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Summary 

The author extends and completes his investigations about the 

solution of the boundary value problem of Molodenskij found by 

means of the identity of Green during the last 30 years. 

These derivations are developed here in a clear, comprehensive 

and systematic order, lt is the inversion of the fundamental 

equation of ·physical geodesy which is treated here, 

The mapping between the telluroid and the Earth's surface 

happens by vertical point shifts, The final result 

allows the calculation of the height anomalies exact to 

1 cm; thus, it is usefull for the determination of the 

decimeter- and centimeter- geoid, 

The solution has the shape of a closed expression, 

It does not imply series developments which have a dubions 

convergence or which do not allow to evaluate the amount 

of the residual term of it, All the her9 introduced 

series developments have a quick, clear and guaranteed 

convergence, Iteration procedures are avoided, The final 

result expresses the height anomalies or the perturbation 

potential at the Earth's surface in terms of the free-air 

anomalies of the gravity at the Earth's surface. 

The main term of the solution is the Stok�s integral 

which has the Faye - anomalies in the integrand, These 

anomalies consist in the sum of the free-air anomal ies und 

the plane terrain reduction of the ßrnvity, 

Further, these Faye - anomalies are supplemented by a small 

and smoothed term which can be disregarded in most cases, 

which has positiveand negative. amounts, and which implies 

the vertical gradient of the refined Bouguer -

anomalies, Further on, this main term has to be supplemented 

by the addition of 3 or 4 relative small terms, only one 

of them can reach about 50 cm in extreme cases. 

The final solution of the boundary value problem has 

a shape which is distinguished by the special property of the additives 

that a clear separation between the terms linear and 

quadratic in the heights takes place. The terms quadratic 

in the hei ghts can be neglected for test points situated 

in plane countries or in low mountain ranges. 
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Only for test points situated in high mountaina
1
the terma quadratic in 

the heights can be of intereat. Even in this case, these .terma have

only relative small amounts, and the integration area can be 

restricted on the near surroundings of the test point, to a distance 

of not more than some tens of kilometers. 

The final solution of the boundary value problem is convenient 

for routine applications, and it meets all theoretical requirements. 

The physical boundary values are not subsided downwards from the surface to the 

sp;iere, but the geometrical terms come upwards from the sphere to the surface, 

Zusammenfassung 

Die in den letzten 30 Jahren, seit 1959, ausgeführten Unter­

suchungen des Autors zum Problem der Darstellung der Lösung 

des Randwertproblems von Molodenskij mittels der Identität von 

Green werden erweitert und in eine endgültige Form gebracht. 

Alle diese Untersuchungen werden hier in systematischer Weise 

vollständig zusammengefaßt. Es handelt sich also um die Inversion 

der Fundamentalgleichung der Physikalischen Geodäsie. 

Die Punktverschiebungen zwischen dem Telluroid und der Erd­

oberfläche erfolgen nur in vertikaler Richtung. 

Im Mittelpunkt der Untersuchungen steht die Erfassung aller 

Glieder, die den Betrag von etwa 1 cm bei den Höhenanomalien 

erreichen. Die Lösung wird also soweit entwickelt, daß sie flir 

die Bastimmung des Dezimeter - und des Zantimetergeoide ge­

eignet ist. Die Lösung hat die Form eines geschlossenen Ausdrucke. 

Es werden keine Reihenentwicklungen eingeführt, deren Konvergenz 

fraglich ist, und bei denen sich die Größe des Restgliedes 

nicht abschätzen läßt. Soweit Reihenentwicklungen tatsächlich 

eingeführt werden, haben sie eine sehr schnelle und gesicherte 

Konvergenz. Ite'rationsprozesse werden vermieden. 

Die erhaltene Lösung drückt die Höhenanomalien oder das 

Störpotential an der Erdoberfläche als Funktion von den Schwere­

anomalien an der Erdoberfläche aus. Das Hauptglied der Lösung 

wird durch das Stokes-sehe Integral gebildet, das über die

Faye-Anomalien zu erstrecken ist. Bei diesen Anomalien ist zu 

den Freiluftanomalien die ebene Geländereduktion der Schwere 

hinzuaddiert worden. 

https://doi.org/10.2312/zipe.1989.097
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Zu diesen Faye-Anomalien tritt noch ein kleiner glatter Ausdruck, 

der positiv und negativ sein kann, und der sich aus dem Vertikal­

gradienten der Bougueranomalien ableitet. Ferner treten zum 

Hauptglied noch 3 oder 4 kleine Nebenglieder hinzu, eins von 

ihnen kann den Betrag von etwa 50 cm erreichen. Bei diesen Ent­

wicklungen wird eine klare Trennung vorgenommen zwischen den 

Gliedern die linear und denen die quadratisch in der Höhe sind; 

die quadratischen sind nur flir Aufpunkte im Hochgebirge von 

Interesse. 

Die gefundene Lösung ist flir Routineanwendurgen geeignet, 

und sie befriedigt auch die theoretischen Erfordernisse. 

Die physikalischen rlandv1erte an der ;;;rdoberfläche werde:1 nicht herab­

gesenkt auf die Bezugskugel oder auf das Bezugsellipsoid, sondern die 

geometrischen Ausdrücke unterliegen Prozeduren, bei denen sie von der 

Bezugskugel (-ellipsoid) zur ;;;rdoberfläche kommen. 

Es wird vorausgesetzt, daß die Geländeneigung endliche und stetige 

Werte hat, - so wie man sie aus den topographischen Karten entnehmen kann. 

Jeder Punkt an der Erdoberfläche hat eine eindeutig definierte Tangen­

tialebene. 

Pe3JOMe 

Ilp0B0,I\HMH8 3a ITOCJI8,I\HH8 30 J18T,Ha"IlIHM C 1989 ro.I(a,HCCJI8,I\O­

Bamr.fI [tBTopa rro II po6J18M8 J13JIOJK8H11.H p8lll8Hll!.fI KpaeBOM 38JJ:8.1:fil 

MoJIO,I\8HCKOro rrocpe,I\CTBOM }i,I(8HTH1IHOCT!1 fpmra ,!J,aIOTCH B pacw:,­

peHHOM 11! ,I\0B8,I\8HHOM .I\O OKOH'!aT8JI:OHOro mr,ua t:,o_pr11e • .U,ae'rc.rr 

IIO.iIH08 H CI1CT8MaT!11I8CK08 o6'b8,Il,HH8I!1'!8 BC8X HCCJI8.I(OBmrnil. Pe%, 

TaI{l,IM o6pa30M, 1meT 06 !1HBepcfüI i0JH.na't.eHT8Ji:OHOro Y7)8.BH8HfüI 

B o6JiaCTH ((l113H"IeCIWl�I reo,r.i:e31'111. CMell(eHHe TO"IeK Me;l:,uy TeJIJcy-_po­

HJJ:OM H l10B8pXHOCT:OIO 3eMJIH peaJIH3yeTC.fI TOJI:01(0 D B8lJ'l'l[]{3JI:OHOi1! 

HarrpaBJI emn1. 

D l.(8HTpe HCCJie,I\OBamri,; H8XO.I\lI'l'C.fI y"IeT BCGX COC'l'i.lLJUI!OU(VC{, ]W'l'Ol,He 

IT.PH BdCOTHb!X 8.HOMaJIH.fIX ,l],OC'l'l·il'aIOT IlpH6JIH3!1TeJi:OHO ·.'. :BElJifitJJ,IHbJ B 

I CM. Pe!ll8IDI8, CJ!e.I(OBaTeJI:OHO, paspaoa'rl:l...:,aeTC.fI .uo '1'3.KQj C'l'8-

rremr, 1IT06h! OHO CTaJIO npJ-ITO,UHhfiVi )�JI.fI onpe,r,e.1el1HH ;f(eTJ,I-E:ie'rpoBO-

ro H Ca!ITFiMeTpoBoro reoJ/i,n,a, Pewemre 8TO rn,JGeT (lop, .. iy :;a:wHY:eH­

noro Bb!J)aii:eHmI. He BBO,TIJITC.fI HH O,I\HO pa3J!O)'.:emrn B P.fI.I\, I{Ol-lD8p­

rem.i;tt:T KO'roporo CTOI1T 110.I\ BOrrpocoM H B8J1H'Il1HY OCTdTO'IBOro "IJie­

na IWToporo ne y.naeTcH orrpe,ueJIHT:O 3apa!Iee. 11ocr:ojl:bi{J 1x.e pas­

.iIOiKeHHH B P.fI.I\ .I\811CTDHTeJi:OHO BBO.I\.FITC.fI, y HHX IiMe8TC.fI 01leH:O 

O!lCTpM 11 Ha,neJ:mM IWHBeprenu;1rn. ÜOXO.I\H'l'CH 083 rr_pou,eccoB H'l.'e-
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Pfil\IDI. IloJiy1!8HH08 p8lll8mrn Bb!PWila8T BblCOTHhl8 a.HOMclJHIB �IJIH rro­

T8HIJ;l,IaJI ITOM8X Ha- IIOB8pXHOCTU 38MIIH B Ka'!8CTB8 @ymnzyrn rpaBH­

Tau;i,IOHHhlX a.HOMaJIHH Ha ITOB8pXHOCTH 38M7IH, rJiaBH00 COCTaBJIH-

10ll.l88 p8lll8HHH o6pasy8TCH IIpllI ITOMOll.ll/I HHT8rpa.rra CTOKCa, IWTOphÜI 

CJI8.II:Y8T pacrrpocTpaHHTI, H Ha aHOMclJH1!0 \l?M, 1ITO Kaca8'l'CH ,na.HHHX: 

a.HOMaJI:HM, TO TYT K a.HOMaJIHBM \i?aH rrpW:5a.BJI8Ha HJIOCKM T0110rpa­

q/H''!8CKM rrorrpaBim Ha rpaBHTau;mo. l\ 3TOÜ a.HOMaJIHl1 WM rrpHCiaB­

JIH8TCH 811\8 H860JII,lll08 rJia,I\K08 Bup8iK8mre, IW'l'Ol)OE, MOlK8T 6HTb 

KaI< IIOJIO)'.CHT8JII:,HW-.1, TaK H OTpHqaT0JlbHbIM, H KOTOP08 fIBJIH8TCH 

IIpOl13BO,II:HhlM OT B8PTHKaJlbHhlX rp8,Ii,H8HTOB rpamIM8TPI•f'I8CKOli a.HO-

. MaJIHH Eyr0. 

,Ii.aJI88 l{ rJiaBHOMY 1DI8HY ,1.06aBJI.FiiO'l'CH 811\8 8 HJIH 4 H8üOJlbWHX 

IlOOO'llihlX COCTfillJimDll.lHX, O.I(HO H3 IWTOpHX ,v!Oii,8T .I(OCTHTh rrpHüJIH3l1-

T8JibHOld B8Jil1'Il!Hhl B 50 CM, IlpH .n:aHHO ,I pa3fülTHH npOJrnBO.]JJITCff 

H8JJ:BYCf,'1HCJI8HH08 JJ:8JI8HH8 M8i;{JXY JIHH8t'.HJill\11!1 lJJ18HclMH H liJ18HEll'11E -

I<B8,Il,_[J8.TH!:L'\1H Ha BHCO'l'8; rrna,upaTHL!8 COC'l'aBiIHJOIJ.\H8 IIlJ8)1,CTaBJI.FiiJT 

HHT8p8C TOJibKO )J,/]H Ha'!aJibH!:IX T0'!8K B BllCOROropM!, 

Ha\TI,8HH08 peru0mrn, rrpllrO).\HO .I(JlH pH,1.J,oBoro iICITOfü,30B81JHH, ÜHO 

T8.I<iK8 OTB8'!a8T T80p8Tl1'!8CKJ·fäl Ti)860Ba.Ifvl.fI1\A. 

https://doi.org/10.2312/zipe.1989.097
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1, Introduction 

The boundary value problem of the phyeical geodesy deale with 
the inversion of the fundamental differential equation of the 
physical geodeey, 

2 

r 
T 

T is one perturbation potential, 
r is the geocentric radius, and 
dgT is the free-air anomaly.

(1) expresses the free-air anomaly in terms of the perturbation
potential. Vice versa, the solution of the boundary valu6
problem gives the perturbation potential in terme of the free-air
anomalies. Approaching the problem by the coneideration of a
epherical modal Ea�th, the Solution of the boundary value problem
is reduced to the Stokes formula,

T C t,,)) dgT S(p) dl

1 

R is the radiue of the globe, 
S(p) is the Stokes function, 
p is the spherical distance 
between the test point P and the point Q running over the 
ephere in the course of the integration by (2). 1 denotea the 
uni t sphere. 

Recognizing the great improvements in the precision of the 
geodetic measuremente, it ie no more allowed to introduce a 
spherical Earth as a substitute for the real Earth as boundary 
surface. It is neceasary to consider the boundary �alues as 
continuoua functions along the Earth's eurface ahaped by the 
topography. This type of a boundary value problem is discussed 
in the following lines. Thus, the matter to be treated now 
consiats in the problem to find the inveraion of the equation (1). 
The empirically obtained boundary valuea ,1gT are given along 
the real aurface of the Earth u. 
The T valuea along u are to be represented in terme of theee 
LJgT valuoa. At the end of thie publication, the following
soluUon of this problem is obtainad 9 (267) 9 (268) 0 

( 1 ) 

(2)

https://doi.org/10.2312/zipe.1989.097
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T = \\[·•• + C + c 1 (M)J S(p)
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In caae, the teat point is aituated in low mountain ranges 
or in the lowlands, the lupplementary term { .Q (M)} can be
replaced by the term f Q (M)} which can be computed more 
easily, (272) (273).

In (3), 0 is the plane terrain reduction 
o

1 
(M) results from the vertical gradient of 

Bouguer - anomalies, (291) (292), 

( "o - "•) ;:, ) \ 
l 

His the height above the globe v, 
Fig. 2. e

00 
ia the straight distance 

between the two points Qi and Y� 
on the globe v, 

� � e
00 

= Q , Y = 2 Rein p/2; 

of the gravity, 
the refined 

-�gBouguer) Q] dl •

p is here the spherical distance between the two points Q and Y 
In the integration of (4), the point Q is fixed and the point Y 
is moving. 

In the mountains, O can reach an amount of 10 mgal ot 50 mgal; 
in extreme casee, 0 can be greater than 50 mgal. 0 is always positive. 

(3) 

(4) 

(5) 

But, o1 (M) has positive and negative amounts. 
Only in extreme cases, o1 (M) can reach an amount of 1 or 2 mgal; [ 4 ]pg 12,33,43. 
o1 (M) has to be computed in terms of the smoothed potential 
M or in terms of the smoothed Bouguer - anomalies. M is the perturbation 
potential T minus the potential of the mountain maseea B, having the 
standard 4ensity; the potential of these mountain masses condeneed at 
the globe is in most cases an adequate substitute for B. Thus, the 
very small and in most cases negligibly small amount of c1 (M) has 
the great advantage in our applications that the calculation of 
it can be handled easily. In the computation of o1 (M), only the long 

~ 

= -

https://doi.org/10.2312/zipe.1989.097
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wave-length conetituents in the potential M or in the Bouguer-
anomaliee have to be included, having a wave-length much more 
great than the differences of the topographical heights. Indeed, 
these short - wave conetituents have a very small impact on 
the final result for the T or the � value, the perturbation 
poten_tial or the height anomaly of the test point. The impact 
this short - wave effect exerts on the final f, value indirectly 
by way of c1(M) can be neglected, eince it is always smaller
than about 0.1 cm, see [ 6 J . 

As to Q (M), this term can be computed by the expressions 
( 268) ( 224) • Probably, the absolute amount of Q (M) will never be
greater than 0,5 m or 1 m. The right band side of (3) is, in any
case, dominated by the first term of it, being the Stokes integral.

The parentheses { 1 in (3) stand for the regulation that the 
share of the spherical harmonics of the oth and 1st degree is 
split off. 

As to the philosophy of the equations (1) (2) (3), they base 
on a mapping between the telluroid t and the surface of the Earth u 
by means of a vertical point shift, Fig. 1. 
The length of the point shift vector is equal to the height anomaly. 

Fig. 1. 

Te\luroid, l ------ ---~.:::,:.:.::::.-;...---

\. 

https://doi.org/10.2312/zipe.1989.097
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The empirically obtained gravity g refere to the surface point P, 

the correaponding normal gravity g' ie computed for the telluroid 

point Pt , Fig. 1. Thua,

= (g)p - (g' )p t

After the above linea which give a ahort description of 

the Molodenekij type boundary value problem, some other types of 

boundary value problems are to be sketched. For instance, the 

(6) 

scalar gravity potential W and the gradient of W can be introduced 

ae boundary values along the Earth's surface u, 

VI and [7 w = g 

The gravity potential along the eurface u, 

W = (W)
u

' 

and the 3 components of the vector 

g 

represent 4 two - parametric surface functions. If the boundary values 

(8) and (9) are given, it is possible to replace the vertical point

shift vector by an oblique point shift vector. This procedure leads

to the determination of the horizontal position of the point P.

However along the continents and especially along the oceans, the

full gravity vector (9) is given by measurements at rare placee, only.

Consequently, the boundary value problem having boundary values

according to (8) and (9) is not of great importance in our applications.

A boundary value problem of another type (being in the vicinity of 

the Molodenskij problem) has two surface functions as boundary values. 

Here, along the surface u, the scalar gravity potential and the length 

of the gravity vector, 

and 

establish the boundary values. As to the boundary values of the type 

(9a), it is interesting to discuss the version at which (g)u is

substituted by data derived by satellite abservations. The methods 

of satellite geodesy allow the precise determination of the 

(7) 

(8) 

(9) 

( 9a) 

= 

https://doi.org/10.2312/zipe.1989.097
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geocentric radiua r of the test point P at the Earth's surface, 
exact to some centimeters. On the other hand, precise levellings 
lead to precise values of (W) ,(More precise:The difference (W) - (W) ) u u Geoid • 
From them, by well - known procedures, precise values of the 
normal heights h' can be computed exact to some centimeters. 
The following relation is self - explanatory, 

r = r (rE 
, h' , t; )

This is the well - known relation which connects the geocentric 
radius r of the surface u ,  the geocentric radius of the mean 
Earth ellipsoid r6 the normal height h1 

, and the he1ght
anomaly f: • A rearrangement of ( ·10) g1ves the explici t representation 
oft; in terms of r, rt, h'; 

t; =f;(r, rt , h')

The /; value of (11) leads to the perturbation potential T by 

T = g'c; = g'• (;(r, rE 
, h')

Thus, the approach considering the couple 

or h' • (r)u 

gives directly the local value of T and t; by local 
considerations, (12). Hence, the couple (13) seems to have certain 
advantages in comparsion with (9a). But this fact is valid, then 
end then only, if the special occasion is given in which both the 
values r = ( r )u and h' are determined within some centimeters, 

The Solution of the geodetic boundary value problem by the 
equation (J) is of use also for the solution of the mixed boundary 
value problems [ 4 J ( 5] 1. 

In the subsequent investigations, the mean ellipsoid of the Earth 
is replaced by the globe v (with the radius R) being the mean sphere 
of the Earth. By a supplementary procedure, it is possible to add the 
transition from the sphere to the ellipsoid. Here, the formulas of 
Sagrebin and Bjerhammar, for instance, can be of use. 

( 10) 

( 11 ) 

( 1 2) 

( 1 J) 

The equation (3) for the solution of our boundary value problem is free of any
series development of dubious convergence. It is also free of any series develoo­
ment the residuum of which cannot be evaluated with sufficient precision. ( See.

[ 4 J , page (20) • •. (24) ) • It is also free of any series development which does
not allow a clear insight into the upper bou�d of its residuum. A popular 
sugg-estion about this upper bound does not suffice in our applications. 

Generally, power series developments for T, t, ? , �gT imply certain
difficulties; thus, they have a limited efficiency and a limited field of 
application, only. 

https://doi.org/10.2312/zipe.1989.097
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As to the here introduced heights H, they consist of the sum 
of the normal_ heights h' and of the height anomalies t,

H = h' + t

Since here the mean ellipsoid of the Earth is substituted by 
the globe v, the H values appear here as the height of the Earth 1 s 
surface above the globe. In a more precise ellipsoidal con­
sideration, H is the length of the exterior ellipsoidal normal 
describing the surface u, Beforehand, ( is an unknown value, 
indeed. lt is the value to be determined even by our here 
discussed procedure. For the execution of the first step, h' or 
h 1 + l: are convenient approximative substi tut es for H, where f
is an approximative value for !; • 

For a second i teration step, the t!; value obtained by the first 
step can be introduced into the precise relation (14). But, these 
considerations are of theoretical value, only. Such an iteration 
procedure will change the t' values computed by (3) by not mors

( 14) 

than about 0,1 cm. lt is the effect the transition from h' to h'+,;- H 
takes on C, c

1
(M), fQ(M)t, further, by it, on the T value, (3), 

In case of a spherical Earth, (10) takcs the form

r = R + h' + f: (15) 

[: is equal to T/g'. The formula for C can be found in [4], page 24, equa­
tion (17);there is valid: Z = Hy - HQ ';; (h')y - (h')Q ,(see Fig, 2,page 15).

2. The identity of Green

In the following developments, the second identity of Green

is the basing mathematical relation[l] [3] [4] [5] • For a point
Pin the mass-free exterior space of the Earth, this identity 
has the subsequent shape, 

-) 1 
T(P = -r::: 

't// 

u 

e(P,Q) 
c) T 
'u n du - 1

rr---

u 

T 
r;J 

0n 

The meaning of the different symbols appearing in the equation (16) 
can be taken from Fig. 2. 

du • ( 16) 

In the subsequent investigations, the slopes of the terrain are consi­
dered to have finite and continuous amounts; these amounts of this kind can 
-be taken from the topographical maps, of course. In each point, the surface 

.0f the Earth u has a clearly defined tangential plane. 

https://doi.org/10.2312/zipe.1989.097



Fig. 2.

u: 
V 

w 

p 

Q 

y 

p*, 

Q
�o, 

p 

e 
e •' 
Hp,
z 

p 

o*. y* 

e o' e 
00 

HQ

15 

u 

Surface of the Earth, 
Mean (geocentric) globe in sea level, R is the radius, 
Geocentric sphere, R + HP is the radius,
Fixed test point at the surface of the Earth u, 
A point on u, moving during the integrations with P as fixed test point, 
A point on u, moving during the integrations with Q as fixed test point, 
The vertical projections of the points P, Q, Y on v, 
The perpendicular projection of the point Q on w, 
A point perpendicular above the test point P, 
Straight distance between P and Q, (P and Q), 
Straight distance between P and Q**, resp. p* and Q*, resp. o* and v*, 
Height of P, Q above the globe v, 
The difference of HQ 

minus Hp•

In (16), 1ve have the 3, identity of Green, This identity contains the oblique derivatives 

�ith regard to the normal n of the oblique surface of the Earth u, Thus, in the course 

of our deductions, these oblique derivatives give rise to the fact that the slope of the 

terrain turns up in the formulas, This slope would be difficultly to handle in numerical 

computations. But, by the method of integrations by parts,(A 270), this slope can be 

avoided, and, instead of it, the deflections of the vertical appear, The smoothing pro­

cedure governed by the M potential turns these deflections into very smoothed values 

easily to compute. Thus, the "oblique" method makes no principle trouble, finally, 

If the relation (16) is assigned to the class of the "oblique methods" , this is a 

mors qualitative and mathematical depiction, lt is not quantitative, but natural 

science is more quantitative than qualitative, 

·----~--~! --• Q 
,-::,,,e,,,,,,,,-,,-,,,~a1:. 'f & 

--- " -
; -----

/J. ~---e• = --...;....__ 
/ / 

~Q- ~ / ~ 

--
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� is the unit vector normal to the Earth's surface u, it is 

heading into the interior of the Barth. 

The test point P is subsided down to the surface of the Earth. 

Thereby, (16) turns to (17), 

T(P) 
tr- ff -e -,t""'P-:, Q"""')-

UT 
"u n du - 1 (( T[� 

°Zr)) -on 

u u 

3. The spherical solution

The spherical Solution of the relation (17) is obtained if the 

height values H are set equal to zero. If H does go to zero, the 

straight distance e does go to e0, Fig. 2,37

e0 = 2 R sin p/2

and the derivation with regard to n turns to the derivation with 

regard to r, but with the inverse sign. 

Further, Fig. 3, 

0 n ( 1 / e) -

and 

sin p/2 
2R 

R R 

(17a) 

( 18) 

( 1 9) 

_ u __ (1/eo) 
'V r 

'P 
0 
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Consequently, if the heigh ts  
transition behavior is valid, 

H diminish dovm to ?,ero, the follov1ing 

[ � n

With (20), the s pherico.l variant of the relation (17) ,'.';ets the 
sub sequent shape, 

T " - ;, r, 
V 

The spherical variant of 

(r R)' 

LI ßT
8T 

'c)r R 

'<) T 

c) r

( 1 ) is, 

(21) and (22) arc combined to

· dv

T = _;_ ( ( -
1
- · LJ f,T · d v  +

2fr ))e
0

V 

V 

2 e H.0 

__ 3_ \( 1 
. 'l' . d v

411R )�
V 

· dv •

T and LlgT are c ontinuous fu nctions alone; th e surfnce af �he l�arth .

They have the following sphericnl harmonics developmcnt s, 

n=O m=O 

. Il (fA)n.m 1 

(20) 

(21) 

(22) 

(23) 

(24) 

c::Je;T = r t [G1 ,n.m. Jn.m ('P, ).) + G2.n.m .
l 
8n,m (<p, A) J • (25) 

n=O m=O 

l) T-

2 
= -- - - . T 

'1.' -[~ f [T - L . 1,n,m 
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The corresponding development for the inverse of the dietance 
betwsen 

. -* the two pointe P and 
is t 

1 

e (P,v: t Q*) -* 
p ' 

Pn are the Legendre functions, 

Q::lf 

Q* t Fig. 3t 

= 

[ Rn
P (cos p), ae >O, n+1(R+ae) n 

n=O 

The decomposition formula of the spherical harmonics is introduced in

(26), (27) follows, 
n 

L 
Rn 

1 

[ R 

(P:ii-, Q�) (R +ae) 
n+1 2 n + n,m e 

n=O m=O 

.--, 
Rn,m ('f'i/1 )

/ I 

sn,m ( 'P, A ) ; sn.m
J I 

· Rn,m Ccp1 A) + Cf))n,m 

and 

are the Stokes constanta of the developments (24) and (25). 'f' and A 
is the geocentric latitude and longitude of the test point J* ;

'f/ and / are the corresponding parameters for the point Q * , 
moving over the globe in the•course of the integration of (23), Fig, 3 
R

n.m ( 'f; /4 ) and sn.m ( f>, il) are the well-known normalized 

spherical harmonics of the degree n and of the order m, 

V 

\\ 
V 

( lf, A ) dv - \
O 

- ( 4 ,Y R2

0 • 

( <o1,1) dv =( 2,1 
(.411R 

n ,j, i or m 4= k or both
} ) 

n i, m = k 

n " i or in t k 

n 

• k or both r • 

( 26) 

( 27) 

(27a) 

(28) 

( 29)

1 

_1_ 

('f,l)· s.k 
1 ]. • 1, m 
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The relations from (24) to (29) are introduced into the integral 
equation (23), 
The following equation for the Stokes constan ts is obtained, 
for ae -+-0, 

,;, 

.1.1 .n.m 

or 

T 1 ,n,m 

J 
+ 41iR2

2n +1 

2n +1 

R ·---

n -

And, in an analogous way, 

'1' 
2 ,n,m R 

n -

+ 

By way of trial, i t is supposed that the Stokes integra l of the 
form (31) is a solution of the integral equation (23), 

T 

V 

L'.1g
T . S(p) · dv

The correctness of (31) is easily verified in the following, 
Indeed, the Stokes func tion S(p) has the rela tion 

2 n + 
S(p) = 

L . pn (cos p)
n - 1 

n = 2 

Pn (cos p) are tho Lee;endre functions,
The rela tions (24) (25) (26) (27) and (32) ara put into (31), 
The following equation yields 

or 

rr = - •G 1,n,m 411R 1,n,m

T 1 ,n,m 
R • 

n -

(34) corroborates (29b) and (30),

2n + 1 

n - 2n + 1 

(29a) 

(29b) 

(30) 

(31) 

(32) 

(33.) 

(34)

1 

2 11 H 
,G 

1. n . m 

• T 1 .n.m 

G 2 .n.m 

G 1.n.m 
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Coneequently, it is verified that the Stokes integral (31) is 

the solution of the identity of Green for· a spherical model Earth, (23). 

4. The decomposition of the identity of Green into the spherical

and the topographical constituents

The identity of Green of the shape of (17) refers to the real 

eurface of the Earth u. The oblique straight line e, the unit 

normal vector � of the surface u, and the surface element du

refer to the oblique surface of the �arth u shaped by the 

topography. All the two integrands on the right hand eide of (17) 

come now to be multiplied with and divided through the term 

coe (g', n). <{: (g', n) is the angle defined by the positive 

directions of the two vectors g' and n , taken for points 

on the surface of the Earth u. �• is the vector of the stand�rd 

gravity heading into the interior of the Earth. In case of the 

here chosen spherical standard Earth, g' points always to the 

centre O of this sphere. � is also heading into the interior 

of the Earth, Fig. 4. 

R+H 

a. 

Fig. 4. 

== 

u surface, 
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Along these lines, ( 17) turns to 

2\ )) 
'uT 

T ( P) ·-- . • du • cos (g', n)
e(P,Q) an cos (g'' n) 

u

-
�
iT c)(�) • du • cos (6 1

, n)
2 // 'c)n cos (g' ' n) 

u 

Now, the terms in the two inteerands of (35) are decomposed into 
their spherical parts and into the residual non - spherical parts 
of them, The la tter parts vanish if the he ights :1 tend to zero 1 

Fig, 2. 
The following equations (36) to (39) governe the decomposi tion 
procedure, 

'o'l'
+ D(1,1)

'C)n cos (g', n) 

+ D(1,2)
e(P,Q) e e' 

'c) .l e 

+ D(1,3)
cl n cos(g', n) 

du cos (g', n) = dw + D(1,4) 

e' = 2·(R + HP)· sin p/2

The meaning of the s:ymbols K1' K1' , K2, K2' , KJ' 1:3' , K4, K4'
follows even from the relations (36) to (39). 
These relations, (36) to (39), are now introduced into (35), 
(41) follows,

2" Ta ff (K
2 

+ K,')•(K
1 

+ K
1

•)•0<
4 

+ K
4

° ) -

\(r •(K
J 

+ K)) · (K
4 

+ K
4

° ) ,

(35) 

(36) 

(37) 

(38) 

(J9) 

(40) 

(40a) 

( 4 1 ) 

= 

B T 
'c)r 

K1 + K1 

1 1 

K2 + 1(2 

u¾, 
1 

= i(3 + K3 
ur 

1 

K4 + K4 

u 

u 
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Generally, the primed terma K1•, K2
1 , K3

1 , K4
1 are much more small

than ths terms K
1
' K2, K3, K4• Hence, tbs multiplicatione in the

integrandi of (41) ehould coneider only such products of three faotore 
which bave_ not more than one primed term K1 ' or K2' or K3' or K4'.
There is only one exception, it is the product K2

1 • K
1

1 •K4•
Along these lines, the integrand of the first integral on the right 
hand side of (41) gets the form 

Analogously, the two bracee in the integrand of the sacond integral 
of (41) yield 

The introduction of (42) (43) and (36) (37) (38) (39) into (41) gives 

2 11 T 
1 e' ,dw 1 

e-r- · D(1.4) 

w
w 

- \\�;: D(1. 2 ) dw + ))-.l- ·D(1.1)-dw + 

w

+ \) D(t.t.) • D(l 0 2 )-dw + \\ T dw 

w 

w 

�e+-T·-- · D(1.4)c)r 

w

- )) T • D(1.3),dw.

w

+ 

The 2nd, Jrd, 5th, 7 th, and the 8th term on the right hand side

of (44) are_put together under the denomination D(2.1), 

(43) 

(44)

-ff~; . 

w 

N 

= 
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D(2,1) = - f( �: D(1.2)
e, 

D(1.4) + 

w 

+ )) T '<Jt;'"J D(1,4) - \) T · D(1,3) · dw +

w 

+ \� D(1.1) • D(1.2) • dw •

w

The 5 express ions on the right hand side of (45) get individual 

denominations, 

E (1) = -)) !: D(1,2) • dw,

E (2) = - \\ T • D(1.3) · dw ,

w 

ff c)T' 1 
• D(1.4) , E (3) = - ---

c) r e' 

w 

)f 
T 

c)-l,-
E (4) = D(1.4) 

'ur 

w 

E (5) D(1,1) • D(1.2) , dw 

Consequently, (45), 

D(2.1) = E(1) + E(2) + E(J) + E(4) + E(5) 

(44) and (45) are combined to

2r. T • )\ [-:: + D(1,1)J
a' 

w 

+ )\ T
:: 

• dw + D(2. 1)

w

• dw + 

(45) 

(45a) 

(45b) 

( '+5c) 

(45d) 

(45e) 

(45f) 

(46)

w 

w 

w 
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The terme on the right band eide of (46) are now rearranged, in order 
to bring them into a ehape which is convenient for numerical routine 
calculatione. 

In thie context,, the following relatione are of uee, Fig. 2 
and J, equ9.tion (1), 

e' 2 (R + Hp) ein p/2 = 2 R' ein p/2, 

1 1 
2 R' ein p/2 

-'2l e , sin p/2 .. e' 
'<)r °2lt' 

c>(¾,) 
2 

(¾,-) 
'ue, 

� 

'u (-;;+) 
� 2 et R'

4 R' 2 ein p/2 

R' = R + HP

p ie the epherical distance, for instance between the points 
P and Q, or between Q and Y, Fig. 2. Hp is the height of the 
test point P above the sphere v, having the radius R, Fig. 2. 
The sphere w has the radius R', (48) (5)), and the surface 
element dw ie 

dw = (R' )� dl = (R' )2 cos f df dA 

dl ie the surface element of the unit-sphere. 
the geocentric latitude and longitude. With (47) 
equation (46) turne to (55), 

'f and A ie 
to (5)), the 

2 'u T = 

m
j

gT +L T + D(1 o 1;]
1 

dw 
2 R' sin p/2 

w 

)} dw + D(2.1)
4-(R' ) 2 

sin p/2

w 

(47) 

(48) 

(49) 

(50) 

(51) 

(52) 

(53) 

(54) 

(55)

+ 2 T 
r 

-1 -

T 

r 

1 
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Further, 

4•11· R'·T +D(1.1)],
1 

ein p/2 
, dw + 

] , T • dw + 2·R'•D(2.1)
2•R 1 ein p/2 

w 

The term in the brackets of the eecond integral on the right hand eide 
of (56) ie traneformed and expressed by the heights. The radius r 
af the point Q is, Fig. 2, 

r = R' +z R +HP+ Z

z HQ 
- HP

Hence, ( 57), 

r 

r 

r 

z 
R' , ( 1 + -) 

R' 

z 

(1 + --)-1
R' R' 

_1_ ·[1 - 2.. 
R' R' 

+ 

Consequently, for the expression in the second brackets of (56), 

2 

r 2 R' 

3 

2 R'

(56) and (61) yield

2 Z 

(R' )2 
+

_
2 ·{-z )2
R' R'

4•f,'· R' · T 
= )(�gT + D(1.1 l • dw

sin p/2 
w 

1) T 
3 • dw + 2·R'·D(2.1)+ ---

2·R 1 sin p/2 

+)\ :.[-
2·Z

2 • ( :. 1] -- + dw 
R' sin p/2 

w 

(56) 

(57) 

(57a) 

(58) 

(59) 

(60) 

(61) 

(61n) 

1 

1 ···· ll :.1 <, · 

+ 

+ 

w 
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( 61a) and (50) give rise to the following equation ( 61b) , 

)\ [ L]gT D(1.1)J 
1 

4 · 'i'i'- R' · •r = + · dw + 

sin p/2 
VI 

_L H
1 

2·R' ·D(2.1)+ T• · dw + + 

2R1 
sin p/2 

V1 

2· R' . 
\\ ( :, ) . [ 

2Z 

2 ( :. n 
+ - -- + d11. (61b) 

R' e, 
w 

A lot of rearrangements, given in the appendix, leads to an expression for D(2.1) which

ia convenient for numerical routine calculations in our applications. D(2.1) has the 
subsequent development, 

D(2.1) + ( 62) 

The explicit expression for F1 is represented by the relations (A 484)(A 485)(A 471)
(A 472)(A 473) in the appendix. These expressions of the appendix are convenient for 
routine calculations. The amount of F1 1s relative small.0bviously, F1 will have 

an amount of not more than about a relative change in the heigb.t anomalies f: by 
z/R • \'/1 th !:, = 100 m and Z = 3 km, a F1 value of about 5 cm follows, only. By

) 
0 0 

(A 485 , F1 can be computed by a global 10 x 10 compartment division of T, ,1gT ,
and H, - or by any equivalent procedure, for instance. The computation cf F

1 
by 

means of (A 485), introducing the T -, LlgT -, and the H - values, can be handled
easily by a computer. The formula (A 485) demands an extension of these calculations 
over the whole globe. 

The F2 value of (62) is described by the formula (A 486); the terms on the right
hand side cf (A 486) are represented by (A 1+7lJ-) ••• (A 477). Also,the F2 values are

emal:)., 

For test point P situated in the lowlauds er in low mountain ranges, the F2 valuas

will have negligible amounta, always. This fact 1s ve1·y probable. 

TI1e developllent for F1 1s cf genoral importance. It is cf importance for both
cases, for high mountain test points and for lowlc.nd tost points P, But, the deve­
lopment for F2 1s of pr·actical importance for high mountain test pointlll j only.

For test points P situated in high mountains, only in this case, the value of 

F2 
will reach such amounts which are of interest in our applications, possibly,

But, to be sure and to avoid misunderstandings, also for high mountain test points 
p, the F2 values will never take a dom1nat1ng share on the finally computed T values

1 
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values of the test points. Also in case of a topography with extreme cliffs, 
the computation of the F2 term can be handled witbout any complication
and without any singularity. 

Also for test points P 
values will exert an impact on 
which is not greater than some 
standard deviation of these r; 

situated in high mountain ranges, the F2
the height anomaly of the test point 
centimeters, hardly surmounting the 
values in the high mountains. 

The calculation procedure of (A 486) giving F2 has to cover
only the near surroundings of the test point up to a distance of 
100 km or 1 000 km about. 
These calculations can be handled easily by a computer which is fed 
wi th approximative amounts of T, lJ gT and Z.

Exterior of the high mountains, the simplified expression F1•1
of (A 487) (A 495) (A,497) is always adequate in our applications, 
instead of F1 + F2
Thus, (62) turns to 

D(2.1) , for : x2 = (Z/e ')2 
<< 1 ' 

for test points exterior of the high mountains, The computation 
of F1•1 can be handled easily,

The 3rd and 4th term on thc right hand side of (61b) gets 
the abbreviating denomination F, after a division through 2 R', 

w 

2Z 
-� + 

This expression for F, (64), implies only topographical terms, i, e, 
terms depending on the height differences Z, If Z does tend to zero 
all over the globe, in this case, F does tend to zero 

l
simultaneously, 

The relations (62) and (64) can be combined, 

F 

w 

2Z 
R' 

The reliefs, which follow by the transition from (62) to (63), 
are now put into the fore. This transition is governed by the 
condition that the test point P has to lie in the lowlands and not 
in the high mountains; tbus, (A 487), 

(63) 

(64) 

(65)
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2 ( 
z 

l 
2 

X = -e-1- (< 1 

Further, thia transition implies the neglection of relative 
errors of the order of Z/R. The details of this transition are

described in the appendix by the equations from (A,485) to 
(A 497). Even these reliefs,((66) and toleration of relative

errore of Z/R), transform the equation (65) into the equation (67), 
by the transition 

F .-. F * 

Thus, (A499), 

* 
F 

x2
<< 

w 

1 

2 Z -
R
-,- ) · [ �] ·dw 2 

t X << 

or, equating R' with R in sufficient approximation, 

1 ' 

2 Z 
R 

) •( +.-) •dw 2 
X << 1 , 

VI 

After this consideration of the functions F, F1, F2, F1 •1, F*,
now the identity of Graen is in the fore again. (61b) and (64) 
yield, dividing (61b) through 2 R', 

2•7(• T = 

+ 

))rgT 
+ D( 1, 1) ]{+.-) 

w 

· dw

i;;i;, 
1 •dw + F • 

. e' 

+ 

In (69), only the two terms D(1,1) and F depend on the 
topographical heights H. All the other tarms of thelequation (69) 
do not depend on the heights H, they are described by pure 
spherical expressions. 

A short discussion about the topographical terms D(1,1) 
and F, of (69), seerns tobe conveni�nt to be added. 

The term D(1.1) in (69) ref�rs to the potentü1l 'l'. 'l'his 
in th:l following lill9S, 
undcrstood to refer to 

(66) 

(66a) 

(67) 

( 68) 

(69) 

speciality is denoted by the suffix T 
DT (1.1), since later on

1
D(1.1) is also

another potential, From tho appendix , by the equation (A 21) ,D1,(1.1) is

DT(1.1) = B•g·tan(g', n)·cos (A" - A 1 ) (70)

= F 1 • 1 + ~~ [ ;. ) · [ -

F* =F1.1+\\(-½)·( - -
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In the above equation (70), the symbol G is introduced, it is here the 
absolute amount of the plumb-line deflection, for the potential T, 

� 
2 

+
72 2 ( 71) 

( and 72 : the north-south and the east-west component of the plumb-line deflection 

at the Earth's surface u, 

1 1 

g 
( 72) 

R' + Z 

1 

H 1 + Z

1 

cos 'f 

1 

g 

dT 

-�
(73) 

f and A are the geocentric latitude and longitude, in (72) and (73). Hera, the 
globe v was taken as reference figure, f and A refer to this globe Y, also. 
R' + z 1-s the geocentric radius r of the moving point Q at the Earth's surface u, 
Fig. 2. g is the real gravity at this point �. A' is the azimuth of the slope of the 
terrain, counted clockrrise from the north, ( see Fig. A 1). A" is the azimuth of 
ti.e plumb-line deflection 8 , counted clockvrise :f'rmn the north. 

Tr.e north-south and the east-west derivatives of the perturbation potential T 
are understood that they are taken in horizontal direction ; thus, r is constant 
during these derivations of T. 

As to the expr�ssion for F(T) , being equal to the function F of the equation 
(Gu), the detailed, complete, and comprehensive development for it, valid also in 
the high mountains, is given by (64), (A 461), (A 462) to (A 468), and from (A 471) 
to (A 477 ). Along these lines, the fo 1.lowing universally valid formula for F(T) 

i s found , neglecting the powers of (Z/R' )2 in 2 . term on the right hand side of (64), 

F(T) = D(2.1) + 

VI 

8 

F(T) = [ f i (T)

i=1 

\\ 
z 

f1(T) ,dgT

w 

)) 
'r z 

f2(T)
R 

\\ 
T 

..l r
3

(T) =
R 

w 

R' 

[ 2 

[ 1 

· dw

[- �1-1 
. dw

R' e' 

1 

l 
1 

+i
· dw

y e' 

2 

j
1 

· dw
? e'y + y~ 

( 711-) 

(74a) 

(74b) 

( 74c) 

c>T 
. -· 

7l= - - · --·-

T 

R 

w 

R 
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r5(T)

r6(T)

- -

" 

\) 

(� 

�\ 

�� 

'uT ,_1_ 
R o p R 

2 
X 

30 

2(cos p/2) 
sin p 

LJgT y + y2 
de 1 • dA 

T 

. [ -
2 ·x 2 

v3
] • de 1 

• dA
y + y2 

+ 

�T 
. ( v

2 '<) e ' 
b11 ) , de' , dA

g•Z • � (x�f ,x·71 • de' · dA

A is the azimuth, variating during the integration from the nor th, from zero 
to 2 1 , counted clockwise. 

