# AKADEMIE DER WISSENSCHAFTEN DER DDR ZENTRALINSTITUT FÜR PHYSIK DER ERDE 

Veröffentlichungen des Zentralinstituts für Physik der Erde Nr. 97

# Geodetic Boundary Value Problems 

III<br>von<br>Kurt Arnold

A. A closed solution of the geodetic boundary value problem by means of the 1dentity of Green 3
A. A closed solution of the geodetic boundary value problem by means of the identity of Green
Summary ..... 5
Zusammenfassung ..... 6
Резюме ..... 7

1. Introduction ..... 9
2. The identity of Green ..... 14
3. The spherical solution ..... 16
4. The decomposition of the identity of Green into the spherical and the topographical constituents ..... 20
5. The representation of the perturbation potential $T$ by the Stokes integral and the topographical supplements ..... 32
6. The spherical harmonics of 0 th and 1st degree ..... 37
7. The superposition of the perturbation potential $T$upon the potential B of the mountain masseswith standard density46
8. Gauss' integral theorem ..... 52
9. The model potential $M$ represented by the Stokes integral and the supplementary topographical terms ..... 61
9.1. The formula for test points in high mountains ..... 61
9.2. The formula for test points in low mountain ranges or in the lowlands ..... 64
10. The Helmert condensation method ..... 66
11. The retransformation from the model potential M back to the potential $T$ ..... 69
12. The final formula for the perturbation potential $T$ in terms of the gravity anomalies ..... 73
12.1. The perturbation potential $T$ expressed by the Stokes integral and the topographical supplements ..... 73
12.2. The supplementary term $C_{1}$ ( $M$ ) ..... 76
12.3. The supplementary term $\mathrm{C}_{2}$ ..... 84
12.4. The supplementary term $\Omega(M)$ ..... 85
12.5. On the superposition with the potential of the isostatic masses ..... 87
13. References ..... 89
14. Appendix ..... 90

## Summary

The author extends and completes his investigations about the solution of the boundary value problem of Molodenskij found by means of the identity of Green during the last 30 years. These derivations are developed here in a clear, comprehensive and systematic order. It is the inversion of the fundamental equation of physical geodesy which is treated here. The mapping between the telluroid and the E'arth's surface happens by vertical point shifts. The final result allows the calculation of the height anomalies exact to 1 cm ; thus, it is usefull for the determination of the decimeter- and centimeter- geoid.

The solution has the shape of a closed expression. It does not imply series developments which have a dubions convergence or which do not allow to evaluate the amount of the residual term of it. All the here introduced series developments have a quick, clear and guaranteed convergence. Iteration procedures are avoided. The final result expresses the height anomalies or the perturbation potential at the Earth's surface in terms of the fres-air anomalies of the gravity at the Earth's surface.

The main term of the solution is the Stokes integral which has the Faye - anomal ies in the integrand. These anomalies consist in the sum of the free-air anomalies and the plane terrain reduction of the gravity. Further, these Faye - anomalies are supplemented by a small and smoothed term which can be disregarded in most cases, which has positive and negative amounts, and which implies the vertical gradient of the refined Bouguer anomalies. Further on, this main term has to be supplemented by the addition of 3 or 4 relative small terms, only one of them can reach about 50 cm in extreme cases.

The final solution of the boundary value problem has a shape which is distinguished by the special property of the additives that a clear separation between the terms linear and quadratic in the heights takes place. The terms quadratic in the hei ghts can be neglected for test points situated in plane countries or in low mountain ranges.

Only for test points situated in high mountains, the terms quadratic in the heights can be of interest. Even in this case, these terms have only relative small amounts, and the integration area can be restricted on the near surroundings of the test point, to a distance of not more than some tens of kilometers.

The final solution of the boundary value problem is convenient for routine applications, and it meets all theoretical requirements.

The physical boundary values are not subsided downards from the surface to the sphere, but the geometrical terms come upwards from the sphere to the surface.

