In view. of the numerical applications, a regrouping of the right hand
side of (A 455) is now carried out. It is racommended to group the development for
the term D(2.1), (A 455), according to certain aspects which originate from the
facts appecaring in the numerical calculations. Following up this aim, terms with
gimilar integrands are assigned into the same new group. Making this new
classification on the right hand side of (A 455), the following new 7 groups
E(a), E(b), E(c), E(d), E(e), E(f), and E(g) appear in the expression for the
term D(2.1),

D(2.1) = E(a) + E(b) + E(c) + B(d) + E(e) + E(f) + E(g). (A 461)
The se new groups have the following shape,

-1 -1
E(a) = (A) (E)Ag(-2/R)-(y + yz) « (e') -dw + (A) (E) dg-(22/R)-(1/e')-dw . (A 462)

E(b)

. -1
(a) (B) (T/R)-(-22/R)-(y + y2) - (1/e')-aw + (4)(E) (T/R) - (1/R)- v, -dw +

+ (4) (E) (T/R)-(4-2/R)-(1/e')-dw+ (A) (E) (T/R):(-2/R)-(1/e')-dw . (A 463)

E(c)

(A) (8) (DT/Dp)- (-1/R?) - (cos p/2)2 (1/sin p)-by - aw . (A 464)

-1

E(d) = (&) (E) dg-(-x2).-(y + y°) . de'. dA . (A 465)
-1

E(e) = (A) (E) (T/R)«(~2x2).(y + y2) : de'- dA + (A) (E) (T/R) vyedet. dA . (A 466)

E(f)

(a) (E) (P1/@e').v,.de'- da + (A) (k) (aT/'De')-(-bﬂ)'de'. da . (A 467)

E(g)

(4) (B) (-g-2)-B(<T¢, #n) - do' - da . (A 468)
Er 7

In the second term_on the right hand side of (A 467), the approximately valid
relatidns

cos p/2 ¥ 1, for e' < 1000 km , (A 469)
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and

)
e' = 2.R -sin p/2 , or, approximately, o' Y 2 .R.«(stn p/2), (A 470)

th imation R T R' .
are made use of, In (A 470), we have used the approx

The following rearrangoments of the relations from (A 462) up to (A 468)
are self-explanatory.

E(a) = (A) () dg - (z/R)-[z - (y+ y2)-1J-(1/o') dw (4 471)
E(b) = (4) (E) (T/R)-(Z/R)-[z - 240y + yz)-1J-(1./e') Caw o+

+ (8) (B) (D/2)-(1/R)-vy - dw . (A 472)
E(c) : (see (A 464)), (A 473)
E(d) : (see (A 465)), (A 474)
E(e) = (4) (E) (T/a)-[v3 - 2x%(y + y2>'1] .de' - dA . (4 475)
B = (W) @) (3/Be)[vy by Joaer - an . (4 476)
E(g) :(see (A 468))., (A 477)

The meaning of the here appearing terms Vis Vpy V3 can be found by
(A 327), (A 332), (A 339). The meaning of the term b;, appearing in E(c),
is found by (A 319). The meaning of by, is as follows, (A 439),

. -1
by = x-x96= x‘(x2 + Z/R)~[x' + (x')1/2] . (A 478)

The meaning of @(x*f . ffq ) is explained by (A 450). The meaning
of X, ¥y, X', x", e' is as follows, (A 27), (A 39), (4 31), (A 40), (A TOa),

x =2/¢' § (A 479)
'y2 S+ x2 (A 480)
x' = y2 « Z2/R' , (A 481)
x" = x +-cos p/2 , (A 482)
g' = 2-R'. sin p/2 ., (A 483)

The integrals for E(a), E(b), and E(c) have the surface slement dw
“at the integrand., These integrations have to cover whole the globe. But,
the integrals for 1B(d), E(e), E(f), and E(g) have the product of the
two differentials de' - dA under the integration symbol. Thus, these
latter 4 integrations cover only the cap of e' <1000 km around the
test point P.
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In the development (A 461) for D(2.1), it is rscommendable to draw a
clear distinction between the integrals of global and those of regional
coverage., Therefore, the relation (A 461) is written in the following form,

D(241) = F, +F ’ (A 484)
with

F, = E(a) + B(b) + i(c), , (4 485)
and

F, = E(d) + E(e) + £(f) + r(g) . (A 486)

The term F1 comprises the integrals of global integration; the term
F2 encloses the terms of regional coverage, only, (i. e. for e' <1000 km),

Finally, it is to be stated that the relation (A 484) is the universally
valid representation of D(2.1); may the test point P be situated in the lowlands
or in the high mountains, the rclation (A 484) meets all requirements. In (A 484),
F, comes from (4 485) and F, from (A 486). In (A 485) : E(a), E(b), and E(c)
come from (A 471), (A 472), and (A 473). In (A 486): E(d), E(e), E(f), and E(g)
come from (A 474), (A 475), (A 476), and (A 477).

Consequaently, (A 484) is the fundamental form represcnting D(2.1). It is of
universal efficiency.