(74d) 

(74e) 

(74f) 

(74g) 

(74h) 

In the expressions for r1, r
2

, r3, r4, the integration covers whole the globe.

But in the integrals for r5, r6, r7, r8, the integration has to be extended over

the surroundings of the test point P, only, up to a distance of not more than about 

100 km. 

The equations from (74) up to (74h) contain the following abbreviations, (A 39) 
(A 40) (A 393) (A 395) (A 375), 

:K 
[x2 e 1 •X]

1 
X + 

-

(x')1/2 R' x' +

(75) 

z X = (76) 
e' 

X t 1 2 z 
X + (77) 

R' 

2 1 2 
+ X (78) 

The C0!1Siderations connected wi th the transi tion procedure described by (66a) 1 and 
also the deliberations about the validity of the equation (67) 1 have demonstrated that 
the expression for F, (64), can be replaced by the more simple expression for F* 
(68), - at least in the lowlands and in not too rugged mountains. 0nly in high moun-

�tains, the universally valid formula (64) will be better than the simple form (68) of F. 

R 

+ 

y = 
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Thus, (66a), F* has the following detailed expression which is convenient 
for routine calcula tions, (A 497) (68), 

F� F* (T) 

f* (T) ff ÄgT 
Z 3 1 dw 
R2 

,1 e' 

f* (T) ff 
T Z 1 dw

2 RR e' 
w 

f* (T) -ff 
clT z cos eL2 dw3 R'i)p 4 R 2 (sin p/2)2 

w 

(79) 

(79a) 

(79b) 

(79c) 

In the above lines, by the relations from (3 5) to (69), it was discussed hovi 
the pure spherical constituents (being free of the heigh�s H) in the identity of 
Green can be separated from the topographical constituents 0(1.1) and F (which 
tend to zero if th8 heights H tend to zero). 

The functions v1, v
2

, v
3

, b7, b11, which appear in the relations from (74) to

(74h), should be given in detail, here. From (A 307) to(A 34 6) follovis: 

(1/2)•(x + arsinh x) 

v
2 

- x ·(1/y) + arsinh x + (sin p/2)·{ 1 - (3/y) + 2·y}

, -oo.C. x L +oo e' .: 1000 km 

v3 1 + (1/2),y - (3/2) •(1/y) + x2 ,(1/2)•{ - (1/y) + (1/y)3 } + 

+ x3 , (1/y)3 , (sin p/2) + x4
· (1/2) ·(1/yJ

3 

, -oo& x � +o0 e' ,:. 1000 km 

arsinh x 

X· x* ( P ,Q) { x 3 + ( e 1) • x 2 }· 1 
R' _r-; X'+ l' X 1 

b11 comes from (75) and (A 439).

(80) 

(81) 

(82) 

(83) 

(84)

3 

L 
i=l 

w 

f* 
1 

(T) 
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5. The representation of the perturbation potential T by the Stokes
integral and the topographical supplements

It is generally acknowledged tha t the Stokes integral ( 31) is a
good approximation to the precise shape of the solution of the 
integral cquation (69), 
Thereforc, it is intended here to bring the precise solution of 
(69) in such a form which has the Stokes integral as t he dominating
main term, and which has to be comple ted by the acldi tion of some
supplementary topographical terms, The latter go to zero if the
heights go to zero. F'ollowing up this problem, it is convenient to
bring the relation (69) into the subsequent form,

' r = 

Here 

cJ... 

f-, 

R' 

dw 

dv1 

4:rr• )f ,1� 

w 

is, Fig • 2, 

L'.Jg,r 

-•F 

H + 

R' 2 ' ' 

R' 2 , 

2 lf 

HP

cos 'f' • 

sin p 

· dw +

p/2 

+ D
T 

( 1. 1) 

d'f dA 

dp dA 

3 

e 1,(a r)2 \\ 
w 

T 
-----,dw + /3 
sin p/2 

R' is the geocentric radius of the test point P at the Earth's 
surface, Fig, 2, ( 85) can be brought in to the following shape,

'l' (( Ci_ ,dl + 
)) sin p/2 R' 4 ii' 

1 

with 

dl = (-
1
-' � dw 
H' J 

ß 

3 (( 1'

81/ )) R' 

1 

cos 'f . d lf . dA 

T 

ß ----•dl + -
sin p/2 R' 

The functions o<. -, and sin p/2, appearing in (91), 
R' R' 

can be represented in terms of the geocentric latitude and longitude, 
'P nnd A , of the running point, Fig, 2, These func1:ions can be 

(85) 

(86) 

(87) 

(88) 

(89) 

(90) 

( 91) 

(92) 

c;iven by series developments in spherical harmonics1 because cs.:. and ( ß/R'),

and (T/R 1) ar·e continuous functions of 'f and /1 1 (94) (95) (96) (97).,
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For the sake of briefness and clarity in the further deductions, the following harmonics 
clevelopments are not written down up to the ·last detail, Considering the h_armonics of 
the clegree n, not all the concerned zonal, tesseral and sectorial harmonics of the de­
gras n are written down in the following lines, As usual, to have expressions easily to 
handle and to survey, only the zonal harmonics are written down; the tesseral and the 
sectorial harmonics of the same degree fulfill analogous relations, in this context, 

With the substitution given by (93) , ( see also (24-) and (27) 

the following developments for ex., ß , d

oO 
ol.. 

R' 

7f 

= L a
n • yn ( 'f ' A ) 

n=O 

F 

2 'i, R 1 

T 

R' 

n=o 

n=o 

yield, 

• 

(93) 

( 94-) 

(95) 

(96) 

In analogy to (27), the subsequent relation (97) is here introduced, 'l'his relation is 
of use for the representation of the inverse of sin p/2 which appears in (91) ;Fig,2, 3, 
The functions of (94-)(95)(96) can be considerecl to be distributed alomg the unit sphere. 
The poirlt P has the same lati tude and longi tude as the point P * ; the same is valid 
for the points Q and Q* Thus, with Fig. 3, 

2 R 
L e(r*,Q*) 

2 

2 n  + 1 
(97) 

n=o 

-� . * For 3€ ➔o, the point P subsides down to the point P , and the left hand side of 

(97) turns to the inverse of sin p/2, Fig, 3,. l 

Furthermore, the relation (96) is inserted in (91), the eg_uatian (98) yields, 

1 

0 sin p/2 
1 

, dl + _:_ ( ( 
81J ))

75' 

sin p/2 

Further on, wi th (97), and accounting for (98a), 

lim 
,::,e➔o 

1 

sin p/2 

, dl 

the expression (99),for the spherical harmonics developments
1

follows

(98) 

(98a) 

) ' 

Rn, o ( f ' A ) 

= 
ß -= :: r; cn •Y 11 (<p , A) 

ex:, 

:: [ dn ' Yn( f , I ) 

00 

= 

ß 
+ -

i'1 1 

1 
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L dn · yn ( 4' 1 A )p:t 

n = 0 

+ --
2 

2 n + 1 
n = O 

n = O 

2 

2 n +
n = 0 

4 // + 

The orthogonality relations for Yn are, (92), (93), (28) (29), 

ff yi <f,>.. ) . Y j. ( '1'
1 
A) • dl 

1 0' if l

l
: 

+ J

J
: L 

/4,,, if r 
1 

( 9':) nnd ( 100) yield 

2 

d = an• + n 
2 n + 

(n=O, 1, 2, .,.) 

(101) leadfl to

(n 0, 1, 2, ••• ) 

----•d 

2 n + 

For n = 0 and n follov,s 

n 

Tiius, the iden ti ty of Green 1 ( 91), yields the condi tion e quations 
(103) ( 104) for the Stokes constants of the uevelopments for 

.d,:;'l' + D,r(1, 1 ) , for F/(2\'i'll')
/
and for T/R'.

Por a moment, the relation (107) is supposed to be the solution 
of the system (103). This supposition is verified below by the 
relations from (108) to (114). 

4 11 + 

(99) 

( 100) 

( 101) 

( 102) 

( 103) 

(104) 

( 106)

00 Oo 
1 [ 
4 IT 

an Yn( 'f 1 A ) p,lf • 

3 
00 

O ü" [ dn Yn('f,A )p * 

ex:, 

+ [ C • 
n yn C 'f,A ) P#-

3 
+ Oll 

= -1 

0 ( 105 ) 
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R' 
l 
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3 F(T) 
] -- , -- S( p} , dl 

411 R 1 

S(p) is the Stokes function, (32). 

F(T) 
+---

2 11 R' 

(107) has the character of an explicit representation of T in
terms of <X., since F(T) on the right hand side of (107) comes
f rom rough approximations of the T values for instance

) 

obtained _by (31).

As to the verification of (107) by (103), the Legendre functions 
Pn (cos p) of (32) have the expresaion (108), according to the
decomposition formula,  

pn (cos p) = --- f, [Rn.m(
'fJ')._)p*• Rn.m ('f',). )Q* +

2n+1 L 
m = 0 

+ sn.m <f,A)p*· sn.m (
'f,A)Q*]

Hence, the here preferred brief manner of writing gives, (93), 

S(p)' C 
n 

-
1 

yn <r
)
) )p* • yn <'f,A)Q*

n = 2 

(103) is valid for the hannonics of all degrees, but (107) and (110)
are valid for the harmonics of the degrees n 2,3,4, ••• , only.
The harmonics of the degree n = 0 and n = 1 will be discussed
later on in the special chapter 6.

From (107) follows, wi th (94) (95) (96) (109), 

n = 2 

d•Y n n

(110) gives

n = 2 

-a 
n

n - 1 

3 
2 

n = 2 

3 

2 

( 107) 

( 108) 

( 109) 

( 110) 

(111) 

00 

L 

n = 2 

C ,y 
n n 
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and further on 

0 2 an + ( 2 n + 1) cn - 2(n - 1) dn

(n = 2, 3, 4, ••• ) 

(112) is identical with (103), for n = 2, 3, 4, •••

Consequently, the rela tion ( 107) is verified to be the unique 
solution of the problem formulated by the equation (103) and (85), 

The final form of (107) is obtained by the introduction of 
(86). Further, by putting the surface functions T and F(T) 
into p arentheses { 1, the f act is marked that the constituent s 

O th and st degree represented by thc spherico.l harmonics of 
in the surface f unctions T and F(T) are split off, Hence, 

{ T 1 = : � \ ( [ JgT

1 

3 
• 

F(T)
] + - · S(p) · dl + 

4 11 R' 

dl is the surface clemcnt of the unit sphere, 

1 F(T) I 
--- . 

2 u' 

','/ith (A9), the relation (115) which is specified 3 lines below 
follows for DT(1.-i), if thc suffix T denotes the f act that
the operator D(1,1) is applied to the perturbation potential T, 

D
'l.
,( 1._1) 

cos(g' ,n) 

'c)T 

+ -
'ö>r

( 112) 

( 11 3) 

( 114) 

( 11 5) 
cl T 

cJ ·n 
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6. The spherical harmonics of 0th and 1st degree

The perturbation potential T is the difference between the gravity 
potential W and the standard potential U , in the extarior 
space and on the Earth's surface u. This is the definition of T, 

T=W-U. 

This harmonic perturbation potential T has the following 
uniform convergent series development in spatial spherical harmonics 
for test points in the exterior of the body of the Earth,. [ 4] [ 5 J ,

(115a) 

T = f (�r·)
n+

1 � [ 
/_, L 

t1 .n.m • Rn,m ( 'f, ;\) + 1'2.n,m • 8n,m in r (116) 

n=o m =O 

7' denotes both the exterior space of the Earth and the surface of the 
Earth u, r, �

1
A are the spatial polar co-ordinates, The origin of 

this co-ordinate system is chosen in such a wuy that it does coincide 
with the grevity cent�r of the Earth, (barycenter). 
Hence, the Stokes constants of th� spherical harmonics of the 1st 
degree are equal to zero, (116), 

0 

Whole the gravitating scources which give rise to the standard 
potential U have a total mass wq.ich is equal to the mass of . 
the Earth, Thus, also th8 Stokes constant of the spherical hurmonic 
of 0th degree (n = �) is equal to zero, 

'l' = 0 1.0.0 

Whether the T values obtained from the boundary value problem, 
(114), are compatible with the four conditions (117) (118) or not, 
that is the open question now to be discussed. It is intended to 
formulate certain criterions which make it possible to find out 
whether the conditions (117) and (118) are fulfilled by the T 
values of (114) or not, Furthermore, these criterions will mal<e 
it possible to determine certain supplements to the harmonics of 
the 0th and 1st degree of the T values obtained by (114), 
0f course, in the surface values of T obtained by (114), the 
constituents described by the harmonics of the 0th and 1st 
degree are equal to zero, per definitionem. The addition of certain 

( 117) 

( 118)
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supplements to the T values of (114) completes the T values 
of (114) in such a way that (117) and (118) are observed,in the spatial representation
of the T values given by (116),

If f = � ('f,A) is equal to the geocentric radiue of the
Earth's surface u, then, the series development (116) takes the 
following shape for teet pointe situated on the surface u, 

All the functions of the manifold 

and f E}n� l S ('f,, ,).)
€; 

n.m 

(n = O, 1, 2, ••• ) , (m = o, 1, 2, •••• n) , 

are linear independent functions, [ 4], [ 5] pg. 162 and 163,

Henceforth, the functions of (120) get now a running numeration, 
ae given by (122), 

(k = 1, 2, 3, ... ). 

Thus, the development (119) for the surface values of the potential 

T can be written in the·following form, 

L tk . w k ( 'f I A) 
k = 

tk , (k = 1, 2, 3, ... ), are the constant coefficients of thie
development. 

The relations ( 117) ( 118) (123) give

t1 T1.o.o 
t2 Tl,1,0 
t3 = T1,1.1 
t4 T2.1,1 . 

(119) 

( 120) 

( 121) 

( 122) 

( 123) 

( 124) 

(125) 

( 126) 

( 127)

(T)u = ~ [:-Jn+1 [n [ \ ;\ J f_, '> T1 ,n,m. Rn,m ('f,ll) + T2,ll,m. 3n,m (lf', ) 
n=O m=O 

_ , R (ID ;n (
R)n+• 
f n.m T1 

00 

https://doi.org/10.2312/zipe.1989.097



39 

The Schmidt orthonormalization procedure leada from the functiona 
Wk ( 'f, A. ) , ( 122), to the ayatem of the orthonormalized functions w: 1 

c./f (<f1 A ), since the functions (,)k (<p, �) are linear independent, [4] [5J

w* 1 1 

w� w2 2
= B 

w/ = W3 

. . . . . .

or, in short, in vector form, 

� = 

The Gram determinanta irnplied in (129) a.r� never equa.l to zero.

Conaequently, (129) can be inverted,

w 

with 

det B 0 

The right hand side of (123) can be written in the form of a 
sca.lar product, 

In (132), the subscript u dsnotes the fact that the test point lies 
on the surface u, and the auperscript T is the symbol for the 

transposition. (1JO) and (1J2) yield 

The system of the base functions C.\ ( <p, A ) , ( 122), ia complete, 
as so aa the ayatem of the functionsw; (<f,,U, (129),at least
in the space of the continuous functions; the proof is given in [5]. 

( 128) 

( 1 29) 

( 130) 

( 131 ) 

( 132) 

(133) 

( 134)

* w w 

' 'i'' - 'u 
(,J 

e • • ,. ) 

~-1 • (.J * 
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Thus, the baee func tio:ns c...,k ( 'f , A ) can be developed in surface 
spherical harmonics w ; )f ( 'f' , ) ) , and these relations ha.ve a 
well-defined inversion. The same is valid for the representation of the 

* � 
> orthonormal functions Cuk (�,A ) in terma of the functions wk (f, 11 ).

Hence, 

* 
w 

.)(-X-
(,J = 

w�JK= 

i 
** 

W · 

i
T w* 

l· �
w 

The vector w*:r comprises the aurface spherical harmonicsq�Of('f3A) 
as its componente, � and �T are certain infinite orthonormal matrices, 
[ 5] pg. 166,., 170,-

-

det i det l

i· i
T 

= � 

E is a unit matrix. 

1 , 

The combination of (134) and (135) gives 

Writing, abbreviating, 

the following form of (137) is obtained 

= (t�*)T, W'>f7f 

= = 

(139) and (139b) is the development of the surface values of the
potential T in terms of spheri�al harmonice. These

come from (114), from the boundary value problem. 
T values 

( 135) 

( 136) 

(136a) 

( 1 36b) 

( 136c) 

( 1 37) 

( 1 38) 

( 139) 

( 139a) 

( 139b) 

~-1 

~- 1 

- (t ~f* t *~ 
- 1 ' 2 ' 

.... ) 
+ 
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Along the surface of the Earth u, the amounts of { T 1 are known 
by the gravity anomalies L1gT, using (114). From these {T} values,
the coefficients ti�* of the surface spherical harmonics series
development (139) (139b) can be computed, it ie self-explanatory. 
Thus, the vector � ;\"><'- is known, 

t��
1 

t*�
2 

t ��
3 

;( (T)u · wf ''''( <p))
, 

d 1 

1 

dl 

J. ji. 
is the Krol'lecker symbol,(141 r),(28) (29), 

1 ie the unit sphere, (92). 

By definition, the {Tl values obtained by (114) are free of the 
spherical harmonics of O th and 1 st degree. Hence, the first four 
el�ments of (140) are equal to zero, (117)(118), (124-) .•• (127), 

= o. 

The relation (138) can be transformed, using the fact that the

matricee � and � are non-singular; thus, 

By (129), � is a subdiagonal matrix. The transpoeitiol'l of (141a) 
yields 

�T . A 

The relation (141b) ehows how to compute the vector �, (132), 
from the vector f�f*, ( 140), and from the matrices � and � 
This vector � is the vector of the coefficiente ti of the
harmonice development (123). 

( 14-0) 

( 140a) 

( 140b) 

( 14 1 ) 

( 141 a) 

(141b) 

H 
1 

~"7{- T T (t ) . A ~ 

t 
= 

https://doi.org/10.2312/zipe.1989.097



42 

Simultaneonsly, these ti values are also the coefficients
of the spatial spherical harmonics series development (116). 

Consequently, the relation (141b) gives automatically the 
amounts of the coefficients T1.n.m and

which yield from the solution of the boundary value problem, (114). 
With that, the four amounts T1.

o.o (for the 0th degree),(a�d for n=1)
T T T are known, (124) to (127). These 1.1.o t 1.1.1' 2.1.1 
four amounts have to satisfy the constraints (117) and (118). 

The relation (141b) gives the desired criterion convenientm 
check whether the constraints (117) (118) are fulfilled or not. 
The conditions (117) (118) can be brought into the following 
form, 

In case, these equations (141c) are not fulfilled by the t1 
values of (141b), (i = 1,2,3,4), the measure turne out tobe 
necessary that the center of the reference ellipsoid has to 
be shifted in the three-dimensional space 'until the 3 condi tion 
equations for t2, t

3
, t4 are satisfied, (141c) (117).

Eventually, further on, the spherical symmetric constituent of 
the standard potential U has to be modified also until 
the condition equation for t1 is fulfilled, (141c) (118) (115a).

In case, the four equations (141c) are not observed by the 
ti values (i = 1,2,3,4), obtained from the ! vector deduced
from {".'), (141b) (114), (140a), in this case, it is possible to 
reach the fulfillment of (141c) afterwards, by the subsequently 
described procedure of (141c) to (141 v). Here, the equation (141b) 
is in the fore. In (141b), the vectors t and t*� are amplified 
by the supplements J � and Ji ** , ;hich hav; to bring ab out 
an adjustment of the 
constraints (141c). 
'l'hus, 

.. 

�T 

T potential with intent to observe the 

(141c) 

(141d) 
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J� obeye the following conditions, a priori valid, 

dti 
= - t1, (i = 1,2 1 3 1 4). (141e) 

The relationa (141e) make the left hand side of (141d)' equal to 
z.ero, for i = 1,2 ,3,4, in accordr.mce with (141c), (t. values of (141e) taken from(141b)).

** 
l 

öl fulfills the subsequent conditions, a priori valid. 
(see (114)), 

** 

ch1 = o, (i = 5,6,7, ••• ).

The following amounts of (141g) and (141h) have to be determined, 
a posteriori, 

6ti ' (i = 5,6,7, ••• ),

and 

(i = 1,2,3,4). 

These values are a priori unknown, they have to be det�rmined in 
auch a way that ( 141d) (141e) (141f) are valid. 

Putting, abbreviating, 

6t l1 

cff�� h 

�T-� = � 

denoting the vector of the four a priori known components of 
,(141e) by 

�1. 1 

and denoting the vector of the four a priori unknown componente 
of (141h) by 

( 141 f) 

( 141 g) 

( 141 h) 

(1411) 

(141j) 

(141k) 

(1411) 

h.1 <141ml 

then the equation (141n) follows from (141b) (141d) (1411) 
(141j) (141k) (141m), - since the relations (141b) and (141k) yield

= = = 
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=1 
L • 1 = =2

or, by a self-explanatory rearranrement, 

M1 • -1 M1. 2 h.1

b.2 h.2

The determinant of Ml.l is the minor in principal position 
(covering the indices i 1,2,J,4) of the matrix M 

(141f) is introduced into (1410); thus the relation 

h.2 0 

has tobe considered, treating th� matrix equation (1410) . 

Obviously, (141q) is thc result, 

�1.1 h.1

M1•1 is about a unit matrix, in close approximotion,

(141n) 

(1410) 

(141p) 

(141q) 

This fact cs.n be evidenced by the structure of the tt!rms (120) which are 
identical with the functions w i of (122) . Putting the radius

� ( fi,�) of the surface of the Earth u equal to the radius R by 
the nee;lection of relative errors of the order of Z/H, the following 

1 *� 
) relations for the firs t :four func tions of c:u1 ( 'f1 tl ) , W1 ( tp1 11) ,

and ·Rn.:n ( 'fi 
(\ ) 1and sn.m (

'-f
, A) are obtained,

H o.o

A comparison of (141r) 
relation, 

r
:g 1 • 1 

~ 0 

0 

0 

j( ')(-
w1 
w*�

Cu�� 

J 

w**

4 

with ( 1 J6a) 

0 0 
0 

0 1 
0 0 

( 141 k) (1410) 

0 

)
0 

0 

yields the following 

( 141 r ). 

( 141 s) 

l 

h .1 

w1 ,;; = 

W 2 
,.. 

R1 .o 2 

lv3 
N 

R1 • 1 

W4 ~ 
S 1 • 1 
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Conaequently, 

det 0 (141t). 

(141t) shows that the matrix 
Thus, the inverse of (141q) is 

J;:1,1 has a well-defined inverse,

h.1 ( -1
!:1. 1) ' (141u) 

(141u) allows the computation of b.1 frorn 

The vector 1
1 •2

det.�rmined, besides of 
(1410) (141p) (141u), 

is the oth�r vector, which is to be 

12,1 , (141u), 11,2
is obtained by 

Th� relations (141u) and (141v) solve the here discussed problem, 

The surface potential fTl along the surface u, according to (114), 
haa to be amended by an alt�ration that consists in the addition of the 
constituents fonned by the spherical harmonics of o th and 1 st degree, 
The Stokes constants of these harmonics are well-defint�d by the relation 
(141u), 

Furth,'r on, in the harmonics series development for the spatial 
po1ential T, (116), the Stokes constants of the degr�e n � 2 
undergo certain amendments and alterations by the values of (141v), 

But, the surface harmonics of the degr.�e n � 2 in the T

potential of (114) remain unchanged, They coneerve the values obtained 
(in tcrms of the rravity anomnli2s) by the computations according to 
(114), 

Furthermore, in the spatial developm�nt (116), the Stoktls 
constants of O th gnd 1 st degree fulfill after these amendm„nts 
the required constraint that they have to be equal to zero, finally, 
(117) (118), as deman�ed in our applications,

(141v) 
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7. The euperpoeition of the perturbation potential T upon the

--12.Q_tential B of the mountain masses with etandard density

The here discusaed mountain masses are the massee which are eituated 
above the mean Earth-ellipsoid in the domain of the continente. 
Thus, they lie between the mean ellipsoid of the Barth and the eurface 
of the Earth u. In the here discussed boundary value problem, the 

.flattening of the Earth ia neglected; the ellipsoid is replaced by 
the globe v, �ig. 2. Consequently, in this context, the mountaina 
and the hdghts H rise above the globe v, but not above the mean 
ellipsoid of the l!;arth, Further facilitie:s and computation reliefs, 
connected with this model of the mountains,cousist in the fact that 
these masses have the standard density �= 2 650 kg m-3 and not
the r�al density. 

'rhe gravitational potential B of these mountain masses can be 
expressed by the foJlowing integral, Fig, 5, 

B dV 

V 

V �s the volume of the mountnin masses considered above; the 
integral ( 142) cov·•rs the continental domain only, f is the 
rravitational constant, 
e repres�nts the straight 
dV and the test point P 
I<'ig, 5, 

Fig. 5. 

distance between the running volums element 
in the exterior of the body of the Earth, 

" r* / 
\ / 

\ / 
\ / 
' / 
.......__/ 

( 142). ,~ m 1 

e 
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The her� considered mountain masses fill the crosswise hatched 
domain, shown in Fig, 5. P<:!rpendicular below the t�st point P and, moreover, 
in the level of the globe v, the point r* is situated, Fig, 5, 
The volume element dV has the cquation 

dV = r 2 , sin p , dr. dp . dA. 

In ( 143) i r is the distance which the volume element dV has to the 
baryc�nter of the globe v ( v having the radius R). p is here the

( 143) 

h i 1 d. t b t th 1 1 t dV d th . t * F. 5 sp �r ca 1.s ancc e ween e vo ume e emen an e poin p , 1.e;. ,
A ie the clockwise counted azimuth. It is defined as the angle, 
which has the point p% a.s the V'1rte.x:, and which measures clockwise 
the direction the volume elemcnt dV shows with regard to the north, 

The height of the surface of the Barth u above the globe v is H, 
(see Fig, 2 and Fig. 4), Hence, the integral (142) turns to 

"' 

2;, lt 

B f� 1 ( 
p =0 A 0 

Now, the potential 

M T B 

R + H 

1 
r R 

M 

2 r • sin p • dr. dp · dA. 

is introduced by tho equation 

M ie a harmonic and continuous potential in the ext�rior space of 
the body of the Earth, The potential M has about the sam<>. structure 
as the potential T, The amounts of jM/G I will not be greater than 
a.bout ten times the amounts of I T/G 1 , at least in the e;lobal 
average, G is here the global mean of the gravity, If it is 
intended to compute M by the relation (145), the pot-;ntial B 
on the right hand side of (145) comes from (144), But, the integration 
according to (144) do�s not imply th3 isostatic compens�tion masses, 
situated below the isostatic compeneation depth of 30 km, in case 
of the Airy - Heiskanen system, 
Becauae (144) does not imply the compensating mountain roots, the 
amount of IM I will generally be greater than the amount of IT I,
(145), IM/GI can amount up to 1000 m

1
about,

(144) 

( 14::i) 

At this place, before a further discussion about the potential M, it shoulcl 

be stressed that only the coming equa�ion (151) on the next page defines the term 
Llgr.: ! i1specially i.1 (6), it is not allowed simply to substitute T by !,!, a,,d g

by g"', without any inclusion of any additives. Replacing LJ,;
1.'. by g"'·- g',

this procedure will be wrong, or, more precisely, it will not be sufficient 
precise, A term quadratic in (M/g') has to be added as a more or less important 
additi;e, The deeper reason is the fact, that (M/g') is in its absolute amount 
5 time or 10 time greater than 1 (T/p;') 1 • In the subsequent deliberations and 
deductions about the boundary value problem, these additives do not occur, The 
following deductions make no mention of these additives, - But in (6), the a�a­
logous term quadratic in (T/g') can be neglected, according to common use, The 
reason is, that 1 (T/g') 1 is generally considerably smaller than 1 (i,1/g') 1 

e 
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It is possible to apply the equations (114) and (115) to the potential 
M, defined by ( 145). Thus, if M serves as substitute for 

{r,1}= R� (( [L'.lgM + DM (1.1) + � F
(M

�ls(p) • dl 411)) 411 R'j 
1 

_The relation (115) turns to 

'c)n 

The fundamental equation of 

LlgT 

Ll gB 

Thus, 

iJ gM

LJgM 

LJg
M

d'l' 
- --

c) r

'clB

'clr

(145), 

L'.lgT
clM 

= ---

'dr 

,0 T 
- -

c)r 

2 
-

r 

2 

r 

LlgB

2 
- M

r

0B 
+ --

'c) r 

cos (g', n) 

Physical Geodesy gives, 

T 

B 

2 
- , (T - B)

r 

i F(l\I) 1 
+---

2 iY 

( 1 ) 1 

'.l' ' 

The transformations of (147) happen along the same way as those of 
(115); but, considering (147), the fact has to be in view that the 
amounts of / M/G I can reach about 1000 m, v1hereas the amounts of I T/G 1 
hardly reach 100 m. The concerned rearrangements of (115) can be 
found in the appendix, by the equations from (A9) up to (A 21). Same 
hints at the amounts of J M/G I can be found in the following 
publication: Veröff, d. Bayerischen Kommission f. d. Intern. Erdmessung, 
Astr.-Geod, Arbeite.n,  Heft Nr. 48, München 1986, S, 153, 

As to the rearrangements of ( 147), taken in the potential field M, 
1--1-

1 
is the plumb - line deflection component at the surface of the Earth u, 

taken in the north - south direction, f-2 is the corresponding east - west
component, (71) (72) (73), 

clM 
f'-1 R' + Z g'' 1 

( 146) 

( 147) 

(148) 

(149) 

(150) 

(151) 

(152) 

(153)

+ 

https://doi.org/10.2312/zipe.1989.097



1 cJM 

4-') 

R1 + Z g111coe(f' '8T

µ:the absolute amou�t of this plumb - line deflection, 

f, f-1 , f-2 . havf! smoothed values, but th'3 functions of 0 ,�, 1

are not smooth�d, (71) (72) (7.3). 

The standard gravity g' is the amount of thE gradient of the 

standard potential u. The amount of g''' is the intensity of the

gravity in the pot1ntial fi�ld U + M; U and U + M are rotating 
potentiale. Thus, by the gradient, (Fig.A 1), 

g' 1' 
l [7 (U 

+ M) 1

A''' is the azimu th of the plumb - line deflec tion f- • As i t is 
found in the above m�ntioned Bavarin publication Nr. 48, the 

(154) 

(155) 

(156) 

horizontal alt�ration of the amounts of lM/GI is mBximal about 0,5 km 
for a distance-of 2 000 km. Here, the fact has to be regarded, that, in 
this B!warian oublication, the mountains have the density - surplus of 
2 670 kg m-3 and the ocean basins the density-defect of - 1 640 kg m-3• 
But, in the here discussed calculation of the M values, the mass 
deficiency in th� domain of thG oceans has to be discarded. Consequently, 
the amounts of I M/G J will be a little greater, in reality, than the 
valu�s tclk"n from the above ci ted publication Nr. 48, Summarizing, the

maximal nmount of� can be charact�rized by 

f- max 0.5 km/2000 km= 2.5 • 10-4 

0bviously, the relation (157a) is valid, 

M = (U + M) - U • 

Introducing M as a substi tute for 'l' 
1 
and U + M as a substi tute 

for W (being equal to U + T), the relation (A 14) turns to, (156), 

c) M 

,)n 
g"'•COS (g'", n) ._ g'•COS (g', n)

Analogously as (A 15), the equation (159) can be obtainsd, 

(157) 

( 1 57 a) 

(158) 

COS (g"', n) = COS (g', n),cosf- + sin (g', n),sinr•cos (A"' - J\1) • (159) 

This above relation (159) can be obtai:1ed also from Fig.A 1 8,1ct the cosine 
formula of a spherical triangle. In Fig. A 1 on the page 95 1 the vector
( -g=' '' )0 is the norrnalized vector of -g''' 

/ 
0\ ; th u s , ( -� • 

1 , ) 1 
In Fig. A 1, the normalized vectors (-�

•)o ' (--
�) o

, (-g)o ' and (-g''')o 

sre the radii of a uni t sphere wi th the surface point Q as center 

_1_ 
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Considering 

sin fL = f -

cos f 

1 

6 

3 
f 

1 2 

+ -

- - f + -
2 

50 

the rela tion (162) follows from (159), 

1 2 
cos (g'' ', n) = cos (g', n) - - •f, • cos (g', n) + 

2 

+ f •sin (e;', n) •cos (A''' A') 

1 3 
.u, s in (11', n),cos (A"' - A'). 

6 C

The relation (157) yields 

The relation (163) makes it clear, that the 4 th term on the r ight hand 
side of ( 162) is insignificant in comparison wi th the 3rd · term. 'l'hus, 

cos (g' "' n) 

The combina ti on of 

clM 
-- . 

<)n cos (g'' 

= cos (g'' 

f ·sin (g'' 

1 2 
n) - -·f

2 

n) • cos (A,,, 

cos ( p•' 0 ' 

- A')

(158) v1i th ( 161J.) gives ( 165), 

1 2 
g''' - g' --·11 g''' 

n) 2 

n) +

+ f- •g'"•tan (s', n),cos (A"' - A')

( 160) 

( 16.1 ) 

( 162) 

( 163) 

( 164) 

( 165) 

fl is the angle the dire c tion of 
(166) follows

cr l '' 
0 malce s wi th the radi us r thus, 

g' 1 1 • COS f

or, with (161), 

g'" = -

'c> (r1! + U) 

c) r 

cl (r,i + U) 

c) r [ +-

2 

(166) 

(167) 

( ) 2 
f-max 

+ 

+ 

: ------
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Further, (A 13), 
c>U g' = 
'clr 

The difference of (167) and (168) is, in sufficient approximation, 

gt 11 _ gt = __ 
ar 

or, ( 168), 

gl I t _ g' 

'c)u 

0r 

1 
- . u. 2 

2 l 

2 
+ -2- . g''f· 

(165) an d (170) are combined to

'c)M 
'an cos (g', n) 

+,µ•g"'-tan (g', n)•cos (A'" - A') 

In (171), the amount of 

2 
f2,(g• -gtt1)

was neglected, since it is considerably smaller than 1 f' gal. 

The 2nd term on the_right hand side of (171) contains the gravity value 
of g'''• Replacing here g''' by the standard gravity g', a relative 
error of (g'' 1 

- g')/ g' is the consequence. Putting the amount of 
/ g''' - g' / equal to 0.3 gal 'and g' equal to 103 gal (i. e. 

103 cm/stJc2), this relative error amounts to 

g' '' -g' 

g' 

The neglection of such a small relative error of the order of (173) 
can always be tolerated in the second term on the right hand side of 
( 171). Obviously, the admissibility of this neglection is due to 
mere the fact that the plumb-line deflection can never be determined 

empirically better than within a relative error of 3 • 10-4• Thus,
(171) turne to

'cJ M 
-·

lcJ n cos(g', n) c) r
+ Gr,•tan(g',n)•cos (A''' - A') •

(168) 

(169) 

( 170) 

( 171) 

( 172) 

( 173) 

(174)

1 'dM 

t;Jr 

1 
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' 

In ( 174), g' (or better g' '') was put equal to G. G 
mean value of the gravity. (174) and (147) yield 

DM (1.1) = G·f·tan (g', n),cos (A"' - A')

is the global 

Summarizing the detaile of the three mathematical expressions 
representing the three symbols LI gM' DM ( 1 .1) and F(M) on the right
hand side of ( 146), the following is found: In ( 146), LI gM is

( 175) 

obtained by (151). DM (1.1) comes from (175). F(M) is represented by (64), and by
(74), (74a) to (74h), (r=placing .LlgT by 
and further t , � by f1 f 2 ) • 

8. Gauss' integral theorem

L]gM T by M,

The ter• DM (1.1) exerts the following impact on the integral on
the right hand side of ( 146), in thc computa tion of { M} , ( 175), 

J = 
R'· 

4 /1 
�f DM (1.1) · S(p) · dl

1 

This expression for J undergoes now some rearrangements uaing the 

Gauss' integral theorem, in order to bring the expression for J 
into a ehape more convenient for numerical routine calculations. 

(175) and (176) yield

J G 

411R' 

\( f,·tan (g', n)·cos (A"' - A')·S(p)•d w

w 
A' is the azimuth of the sl?pe of the terrain, A''' that of the 
plumb - line deflection fL, Fig. A1. The north - eouth and the 
east - west componcnt of the plumb - line deflection I'- are 
denoted by f1 and f- 2 , (153) (154) , 

f · COI!! A 1 ' 1 

[L•ein /J.111 • 

The expressions for /!- , f 1 and
reprei,�nt these values along the 

+ 

LL are func tions which t · 2 
surface of the Earth u. 

( 176) 

( 177) 

( 178) 

( 179) 

(179a) 
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Thus, the values t-,L- , f-'-1, and I'-2 have two - parametric functions

of 'f and ,1 • 'rhey can be understood as functions the values of 
which are distributed along the uni t sphere or along the sphere .. v, 
having the radius R' • 

In the point Q situated at the surface of the Earth u, in the 
direction of growing p - values, (i, e. in the direction the great 
circle connecting P and Q is heading for1in thc point �), the compon�nt 
of the pl umb - line deflectionµ has the following rela tions ( 153) ( 154), 

�p 
c) M

R' + z g'' 1 � 

[ R; 'clM] �
+ z g'' 1 'c)p 

u

N 1 

·[ 
'oM 

]u
R1 • G 0P 

p is here again the spherical distance from the test noint P (fixed 
within one-integrAtion) and the point Q , which is variable within one 
in tegra tion covering whole the sphere w , ( 177) , 'l'hus, also /-4 p
is a two - paramdric function, similarly as 

f , f 1 1 and /12 
Hence, 

fi. fd 'f, "}. ) 

f-11 = f-11 < 'f, :u

/-'2 = f2 ('f', 11)

f P = f-P < <p, "?-. )

In (153) (180), the derivations of M have to be taken 
in horizontal direction; that is to say, these derivations happen along 
the horizontal plane of the considered Earth's surface ppint, in 
north - south or east - west,or in radial direction. The values of (1G1)
(182) (183) (184) refer to points situated on the surface of the 
Earth u. 

The values /'1 and 11 2 
can be considered as the components of a

·1rector � which is tangential to the sphere w (having the radius R').
Thus,

+ /A- 2 �2 

( 180') 

( 181) 
( 182) 
( 183) 
( 184) 

( 185)
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�1 and �2 are orthogonal unit vectors, Fig. A1.
Each point on the sphere w has a vector ;1 which is tangential to
the sphcre 1·1 and which is h�ading to the north. The same is valid 
for the vector 12 

which ie heading to the east. Hence,

2 
�1 

2 
�2 

Tbc elope of the terrain ie described by tan (g', n), Fig. 4, 
Fig. A1. This expression allows certain developm"nts which nre similnr 
to the above developmel'lta for fl, from ( 178) to ( 187). 'rhe north -
south and the east - west component of the slope of the terrain are 
denoted by s1 and s2 , they have the following expressions,
(eee Fig. A1 of the appe•dix ), 

tan (g', n)• cos A' 
tan (g', n) • ein A' 

The height difference Z is equal to HQ minuB HP , (57a),
whereat _HP ie fixed because ·p is the fixcd test point, but,
whereat HQ 

is variabl� becnuse the point Q varies over the
whole globe. e1 nnd s2 can b,� obt!1ined by the derivati.on of the
height HQ of the point Q in th� north - south andin the east -
west direction. 
Therefore, it is possible to find s1 and s 2 

also by derivations 
of this kind but wJth regard to the height difference Z, instead of 
HQ. H�nceJfor the point Q,

Zlz 

R' + z 'c:J'f 

1 'c) z 

R' + z C08 'f 8,\ 

The integr3.l J ie a relative small supplem�ntary term, (177). 
Thus, in the integrand of J and, consequently, also in the 
expressions for s

1 
and e2 , a re�ative error of the order of 

Z/R' or Z/R can be tolerated. Z/R reaches not more than about 
10-3 to 10-4, (see c!lso the appendix, (AJ86)" to (A 387b) •
Consequently,

8
1 

',; 1 0z 

'Qcp 

� c>z 
8

2 R' DOS f c)). 

( 186) 

(187) 

( 1U8) 
( Hl9) 

( 190) 

(191) 

( 192) 

( 193)

= f- 2 

p · -
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(192) and (193) are valid for the point Q.

A vector can be constructed, 

�1 + �2

The height differences Z, taken with regard to the�fixed test point 
construct a scalar field of two_ - parametric values along the sphere w 
(having the radius R'). 0bviously, the vector s can be represented 
by the gradient of the scalar Z field, taken along the sphere w 
(192) (193),

0r, 

V. Z) • �1

[7 • z) • �2

17 . z

(196) and (197) follow from (194) and (195)

P, 

For any scalar function 
has the subsequent shape, 

q, defined on the surface w , the gradient 

17 · q R' �1 + 
1 0 q 

R• COS'f '<l ,1 �2 

'f,A: the geocentric latitude and longitude. (199) is self­
e:r.:planF.ttc-,·y, (188) (189) , 

�
2 s2 = (tan (g', n) ) 2 = 

s is the slope of the terrain. 

+ 

The decomposi.tion formula for the cosine function gives for (175) 

DM(1.1) = G·r•tan (g', n), [cos A'" cos A' + sin A'" sin A'] • 

with (178) (179) and (188) (189), the relation (200) turns to 

'l'he inner product of the two vectors f= 
( 194) , 

and leads to , ( 185) 

( 194) 

( 195) 

( 196) 

( 197) 

( 198) 

( 199) 

(200) 

( 2o 1) 

s, . 

https://doi.org/10.2312/zipe.1989.097



I 

56 

(202) 

Thue, the i•tegral expreeeio• for J takee the followi:ag shape, 
( 17 6) ( 202) , 

J "' 
G 

411 R' 
\\ u· � . s(p) • dw (203) 

w 

With in.teJ1.d to rearrange the i!ltegrand of (203), a new vector 
�o ie i•troduced,

�o Z • S(p) • # (204) 

I:n (204), the ecalar value Z a•d the expression S(p), and the 
compo11.ents of the vector � are all coJ1.tinuous full.ctio!ls of <p
an.d /1 (182) (183). The7 cn. be col'lsidered as ftlllction.s dietributed
along. the ephere w. I• this co!ltext, they are UBderstood that they 
are functiolle of the variable oo-ordinatee of the poi•t Q , o!lly. 
But, i• thie co•text, the co-ordi•atee of the point P are constant. 

The gradient of a ecalar fUJ1otion q hae the relatioll. (198), 
for a fu•otio• q dietributed alo:ng the surface of the ephere w. 
Further, 

dw dl · ( 205)

Now, a vector g ie illtroduced; it hae the compo:ae1ts q1 alid
q2 , in the directio1 of �1 a•d i2• The divergence of this vector
q , defi•ed for poi•te on the eurface of the sphere w, call be deecribed 

by q1 an.d
with the radiue 

q2 (i!l the epherical co-ordi•atee tp, A ; for points
R' of the sphere w). (206) followe,

clq2
div q 17 · s 

1 tan f q R1 coe '( '<) A - R1 1 

Thue, the divergence of the vector field 
ephere w, hae the form, (204) (205), 

�o , dietributed over the

[7. �o = div �o = div (Z·S(p) · {!) =
. 
V· (Z·S(p) 'ff ) =

= ( f7• Z)·S(p) ·f; + Z•([7• S(p))ß+ Z·S(p)·( fl·t=) 

The fUJ1.ction S(p) has a peculiarity. In caee of approaching the 
teat_ poi•t P, the pa;ameter p does te:nd to zero a1td S(p) doee tend 
to in.fil!.ity: If p➔O, followe S(p) �(2/p)➔oo. St:ace 01tly co ti:auous 
functiolle are tolerated ill (207), the close neighborhood of the poi:nt r

ia separated, avoidi•g the above diecuseed eingularity of S(p), Fig. 6. 