## Zusammenfassung

Die in den letzten 30 Jahren, seit 1959, ausgeführten Untersuchungen des Autors zum Problem der Darstellung der Lösung des Randwertproblems von Molodenskij mittels der Identität von Green werden erweitert und in eirie endgiltige Form gebracht. Alle diese Untersuchungen werden hier in systematischer Weise vollständig zusammengefaßt. Es handelt sich also um die Inversion der Fundamentalgleichung der Physikalischen Geodäsie. Die Punktverschiebungen zwischen dem Telluroid und der Erdoberfläche erfolgen nur in vertikaler Richtung.

Im Mittelpunkt der Untersuchungen steht die Erfassung aller Glieder, die den Betrag von etwa 1 cm bei den Höhenanomalien erreichen. Die Lösung wird also soweit entwickelt, daß sie für die Bestimmung des Dezimeter - und des Zentimetergeoids geeignet ist. Die Lösung hat die Form eines geschlossenen Ausdrucke. Es werden keine Reihenentwicklungen eingeführt, deren Konvergenz fraglich ist, und bei denen sich die Größe des Restgliedes nicht abschätzen läßt. Soweit Reihenentwicklungen tatsächlich eingeführt werden, haben sie eine sehr schnelle und gesicherte Konvergenz. Iterationsprozesse werden vermieden.

Die erhaltene Lösung drückt die Höhenanomalien oder das Störpotential an der Erdoberfläche als Funktion von den Schwereanomalien an der Erdoberfläche aus. Das Hauptglied der Lösung wird durch das Stokes-sche Integral gebildet, das uber die Faye-Anomalien zuerstrecken ist. Bei diesen Anomalien ist zu den Freiluftanomalien die ebene Geländereduktion der Schwere hinzuaddiert worden.

Zu diesen Faye-Anomalien tritt noch ein kleiner glatter Ausdruck, der positiv und negativ sein kann, und der sich aus dem Vertikalgradienten der Bougueranomalien ableitet. Ferner treten zum Hauptglied noch 3 oder 4 kleine Nebenglieder hinzu, eins von ihnen kann den Betrag von etwa 50 cm erreichen. Bei. diesen Entwicklungen wird eine klare Trennung vorgenommen zwischen den Gliedern die linear und denen die quadratisch in der Höhe sind; die quadratischen sind nur fúr Aufpunkte im Hochgebirge von Interesse.

```
Die gefundene Lösung ist für Routineanwendung en geeignet, und sie befriedigt auch die theoretischen Erfordernisse.
Die physikalischen Randwerte an der きrdoberflache werden nicht herabgesenkt auf die Bezugskugel oder auf das Bezugsellipsoid, sondern die geometrischen Ausdrücke unterliegen Prozeduren, bei denen sie von der Bezugskugel (-ellipsoid) zur ミráoberfläche kommen.
Es wird vorauseesetzt, daß die Geländenoigung endiche und stetige Werte hat, - so wie man sie aus den topographischen Karten entnehmen kann. Jeder Funkt an der Erdoberfläche hat eine eindeutig definierte Tangentialebene.
```

Резюме

Ifטоводимые за последние 30 лет, начиная с 1989 года,исследования свтора по проблеме изложения решения краевой затачи Молоденского посредством јдиентичности Грина даиотся в расииренноб и доведенной до окончательного вида щорме. цаетсл полное и систематическое об'ьеднниие всех исследованті. Речб,


 направлениц.




 ного вцрджения. Не вводится ни одно разложение в ряд, іонвер-
 на поторого не удается опредеіить заранее. liociombгу же ра.зложения в ряд деілтвительно вводятся, у них ниеется отень ошстрая и надежная понвергенйя. обходлэся иез прочессов иле-

рацди. Іолученное решение вьражает внсотнне аномалии или по-
 тационннх аномалий на поверхности земли. Главное составлягщее решения образуется при помощи интеграла С'токса, которнй следует распространить и на аномалию Фая. Что касается данных аномалий, то тут к аномалиям Ф̆ая прибавлена пшоскаяя тоіограФическая поправка на гравитаццио. К этой аномалии Фая приіавляется еще небольшое гладкое виражение, готороє пожет бить как положительньи, так и отрицательным, и которое явияяется производннм от вертинальнақ градиентов гравиметрическої аномалии Буге.