14,11.2, The lowland formula for D(2.1)

Sure, mostly, in the different cases of the geodetic applications, the
universal formula (A 484) for D(2.1) is not fully exhausted, by far not. rhe
potentiality of the cxpression (A 484) is fully exploited only, if the tcst
point P 'is situated in high mountains, and if, simultanoously, thec hcight
anomalies to be determined have to have centimeter precision, =~ a very rare
case, In most cases, the test points P , for which the height anomolics &
are to be determined, arec situated in the lowlands, or'in hilly arcae with
small terrain inclination, or on the occans., In these special situations now in the fore
for the place of the test point P, the amount of the tecxm x2 is very small,
Consequently, in this case, x2 << 1, many parts of the formulae from (A 471)
up to (A 477) are so small that it is allowed to neglect them, in the lowlands.

Honce, in order to save work, the universal cxpression, (A 484), is now
simplified for the case the test point B is situated in the lowlands,
exclusing high mountain test points.

The methematical formulation of ths constraint that the test point is
situated in the lowlands is given by the incquality

%% << 1 : (A 487)

https://doi.org/10.2312/zipe.1989.097



195

(A 487) is the definition of the condition that a lowland tost point is under
consideration, to speak with other words.

Since the terms of F, are quadratic in the argument x , (A 486), (see
E(d), E(e), E(f), E(g)),the amount of F, will always be very small, if the
inequality (A 487) is right. Thus,

F, ¥ 0 , if (A 487) is right. (A 488)

Furthermore, considering the three expressions E(a), E(b), and E(c)
on the right hand side of (A 485), the developments (A 471), (A 472),
and (A 473) for these threce expressions will simplify enormously applying
(A 487).

At first, the term in the brackets of (A 471) is simplified by the
epplication of (A 487). In case, the zmount of x°  is very small, (A 487),
the reclation (A 480) leads to the following approximately valid osquations

vy=lyl ¥ 1, y® ¥ 1;if (A 487) is valid. (A 488a)
Thus,
2. =1 2
2 - (y+39) = 3/2 iIf X K 1. (A 489)

i
Further on, the relations (A 488a) turn the brackets of (A 472) to

-1
3-2(y+y%) ¥ 2 ; 1t 2 &K 1., (4 490)

In the second term on the right hand side of (A 472), the expression vy is
implied. For small values of x, the relation (4 327a) leads to '

vy = x = Z/e*, if (A 487) is valid. (A 491)

The relations (A 490) and (A 491) are introduced into (A 472); hence it
follows

-1
(Z/R)~[3 - 2(y + y2) ]‘(1/e') + (1/R)-v1 2 (2/R)-(3/e") ;n‘ x2<< 1. (A 492)

Finally, the function E(c) given by (A 473) is adapted to (A 487)., For
small values of x2, the term b; gets the following shape, (A 319) (A 320),

b, x = Z/e', if (A 487) is valid. (A 493)
Returning back to the relation (A 485) repregenting F1, and following up
the adaptation of it to the lowland conditions, the relations (A 489), (A 492),
and (A 493) are introduced into the equations (A 471), (A 472), and (A 473)
for E(a), E(b), and E(c). The sum of these three values
E(a) + E(b) + E(c) (A 494)
computed observing the lowland condition (A 487) is denominated by F1 q or by []1.

P = [B@) v 30) + 5@ (4 495)
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Along these lines, the combination of (A 489), (A 492), and (A 493)
with the expressions on the right hand side of (A 485) leads to the following
shape of Fy 4, (A 497); - here the relation (A 496) was made use of,

(= 1/R)(cos p/2)2-(1/sin p)-(1/e") = (-1/4R2)~(cos p/2)-(1/(sin p/2) )% (4 496)

Fy.q = (&) (E) Ag-(2/R)-(3/2)-(1/e')-dw +(A) (E) (T/R)-(2/R)-(3/e')-aw +

+ (4) (EB) (’aT/‘ap)-(Z/R)'(—1/(4R2)>~(cos p/2)-(1/(sin p/2))2-dw . (A 497)

This simplified formula (A 497) for P, 4 1is right if the lowland condition
(A 487) is valid., This simple formula (A 497) representing F,,1 1is a convenient
substitute for the extensive formula for F1 as long as our geodetic applicatious
do without test points situated in the high mountains.

Returning back to the expression for D(2.1), the universal formula (A 484)
gets the simplified shape if the lowland condition (A 487) is taken into regard.
Thus, accounting for (A 488), and with the transition behaviour of (A 498)

Fi—= 7, 1 » (if (A 487) is valid ), (A 498)
the universal case (A 484) turns to the lowland version (A 499),

D(2.,1) ¥ F , (if (A 487) is valid ). (A 499)

161
PFinally, summarizing the considerations about the computation of D(2.1),

the simple formula (A 499) will be of prominent importance, it will governe

most cases of our applications. (A 499) can be handled easily in tle numerical

calculations.The field of application of (A 499) will be much more broad

than that of (A 484). The application of the universal formula (A 484) will

be restricted to the seldom cases of high mountain test points P, only.
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