(206) 

(207)

-
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Thin •o&r environmen1 of th poi•t .p hae th eh pe of Q apherical cap, 
•amed w0 • w0 is co•coÄtric to the poi•t P, it has the spherical 
radius R'Po measurad aloBg the spher w ,  a�d the circular bounde 
of w

0 
are de oted by c0• That part of w which ie complementary 

to w
0 

is de•oted by w00 ·• Thue, the eum of w
0 

aw.d w00 ia
equal to w. In the domai• w

00
, Z amd S(p) a•d the compoae•te of Af

are co•ti•uoue fumctione. Co•eeque tly, the vector lo of (204)
ie co•tinuous i� tho domai• w00 • Therefore, it ia allowed to apply
the i•tegral theorem of Gaues (for the domai• w

00
) to th vector field

�o• The equatio• (208) followe,

north 

p 

Fig. 6. 

e a 

e 

ll 
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a •(lt )
0

, de 
=O =O 0 

(gJ
0 ie tne Ul!lit vector of the •ormal of the circle c

0 
which ie the 

bou:11.dary of the epherical cap w
0

, the positive directio:m of (�
0

)° is 
heading to the exterior of w

0
, Fig. 6. 

The circulatory i:11.tegral on the right hand side of (208) doee

va�ieh, if the radius of tha spherioal cap doee vanish, R 1 p
0 

___,_. 0.
This traneition behavior ia easily proved along the followi11g liaes. 

· The defi•itio1t of the inner product leade to

�o comee from (204). In (204), the height difference Z doee vaaieh
ia case the poi•t Q approachee the point P. Further, the quotient 
Z/(R'•p

0
) has a finite value if R,p

0 
does va:mish approaching the 

poi•t P, whatever the azimuth A of the approach may be, Fig. 6. 
But, the Stokes functio� S(p) of (204) has a1tother tranaition 
behaviour. For emall valuee of p, S(p) calll be approxüaated by 2/p. 
Thus, the Stokes fuxctio:11. tende to i»fi•ity ae 2/p, if p tenda 
to zero. Coneequently, for amall values of p, the product Z•S(p) 
hae the limit (for a star-shaped Earth with finite slopee of the 
terraill.) 

limr•S(p)J • lim [z ; } lim 

tR:p 

2 R'] 

P _,...... o p -�O

Since Z/(R'p) hae a finite value if p tende to zero, the limit 
value of (209a) iB a finite amount, also. Further on, the amount of 
the vector ß üi also always finite, obviously. Consequently,
approchi:n.g the test point P, the amount of the vector �o of
(204) ie always finite. As to the inequality (209) and the vector (�

0
)

0 

of thia relation, the amount of the vector (�0)� being 1 (�0n , 
ie by defini tion alwaye equal to the uni·�y. Thus, the absolute 
amount of the integra1td of the circulatory integral on the right hand 
aide of (208) has alt upper limit if p

0 
te�dF �o zero, 

(208) 

(209) 

(209a) 

p - 0 

https://doi.org/10.2312/zipe.1989.097



59 

lim 

Hence, (208) (210), f or p
0 

tending to zero, 

0 

, (J1 ) . de 
=0 0 

( 210) 

(211) 

I• caee, p
0 

tendl!I to zero, the right hand side of (211) tend� to zero and, 
co�sequently, the left hand eide 0f (211), too. 

Thus, finally, (211) and (208) yield, 

0r, abbreviating the de•otati0J1, Fig. 6, 

)) ( l7 • �
0

) • dw = 0

The integrand of (212) comes from (207). I• (207), the gradieat of 
the Stokes functioJI is equal to 

v. S(p) d S�p) . e
7fl. p =p 

is a!p 
vector 0f
parameter 

uait vector, distributed over the sphere w 
it. It il!I headiJ1g into the direction of growing 

p. Thus, the combinatio• of (207) (195) (213)

as a taage11.t

values of the 
leadl!I to,· 

div 
�o 

= - � • /._! • S(p) + � .Llill - I=� R' d p • �p • f= 
+ Z•S(p)· ( (7 • f=')

further, with (203) (212), aad with 

e • /.1, 
=p (= 

(211a) 

(212) 

( 213) 

(213a) 

(21Jb) 

< 2 'iY R 1Np0 

w 

:: 
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\( l·r, S(p) • dw ) · S(p) , dw 
�I Z dS (p)

+ - �•fp . R' p · dw (214) 

w 

fp is the component of the vector /i pointing into the direction of

the unit vedtor 
�p 

Hence, the here needed integral J turne to, (203), 

J = 

4: R' �\ 

Z·( l7 •fr )•S(p)•dw + 

0 \( dS(p) 

4uR12 
z,� 

/lp · dw •

w w 

(215) 

V/ith (206) and (A 4-4L�), the e:,cpression for V'/!; 

shape, 

takes on the following 

�( 
0.f1

811-2
1-" 1 , f-2) + - .iv''l-'1 

tan <p • 
R' 'aip 

R 1 •COB'f•'J). 
(216) 

� ( f 1' f-2> = 

[7 • f= . (217) 

In the here discusssed applications, fJ,1 
they are the components of the plumb-line 
surface u, i. e. f 1.u and f'-2.u

and fi-
2 

are understood ·that 
deflection at the Earth's 

, (153) (154-). 

Thus, more precisely written than in (216), 

�( f'-1 ' fl2) = �<f1.u' f-2.u> 

1 8!-11.u c) f'-2.u
- + - _,tan 'f . ?-1.u 
R' c>r 

R' •COB 'f .'c) ;\ R'

V· #u

The value of 
(215), if f

,, 

fp 
can be trana.fonned in the following way, (180) 

is understood that it is the radial component of the 

(217a) 

(217b) 

plumb-line deflection for the potential M taken �t the Earth's surface u, 

= 

f'p.u (217c) 

w 
w 
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[�-
dM

]. fp = • 

c) p

Introducing the relations from ( 216) to (218) 1nto ( 215), t,b.e
expression for J turns to,

G 

l( Z• � (J = ---
f-1' f-2),S(p)•dw

4 'ii' R' 
w 

1 

1\ 
dS(p) 1 'clM 

R'2 
z • -· • dw

4 r, dp R' dP 
w 

With (176) and (219), the relation (146) for the potential M 
takes on the followiJlg shape, 

{M}=
4;, R' \1 [,1gM + 

GZ• � ( 
f-1' f' 2> + 2-.�]411' R' 

w 

� · 1 F(M) l 

\\ 
z. dS(p) 'c)M 

4'ii'R12 
·-

-�2 II dp R' p 

w 

S(p) ·. dw 

dw 

9. The model potential M represented by the Stokes integral and tpe 
supplementary topographical terms 

9.1. The formula for test points in high mountains 
< 

With regard to the further developments,_ the equation for 
the form (220) undergoes some rearrangements. The topographical 
of (220) are now denominated by new symbols. 
They are given by (221) and (222), 

M of 
terms 

(218) 

(219) 

(220) 

(221)

+ 

1 
+ 

C1 ( M) 
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}) 3 
F(M) 1 

{ 
f 

----· - , - • S(p) • dw + -• F(M) 
4 Ti R' 411 R' 2 11 

dS (p) 1 
z,---·--

dp R 1 

'c)M 

c)P 
• dw

(220) (221) (222) yield the final expression,

{ MI= . -
4

-�--
R
,-l([dgM + c1 (MJ J S(p) • dw

Q1 (M) ha s th e foll owing explicit expression, convenient for numerical
routine calcul ations, (74) (222), (75) to (78), (80) to (84), 

Q1 (M)

+ 

3 

)) (4 f)' R' )2 

w 

- ,dg ·-
1 \\ Z 

2 ff' M R 
w 

2� 
�\ 

: 

z 

w 
v1

+-- )\ :2" 

+ -
21 

w 

\) 
V/ 
LJ,i -[-R 'U p 

F(M) • S(p) • dw + 

[ 
2 

-
y + y 

[, -
2 

y + y 

, dw 

1 (cos p/2)2 

R sin p 

]
1 

-- ,dw + 
e' 

] -- ,dw + 

•b7 -

dA + 

e' 

Z · dS(p) 
J � 

, - . dw
2 R' dp 

de'• dA + 

de 1 
• dA +

de' • dA 

( 222) 

/ 

(223) 

(224)

w 

V{ 

1 
+ 

R 

+-
R 

1 
+ 

1 
\ ( LJgM • - x2 + -- de' 

2 )/ y + y 

1 (f ~ • [ - 2 X 

2 

+vJ l + __ , 

2 r,' . R y + y 
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In ( 224), if,there, dw is used as integration element , the integra-

tion has to cover whole the globe, But, if the product d e' • dA . is the illtegra-

tion element the integration can be limited to the near surroundings of the 
test point P, up to a distance of some tens of kilometers, only, 

As to the function F(M) in the integrand of the first term on the right hand side 
of (224), the values of F(M) can be computed by (74) and by the relations from (74a) 
up to (74h). But now, T has to be replaced by M, and LlgT by LlgM , -furthermore,

S and '>l have to be replaced by /"1 and f'-2 
, These modifications lead to

t):le relations (225), (225a) to (225h) , 

F(M) = 

r3(M) =

f4(M) =

t5(M)

f6(M) = 

f
7

(M) = 

f8(M) = 

8 

L f i (M)

1=1 

(( LlsM
z 

• [ 2 ': l J 
1

e, 

• dw

vr 

\ ( 
M z 

R R ·[1 �]- 1
Y + y e• 

w 

)( 
M ..l · dw

R R 
.,, 

(\ 
cl M 1 (cos p/2)2 

, b7R 'c) p R sin p 

\\ 

)\ 
M

\\ 

- \(

w 

x2 

,dgM ;-77 de'• dA 

·[ 
- 2 x2 

V3
];:? + · de' · dA

'c) M • (v2 -
b 11 ) • de ' • dA

/c)e, 

* �-G · Z • 
�

( x · f 1 , x · f 2) • de 1 
• dA

(225) 

(225a) 

· dw (225b) 

(225c) 

dw (225d) 

(225e) 

(225f) 

(225g) 

(225h) 

* The expressions x ,x, y ,  v1 , v
2

, v3 , b7 , b11 are explained by (75)(76)

(78), (So) up to (84). Again, the symbol dw stands for the global coverage by the 

R 

R 
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integration, .de'•dA for the coverage of the near surroundings, only. 

The universally valid formulas, from (223) to (225h), can be 
applied wherever the test point P may be situated, even in high 
mountains. The relations (223) to (225h) can be handled without any 
complication, they have no singularity and no divergences. 

9. 2. The formula for test points in low mountain ranges or in the lowlands

The detailed universal formulas (224) and (225) for Q1(M) and for
F(M) will find an application in seldom and extreme situations, only. 
They will be of use if the cliffs in the surroundings of the test point 
will reach an inclination of 30° or 45°, and more. They are valid 
for all finite inclination values, since a star-shaped Earth was 
presupposed. 

Exterior' of such regions, the formulas (224) and (225)_ can be

siroplified enormously. Such a simplification, often permitted, was 
already dif!cussed in connection with the transition from the formula 
(74) to 'the formula (79), (i. e. from F(T) to F * (T)). These
simplifications are governed by the constraint, that the inequality

x2 << 

has to be fullfilled,' (66). 0nly in high mountains, the inequality 
(2251) will be violated. Besides of (_225i), these simplifications 
imply also the neglection of a relative error of the order of Z/R 
in the small topographical supplements (i. e, F(M) and 521 (M)).
A relative error of 10-3 to 10-4 is permitted in these supplements,
which do not reach an amount of about 1 m. An error smaller than 
10-3 m can be tolerated in any case.

In the cou�se �f these simplifications, caused by the transition
from the high mountmns to the lowlands, F(M) of (225) can be replaced 
by the simple lowland expression F* (M), described by (227). Further 
on, Q 1 (M) of (224) turns to the lowland expression 9t° (M) 
described by (226) (230). Thus, accounting for (2251) and neglecting 
relative errors of the order of Z/R, (225) and ( 224) change to the 
simple shape of (227) and (226) for the lowland expressions, 
Q1(M)-;.. Qt (M)

F (M) � F�(M) 

(2251) 

( 225j) 

(225k) 
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Thus, (222) 

* 

Q1(M)

Further on, 

F (M) 

* 
f 1 (M) 

* 
f2(M) 

turns to 

)\ 
1 3 

41;' R 4,Y 

w 

1 
{ F

-;lf
(M) J+ 

21 

1 

\\ z,{4 ,)'R2 

"'
by (79), 

3 

[= f i (M) 

i=1 

�\ ß•· 

z 3 
= 

R 2 eo 
" 

M z

65 

F (M) 
, S (p) , dw

R 

d S(p) 

l · _

1

_ d p  R 

dw 

VM 

'v p 

= �) · dw
R R e 0 

w 

\\ 
�M z cos p/2" 

R�p 
0

ef p/2)2 (sin 

'f{ 

= 2·R·sin p/2 

· dw (226) 

(227) 

(227a) 

(227b) 

dw (227c) 

(228) 

The third term on the right hand side of (226) and the _term of (227c), multi­
plied wi th (1/211' ) , can be cornbined to the following expression, (229), 

1 

\\ 
c)M 

·[ 
cos p/2 d S(p) j 

-
� 

• z 

p/2)2 + 2 dw (229) 
81i'R R clp (sin dp 

'i'I' 

The relations (227), (227a) to (227c), and (229) are introduced into (226). 
* 

Along these lines, the final formof Q .,. (M) is reached, (230). 
1 

* 
+ 

1 

1 
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?(- 3 

)( 
* 

V1(M) = 
(417' R) 2

F (M) · S(p) · dvr + 

. 1 
+ 'IT"

+ 1 
2ü'

w 

)) LlgM 
z 

·i
_1 _ dw 

. It eo 
w 

ff 
M z L dw 
lt li' eo

w 

, )\ P:p. z · [ <::: !�!i ' 
w 

+ 

+ 

In the integrand of the first term on the right hand side of (230), 
the value o-f F * (M) can be computed by the formulas described by ( 227), 
(227a) to (227c). 

Coneequently, in the most frequent cases of our applications, if 

(230) 

the test point P is not situated in the peak area of the high mountains: about 
the following form,it is emphasized that it is convenient for routine 
calculations, (223) (221) (227) (230); it is the lowland form, 

{ M} = _
1 
- ( ( [t:1 gM + C 1 ( M) ] , S ( p) 

4fi'R' )\ 
w 

, dw + f 9./ (M) 1

Later on, this formula undergoes a 
hand side back, from th� potential 
chapter 11). 

10. The Helmert condensation method

re arrangemen t, trans forming the le ft 
M to the potential T, (see 

Now, the mountain masses situated above the mean globe v having 
the radius R ( or above the mean ellipsoid of the Earth, to be more 
precise) are condensed along this aphere v. The real mountain massea 
of the real density cannot be considered here, since the precise 
values of these real denaity values are unknown, But, for the here 
discussed problem, it is possible to substitute the real density 

of the mountain masses by the standard density having the amount of 

(231) 

�= 2650 kg m-3, (142), (see Fig, 5),As to the use of the standard density, this
easy substitution is opportune, and it makes no trouble. The crucial 
point for the introduction of the potential B of the visible mountain 
massea is the fact that, in the main, the gravitational force caused by 
the d�fference potential T - B has no perceptible correlation with 

8 'Ir' R 
2 d S(p)J d dp . w 
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the topographical heights. This peculiarity is right, may the potential 
B be computed in terms of the real densi.ty values, or in terms of 
the standard· density. The here �xecuted derivations make use of the 
letter version. 
If the density of these masses changes over from the real values to 
tne standard value, the accompanying alteration of the gravitational 
force is relative small, it has no clear correlation with the heights. 
A long wave residual correlation of this kind is discussed by the relations (289)(290). 

For a test point P* situated on the spherical surface v, 
the gravitational potential B* of these condensed mountain masses 
has the following representation, (condensed at the sphere v; R Radius), 

For this potential B*, the derivative with regard to the radius r

has the following expression, if approaching the test point P * at 
the surface v from the exterior space of the globe v, Fig. 5, Fig. 2, 

The symbols L1, L2, L3, L4
equations, 

of (232) and (233) have the following 

f 

f� ff z • dv

V 

1 
Z •(sin p/2) • -

( e ) 2 
0 

is again the gravitational constant, R 
sphere v, Fig. 2 1 

2R· sin p/2 

, dv 

ia the radius of the 

(232) 

(233) 

(234) 

(235) 

(236) 

(237) 

(238)

= 

(11) }f 4· f,' · f · ~ • R · HP 
p 

(12) * ::: 
p eo 

V 

(13) * = 4·'iY·f·.9i ·Hp 
p 

(14) p-f = - f~ )) 
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As it is evident from Fig. 2, Hp is the height attached to the 
test point P� , within the scope of the condensation method. Obviously, 
the density of the surface distribution underlying the potential B*

is equal to ,9i. HQ. The equations (234) (235) (236) (237) represent 
the val ues 11, 12, 13, 14, taken for the test point p.:K .

For the moving point Q* at the sphere v, the following relationa 
are valid, analogous to the above relations for P* , Fig. 2, 

(11)Qt = 4 • 'iY • f · � · R · HQ

(12)Q * f 
� )) 

(Hy
- HQ) dv 

eoo
V 

(13)Q� - 4.,,. f,,Q_,,H 
Q 

f
�

11

Hy -HQ
(14)Q* - (sin (p/2)00

) · dv 
2(eoo) 

V 

The values e
0 

and sin p/2 refer to the distance between the two 
pojnts Q* and P* • But, the values e

00 
and sin (p/2\

:io
relate to the distanqe between the points y* and Q* , Fig. 2, 

2·R•sin (p/2) 00 • 

In chapter 3, a detailed solution was derived for ·the problem of a 
spherical boundary surface. This solution is rigorously valid. It can be 
applied to the potential B� which has a spherical surface distribution 
as the undsrlying gra�itating scource, (31) 1 (232) (234) (235). The 
potential B* causes certain gravity anomalies in the exterior of the 
sphere v. Along the spherical snrface v, these gravity anomalies are 
represented in terms of the potential B, by the relation (244), 
(see also (22)). 

"c) r

2 

R 

The integral relation (31) leads to 

/ . 

(239) 

(240) 

(241) 

( 242) 

( 243) 

(244)-:t 
--· B 

https://doi.org/10.2312/zipe.1989.097



* 
B = 

4'ii'R 
)\ -"••• S(p) · dv

V 

69 

or, writing it with a more clear distinction of the different points 
the various values refer to, 

411R 

) ( ( ÖgB, )Q,< S(p) • dv

V 

The relations from (232) to (244) are introduced into 
Hence, 

V 

(246). 

In the relation (247), the parentheses stand for the direction that 
the constituents described by the surface spherical harmonics of the 
0 th and 1 st degree are split off. 

11. The retransformation from the model potential M back to the 
potential T

(245) 

(246) 

(247) 

The essential property and the very important advantage of the

relations (223) (231) is the fact that, j_n the integrand of (223) (231), 
the• smoothed and small term c1 (M) does appear.
Whereas in (114), the relative great and rugged term DT (1.1) gives
rise to a lot of trouble, if it is intended to compute this term. 
The transition from DT (1.1) to c1 (M), that is the main reason
for the introduction of the model potential M. However, not M is 
the required potential, but T is the potential to be determined. 
Consequently, in (223), a retransformation from M back to T 
is necessary. But, in the course of this retrunsformation, the term 
c1 (M

) keeps to be unchanged. it is not retransformed, 

In this context, the equations (145) and (150) are introduced 
into (223). Hence,
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{ M 1 {Tl { B \ = 

1 

\\ [
L'./gT 

- LlgB (M) l S(p) • dw 
+ 

c1 + 417R' 

w 

+ 1
fi\ (M)}

The equation (142) gives the possibility to compute the potential B 
for the test point r at the Earth's surface u, as it is needed in. 
(248). 

:t In case of the condensed masses, the potential B can be computed 
by (232) (234) (235) f�r the test point P� situated at the spherical 
surface v , Fig. 2. On condi tion that p :K lies perpendicular below 
the point P, the difference between Bin the point P and B* 
in the point P :lf is introduc�d by [ B J " , ( 248a), 

(B) 
p 

In an analogous way, the radial derivatives of these potentiale B 
and B* have the following equations, (233) (236) (237), 

( �� )
p 

Taking the liberty to omit the suffix p at both the term B and 

(248) 

(248a) 

(248b) 

the radial derivative of B, further, omitting also the suffix P* which 
appears at B)I: and the derivative of it (or at L1' L2, L3, L4),
the subsequent relations are obtained, 

[ B J" (249) 

c � ! r 
(250) 

The combination of (249) and (250) with (149) gives 

(251)

= 

:,---

;,r 
- (B ) * p 
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r ie the geocentric radiua of the surface of the Earth u, 

r = R + Hp + Z 

(252) leads to

� ��-[1 
r R } 

2 

R

Hp + Z 
- 2 • --,..----

R 2 

(253) is introduced into (251),

- 13 - 14 -

- t :: r-
+ 2 .

2 2 
,1 - -·1 

R 1 R 2 

+ 

Now, the relations (249) and (254) are put into (248). The amount 
( / ) [ ]// 

. ( -6 -2) of 2 r , B does not surmount some m1crogal 10 cm sec ; thus,
a relative error of the ord2r of H/R or Z/R can be neglected there, 

[4] [5] • Consequently, (248) turns to (255),

with 

4" R' 

w 

II 

l <12 ) 
P* l - f [ B] }

S(p) dw + { Q 1 (M)} 

2 2 

+ --(11 )Q :f +- . (12) Q� +
R R 

Hp + Z 

R
2 

+ 

The transi tion from H' to R , and from the surface 
to the surface v, has the following equations, Fig, 2, 

w 

(252) 

, ( 253) 

(254) 

(255) 

(255a) 

2 [ J II - . B 
r 

+ - + - {B J l0B ] 
11 

2 
11 

'cl r R 
- 2 · - - ·(L1 

+ C 1 ( M) • 
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1 Hp 
= ';;/ -- -

R' R + HP R R2 
(256) 

and 

[+-t 
Hp 

dw = dv 
"" dv +2·- •dv 

R 

( 257) 

The relationa (256) and (257) are introduced into (255), neglecting 
a relative error of the order of Hp/R in the amount of { Q 1 (

M)}.
These rearrangements lead to the equation (258), 

l T 1 - f<11 ) r*l - { (L2)p.f 1 1 [B] " } 

4\'i' R ff X·S(p) · dv + i Q 1 (M) l

V 

-. [�•Mi + 2•) H: 
. ·} '

(258) 

with, (255a) , replacing in (254-) the multiplier (2/r) by (2/R) ,at [B]" , 

X• X' + 2 Hp R: z {(L1 + L
2

)Q,< - B] ':! X' (258•) 

In the transition from X' to 
the lines between the equations 

X , the errors of the kind already discussed by 
(254) and (255) are neglected.

The potential 
(258a) refers to the 
vertical above Q *, 

B in the brackets on the right hand side of 
point Q 
Fig. 2 • 

at the Earth's surface u, Q lies 

The relation (247) of the condensation method and the equation 
(258) yield

V 

X ·S(p) · dv1 
(259) 

Tois above equation (259) is important. As to the topographical addi­
tives appearing in (259) completing the original shape of the Stokes 
integral, these additives are noTT expressed in terms of the smoothed 
M potential and the smoothed anomalies LlgM , instead of the T poten­
tial, and instead of the anomalies L'.lgT which are not smoothed in the 
mountains. The term x

1 
appearing in (259), this term has the follow­

ing expression (259a) , 

= 
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'. '.259a) 

In case the test point P at the surface of the Earth u is not 
situated in ·high mountain ranges, the relation (225j) and (225 k) can 
be applied in (259). Then, Q1 (M) can be Jeplaced by Q1* (M),
according to (230). The computation of ��\ (M) is much more easy 
than that of Q1 (M).

12. The final formula for the perturbation potential
the gravity anomalies

T in terms of 

12.1, The perturbation potential T expressed by the Stokes integral 
and the topographical supplements 

In the expression for x1 described by (259a), the second and
the third term on the right band side depend on the potential B. 
'fhese two terms can be expressed by the plane terrain reduction of 
the gravi ty which is generally denoted by the symboi C, ( see [ 4 ] 
page 38, equation (97)), The following relation is valid 

g: r + � [" r
C + 6c 

with 
'/ 

6c 

In seldom cases only,. the first three terms on the right hmd side of 
(261) will surmount the amount of 1 f-gal, [ 4] •
Therefore, these terms can be neglected, As to J4c, it has the
rather simple formula 

(260) 

(261)

+ r ~Br]" 2 1-f [ v + R [B J " -+ c1 (M) - 2B-;}-
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as  can be take n from [ 4] 

74 

For HQ 2 km, the expression of (262) leads to an amoun-/.; for 
c5 4c which is equal to 0.1 mgal (i, e. 10-4 cm sec-2).

(262)' 

Thus, also the term 6

4
c seems to be within the noise of the method(gravity data n,oise) 

in the routine applications, generally. Tobe complete, 64c is
taken al_ong; with (260), and with (262), we have the following relation, thus,

II II 

[ :: J +: [ B J � C + 47, f ,S, H
Q 

:Q (263) 

Further on, the last term on the right hand side of (259a) 
undergoes a rearrangement and a combination with (263). 
Considering (232) (239) (240), the following development is found, 

In (264), the term 

2 [ J
" HQ

- - B -

R R 

was neglected, since it v1ill not be greater than about 
(L e. 10-9 cm sec-2), '(see [4j, paee 36),

'rhe combination of the 2 nd, �he 3 rd, and the 5 th 
the right hand side of (259a) e;i ves ( 265), accounting for 
(264), II 

[::] 
// 

!-IQ 2 
[n] +- - 2B -ro- C + c2R R'--

with H� HQ 
C2 - 4" f ;jJ H

Q - 2 (12)Q,,,
R2 R 

term on 
(263) 

. ( 264) 

(264a) 

(265) 

(266)

H 
2 B Q ~ -

7 
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The relatione (259) (259a) (265) (266) lead to the follow:l,ng fi nal 
result for the solution of the boundary value problem 

+ C + c1 (M)] S(p) · dv + t Q (M) t •

V 

The topographical supplement of (267) has the following expression 

_Q_ (M) 
HP 

+ M• --

R 

+ -

411R 
· dv

V 

As to (267), c1(M) comes

c1 (M) = GZ.[
c> 

h

from (22"i) and (216), (21 7a) and (21 7b) , 

t' c) 'f

+ 
(R'·cos 'f)8A 

tan f 

] 
R' fl1 • 

As to (268), Q1(M) is described by (224), valid also in the h igh 

(267) 

(268) 

(269) 

mountain ranges.In (269), µ 1 and f-
2 

stand for the surface values f-1 .u ,fl-2.u ,(21 7a).

of 
The 

The potential M 
T and with B 

is computed by (145), w ith approximative values 
accord.ing to (142) (144) • 

III valu�s along the surface of the Earth u are computed by 

M = •r - r-9i 
�) f e 

dV (270) 

V 

The 1st and the 2nd term on the right band side of (268) depend on 
the M value s of ( 270), valid for points along the surface u. 
In (270), e is the straight distance between the test point P 
at the surface of the Earth u and the volume element dV. The 
potential M influencee the expression (268) after multi plication
with the very small factor (Hp/R' ). Thus, in (270), a pproximative
values can be accepted not on_ly for T, but also for B. Hence,
B is replaced by the potential B * of the condensed masses. 
(270) turne to, (232) (234) (235),

· dv

A precision of :!: 10 m to :!: 50 m in the computed amount of M/G 
will suffice, in any case, computing the amount of (M/G) by the formula 
(271 ); - since later on , in the relation (268 ), this amount of (M/G) 
comes to be multiplied by the factor (Hp/R) the amount of which reaches
about (1/1000) or (1/1 0000 ) , only. 

(271)

1 

M ~ 1r - f ,9i ~ \ HQ 

V 
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[ 
]

II 
As to the 3rd term of (268), the amount of B /G will seldom 

II 
surmount some centimeters. [B] can be computed by the formulas given in 

[4] , page 35, 36; (see also [�, chapter B).

The 4th term on the right hand side of (268) can easily be

calculated by (266). 

The relation (267) is the high mountain variant of the solution of 
the boundary value problem. The much more simple lowland variant of 
the solution has the following shape, 

V 

(225j) (225k) (226) (227) and (230) , with 

41i' R 

The expression (267) should be applied for test points situated 
in high mountains. For test points situated in the lowlands, the 
simple shape (272) will bring a computation relief. 

The relation (273) is derived from (268) under consideration of 

(272) 

(273) 

the substitutions described by (225j) (225k)1and applying (230);(see also [6] ).

12.2. The supplementary term c1(M)

Beforehand, the structure and the main properties of the term 
c1(M), appearing in (267) (269) (272), should be sketched. Seldom
only, the amount of c1(M) will be greater than 1 mgal (i. e. 10-3 • cm/sec2);
further, it will be positive and negative. Thua, the c1(M) values
will generally not surmount the noise of the free-air anomalies ,dgT .
Further, the c1(M) values will generally not exel the noi�e of
the errors committed in the determination of the C values, obtained by 
numerical computations in terms of the heights. Consequently, in 
most cases, the neglection of c1(M) in the brackets of (267)
ana (272) will be justified, before the background of the noise of 
the ,j gT and C value s.

Q~M) Q~M) + M• ; + [BJ" + -
1
- ·)~ C2 •S (p) • dv. 

V 
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Now, the details of the computation of the c1(M) values are to
be discussed. 

The formula 
deflections µ1
lines of (269), 

(269) representing the c1(M) values in terms of the
and µ 2 was applied in the Aus tri an Alps. Along the 

the following results were obtained, if 

km : 

a) The mean value of I c
1 

(M)I over a distance of 300 km was
about 0. 1 mgal.

' b) The mean value of I c
1 
(M) j over a distance of 200 km was 

about 0.1 mgal. 

c) The mean value of \ c1(M)fover a distance of 40 km was
about 0.8 mgal.

d) The mean value'of lc
1
(M) 1 over a distance or·20 km was

about 0.5 mgal.

These above results can be found in: [ 4 J, page 42, 43, 44, 45 of chapter B. 

As to the relation which connects the radial derivative of the M 
potential wi th the Bbuguer anomalies, the investigations of [ 5 J , chapter 
D, section 5, contain all the needed deliberations. In [5], the

following equation was obtained, (eq. (67) in another place), 

'uM - tlg 'c)r Bouguer + (5-' 

with 

2 'i( r-3r 2G 
r+ f�R \\ 

' 1 
6" --- HQ dl. 

2 eo
1 

·rn [5] , chapter D, section 5 and 6, it was shown that 6" has a
small amplitude and a great wave length. Thus, the height gradient of

(274) 

(275) 

'o M/'Z>r can be identified with the height gradient of the Bouguer
anomalies, in sufficient approximation, (see eq. (131), page 140, at another
place , [ 5 J . ) .

R 
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The determination of c1(M) by the plumb-line deflections p1, !-'2
according to (269) allows to get an idea of the amounts of c1 (M). 
But, tbis me thod is not convenient for a general applicaÜon in 
the routine detaminations of c1(M), since there is not a 
sufficient dense net of the global f-'-1, 1:-'2 values. Therefore,
(269) is now rearranged expressing c1(M) in terms of the 
Bouguer anomalies (the refined Bouguer anomalies are here considered 
implying also the plane terrain reduction of the gravity, C). 
The p-1 values are understood that they are dist:ri buted along the 
surface of the Earth u, Fig, 7. In the derivations of fl-1 
(resp. f-2), the way from P1 to P2 conducts via P1•2, The two points p1
and P2 are situated on the oblique surface of the Earth u; Yx is the inclination 

of the terrain in the vertical plane through P1 and P2 • In Fig. 7 ,  these 
two surface points are situated in the north-south direction. 

Fig. 7 • 

u 

P,,2 dx / 

iL--•p2 
dz 1

1
1 vx 

/r,- -----
The following lines are self-explanatory, (153) (154) (269), (217a) and (217b), 

dz 

dx 

lim [ 

tan Vx , 
dz 

dy 

(276) 

(277) 

The arc element dx has horizontal direction, Fig. 7, Thus, dx is equal 
to the value of R · '2> 'f • Analogously, the other arc elel!lent is horizontal 
in the east-west direction, i.e. the arc element dy. Hence, dy is equ�l to 
the amount of R·cos <f · JA • 
In (276), the deflection 

fl 1.u (resp. f,l-2,u) is the value of the deflection

of the plumb-line f'-1 (resp. t,"2) taken on points situated on the oblique

surface of the Earth u. 

--- = 

dz 
= -- · -- + --

cJ z dx 
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Neglecting the 3rd term in the brackets of (269), (it amouts to not 
more than some tens microgals), the subsequent relations yield, 

C 1. b 
CT?1 GZ - , tan 

1 c)l{! 

fl1 G 'ux 

1 'uM 

f- 2 
- -·--

uy

C 1 .a z [ - o'• 
ox2 

-

'clf2
]'cJ y 

yx 

2fz. 
c) z

� ,., ]cJy 2 

and, with the Laplace equation, 

c) 2M 
z 

tan Yy]

And wi th (274), considcring the fact that the vertical gradient of 

(278) 

(279) 

(280) 

(281) 

(282) 

(283) 

(284) 

e- can be ne glected (see [5], chapter D, section 6 ,page 139,14o;eq.(124 ) ••• (133) ), 

c) 
c1 .a = - z. -c) z 

z 1 - . 'u
2

M •tan ') 
L clx'oz x 

c:i2r.1 
--tan 
'c>yoz 

'f ]y 

(H)o - (H)u

j.dx 

C 1• b. 2 follows in a similar way, as  C 1 • b. 1 , exchanging x and y

In (289), the differential quotient was replaced by the difference 
quotient; this procedure is allowed, since the Bouguer anomalies have 

(285) 

(2U6) 

( 287) 

(288) 

(289)

+ --
z 

G 

c, .a 

C i 
1 • b. 1 = z [ c)'"c) x .dgBouguer ] tan yx 

C t <lgBouguer)o - ( dgBo~uor)Jf-
z 1. b, 1 ,dx 
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the advantage to have not a pronounced oorrela�ion with the heights, 
in any case if short distances are considered, o•er longer distanoes, 
in the areas of isostatic mountain roots, a certain correlation of 
these �alues can be observed, possibly. It is brought to bear by 
the formula (289), 
As to (289), the parametera Z = 1 -km, (H)

0 
- (H)u = 1 km, 

,1x = 50 km, and a value of 60 mgal for the difference of the 
Bouguer anomalies in the first nominator of (289) (these Bouguer anomalies, 
perhaps, are caused by the isostatic mou ntain roots of the Alps) lead to a value of 

1 C 1 0 b • 1 1 = 0, 02 mgal , 

Forjc1.b,2 /, a similar amount can be awaited, Consequently, jc1,b / 

will be smaller than 0,04 mgal, for the here underlying arameters. 
c1,b can be neglected, therefore. c1(M) can be replaced by c1,a , 

(285). 

c
1 

(M) - z.� < L1 )
--.) lf gBouguer 

(290) 

(291) 

The above equation is equivalent to the relations (122) (132) of [5] , 
chapter D, section 6. As demonstrated in [5], (291) leads to, 
(eq. (123c) at another place), 

C1(M) - Z-� ((
2 /1 ) )

LI gBouguer ) Q · dl

1 

It may be stressed that in (291) a neglection of terms with higher 
powere of Z, ( i. e. Z 2, Z 3, ... ) , did not take place. 'rhe right 
hand side �f (291) comes not from a truncation of any series development 
of rising powers of z.

The impact that c1(M) exerts on 
and (291). It is denoted by K. 

K 

V 

T can be found by (267) 

The following very useful and instructive deliberation should 
be added to the relation (293). 

(292) 

(293)

p 

https://doi.org/10.2312/zipe.1989.097



81 

\ 

The Bouguer anomalies are caused by certain density anomalies in 
the crust. The deviation of the real mass density from the standard 
density ,&., , that is the underlying gravitational source. In reality, 
these underlying mass anomalies 6 m have the depth t below the 
surface of the Earth u. Th,� impact that c5 m exerts in reality on 
the T value of the test point P can be ap�roximated by the 
consideration of a spherical model. 

A globe with the radius R is introduced. The test point 
lies on the surface of this globe·. The mass anomaly J m lies 
below the surface of this globe, in a depth of t • The spherical 
distance between 6m and the test point P has in the 
spherical model the aame value as in reality. Thus,__;the impact 
of dm on T ia about, Fig. 8, 

f--1--Jm 
e1 

(294) 

e1 is the straight distance between the test point P and the 
mass anomaly. Vertical above clm, at the surface of the globe, cfm (or its potential ) 
causes a gravity anomaly of about L'lgBouguer)1 • Hence,

411R 
J) ( LI gBougu,r) 1 • s (p) . dv 

V 

A second variant of this spherical model is now considered. 
The test point has the same posi tion as before, but dm is 
shifted downwards to a depth of t + /z 1 • For this second 

(295) 

variant, the relation (296) follows, instead of (294), - ( t is positive, always ), 

f 

( 295) turne to

4'ii'R 

·dm

\) ( .L1gBouguer)2 · S(p) · dv.

V 

(296 ) 

( 297) 

As to the gravity anomalies in (295) and (297), they follow in a self-explanatory 
way by the surface values of K1 and � fox· the test point vertical above cf m

K'1 f, (1/t) · J m f · < 1 ; < t+ 1 z 1 > > · J m (297a) 

These poten-�ials K,j and � are inserted into the fundamental equation of the 

nbysical geodesy. We find, (Fig. 8), 

( c) K,l / 'c)r) (297b) 

A similar formula 1s valid for (L'.}gBouguer )2

K' 2 

( i}gI.;,)Uguer ) 1 = - ( 0 K1 / 'cl r) - ( 2 / R)K1 

https://doi.org/10.2312/zipe.1989.097



p 
0 
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......... 

' ez '-.

0bviously, 

Thus, (295) (297), 

K
2 

- K1 = 2-((\z 1·[--2....-
4 11 R )) 

� H 

V 

82 

0 

• öm

'--
IZI 

r- • --, E>mL ___ J 

+ \z 1.L c Jg ) Bouguer 1 'c) K 

LI gBouguer>1} S(p) , dv •

Whereas, the relations (294) and (296) give

) · 6 m • 

(298) 

(299) 

(300) 

The oblique distances 0 1 and 02 have the following equations (see
[ 4 J pag0 35, [5 J [6] ) ; ( the t value is always positive, here ) ,

8
2 

0 

0� = e� 

+ t 2 - 8 2 

0

+ (t +\zl)2 

t 

R 

t + 1 z 1 

R 

Gen0rally, the amount of e0 
is here much more great than t 

1 Z 1 , Hence 1 

e 1

N 

\ z 1

(301) 

(302) 

or 

(303)

Fig.· 8 . 

f . ( 

+ 

e2 
0 
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Consequently, (293) (300) (303), [ 6 J , 

K1 1 =, 1 K 1 � 
f•I dm [ · [z 1
2. e • R 

0 

Finally, the order of the amount of I K I is to be estimated 
approximatively. The isostatic mountain roots, compensating the 
mountain masses situated above sea level, are the underlying 
sources of a great part of the Bouguer anomalies. These mountain 
roots have always a densi ty defect of ab out - 600 kg m-3; the
sign of this value is always negative, thus, it can give rise to 
an accumulating effect which can cause biases. 

The model computations may use the foll-owing parameters. The 
mountain roots have a horizontal extension of a square _of 100 km x 
100 km side length. The vertical extension of the mountain roots 
is 10 km. The amount of I Z I is equal to 2 km. For the value of 
e

0
, in the denominator of (304), the amount of 2 000 km is

introduced. If one single mountain root of the above parameters 
is the underlying source, an amount of 

/K/ 

G
3 • 

_'l 

10 � cm 

ia obtained for the effect exerted on the height anomaly at the 
test point P. 

In case of a global extension of the considerations, for the 
total number of these mountain roots, a total number of 
N 1 000 of auch mountain roots seem to be a plausible 
basis. In our applica tiona 

1
here discussed, the amount of dm 

has always the same aign; the same property can be valid also for 
Z • Consequently,- the amount of (305) has to be multiplied by N 

and not by the square root of N, in order to obtain the global 
effect. The amount of N • 3 • 10-3 cm = 3 cm follows for the
glob_al effect. 

Thus, summarizing the above considerationa, the share that 
c 1(M) exerts on the height anomaly T/G ,of the test point P 
is not more than about 3 cm, as long as the integration by 
(267) covers areas which are more than about 1 000 km distant
from the test point P, (e

0 
> 1 000 km in (304)).

(304) 

(305)
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But, for the estimation of this c1(M) effect resulting by the integration over

the surroundings of the test point Pup to a distance of 1 ooo km, a special 
and individual computation appears to be desirable. 

It may be stated that the publication [6 J does contain a discussion of the 
impact that the short wave constituents ( or,better, the constituents having short 
wave lengthes ) of c1(M) exert on the height anomaly 't, of the test point P.

In [6], it is shown that this impact will not reach the amount of 1 cm in the 
height anomalies [; • There, for the global distribution of the Bouguer anomalies, 

a convenient model with plausible parameters was introduced ( See [6] , page 25 •.•
27, equations (38) ••• (41) ). 

12,3. The supplernentary term c2 

Same lines about the term c2 of (266) (268) and (273) should be added. 

The relations (240) and (266) give 

4.\,. H 
Q 

+ 

2 
R 

V 

- H
Q (306) 

In the brackets of (306), the potential B can be represented by B-f 
in sufficient

approximation, (232) (239) (240). Thus, 

wi th 

= 

H 
411f-BiH · ...:::,g_ 

Q R 

(3o7) 

(308)

H 
- 2 ·B· • 

R 
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12 .4. The supplementary term Q (M) 

As to the term Q (M) of (267) and (268) 1the amount of this
term should now be considered. The first term of (268) is Q 1(M),
it has the development (224). 

Tbe 4. term on
(for x2 

0 and y2 

tbe rigbt band side 
1 ) , (see also the 

of (224) is,wi th (80), (v� ';;; x = Z/e • ),
term (1/211 )•f;(M) of equation (227b) ), 

_1 

)\ 
z 1 · dw

2, 7i' 
lt R' e' 

w 

(309) requires an integration over whole the _globe. Therefore, x2 

is put equal to zero. Consequently, y2 is equal to the tm.ity,
(76) (78). The integral (309) is transformed into the shape of a sum,

....1 
Ztr 

dw [ (� 

i = 1 

z 

R' 

i 

In (310), the multiplication with 1/G transforms from tbe perturbation 
potential T to the height anomalies. The following parameters are 
introduced: dw 2 000 km x 2 000 km, M/G o. 3 km, 
Z 1 km, R = 6 000 km, e' 3 000 km, I = 1 30 • 
For the above parameters, a single summand of the sum described by 
(310) is computed. This summand is multiplied with tbe square root of
I, being tbe total number of the members of the sum given by (310).
Along these lines, for the global average of the amount of (310), a
value of about 0.02 m is computed. It approximates tbe average amount
.of the integral (309). Thus, the amount of 0.02 m, found above, is 
a good estimation of the impact which the 4, term on the right band
side of (224) exerts ein the final height anomaly t of the test point.