діалее к главнопу члену ддобавляотся еще е иили 4 небольиих побочннх состазллоцих, одно піз которнх аюжет достичв приблйзительной величинн в 50 см. Іри данном развитии производится
 квадцатннй на внсоте; інддцратние составляжиие представляіт хинтерес только длл начальннк точек в висоногорьи.

На.денное решение пригодно для ряцового іспользования. Оно танже отвечает теоретичеснй требованиям.

## 1. Introduction

The boundary value problem of the physical geodesy deals with the inveraion of the fundamental differential equation of the phyaical geodesy,

$$
\begin{equation*}
\Delta g_{T}=-\frac{\partial T}{\partial r}-\frac{2}{r} T \tag{1}
\end{equation*}
$$

$T$ is tne perturbation potential, $r$ is the geocentric radius, and $\Delta g_{T}$ is the free-air anomaly.
(1) expresses the free-air anomaly in terms of the perturbation potential. Vice versa, the solution of the boundary value problem gives the perturbation potential in terms of the free-air anomalies. Approaching the problem by the consideration of a spherical model Earth, the solution of the boundary value problem is reduced to the Stokes formula,

$$
\begin{equation*}
T=\frac{\mathrm{R}}{4 \pi} \iint_{\mathrm{l}} \Delta \mathrm{~g}_{\mathrm{T}} \quad \mathrm{~S}(\mathrm{p}) \quad \mathrm{dl} \tag{2}
\end{equation*}
$$

$R$ is the radius of the globe,
$S(p)$ is the Stokes function,
$p$ is the spherical distance
between the test point $P$ and the point $Q$ running over the sphere in the course of the integration by (2)。I denotes the unit ephere.

Recognizing the great improvements in the preciaion of the geodetic measurements, it is no more allowed to introduce a spherical Earth as a substitute for the real Earth as boundary surface. It is necessary to consider the boundary values as continuous functions along the Earth's surface shaped by the topography. This type of a boundary value problem is discussed in the following lines. Thus, the matter to be treated now consists in the problem to find the inversion of the equation (1). The empirically obtained boundary values $\Delta g_{T}$ are given along the real surface of the Earth $u$. The $T$ values along $u$ are to be represented in terms of these $\Delta g_{T}$ Values. At the end 0 this puolication, the following solution oř ťhis problem is nbtained, (267), (268).

$$
\begin{equation*}
T=\frac{R}{4 \pi} \iint\left[\Delta g_{T}+C+C_{1}(\mathbb{M})\right] S(p) \quad d I+\{\Omega(M)\} . \tag{3}
\end{equation*}
$$

In case, the test point is situated in low mountain ranges or in the lowlands, the supplementary $\operatorname{term}\{\Omega$ (M) $\}$ can be replaced by the term $\left\{\Omega^{*}(M)\right\}$ which can be computed more easily, (272) (273).

In (3), C is the plane terrain reduction of the gravity, $C_{1}(M)$ results from the vertical gradient of the refined Bouguer - anomalies, (291) (292),

$$
\begin{align*}
& C_{1}(M)=-\left(H_{Q}-H_{P}\right) \frac{\partial}{\partial H} \Delta g_{\text {Bouguer }} \cong \\
& \cong-\left(H_{Q}-H_{P}\right) \frac{R^{2}}{2 \pi} \int\left(\frac{1}{e_{o o}^{3}}\left[\left(\Delta g_{\text {Bouguer }}\right)_{Y}-\left(\Delta \mathrm{g}_{\text {Bouguer }}\right)_{Q}\right]\right. \text { dl. } \tag{4}
\end{align*}
$$

1
$H$ is the height above the globe $v$,
Fig. 2. $e_{00}$ is the straight distance
between the two points $Q^{*}$ and $Y^{*}$
on the globe $v$,

$$
\begin{equation*}
e_{00}=\overline{Q^{*}, Y^{*}}=2 R \sin p / 2 \tag{5}
\end{equation*}
$$

$p$ is here the spherical distance between the two points $Q$ and $Y$. In the integration of (4), the point $Q$ is fixed and the point $Y$ is moving.

In the mountains, $C$ can reach an amount of 10 mgal of 50 mgal ; in extreme cases, C can be greater than 50 mgal . C is always positive.

But, $C_{1}(M)$ has positive and negative amounts.
Only in extreme cases, $C_{1}(M)$ can reach an amount of 1 or $2 \mathrm{mgal} ;[4] \mathrm{pg} 12,33,43$. $C_{1}(M)$ has to be computed in terms of the smoothed potential $M$ or in terms of the smoothed Bouguer - anomalies. M is the perturbation potential $T$ minus the potential of the mountain masses $B$, having the standard density; the potential of these mountain masses condensed at the globe is in most cases an adequate substitute for $B$. Thus, the very small and in most cases negligibly small amount of $C_{1}$ (M) has the great advantage in our applications that the calculation of is can be handled easily. In the computation of $C_{1}(M)$, only the long
wave-length constituents in the potential $M$ or in the Bougueranomalies have to be included, having a wave-length much more great than the differences of the topographical heights. Indeed, these short - wave constituents have a very small impact on the final result for the $T$ or the $\zeta$ value, the perturbation potential or the height anomaly of the test point. The impact this short - wave effect exerts on the final $\zeta$ value indirectly by way of $C_{1}(M)$ can be neglected, since it is always smaller than about 0.1 cm , see [6].

As to $\Omega(M)$, this term can be computed by the expressions (268) (224). Probably, the absolute amount of $S(M)$ will never be greater than 0.5 m or 1 m . The right hand side of (3) is, in any case, dominated by the first term of it, being the Stokes integral.

The parentheses $\}$ in (3) stand for the regulation that the share of the spherical harmonics of the oth and 1st degree is split off.

As to the philosophy of the equations (1) (2) (3), they base on a mapping between the telluroid $t$ and the surface of the Earth $u$ by means of a vertical point shift, Fig. 1. The length of the point shift vector is equal to the height anomaly.


Fig. 1.

The empirically obtained gravity g refers to the surface point $P$, the corresponding normal gravity $g^{\prime}$ is computed for the telluroid point $P_{t}$, Fig. 1. Thus,

$$
\begin{equation*}
\Delta g_{T}=g-g^{\prime}=(g)_{P}-\left(g^{\prime}\right)_{P_{t}} \tag{6}
\end{equation*}
$$

After the above lines which give a short description of the Molodenskij type boundary value problem, some other types of boundary value problems are to be sketched. For instance, the scalar gravity potential $W$ and the gradient of $W$ can be introduced as boundary values along the Earth's surface $u$,

$$
\begin{equation*}
W \quad \text { and } \quad D W=\underline{\underline{g}} \tag{7}
\end{equation*}
$$

The gravity potential along the surface $u$,

$$
\begin{equation*}
W^{\prime}=\left(W_{u}\right. \tag{8}
\end{equation*}
$$

and the 3 components of the vector

$$
\begin{equation*}
\underset{=}{g}=(\nabla w)_{u}=(g)_{u} \tag{9}
\end{equation*}
$$

represent 4 two - parametric surface functions. If the boundary values (8) and (9) are given, it is possible to replace the vertical point shift vector by an oblique point shift vector. This procedure leads to the determination of the horizontal position of the point $P$. However along the continents and especially along the oceans, the full gravity vector (9) is given by measurements at rare places, only. Consequently, the boundary value problem having boundary values according to (8) and (9) is not of great importance in our applications.