Tbe corresponding- impact; wbich the 2nd, the 3rd, and tbe 5th 
term on the right hand side of (224) exert on the final height 

(309) 

(3rO) 

anomaly, can be computed in a s;imilar way. Similar amounts will re sul t for them, 
but the 3rd term will be considerably smaller since the value in its brackets 
ia very small, 

As to the 6th term on the right band side of (224), it has the 
subsequent form, 

M ' 

I 

¾,-) 
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- x2 
AgM • ----i...--- • de' • dA · ( 311)

y + y 

This integration requires not a global coverage, an integration over the 
near surroundings euffices. In the evaluation of the amount of (311), 
or better, of the order of this amount - , x2 may be equal to the 
unity and y2 equal to two, (76) (78). Thus, cliffs of extreme 
inclinations are coneidered in the near surroundings of the test point P. 
Integrating in (311) up to a radius of 3 1cm, LfgM can be introduced as
a constant value of 100 mgal (i. e. 0.1 cm sec -2). 
With these presuppositions, (311) turns to (31 2), ooneidering the 
absolute amount, 

G 2 71' 

O.) \\ do' · dA a 0.09 • 

The division through the mean global gravity G gives the impact which 
the 6th term of (224) exerte on the height anomaly of the test point P. 
It will not be more than about 0.09 m. 

The 7th, 8th, and the 9th term on the right hand side of (224) have 
an amount that can be estimated in a eiroilar way; a eimilar amount will 
yield. 

The first term on the right band side of (224) is, in a rough 
approxiroation, the global average of such valuee as given by (309) and 
(311). Thus, probably, this term will not be greater than some 
centiroeters, integrating globally over F(M) according to (225). 

The lowland variant of the expression in the brackete of the 5th 

(J12) 

term on the right band side of ( 224) was discussed already in [ 4]; (X6
/ G): pg. 4-5;

page 29. There, a graph shows the dependence of the kernel function s"' on the spherical
distance. This term of the lowland variant is equal to the _ 4th 
term on the right band side of the development (230). This 5th term yields about 2 cm. 

After the above discuesion of the term Q1(M) in tbe expression
for Q (M), the second term of this expression is now in the fore. 
lt is equal to (M Hp)/R, (268). Wi th M/G = 0.5 1cm, HP = 2 1cm,
R = 6 000 km, the following value is obtained, 

0.17 m ( 313)
M Hp 
-·--
G R 
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The effect, which the 3rd term on the right hand eide of (268) takee 
on the height anomaly of the teet point P, can be estimated by 

[B] II 

--n-
o,o3 m 

for an extreme topographical situation , 
as can be found in [ 4 J , page 36. 

At Jaet, the 4th term on the right hand side of (268) ie lo be 
coneidered. It has the shape of a Stokes integral, c2 etande here for a
kind of gravity anomslies which covers whole the globe v. The height 
anomaliee which are obtained from the field of the c

2 
valuee, this 

(314) 

are the values here to be estimated. The c2 values are in the vicinity of
the following value, 

2 

-B

R 

� 
R 

(eee (232) (239) (240) (306) (307)). 

(315) 

With B = G • 0.5 km, H
Q 

= 0.8 km, the amount of (315) is 0.02 mgal
(1. e. 0.02 , 10-3 cm sec-'2).
Since a global field of gravity anomalies of about 20 mgal gives rise to 
height anomaliee of about 30 m, the above obtained field of global 
values of 0.02 mgal exerts an effect on the height anomalies by about 

0,02 

30 m 0.03 m 
2o 

This is a very small amount. 
By (308), the share of c2•1 has about the same amount as c2 , by (316).

12,5, On. the superposition with the potential of the isostatic masees 

(316) 

By the relation (145), the superposition of the perturbation potential T 
with the potential B of the visible mountain masses was introduced into the 

mathematical developments, in order to represent the additive to the Stokes 

integral by a functional depending on smoothed arguments, only. 

Following up this idea, it is also interisting to take into consideration 

the superposition of the perturbation potential T with the potential I, being 

the potential of the isostatic masses. In the course of these developments 
about the isostatic potential, the Faye-anomalies in the Stokes integral 

change over to the smoothed isostatic anomalies; furthermore, the topogra-

phical additive of the Stokes integral comes out to be expressed in terms 

of smoothed arguments, but, to be sure, these additives have to be supple-

mented by the I potential of the test point P computed from the isostatic 
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masses. 

These isostatic masses are undorstood that they consist of the following 

pa r ts : 

a.) 
/ 

The mass surplus of the mountains situated above the sea level; here, the 
-3masses have the standard density 2 650 kg m 

b.) The mass defect of the ocean basins; this density defect is the density 

of the water minus the standard density 2 650 kg m-3•

C •) 

d,) 

The mass defect of the �ompenaating mountain roots situated below the 

depth of 30 km, if the Airy-Heiskanen isostatic modal is applied. 

The mass surplus of the anti-roots in the area of the ocean basins. 

In a way similar as that followed up by the introduction of (145), we have 

N T - I. 

Further on, in the expression representing the T potential, (114), the T 

potential can be replaced by the N potential given by (317). This thus ob­

tained version of (114) undergoes some rearrangements which lead, finally, 

to a representation of the T potential in terms of the isostatic gravity 

anomalies and of the isostatic potential I. 

(317) 

Also in this case, applying the isostatic superposition, the finally 

obtained T values have the property to be situated on the Earth's surface u, 

/see also: Arnold, I<.: Die Methoden der Freiluftreduktion und d8r isostatischen 

Reduktion in ihren gegenseitigen Beziehungen. Gerlands Beitr. z. Geophysik, 70 

(1960), 131�136; cf. also: Bulletin G�od�sique, .§§. (1962),_259-264}.

Before the background of the above chapters, the details of this super­

position with the isostatic masses is intended to be dealt with anew, later 

on, at another place. 

https://doi.org/10.2312/zipe.1989.097



13. References

[ 1] Arnold, K.:

[ 2] Arnold, K.:

[3] Arnold, K.:

[4] Arnold, K.:

[5] Arnold, K.:

[ 6 J Arnold, K.: 

89 

Zur Bestimmung der Geoidundulationen aus Freiluft­
anomalien. Veröffl. Geod. Inst. P�tsdam, Nr. 12, 
Berlin, Akademie - Verlag ·1959. 

Zur strengen Theorie der Figur der Erde. 
Gerlands Beiträge z. Geophysik 68 (1959), 
257 - 262. 

A closed solution for the boundary value problem 
of geodesy. Gerlands Beiträge z. Geophysik 
94 (1985), 83 - 101. 

Geodetic boundary value problems I. 
Veröff. Zentralinst. Physik d, Erde, Nr. 84, 
Potsdam, 1986, 

Geodetic boundary value problems II. 
Veröff. Zentralinst. Physik d. Erde, Nr. 89, 

Potsdam, 1987. 

The solution of the geodetic boundary value 
problem by the Runge - Krar.up theorem. 
Krarup - Festschrift, Dan, Geod, Inst., Meddelelse No,58, 
Copenhagen, 1989. 

https://doi.org/10.2312/zipe.1989.097



90 

14. Appendix

Co ntents 

14.1. The expression for the term DT (1.1) 

14.2, The impact of the term D(1.2) !"lnd the representatfon 

of it by the expression for E(1) 

14.3. The reoresentation of eos (e, n) 

14.4. Thc development of sin (e, e') and cos (e, e') in 

terrns of the he i.ghts 

14.6. The reoresentation of E(2) by a sum of 3 terms 

14.6.1. The developments and decompositions of the 

expression for E(2.1) 

14.G,1,·1. The formula for E(2,1.1)

1 4. 6. 1 • 1 • 1 • Tm formuls for E ( 2. 1 • 1 • 1 ) 

14,r,.1.1,2. The formula for E(2.1.1.2) 

14.i;,1,1,3. 'rhe inte>1'rand proportional to x2 in areas

a great distance away from the test point 

14. 6. 1 • 2. The fcr. mula for E ( 2. ·; • 2) 

14.6.1,2,1. The formula for E(2.1.2.1) 

14.6�1.2.2. The formula for E(2,1.2,2) 

Page 

93 

97 

103 

107 

110 

116 

116 

117 

118 

121 

122 

126 

127 

132 

https://doi.org/10.2312/zipe.1989.097



91 

14.6.1 .2.3. The final expression for E(2.1.2) 

14.6.1 .3. The final formula for E(2.1 ) 

1 4.6.2. The developmente and decompoeitions of the formula 

for E(2.2) 

14.6.2.1. The decomposition of E(2.2) into expreseione in 

terms of v
1

, v
2

, v3

1 4.6.2.2. The formula for E(2.2.1) 

14.6.2.3. The formula for E(2.2.2) 

1 4.6.2.4. The formula for E(2.2.3) 

14.6.2.4.1. The decomposition of the formula for E (2.2.3) 

14.6.2,4,2. The formula for E(2.2.3.1) 

14.6.2.4.3. The formula for E(2,2.3,2) 

14,6.2,4,4. The formula for E(2, 2.3.3) 

1 4.6.2,4.5. The formula for E(2.2.3.4) 

14.�.2.4.6. The integration by parts

14.6.2.4.7. The· final formula for the calculation of E(2�2.3) 

1 4.6.2,5. The final schape of the formvla for the computation 

of E(2.2) 

14.6.3. The formula for E(2.3) 

14.7. The formula for E(2) 

14.7.1 . The expreesion for the computation of E(2) 

Page 

139 

140 

140 

140 

146 

146 

147 

147 

148 

149 

150 

151 

152 

158 

159 

160 

160 

160 

https://doi.org/10.2312/zipe.1989.097



92 

Page 

14.7.2. The terms. b1, b2, ••• , b10 161 

14,7.3, The tP.rm v
1 163 

14,7.4. The term v
2 163 

14.7,5. The term v
3 164 

14,8, The formula for E(3) 166 

14.9, The formulA for F(4) 169 

14,10, Thi formulR for !(5) 
171 

14,11, 1he formulae for D(2,1) 191 

14.,11,1, The universnl formula for D(?,1) 191 

14, 11 , 2, The lowlr-inrl formula for D ( 2, 1) 194 

https://doi.org/10.2312/zipe.1989.097



93 

14. Appendix

14.1. The expreeeion for the term DT(1.1)

The equation (46) of the eection 4 ie the starting point, 

+D(1.1)] 
e'

w w 

c) (1 /e ')
-dw + D(2.1) •
'c) r

The equation (45) givee the expreseion for the term D(2.1) of 

· (A 1). The fundamental equation of the phyeical geodeey is

it 

L1'gT = -

leads to 

dT 

'c)r 
= -

'c)T 2 
- T

c)r r 

2 

L1 gT - -T •
r

By meane of (A 3), it ie poeeible to eubetitute the radial derivative 

of the perturbation potential by the �ree-air anomalies. Hence, 

w 

w 

+ D (1.1)] -
1
- dw +

e' 

cl(1/e') 
T -- dw + D(2.1). 

'c) r 

In the eecond term on the right hand eide of (A 3), the term r 

ie replRced by R, 

'<Y T 

'c) r 
- -T + D(2.2)

Further, for abbreviation, the suffix T affixed to the free-air 

( A 1) 

(A 2) 

(A 3) 

(A 4) 

(A 5) 

anomaliee is no more taken along1 hence, we have this subsequent substitutio� by (A 5a), 
_ ( In our applications, the slopes of the terrain are considered to have con-
tinuous functions; this property is found in the topographical maps, of course. 
Th�s, each point at the surface of the Earth u has a clearly defined tangential 
plane. ) 

m J[,1-. + > 
+ )~ 
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For D(2,2), the difference of (A 3) and (A 5) yields the relation (A 6), 

D(2,2) 
- ( 

2 2 

- -)
r R 

T • 

(A 4) and· (A 6) are combined to (A 7), accounting far (A 5a), 

2 'iY T 

w 

D(3�1) 

+ _:_T + D(1.1)]-
1
-

R e1 
dw + {(T 'J

1
/
e
'dw

}). 'c) r 

l) D(2,2) dw + D(2, 1) •
e' 

w 

The equation (36) of the section 4 gives 

D(1,1) 
'c)T c)T 

+--

-'c)n cos (g' ,n) 'c) r 

+D(J,1),

Here, the suffix T i.s affixed callin·P- special attention to the 

fact thqt DT(1.1) has to be computed for the pot�ntial T, 

W is the r�ql gravity potentiql, 

u ie thP. standf:lrd potential. The perturbat:i.on potenti,il

has the equBtion 

T w - u, 

T 

In the exterior of the body of the Earth, T obeys the Laplace 

differential equation. 

By means of the gradient operation, (A 10) leads to (A 11), 

'd T 

'c)n 
(grad T) • n =(grad W) • g - (grad U) • g 

n is the uni� vector of the normal of the Earth'a surface, u, 

heading into the interior, (see: aection 2, Fig, 2), Accounting 

(A 5a) 

(A 6) 

(.� 7) 

(A 8) 

(A 9) 

( A 10) 

( A 11 ) 

VI 

1 

= 
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for (A 12) ·:rnd (A 13), 

2 2 
(grad W) g 

2 
1 2 (gr,id U) g 

the relation (A 11) turns to 

'c) T 

'cln 
= g. -COB (g,n) - g'. COB (g'' n) 

(g,n) l'lnd (g1
, n) symbolize the angles spanned by the two vectors 

within the concerned braces, L e. the vectors grad W and g 1 resp. 
grad- U 

N ow, the angle ( g, n) i_s expre s sed in terms of the inclina tion angle 
of the terr':lin, which is denoted by (g', n). 
At the surface of the Earth, the three vectors - g, -. g , - g 

= = 

c<in be �efined. They are heading into the mass - free soace, and they 
construct the sphericAl triangle which is shown by Fig. A 1. 

( A 12) 

(A 13) 

( A 14) 

As to this spherical triangle of Fig. A 1, a unit sphere 1s constructed 

having the surface point Q as center, Fig. 2. Then, the vectors -g' , -n, and 
= = 

-g at the point Q are plotted from the center Q of this unit sphere.In Fig. A 1 ,

the points at the normed vectors (-g')0 , (-�)0 being equal to -�, and (-�)0 , they

mark the places where these three vectors, or these three normed vectors, pierce this 
above defined unit sphere. 1hey are the projections of these three vectors on this 
uni t sphere • 

North 

II (. III )0 
-rl

. ..:...... _______________ _

(-i )
0 

East 

Fi.g. A 1 

---

1J nd !J• 

::, 

~, 
(g',n) 

G 
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1 11 

In Fig. A 1, A is the azimuth of the slope of the terrain, and A is 
that of the plumb - line deflection. Both of them are measured clockwise 
from the north. But, G denotes the full absolute amount of the plumb­
line deflection, tFiken at the surface of the Earth. � anil � are the 
north - south and the east - west component of this deflection (in the 

) potentüil field T). 'rhe cosine law for the side of a spherical triangle 
leRils to the relatton (A 15), Fig, A 1, 

cos (r:, n) = cos (p;', n) · cos 9 + sin (g 1 ,n) • (sin (0 ) , cos (A 
11 

- A
1

). (A 15)

In CRFe, 9 hRs an Amount of about .10 
Vill i _d, 

1 1 

sin e 
,., e 10''; s"

0,5 

2 
cos e � ( 1 /?.) G 

,., 1 - -

the followi.ng approximations are 

-4
10 

-8
( 1 /8) . 10 

(A 15) &nd (A 16) aro combtned to (A 17), 

(A 16) 

2 
cos (p;,n) = cos (rr' ,n) + 8, sin (r: 1 ,n) · cos (A

11

-A
1

) - (1/2) · 8 · cos (g 1 

,n). (A 17)

Thus, the rela ti.on (A 14) turns to 

'c)T 1 
+ 9·g

I 

(g - r:') . cos (g ,n) sin (g ,n) . cos 
'cl n 

2 
- (1/2). 9 g cos (g' ,n)

Neglectinp- some microgAls only 

-6

to 2 f'-rr:Pl, i. e • to 2 10 grü), 

the rel::ition (A 18) leads to 

'6 T 
- g

In ( {\ 1 q) ' r; 

surfAce of the 
the ::imount of 

- telluroid t'

+ Q.g. tan (g' ,n) · cos (/1
11 

Rnd rr. f refer to the same moving 

Earth v, Für,. •\ ?, Fig, 2. It is 
g' in (A 19) is not the s t Andn rd 
point Pt; ( see: section 1 ' Fig, 1 ) •

1/ A') ( -� -

cos (g
1

,n), 

point Q at the 
emph:a.sized, that 
gravity at the 

Neglectinv- the flatteninP: of the best-fi tting ellipsoid of the 

?arth, the relation (A 10) r;iv-es , (conside.ring (A 16 ), and considering that 

(g,g') = G and cos(g,g') = cos 0 1 - (1/2)· 9 2 

and considering that the direction of r is the direction of -g' , since 
we have a sphere as reference figure), 

(A 18) 

(A 19) 

.. 
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0r 
= -

�w 

'c)r 

'c)U 
+ -

'or 

97 

/grad w 1 . cos (g,g') /grad uj=

1 
(g,g') 

, 1 
r

l 
, 

g - cos - g g - g g ,f g - g ( A 19a) 
2 

Here, in (A fgR), the fRct is considered that the angle (g�g') is equal to 
the deflection 8 , Fig. A 1, 
Accounting for (A 16), the developments of (A 19a) are easily understood. 
(A 19a) yields, 

g - g 
0T 

'c)r 

The rearler is asked to compare also the deductions given by the equat i.ons 
from (158) to (174) of the section 7. 

With (A 19) (A 20), the relation (A 20a) is obtained, 

'clT 
[ 

1 

] 
'c)T 

- • 1 / cos (g ,n) = - -
�n �r 

a 1 " , +O·g · t.·rn (g ,n) · cos (A - A ) 
1 

(see also (165) (1�9) (170) of the section 7), 

The two equations (!\ ')) and (A 20a) are combined to 

( A 20) 

D
'l
' (1;1) = G:R · t,rn (rr.' ,n) • cos (A 11 

- A' ). (A 21) 

In (A 21), the nevlection of terms smaller than about 1 microf�l 
took ploce. 

14.2. The impact of the term D(1,2) Rnd the representA.tion of it by the 

____ e�re8sion for F(1) ----··------------ ________________ _ 

Now, an expression for the term D(1.2) of the relation (37) of 
the section 4 i.s intenderl to be found . Further, A.n exoresiüon for E(1) 
will be found. E(1) depends on D(1.2) by the relatinn (45a) of the 
section 4. T�e relsti.on (37) and Fig, A 2 yield, 

D(1,2) 

f e 

1/e - 1/e' = (e' - I e•e 

2 · R 1 • sin p/2 2 ·(R + H
1

) • sin p/2 (i\ 23) 

( ,\ 201, ) 

( -~ ;,-:- ) 
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p*•--:--------- Q � / 
. V 

• 

Fig. A 2. 

Q u 

::----·r ---~---e__ n 

/~--~ g' z = 

P~- ~ ~ 
•--- ------------Q**. -- --1\{ e0 __ , .~)"'w 
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The oblique distance e ie understood AS the distance between 
two points p and Q, Fig. A 2. z ie the difference of the 
heights of the two '[:)Oints Q And P, z H

Q 
- H

. ( H' 
= 

HP
The cosine l'3W p.;ives, Fi11:. A 2,

e'
2 

+ z

2 
- 2 • e1 • z • cos (e', g')

Fvrther, f-rom Fig. A 2 an<l with

n' R 

cos (130° - (e', g1 )) - cos (e', g1 ) e'/(2·R1

)

(A 24) nnn (A 25) ere combined to 

2 
e - e' 2 = z 

2 
e 1 • Z/R 1 

Abbrevü1tin,g, the symbol x <ienotes the quotient Z/e',

x = Z/e' 

C\ 27) <Jnn (!\ 26) R;i.ve

From (A 

2 
(e 

26)

(e 1 

e• 

-

-

1 2 
/ 1 2 

e ) e 

follows 

e) · ( e' + e)

2 
e - ( 7, 

X 

2 
+ Z/R 1 

2 , 2 
Z/R'- z - e 

, ;::> -1
+ e • Z (R1 ) • ( e, + e) 

The symbol x' is introduced now, i.t has the following meaning,

x' 

Thus, combining (A 

2 ,2
e e 

e e' 

+ X

26)

x' 

. (x ') 

2 
+

Z/R.
1

<Jnd (A 31),

1/2 

the

, z = H
Q 

- HP ) . 

(A 24)

(A 25) 

(A 26) 

(A 27) 

(!\ 28) 

(A 29) 

(A :0) 

(A 31) 

(A 32)

(A 33)

2 
e 

• tt ' 

2 
+ 
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e • e' 1 2 , 1/2 
e (x) 

.,• 

e' • {1 
1/2

} I 

(x ')e + e +

/ 3 [ 
1/2 

]
I -(e+e') (x,) ' e·e e + X 

(A 22), (A 30) •mrl (A 36) Are combined to 

D ( 1, 2) 
1 -3 2 1 2 1 

{ 
' / 1 /2 

- ( e ) • (Z + e • z /R ) ' X + ( X )

} -1, 

In the express;on for D(?.,1), in the first inter;rAl on the 
right band si:le of (45), (in the section 4), r.he term D(1,2) does 
aopear, �herefore, it is necessary to ctevelop a convenient expression 
for E(1) ,. see (45a) , 

E ( 1) )\ 
\'/ 

'c) 'l' 

�r 
. -n ( 1 • 2) , rlw. 

For the sake of Abb�evtation, the sy�bol 
the follo·!linp.: 

2 
y 

Thus, (A 31) 

x' 

me'Jntnr;, 

+ 

turns 

2 
y 

X 

to 

+ 

� 

zm' 

y - is intr0duced; it has 

For the invPrse of x' 1 
1/2 

+ (x) apneartn� in (A 37), it is 
inten➔ed, now, to find"' Geries r1evelopm!!nt of ri.si.11.P.: po•wors of Z/8. 1 , 
Because the inequal i ty C\ 41) i.s "'lw::iys fulfi 11 eo, 

the binominel series learls to 

I 
X 

2 
y + Z/R1 

(A 42) Anrl (A 43) yiela. 

2 
y • 

(A J4) 

(A 35) 

( A 36) 

( J\ 37) 

(A 38) 

( ,\ :9) 

(A 40) 

( .\ 41) 

(A 42) 

(A 43) 

2 
= 1 

f 1 + Z / ( 1/ · / ) } 

(x'/ 12 
"' y•} + z/(2 H / ) ~ 
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I 1/2 
X + (x ) 

Hence, jf 

I 
1/2 

X + (x )

111"' P:l(" c t i. nq; "

1 Z/R 

+ y is put before the 

/i-[, (y + + 
y + y2 

rio l"I t:i. ve error, which is 

3 1(m / (- 000 km 

the followinn,: rPlA "i.on ·i.s obt�ined, 

X 

1 1/2 2 
+ (x) � Y + y 

101 

brackets, 

1 
Z/R] . (-! + -). 

2•y 

smal.ler than 

1 /2 000, 

i:ow, tl1e 'HJ11Rtion (!\ 3f1) for S(1) is com:i,ler..erl, For c)rL'/c>r 
a',n'?"lrj_,:r- in l·he inter:;wind of (A 38) foJ.10;:1 tbe svbsequent lines, •:1j_ th 

-..(A �) (A "·) U 6), i.n ci self - e xpl<>nfltory way, ( Fig, A 2 ) , 

cl 'i'/cl r. - ,:1�,r - (2/r)· T 
1 

r=1+Z+II 
1 

Z + II 
r R ( 1 + 

1/r ,._, ('/R)•{1 - (Z + H
1

) / :i.} 
- [(?/r). - ( 2/R)] � (2/R) ·[ ('.?. + n\; R ] 

� 

(A 47°) 0 nd (A 47b) yi�ld 

oT 2 "' --•1. 

R 

1 

+ 2_.�, T 
R R

+ - •••

'l'he relations (.\ 37), (A 45), anrl (A 47c) Rre combined to (A 47d), 

'c)T 
-·D(1,?) a•b 
0r 

� ·T 
2 z + H 

fl ,1p.;,r + -· ,T 'R . R R 

[ 
, 

· (Z/R)J , 
1 2 1 + 2·y 

b -.. (x + Z/R) 
e' + y 2 

?
° 

Y 
2 + 2,y 3 y 

(A 44) 

( 1\ 4 5) 

(A 4/;) 

(A 47) 

( ,, 47a) 

(A 47b) 

(A 47c) 

(1\ 47d) 

R 

c) r 

1 -
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In the term represented by (A 47d), relative errors of the order 
1/2 000 can be neglected, (A 46). Thus, if in (A 47d) the gravity 
anomalies and the 
the order of 

T value s are mul tiplied wi th coefficients of 

2 
x • (Z/R) 

or with 

2 
(Z/R) 

i t is allo1·:ed to neglect these amounts. Hence, 

, D( 1, 2) c-d 
'c)r 

v:i th 
2 

C LJ,,. T 
,.,T R 

1 
--•(x + Z/R)

e' y + y 2

Thus, fine.lly, the expression for E(1) follows to be,aee (A 38), 

E ( 1) )\('1<+ 2T/R). ;-[ z
2 

"
12

- z;a' l dv1 

VI 

i\nd wi th (.II 27), neir,lectinp: the suffix T affixed to the r,r,wi ty 
anomalies, 

E ( 1) 

w 

1 -1 
+ Z/�) • --- . (e )

y + y 2 

It iP convenient to divide F(1) into two �rts, 

E(1. 1) 

E(1.2) 

7(1) = :'(1.1) + E(1.2) 

,,\' 

2 
y + y 

-\\(Je + 2 T/R) · (Z/R) •
2 y + y 

' -1 
• ( e ) • dw

1 -1 
• ( e ) dw 

dw, 

(A 47e) 

( A 4 ?f) 

(ll 47g) 

(\ 48) 

(A 49) 

(:l. 50) 

( A 51) 

(.II 52) 

2 
il = 

w 
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14.3. The representation of cos (e, n) 

The relcition (38) of the section 4 determines the term. D(1.3), 

D(1.3) 
'31 /e 

'c>n 

'c)1/e 1 

'c) r 

The no rmsl �er:i.V9ti.ve of the inverse of  the oblique distance e 

is equal to ,(Fig,2,page 159 Fig.3,page 16; Fig.A 2,page 98 ) , 

(1/e)] =_ - cos (e, n) • -
e2 

In (A S4), first of All, the term cos (e,n) has to be developed in terms 
of ths slope nf the terrqin, 

In t�i.s cont�xt, o spheri.cRl triAngle is considered. It is 
construct'"d by the foll owing 3 vectors, (see Fig, A 3). 'föe first 
vector js th-, ner.-->tivP. vector of the standard gravity in the surface 
point �. i, e. - � The second vector i.s the negative vector of 

the normal of the surface of the Earth in t.he surface ooint Q, 
i. e. - 22_ • Since the vectnr g is headi.ng into the interior
of the ERrth, the vector - JJ: points into the ext�rior of the 
bndy of the ERrth, The thir<l vector has the spatial direction of 
the oblique strai�ht line e which connects the two surface 
points P and 1, Fig. A 2. Tl-J:i.s vector · � is, heodi.ng from the 
point P to the poi.nt Q. Fig. A 3 shows this spherical triangle 
spanne� by the 3 vectors - f , - � , and e,

(A 53) 

(A 54) 

In Fig.A 3, the 3 vectors (-�•)0, (-�)0, and (:)0 are the normalized vectors of

our 3 vectors -�• , -n and e • They mee·t our uni t sphere ( having the

point Q at the surface of the Earth u as center point ) at the dots plotted 

in Fig.A 3 • 

= -- [ 1 /cos (g ' ] ' n) + 

·--(~)o 
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Sorre simple _goniometric equations and some well-knovm relations from 
the spherical trigonometry lead to the foUowing developments, ( A 55), (A 56a ••• e), 
and ( A 57) , Fig. A 3, 

cos ( e ' -n) cos (e ,-(T,') COB 

COB _( e, -n) = - cos ( e, n)

cos ( e • -g') cos ( e • g,)

ein ( e' -g') sin (e' g ') 

cos (-g', -n) cos (g/' n) 

sin (-p.; 
I -n) sin ( p;, ' n) ' 

(g,' n) + sin ( e, 
1 

-g )

. 

The relations (A 55) , and (A 56a) to (A 56e)1yield

sin (g ' n) cos (J 

cos (e,n) = cos (e,g 1
) • cos (g 1

, n) - sin (e, g 1
) • sin (g1

, n) · cos (S" .

The cent-0r of th2 Farth ?.nd the points p and Q at the 
Eqrth 's surface cietermine a certain plane, ( S€·" Fig. A 2,

Fig. A 4' Fig. A 'i) • 'l'he 3 vectors - g ' �' e Hre situ,,ted
- 1 1 

in even this plnne. Thus, also theRe three vectors - g, e e 

or at le<ist two of thern; define this plRn 0. here considered. 
' 

1 

Consequently, the vecto-r � having' the direction of the straight 

line e' of Fi�. A 2, (tbe positive �irection 0f e is shown 

by Fig. A 'i and Fig. A 2), is situat�� in the plane span�ed by the 
vectors anrl ; .

Further, the spharical representetion of t1e vector 

on the great circle spanned by the two vectors 

1 

e 

and 

is situated 

- g '

Fig, A 3. The two added fi�1res show this situation, Fig, A 4, Fig, A 5. 

, (A 55) 

(A 56a) 

(A 56b) 

(A 56c) 

(A 56d) 

(A 56e) 

(A 57) 

As to the spherical representation of a,vector, this representation is defined 
in the following way : The vector ( e.g. �• ) is translated in such a way that the 
starting point of this vector coincides with the center of the unit sphere, In 
this case, the vector �• ( or the prolongation of it ) pushes through the 
surface of the unit sphere in a certain point; this point is the spherical 
representation of the vector �• • 

In Fig, A 4 ,  the vectors

unit vectors of the vectors e' 

e' )o ., ( e )o , 

e , and -g 1 , 

= 

and -g 1 )0 are the 
= 

' ~ 

"' "' 
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R' 

Fig. A 5, 

105 

• 
1 

1 

1 

1 

~ -i-- · ---5urface P __ =----

~7Eorlh •-~::i__ g -z (e'.g')~ u 

. --=---- g' \ 
-- = --... .-.,, . . 

Q ....__ - . 

-----(e,g') -...... w 
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In the hPre conAi�ered crisc, thc tcot point P lieo higher then 
th'l moved point Q; Z i.s nc�ati.vc; Fiß, !\ 4, Fig, A 5.

'l'hus, for a.11 spherical diatances p between the tv;o points P and Q ,_ (A 58) 1s valid, 

(e1, - g1) + (e, e1)

(A 5Gb) R,id (A '58) yield 

1 I I 1 1 I t cos (e, g ) = eoB (e , g ) • cos (e, e ) + 8in (e , g ) • sin (e, e ) , 

iind, fu':' �h<ir on, 

sin (c, /) = sln (1/, .r/) ·cos (e, e
1

) - cos (e
1

, g
1

) ,Hl.n (e, e 1 ) 

•11he combi.wition of (1\ r:.7) (A <jQ), And (i\ ISO) gi.ves

cos (e, n) 
a + b + c 

cos (g', n) 

1•1ith 

., = cos (e 1 , r- 1 ),cos (e, e1 ) + si.n (e', g 1) • sin (e, !c!
1 ) ,  

b sin (e 1 , g 1 )· cos (e, e') •tRn I n 

c = cos (c 1
, g 1 ) ·sin_(e, e') ·t8n n1

• 

In t'1� iibove equations, (!\ 61c) 8!ld (A 61d), the following relatton 
is v·üi.d from the r11les nf the spherj_cril trigonometry (see: Fi.g, A 3, 
Fi.f'", !\ 5), 

I n 

'l'hc rne1ming of 

' tRn ( p.; , n) · cos 6' , 

I n is shown i.n Fig, A 3 Rnd Fi.g, A 6.
' 

n is 8 

' 

compon':nt of the slopc of the terr8in, n is understood 
thRt it i.e triken for the moved point :-); n is the component of the 

. 

--

slope of the terrain measnred in the dircction of the line PQ, in 
radial �ir�ction, for growin� distRnces from the test ooint P; 
Fig, A 3, Fig, A �. If, 9t the point Q, the toporrrnphical heights 
diminish for P.:ro'l-'ing dist<.mces to the point P, the amount of 

1 

n 

(A 58) 

(A 59)

( A 60) 

(A 61a) 

(i\ 61b) 

(A 61c) 

(A 61d) 

(A 62) 

is positive, Further, in this case, the angle cr-' of Fig. A 3 is smaller 
than 90° ; this fact is also evidenced from the equation (A 62) • The latter 
fact is also corroborated by the follo1Ving deliberation : Per definitioner.i, 

. the angle (g', n )  1s always smaller than 90°, since we have a star-shaped 
Earth, Consequently, tan (g', n) 1s always positive, Thus, in (A 62 ), the 
sign of tan n' is the same ss that of cos es--

' ( P, ' -17, ) 
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e, e 1 ) and cos (e, e1 ) in terms of 

On the right hand side of (A 61a), 'the terms cos (e', ,;
1 ), sin (e1 , g 1 ), 

cos (e,e') , and sin (e,e') appear, They have to be expressed as functions 
which depend on the spheric,ü distance 
on the hnight di_fference z. 

p fro� the test point p find, further, 

From Fig. A 5, it is learnt that 

(e 1 , p; 1 ) = qOO + p/2 

Hence, 

sin ( e 1 , g1 ) cos p/2 = 1 - (1 /8) , p + -

If the 'iist<Jnces e' are small, j_f 
50 km, the fol lowing relRtion is VAlid 

Thus, 

, 
e 

sin(e',r;') N 

Furthermore, from (A 63), 

50 km 

6 000 km 

-5
- 10 (e' 

5 

60'.) 

is smaller than about 

5-◊ km).

COB (e1 t g') sin p/2 = -(p/2) T - • • •

From Fig. � 5 and from the sine law of plgne trigonometry, and from 
(A 27), it is learnt that 

-(Z/e') = - x = sin ( e, e 1 ) / sin ( e, g 1 ) • 

Further on, Fig. A 4, Fig. II 5, 

i 1 (!'!, e ) + (e, g ) 

(A �7) and (A 68) are combined to 

sin (e, e 1 ) = - x•sin[(e 1 , g
1)

'l'hus, 

(e, e')] 

( A 6 3) 

( II 64) 

(A 65) 

(A 66) 

(A 67) 

(A 68) 

(A 69) 

sin (e, e1
) - X ' sin / I I ' 1 I (e , g ) • cos (e, e ) + x • cos (e ,g ) • sin (e ,e ) (A 70) 

J 

2 

p 

( e I ' g') • 
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tan(e,e 1 ) = - x•ein(e 1 ,g 1) + x·cos(e 1 ,g 1 ),tan(e,e'), 

tan (e, e')[1 - x •cos (e1 , g')]

\Vi th 

II  

x = x • coe p/2 
,. 

- x • ein ( e' , g' ) • 

and with (A 64) and (A 66), the relation (A 71) yields, 

tan ( e, e') · ( + x •ein p/2) II 
- X 

(A 23) an<l (A 27) give for an expression on the left hand si1e of (A 71)

x • sin p/2 

( A 71) and 

tan 

or, 

tan (e' e,) 

or, 

(Z/ e• ) • ein p/2 

(A 72) are �ombjned to 

(e, e')-[1 + Z/(2·R
1

)]

n , 
.. X •[1 + Z /(2•R) 

tan (e, e') = - x"•[1 - Z/(2·R1) 

Z/ (2 · R1 ) 

II 

= - X 

]
- 1

+ - ••• J . 
After tan (e, e 1 ) is represented in terms of the heights, by 

(A 75), the function of sin (e, e in terms of the heights is 
easily found by tan (e, e ). · In the interval 

- qo
O 

the subsequent 

sin J (e, e ) = 

< 
I 

( e, e ) < +

formula is vaücl., 

tan (e, e 1) • [1 +

90° 

2 . ] - ,,, 
te-.1 ( e , e') • 

' 2 
Neglecting terms of the order of (Z/ R ) , the combi.m1tion of (A 75) 
and (A 75a) leads to 

sin I 

(e, e ) { ' } [ ,,-2 (
X 'f 1 - Z / ( 2 • R ) ' 1 + ( X ·) • (_ 1 - Z/R

1 1 J 
-1 /2

(A 70a) 

(A 71) 

(A 72) 

( A 73) 

(A 74) 

(A 75) 

(A 75a) 

(A 76) 

As to (A -76), since -x" has the sign of -Z ( because we have the following 
equation- : -x" = -(Z/e')·cos p /2 ), since the term in the parentheses { l of 

(A 76) is always positive, and since the term in the brackets [ ] of (A 76) is 
always positive, too, therefore, sin (e,e') has always the sign of -Z, 'lhe same 
1s valid for the function tan (e,e') 

N 
:: 

' ) 
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Some eelf-explanatory rearrangemente 
-1/2 

yield,in the brackete of (A 76) ;the ensuing form, 

[ 1 + (x"/ { 1 - Z/R 
1

} ]

2 2 ) 
-1 -� -1 /2 

+ (x'') }•{ 1 - (x") · ( 1 + (x") 2 , (Z/R) }j = 

+ (x"/]-
1

�
2 

[ 1 + (x"/. (1 ➔ (x11 )
2 )

-1
· (z/(2 ·R)) J . 

(A 77) •is introduced into (A 76), the equation (A 78a) follows, 

, sin ( e, e ) a · b 

a 

b 

x
11• 1 + (x

11

)
2 

[ 
]-1/2,

+{(x1
1 > 2 {1 + (x11 )

2 ]
-1

• (Z/(2•R))}- (Z/(2·R)).

'l'he second and the third term on the right hrrnd si.d_e of (A 78c) can 
be eubsti tuted by one term, only. We have 

11 2 (x) 
11 2 

1 + (x ) 
- 1 

11 2 
+ (x ) 

Thus, instead of (A 78a, b, c), 

' 

sin ( e, e ) 

As to ti-1e function cos (e, e 
1

) of the relations (A 61b) and 
(A 61c), it can be obtained from tan (e, e

1
) by , ( 90° 

> 1 (e,e')I ) ,

[ 
2 , 

] 
- 1 / 2 

cos ( �i, e 
1 

) · = 
. 
1 + tan ( e, e ) 

. 

(A 75) and (A 80) yield 

or 

Z/(2·R) 1
2 

J
- 1/2 

The last expression on the right hand side is alread y known from (A 77). 
Consequently, 

( e') cos e, C • d 

C 
[ 

11 
2 
J - 1 /2 

1 + (x ) 

d = 1 + (x1
1

)2 {1 + (x1 1)2 J- · {z; ( 2,n)} 

(A 77) 

(A 78a) 

(A 7üb) 

(A 713c) 

(A 79)

(A 80) 

(A 81a) 

(A 81b) 

(A 81c) 

= , 

"[ 
11 2J- 112 [ J 11 21 - 1 f }] = - x • 1 + (x ) • 1 - 11 + ( x ) f • Z/( 2 · R) , 

COB ( e ' ) e , [ " 2 f 1 + (x ) • l 1 
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A special discussion about the sign of 
' 

sin (e, e ) obtained by (A 75) and (A 79) 
1 ' of tan (e, e ) and that of sin (e, e ) 

1 

tan (e, e ). and that of 
is necessary. The sign 

is positive if the 
straight line e lies above the straight line e z is 
negative, i. e. if the point Q is deepe:r. than the point 

if 

p i\ see Fig.A 5 ). 

(In case, the reader prefers 
' 1 

tan (e, e ) and sin (e, e ) 
the following formulas yield, (A

the more ninemonic conception that 
should have the same sign as z,

75 ), 

tan (e, 

and, (A 79 ), 

sin (e,
1 

e ) = 

In this latter 

e,) 

11 [ 
X • 1 

case, 

= 
11 [ 

X • 1 - Z/(2 R) 
+ - ... ] 

11 
2
] 

-1/2
[ { 

II 2}+ (x ) · 1 - 1 + (x ) 

further on, (A 58) turne to 

1 1 1 

( e, - g ) = ( e , -g ) 
' 

(e, e ) 

-1
{ Z/(2 R)n. 

But, the coming formula (A 82) is not changed, may the first or the 
' 

second variant for the sign of (e, e ) be introduced). 

Now the relation (A 61a) is in the fore. The ��uations (A 64), (A 66), 
(A 79) , and (A 81a) are introduced into (A 61a). The following relation 
is found, 

cos (e, n) 

cos (g', n) 

(e 
1 

g') (e, e,) X = cos ' 
cos 

1 

(e 
1 

g') (e' e') X = sin 
' 

sin 
2 

1 
g 

1
) ( e, e') tan n' 

X = - sin (e . COB 
' 

' 1 

(e,e' )JX = cos (e g ) sin . tan n' • 

(A 82) 

(A 82a) 

(A 82b) 

(A 82c) 

(A 82d) 

3 

4 

https://doi.org/10.2312/zipe.1989.097



111 

By (A 64), (A 66), (A 79), and (A 81a), the terms X., (i 
]. 

turn into the following shape, 

[1 + (x11 ) 2 ] 
- 1/2 

sin p/2 
1 • 1

1, 2, 3, 4), 

11 
[ + (x"/ J 

- 1 
{z/(2R)}X = 1 ❖ (x ) 2 · 1 ·1 • 1 

X 
3 

.. cos p/2 1 + (x ) 2 [ 
11 

]- ·112_ 
x

11 

{i/(2�)} 

] 
- 1/2 

X 

X 

1 • 1 

2. 1

, tan 
1 

n

X 

4 
sin p/2 [1 

+ (x11 )2 J - 1/2 x" , X • tan n'
2. 1 

Later on, ill the coming investigations, in the integrations over the 
globe, it will be convenient to distinguish between the integration cver 
the V/hole globe and that over the near surroundings of the test point P, 
up to a distance of abou � 100 Ion or 1 000 km from P. 

N 0w, the terws X., (i = 1, 2 1 3, 4), are brought into a special 
form l'lhich does suffice for the integrations over the near surroundings 
of the test point. In the near surroundings, the following inequality 
is r.Lght: 

e << R 

Further, the inte;:;rations over the ncar surroundings are governed by 
the fact tha t such integrands are t akcn c1long which are proportional 

2 3 I ' d 'f 
1 

> to x , x , • , • • nucc , J. · e > 100 km or e' 1 000 km, the 
amounts of x2 and x3 are extremcily small. 'l'hey are so smnll that 
they can be neglectcd in the domain beyond the near surroundings of 
tha test point P. 'i'his is the underlying mecha nism which allows a
restriction of the intcgrations to the near surroundings, only. 
Later on, it will be found that the·intGgr::üions over the near 
surroundings of the tGst point P have tobe executGd only for test 
points situated in t1� higher mountains; and they will share to the 
height anomaly at the point P by not more than o.bout a decimeter. 
For lowland points, öhe impact of these integrends proportional to 
x2 or x3 will bc smaller than a centimeter , - negligibly nmall 
amounts in most cascs. '.l:hercfore, it is allowed to neglect relative 
errors of the order of Z/R, in any case, in thcse above discussed 
integrations over the near surroundings. 
Thus, introducing the approximations 

(A 83) 

(A 8Ja) 

(A 84a) 

(A 35) 

(A S6) 

(A s6a) 

X 
1 

X 
2 

X == 1 - [ 1 -: ( x. 11
) 2 ] -_ 1 

2 e 1 · 

l 

X 

A 84) 

• 
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1 + (Z/R) � 1, p2 ';;: (e'/R) 2 ';;: O 

the expressions of (A 83), (A 84), (A 85), and of (A 86) turn to 

-1/2 
- sin p/ 2 [1 + (x") 2 ] 

-1/2
-X"• [ 1 + (X") 

2 J , 

[ 
2 J 

-1/2 
- 1 + (x") • tan n' 

-1/2 
sin p/ 2 [1 + (x") 2 ] • x"•tan n' 

The above 4 equations are valid if 

(e'/R) 2 .:.: 1, IZ/RI ,:.,: 1 

Fiq. A 6 

(A 86b) 

(A 87) 

(A 88) 

(A 8:3) 

(A 90) 

(A 90a) 

X " 1 

X = 2 

X "' 3 

X = 
4 

• 
0 
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tan n' and the sign of tan n' are defined by (A 62). 

tan (g', n) is always positive. Thus, the sign 
cos 6-': If the height of the terrain diminishes 

Por a star-shaped Earth, 
of tan n' is that of 
for rising values of p· 
also. _(See Fig. A 3, Fig. 

at the point Q, in this case, tan n' is positive as cos 6'"', 
A 6). 