A boundary value problem of another type (being in the vicinity of the Molodenskij problem) has two surface functions as boundary values. Here, along the surface $u$, the scalar gravity potential and the length of the gravity vector,

$$
(W)_{u} \quad \text { and } \quad(g)_{u}
$$

establish the boundary values. As to the boundary values of the type (9a), it is interesting to discuss the version at which (g) is substituted by data derived by satellite abservations. The methods of satellite geodesy allow the precise determination of the
geocentric radius $r$ of the test point $P$ at the Earth's surface, exact to some centimeters. On the other hand, precise levellings
lead to precise values of $(W)_{u}$, (More precise:The difference (W) $\left.u{ }^{-}(W)_{\text {Geoid }}\right)$. From them, by well - known procedures, precise values of the normal heights $h^{\prime}$ can be computed exact to some centimeters. The following relation is self - explanatory,

$$
\begin{equation*}
r=r\left(r_{\varepsilon}, h^{\prime}, \zeta\right) \tag{10}
\end{equation*}
$$

This is the well - known relation which connocts the geocentric radius $r$ of the surface $u$, the geocentric radius of the mean Earth ellipsoid $r_{\varepsilon}$, the normal height $h^{\prime}$, and the height anomaly $\zeta$. A rearrangement of (10) gi.ves the explicit representation of $\zeta$ in terms of $r, r_{\varepsilon}, h^{\prime}$;

$$
\begin{equation*}
\zeta=\zeta\left(r, r_{\varepsilon}, h^{\prime}\right) \tag{11}
\end{equation*}
$$

The $\zeta$ value of (11) leads to the perturbation potential $T$ by

$$
\begin{equation*}
T=g^{\prime} \zeta=g^{\prime} \cdot \zeta\left(r, r_{E}, h^{\prime}\right) \tag{12}
\end{equation*}
$$

Thus, the approach considering the couple

$$
\begin{equation*}
(W)_{u^{\circ}}(r)_{u} \quad \text { or } \quad h^{\prime},(r)_{u} \tag{13}
\end{equation*}
$$

gives directly the local value of $T$ and $\zeta$ by local considerations, (12). Hence, the couple (13) seems to have certain advantages in comparsion with (9a). But this fact is valid, then and then only, if the special occasion is given in which both the values $r=(r)_{u}$ and $h^{\prime}$ are determined within some centimeters.

The solution of the geodetic boundary value problem by the equation (3) is of use also for the solution of the mixed boundary value problems [4][5] 。

In the subsequent investigations, the mean ellipsoid of the Earth is replaced by the globe $v$ (with the radius $R$ ) being the mean sphere of the Earth. By a supplementary procedure, it is possible to add the transition from the sphere to the ellipsoid. Here, the formulas of Sagrebin and Bjerhammar, for instance, can be of use.

The equation (3) for the solution of our boundary value problem is free of any series development of dubious convergence. It is also free of any series development the residuum of which cannot be evaluated with sufficient precision. ( See [4] , page (20) ...(24) ). It is also free of any series development which does not allow a clear insight into the upper bound of its residuum. A popular suggestion about this upper bound does not suffice in our applications.

Generally, power series developments for $T, \xi, \eta, \Delta g_{T}$ imply certain difficulties; thus, they have a limited efficiency and a limited field of apolication, only.

As to the here introduced heights $H$, they consist of the sum of the normal heights $h^{\prime}$ and of the height anomalies $\zeta$.

$$
\begin{equation*}
H=h^{\prime}+\zeta \tag{14}
\end{equation*}
$$

Since here the mean ellipsoid of the Earth is substituted by the globe $v$, the $H$ values appear here as the height of the Earth's surface above the globe. In a more precise ellipsoidal consideration, $H$ is the length of the exterior ellipsoidal normal describing the surface $u$. Beforehand, $\zeta$ is an unknown value, indeed. It is the value to be determined even by our here discussed procedure. For the execution of the first step, $h^{\prime}$ or $h^{\prime}+\bar{\zeta}$ are convenient approximative substitutes for $H$, where $\bar{\zeta}$ is an approximative value for $\zeta$. For a second iteration $s t=p$, the $\zeta$ value obtained by the first step can be introduced into the precise relation (14). But, these considerations are of theoretical value, only. Such an iteration procedure will change the $\zeta$ values computed by (3) by not moro than about $0,1 \mathrm{~cm}$. It is the effect the transition from $h^{\prime}$ to $h^{\prime}+\xi=H$ takes on $C, C_{q}(M),\{\Omega(M)\}$, further, by it, on the $T$ value, (3).