The unit vector ("�f of Fig. A 6 and of Fig. A 3 is the projection 
of the unit vector of the normal of the Earth 1 s surface (pointing into the 
inter ior of the body of the Earth) into the plane constructed by ihe poin.ts 
P, Q, o. 

Now, the term tan n', appearing in (A 85), (A 86) and (A 89), (A 90) 1 

is expressed by a formula, depending on x and (Z/R'). The following 
differential relati on is easily obtained, Fig. A 6, 

tan n' = - dZ / [(R' + Z) ·dp] 

Here, R' has to be considered as a constant value. (A 91) can be brought in 
the form of an integral, 

Z = - p(
) 

(R' + Z)•(tan.n') . dp • . 

p=o 

(A 91) 

(A 92) 

The spherical distance p and the straight line 
mapping. Thus, in (A 91), dp can be expressed by 
easily found that 

e' are connected by a one - one
de', and inverse. It is 

e 1 = 2 • R'. sin p/2 

de 1 = R' (cos p/2) • dp, 

dp = [ R' (cos p/2) ] -1 
. de'

The combination, of (A 91) and °(A 93) yields 

d Z/ de' = - (1 + Z/R') • (cos p/2) -1 (tan n')

(A 93) 

(A 94) 

(A 27) gives, for x x (.H', e'), H' = const., and for Z=Z(e'),(for x= Z(e') /e' ), 

-.>xi 'c)e' (Z/e 12) + (1/e') (c'JZ/ 'c)e'), (A 95) 

and further,, (A 94) (A 95),

'c) x/ 'cle' x/e' - (1/e')·(1 + Z/R')·(cos p/2)-1-(tan n 1 ) (A 96) 

(A 96) leads to the following expression for tan n 1, 
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tan n' = - (cos p/2)·(1 - Z/R') •[ e' • (�x/ 0e') + x J 

Now p regarding the simplified formulas (A 88) and (A 89) for x2

and x3, they offer to get combined to one single expression. With the

constraints (A 90a), th is fusion of x2 
and x

3 
is p considering (A 70a), 

J
-1/2 

X
2 

+ x3 = - [ 1 + (x 11 )2 . (x" + tan n') 

The following rearrangements of (A 97) are self-explanatory, 

tan n' + x'' = - (cos p/2)·(1 - Z/R') • e' • (cJx/'ae') + x''•Z/R', 

(tan n' + x")·(1 + Z/R') -;t_ (cos p/2)•e'•('clx/'cle1 ) + x"·Z/R' 

and, neglecting relati ve errors of the order of Z/R' in the two 
expressions (tan n' + x' ') and ::r:" , (A 90a), the followir:vs relation is obtained 

tan n' + x'' t;:t _ (cos p/2) • e' • (fJx/ �e•). 

This above equati on turns (A 98) to 

J 
-1/2 

x
2 

+ x
3 

= [1 + (x11 )
2 • e' · (cos p/2) • ('clx/8e'),

for the constraints (A 90a). 

With (A 87), (A 99), (A 90), and (A 97), the simplified form of (A 82) 

(A 97) 

(A 98) 

(A 99) 

turns to (A 100), - observing the range of validity of the constraints (A 90a) -

[ X1 + X2 + X3 + X4 ] 
0 

= [ 1 + (x11 )
2J-112

. [- sin p/2 + e' •(cos p/2) · ('c)x/'c)e')

- (sin p/2) • (cos p/2) • x"{ e' •("c)x/cle') + x}] 

In (A 100), the suffix [ ]0 behind the brackets denotes that the 
simplified form of the sum x1 +X2 + x3 + x4 is specified here. 
The relation (A 100) is allowed tobe applied only if it appears as a factor 

(A 100) 

which is multiplied with x11, (n = 2 , 3, ••• ). Thus, (A 100) has the restriction 
to appear only within the forms 

(A 100a) 

for 

n = 2, 3, ••• (A 100b) 
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x2 diminishes quickly for growing distances from the test point P, since X= Z/e' • 
This is the reason why integrations over integrands of the form (A 100a) 
need tobe extended over the near surroundings of the test point P, 
only, up to a distance of about 1000 km, perhaps. 

The integrations over this near surroundings, up to 1000 km distance from P, 
are accompanied by the following approximation (A 102):E\.trther, (A 101) is applied. 

sin p/2 = e' / (2 ·R') , 

cos p/2 � 1, (e 1 < 1000 Jan) 

(A 70a) , (A 101), and (A 102) are introduced foto (A 100) . The relation 
(A 103) is the consequence, 

a • b 

a = [ 1 + (x") 2 ] 
-1/2 

(A 101) 

(A 102) 

(A 103) 

(A 103a) 

b = -{e'/ (2 ·R')}+fe' · [ 1 - x-e'/ (2 ·R') J ·('ax/'c}e•)}-t/e'/(2 ·R')}, ,(A 103b) 

valid for 

e' < 1000 km • 

In the brackets of the second term on the right hand side of (A 103b), a 
rearrange100nt leads to 

1 -{x•e'/ (2·H')i= 1 -lZ/ (2 ·R 1)j 

A relative error of t he order of Z/ (2 •R') can be neglected in the second 
term on the right hand side of (A 103b) ,(for (A 103c)). Hence, 

[ X1 + X2 + X3 + X4 J 0 

= [1 + (x")2 J 
-1/2 ·[-

= 

1 + 2 · R' · ('ax/ 'cl e ' ) - x2] · {e ' / ( 2 · R' ) f •

( A 103c) 

(A 103d) 

(A 104) 

In the above equation (A 104), the terms of the relation (A 103d) are inserted after 
they are put equal to the unity, neglecting relative errors of the order of Z/R' in 
the relations (A 103d) as well as in the second term in the second brackets on the 
righ t hand side of (A 104 ). Sure, these approximations are allowed before the back­
ground of the constraints (A 90a) as well as before the background constructed by 
the fact that, in the course of the coming investigations, the expression of (A 104-) 
will come tobe treated after multiplication with the factors x2, x3, ••• , in any 
case, (A 100a) (A 100b). Here, it is essential tliat the amounts of x2 , x3, ••• 
diminish rapidly for growing distances e' to the test point P at the oblique 
1urface of the Earth u. 
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14.6. The representation of E(2) by a sum of J terrns 

(A 53) and (A 54) yield for D(1.3) 

D(1.3) 
cos(e,n) 

cos (g',n) 

0(1/e') 
t 

This form is inserted into the relation (45b) of section 4, 

E(2) , - \\ T • 0(1,J) • dw 

w 

(A 105) 

(A 106) 

(A 105) is divided into the spherical and into the topographical part, (Fig,A 2,A 5), 

(A 105), (A 106), (A 107), and (A 82) resul t 

E(2) E(2.-i) + E(2.2) + E(2.3) , 

with 

E(2,1), ))T•(e•2 - e 2).(e•e•)-2·(X
1 

+X,+ x
3 

+ x4) ·dw

E(2.2) 
= \( 

w 

E (2.3) 

VI 

cJ (1/e') 

'c) r 

dw 

dw 

14.6.1. The developments and decornposi tions of the expression for E(2.1) 

E(2.1) is given by (A 108a). From (A 28), (A 31), (A 32) follows 

x2 - Z/R',

x' = 1 + x2 + Z/R'

Thus, 

(A 107) 

(A 108) 

(A 108a) 

(A 109) 

(A 110) 

(A 110a) 

(A 111) 

- (1/ei ) • ----

VI 

= - (( •r . 
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The following decomposi tion of E ( 2. 1) is reconnnended, 

with 

and 

E(2.1) = E(2.1,1) + E(L.1.2) 

E(2.1�1) \\ T•(X1 + x2 +x3 + x4)'[x2/ (,•2. x•)]. dw

w 

E(2,1.2) "-)\ T•(X1 + X2 + XJ + x4),[Z/(R'•e•2,x•)] , dw ,

w 

14.6.1,t. The formula for E(2.1.1) 

In the integrand of (A 113), the term x2 stands in the �umerator of 
the fraction in the brackets. x2 diminishes quickly for growing distances 
e' from the test point P. For e' = 1000 km, x2 will be of the order 
of 10-6 , for instance. Thus, in (A 113), the integration has to cover
only the area with 

e 1 < 1000 km

(see also: (A 10Ja), (A 100b)). 
Consequently, in (A 113), the sum over the four X. values can be replaced 

1 

by the simplified expression (A 104). Vlith(A 1o4), (A 7o a), (A 39), (A 40), 
neglecting rela tive erTors of tre order Z/R' and (e '/R') 2, 

x' � 2 
y 

2
1 + X 

(A 1 r2) 

(A 113) 

(A 114) 

lA 11 5) 

and, v1ith the constraint (A 115), v1e find the subsequent equation (A 115a) 
1 

[x1 + X
2 

+ X3 + X4] 
0

· [ x
2/ (e•2 . x•)J "'

,., 2 2 -3/ 2 

[
2] { . ]. = X • ( 1 + X ) • 2. R t . ( c) x/ 'c) e t ) - 1 - X • 1 / ( 2 •e 1 

• R t ) r 

(A 113) and (A 115a) lead to 

E(2.1.1) = E(2.1.1.1) + E( 2.1.1.2) 

with 

E(2.1.1.1) e -))h2 ,, 2 -3/ 2 

+ X ) (dx/ 7J e') • ( 1 /e 1) • dw 

w 

(A 115a) 

(A 116) 

(A 117) 

11 
:X 

::, -

:X 

= 
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( ) \( 
2 + x2)

-112 
.11/(2 e' R') }· d"1E 2.1.1.2 = 

)
T·x ·(1 l 

• 

w 

.li.!6.1,1.1. The formula for E( 2.1.1.1) 

The formula (A 117) undergoes some transfÖrmationsconsidering the fact 
that the integration has to cover only the near surroundings, (A 115). 
Thus, the spherical surface eleme nt dw can be substi tuted by the plane 
surface e leme nt , 

dw - e 1 • de 1 • dA

A is the azimuth counted clockwise from the north . (A 117) turns to 

2,,-' 
E(2.1.1.1) 

\
E' dA 

A=O 

with 

E' 

� 
T· 2 ( 1 2 -3/2 

( clx/ 'c) e ' ) , de ' = - X + X ) . 

e'=O 

(A 118) 

(A 118a) 

An integration by parts is introduced. It uses t he substitutions (considering E') 

'c) a1 /cl e' c) 'l'/ '@ e',

b1 '\ x2-(1 + x2}-Jl
2
_ c;lx/�e•). de' 

e'=O 

in the above integrand, x is und er stood tha t i t is a functi on of e' , only, 

Thus, 

with 

X = X (e 1)

'clb1/cle' = x2 •(1 + 

2 -1 /2
b1 = - x·(1 + x)

2 -3/2 
x ) • ( 'c) x/ 8 e 1 )

+ arsinh x, 

The integration by parts gives 

(A 119) 

:: 
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e' e' e' 
0 0 

E' = 
) 

�1 ·( 'c)b1/ 'cle 1 ) ,de' a1. b1 1 
-

\ b 1 • ( c)a1 / '@e ' ) • de '

e' =0 e' u e' u

the ,upper and the lower bound have the following transi tion behavior, 

Hence, 

E' = 

e' 0 

+ \ �-
e, u

e� -. 1000 km 

(- T)f- x),(1 + 

X)•( 1 + 2 -1/2
X ) 

2 -1/2
X ) 

+ arsinh

+ arsinh x]

e' 
0 

e' u

+ 

X ] (iYT/Je•) •de' • ( A 120) 

According to (A 118a), E' has tobe integrated v,ith regard to the azimuth A. 
Thus, the first term on the right hand side of (A 120) leads to 

27t 

A=O 

(- T)· (- x)·( 1 + x ) + arsinh x [ 
2 -1/2

] 

e, 
0 

• dA •

e' u

In case, approaching the test point P, e 'u �O, the TQ value tends
to its value at the test point P. Thus, if e•u�o, it follows that

(A 121) 

TQ -Tp = constant. Q is the moving point, Fig. A 6. The slopes of the te rrain
are considered tobe continuous functions , as found in the topographical maps, 

Further, if e'u --..o, the moving point Q at the surface of the Earth
u tends to lie more and more close -on the surface element of the tangential
plane of the surface u at the tes-t point P. Thus, on this supposition,
the x value tends to an expression of the following shape,

x =(Z/e•)�n1, cos A + n2•sin A, (e'u--+O) • (A 122) 

In (A 122), the coefficients n1 and n2 denote the north - south and
the east - west component of the slope of the terrain in the test point P, 
A is in (A 122) the azimuth. The term b1, (A 119), appearing in the brac�ets
of (A 121), is expressed by an odd function of x, b1(x) = -b1 (- x) , This fact

bas the following consequence. For small values of e�, in the azimuth A = A
8 

the function T•b1 ,(see (A 119) ), will have an expression of the following shape 
2 

T•b1 = k
8 

+ ka.1 • e� + ka.2 · (e�) + • • • Further, for small values of e� , in 

the azimuth A = A
8 

+ 180° the function T·b1 will have an expression of the

ensuingtype T•b1=-k +k' •8 1 +k' •(e 1 )
2 +••• Thus, consideringthe a a.1 u a.2 u 

limit of T•b1 for e� - O, in the azimuth A
8 

,we find T•b1 ---k
8

; and
1
in the

0 azimuth \ + 180 1 we will obtain T-b1---k
8 

• (Fora terrain of continuous slopes).

0 

• 
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Before the back:ground of these deliberations for e I u �0, the two 
equations (A 119) and (A 122) lead to the fact that the following relation
is valid, (A 1 21),

2 J/ 

\ 
A=0 

if 

('l'·b ) • dA �0 1 e, =e, u 

e' -- O u 

Herewith, the .consideration of the relation (A 121) for the lower value of 
the argument e', (i.e. e'u), is_already settled. 

( A 1 23) 

(A 123a) 

The relation· (A 12·1) for tJ-eupper value of the argurnent e', (i. e. e•0), 
is now ili the fore. e 1 0 is th e amount of e' for the periphery of the circle v1i th
the radius e 1 0 1 000 km, and wi th the test point P as center, 
The following inequality is valid, 

1 X 1 << 1 if e' 0 = 1 000 km. 

In case of (A 1 2
J

b), the function b1 
series development, (A 119), 

b1 = ( 1 /3) · x
3 - + •.. ; x

2 
< 1 

Consequently, for the upper argument 
follovring shape, 

211 

- (1/
J

) 

1 
A=0 

has the following convergent 

e•0, the relation (A 121) takes -the 

dA, 

With x = (2 km)/ ( 1000 km) � 2 , 10-3, and eatimating t�e height anomalies 
with � = T/g' 100 m, the term (A 124a) influences the final result of the 
height anomaly ½ at the test point P. by less than ( 1/1000) millimeter,, 
(see equation (44) of section· 4). 

(A 123b) 

(A 124) 

( A 1 24a) 

For the model potential M (according to the equation (145) of th e section 7), 
the subsequent version of the parameter data is chosen: ( = M/g' = 1000 m, 
x = (10 !an)/ (1000 km) = 10-2 ; thus, by (A 124a), for the effect on the 
final ½' value, the amount of 0,3 millimeter followa. This latter an'lount 
can be taken as the naximal amount•of (A 124a), 

Finally,- � 118a) (A 119) (A 120), 
2'iY 

E(2,1,1,1) 
/V 

\ ) 
b( (@T/8e') · de 1 • dA • (A 125) = 

A=0 e'=O 
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In order to shorten the writing 
symbolism is now introduced, 

, the following abbreviating 

(A) (E) · °P · de 1 , dA = 

2'ir 

f 
A=O e 1 = 0 

V/ de' · dA 

Here, the upper bound of the integration over e' is e' = 1000 Jan. 
If in the rela tions of the kirrl of (A 125a) the differentials d e I and 
d A appear, in this case, necessarily, the integrati. on area extends 
to e' = 1000 Jan, only. 
Th.e combination of (A 125) and (A 125a) leads to 

E(2.1.1.1) = (A) (E) b1, ('dT/cle 1 ) •d e' , d A 

The essence of the rearrangements of E( 2.1.1.1) by the relations from 
(A 118a) to (A 125b) is the fact that the derivati.ve of x with regard to 
e' is replaced by the derivative of T with regard to e 1

• The latter 
derivative is much more smoothed than the first one, a great relief for the 
numerical computations.is t he consequence. The right hand side of (A 125b) 
needs no further transformations, it can be introduced in the calculations, 
directly. 

14.6.1.1. 2. The formula for E(2.1.1.2) 

After E(2.1.1 .1) has a form convenient for numerical computations, 
(A 125b), the consideration of E(2.1.1. 2)- is now in the fore, (A 118). 
The form of the right band side of (A 118) has already a form convenient 
for numerical calculations. 
Similarly as in the integrand of (A 117), the term x2 appears in the 
integrand of (A 118). The amount of x2 diminishes quickly for growing, 
values of e'. Thus, the integration area on t he right hand side of 
(A 118) can be restric·�ed to the near surroundings of the test point P, 

of not more than 1 000 km distance from P, as in case of (A 125b). 
Again, plane polar co-ordinates are introduced. Thus, (A 118) turns to

(A 1 25a) 

(A 125b) 

-1/2 

E(2.1.1.2) = (A) (E) (1/2),(T/R'),x2 , (1 + x2) •d e'· d A • (A 126) 

With (A 116), (A 125b), and (A 126), the follovring form for 
E(2.1.1) is obtained, 

(A) (E) b1 · ('dT/cle') · d e 1
, d A +. 

+ (A) (E) (1/2)•(T/R')•x2 ·(1 +x2)-112 
d e 1 ,d A . ( A 127) 

E (2 . 1 . 1) 

https://doi.org/10.2312/zipe.1989.097



122 

14.6.1.1.3. The integrand proportional to x
2 in areas a great distance 

away from the test point 

Considering the integral for E(2.1.1), (A 113), it is obvious that x2 

has very srnall values if e 1 is greater than 1000 Jan. In (A 127), it is 
intended to integrate only as long as e' is smaller than' 1000 km. The 
following lines intend to verify that the restriction to e'-values smaller 
than 1000 Jan is justified. A reliable evidence will be gi ven, 

However, in this context, not the simplified fonn for the sum of the 
four Xi terms will be applied, (A 104), simplified by superposition with(A 90a), But,
i t is necessary to base on the precise form for the four Xi terms, 
(A 83) to (A 86), But, of Course, relative errors of the order of (Z/R') 
can be neglected in the expressions from (A 83) to (A 86), at least in 

this context discussed in this sub-section, Along these lines, the 
foÜo\'/ing formula s are found, 

[1 (x")2 J 
-1/2

x1 sin p/2 + 

[1 .+ (x")2 

J 
-1/2

x2 - cos p/2 x", 

X3 - cos p/2 [1 + (x") 2 ] 
-1/2 

tan n' ' 

X4 = sin p/2 [1 + (x") 2 J 
-1/2 

x" •(tan n');

in the above lines, relative errors of the order of Z/R' are neglected, 

1 Z/R' 1 << 1 

Considering (A 132), the relation (A 97) turns to 

tan n' = - e'•(cos p/2)· ('c)x/'c)e') - (cos p/2) · x 

Consequently, wi th (A 70a), 

tan n' = - e' ·(cos p/2)• ('clx/�e') - x" 

Thus, if the distance e' is allowed to have values greater than 
000 Jan, the equation (A 99) is transformed to 

[ 2]
-1/2 2 

x2 + x3 = 1 + (x 11) • e' ·(cos p/2) · ('dx/r)e') •

The relations (A 128), (A 131), (A 135) yield 

(A 128) 

(A 129) 

(A 130.) 

(A 131) 

(A 132) 

(A 133) 

(A 134) 

(A 135) 
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[. ] [ 
2 ]

-1/ 2 

x1 + x2 + x3 + x4 = 1 + (x") 

00 

with 

- sin p/2 '

- (ein p/ 2) ·(x 11 ) 2 

q3 = [ccos p/2)2,e• - (sin p/ 2)•(cos p/2):x" · e' Jcc>x/cle') • 

The relation (A 135a) derives f rom the universal f ormulas (A 83), (A 84), 
(A 85), and (A 86)1by neglecting relative errors of the order of Z/R, only. 
(A 135a) is valid fo r whole- the globe, f or all values of p between 
o0 and 180° . 

With 

sin p/2 e'/ (2 R') 

\ x \ = j Z/e' j << 1 , 

1 X 11 1 = 1 X • COS p/2 J « 1 

x' = 1 + x2 + Z/R' ~ 1 ,

e' > 000 Jan 

(A 135a) 

(A 135b) 

(A 135c) 

(A 135d) 

(A 1 35e) 

(A 135f) 

(A 135 g) 

(A 135h) 

(A 135i) 

the equation (A 135a) turns to 

�1 + x2 + x
3 + X� -;,; 

000 

(e 1 /(2 R 1 ))·t 1 + (cos p/ 2) 2, 2 · R' · (c>x/'c)e 1 >]. (A 136) 

In the construct ion of (A 136), the following development for the expression 
in the brackets of (A 135d) is taken into account, 

(cos p/2)2,e• - (sin p/ 2)·(cos p/2)-x"-e'

e' · (cos p/2)2 [1 - (sin p/2) • x] =

=e',(cos p/ 2)2 [1 Z/ (2 R')] ,.._, 

2 � e' · (cos p/2) 

The relation (A1J6), (the second term in its brackets on the right,only),is put 
into (A 1·13). Instead of (A 117), the following expression is obtained for 
E(2 .1.1.1), in order to check the impact exerted by the integration area of (A 1351),

E(2. 1.1.n ° -)) T -(coe p/2)2 .,2 . (Ox/@e' ). (1/,;), d w • (A 137) 

= 
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Similarly ae in caee of (A 117), the integration by parte allowe to 
traneform the relation (A 137). The following rearrangemente of (A 137) 
are eelf - explanatory, 

d w =(R' ?ein p· • d p . d A ,_; R2 • (sin p) • dp • dA 

(1/e')·d w N (R2 • sin p • d p ,d A)/ (2·R • Bin p/2),

(clx/'cle 1 ) (c)x/'c)p),(dp/ de'), 

(dp/ de')';;_ 1/ (R • cos p/2) , 

('cl x/c>e•) ';;; ("oX:/'c)p),{ 1/(R • cos p/2)} 

('c)x/'cle 1 )•(1/e 1 ), dw �[8x/ 'c)(R,p)] R· dp •dA 

consequently, (A 137) turne to the subsequent relation, putting 1+(Z/R) N 1 , 

E(2.1.1.1) = - \)T·(cos p/2)2 , x2 {�x/o(R·p) J, R, dp-· dA •

A st�p, analogous as that from (A 117) to (A 125), leads from the. above 
equation to the following one 

E(2,1.1.1) (1/3) )\ x 3{J fT •(ooa p/2) 2/ / c) (R• p) J • • dp · d A

or, 

E(2.1.1.1) a (1/ 3) II x3 
{e>{T ·( ooa p/2) 2 j / f.)(R•p)] •{ 1/(R•sin p)/ . dw, (A 137a)

Here, the following amounts ·for the different pararooters are introduced, now 1

(1/J),x 3 = (1/3)• (2 lan/ 10 000 lan)J ';; 3 • 10-12 

(1/G{ o{T·( cos p/2)2 } / -;)(R·p)] � 10 11 � (1/2) 10-4

(G is the global mean value of the gravity), further, if Llw is the 
size of the surface compartments, 

(d w)-(1/(R·sin p)) ';;' ..dw•(1/(R•sin p)) ,J 

� (500 Ion· 500 Ion)/ 6 000 km ';; 40 km • 

The global total number of the compartroonts Aw of the constant eize of 
500 km • 500 km is 2 • 10 3 • Summing over the values of the integrand fo r the 
individual compartments by the square root law, the amount af E(2 ,1.1,1) is 
estimated as follows, if integrating over dis tances greater than e' = 1000 km 
by means of (A 137a); 

1/ 2 
3 • 10-12 • (1/2) • 10-4 • 40 km, (2 • 103) = 3 • 10-7 millimeter.

= 
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In case, the model potential M 
implied, instead of T, 

I 

T -M , 

125 

according to (145) of the section 7 is 

a mul tiplication wi th the factor 10 will be necessary. But, also the thus 
obtained amount of 3 · 10-6 millimeter is absolutely insignificant in our
applications. 

Hence, it will -be of no use to extend the integration domain of 
E(2.1.1,1) according to (A 125b) up to a distance e' from the test point P 
which is beyond of e' = 1 000 km. 

Now, the termE(2.1,1.2) is in the fore, (A 118). The share· of the 
integrations covering th e domain e' > 1 000 km is to be evaluated. In 
this context, the first term in the brackets on the right hand side of (A 136) 
is introduced into (A 113). The global form for E(2.1.1.2) is obtained, 
instead of (A 118), 

E(2.1.1,2) = �) T,x 2 - (1/e 1 )·(1/ x') · (1/(2 •R 1 )) • d w
w 

and with (A 135 h), 

E (2, 1 , 1, 2) • \( T ,x2 • [ 1 / ( 2 · e ... R') ] , d w

VI 

(A 138) 

The intec;rand of (A 138) has already a shape convenient for numericsl evaluations 
about the impact of the area beyond of e' 
values are int roduced, globall y averaged, 

000 km. The following parameter 

T/G � 0,05 km, 

x2 � (2 Ion/ 10 000 km)2 = 4, 10-8

(R•sin p) / (2 ·R1•e') 
2 ·R 1 

d w • [ 1 / ( R • si n p) J ';;; 40 km 

Thus, summing in (A 138) over the ind.ividual compartments-(of total number 2 , 103) 
by the square root law, (A 138) gives 

or, 

8 3 -1 +3 1/2 
0.05 km• 4 • 10- • (1/12) · 10- km , 40 km• (2 · 10 ) , 

3, 10-10 km= 3 • 10-4 millimeter .

This amount is absolutely inaignificant. 

In caae, instead of T, the potential M is applied, a multiplication by 
10 will be necessary; but the thus found amount of 3 • 10-3 millimetAr ia
also negligible. 

/'J -1 
(1/ 12 000)1an , 
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In (A 118), it is not necessary to extend the integrati on areas beyond 
of e' 1000 km. The same is valid in case of the relation (A 117). 

14.6. 1 .2. 'rhe formu la for E(2.1 .2) 

The expression for E( 2.1.2) is now in the fore, it is given by (A 11 4). 
In the brackets of the integrand of (A 114), the very small factor Z/R' turne 
up, the amount of this factor is of the order of about 10-3 or 10-4•
In the sum of x

1 
+ x

2 
+ x3 + x4 in the braces of (A 114), it is allowed,

consequently, to neglect relative errors of the order of Z/R'. They share 
to that terms in the integrand of (A 11 4) which are of the order of 'J'(Z/R') 2, 
an amount not greater than about 'J' • 10-6 or T • 10-8• A relative error of 
smaller than 10-6 can be neglected in tre 'J' potential values in any case,
since the irupact of it on the height an omalie s (, being equal to T/g', will be 
smaller than 0.1 millimeter. A relative error of smaller than 10-6 in the
amount M/G will be smaller than 1 millimeter, because I M/G I will be smaller 
than 1000 m, if M is the modal potential T ß. 

Corisequently, the Xi values here to be applied a re not the universal
expressions by (A 83), (A 84), (A 85), (A 86). Here, for the computation of 
E( 2.1 , 2), the expression (A 135a) for the sum [x

1 
+ x

2 
+ x3 + x4J

00 
is

recommended. (A 135a) represents the prccise values of the X
i 

terms, globally 
valid wi thin the interval O �p � 1 80°, but free of terms which cause a 
relative change by the order of Z/R. Along these lines, the following formula 
for E(2.1, 2) is obtained, 

E(2.1.2) - )[ T{1 + (x 11 ) 2J-112

- (sin p/ 2), a·{Z/(R"e•2•x')t"d. w

w 

with 

a = - 1 - (x") 2 + 2 ·R"{ ( cos p/2) 2 - (sin p/ 2), (cos p/ 2)• x 11 r (�x/0 e';

The reader is remembered that 

x" = x • (cos p/2) 

x' = y2 + Z/R' = + x2 + Z/R'

(A 1 39a), It contains 
1 is cons tant, and 

( A 139) 

(A 139a) 

(A 140) 

(A 141) 

The expression for the term a is now considered, 
amounts as - 1 and l 2 ·R'•(cos p/2) 2 . ('clx/'de') }. 
2 ·R' •(cos p/ 2)2 has not an expressed tendency to go
of p. But, the amounts of - (x 11 ) 2 and{- 2 ·R'·(sin
appearing in (A 139a) have a clear tendency to go to 
e' from the test point P, on the strength of the 
contain- x" and (x 11) 2, (A 140). Consequently, in 
to separate such terms, which diruinish rapidly for 

to zero for growing values 
p/2)-(cos p/2)·x"•(c) x/oe•)} 
zero for growing1 distances

fact that these amounts 
(A 139), it wi ll be of use 

p �180° • 
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This division into two parts i s  des cribed by the following rela tions, 
(A 141a) (A 142) (A 143), 

E(2.1.2) = E(2.1.2.1) + E(2.1.2.2), 

with 

w 

q
4 

=(x 11 )2 + x" ·e' · (cos p/2) • ( dx/ 'cle');

E(2.1.2.2) = )J T•[1 + (x 11 ) 2J-11 2

. (sin p/2)•q5 
•{z/(R 1-e 12 -x•)}·d w ,

w 

1 - 2 ·R'·(cos p/2)2 • (clx/c>e') 

14. 6, 1 , 2. 1. 'rhe formula f or E ( 2. 1 • 2 , 1 )

In the near surroundings of the tes t point 
allowed to put cos p/2 ,;;; 1, x" '?! x, x' ':;{ 
simplifications, the relation (A 142) turns to 

P, for e' < 1 000 km, i t is 
1· + x2 • With these 

(A 141a) 

( A 14 2) 

(A 142a) 

(A 143) 

(A 143a) 

E(2.1.2.1) 2 -1/2 
( 

} . 
T · (1 + x-) · (sin p/2) -q4•2x/(R'·e') 

1 
•dw 7 (A 144) 

+ x2 

with 

VI 

rv x2 + x • e', ( c> X/ 'öe') 

And further 

(A 144a) 

E(2.1.2.1) • II T-x2 •(1 + x2)
-

J
/

Z-[x + e••(0x/0e•)J(1/(2 ·R2)) •d w .  (A 145)

w 

The relation (A 145) offers i tself to get divided into t wo parts, 

E(2.1.2.1) = E(2.1.2.1.1) + E(2.1.2.1.2) , (A 146) 

with 

E(2.1.2.1.1) • ff T•xJ ·(1 + x2)-)
/

� (1/(2·R2))·d w, (A 147) 

and 

{( 2 2 -312 { 2 2 E ( 2 • 1 • 2 • 1 • 2) = 
) ) 

T • X • ( 1 + X ) • (� x/ c) e 1 ) . 2 e 1 / ( 2 . R ) f" d w' (A 148) 

w 

w 
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for 

e 1 < 1 000 lan • (A 148a) 

The form of (A 147) is in close neighborhood to the relation (A 1 26). 
The introduction of plane polar eo - ordinates a nd of (A 1J5e) turne (A 147) 1o 

3 2 -J/2· E(2.1.2.1.1) = (A) (E) T,x ·(1 + x )- · (sin p/2)·(1/R)·d e' · d A .

(A 149) has already a form convenient for the caiculations. 

The reader is already acquainted wi 1h the above used abbreviating wri ting 
style, (A 125a). 

Now, the expression for E(2.1.2.1.2) is consi dered, (A 148). 
The repre sentation by plane polar co-ordina te s yields, (A ·125a), 

E(2.1. 2.1.2) = (A), E", d A 

with 

E" 2 2 -312 2 (E) 2 ·T·x ·(1 + x )  • (sin p/2) , (c>x/@e•) •d e' 

In (A 150), this following relation is valid, 
2 iT 

(A) · '\1' · d A \ \If · d A 

A=O 

and in ( A 1 51 ) , 

(t) · W · d e' ) W ·d e' 

e' = 0 

the upper bound of the integration by (A 151b) is e' = 1 000 lan, 
(see (A 1 25a)). 

(A 149) 

(A 150) 

(A 151) 

(A 151a) 

(A 151b) 

The integral of (A 151) is integrated by the method of the integration by parts. 
The following substi tu tions are used � ( In (A 152b), dp/ de' come s from (A 93) ) , 

2 
2 ·T · (sin p/2) 

cla
2

/cJe' = 2 ·(sin p/2)2. (@T/@e') + 2 •T·(sin p/2)·(1/R'),

and , w i  th ( A 1 19 ) , 

-1/2 
x• (1 + x 2) + arsinh x = (1/J),x3 - + • ••

(A 152a) 

(A 15 2b) 

(A 152c) 

at the end of the above relation, (A 152c), a series development for the function b2 
appears : (1/3) •x3 -+ • •• • This series development is valid for x

2 
< 1, only, 

( see (A 12�) ) ; 

= 
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('c)x/cle') 

The integration by parts turns (A 151) into 

E II 

1 

E" 2

1 . 

2 2•T•(sin p/2) · b2 1 ,, 
0

e' 
u 

- 2 [, · ( sin p/2) • ( 1 /R' ) 

e' u

+ ( sin 2 ] p/2) , (clT/e>e') •d e'

In case that e'u tends to zero, the amount of T and that  of b2
is finite, since T has continuous values, and since a star-shaped 
Earth is introduced(the  slopes·of the terrain of it having finite values). 
Further, if e'u tenas to zero, the amount of sin p/2 tends to' zero,
simultaneously. Consequently, (A 153a), tbe following transition behaviour 
is right, 

0 
e' 

if e, tends to zero. 

(A 152d) 

(A 153) 

(A 153a) 

(A 153b) 

(A 154) 

As to the upper bound of (A 15 3a), this bound is defined by e' 0 1000 lau.

Here, the following data are useful, 

( sin p/2) 2 1/144 (A 154a) 

and, (A 152c), 

b2 = (1/3)•x3 - + ,. , � (1/3)· (2 km/ 1 000 km)3 = 3 • 10-9 (A 154b) 

wi th (T/G) 0.1 km, the following self - explanatory developments 
are right, sure, for the uppe:i: bound e� appearing in (A 153a), ( see (A 154a )(A 154b ) ), 

[2·T·(1i<:;) · (sin p/2)2 · b„J "' 10-5 mm ,.., 0
- � e, =e, 0 

In case, T is replaced by the model poten tial M = T - B, (see 

(A 154c) 

(145) of section 7), the amount of (A 154c) has to be multiplie d  with a factor of about
10 ; a negligible amount reveals,furthermore •

E" E" 1 

e, 
0 

\ b2 

[ 2 · T · ( s in p / 2 ) 2 • b 2 ] 

u 

e, .. 
u 
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Summarizing, the amount of E1
1 can be neglected, 

Hence, with (A 150) (A 151) (A 153) (A 153b), 

E(2,1.2,1.2) (A) (E) (- 2),b
2

, q6, d e'· d A 

with 

q6 = T·(sin p/2)·(1/R') + ( sin p/2)2 ,('c>T/'c)e')

The estimation of the average aJJ1ount of E(2,1, 2,1. 2) is now the work 
which is to be done. 

(A 154d) 

(A 154e) 

In this context, the following paraJJ1eter values are introduced in the 
integrand of (A 154d) (A 154e): 'J'/G = 0,05 km; sin p/ 2 = ( 20 km/ 6000 km); 
1/R' = (1/6000 km); (1/G)·(J•rjc)e') = (0,05 !an/ 1000 lan); 
b2 = (1/J)-x3 = (1/3) • (3 lan / 30 lan)3; d e' = 100 1cm, 

These data reveal 

q6/G ';;{ (0,05 km)· (1/ 300) ·(1/6000 km) + (1/300)2 · 5. 10-5 

thus, 

Consequently, (A 154d), 

(1/G) ·1(1/2 'ii')•E(2.1.2.1.2)I 2 · ( 1 / 3) , ( 1 / 1 000) · ( 1 / 4) , 1 o-?, 100 km, 

or 

(1/G) 1 (1/2'iY) ·E(2.1.2.1, 2) 1 = (1/6) · 10-2 millimeter .

If 'l'/G is replaced by M/G, again, a mul tiplication by the factor 10 will 
bring about·this transformation.A value of (1/60) millimeter is now the result, 
always to be neglected. 

In order to avoid misleading deliberations, the nearest surroundings of 
the test point P, up to a distance of 1 km or 2 km, are now especially 
considered, for the case of steep cliffs of I x 1 > 1, For I x 1 >1, the 
series development for b1 cannot be applied, (A 152c), The closed
expre ssion on the right hand side of ( A 152c) is nON of u·se. 

For 

z 
HQ 

;_ H'

X = = - 1 ' 
e' e,

(A 152c) leads to 

b2 = (1/2)1/2 + arsinh (-1) ' 

-.: ~: ·, 
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or, 

0.101 - 0.881 - 0.174 (A 154f)

Integrating in (A 154d) over the interval
b

2 
= - 0.174, T/G = 0.05 Jan, d e' = 2 km, 

O .,;;:; e' ,,;; 2 1cm, we choose these data: 
sin p/2 = (0.5 Jan/ 6 000 km) (5/6) • 10-4•

Wi th these data, i t follows that the integration over the domain e' � 2 Ion 
takes the following share on the amount o f  J (1/2 11) ·E(2.1. 2.1.2) ( • (1/G)
(see (A 154d)),

(-2)·(-0.174)·(0.05)·(5/60000)·(1/6000) 2 lan = 5 • 10-4 millimeter . 

The transi tion from T/G to M/G leads to 5 • 10-3 millimeter.

Also the very extreme case of x = - 10 brings no trouble. b2 is computed
by

- arsinh 10 1 

or, 

0.995 - 2.998 � - 2. (A 154g)

arsinh x is an odd functton. 
A comparison of (A 154f) and (A 154g) shows that now, for x =-10, the amount of
the integration over the domain e' � 2 km is about ten times ,;;:;reater. 
A value of 5 • 10-3 millimeter, resp, 5 • 10-2 rnillimeter1 j_s now the cons equence. 
It is alv,ays negligible - this amount of (1/G)·3(2,1.2,1,2) - , even in case of very 
steep cliffs of x =-10, too. 

'l'hcre fore, in the s ubsequent deductions, it is alJ.orred to put

2(2.1.2.1.2) o. (A 154h)

Conseq_uent ly, (A 146) (A 149) (A 154h), 

E(2.1.2._1) (A) (E) T·xJ·(1 + x2)
-3/

� (sin p/2)·(1/R) · de'·dA (J\ 155) 

e 1 < 1 000 Jan. 
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14,6,112.2. The formula for E(2 .1.2.2) 

E(2.1.2.1) according to (A 155) is t he first term in.the expression far 
E(2.1.2), (A 141a). The second term. is E(2.1. 2. 2), it is defined by the 
equation (A 143). E(2.1.2.2) is divided into two parts, since q5 
consists of two parts of different kind, (A 143a). Hence, t he decomposition 

E(2.1.2.2) = E(2.1.2.2.1) + �(2.1.2.2.2), 
is 
(A 156) 

with the constituents 

E(2.1.2.2.1) = )( T·[1 + (x 11)
2 ]-1

1
2

. (sin p/2 ) ,{z/(R 1,e•2 •x')f •dw
' 

(A 157) 

w 

and 

E(2.1.2.2.2) = - ��T·[1+(x 11)
2 J-1/2

. (sin p/2),(cos p/2)2 :(fJx/8e•),{ 2·Z/(e'�x') fdw.

w 

At first, the consideration of E(2.1.2.2.1) is in the fore, (A 157). 
In the integrond of (A 157), the height dependence is brought to bear by the 
expressions Z/R, (x") 2, and by x'. 1rhere do not appear any derivatives 
of height de pendent terms, o.s 'dx/ c) e' for ins tance. But, to stress the 
essence of the deliberations about (A 157), it is of g reat importance for 
our applications that the form (A 157) can be divided into two parts of 
different kind. The constituent of the first kind needs only an integration 
over the near surroundings of tre test point P, (A 148a). But, the 
constituent of the second kind requires an extension of the integration over 
1-,hole the globe; p covers the interval from o0 to 180°, in the latter kind.

(A 158) 

The rearrangements of (A 157) happen along the following self- explanatory 
lines, 

e 1 = 2 ·R 1 •sin p/2 , 

sin p/2 = e' / (2·R') 

X = Z/ e' 
, y2 = 1 + x 2 � 1 , 

x' 1 + x 2 + Z/ R 1 , (A 158a) 

x" = x-(cos p/2) 

Tre above 6 equations are rigorously valid. Neglecting. a relative error 
of the order of Z/R', x' f ollows as 

x' � 1 + x2 (A 159) 
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Further on 1 

(x" ) = x •(cos p/2) = x , 1 - (sin p/2) 2 2 2. 2 [ 2
J

+ (x 11) 2 = 1 + x2 - x2 ,(sin p/2)2 

1 + (x 11 ) 2 = (1 + x2){ 1 - x2 , (1 + x2)-
1
, (sin p/2)2 ] 

x2 (sin p/2)2 = (Z/e 1 )2 ·(e'/(2 ·R'J)2 =[Z/(2 -R')] 
2
, 

1 + (x 11) 2 
= (1 + x2)•[ 1 - (1. + x2)-

1
-{z/(2 ·R')}

2

J 

2 

{z/(2 ·R')} -;; (2 lan//2 • 6000 1cml "' J. 10-
8•

2 

Thua, neglecting a relati ve error of smaller than {z/(2 ·R')} � 3 .-10-8 ,
1 + (x") 2 has the following approximate formula valid over whole the globe

1 + (x 11 ) 2 1 + x2 
( p = o

o
, • • •  t 180° ) • 

With (A 159) and (A 160), (A 157) turns to 

E(2 .1.2 , 2.1) (( [f 2 -J/2
=

) 
T· (1 + x ) - 1} + 1]-(Z/R')-[ 1/(2 •R'-e')Jdw

(A 159a) 

(A 160) 

(A 161) 

The integrand of (A 161) is right vdthin relative errors of the order of 
the precision of (A 159)). 

Z/R', (see 

The expression in the parentheses 
growing.di stances from tro test point 
of the first kind in the integrand of 

f� of (A 161) diminishes rnpidly for 
P. It gives rise to the consti tuent 

(A 161). Fur>ther, i t  is satisfied wi-th 
a limi tation of the intee;ration domain to the near surroundings of the test 
point P, only. 

The rest of the integrand of (A 161) gives rise to the constituent of the 
second lcind, i t requires an extension of the integrations over whole the 
globe. 

The division of (A 161) into these two consti tuents leads to the following 

form,(A 162) 1 considering (A 125a) and 

(A) (E) '\V· dw (A 161a) 

Thus, such a form a s  that on the left hand side of (A 161a), which contains 
the surface elerrent dw, 

-
even by putting the symbol dw - , this form points

out the necessity that it requires the extension of the integrations over 
whole the globe. 

w 
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Hence, 

E(2.1.2 . 2 .1) = (A) (E) T·[<1 + x2)-312 

- 1J(z/R')·(1A2 •R 1J) ·de', dA +

+ (A) (E) T•(Z/R')·[1/(2·R'·e•)]- dw

Same short lines will show that the first integral on the ri1;ht hand 
side of (A 162) can be neglected, a lways; since, substantially 1 it does 
contain products of x

2 
time Z/R 1, 

Sure I in this first integral on the ri�ht hand si<le of (A 16 2), the

( A 162) 

integrati on is intended for the near rurroundings, only,(if e'> 1000 km: (x�Z/R')".;' 0), 

e' < 1000 km. (A 1GJ) 

In the concerned integrcmd, the ter1;1 in the brackets diminishes rapidly 
for growing values of e'. How, the amount of this integral is 
evaluated. At first, the doniain (of the first integral on the right of (A 162) ) 

O�e•�5km 

is considered, 'l'he pe.rame ter dnto. :::re chosP.n ::is follows: 'f/G = 0, 1 km, 

/ (1 + x2)-J
/2 

- 1 1 � 0,5 (for stccp cliffs), 1 Z j 2 km. 
Integratil'\s over tlle are�� of (i\ ·164), the fi rst integrnl 011 the risht hand 
side of (A 162) yields, multiplied \"!ith (1/G), 

(0.1 lan)•0.5·(2 lan/6000 krn),(1/12 ooo lan)•5 !an t;to.001 cm 

ilow, the same intecrnl is ev2luated, but fo r the domain 

1 0 km � e � 1 00 km 

Here, the parameter ctnt::. cire es follows: •:J:/G = 0.1 km, 

( A 164) 

(A 165) 

U 166) 

J (1 + x2)-312 - 1 J-;;. (J/2) • x2 � 0.01 (the here applied series is valid for

x2 
<< 1) , j Z 1 2 km. lnte:;rating over the 3.rea (A 166), the first 

integral on the rit;ht lwnd side of (1\ 162 ) contributes, (multiplied v1ith 
1/G), 

,v 

(0.1 lan)·0.01 ·(2 km/6000 km) ·(1/(12 000 km))·90 km= 0.0002 cm 

Summarizing (A 164) (A 165) (A 16G) (A 167), the first integrand on 
the right hand side of (A 162) will hardly surmount the vruue of 0.001 cm. 
It can be neg lected, consequently. 

In case 1 the perturbati on potential T is replaced by the model 
potential Ivi (according to equati on ( "145) of the section 7), we have to 
multiply with a factor of about 10 in the results of (A 165) and (A 167). 
The thus obtained results amount to 0.01 cm resp. 0.002 cm; they are 
negligibie, likewise • 

(A 16'7) 
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Con sider ine; the above lines, (A 165) (A 167), the relation (A 162) turns to 

E( 2.1.2. 2.1) = (A) (E) 'l'·(Z/R){1/(2·R·e')]. dw • ( A 168) 

(A 168) has a shape convenient for numerical calcu lations. 

Nöw, the exp ression for E(2.1.2,2,2) is in t he fore, (A 158), 
'/lit h (A 159) Emd (A 160), t he subsequent rel::::tion comes o u t, neglecting 
relative err or s of the order of Z/R, 

-J/2 
E(2,1,2,2.2) = - (A) (E) 'l.'·(1 + x 2) • (cos p/2) 2 - (Z/i{)·(1/e')·(8x/�e•), dw, (A 169) 

furthe r, it follows 

E(2,1, 2,2,2) = - (A) (E) (T/R)•(cos p/ 2) 2 •x·(1 + x 2)
-

J
/

: (c>x /'t)e 1 ). dw, 

'fhe foll owing l ines are sel f - explanatory, 

dw = R 12 -(sin p) · dp, dA, 

de' = H' ·(cos p/2) • dp 

de '/ dp R' • (co s p/ 2), 

dp/ de' 1/(R'.•cos p/2) 

c) x/';) e 1 ('clx/clp), ( d p/ de') 

cl x/ 'cl e' (cJx/ �p) [ 1/(R' · cos p/2) J 

( A 170) 

(A 171) 

(A 172) 

(A 173) 

(A 174) 

The relations (A 170), (A 171), an d (A 174) a re combined tt> 

2 
-J/2 

E(2.1.2.2.2) = - (A) (E) T·(cos p/2)•(sin p)•(1 + x) · X•(c)x/'Ö>p) • dp • dA. (A 175) 

If, in (A 175), on ly t he int egration with regar d to the parameter p is 
cons idered, befo re the integration over the azim uth A, the fol l owing 
integra l is obtained, 

E''' 

- )
p=0 

2 -J/2
'l'·(cos p/2) ·(sin p)-(1 + x )  · x•(clx/'elp) • dp 

The rela ti on (A 176) is  tran sfo rmed by the method of th e integration by 
parts, av oiding forms a s  c)x/'c)p . Hence,• 

p = 'ir 

p=0 

( b 
J 

· ( d a/ i) p) · dp ; 

p=0 

(A 176) 

(A 177) 

= 
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- T • (cos p/2) • sin p, 
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'cla3�e>p = - ('vT/-;;Jp),(cos p/2) · sin p + (1/2)·T·(sin p/2)·sin p - 'l.'•(cos p/2)cos p, 

(1 + x 2)-11 2 , (A 178)

2 -3/2
x•(1 + x) • (1Jx/ clp).

Consequently, for (A 177), 

[ 
2 

-1/2
] E"' = - '.r•(cos p/2)•(sin p)· 1 - (1 + x )

( b) · ( cla/ c)p) · dp.

p=O 

p=O 

As to the first ter m  on the right hand side of (A 179), in the two cases 
· p O and p = 'i,' , the functi on (sin p) is equal to zero. 'l'hus, the fi rst 

term on the right hand side of (A 179) is equal t? zero. The relation (i, 1'79) 
turns to 

E' t' ) b 3 . t 1 • ( sin p) · dp

p=O 

with 

t1 =(cos p/2)-(cl'l.1/clp) + [<cos p/2) ·(cot p)- (1/2)•(sin p/2)]. T 

(A 171), (A 175), and (A 180) yield 

E(2.1.2.2.2) = (A) (f) b • t • ( 1 /R 1 2) • dw3 1 

This above integral ,(A 181) 1 is now evaluated for t he more distant area of

e' > 1000 km 

In the integrand of (A 181), the function bJ = bJ (x) appears. 
The averaged value of b

3 
according to (A 178), averaged over the exterior 

domain of (A 182), cart be computed by the following self - explanatory line, 

bJ "'(1/2)•x2 

b3 "' 2 • 10-S 

2 
� (1/2)·(2 km/ 10 000 km) , 

(A 179) 

(A 180) 

(A 180a) 

(A 181) 

(A 18 2) 

= 

b = 1 3 

'ii 
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Further, 

(1/G),('dT/vp) = R·(1/G)· (�'l'/ (R clp) 

on t he right hand side of the above equation stands ,i coraponent of the plumb-line
deflection, multiplied with the Earth's radius 
of 20'', it follows,

H, Fora deflection component 

( 1/G) · ( 'd T/'c) p) R•(20 1 '/ 206 265' ') rJ -4 = R•10 , 

In the computation of a rough mean value of t1, (A 180a), averaged over the 
domain of (A 182), it is allov:ed to operate 1-✓ith the subsequent mean values 
for cos p/2, cot p, and sin p/2,

cos p/2 "' 1' cot p 1 , sin p/ 2 

'l'hus, for ('r/G) ';; 0,1 km , the concerncd avcraged value of (1/G) • t1 is,
(A 180a), 

(1/U)· t1 -)-- R. [ 10-4 + (0,1 km/ 6000 1cm)] 

or, 

(1/G)· t1 --R · 10-4 

'l'he cor.cerned averaged value of (i/G), b3 · t1 follows by

'l'he integrati on according to (J, 181) is now replaced by a surrsnation over 
the compartments Llv, of a division of the 8arth' s surface by a n,,t of meshes 
of 1000 km x 1000 1cm size, Thus, it is self-explanatory,

= (1000 km/6000 km) = 1/36

Hence, (A 182a) (A 182b),

A comparison of (A 183) and (A "181) shows that the term of (A 183) is the
averaged ::unount a single compartment of. 1000 km :ic 
the v:üue of (1/G)·E (2,1.2,2,2); here, a value of 

1000 lern size exerts on
(1/3) · 10-3 millimeter

is reached, V/hole the surface of t he Earth has nn extension of about

(A 182a)

(A 1132b) 

(A 1fl3) 

500 millions km 2, Tlms, a number of about 500 compartment s of 1000 Jan x 1000 km
size come into question, lt will be justifiable to introduce the hypothesis
the function t1/G to vary between the individual compartments similarly as
a random variate, (A 180a), 'J:hus, the error-effects of the individual 500 
compartments propagate to the impact on the sum of these 500 compartments by
the square root law, it is plaudble, Hence, in (A 183), we have_ to multiply
with (500) 112 � 22

(1/G) · b~ · t --2 R • 10- 12 
.:, 1 

(·J/1 8 ) · R · 10-12 • 
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in order to find th e average amount of E(2.1.2.2.2), according to-(A 181). 
This amount results to be equal to 0.007 millimeter, 

2'iY 'iY 

� 
\ b3

,t1 •(1/R' 2) • dw ,,._0,007 •m 

A=O P1 

p1 = (1000 lan/ R) 
,.., 

( 1 /6) 

A transition from the perturbation potential 
poten tial M = T - B in (A 18 0a) and (A 184) 

T to the model 
is accompanied by a multi-

plication wi th a factor of about 10, since the order of M is about 10 
times the order of T, (see equation (145) of the section 7). Thus, fuis 
substi tution turns the amount according to (A '184) from 0.007 millimeter­
to 0.07 millimeter, always negligible, too. 

Ther.efore, it is not neccssary to integrate in (A 181) over the domain 

(A 184) 

(A 184a) 

(A 182). Thus, the integration of (A 181) has to cover only the near surroundings 
of the test point P, 

e' < 1000 km • 

The integrand of (A 1ß1) has still to be adapted to th is speciality, 
putti ng 

cos p/ 2 ';! 1, 

cos p ,;; 1, 

sin p/2 = e' / (2 R'), 

sin p tv e'/ R', 

dw r;: e 1 
• de' . dA 

Wi th the above line s i t 1 of (A 18 0a) turns to 

t1 �clT/'<)p + [(R'/e 1 ) - (1/4)•(e 1 /R')] 'l'

(A 184b) 

(A 184c) 

In t he brackets of (A 184c), the fi.rst term dominates the second one; hence, 

t1 -;;:;'c)T/clp +(R 1 / e 1),T

(A 181) and (A 184d) give 

b •t ·(1/R 12)•dw 3 1 

for the constraint (A 184b) given above

bJ [('clT/-c>e•).(e 1 /R 1) +'l'/R'}de 1 •dA

E(2.1.2.2.2) turns to 

E(2.1.2.2.2) = (A) (E) bJ f<. rJT/ c)e 1). (e 1 /R) + T/R J de 1 ,. dA

(A 184d) 

(A 185) 

= 
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With (A 168), we have reached E(?.,1.2.2.1). With (A 185), E(2.1.2. 2.2) is 
found. 'l'h1;1s, E( 2 .1.2.2) is obtained, it is the aim of this sub-section, - (see (A 156)). 

It will be of interest to know the order of the amount of E(2.1.2. 2.2) 
according to (A 185). Here, a test point P situated in the high mountains 
comes into question,' only, since

1 

thi upper bound of the value of E(2.1.2.2.2) 
should be evaluatcd. This eval uation of the amount of t::(2.1.2.2.2) for steep 
clif fs _happe,tS by thu following data: e' < 2 krn, :x2 = 1, 
bJ = O.J, (1/G)•('c>T/cle') = ?.O"/ 206 26:.i", T/G = 0.05 lan, and

(e 1 /R) = ( 1 Jan/ 6000 km) as an avcragcd value. (A 185) yieldfJ in a self­
explanatory way, 

(1/G)·(1/2 '.t), E(2.1.2,2. 2 ) ';:o • .3-[10-4-(1/6000) + (0.05 kut/GOOO lan)J2 km.

In the brackets, the second term dominates, 

( 1 / G) , ( 1 /2 \i' ) • E ( 2. 1 , 2. 2. 2) � O. J • ( 5 / G) · 1 o-
5 • 2 Jan ';;' o. ;i cm • ( A 186) 

The exchange of the 
value of about 5 cm. 

'l' potential by the model potential M gives here,(A 186), a 

In very rugged rnountmns only, (1/G),(1/2'il') • E(2.1.2,2,2) wDl su:mnount 
the valuc of 1 cm, 

ln (A 186), the ter·m E(2,1.2.2,2) is considcred aftcr the multiplication 
with the fnctor (1/G) • (1/211). On the strene;th of thh; fact, the amount of 
0,5 cm ob-Lo.ineu by (A 136) e;ivcn cl.irec.tly the fulJ impac.t whjeh E(2,1,2,2.2) 
exerts on Lhe he:i.t;ht snomaly of the test point P, as c2n be seen by the 
e,1t1ation (1\4) of the section 4 and by (A 106). (1/2 •i,') • E(2, 1.2 .2. 2) is 
iden1;ical with the effect that E(2 ,1,2.2.2) takes on th e 'l' value at the test 
point P. 

'l'he equations (A 156), (A 168), and (A 185) yield 

E(2.1.2,2) (A) (l!'.) bJ -� c)'l'/�e•),(e1/R) + 1'/RJde' · dA + 

+ (A) (E) T•(Z/R),[1/(2 ·R·e•)Jdw •

14.6.1.2.J. 'rhe final expression for E(2.1.2) 

Tho rel:c.tions (A 141a), (A 155), a nd (A 187) are combined, They give 

E( 2 .1.2) (A) (E) ('c>T/cle 1 ),b •(e'/R)•de' · 
J 

dA + 

+ (A) (E) ( 'l' /R) · [ bJ + b 4 J · de 1 • dA + 

+ (A) (E) 'l'·(Z/R)·[1/(2··H·e 1 )],dw 

(A 187) 

(A 188) 
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with 

2 -1/2 
= 1 - (1 + X ) 

-')/2 
x 3 •(1+x 2) · (sin p/ 2) 

14.6.1.3. The final fo rmula for E(2 .1) 

140 

(A 189) 

( A 1 90) 

The expressions (A 112), (A 119), (A 127), and (A 188) :iead to the subsequent 
formula for E( 2 .1), 

E(2.1) (A) (E) ('c>T/cle i ){b
1 

+ b3-(e'/R)}de' • dA + 

+ (A) (E)' (T/R) ·[ b') 
+ b

4 
+ b

s 
l de'. dA +

+ (A) (E) 

arsi nh x 

T·(Z/R){ 1/(2·R•e•)] • dw 

2 
-1/ 2 

- x,(1 +x) , 

2 -1/ 2 
b

') 
= 1 - (1 +.x ) , 

') 2 -')/2
= X •(1 +X) (sin p/ 2) 

2 2 
-1/ 2

= (1/ 2)•X •(1 +X) 

14.6. 2 . 'l'he developments and decompositions of the. fonnula for E(2 . 2) 

14.6.2. 1 . The decomposition of 2(2 . 2) into express ions in terms of v
1

, v
2

, v
3 

The equations (A 108) and (A 109) deliver the following expression for 
E(2.2), 

E(2 . 2) = )) T•(e 1 )-2 •(X1 + x
2 

+X
')

+ x
4

) • dw •

w 

In case, the integration has to cover �hole the g lobe, the integration 
element is formed by the surface element dw. Here, the subsequent 
abbreviating form is used again, (A 161a), 

."\If • dw (A) (E) W · dw 

w 

where the arguments cover the domain 

O�p �", 

(A 191) 

(A 1 92a) 

(A 192b) 

(A ·1920) 

( A 1 92d) 

(A 193) 

(A 194) 

(A 195a) 

(A 195b) 

-~( -
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14-1 

But, if th e integration extends only over the near environment of the 
test point P, 

0 � p � (1000 Jan/ 6000 km) 

we have, (A 125a), instead of the wri ting style on the right hand side of 
(A 194), the following form, . 

(A) (E) '\f · de 1 • dA • 

(A 193) and (A 1 94) yield 

As to (A 1 97), the precise expressions for the Xi terms have to be 
introduced. They are giv en by (A 83), (A 84), (/1 85), and (A 86). 
I t is convenien t to int roduce a bifurca ti o'n of the sum of the Xi terms; 
the first branch u

1 
is free .of a horizontal deriva tion of the x term, 

but the second branch u2 involves the slope of the terrain.

The following developments are self-cxplana to·ry, 

u
1 

= -(ein p/2) { 1 + (x 11) 2 } 
[ 

-1/2 

- (cos p/2), x"-{ 1 + (:x: 11)2 

{ 
21-1/2 

u2 = - 1 + (x") ! • q . tan n' • 

q = (cos p/ 2)-x1•1 - (sin p/2)-x" • x
2

•1

x
1
•1 = 1 + (x11)

2

{1 + (x 11)
2 J-� { Z/ (2·R)} 

x
2
•1 = 1 - [1 + (x11)

2

] _·,_
{ 

Z/ ( 2 •�) t . 

- 1] - sin p/ 2 -

The tenn tan n', appearing in (A 200), has the following devel oprrent, 
(A 97), 

tan n' = - e 1 ·(cos p/2){1 - Z/R']·CcJx/cJe') -

-(cos p/2}[1 - Z/R'] . x • 

( A 1 96) 

(A 196a) 

(A 1 97) 

(A 1 98) 

(A 199) 

( A 200) 

(A 200a) 

(A 200b) 

(A 200 c) 

(A 201) 

E(2.2) 

· x1 .1 

1- 1 / 2 
r · x2. 1 
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The relation s (A 199), (A 200), a.nd (A 201) imply the following abbreviations, 
(A 158a), 

X = 

x' C 

xn 

y2 

Z/e' 

1 + x2

X •  COS 

1 + x2 

+ Z/R1,

p/2 

. 

Nee;lecting rela tive er.rors o f  the order of Z/R', the term x1 changes 
into these forms, 

x' (1 + x2 ) ·[1 + (1 + x2 )-
1

,{z/R'r], 

x' N + x2 = y 2 

and with (A 159a), 

+ (x 11)2 = (1 + x2)•[1 - (1 + x2)-
1
·(Z/(2·R'))2 ] 

+ (x")2 Y2 [ 1 - Y-2 {z/( 2 ·R' )}2 J 

neglectirlß relative errors of (Z/R)2 

1 + (x11)2 

The relation (A 201) is introduced into (A 200). The form for u2 , 
which is found in this way, is combined with u1, (A 199) . The developmen t 
for u1 + u2 found along the se line s is brought into a certei n o,:der
classifyi]:"\g the tcrms into three type s. The first type is free of the 
topography, v1 • The second type depe nds on z, x, and x", but it depe11ds 

(A 202) 

(A 203) 

(A 204) 

(A 205) 

(A 206) 

(A 207) 

(1\ 208) 

(A 209) 

(.4. ;_\)98) 

not on the horizontal derivative of.x1(2.type:V2). The third type is la elled by v 3 ,v 3 ie
proportional to'c)x/c)e' , Thus, (A 198), tre following rela1ions are 
found, 

- sin p/2 

(A 210) 

(A 211) 

v
2 

= q1 •( sin p/2) + q
2

•(cos p/2) + q3.(cos p/2)2 
+ q4• (sin p/2)·(cos p/2), (A 212)

v3= q5• (cos p/2)2 + q6•( sin p/2)·(cos p/2) (A 213) 

X1 + x2 + x3 + x4 = v1 + v2 + v3. 

v, 

0 

/ 
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Tho developments for q11 q
2

, q
3

, q
4 

have the foll owing expressions,

41 = - [1 + (x 11)2 ]-
11

� [1 - {1 +

q2 = - [1 + (x")2 ]-
11

� x" {1 -f1 

1/2 -1 J 
(x 11 )

2 } + (x11 )
2 ,{1 + (x 11)

2 } ,(Z/2R
J

, (A 21.3a) 

-1
J + (x 11)

2 j -(Z/(2•R)j, 

43 = [1 +

q.3 .1 = [1 
q4 :, - [1

2 ]
-1/2

(x11) • X • 4 . 3.1

1 + (x") 2 
• 

[ J -1/2 

45.1 = 1 + (x tr) 2 ,{1 + (x") 2 } -
1

. i Z/(2 ·R)t

- (2,/rl.) J , 

q6 = - [1 + (x 0) 2 ]
-1

1
2

. q601 • e' {1 - Z/R}x". ( Jx/de')

46.1 = 1 -[1 + (x 11)
2]-1

. fz/(2 •R)� ,

T he relation (A 209a) is inserted into the expressions of (21.3a) to (213j). 
Hence it follows, neglecting relative errors of the order of (Z/R)� as 
in (A 209�), 

q1 ·= - (1/y),[1 - y + (x 11)
2.(1/y) 2 -{z/(2 ·R)1]

q
2 

= - (1/y), x" {1 - (1/y)2 , t Z/(2 ·R)� J , 
qJ = (1/y). x {1 + (x 11 )

2 • (1/y) 2 -f Z/(2 ·R){ J[ 1 - Z/R] ,

q4 = - (1/y) • X •X"•[ 1 - (1/y)2.fz/(2 ·R)r}[1 - Z/RJ

q5 = (1/y)· e••[1 + (x 11 )
2 , (1/y) 2 ·[Z/( 2 ·R)}J[1 - Z/�-{@x/cle'}, 

q6 = - (1/y). x" • e' • [1 - (l/y) 2 ,{z/(2 ·R)J}[ 1 - Z/RJ{c)x/ c)e'l,

q5 turns to, (A 215a),

q5 = (1/y) • e' -[ 1 + {- 2 + (x 11 )
2 . (1/y) 2 -Hz/(2 ·R)t]{tlx/cle'i ,

(A 213b) 

(A 213c) 

(A 213d) 

(A 21Je) 

(A 213r) 

(A 21Jg) 

(A 213h) 

(A 213i) 

(A 213j) 

(A 214a) 

(A 214b) 

(A 214c) 

(A 214d) 

(A 215a) 

(A 215b) 

(A 216) 

In the course of the transition from (A 215a) to (A 216), relative errors of the 
order of (Z/R)2 , - being about 10-7 - , are neglected. The same is valid for
the tran sition from (A 215b) to (A 217), described subsequently, 

.. 
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changes into, (A 215b), 

(A 217) 

From now, the qi values of (A 214a) to (A 217) are used instead of the forma from
(A 213a) to (A 213j). 

Consider ing tre relations (A 213), (A 216), and (A 217), it is possible 
to distinguish into terms which are free of the factor Z/R or not. Along 
these lines, v

3 
gets the following shape 

_q7 e' •(cos p/2)2 - e�•(sin p/2) •(cos p/2)2 . x

q8 - 1 + (1/2)· (x 11 )2 , (1/y)2 + (sin p/2)·x•{1 + (1/2)· (1/y)2 } 

The expressiou (A 218) for v
3 

ca:n be rearranged according to rising
powe_rs of x. Hence I i t follows, consid ering

with 

z X •G
1 

2 ", . 
(cos p/2) · e' · ( CJx/cle') 

(sin p/2)·(cos p/2)2 , e 1 'X· (c'Jx/'c)e 1 )

- (cos p/2)2 · e• 2 · (1/R) · x · (c>x/c)c')

(A 218) 

(A 218a) 

(A 218b) 

(A 219) 

(A 220) 

(A 220a) 

(A 220b) 

(A 220c) 

q1 2 
(sin p/2)· (cos p/2)2 · e 12 • (1/R), x2-[1 + (1/2), (1/y)2J( clx/c

)
e'), (A 220d)

q13 = (1/2),(cos p/2)4 . e• 2 . (1/R)· x3 , (1/;y)2 - (clx/<9e') 

As already mentioned,- see al80 (A 214a) to (A 215b) - , the expression 
(A 220) for V3 neglects such terms which cause relati. ve errors of the 
order o:f (Z/R)2 in v3, (A 209), 

(z;n/ 

'l.'he 11e5lection of ruch terms is justified. 

After the expression _(A 213) for V� is brought into the shape of 

(A 220e) 

(A 221) 

(A 220), the expression (A 212) for v
2 

undergoes a oimilar rearrangement, too, 
at 1·1hich the coefficients q1, q

2
, q

3
, q

4 
come from (A 214 a, b, c,d).

Hence, tlle rearrangement of v
2 

according to rising powers of x l eads to 
(A 222) , 

.) 
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( A 222) 

The terms on t he right hand side of (A 222) have the following representations, 

q14 = (sin p/2 ) • (y - 1) 

q15 = - (cos p/2) ·x"

q16 = (cos p/2) 2 · x 

q17 == - (sin p/2)·(cos p/2) • X·X11 

q18 
- (sin p/2) • (x 11 )

2· ( 1/y)2 · l Z/(2·H)}

q19 
= (cos p/2),x" • (1/y)2 . fz/(2 ·R)}_ ·,

q20 = (cos p/2) 2 · x·{(x 11 ) 2 · (1/y)2 
- 2 }· f Z/(2 ·R') f 

q21 = (sin p/2)•(cos p/2)•x-x"•i(1/y) 2 + 2 /.f z/(2 ·H)f 

From the t er ms q14 ••• q21 , it se rves the purposes to construct 
the followin[; four couple s, regardinr; ( A 2,04) 1 also, 

q22 q14 + q17 

q23 q15 + q16 

q24 q18 + q21 

(sin p/2)·{ y - 1 - (x") 2 f 

0 

(sin p/2) • (cos 
? 2 p/2) �. x · (Z/R) 

q25 q19 + q20 = (cos p/2)2 · x ·f(1/2)• (1/y)2 - 1l • (z/;_{) + 

+ ( 1 /2)·(cos p/2)4 • x3 , ( 1 /y)2 • (Z/R) 

The relations (A 222), (A 223), (A 224), (A 225), (,\ 2 252) co.n 
be combined to 

Returning back to the right rand side of (.� 210), v1hich 3ives the 
sum of v

1 + v
2 

+v
3

: v
1 

has the development (A 211), v
2 

is represented 

by (A 225b), (A 223), (A 225), (A 225a), and, finally, v3 has the
expression (A 220), (,\ 220a,b,c,d,e). 

Thus, returning back to (A 197) and (A 210), obviously, "(2.2) 
can be decomposed into 3 terms, 

E(2 . 2) = E(2 .2.1) + E(2 , 2. 2) + E(2. 2.3) 

(A 222a) 

(A 222b) 

(A 222c) 

(A 222t!) 

(;, 222e) 

(,\ 222f) 

(A 222;) 

(A 2?211) 

( :, '.::24) 

(., 225) 

( 2252) 

(.', ;,:25b) 

(ii 2?6) 
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With (A 197), (A 210), (A 211) 9 (A 225b), a.nd (A 220), the individual 
parts on the rj.ght hand side of (A 226) have the fo llov1ing expressions_, 

E(2. 2 .1) (A)(E) T·(1/e 1)
2 

E(2 . 2 . 2) = (A) (E) T•C1/e 1)
2 

E(2 . 2 .3) = (A) (E) T•(1/e 1)2 

• v
1 

· dw

V2 · dw

V 3 dw 

(A 227) 

(A 228) 

(A 229) 

14.6.2 .2. The formula for E(2� 

The relations (A 211) and (A 227) yield 

E(2 . 2.1) = - (A) (E) T·(1/e•)2 ,(sin p/2) · dw • (A 230) 

0bviously,�(2. 2 ,1) is a pure spherical terrn, it does not irnply the 
topographical heie;hts z.

14.6.2.3. The formula for E(2. 2 .2l 

The treatment of the procedure that shows the way how to compute 
E(2.2. 2) is a short work only. The consideration of the structure of the 
expression (A 225b) representing v

2 
is in the fore, here P (A 228). 

v
2 

has the essential property that the arnount of it diminishes quickly
for growing distances e' from the test point. lt diminishes as 
quick as x2 • a fact that will be delivered by the further lines, (A 2 34) , (A 236 ). 

For e' 
about 10-6 

on the right 

= 1000 km, the runount of x2 vdll be of the order of
• In t he expressions (A 223), (A 225), (A 225a), which appear
hand side of (A 225b), i t is convenient to undertalce some 

t ransformations. Considering 

and 

sin p /2 = e' / (2 ·R 1 ) 

dw � e 1 • de 1 • dA 

Z/R 1 = ( x • e 1) / R 1 

(A 231) 

(A 232) 

(A 233) 

1 + (x»)2 � y2 (A 233a) 

the 1a tter re lation neglects relative errors of the order of ( Z/R ) 2,
according to (A 209) ) , the expression (A 225b) for v

2 
in terms of q2 2_,

q24, q25 turns to the following representation of v
2 

in terms
of q26, q27, q28, it is self-explanatory,
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(1/e•)2 • y ·V· dw =2 

here is, 

= (1/2) · (y - y2) 

= x3 ,(sin p/2)•(cos p/2)2 

2 2 = x •(cos p/2)- • q29

147 

q
29 = { (1/2) · (1/y)2 - 1 � + (1/2) • x2 . (cos p/2)2 · (1/y)2 

The abbreviating symbol b6 is introduced, 

(A 234) 

(A 234a) 

(A 234b) 

(A 234c) 

(A 2J4d) 

(A 235) 

(see also (A 343), being a series for b6 v,ith rising powcrs of x:b
6

=-(3/4)x2+-••o),

'rhe relations (A 234) and (A 235) are combined \'Ji th (A 228). Hence i t 
follows 

E ( 2 • 2 0 2) = ( A) ( l!') ( 'l' /R) · b G • de 1 
• d A  

The expression for b6 diminishes for growing values of e', a s  the 
expression x2 , (A 343). Thus, tre integral for E(2 .2.2) must not be 
integrated for the area .e 1 > 1000 km, (see the integral (A 138) and, 
at that place, annexed to (A 138), the deliberations about the extension 
of the integration d omain). For the integrations according to (A 236); the 
coverage of t he interval O ,;;;_ e 1 ,;;; rnoo km will suffice. 

Consequently, the relation (A 236) is the f inal form of �(2.2, 2), 
convenient for numeric al integraticms. 

(A 236) 

1,1.6.2.4. The f orrnula for E(2.2.J) ,. 

The integral for E(2.2 ,3) is given by (A 229). The intee;rand 
contains the term v

3
• 

14.6.2.4,1, 'rhe decomposition of the formula for E(2.2.J) 

According to (A 220) 1 v
3 

is rep�esented by the sum of 5 terms. 
(A ?20) is introduced into (A 229); wi th this, the two tcrms q10 and q11 
are combined. Alor:g these lines, E(2.2.3) gets a ·form which consists 
of the sum of '.) torms. Hence i t fo llows 

E(2.2,3) = E(2.2 ,3.1) + E(2. 2 ,3,2) + E(2, 2,3 ,3) + E(2.2, 3.4) (A 237) 
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with, 

E( 2. 2.3.1) = 

E ( 2 • 2·. 3 • 2) 

E( 2. 2.3.3) = 

E( 2. 2.3.4) 

Th3 re la. ti orui 
E( 2.2.3) into 

(A) 

(A) 

(A) 

(A) 

(E) 

(E) 

(E) 

(E) 

T·(1/e 1 )
2 ,(1/y), q9

T·(1/e 1 )
2 • (1/y) · ( q10 

T·(1/e 1 )2 •(1/y) · q12 

T-(1/e 1 )
2 ·(1/y) · q13 

(A 237) and (A 237a,b,c,d) 
4 parts. 

14,6.2.4. 2. The for mula for E(2. 2.J.1) 
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· dw 

+ q11) · dw 

dw

dw

define the decomposition 

(A 237a) und (A 220a) give the expression for E( 2. 2.3.1), 

E(2. 2.3.1) = (A) (E) T·(1/e')·(cos p/2) 2 •(1/y)-(clx/'c)e•) · dw 

of 

In the main, thc i�tegrand of (A 238) is linear in x. Sub stantially, 
(A 238) is not square in x. Thm, we have to take int o account a global 
extension of the integration area. The independent variable e' is 
replaced by p. In (A 238), by means of (A 174),' the derivative �x/cle' 
is replaced by dx/ c>p. A short rearrangement follows. Hence, from (A 238), 

E( 2. 2.3.1) = (A) (E) T·(1/2)•(cot p/2)·(1/R)2 •(1/y)•(ch/8p) · dw 

The ter m r)x/ cl p variatcs considerably. Therefore, i t is recommended to 
replace this term by c)'.1'/clp, which variates within narrow limits, only. 
Following up this aim, the integration of (A 239) has to happen by the 
method of too integration by part s. In this context, dw has to be 
expressed by the differentiale dp a,nd dA. Wi th 

dw rt 1 2 · ( sin p) · dp · dA 

the relation (A 239) turne to 

E( 2. 2.3.1) = (A) (E) T · (cos p/ 2)2 , (J/y). ( ';;>x / clp) · dp · dA • 

The integral on the right ha11d side of (A 240a) will be treated 
later on, by the method of the integration 'by parts with the argument P 
ranging from o0 to 180° • In this context, the two func tions � 
and b7 are concerne d. '.l.'he product

is defined to be the int egra�d,of (A 240a). Hence,it follows

1 

(A 237a) 

(A: 237b) 

(A 237c) 

(A 237d) 

(A 238) 

(A 239) 

(A 240) 

(A 240a) 

(A 240b) 
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2 T (cos p/2) , 
= ("&T/clp)•(cos p/2)2 - T·(1/2)·sin p 

= ( 1 / y) . ( ';;J x/ ;) p) 

b7 = arsinh x

X - (1/6) • x 3 
+ - x2 < 1 

The last line corroborates the fact that the integrand on the right 
hand side of (A 240a) is linear in x, in t he main. 

14.612.4.J. The formula for E(2. 2.J.2) 

E(2.2 .3.2) is defined by (A 237b). 
Here is, (A 220b) (A 220c), 

(1/y),(q10 + q11) = - (3/2),(cos p/2)2 ,(e•)2 .(1/R)·(1/y)•x•(cJx/c)e')

The above exprcssion (A 244b) is square in the he ight Z, since the 
product 

x · ( '2J xi 'c) e ' ) 

appears. Thus, in th e intcgration, the argument e' rongcs from O to 
1000 Ion, only. In this area, a plane co-ordinate system is an adequate 
approximation. Consequently, 

dw � e 
1 • de 1 • dA

(1/c•)2 . dw ';;! (1/e•)2• 2 ·R';(sin p/ 2) • de'· dA.

The combi nation of (A 244b) and (/\. 244d) yiclds 

(1/e')2 . dw. (1/y). (q10 + q11 ) = 

= - 3•(sin p/2) •(cos p/2)2 . (1/1) • x • (8x/'de 1 ) •de', dA 

Hence, 

lA 241) 
(A 242) 

(A 243) 

(A 244) 

(A 244a) 

(A 244b) 

(;, 24.4c) 

(,\ 244d) 

(A 244e) 

2 
E(2.2.3.2) = (A) (E) (-3)•T•(sin p/2),(cos p/ 2) · (1/y).x,(c)x/c)e•) ,de'• dA. (A 245) 

Here, the inteßration by parts has the followine; substitutions (rcgardin5 
the relation (A 173) for dp/ de') , 

a8 = - 3·T·(sin p/2), (cos p/2)2 

�a8/'cle' = - 3·( dT/'c)e').(sin p/2)-(cos p/2)2 -

- 3-T•{c)ßsin p/2)· (cos p/2)2]/c)p(·(dp/de') 

For the term in the parentheses { 1,of the above equation, thc followinc; 
rearrangement is self-explanatory, 

(A 246) 

(A 246a), 

.... , 
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'r>{(sin p/2) · (cos p/2) 2 f/c)p 

= (1/2) ·(cos p/2)• (cos p/2) 2 - (sin p/2)·2·(cos p/ 2),(sin p/2) ·(1/2) = 

(1/2)· (cos p/2) 3 - (sin p/2)2 ,(cos p/2) 

(cos p/ 2) ·{(1/2) • (cos p/2)2 - (sin p/2)2} 

(cos p/ 2)•(1/ 2)·{1 - J·(sin p/2) 2 } • 

WHh (A 173), the second t,�rm on the rißht ho.nd side of (A 246a) turns to 

- (3/2)·(T/R) • { 1 - J·(sin p/ 2) 2 } 

(A. 246b) is introduced int o (A 246a), 
hence · i t follows 

(A 246b) 

c)::i3/'8e• = - J,(oT/'cle')·(sin p/ 2),(cos p/2) 2 - (J/ 2)· ('l'/H.)·{1 - J•(sin p/ 2)2�.(A. 2 41) 

Further, regardi]"\g (A 245), 

clb8/ c)e' (1/y), x,('clx/c)e•) 

thc serie c development for t8 is 

b8 = l 1 /2) · :x:2 (1/8) · x4 
+ - • • • , x2 < 1

(A 24?,a) corroborates that the terra b8 diminishes as quick as 
for rising e' values. 

14.6,2,4,4. The formula for �(2.2.J,3) 

X t 

E(2.2. J.J) has thc expreosion of (A 237c). Trn terrn q12 comes from 
(A 220d). (A 220d) and (t\ 244d) are combined to 

(1/e 1 ) 2 •(1/y),q12 
• dw 

(i1 248) 

(A 249) 

(A 249a) 

= 2·(sin p/2) 2 -(cos p/2) 2,x2 •(1/y)•{1 + (1/ 2),(1/y) 2 {'(8x/c)e•) ·de', dA • (A 249b) 

Since (A 249b) implies the term x 2, tho intcgration must not range further 
thni. to e 1 = 1000 km, (A 2J7c) and (A 249b) lead t o  

E(2.2.J.J) = (A) (l.'.') '1'·(1/2)•(sin p) 2 . (1/y).[1 + (1/2) ·(1/y) 2 }-x2 • (Vx/ oe') ·de'• dA. 

(A 250) 

2 
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Here, the integration by parts makes use of the following substitutions: 

a
9 

= ( 1/2) · 'l' ·(sin p) 2 (A 251) 

in the derivation of a
0 

wi th regard to e 1, (A 251), the following 
expression appearc, obviously, (see (A 173)), 

{'d(sin p)2/vp }·(clp / de') 
2·(sin p)•(cos p)·{1/ (R•cos

_
p/2)1= (4/R)•(sin p/2)•cos p.

Hence i t follows, 

c>a9/'cle 1 = (flT/'de 1 ),(1/2)•('sin p) 2 + { lr/R)·2·(sin p/2),cos p,

The rest of t:00 integrand of i\'(2.2,3,3), (A 250), left over by the 
term 

�b9/cle 1 = { (1/y) • x 2 + (1/2)· (1/y) 3 , x 2 1• (clx/cle 1 )

'rhe intee;ration gives 

b9 = (1/2)· x 3 , (1/y)

i t has the series developincnt 

o9 = (1/2) · x3 + - 0 0 • , x 2 
< 1

·riie amoun t of b9 diminishe s very quickly f'or grov1ing value s of e'
Thus, the 1 imi tat ion of the int e gra ti on in the cap of e ' < 1000 km
is justHied, (A 2 50). 

14,G,2,4.5, The formula for 8(2.2,3,4) 

The term E(2. 2.3,4) is represented by (A 237d). '.l.'he term q13
appearing in (A 237d) has the exp ression (A 2 20e). 
Consequen tly, (A 244d), 

2 (1/e') •(1/y). q13 .. dw

(sin p/2)·(cos p/2)4·(1/y) 3 . x3 - (8x/c>e•), de' ·dA 

Hence i t follows, 

(A 252) 

(A 253) 

( /\ 254) 

(t, 254a) 

(A 254b) 

E(2.2,3,4) = (A) (E) 'l'·(sin p/2)·(cos p/2)4 . (1/y) 3-x3 - (8x/'8c 1 )--de' • dA, (A 255) 
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Here, the integration by parts comes a bout by the following substitutions 

a10 =.T•(sin p/2) •(cos p/2) 4 

In the. derivation of a10 wi th regard to e 1, the following expression ia 
needed, (A 173), 

[ 'd{(sin p/2) • (cos p/2) 4 / /0p}( d p/ de' ) = q30 f 
1/ (R•cos p/2)} , 

with 

(A 256) 

q30 (1/2)· (cos p/2)·(cos p/2) 4 + (ein p/2)· 4 ·(cos p/2)3. (- sin p/2),(1/2).

Thus, 

q30 {1/(R·cos p/2)f = (1/R)·i (1/2)• (cos p/2) 4 - 2 (sin p/2)2 ,(cos p/2) 2{=

= (1/R)· (1/2) · {<cos p/2) 4 . - (sin p) 2 }

Hence 1 _i t follows by the derivation of (A 256) 

'c)a10/'@c 1 = ('dT/'c) e'). (sin p/2). (cos p/2) 4 + l T/(2 ·R)r f (cos p/2)4 - (sin p) 2 ( .(A 257) 

.The reot of the integrand of E(2.2.J.4), le ft over by the term a10, has the 
following shape, 

The inte;;ration of (,\ 258) gives 

b10 = y + (1/y) - 2 

i t has the series devel opment 

b10=(1/4)•x4 -+ x2 < 1

b10 implies the term x4 • Thus, the integration range does not need 
to surpass an up per bou nd of e' = 1000 1cm. 

1 4.6.2.4.6. The integration by parts 

1,ow, the· intec;ration by parts of the integ ral e for E(2.2.3.1), 
�(2,2,J.2), E(2,2.J.3), and �(2.2.3.4) is niscussed, (A 239) (A 2 4 5) 
(A 250) (A 255), If the j_ntegration 1'anges from p = o0 to p = 180 °,
the ic;pllerical distance p serves as t he independen t variable arg ument. 
If thP integration procedure covers only the cap around the test point P 
o:f 1000 km radius, the leng th e' of the ch ord is the independent 
val'L1ble argument. 

( 

(A '258) 

(A 259) 

(A 259a) 
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In the course of these different examples of an integration by parts, 
now to be developed, in the fir st step, the integration over the values 
of the azimuth. A is not considered. This integration is considered in 
the succeeding second atep, later on. During the first step, it is 
spli t off. 

Considering (A 194) and (A 196a), the symbolic relation (A 260) is 
int roduced, 

l 
A 

dA = (A) ,. dA l or, 

211 

1 / • dA • (A) ,� • dA, 

A 

The four expressions E(2.2.3.i), (with i = 1,2,3,4), are represented 
by four integrals. If the integration over th3 azimuth A is split off, 
tre remaining integrals W(i), (i =·1,2,3,4), have the integration with 
regard to p or e', only. Hence, t he expressior.s for E(2.2.3.i) can be 
wri tten in the following shape 1 (A 260) , (A 24-0a) (A 24-5 )(A 250) (A 255), 

E(2.2.J.1) = (A) W(1) · dA 

E(2.2.3.2) (A) W(2) · dA

E(2.2.3.3) (A) W(3) · dA

E(2.2.3.4) (A) W(4) · dA

The integrations in the global domain 0�P�", or I alternately , 
in the domain of the cap 0�e• � 1000 km, are denoted symbolically by 

(E) dp = 

\ 

dp; resp., (E) de' =
\ de' 

p=0 e'=0 

Th us, the 4 functions \'l(i) can be b rough t into the following shape, 
(A 261) to (A 264), (A 241) (A 243), (A 246) (A 248), (A 251) (A 253), 
(A 256) (A 258), 

W( f) 

de' 

de' 

W(4) 

The procedure of the integration by i:arts is governed by the 
following relation, i t is well-lmown from the text-books, 

(A 260) 

(A 261) 

(A 262) 

(A 263) 

(A 264) 

(A 265) 

(A 266) 

(A 267) 

(A 268) 

(A 269) 

= 

= 

= (B) 87 . ( rJb7/ ~p) dp, 

W(2) = ( E) 88 · ( ~b8 / 'cle 1 ) ' 

W(3 ) ( E ) 89 -(~b9/ 'c)e' ) 

= (E) 81 0 ·( 'db10/'c) e') • de'. 
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(A 266) and (A 270) give 

W(1) = W(1.1) + W(1.2) 

W(2) = W(2.1) + W(2.2) 

2R' 

p=0 

e'=0 

W(J) = 'II( 3.1) + W(:3.2) 

2R 1 

e 
1 =0 

W(4) = W(4�1) + W(4.2) 
2R 1 

e'=0 

W(4.2) = -(E) b10 · ( @a10/'0e') de'

At first, W( 1) i s  considered, (A 271). 