In case of a spherical Earth, (10) takes the form
$r=R+h^{\prime}+\zeta \quad$.
$\zeta^{\varphi}$ is equal to $T / g^{\prime}$. The formula for $C$ can be found in $[4]$, page 24, equation (17); there is valid $: Z=H_{Y}-H_{Q} \cong\left(h^{\prime}\right)_{Y}-\left(h^{\prime}\right)_{Q}$, (see Fig. 2, page 15).

## 2. The identity of Green

In the following developments, the second identity of Green is the basing mathematical relation [1] [3] [4] [5]. For a point $\overline{\mathrm{P}}$ in the mass-free exterior space of the Earth, this identity has the subsequent shape,

$$
T(\bar{P})=\frac{1}{4 \pi} \iint_{\mathbf{u}} \frac{1}{e(\bar{P}, Q)} \frac{\partial T}{\partial n} d u-\frac{1}{4 \pi} \iint_{\mathbf{u}} T \frac{\partial}{\partial n}[1 / e(\bar{P}, Q)] d u \cdot(16)
$$

The meaning of the different symbols appearing in the equation (16) can be taken from Fig. 2.

In the subsequent investigations, the slopes of the terrain are considered to have finite and continuous amounts; these amounts of this kind can be taken from the topographical maps, of course. In each point, the surface of the Earth $u$ has a clearly defined tangential plane.


Fig. 2.

| u: | : Surface of the Earth, |
| :---: | :---: |
| $v$ | : Mean (geocentric) globe in sea level, $R$ is the radius, |
| W | : Geocentric sphere, $R+H_{P}$ is the radius, |
| P | : Fixed test point at the surface of the Earth u, |
| Q | : A point on $u$, moving during the integrations with $P$ as fixed test point, |
| $Y$ | : A point on $u$, moving during the integrations with $Q$ as fixed test point, |
| $P^{*}, Q^{*}, Y^{*}$ | : The vertical projections of the points $P, Q, Y$ on $v$, |
| $Q^{* *}$ | : The perpendicular projection of the point $Q$ on $w$, |
| $\overline{\mathrm{P}}$ | : A point perpendicular above the test point $P$, |
| e | : Straight distance between $P$ and $Q$, ( $\bar{P}$ and $Q$ ), |
| $e^{\prime}, e_{0}, e_{00}$ | : Straight distance between $P$ and $Q^{* *}$, resp. $P^{*}$ and $Q^{*}$, resp. $Q^{*}$ and $Y^{*}$, |
| $H_{P}, H_{\underline{Q}}$ | : Height of $P, Q$ above the globe $v$, |
| Z | : The difference of $H_{Q}$ minus $H_{P}$. |

In (16), we have the 3. identity of Green. This identity contains the oblique derivatives with regard to the normal $n$ of the oblique surface of the Earth $u$. Thus, in the course of our deductions, these oblique derivatives give rise to the fact that the slope of the terrain turns up in the formulas. This slope would be difficultly to handle in numerical computations. But, by the method of integrations by parts, (A 270 ), this slope can be avoided, and, instead of it, the deflections of the vertical appear. The smoothing procedure governed by the $M$ potential turns these deflections into very smoothed values easily to compute. Thus, the "oblique" method makes no principle trouble, finally.