The formula fo r Y/(1.1) contains the term(a7• b7) for th e upper
bound p = 180° . The cosine function (cos p/2) is equal to zer o for
p = 180°. Thm, a7 is equal to zero at the upper bound, also.
Consequently, (a7 · b7) is equal to zero for p = 180° . Hence 1it  follow.s

W(1.1) = -{T•(cos p/2) 2 • arsinh x} 
p=0 

(A 270) 

(A 271) 

(A 271a) 

(A 271b) 

(A 272) 

(A 272a) 

(A 272b) 

(A 273) 

(A 273a) 

(A 273b) 

. (A 274) 

(A 274a) 

(A 274b) 

(A 275) 

, ,,r 

• 
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The term on the right hand side of (A 275) necessitates special
deliberations, similar as (A 121) and (A 122). These deliberations are
governed by three facts. At first p \T,(cos p/2) 2 } tends to the constant
value (T)p, the value of T at fue test point P, if p tends to 
zero. Secondly, the function arsinh x, is an odd function,

arsinh X arsinh (-x)

Thirdly, the expression
terrain in the azimuth
tends to zero.

x tends to the val ue of tho slopo of the
A, at th e place of the test point P, if p

Thus, (A 275),

W(1.1) = - (T)p •{arsinh x} 
p-o

And, consideri� (A 122),

1'1(1.1) 
• 

(T)p •arsinh (n1 · cos A + n2 • sin A) 

n1 and n2 are constant values. Before the background of (A 276), the
foll owing equations are important, / 

cos (A + 180 °) - cos A

sin (A + 180 °) = - sin A

Consequently, regarding (A 276),

arsinh (n1 • cos A + n2 , sin A) =

- arsinh (n1 • cos (A + 180 °) + n2 sin (A + 180°))

Thus, (A 278) (A 279), if c is the vaJ. ue of V/(1.1) for the azimuth A, 
then, - c is the value of W(1.1) for the azimuth A + 180 ° . Coraoquently,
it is obvious that. the integration of the expression (A 278) over the füll
range of the azimut h A, (_ O � A � J60 °), will lead to the, followi. ng relati.on,
(A 261),

(A) W(1.1)·dA = 0

(A 280) is right·, because the '.';( 1.1) value for the azimuth A
the azimuth A + 180 ° will cancel each other.

and fbr

Hence, the expre:,sion for E(2.2.J.1) gi.ven by (A 261) turns to (A 281),
regarding (A 271) (A 280) (A 271b) (A 244) (A 242),

(A 276)

(A 277.)

(A 278)

(A 278a)

(A 278b)

(A 279)

(A 280)
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(A) W(1) · dA = (A) W(1)0, dA.+ (A) W(1) ·dA , 
00 

(A 281)

with the following two equations (A 281a)(A 281b), integrating over whole the globe,

W(1)0 = - (E) ( c>T/ c)p) · (cos p/2)2 . (8rBinh x) • dp

V/(1)00 = (E) (1/2)·T•(sin p)·(arsinh x). dp 

Now, W(2) is considered, (A 272). 

The formula (A 272a) for V/(2.1) contains the product (a8 · b8)for the 

(A 281a) 

(A 281b) 

argument e' = 0 1 (i. e. p = O). For p = O, b8 is finite, (A 249);(.star-shaped.Eartb). 
For p = o, 88 is equal to zero, si nce sin p/2 ,is equal to zero in
this c8se, (A 246). Jhus, the product· (88. b8) is equal to zero, for
e' = o. For e' = 2·R' or for p = 180°, b8 is finite, (A 249).
Further, for p = 180°, 88 is equal to zero, since cos p/2 is equ8l to
zero in this case, (A 246). Thus, the produc,t ( 88. b8) is equal to zer o
also for the upper bound e' = 2·R'. 

Consequently, 

= 0 

= 2R 1 

Thus, 

W(2.1) = 0

Hence„ the relations (A 272) and (A 272b) le8d to 

(A) W(2) · dA = (A) W(2)0 · dA + (A) V/(2 )00 · dA 

with, (A 247) (A 249),

W(2)0 = (E) 3·( 'vT/ 'e)e') ·(sin p/2) ·(cos p/2)2 • (y - 1) · de' 

W(2)00 =(E) (3/2).• (T/R) ·{ 1 - 3 · (sin p/2)2 } •(y - 1) • de' 

The integr8tion described by (A 284) covers the spheric·al cap defined 
by e ' < 1000 Jon, only. 

The next step is the consideration of W(3), (A 273). According to 
(A 273a), the expression for W(3.1) is governed by the product a9 • b9•
b9 h8B always finite am ounts, (A 254). At the lower bound, 8t e' 0

(A 282) 

(A 283) 

(A 284) 

(A 284a) 

(A 284b) 

or p = 0 1 89 ia equ8l to zero; it is evidenced from (A 251), since we have the fac+.:
sin p = 0 if p = 0 • At the upper bound, 8t e' = 2•R' or 
p = 180° , the same property is found for 89: namely a9 = o • Thus, for a

star-shaped Earth, being an Earth of finite slopes of the terrain, 

[ as ·. bs] = [as · bs J · 
e' =0 e 1 
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= 0 

2R' 

Hence it follows, (A 273a), 

W( 3 .1) = 0 

Finally, the relations (A 273) and (A _273b) yield 

(A) W(3) , dA = (A) W( 3)0 , dA + (A) W(3)00 · dA, 

with, (A 252) (A 254), 

(E) ('c>T/'c>e')· (1/4)· (sin p)2 • x3 . (1/y). de' 

- (E) (T/R)·(sin p/2)·(cos p)•x3 •(1/y) • de' 

The terms x 3 in the expressions for W(3)0 and '.'1(3)00
rapidly for growing val ue Ei of e ' • Far e' = 1000 km and Z = 
x has the amount 2 • 10-3. Thus, x 3 is not more than 

diminish 
2 klll, 
8 · 10-9•

Consequent ly, i t is out-of -place here to thinlc on an intogration 
over distances e' of more than 1000 km, in the rel ation (A 287). 

As the la st one of th e W(i) value s, fo r i = 4, the term W(4) 
has to be developed into a sha.pe convenient for routine calculations, 
substituting the horizontal derivatives of x by the derivatives of the 
two-dimensional surface values T of the perturbation poten�ial. 
The meaning of V/(4) is explained by (A 274), (A 274a), and (A 274b). 
The first part in the expression for W(4) is W(4, 1), (A 274) • 'föis term 
is defined by the product a10 • b10• The amount of b10 is always 
finite, for a star-smped Earth, (A 259). At the lower bound of (A 274a), 
at e' = O or at p = o, the amount of a10 is equal to zero; it is 
evidenced from (A 256), since:(sin p/2) = O if p = o.

At the upper bound, for e' = 2•R' or for p = 180°, the amount of 
cos p/2 is equal to zero. Hence, the relation (A 256) leads to the 
fact that a10 is equal to zero at the upper bound, also. Consequent ly,

b10 l 
Je'= 2R' 

= 0 

The equatione (A 288), (A 274a), and (A.274) yield 

'll(4.1) = 0 

and 

W(4) = W(4. 2) 

(A 285) 

(A 286) 

(A 287) 

(A 287a) 

(A 287b) 

(A 288) 

(A 289) 

(A 289a) 
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Hence it follows 

(A) W(4) · dA = (A) W(4)0 · dA + (A) '11(4)00 · dA,

with, (A 274b) , (A 289a), (A 2 59), (A 2 57), 

W(4)0 = - (E) (c)T/'cle')·(sin p/2),(cos p/ 2)4 .{y + (1/y) - 2 }, de'

V/(4)00 = - (E) (1/2)·(T/R)·{(cos p/ 2)4

_
- (sin p)2rfy + �1/y) - 2 (de 1 • 

14.6.2.4 .7. The final f9I'mula for 'Ghe calculation of E(2. 2.�) 

E(2. 2.3) has th e expression of a swn of 4 constituents, (A 237). 

(A 290) 

(A 290a) 

(A 290b) 

The detailed formula s fo r the calculation of thesc imividual 4 constituents 
can be taken from the above derivations. They are obtained in tbe fo llowing 
way, 

E(2.2,3,1): By (A 261), (A 281) (A 281a) (A 281b), 

E(2.2.3. 2): By (A 262), (A 284) (A 284a) (A 284b). 

E(2,2.3.3): By (A 263),. (A 287) (A 287a) (A 287b). 

E(2, 2,3,4): By (A 264), (A 290) (A 290a) (A 290b), 

From the above source s, the comprehensi ve expr_ession for the numericsl 
calculation of the amount of E(2,2.3) is found, It gives this amount in 
terms of -VT/'r) p, '";JT/ 've 1, and T. 'rhe topoe;raphy of the Earth comes 

• from the 4 terms b7, b8, b9, b10; (A 244) (A 249) (A 2 54) (A 259).

Hence i t follows, 

E(2. 2,3) 

(A) (E) (- dT/ 'vp),(cos p/2)2 b7 dp dA + 

+ (A) (E) (1/2)-'l'·(sin p) · b7 dp dA + 

+ (A) ( !'.;) 3-(�•rf';}e•)-(sin p/2)·(cos·p/2)2 • b8 de' dA + 

+ (A) ( S) (3/2) · (T/R) · { 1 - 3· (sin p/2)2
} • b8 de t dA + 

+ (A) (i) (- 1/2)·(�T//c'lc') • (sin p)2 . b9 de' dA + 

+ (A: (E) (-2). (T/R).· (sin p/2) • (cos p) · b9 - de' dA + 

+ (A) (E) (-8T/�e•)·(sin p/2)·(cos p/2)4 - b10 de' dA + 

+ (A) (i) (-1/ 2),(T/R)·{(cos p/2)4 - (sin 11,2
l·b10 ·de'· dA • (A 291) 
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As to the integratio� on the r ight hand side of (A 291), in -the first 
and second term, the integ ration has to cover whole the globe. But, from 
the J. to the 8._ term, t he. integrations can be limited to the interval 
0 � e ' ,,s; 1 000 lern. 

14.6.2.5. The final shape of the for mula fo r the computation of E(2 . 2) 

The reJ.·ation (A 226) represen ts the am ount of E(2.2 ) a.s the surn 0f 
three constituents. E(2 . 2.1) come s f rom (A 230). E(2.2. 2 ) is ob tained 
from (A 236). E(2.2.J) has the expression (A 291). lt is 

E(2.2.1) = (A) (E) (-T)·(1/e 1 )2 ,(sin p/ 2) · dw , 

and 

E(2.2 . 2) = (A) (E ) (T/R) · b6 · de'• dA. 

Hence, (A- 226), 

E(2 .2) 

(A) (E) (-T)·(1/e•)2 ,(sin p/ 2) • dw + 

+ (A) (E) {- clT/r)(H.p)},(1/R)•(cos p/2)2 •(1/ sin p), b7 • dw +

+ (A) (E) (T/R)·{1/(2 R)r · b7 · dw + 

+ (A) (1!:) ( '2JT/ cle 1) • u1 • de 1 • dA  +

+ (A) (E) (T/R) · u
2 

· de' · dA •

The abb reviatfons u1 and u
2 

of (A 294) have the following meaning 

u1 = J·(sin p/2)·(cos p/ 2)2 • b8 -

- (1/2)•(sin p)2 · b9 

- (sin p/ 2 ) •(cos p/2)4 · b10

u
2 

= b6 + (J/ 2 )·{1 - J•(sin p/ 2)2 }-bs

- 2 •(sin p/ 2 )·(cos p)•b9 

(A 292 ) 

(A 293) 

(A 294) 

(A 295) 

- (1/ 2) •{(cos p/ 2)4 - (sin p)2 � · b 10 • (A 296) 
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According to (A 294), the terms u1 and u2 appear in the integrations 
over the cap of the near surroundir\gs of the test point P, only. Therefore, 
in (A 295) and (A 296), (cos p/ 2) and (cos p) can be replaced by the 
unity. 

1416.J. The formula for E(2.3) 

The chapter 14. 6. 1 • gi ve s tbe expre ssion for E ( 2. 1 ) , i t ha s the shape 
of (A 191). The chapter 14.6.2. gives the expression for E(2.2), by 
(A 294). Now, in this chapter 14.6.J. ,  the expression for E(2.3) is to 
be developed; the developments start from (A 110). This relation gives 

E(2.3) = - (A) (E) T•{r)(1/e')/ �r } · dw • 

Hence, 

E(2.3) = (A) (E) T ·(1/e 1 )
2 .(@e 1 /'clr). dw· • 

(A. 297) 

(A 298) 

The equation (19) of the chapter 3, (The spherical. solution), yields,(Fig. 2,3,A 2,A 5), 

c)e'/or sin p/2 e' /(2 R') 

(A 298) and (A 299) are combined to 

E(2.3) = (A) (E) T·(1/e 1 )
2 -(sin p/ 2) •dw 

0bviously, E(2.3) is a pure spherical term, free of any impact caused 
by the topography, which, for instance, could be brought to bear here by 

(A 299) 

(A 300) 

the term x. Here, it is certainly true, the relation (A 300) 1s free of x. 

14.7. The formula for E(2) 

14.7.1. The expression for the computation of E(2) 

E(2) is a sum of three terms, (A 108), 

E(2) = E(2.1) + E(2.2) + E(2.3) 

The relations (A191), (A 294),and (A 300) gi.ve,witb. (A30·1), 

E(2) = 

(A) (E) {- dT/d(Rp)} · (1/R) · (cos p/ 2)2 , (1/sin p) · b? , dw +

+ (A) (E) (T/R)·11/(2R)}·(b7 + x) -dw +

+ (A) (E) ('c>T/c)e•){u1 + b1 + (e'/R)·bJ} de'· dA
_ 

.+

+ (A) (E) (T/R)·(u
2 

+ bJ + b4 + b5), de'· dA •

(A 301) 

(A 302) 
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For abbreviation, the symbols v1, v
2 

and v
3 

are introduced, now. 
In the 2 . , 3. , and 4. term on the right band □ide of ( A J02) , tho 
topography is implied by these expressions: v1, v

2
, v

3 
• Hence, 

v
1 

= (1/2)·(b7 + x)

These relations are introduced in (A J02). 
The final form for E( 2) is found, 

E (2) = 

(A) (E) {-�T/_'d(Rp)} (1/H)•(cos n/2)2 .(1/sin p). b7 • dw +

+ (A) (E) (T/H) · ( 1 /R) • v.1 , dY, +

+ (A) (E) ('cl'.i'/cle'), v
2 

. de' . dA +

(A J03) 

(A 304) 

(A 305) 

+ (A) (E) (T/i't). v.,_ . de 1 • dA, (A J06) 

In the 1. und 2. term on tlle rir;ht hand side of (A 306), the inte(;ration 
l'las global cove rage i the 3. and 4. terrn covers the surroundings of e' < 1000 lm1, 
only, in the course of the inte[!;1°0.tion. 

14.7.�. T h e  terms b.1, b2, •••• b10

The individual func �iolls b1, b2, ••• , b
10 

, which a ppear in the relations
(A 295) (A 296), and frorri (A J0J) to (.� 306), have tre follo,'ling representati6ns, 

b1: ßy (A 119), (A 124), 

-x·(1/y)

( 1/3)• XJ 

+ arsinh

- + ••• 1 

X , 

x2 < 1 

(1/J) • x3 - + ••• ' x2 < 1 

(A J07) 

(A 308) 

(A 309) 

(A 310) 

v2 = u1 + b 1 + (e'/R)·bJ , 

V3 = u2 + b3 + b4 + b5 • 

b2: By (A 152c), 

b 2 b1 

b2 
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b3: By (A 178),

b� = 1 - (1/y) ,.)
2 2 b3 = (1/2) · X - + • • • , X < 1 •

b4: By (A 190),

b
4 

= x3 •(1/y)3 • sin p/2 

162

b4 = (sin p/2)•{x3 - (3/2), x 5 + - ••• t• x2 .:::. 1 •

b5: By (A 192d)

bS = (1/2) · x2 · (1/y)

b5 = (1/2),x2 - (1/4)•x4 + -••·, x2 < 1

2 ) 
2 2 b6 = (1/y) • (1/2) • (y-y ) + (1/y -x • (cos p/2) • b6•1,

2 
b601 = x,sin p/2 + (1/2),(1/y)2 - 1 + (1/2),x2 .(cos p/2)2 ·(1/y).

b7: By (A 244) (A 244a),

b7 = arsinh x,

b? = X - (1/6)·X3 + -

b8: By (A 249) (A 249a),

b8 = y - 1 ,

b8 = (1/2)•x2 - (1/8)·x4 

b9: By (A 254) (A 254a),

b9 = (1/2)•x3 •(1/y)

b9 (1/2)·x3 + -••• ' X 
2 

b10: By (A 259) (A 259a),

b10 = y + 1/y - 2 ,

2 , X < 1 •

;. - • • • t x2 < 

< 1

b10 = (1/4),x4 - +••• x2 <. 1 . 

term y has the relation

2 1 + x2 y = 

1 • 

(A 311)

(A 312)

(A 313)

(A 314)

(A 315)

(A 316)

(A 317)

(A 318)

(A 319)

(A 320)

( A 321) 

tA 322) 

(A 323)

(A 324)

(A 325)

(A 326)

(A 326a)

.. 

b6: By (A 235), 
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14.7.,3. The term v1

The expression for v1 appears in (A 306), in an integral of global
extension. By (A 303), the complete expression is, (A 319), 

v
1 

= (1/2).(x + arsinh x) 

i·t; has tho series development 

V1 = X - (1/12) • x3 

14.7.4. The term v2 

+ ... et • •  9 x2 < 1 • 

The full expression for v2 is explained by (A 304). But, in (A 306), 

(A 327) 

(A 327a) 

v2 appears only in an integral which covers the cap of the near surroundings,
(e' < 1000 krn), of the test p9int P, solely . Thus, it is allowed to put here 

(cos p/2) ';;; cos p ';;/. 1, e' < 1000 km, (A 328) 

and 

(sin p/2) 2 
'::! (ein p) 2 � o, e'<.1000 1cm. (A 329) 

Regard"ing (A. 328) and (A 329), the form (A 295) for u1 turns to, (2(sin p}2b
9

�x(Z/R> 2 �o), 

u1 = 3•(sin p/2)•b8 - (sin p/2) · b10

(A 330) and (A 304) yield 

v2 = b1 + (sin p/2) -�2-b3 +3b8 - b
rn 

t , e ' < 1 000 krn • 

This is the value of v2 which is to be applied in the near 
surroundings of the test point P, universally, for all amounts of x, 
even for steep cliffs in the near vicinity of the point P. In (A 331), 
x is allowed to be greater than tl13 unity. The extensive expression 
for (A 331) has the following shape 9 (A 307) (A 311) (A 321) (A 325), 

v2 = - x• (1/y) + arsinh x + (sin p/2)·[ 1 - (J/y) + 2·y J, 
valid for 

e 1 < 1000 km

and for a star-shaped Earth, 

-OCl<.X<+Co

(A 330) 

( A 331) 

(A 3)2) 

(A 332a) 

(A 332b) 
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Now, in the consideration of v
2

, (A 332); the inequality (A 332b) is 
ignored, but (A 332a) is still valid. The reason is the intention to 
specialize (A 332) for the case that the absolute amount of x has relative 
small values. Thus, (A 332b) is replaced by the inequality 

<< 

Along these lines, the series developrrent s for b1, b
3

, b8, and b10
are int roduced in (A 331) and (A 332). The relation (A 332) turns to, 
(neglecting x4, x5 , , , , ) ,

(1/3)-x3 +(sin p/2)·(5/2)•x2 +- •••, 

valid for 

e 1 < 1 000 1cm , 

sncl for 

x2 
<<

14,7,5, The term v
3

'rl'e tcr m v3 undergoes a similar treatment as v
2 

• The u nderlying 
constituents are shown by (A 305). According to (A 306), G.nd similarly 
ns v2, the v

3 
values are necded for the argurnent domain e' <1000 1cm,

only. 'l'hus, i t is allowed to take over the approximations (A 328) and 
(A 329). These approximations are introduced into (A 296). Hcnce, 

And, v1i th (A 305 ), 

(A 336) is valid for 

(A 333) 

(A 334) 

(A 3J4a), 

(A 334b) 

(A 335) 

(A 336) 

e 1 < 1000 krn • (A 336a) 

Vlith b3 from (A 311), b
4 

from (A 313), b
5 

from (A 315), b6 from (A 317),
b8 from (A 321), b9 from (A 323), and b10 from (A 325), the equation 
(A 336) turns to, (with (A 328), (A 329)), 

v
3 

= - (1/y) + x3 , (1/y)3 . (sin p/ 2) +

+ (1/2)· x
2 - (1/y) + (1/y) • (1/2) · (y -

2 
y ) + 

+ (1/y), x2 ,{x ,(sin p/2) + (1/2) • (1/y)2 - 1 + (1/2)· x2 , (1/y)2 } +

+ (3/2)·(y - 1) - 2 -(sin p/2 )-(1/2) • x3 .(1/y) 

(1/2)·{ y + (1/y) _ 2 l (A 337) 
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Some self-explanatory rearrangements of (A J37) lead to, (for e 1 < 1000 km), 

v
3 

(1/2) - (3/2)•(1/y)•+ y + x2-{- (1/2),(1/y) + (1/2),(1/y)3 }+

+ x3 , { (1/y)3 ,(sin p/2)} + x4-{ (1/2)· (1/y)3} + (1/2) - (1/2)•y •

A short step leads from (A 338) to (A 339), it is the final complete 
shape of v

3
,

V
3 

= 1 + (1/2),y - (3/2)·(1/y) + x2 ,(1/2)•{- (1/y) + (1/y)3 }+

+ x3 •(1/y)3,(sin p/2) + x4 . (1/2), (1/y)3 

(A 339) is valid for 

(A 338) 

(A 339) 

e 1 < 1000 km · (A 339a)

and 

-eo < x < +oo. (A 339b) 

(A 339) is the full expression for v
3

, valid for all values x of a
star-shaped Earth, (A 339b). (A 339) has only one sole restriction, that 
is (A 339a). (A 339) is valid, however great the steepness of the cliffs 
in the vicinity of the surface test point P may b�. 

At many places of the area described by (A 339a), the absolut e amount 
of x will be considerably srraller than the unity. 'l'his fact leads to 
a relief for tho computations .of v

3
• Thus, in (A 339), the condi tion (A 339b) 

is abandoned, i t is replaced by the inequalit y  (A 333), But (A 339a) is 
still valid. 

0bviously, ·along these lines , v
3 

is expressed as a series development
wi th rising powers of x, Starting from (A 336), the power series developments 
for b

3
, b

4
, b5, b8, b9, and b10 lead to the following form for

v
3

, (A 312) (A 314) (A 316).(A 322) (A 324) (A 326),

v
3 

(1/2)•x2 + (s.in p/2)·x3 + (1/2)-x2 + b6 +

+ (.3/2)· (1/2)•x2 - 2·(sin p/2) •(1/2),x3 + - , ..

The higher powers x4, x5, are neglected in (A 340). 

A simple rearrangement of (A 340) leads to 

+ - • • • ' 
x2 

<

2 
, X < 1 • 

For (A 3�8) and (A 329), the rela tion for b6 given by (A 317) (A 318)
turns to 

(A 340) 

(A 341) 

b6 = (1/2) - (1/2)-y + (1/y)-x2-{ x•(sin p/2) + (1/2)· (1/y)2- 1+(1/2),x2 , (1/y)2}.(A 342)

Neglecting higher powers of x (as x4, x5, ••• ), (A 342) changes to (A 3�3),for x2<1,

2 
V J = b6 + (7 / 4) , X 1 • 
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b6 = (1/2) -(1/2)y + (sin p/2)-x3 - (1/2)-x2 + - 2 , X <: 

(A 341) and (A 343) are combined to 

v3 = (1/2)-(1/2)y + (sin p/2),x3 + (5/4)-x2 + - ••• , x2
< 1

and with 

y ~ 1 + (1/ 2)-x2 2 ( X <-<. 1 ) t 

v
3 

= (sin p/ 2) •x3 +{ - (1/4) + (5/4)} x2 + -

and, introducing 

sin p/2 = e'/ (2·R') ~ e'/ (2-R) , 

and, re garding 

X = Z/ c 1 

v3 gets the follov:ing sho.pc,

or 

VJ = x2 •{ 1 + Z/(2•R) t + - x2 
< 1

2 
••q X < 1 

x2 
< 1

1 • 

'l'he negle ction of rclati ve errors of thc order of Z/R can be tolerated. 
'l'hus, finally, 

V 
3 

= x2 + - ••• , x2 << 1

(A 345) is valid for the following constraints, 

e' < 1000 km, x2 <<1 

14.s. The forrnule. for E(J)

The formula for E(1) is given by (A 50) (A 51) (A 5 2). The formula 
for E( 2) has t he sbi.pe of (A J06). Now, the second terrn on th e right
hand side of the reprcsentation of D(2. 1), given by the cquation (45) 
of the calicr section 4, has tobe transforrned. It is tobe brought into 

(A 343) 

(A 344) 

(A 345) 

(A 346) 

a shape suitable for routine computatiom. It is denoted by E(3), (see (4-5c),section 4-), 

E(J) = - (A) (E) ('c)T/'or)-(1/e') • D(1.4) (A 347) 

v J f G '/ ( 2 • R)} { Z / e 1} • x 2 + x 2 + _ ••• 
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The equation (39) of the earlier treated section 4 leads to the following 
relation, 

du • cos (g', n )  = dw + D(1.4); 

du is the surface clemcnt of the oblique surface of the Earth u, 
dw is the surface element of the sphere w which does pass through 
the test point P, (see Fig. A 7). (g' 

9 
n) is the an gle of the slope 

of the terrain. Hence, (A 348), 

D ( 1 • 4) = du · · co s ( g' , n) dw 

Furthcr, the foll owing denotation is intrnduced, 

HP is the height in which the test point P doe s lie , above the 
geocent ric sphere v having the radius R, (see Fig. A 2). Thrn, 

dw (R + H 1 )2 · (cos 'f) • d'f · dA 

:md v1i th 

follows 

R' = R + H' 

dw = (R') 2 · ( cos 'f) , d f · d J

The formula (A 349) ·is transformed, nor,. It is reurranged in 
or der to find such an expression for D(1.4) tbat develops in terms of the 
following three expressions: 
dw , the he ight difference Z talccn viith regard to the te st point P , 
and the radius R' of the sphere w. 

u 

Fig. A 7• 

u 

Spherical s.urface containing 

the test poiht P, w 
R'=R+H' 

(A 348) 

(A :H9) 

(i\ 349a) 

(A 350) 

(A 350a) 

(A 351) 

-
Earth ~ surf ace 

w 
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The interdependence between the surface element du and the surface 
element dw of the globe w is visualized by Fig. A 7. This inter-
dependence is constructed by the alope of the terrain described by the 
inclination angle -4: (n, g'), further, by tm geocentric radius of the 
sphere w, (being R + H' = R'), and, finally, by the radius of the point Q on the 
surface u, (being R + H' + Z). An infinitesimal cone is introduced. The

vertex of this cone is identical with the gravity center � of the 
Earth. This cone is introduced on the unl.erstanding that the vertex angle 
of it has an infinitesimal small amount, or, to be more precise, that the 
co;ne· cuts out an infinitesimal small area out of tbe concentricu_nit sphere, 
Fig. A 7. Out of the sphere w passing through the test point P, this 
cone cuts out the horizontal surface eleimnt dw, (A 350) (A 351). Out of the 
oblique surface of the Earth u, even the same cone cuts out the surface 
element du, situated at the point Q, The oblique surface element du is 
projected into thl horizontal plane which passes through the surface point 
Q, Out of this horizontal plane, the considered cone cuts out the surface 
element of the following amount, 

cos (g', n) • (du)_. 

It is learnt fro m F:ig. A 7, the follouing rela tion connects the amount 
described by (A 352) and the surface element dw, it is self-explanatory, 

cos (g', n),(du) = dw,(R + H' + z)2/ (R + H 1 )
2 

Regarding (A 350a), the relation (A 353) turns to 

cos (g', n)·(du) = dw-{(H' + z)2 / (R•) 2 J 

Hence it follows 

(du),cos (g', n) = (1 + Z/R 1 )
2-dw = {1 + 2 •Z/R 1 + (Z/R 1 )

2 }•dw 

(A 349) and (A 355) yield 

(A 352) 

(A 353) 

(A 354) 

(A 355) 

D ( 1 • 4) = { 2, Z /R' + ( Z /R' ) 2 } · dw (A 356) 

For the points Q situated at the surface of the Earth u, the fundamental 
·equation of the physical geodesy has t_he·following shape,(see equation (A 2) ),

LJgT = - (c)T/cJr) - 2 ·'1.'/r (A 357) 

hence, regarding Fig. A 7, 

L'.]gT = - ( 'c)'r/�r) - 2 ,T/ (R + H 1 + Z) • (A 358) 

As to (A 358 )1 we have,by (A 350a), the following series development 

(1/R')[11 {1 + (Z/R')}] = (1/R') {1 - (Z/R') +- ••• 1 = (1/R') - i Z/(R•>2 l +-•··. 

(A 358a) 
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Consider ing (A 350a), the second term on the right hancl s ide of (A 358) 
turns to the term described by (A 359), accounting for the rel&tion (A 358a), 

- 2 -T/(R + H' +Z) = - 2 •T/R 1 + 2 ·Z•T /(R 1 ) 2 

The two relations (A 358) and (A 359) are combined givi11?; 

- (gT/'clr) = L'.lgT + 2 ·T/R 1 - 2·Z·T/ (R 1 )2 

The relation (A 356) for D(1,4) and th e expression (A 360) for the radial 
derivative of t he perturbation potential T are now utilized fo r a tr>ansfor­
mation of the expression (A 347) represent�ng E(3) , Thus, 

E(3) = (A) (E) {JgT + 2•T/R 1 - 2 •Z•T/(R 1 )2 },(1/e')·{ 2 ·Z/R' + (Z/H 1 )2 }-dw 

(A 359) 

(A 360) 

(A 361) 

Some simple rearrangement s of (A 361) lead to (A 362), neglecti�g powers of (Z/R 1 )3 ••• ,

E(3) (A) (E) LJgT·(1/e 1 )·{2·Z/R' + (Z/R 1)
2 f-dw + 

+ (A) (E) ('I'/R')·(1/e')·{4·Z/R' - 2·(Z/R 1)
2 }-dw,

e' io equal to 
,-

c' = 2 ·(R + H')•sin p/2 = 2 ·R'-sin p/2 

(A 36 2) is a form of E(3) convenien t for routine calculations, 

14.9, '.rhe fomula for E(4) 

In t he chapter 4, the equation (45d) represents the term i::(4). 
lt appears al so as t hc third term on the right rend. side of the relation 
(45) of that chapter. 'l'his term E(4) is now in the fore, Thc cited
re1a tions give

(A 36 2) 

(A 363) 

E(4) = (A) (E) 'r•[d(1/e') /�r }·D(1.4), (A 364) 

The expression for D(1,4) is taken from (A 356), Further, as to the term 
in the braces{1 of (A j64), the radial derivative of e' is considered, now, 
In this context, th0 point J* * is int roduced, (Fig, A 2 , A 8), This point 
lie s  perpendicular below the moving sur face point Q, am, moreover, on the spherical
surface w, Now, the reader is asked to imagine that this point Q**does
move upwards, in v ertical direction, by an enlargement of the radius of it 
from the amount R' up to th e amount R' + dr, 
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The irnpact .this upward s movemen t exerts on the length of e' is now
described by the radial derivative of e 

1, i.. e. 
� e ' / 'c)r; Fig. A 8. 

Fig. A 8. 

Fig. A 8 shows how the derivation of 
This d.erivation is taken at the point 

e• with regard to r is constructed. 
Q** which is si tuated on the sphere w. 

'l'he following lines are self-explanatory, Fig. A 8, 

d(1/e')/clr ( 1 / e ' ) 2 
, ( �e ' / 'al r) , 

'c;e'/0r = sin p/2 = e'/(2·R') 

hence, 

� (1/e' )/ clr 1 / (2 ,c'•R') 

Regarding (A 356) and (A 367), the expression (A 364) for E(4) turns to 

E(4) = -(A) (E) T-{2·Z/R 1 + (Z/R 1 ) 2}-{1/(2 •e'•R')}' dw • 

A .short ·transforma tion gi ves finally 

E(4) = - (A) (E) (T/R�) · (1/e 1 )·{ Z/R' + (1/2) • (Z/R)2 r · dw • 

This expression is good for numerical routine calculations. 

(A 365) 

(A 366) 

(A 367) 

(A 368) 

(A.369) 

-

= -
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14. 10. The formula for E(5)
1 

Finally, considering the relation (45) representi ng the term D(2.1)., 
(see chapter 4)_, the 5. expression on _ the right hand side of this equation 
is to be brought _into a·shape which suit s to calculation purposes. This 
term is denominated· by E(5), as shown by the relation (45e) af chapter 4. 

Hence, 

E(5) = (A) (E) D(1.1)•D(1.2) •dw (i,. 370) 

At this occasion, a principle remark may be given. In the computation of 
the height anomalies ½ in terms of the gravit y  anomalies, the integration 
of the tradi tional Stokes. integral contributes t he main sh are; Here, tbe 
Faye-anomalies are inserted; they are defined to be the free-air anomal ies 
supplemented by the plane topographical correction C: cf. equa tion (2) 
and (3) of the chapter 1, being the introduction into this publication. This 
integrati�n calculation ranks at the first place. The for mulas for E(3) 
end E(4)° rank at the second place. They are given by (A 362) and (A 369), and 
they necessi tute a globa l integration. Further, the effect the expression 
c 1 (!,l) exerts on the height anomaly t constructs a term which does rank at
the sccond pla ce: cf. tre equa tion ( 3) of the chapter ·1. '.rhe se ter ms of the 
second rank will contribute to the l; values by an amount being smaller than 

me ter, in general. 

But, as t o  the term E(5) treatGd now, (A 370), it will be of the third 
ran!c. 'rhis term will have an amount which is generally much more small than 
Ue amount of E(3) and E(4),and the effect of c1·(M). Tre reason why

1
in the following

lines 1 the term E(5) is transformed into a shape convenient for numerical calculations 
lies also in the intention to follow up another aim, this is tre intention to 
show that the formulas (2) and (3) of chapter 1 can be completed by very small and tiny 
terms: The theoretical eITor of the- solution of the geodetic boundary value 
problem according to (2) and (3) can be depressed down to arbi trary small amounts. 
The inten tion to de press this theoretical error dovm to any arbi trary small 
amount has no principle limitation, it is a procedur e free of any fundamental 
difficul ty. The demons trati on of thi s fact is ono of the aims followed up by the 
deliberations of this chapter, (theoretical error = neglected residuum), 

'l'he defini tion of the term D(1.1) of (A 370-) comes from the relation (36) of 
the 4, chapter, 

D(1.1) = ( c);_r/�n)·(1/cos (g', n)) +'&T/c>r, 

whereas the ter m D(1,2) is fourd with (37), 

D(1,2) = 1/e 1 /e' 

e is the oblique distance between tne two sur face points P and Q, 
Fig, A 2. e' is the length of the cord between the point P and 
the point Q*;f on thc sphere w, Fig. A 2, A s. Some rea::-rangements of­
(A 371) result the following relation, (A 21), 

(A 371) 

(A 372) 
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D(1.1) = DT(1.1) = 0-g · tah (g', n)-cos (A" - A') 

fJ .is here the füll amount of the deflection of the vertical· in the ficld 
of the potential T, the 8 values refer to  the surface of the Earth u. 

Also, the term D(1. 2) given by (A 372) is transformed; the relation 
(A 37) yields,

D(1.2) = - (e•)-3•{ z 2 + e• 2 (Z/R'){[x• + (x•) 1 /2} -
1

wi th, ( see (A 39), (A '+0), nnd (A '�-1)) 
( 

x' � 1 + x2 + Z/R' 

In (A .373), A" is the azimuth of the deflection of the vcrtical (;) 

(A 37.3) 

(A 37 4) 

(A 375) 

Fig. A 1. A I is the azimuth of the inclina. tion of 1h e terrain, tan (g 1, n) 
is the amount of this inclination. 

Now, the plumb-.line deflcction G is dccomposed into its north-sout1'. 
ar:d its cast-west component, i.e. t1 and t2, 

t1 = 9-cos A" 

t
2 

= f). sin An. 

The text-boolcs on physical geodesy show that t1 derives from T by  

and t2 by 

[ (1/g') · ( c1T/'c>y] 
u

the symbol u denotes here that the val.ue s of t1 and t2 are to be 
computed for points situated on the Earth's surfacc u. The horizontal arc
elements dx, and dy of (A 378) and (A 379) are here understood 
that they- are plotted at the points of the Earth' s, surface u; hence i t 

(A 376) 

(A 317) 

(A 378) 

(A 379) 

follows !or the horizontal differentials dx and dy,at the moving surface point Q on Ug 

dx (R 1 + Z) · d 'f (A .379a) 

dy = (R' + Z) ·(cos y> ) · dA (A 379b) 

In a similar way, the component of the plumb-line defle ction in tho radial 
direction (that is the direction of a constant azimuth A plotted at the test 
point P) has the following relation, which is given by (A 380). 

( As to the horizonta� arc elements dx and dy, they are found in the following 
way : Through the point Q at the oblique surface of the Earth u, the geocent-
ric sphere ,, having the radius of R + HP + Z = R' + Z , is constructed, Along this 
sphere , the two arc elements dx and dy are plotted even in our Special point Q. 
Thus, in the point Q, di and dy 1ie also on the tangaGtial plane • In order to 
avoid misunderstandings, it may be stated : dx and dy lie not on the obliqua surface 
u of the Earth, unless u is horizontal in the point Q l ),
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t
P 

= - [ (1/g' > · ( JT/(H' + z),c)p)} 
u 

(A 380) 

Thus, tp is the component of the plwnb-line deflection at the surfaco 
point Q taken for the direction in which only the p values do grow. 
p is the spherical distance between thl fixed test point P and the 
point Q (which is moving during .the int egratioM), Fig. A 2. 
Consoquently, dx and dy, and (R' + Z) , dp are horizontal arc element s 
plotted at the point Q situated at the surface u of the Earth. 
dx is heading to the north, dy p9ints t o  the oast, and (R' + Z), dp is 
directed into the direction in which the p values grow ('rhis is the 
directi on 6f the tangent of t he great circle through P and Q, taken at Q). 

By means of t1
a vector l• In this 
along the surface u, 

and t2, (A 378) (A 379), it is possible to construct
context, t1 and t2 are two-parametric surface functions

t
1 = t1(tp 1 A) and t2 t2('f, A ). The t1 

value at thc point Q is mapped into the point Q** Jby an identical
mapping, ,�1f � lies vertical below the point Q on the surface w, Fig. A 2.

Thus, after th is mapping, the t1 value of the point Q is nov, dtache d to 
the point ,/f7f 
The amount of t2 • undergoes a similar mapping from the point -.:i dovm to 
the point o.1<:*, Furthermore, on the sphe rc w whic h has the ra dius H', 
tvm unit vectors � 1

and g2 are introduced, They are horizontal vectors. 
Conseque ntly, they are tangential vecto rs with regard to the sphere w. 'l'hey
are plotted at the point :�**, �

1 
is heading to the north, .,;2 is headj_ng 

to the east. ßy means of the values t1 and t2 at the point Q**, 
it is possible to construct a vector � which is sit uated on the sphere w, 

as a tangential vector. Hence it f ollows, 

t + 

Here is, 

2 2 
1 ' ,;2 

Considering (,\ 376) (A 377) (A 381), and introducing , by the symbol 
the length of t he vector !• the following relation is obtained, 

+ t 2
2 

t ' 

Here, the cxpressions for t, t1, t2, and tp are functions of 'f' and
A. They can be under stood as functions distributcd along the sphere w.

Hence,

t = t < 'f.,). 

t1 = t1 < 'f, A ) 

·t2 = t2 ( 'f, fl ) 

tp = tp ( lf, � ) 

( A 381) 

(A 382) 

(,', 383) 

(A 383 a) 

(/\ 383b) 

(A 3fl3c ) 

( A 383d) 

. e 
=1 

= 

= 

~ 1 

e2 
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In a similar way as the vector ,1 can be decompo8ed into a north-south 
e.nd an east-west component, (A 376) (A 377), the slope of t he terrain 
tan (g', n) can be decomposed also into a north-south and an eo.st-west 
componcnt, 81 and 82, Fig. A 1. The following relations can-be con8tructed, 
rego.rding the fact that the angle A'. i8 the azimuth of the slope of the 
terrain in the point Q, 

s1 tan (g' ,n) , cos A' 

s2 = tan (e', n), sin A'. 

Or, describing 
diffcrence Z, 
is variable) , 

s1 and s
2 

by the horizontal de:rivatives of the height
(Z = H� - Hp; in these derivations, HP is con8tant and H

Q

- (1/(fl.' + Z)) •(::Jz/Jtp)

- ( 1 / ( lt 1 + Z) ) · ( d Z / ( C 08 'f ) d ,A. )

(A 384) 

(A 385) 

(A 386) 

(A ;,87) 

For the dcriv::itivc·s of Z, givcn by (A 306) �nd (,\ 387), thc followin.g relations 
arc valid, 

In mo8t cases, in the relations (A 386) and (A 387), a relative error of 
the order of Z/R' can be tolerated· in �he amounts of s1 and s2 
'1'h� question is here a factor of about 1/1000 or 1/10 000. i'litr. these
cimpJ.ifications, (A 386) and (A 387) change to 

- ( ./R' ). ( c)Z/c)'f))

- ( 1 / ( R 1 • CO s <f' ) ) · ( c) Z / c) �)

In a similar way, as the functions t1 and t2 
J, (A 381), it is possible to oonstruct a vector �•
functions 
Hence, 

and (A 384) (A 385). 

+ 

did lead to the vector 
by means of the 

The operator of the gradient of a scalar field distributed along the 
sphere w i8 now introduced, 

(A 387a") 

(A 387b) 

(A 387c) 

(A 387d) 

(A 388) 

V= grad = + (1/R')-{;
'f'

i·;1 + (1/(R'•cos <p )) •f!
il 

1�2 - (A 388a)

(c>Z/e1'f) =d(H~ -Hp) /d lf)= c)H/c;Jtp. 

( cl Z/~A) = cl(H ,:i - Hp)/clX = c) H/cl ,1 

8 
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This gradient operator is applied to the scalar field of the H
Q 

values.
In this context, the HO values are understood that they.are distributed
along the sphere w, ha�ing the radius R". Consequently, the operator of 
(A 388a) leads to 

In this context, HP is a constant value • Thus, considering the scalar 
function Z = HQ - HP , the derivatives· of Z with regard to the latitude 
and longitude are eqaul to the derivatives of HQ with regard to these 
arguments, consequently. Along these lines, the relation (A 388b) can be 
transformed into the following shape, 

grad Z + ( 1/R' )·(clZ/cl <p) · J/l + _( 1/(R' •cos <p)) · (JZ/c),\) · �2

A comparison of (A 388c) with (A-387c), (A387d), and with (A 388) shows 
that the vector s can be represented by the gradient of the Z field, 

grad Z 

s is the length of the vector s 

2 
s 

2 
s 

Regarding (A 384) (A 385) (A 388) (A 389a), the following equation is found 

2 
s 

2 s (tan (g', n)}
2 + 

Before the background of the above vector developmerits, the expression 
(A 373) for OT(1.1) can be brought into the form of a scalar product or
of an inner product of two vectors. 
In this context, (A 373) is rearranged, as follows 

0·g•tan (g':n) {cos A" cos A' + sin A" sin A'} 

Regarding (A 376) (A 377), and in view of (A 384) (A 385), the above 
expression for DT(1.1) turns to

g is here the real gravity intensity for the real potential W, taken 
at the surfac� u of the Earth. The braces an the right hand side of 
(A 391) contain th� scalar product of the two vectors t and s (A 381) 
(A 388), Hence it follows 

g·• �- � 

Now, after the rearrangement of DT(1.1), the expression (A 374) for
0(1.2) is transformed; this transformation happens by the introduction of 
the quotient 

X Z/e' 

(A 388b) 

(A 388c) 

(A 389) 

_(A 389a) 

(A 390) 

(A 39Oa) 

(A 391) 

(A 392) 

(A 393) 

s 
= 
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which was already of service before now. {A 393) and (A 374) are combined to 

D(1.2) = - (1/e•).(x2 + e'-x/R')·G• + (x•) 1 12J- 1
(A .394) 

For the product of the term in the second braces of (A .394), on the one hand, 
and of the t erm in the brackets of (A .394), on t he other hand, a sign of 
abbreviation is introduced, now, 

or, 

x* (P,Q) = (x2 + Z/R') ·[ x' + (x') 1 /2 ]-
1 

Conseque nt ly, (A .394) changes to 

(A .395) 

(A 3958.) 