If the relation (16) is assigned to the class of the "oblique methods", this is a more qualitative and mathematical depiction. It is not quantitative, but natural science is more quantitative than qualitative.
$\underline{\underline{n}}$ is the unit vector normal to the Earth's surface $u$, it is heading into the interior of the Earth.

The test point $\bar{P}$ is subsided down to the surface of the Earth. Theroby, (16) turns to (17),
$T(P)=\frac{1}{2 \pi} \int\left(\frac{1}{e(P, Q)} \frac{\partial T}{\partial n} d u-\frac{1}{2 \pi} \iint T\left[\frac{\partial}{\partial n} \frac{1}{e(P, Q)}\right] d u\right.$. (17)
u
u
3. The spherical solution

The spherical solution of the relation (17) is obtained if the height values $H$ are set equal to zero. If $H$ does go to zero, the straight distance e does go to ${ }^{\circ}$, Fig. 2,3,

$$
\begin{equation*}
e_{0}=2 R \sin p / 2 \tag{17a}
\end{equation*}
$$

and the derivation with regard to $n$ turns to the derivation with regard to $r$, but with the inverse sign. Further, Fig. 3,

$$
\begin{equation*}
\frac{\partial}{\partial n}(1 / e) \longrightarrow-\frac{\partial}{\partial r}\left(1 / e_{0}\right)=\frac{1}{e_{0}^{2}} \frac{\partial e_{0}}{\partial x} \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\mathrm{de}_{0}}{\mathrm{dr}}=\sin \mathrm{p} / 2=\frac{\epsilon_{0}}{2 R} \tag{19}
\end{equation*}
$$

Fig. 3.


Consequently, if the heights $H$ diminish own to zero, the following transition behavior is valid,

$$
\begin{equation*}
\left[-\frac{\partial}{\partial n}(1 / e)\right] \rightarrow \frac{1}{2 e_{0} R} \tag{20}
\end{equation*}
$$

With (20), the spherjcal variant of the relation (17) gets the subsequent shape,

$$
\begin{equation*}
T=-\frac{1}{2 \pi} \int\left(\frac{1}{e_{0}} \cdot \frac{\partial T}{\partial r} \cdot d v-\frac{1}{2 \pi} \iint_{T} \cdot \frac{1}{2 e_{0} R} \cdot d v .\right. \tag{21}
\end{equation*}
$$

The spherical variant of (1) is,

$$
\begin{align*}
(r & =R) \\
\Delta \Theta_{T} & =-\frac{\partial T}{\partial r}-\frac{2}{R} \cdot T \tag{22}
\end{align*}
$$

(21) and (22) arc combined to

$$
\begin{equation*}
T=\frac{1}{2 \pi} \iint_{V} \frac{1}{e_{0}} \cdot \Delta s_{T} \cdot d v+\frac{3}{4 \pi i} \iint_{V}^{\epsilon_{0}} \frac{1}{\sigma_{0}} \cdot T \cdot d v \cdot \tag{23}
\end{equation*}
$$

$T$ and $\Delta g_{\eta}$ are continuous functions alonf the surface of the tarth. They have the following ophericnl harmonics develonments,

$$
\begin{align*}
T= & \sum^{\infty} \sum_{n=0}^{n}\left[T_{1, n, m} \cdot R_{n \cdot m}(\varphi, \lambda)+T_{2, n, m} \cdot S_{n, m}(\varphi, \lambda)\right],  \tag{24}\\
\Delta g_{T}= & \sum^{\infty} \sum^{n}\left[G_{1, n \cdot m} \cdot R_{n \cdot m}(\varphi, \lambda)+G_{2 \cdot n \cdot m} \cdot S_{n \cdot m}(\varphi, \lambda)\right] .
\end{align*}
$$

$$
\mathrm{n}=0 \mathrm{~m}=0
$$

The corresponding development for the inverse of the distance between the two points $\vec{P}^{*}$ and $Q^{*}$, Fig. 3, is,

$$
\begin{equation*}
\frac{1}{0\left(\bar{P}^{*}, Q^{*}\right)}=\frac{1}{\overline{\bar{P}^{*}}, Q^{*}}=\sum_{n=0}^{\infty} \frac{R^{n}}{(R+\infty)^{n+1}} P_{n}(\cos p), \infty>0 \tag{26}
\end{equation*}
$$

$P_{n}$ are the Legendre functions.