'D(1.2) = - ( 1/e') · x *(P,Q). (A 396) 

'l'his is the final express ion for D(1.2), 

In view of (A .392) and (A 396), the development (A .370) for 1::(5) 
transforms into 

E(5) = - g (A) C:n �- f ·(1/3')· x*(P, Q) · dw (A .397) 

t and s are the above defined vectors, (i, 381) (A J:38), x* (P, .�) is a scal:-.:r 
function, i t is evidenced from (A 395a); in our a:ip_lications, this function is-
unc1erstood that i t varie s wi th the movinc; point ;;;, only, in thc course of onc 
in te gra ti on. ,'/i thin such ::m int e gra ti on, the tc st point P is fixe d, 'l'he ve c to r 

� nnd the function x *(P, Q) are combined yielding the vcctor E_, 

� = X*( p' Q) . l

l'he equations (A 397) and (A .398) lcad to 

E(5) =-g (A) (E) k• s·(1/e') · dw 

Regarding (A 389), E(5) takes the following shape 

3(5) g (J\.) (L) t•(i:,;rad Z) •(1/e') · dw 

(A 398) 

(A 399) 

(A 399a) 

This above expression for .E:(5) offers the possi bilit y for essential 
rearrangements, They hq.ve the ::tim to avoid the horizontal derivatives of 
the topographical he ight s Vihich are implie d in the tcrm ( grad Z) , In the 
course of thesc rearrangements,(grad Z) comes to be replaced by z,

further, instead of �• the horizontal derivatives of the components 
vector _k appear. 'l'he horizontal derivatives of k are much more 
smoothcd than the corresponding amounts of Z, Even this fact is the 
reason for the coming rearrangements of E(5). 

and, 
of the 

essential 
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Following up this aim of th11se rearrangemen ts,a new vector a is introduced 
by 

a (Z/e 1) k 

As to the 3 
scalar functions 

= 

symbols on the right hand side of the equation above, the

Z, e', and the two components of the vector k 
have value s which are understood (in the now discussed rearrangeill9 nts of 
E(5) that they are distributed along the surface w of the

sphere wi th the radius R'. They are functions of the two variable co­
ordinates of the Sllr'face point Q, at least in the here discussed problem. 
The co-ordinates of tbe point P are constant. Z has, finit e values, as so 
as tte components of the vector -�• In (A 398), the components of � 
nre always finite, since the components of the plumb-line deflection are 
finite, always; and x * (P,Q) is also always finit e; (A 395a), it. tends to 
the unity if x2 tends to infinity, a property easily verified before the 
background of (A 203) (A 206) for x'_, (see a;I.so (A 414) and (A 415)),

(A 400) 

Nov,, a short excursion into the fieJ.d of vector anaYysis is to be undertaken. 
,Uong the sphere w, a general · continuous scalar function q, having continuous 
first derivatives, is introduced, 

q (lf,)J q 

lf and tl
functi on 

are the geocentric latitude and longitude. The gradient of the 

6rad q 

q has the following shape, (A 388a), 

+ ( 1 / (R 1. cos 'f)) · ( c) q/ d).) . e =:2

Along the sphere w, it is possible to introduce the two arc e.lements d� 
and dy, being defined by 

dx = R 1• d'f' dy = (R'• cos 'f). dA 

\'lith (A 401a), the expression of (A 401) turns to 

grad q = ( cl q/ c) 3f) · .,; 1 + ( 'ö) q/ c) y) ' ,;2

The meaning of ,;;;1 and �2 was already explained, some lines before
the equations ·(A 381), (A 382). Furthermore, besides of the function q, a 
tangential vector of the sphere w is introduced. It is denoted by q, 

and are continuous functions of y> a:nd A , they have

continuous first derivatives, 

(A 400a) 

(A 401) 

. (A 401a) 

(A 402) 

(A 402a) 

(A 402b) 

(A 402c) 

= 

1 = q1. ;_1 + q2. ~2 

q2 

q1 q1 ( f, ~ ) 

q2 = q2 < Cf , A ) 

= 

= 

= 
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The scalar product of t he gradi ent VC!ctor, (according to (A 388a)), with the 
vector 

� 
gives the divergence of the vcctor field i'

div q '[7. q grad q 

The divergence of a vector field is a scalar function, Thw, 

div q = 
R' R1-COS'f 

tan 'P 

R' 

After this excursion into the field of the vector analysis, demonstrated 
1'.'i t h  the he lp of thc func ti on q ancl the ve c tor �! wo re t�n na.•: back to 
the vcctor field �• (A 400). 'J'hc diver5en ce of the vector field _g,,_ is 
obtained by (A 40·J)-and (/l 403), hrnce 

div a div [(z/c')·J;_]

ancl fu rthc r, 

div, a v{z/e'). �J = (7. a =

( [7, Z ) • ( 1 / C 1 ) • � + Z [ v7· ( 1 / C 1 � � + ( Z / e 1 ) { [7., ); ] 
Now, the sin,;ulfirit y of the function 1/c' has tobe considcred. In c�se, 

the length e' tends to zero, thc funct ion 1/e' tr.ncls to infi.nity. But, in 
(A 404), the function (1/e') can bc tolcratcd only �s long as it is a 
continuous fu,1ction , In order to avoid this discrepancy ,  the f unction 
div a is not trcated for wholo the surface w of thc sphc re wi th the 
radius R', (A 404). ,iround the test point P, an arca v1 11 ·.vhich does surrouncl
this point P is separated from the surface w ; w has global extension. 
·rhe remaining part of · v; is w' • 'J'hus,

(A 402d) 

(A 403) 

(A 403a) 

(A 404) 

w = w' + w" (.>, 404a) 

As long as  div a according to (A 404) is discussed for thc partial areo. 
w' only, any singularit y of the function 1/e' does not exist, sincc tha 
distance bctween the point P and the margin of the arca w" has ncvcr 
to be equal t o  zero, - this is a necessary constraint • 

• p 

= 
= = -

'dq1 c)q2 

+ 
~~ 

q1 
- 'c) 'f 
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From Fig. A 9, the reader learns that the boundary-line between w' 
and w" · is denominated by c, de is the arc element. g� is the unit 
normal vector of the line c, ,;;� is simultaneously a tangential vecto r 
along the sphere w. g� is heading into the exterior of the domain w', 
arrl,,thus, into the interior of w". 

Obviously, it is allowed to apply the integral theorem of Gauss to 
the vector field �• Here, this theorem is specialized on the area w' and 
its boundary Co Hence i t fo llows 

(\ (div �). dw � ( � · ;;i ) · de

w' C 

Here, w' is apart of the surface w;and c is the boundary-line> of w•. 

(A 405) 

Usually, in the text-boolrn, the Gaussian theorem is described for a 
three-dimensional space and i t s  boun,dary-surface. 'l'he transi ti on from the 
thrae-dimenional case to the two-dimensional case of (A 405) is e asily done 
by considering the fact that the ve·ctor g, has tv,o hor izontal components, 
only, further, that a does not depend on the distance r to the 
center of t he Earth, and, finally, t hat a has no component in the radial 
direction. 'J'he se special properties transform the problcm from thc three-
dimensional case to the two-dimensional one, (A 405). 

The validity of the integral theorem of Gauss for the two -dimensional 
vector field �• (sec (A 405)), is easily proved along the following lines. 
Just to take an example, one arbitrary infinitesimal mesh is singled out 
from the co-ordinate grid covering the area w'. This mesh is constructed by 
lines of Gauss' co-ordina tes i.p = conet. and A = const., spread out over the 
area w'. 'l'hus, the boundary-lines of this mesh are line s of constant lati tude, 
on the onc hand, and lines of constant longitude, on the other hand. Tbe 
situation is shown by Fig. A 10. 'rhe area of this mosh is equal to dw; the
side lengthes of i t are equal to R' • d 'f, R' · (cos y>) 

3 
· dA , and R'·(cos '-f) 4 · dA •

If (A 405) is applied to this infinitesimal mesh (instead of the domain w') 
,and to the vector f�eld �, describcd by (A 402a) (A 402b) (A 402c), (instead 
of the vector field -�._), the relation (A 405) .turns to 

(div q) • dw t 
i=1 

lt 3_· ::�) • de J 
c- - 1 

(A 405a) 

Here, in equation (A 405a), dw denotes again the surface element of the 
spherical surface w . And, de is again the arc element �f the boundary-line c 
which separates the two partial areas w• and w" of the spherical 
surface w. 
The smaller the amount of dw, the 
the summation over the suffix 1, ( 
the four sides of the infinitesimal 
4 sides , the concorned values of 

4 values are as follows , 

( ß� >1

better valid the equation (A 405a). In (A 405a), 
i = 1,2,3 1 4 ), means the summation over 
trapezoid represented by Fig. A 10. For these 

0 l, �c , and de have tobe quoted. Thus, these 

( 1 = 1,2,3,4 ) 

== 

= 

( de ) 1 
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Fig. A 101 
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cp = const . 
• 

( 92)2

<f' = const. 
• 

is t he component of' the vector q in the north-south direction, 
is thc component in the east-west direction. 

Now, the validity of' (A 405a) is easily proved by the dcvelopment s 
of (A 405b). 

The summation on the right hand side of (A 405a) refers to .the four 
sides of the mesh, represen ted by Fig . A 10. The sum on t he riglrt hand side 
of (A 405a) develops in the following way, it follows from u lock on 
Fi g. A 10.

i=1 

(q) · R'•d'f + (q2) , R'·d<f - (q1) 
2 

1 2 
3 

+ (q
1

) • R 1 • (COS'f)4 · cJJ =
4 

= ��2) 2 - . (q2) 1
] R' , d� + [<q1)4 

- (q1) 3
] R'. (cos f) 3 dA +

= - • R'·(cos 'f)J . dA + 

= 

https://doi.org/10.2312/zipe.1989.097



+ (q1) • R', d.� • (- sin f) • d 4' =
4 
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[<1/R')-(c>q1/8..p) + (1/(R'•COS tp)). (clqi'dll)

- (tan'f), (1/R') ·q1}R• 2 · (cos <p)· dtp· dA =

= (div q) • dw (A 405b) 

The developments given by tm above lines are self-cxplanutory. ·rhey prove 1by (A 4-03),
the validi ty of (A 405a). The integration o'ver the whole of the infinitesimal 
meshes of the domain w' leads from (A 405a) to (A 405). Thus, the valiclity 
of (A 405) is corroborated. 

Now, we return back to the relations .(A 404) and (A 405), and to the 
spccialities connected with the divisi.on of the surfaco w into two pnrts, 
w' and w", Fig. A 9. For the subsequent mathematical delibcrations, the 
close surroundings w" arourrl t he test point P get the form of a small 
spherical cap wi th the spherical radius R 1 ·r9. • "xhis cap is conccntric to the 
test point P, and it is situated on the sphere w. Thw , t he fig,u rc A 9 chnngc s 
to the figurc A 11. 

Fi.g. A 11, 

= 

X 

= 1----~----- Y 
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In Fig. A 11, the symbol 
from the north. The line x 
The vertex of the azimuth A 

182 

A is again the azimuth measured clockwise 
leads to the north, the line y to the east. 

is the center point P of the cap w". 

Consequently, if (A 404a) is considered, the relation (A 406) follows, 

·11(divg)•dw \\ (div ") , dw

w' VI - W
11 

With (A 406), (A 405) turns to 

(div g) • dw 

w-w" C 

( a . 11°
) · de

= ==c 

In (A 407), we refer to the special situation show11 by Fig, A 11. 

In case , the radi us 9i of the C3.P w" te rn:l s to zero , the c1re a of w" 

(A 406) 

c� 401) 

tends to zero simultancously, Hsre, thc radius was mcasured by the ceocentric 
angle ,8, which belongs to v: 11

, Fig, A ·11. lfow, thG spcciali i;ies are to be 
considered whicli se t in during the transi tion to an infinitesimal s=ll area for 
w". 'J'his transition procedure comss about if c{ 1 •-Si t•Jnds to zero, 

R'·,9, -+0 (A 408) 

Thc integral 011 the left l:Jnnd sidc of (A 407) covers the ::trea '.','' = \�/ _ \�!11,

The coveragc of tilc o.rea '!.'" nceds a special consici.eration, since the _intec;rand 
contains thc inverse of e'. In case of (A 403), this inverse docs tend to 
infinity, Hcnce, it is neccssary to show that the intcgrcl 

K= )\(div�)· dw (i, 409) 

W
II 

tends to zero, if the transition ·(A 408) talces place. For a sufficient small 
value of R 1 -,S,•, th:o surface element 
representation ( the precise shape of 

dw has the approximative plane-geometry­
dw is: (R' )2 , (sin p) · dp · dA ) by (A 410) 

dw = e 1 • de 1 , dA + 11 (e') (A 410) 

11(e') symbolizes a relative error of tho order or (e'/R 1 )2 in the value of
dw, 11(e') is a function depending on e'.(sin p =(e'/R') - (1/8 )•(e'/R')3+ _ ••• ),

(A 404) is introduced into (A 409), In doing so, K divides int o thrae 
constituents, 

(A 410a) 

= 

\ 
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They have the following expressions, regarding (A 410) (A 404), (neglecting 
the term 11(e'), i.e. relative errors of the order of (e 1 /R 1)

2 in the integrands ), 

K1 \[ ( [7. Z) · 1c de 1 • dA (A 411) 

w" 

w" 

Z · [v • ( 1 / c 1 ) J 1c • e 1 , de 1 

� \ 
Z · [ V · ! ] · de 1 • dA 

· dA

The surface of the Barth was presupposed to be that of a star-shaped 
Earth, the slopes of the terrain havc never infinite amount s. Thus, z, x, and 
17· Z have always finite amounts. If (A 408) is applied, Z tends to zero. 

The· length of � 1s viewed by (A 398); The length of the vector t is 
always finite, because the plumb-line deflection 8 has finite amount s, alvmys, 
(A 383), (A 376) (A 377), and, because, moreover, x *(P,Q) is a functi on of 
finÜc va.lues, too. Thc latter fact is evidenced by (A .395a). Regarding (A 206), 
the relation (A 395a) yields 

x ' (P,Q) f;;' (x2 
+ Z/R') · 1 + x2 

+ ( 1 + x2) 7f 
[ 

1/2 
] 

-1 

In ca se, the topographical he ight s tend to zero, the x val ue s tend to zero 
simultancously (for finite values of e'). Consequently, (A 414) tends to zero, 
in this case. And, furthermore, in the adverse case, if the x2 values tend 
to in:f.inity, the amount of (A 414) tends to the unity. Thus, obviously, 

Hence, the length of thc vector Je is finite. 

Furthcrmore, t he amount of the scalar value !7-�, being equal to div lf, 
has to be discussed, since thi s  amount appears in (A 413). In this r.ontext, the 
question is in the fore whether div � has finite valui s. Regarding the 
relations (A 398) (A 378) (A 379) (A 414), and substituting the vector q in 
(A 403) by the vector �• the followi_ng relation is obtaini, d, 

div 1c l7, k = 

= (1/R') {;cx-lf: t1)/@:l+(1/(R 1,COS'f') >{�<x�•t2)/9A}-
7f 

(x • t1)•(tan f) · (1/R')

As it is evidenced by (A 414), the function x�P,Q) is a continuous function 
with continuous fir st derivatives, since x is a continuous function of z,

and since Z is a continuous function with continuous first derivatives, 
depending on the latitude and longitude. 

(A 412) 

(A 41.3) 

(A 414) 

(A 415) 

(A 416) 

= -

K2 f( = 

K3 = 

W" 
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t1 and t2 are the components of the plumb-line deflection. It is well- known that 
these functions are continuous with continuous first and higher derivatives. Thus, 
the values of x*• t1, the valucs of the derivative of (x�t1) with regard to 
the latitude, and the values of the derivative of (x�t2) with regard to the 
longitude, (which appear in (A 416)), all these three values have finite amounts.
Consequently, it can be taken for granted that thc amount of (div _k) in (A 413) 
has. finite amounts. In case of '{>= 90°, the right hand sidc of (A 416) ha$ (tan 'f'-+oo), a 

,, 

removable singularity. It cwi be �emoved by tbe choice of another convenient pole for
co-ordinate ·system, Tm operator ( div � depends not on the choicc of the 
co-ordinate system, 

As to the here discussed properties of the integrands appoaring in (A 411), 
(A 41 2 ), and (A 413), f inally, the amount of tho scalar 

[grad ( 1 / e ' ) ] . ! . e r 

appearing in (A 412) is to be considered, and that in case of thE) transi tion 
dcscribed by (A 408). 
Obviously, the gradi cnt vector of 1 /e' has the following shapc , ( A 402) , 

grad (1/e') 

iie re is 

[cl(1/e')/cl'i] •.,;1 - (1/0 1 )
2 · (c>e 1 /'c>'i)-�1

(A 417) 

(A 418) 

(J\ 419) 

The cxpression (A 419) is understood tbat it is taken for a point in the near 
surroundi!'5s of tho test point P, The values of (A 419) covcr the area of w",F'ig.A 11, 
The differential quoticnt cle 1 / a� can be interprcted as the cosinus of tho 
angle°'- between the directions of de' and dx, Thus -, for e' �R•·-Si, 

cos Cl(_ (A41S3.)' 

cJe'/cJy sin Cl(. (A 419b) 

Hence, (A 418) turns to 

e;rad (1/e') = - (1/c 1 )
2 , �cos ex)· �1 + (sinCX) -�2] (A 420) 

In case of npp roaching the point P, the valuc of cos � tends to cos A, 
and sin ex. tends to sin A. A is here the azimuth cl ong 1·1lü.ch th e
approach to P happens, ( See Fig, A 11 ) • 

Returning bnck to (A 417), tbe vcctor � x • t 
(A 398). Th, following rclation is obtained referring to 

has to be conoidercd also, 
(A 381 ) and (A 3�8) 

1� + e ,.., ="-
(i1 421) 

o e ' / c> ~ = 

= 
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Regarding (A 417), the product of (A 420) and (� 421) needs to be considered1now.
This product is multiplied with Z and with the lenßth e'. 
He nce it follows, for the values within the area w", 

z·[grad (1/e')]-k c' =-x-;f_ x,[t1,coso.+t2-sin<ll].

After these investigations about the in-�egrands of K1, K2, K3, conducted
from (A 414) to (A 422), it is possible to estimate the amount of (A 411),

(A 422) 

(A 412), and (A 413), for the special case that the area of w" tenda to zero, -
or, that the tranaition (A 408) is carried out. 

At first, the integral for K1 is considerod. Because the two vectors
(grad Z) and k have limited lengthes, a s  proved in the lines above, the scalar
or inner product of these two vcctors has a limited scalar amount, too. This fact 
follows from the Schwarz inc quali ty, which has the following form in the he re 
discussed problcm, 

Since the two factors on the right hand side of (A 423) have finite amounts, 
the lcft hand side of this inequality yiclds a finite amount , also. If k1 is
the upper bound of t he amount of j (grad Z) ·k 1 , obtained within the area w", 
thc relation ( A 411) gi ve s for the absolute amount of K1 

IK11,::; 2·'i7'- k1. R' .,.g,

k1 = fin sup 1 ((grad Z) � ) [ 

The smaller the value of -9., 
If � tends to zero, (A 408), 
has an uppe r bound. Thus, 

the more precise the relation (A 423a). 
J K11 tends to zero, too, becauso 2·"ii· k1 • R'

K1 ----r0, if (A 408) is valid.

At the second place, the integral for K2
'l'ha relatiom (A 412) and (A 422) _yield 

comes int o the fore, (A 412). 

(A 423) 

(A 423a) 

(A 423b) 

(A 423c)

K2 = - )� x*• x{t1 • cos o(. + t2

w" 

sin Oe!} de' • dA (A 424) 

* 11.s i t was found above, the tsorms x , x, t1, t2, cos °' , and sin 0( which
appear in the integrand of K2 have finite amounts. Consequently, the

absolute amount of the integrand of (A 424) has an upper bound, k2• Hence it 
follows 

' 1c2 = fin sup
* 

X • X (A 424a) 

= 

• [t1 · cos 0( + t2 • sin OL ] 1 . 
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ThP. relation (A 424a) is inserted into (A 424); the .ransition behaviour 
described by (A 408) is regarded. The inequality (A 424b) is the consequence 

If � tends to zero, the absolute amount of K2 tends to zero, too.
This behaviour follows from (A 424a) and (A 424b). Thus, the following 
relation is obtained, 

K2 � 0 ,  if (A 408) is valid.

At the third.place, the integral for· K3 is evaluated, for an area
w 11 which tends to zero, (A 413). Within the area w 11 , Z was proved to be

a finite value. In case of the transi tion procedure (A 408), the amount of 
Z tends to zero. Further, in the lines which follow the ralation (A 416), 
i t was shovm that div l has always finite amounts. Thus, · if k3 is
the upper bound of the ab.solute amount of the integrand of (A 413), 

k3 =- fin sup I Z • (div .k ) 1 ,

the relation (A 413) leads to 

He neo i t follows 

1 KJ 1 -- O, if (A 408) is valid•

Rcgarding (A 42Jc), (A 424c), and (A 424f), the relation (A 410a) 
gives 

K --- 0 , if (A 408) is valid. 

He nce , wi th ( A 407) and ( A 409) , 

\\ (div�)•dw�ff (divE:)•dw ,

w-w 11 w 

if (A 408) is valid. 

Returning back to the cquation (A 407), the rel.9.tion (A 425a) describes 
the transition behaviour of the left band side of (A 407), for a vanishing 
area of w 11• 

(A 424b) 

(A 4240) 

(A 424d) 

(A 424e) 

(A 424f) 

(A 4-25) 

(A 425a) 

Now, the transi tion behaviour of the right hand sido of (A 407) is in 'th e fore, 

K' = ) (g · g� ) ·de. 

C 

(A 425b) 

• 

https://doi.org/10.2312/zipe.1989.097



187 

The vector a in the above integrand co mes from (A 400) and (A J98), 

a X • k = X 
� 

X t (A 425c) 

� 
The above investigations, (A 414) (A 415), did show that the 4 tcrms x, x , and 
_!, and � have finite amounts. Thus, tho length of the vector �• along the
spherical circle c, has always finite amounts. The· Schwarz inequality gives 

= 1 �-1 ,· 

the vector �� was introduccd as a unit vector. The inequality (A 425d) 
shows tha t the absolute amoun t of ( � · .,;;i ) has an uppe r bound, be c:rnse 1 � 1 
has an upper bound, s ince we consider a star-shaped Ee.rth wi th finite amou nts 
of thc slopes. k' denotes th is upper bound, 

k' = fin sup 1 � · �� j 

(A 425e) is introdu ced into (A 425b). Hen ce, i t follows 

1 K' \ � ) k' · de = k' ( de 

C 

The relation (A 425f) yiclds 
211 

k'
\ 

(R'�) · dA 

A=O 

Thus, 

C 

2·fi'·k 1 ·R'· ,Si. 

K1 --o, if (A 408) is valid. 

Finally, regarding (A 425) and (A 425h), the Gauss' int egral rclation 
(A 407) turne to 

}j (div�) • dw o, 

w 

(A 425d) 

(A 425e) 

(A 425f) 

(A 425g) 

(A 425h) 

(A 425i) 

if the radius of the area V/11 tends to. zero. In (A 4251 ), (A 425a) was used, also, 

now, we return·qack to 
expression (div �) into 
(A-4251) yields 

0= (A) (E) (div a)-dw 

(A 404). The relation (A 404) ·develops the 
3 terms. Thus, the introduction of (A 404) into 

(A 426) 

= 

== = 

1 K'I ~ 
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For B1 follows 

B1 = (A) (E) (grad Z) ,(1/e') · � . dw 

accounting for (A 389) and (A 399a), tho relation (A 427) turns to 

E ( 5) = g ·· B1 

1(5) is the term for which an expression convenient for routine calculations 
is to bc found. 

B2 has thc following expression 

* 
B2 = (A) (E) Z·x •(grad (1/e'))·..!_ · dw 

In (A 429), the vector grad (1/e') is a tangential vector of e ven those great 

(A 427) 

(A 428) 

(A 429) 

circles of the sphe re w which are plottcd through the point P, grad ( 1 /c 1) 

is here the gradient vector of the field of the (1/e') values takcn along the 
sphere w, (A 401), If e3 is this unit tangential vector heading into the 
direction of growing p valwrn, it follow s 

gr::id -( 1 / e 1 ) (1/e 1 )
2 , (1/R')·('cle'/clp) •�3 

'l'h(! cornponcnt of the vector 
circles is, (A 380), 

t in the direction of the above dofincd great 

'Ni th 

t . e3 p 
= 

(A 430) 

(A 431) 

ti' = 2·R' · sin p/2 (A 432) 

the following derivative is obtained 

( 1 /a 1 ) • ( c> e , / cl p ) = cos p/2 

Regarding (A 380) (A 430) (A 433), the scalar product in the expression 
(A 429) takes the following shape 

�rad (1/e'l� = (1/R)·(1/g')·(1/e 1 )
2 -(cos p/2)•(cJ•r/�p) 

Inserting (A 380) in (A 434), relative errors of the order of Z/R are 
nc;lected, here, A comparison of (A 429) an d (A 434) gives 

-7(- 2 ,:,.. B
2 

= (A) (E) Z·x · (cos p/2) ,( 1/R)· (1/g')· (1/c 1 ) • ( C'T/'vp) · d w  • 

In (A 435), a simple rearrangement is nov1 undertaken, Considering 

X = Z/e 1 

(A 433) 

(A 434) 

(A 435) 

(A 436) 

= 
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and accounting for (A 432), we find 

Z · ( 1/6 1 ) 2 
= X · ( 1 /(2 · R 1)) • ( 1 / ( Bin p/2)) 

hence it follows 

Z • X-;)t •(1/e 1 ) 2 
= x · x•(1A'2 •R'))· (1/ (sin p/2)) 

The symbol b11 serves· as an abbreviation , (A 395),· 

b11 = x• x* = x(x2 + Z/R')·[x• + (x')1/2J-
1 

(A 437)

(A 438)

(A 43S) 

Thus, B
2 

bas the following final shape conve nient for routinc calculations,(withRriR1), 

.s
2 

= (A) (E) ['dT/(R·2p)]·(1/g')·(1/(2Rl) ·(cos p/2)·{ 1 /(sin p/2)}-t
11 

· dw 

The term B3 of (A 426) has the following expression, introducing the
third term on the right band side of (A 404) in (A 4 2 6), 

B3 = (A.) (E) (Z/e')-(div �) ·dw • 

The rclation (A 398) Givcs 

div k 
* 

div ( X , j)_ 

v1he re the vcctor Je is dividcd 

{ � l 
X • t1 

� 

/
( 

. t2 

into 2 components, 

1"11 k2 

k1 
and k2

,

In �he numerical calculattons, the vcctor � appears in form of its 

(A 440) 

(!, 441) 

(A 442) 

(A 443) 

components 1c1 and 1c
2

, the numerical valuc s of which can be treated, if wanted, in 
the computations. Cons cquently, in the folloviing investigations, the 
divergence operator 
the compone nt s k1
speciali ti es o f  t he 

for the vecto r E · is now replaced by an opl!lrator for 
and k

2
, adapting the symbolicexpression :of the divergence to the 

numerical applications. Hence, regarding (A 403), and wi th R f!t R' , 

div .!:_ = V-1;,

(A 444) 

A comparison of (A 441) and (A 444) leads to the following expression for B� 
.,J 

B3 = (A) (E) Z (A 445) 

= 

p (k1 , k 2 ) = 

(1/R)•(c)k1/';;hp) + (1/(R ,cos~)),(c)k2/c>A) - (1/R) .(tan -p), k 1 
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It is thc aim of this chapter to find an expression for E(5) which is 
convenient fo r routine calculations, (A 37�). This aim is reached by (A 426) (A 428)
(A 440) and (A 445). Henco,regarding 1 in addition to (A 446),the fonnulas for B2 and B3, 

B(5) g•B3 

E(5) - (A) (E) g, Z·(P(lc1, k2).(1/e')·dw -

- (A) (E) [ d'r/(R 2p) ] · ( 1/2R), (cos p/2) • [ 1/(sin p/2) J · b11 • dw 

With (A 443), we find (A 448) 

* 
= ffi(x. t1, 

UGually, in the geodctic text-boolcs, 
by � ; thus, putting 

the rclation (A 450) follows 

t 1 

(p(k1'k2)=c/2(x*·� 1 x*•72) = 

is dcnominated by �, and t2

(1/H) [ c>cx*-� )/c) lf
]+ (1/(R,cos <p))· [ -;)(x� 71 )/c)AJ- -)f 

( 1 /R) · ( fan 'f) • X • t . 

The amount of 
point P, since 
operator 

x* diminishes rapidly for growing distances from the test 
x* is quadratic in x. Consequently, the amount of thc 

ff? ( . X
;f

· � ' 

(A 446) 

(A 447) 

(A 448) 

(A 449) 

(A 450) 

dimin:Lshes also rapidly :Lf the distancos from the point P are growing. 
'rhorefore, in thc first tcrm on the right hand side of (A 447), the integration 
can bo limited to the near surroundings of thc test point P, Further, in the 
second torm on the right hnnd side of (A 447), the following rearrangements can 
be carried out, (A 439), 

b11 · dw = X dw 
' 

* Z • x • ( 1 /e 1) • dw 

Hero, in (A 451), the factor x* apP,ears, also. Thus, it can be taken for 
granted, that the integrand of the second term on right han4 side of (A 447) 
diminishes rapidly, too. Consequently, the integration of this term can be

limited to the near surroundings of the test point P, too. Therefore, in 
(A 451), the plane surface olement o' • de' • dA can be substituted 
for dw; hence 

z 
* 

X do 1 dA for e, < 1ono km • 

Along these lines, accounting for (A 452), (A 447) can be transforrned into 

(A 451) 

(A 452) 

:; 

. x* . 

' 
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� � 
E(5) = - (A) (E) g-Z · /p(x -�, x ·"7) ·de'· dA -

- (A) (E) ('ch'/c)e').(1/2),(Z/R)·(cos p/2)·[1/(sin p/2)}x�de', dA • (A 453) 

Here is, putting approximately R' � R ,

x* = (x2 
+ Z/R) • [ x• + (x') 112 J -1 

14.11. The formulae for D(2.1)

14.11.1. The universal formula for D(2.1)

Now, we return back to the expression for D(2.1), which is described by 

(A 454)

the equations (45) and (45f) of the section 4. Hence it follows, (45f), on page 23,

D(2.1) = E(1) + E(2) + E(3) + E(4) + E(5) (A 455)

The detailed development s for the 5 terms on the right hand side of (A 455)
can be found at the following places of this publication;

E ( 1): (A 50) (A 51) ( A 5 2), 

E ( 2): (A 306), 

E(J): (A 36 2 ),

E(4): (A 369),

E(5): (A 453). 

In order to bave these formulae easy to survcy, they are here put together. 

E ( 1) 

E ( 2) 

2 2 
-1 

(A) (E) ..1g•(-x )·(y + y) · de'· dA + 

2 2 -1 
+ (A) (E) ('1'/R)·(-2•x ),(y + y) · de' ·dA + 

2 -1 -1 
+ (A) (E)..1g-(- Z/R)•(y + y) · (e') dw + 

2 -1 -1 
+ (A) (E) (T/R) · (- 2 ·Z/R) · (y + y ) • (0 1) dw

(A) (E) (T/R)-v3 de' dA +

+ (A) (E) (c>T/�e') • v2 de' dA + 

+ (A) (E) (T/R)· (1/R)•v1 dw +

+ (A) (E) (�T/c)p)·(- 1/R2)-(cos 2 p/2) • ( 1/sin p) • b7 • dw . 

(A 456)

(/1 457) 
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E(3) = (A) (E) L1g · (2·Z/R)·(1/e') · dw + 

+ (A) (E) (T/R)·( 4·Z/R)·(1/e') ,dw •

E(4) = (A) (E) (T/R) · (- Z/R) · (1/e') · dw

E(5�= (A) (E) (�T/'@e')·(-1/2R)-(cos p/2 )·(1/(sin p/�•b11.e• ·de'· dA +

* � + (A') (E) (-g·Z) · .©(x •f, x-72) ·de' ·  dA •

In the above formulac for E(1), E(2), E(3), E(4), E(5) , relative errors 
of the order of Z/R are neglected. 

In view. of the nun�rical applications, a regrouping of the right hand 

(A 458) 

(A 459) 

(A 460) 

side of (A 455) is now carried out. It is r0commended to group the development fo r 
the tcrm D(2.1), (A 455), according to certai n aspects which originate from the 
fact� ap,P.earing in the m.umrical calculationa. Following up this aim, terms with 
similar· integrands arc assigned int o the sarne new group. Making this new 
classification on the right hand side of (A 455), the following now 7 groups 
E(a), E(b), E(c), E(d), E(e), E(f), and E(g) appear in the expression for föe 
term D(2.1), 

D(2.1) = E(a) + E(b) + E(c) + E(d) + E(c) + E(f) + E(g). (A 461) 

These new groups have the following shape, 

E(a) 

E(b) 

2 -1 -1 -
(A) (E)Llg{-Z/R) ·(y + y )  , (c') · dw + (A) (E) L'.Jg-(2Z/R)· (1/e') -dw . (A 462)

-1
(A) (E) (T/R)·(-2Z/R)·(y + y2) · (1/e')•dw + (A)(E) (T/R)·(1/R)-v1-dw +

E(c) 

E(d) 

+ (A) (E) (T/R)·(4·Z/R)·(1/e')·dw+ (A) (E) (T/R)·(-Z/R)·(1/e') .. dw •

= (A) (E) (clT/�p)·(-1/R2)-(cos p/2)2 , (1/sin p),b7 • dw •

2 2 -1
= (A) (E) LJg,(-x ) •(y + y ) · de'· dA • 

(A 463) 

(A 464) 

(A 465) 

-1

E(a) = (A) (E) (T/R)•(-2x2),(y+y2) de'• dA+ (A) (E) (T/R)-v3.de 1 , dA • (A 466)

E(f) = (A) (E) ('r>•rj'c)e•).v2.de'• dA+ (A) (E) (c}T/'de 1 )·(-b
11

),de'. dA .

:lt' * E(g) = (A) (E) (-g•Z)·�(x-�, X·'I'/) ·de'· dA •

In the sccond term__on the right hand side of (A 467), the. approximately valid 
relatiöns 

cos p/2 rv ·1 , for e 1 < 1000 ltm , 

(A 467) 

(A 468) 

(A 469) · 
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and 

J 

e 1 = 2 • R · ein p/2 , or, approximately , e' � 2 ·R •(Bin p/2), (A 470) 

are mado use of. In (A 470), we have used the approximation R � R' •

The following roarrangements of the rclations from (A 462) np to (A 468) 
are self-explanatory. 

E(a) = (A) (E) Llg. (Z/R) ·[2 
-1 

J (y+y2) .(1/c')•dw 

E(b) = (A) (E) (T/R)·(Z/R){3 - 2 ,(y + l>-
1

}(1/e'). dw +

+ (A) (E) (T/R)-(1/R),v1

E(c) (soe (A 464)). 

E(d) (aee (A 465)). 

dw 

, -1 
E(c) = (A) (E) (T/R)·[v3- 2x2 •(y+y2) J-dc' · dA 

E(f) = (A) (E) (clT/c>c')·[v
2 
- t11J de ' dA • 

(A 471) 

(A 472) 

(A 473) 

(A 474) 

(A 475) 

(A 476) 

E(g) :(aee (A 468)). (A477) 

Thc mcaning of the hcre appoaring terms v1, v
2
, v

3 
can be found by 

(A 327), (A 332), (A 339). The meaning of the term b7, appearing in �(c), 
is found by (A 319). The meaning of t11 is as followa, (A 439), 

b11 =X·X*=x·(x2 +Z/R)·[x• + (x•)112 J-1
• (A478) 

The meaning of !P (x�t , X�11, is oxplained by (A 450). The moaning 
of x, y, x', x", e' is as follows, (A 27), (A 39), (A 31), (A 40), (A 70a), 

X = Z/e' 

Y2 = 1 + x2 

x1 = y2 + Z/R' 

x" � x · coa p/2 , 

e' = 2·R' • sin p/2 • 

The integrale for E(a), E(b), and E(c) have the surface eleme�t dw 
·at the intogrand. These intogrationa have to cover whole the globe. But,

the integrals for E(d), E(e), E(f), and E(g) have the product of the 
two diff�rentialS de' • dA under the integration symbol. Thus, these

latter 4 integrations cover only th e cap of 
tost point P. 

o ' < 1000 km around tho 

(A 479) 

(A 480) 

(A 481) 

(A 482) 

(A 483) 
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In the development (A 461) for D(2.1), it is recommendable to draw a 
clear distinction botwoen the integrals of global and those of regional 
coverage. Therefore, tho rolation (A 461) is written in the following form, 

D(2.1) = F1 + F2

with 

F
1 

= E(a) + E(b) + i(c), 

and 

F2 = E(d) + E(e) + E(f) + E(g) •

The t<';rm F1 comprises thc in-tegrals of global int egration; the term
F

2 
0ncloses the terms of regional. coverago, only, (i. e. for e'<10001cm). 

Finally, it is to bo statcd that the relation (A 484) is the universally 

(A 484) 

(A 485) 

(A 486) 

valid ropresentation of D(2.1); may the tost point P be·situated in the lowlands 
or in the high mountains, the relation (A 484) meets all requirement s. In (A 484), 
F1 comes from (A 485) and F

2 
from (A 486). In (A 485): E(a), i(b), and E(c)

come from (A 471), (A 472), nnd (A 473). In (A 486): E(d), E(e), E(f), and E(g) 
come from (A 474), (A 475), (A 476), and (A 477). 

Consoqucntly, (A 484) is tho fundaimntal form reprcscntinß D(2.1). It is of 
universal efficicncy. 

14.11.2� Tho lowland formula for D(2.1) 

Sure, mostly, in the different cases of the geodetic applications, the 
universal formula (A 484) for D(2.1) is not :fully exhaustcd, by fär not, rlio 
potcntiality of tho· oxpression (A 484) is fully exploitod only, if the test 
point P is situatcd in high mountains, and if, simultanoously, thc hcight 
anomalies to be determined havo to have centimetcr prcci�ion, - a vcry rare 
case. In most cases, the test pointo P , for which the height anomnlics t;

aro to be detcrmined, are situ0;ted in the lov1land·s, or'in hilly areas with 
small ter1·ain inclination, or on the occans. In these spccial si tuations now in the fore 
for tho place of tho tost point P, the amount of the tGnn x2 is vcry small. 
Consequently, in this caoe, x2 

<< 1, many parts of the formulae fr?m (A 471) 
up to (A 477) are so small that it is allowed to nr.glect th€m, in the lowlands. 

Hence, in ordor to save work, the universal cxpression, (A 484), is now 
siroplified for the case tho tost point P is situatod in thc lowlands, 
exclusing high mountain tost points. 

The me.thematical formulation of the constraint th at the test point is 
situated in the lowlands is givcn by the incquality 

x
2 

<< 1 (A 487) 
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(A 487) is the definition of tho condition that a lowland tost point is under 
consideration, to spealc with other words. 

Since the terms of Ff aro quadratic in thca argument . x , (A 486), (see 
E(d), E(e), E(f), E(g)) ,the $0.ount of F

2 
will always be .very small, if thc 

inequality (A 487) is right. Thus, 

F
2 

� 0 , if (A 487) is right. 

F urthermore, consid ering tha three e xpressions E(a), E(b), and E(c) 
on the right hand side of (A 485), the developments (A 471), (A 472), 
and (A 473) for the so threo expressions will simplify enormously applying 
(A 487). 

At first, the torm in tho braclcets of (A 471) is simplified by the 

(A 488) 

application of (A 487). In case, the amount of x2 is very small, (A 487), 
the rolation (A 480) loads to the following approximately valid equations 

y=; IYI � 1, y2 ,.., 1; if (A 487) is valid. 

Thus, 

2 
- (y + y2) -1 "i1 3/2 if x2 

<< 1 • 

Further on, the relations (A 488a) turn the braclcets of (A 47 2) to 

2 -1 
3 - 2 · (y + y ) ';f 2 if x2 

<< 1 •

In the second term on the right hand side of (A 472), the expression v1 is 
implied.. ];er small values of x, the relati.on (A 327a) lead s to 

X = Z/e'; if (A 487) is valid. 

The relations (A 490) and (A 491) are introdu ced into (A 472); hence it 
follows 

(A 488a) 

(A 489) 

(A 490) 

(A 491) 

(Z/R)·[3 - 2 (y + y2)-
1 

}(1/e') + (1/R),v1 � (Z/R)•(J/e') 2 • if X << 1. (A 492)
) 

Finally, the function E(c) given by (A 473) is adapted to (A 487). For 
small values of x2, the term b7 gets the following shape, (A 319) (A 320), 

b7 � x = Z/e', if (A 487) is valid. (A 493) 

Returning baclc to the relation (A 485) reprea·enting F1, and following up 
t4e adaptation of it to the lowland conditions, the relations (A 489), (A 492), 
and (A 493) are introduced into the equations (A 471), (A 472) 1 and (A 473) 
for E(a), E(b), and E(c). The sum of these three values 

E(a) + E(b) + E(c). (A 494) 

computed observing the lowland condi tion (A 487) is denominated by F 1 •1 or by [ J1 ,

(A 495) 

N 
C: 

C: 
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Along these linea, the combination of (A 489), (A 492), and (A 493)
with the expressions on the right hand side of (A 485) leads to the following
shape· of F

1 
•1, (A 497); - bere the rel_ation (A 496) was made use of,

(- 1/R),(cos p/2) 2 ,(1/sin p),(1/e') = (- 1 /4R2)-(cos p/2),(1/(sin p/2) /

F1•1 = (A) (E) L1g,(Z/R)·(3/2)·(1/e')•dw +(A) (E) (T/R)·(Z/R)-(3/e 1 ),dw +

+ (A) (E) ('c>T/'clp),(Z/R)·(-1/(4R2)),(cos p/2),.(1/(sin p/ 2) )
2

,dw

(A 496)

(A 497)

Tbis eimplified formula (A 497) for F1•1 is right if the lowland condition
(A 487) is valid. Thie simple formula (A 497) representing F

1 •1 is a convenient_
eubstitute for tbe extensive formula for F1 ae long as our geodetic applications
do witbout test points situated in the high mountains.

Returning back to tbe expression for D(2. 1 ), the universal fonnula (A 484)
gets the simplified shape if the lowland condi tion (A 487) is taken into regard.
Tbue, accounting for (A 488), and with the traneition behaviour of (A 498}

-F
1
�r

1
•1, (if (A 487) is valid},

the universal case (A 484) turns to the lowland version (A 499),

D(2.1) � F101 ,(if (A 487) is valid ).

(A 498)

(A 499)

Finally, summarizing the considerations about the computation of D(2.1),
the simple formula (A 499) will be of promine nt importance , it will governe
mos t cases of our applications. (A 499) can be handled easily in tll':l numerical
calculations.The field of application of (A 499) will be mucb more broad
than that of (A 484). 'rhe application of the universal formula (A 484) will
be restricted to the seldom cases of high mountain test points P, only.

/ 
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