The decomposition formula of the spherical harmonics is introduced in (26). (27) follows,

$$
\begin{align*}
& \frac{1}{e\left(\bar{P}^{*}, Q^{*}\right)}=\sum_{n=0}^{\infty} \frac{R^{n}}{(R+x)^{n+1}} \cdot \frac{1}{2 n+1} \sum_{m=0}^{n} \Xi_{n \cdot m}, \tag{27}
\end{align*}
$$

$$
\begin{aligned}
& T_{1 . n_{0} m} T_{2 . n_{0} m} \quad \text { and } G_{10 n_{0} m}, G_{2 . n_{0} m}
\end{aligned}
$$

are the Stokes constants of the developments (24) and (25). $\varphi$ and $\lambda$
is the geocentric latitude and longitude of the test point $\bar{P}^{*}$; $\varphi^{\prime}$ and $\lambda^{\prime}$ are the corresponding parameters for the point $Q^{*}$, moving over the globe in the course of the integration of (23), Fig. 3 . $R_{n, m}(\varphi, \lambda)$ and $S_{n, m}(\varphi, \lambda)$ are the well-known normalized spherical harmonics of the degree $n$ and of the order $m$,

$$
\iint_{v} R_{n, m}(\varphi, \lambda) \cdot R_{j . k}(\varphi, \lambda) d v=\left\{\begin{array}{ll}
0 \quad ; n \neq i & \text { or } m \neq k \text { or both }  \tag{28}\\
4 \pi R^{2} ; n=i, m=k
\end{array}\right\},
$$

$$
\int\left(S_{n, m}(\varphi, \lambda) \cdot S_{i, k}(\varphi, \lambda) d v=\left\{\begin{array}{l}
0 ; i \neq i \text { or } m \neq k \text { or both }  \tag{29}\\
4 \pi R^{2} ; n=i, m=k
\end{array}\right\}\right.
$$

The relations from (24) to (29) are introduced into the integral equation (23).
The following equation for the Stokes constants is obtained, for $x \rightarrow 0$,

$$
\begin{align*}
{ }_{\text {n } 1 . n \cdot m} & =\frac{1}{2 \pi R} \cdot \frac{1}{2 n+1} \cdot G_{1 . n \cdot m} \cdot 4 \pi R^{2}+ \\
& +\frac{3}{4 \pi R^{2}} \cdot \frac{1}{2 n+1} \cdot T_{1 \cdot n \cdot m} \cdot 4 \pi R^{2} \tag{29a}
\end{align*}
$$

or

$$
\begin{equation*}
T_{1, n \cdot m}=R \cdot \frac{1}{n-1} \cdot G_{1, n_{0} m} \tag{29b}
\end{equation*}
$$

And, in an analogous way,

$$
\begin{equation*}
H_{2, n \cdot m}=R \cdot \frac{1}{n-1} \cdot G_{2, n \cdot m} \tag{30}
\end{equation*}
$$

By way of trial, it is supposed that the $S$ tokes integral of the form (31) is a solution of the integral equation (23),

$$
\begin{equation*}
T=\frac{1}{4 \pi R} \iint_{V} \Delta g_{T} \cdot \mathrm{~S}(\mathrm{p}) \cdot \mathrm{dv} \tag{31}
\end{equation*}
$$

The correctness of (31) is easily verified in the following. Indeed, the $S$ tokes function $S(p)$ has the relation

$$
\begin{aligned}
& S(p)=\sum_{n=2}^{\infty} \frac{2 n+1}{n-1} \cdot P_{n}(\cos p) \\
&
\end{aligned}
$$

$P_{n}(\cos p)$ are the Lesendre functions.
The relations (24) (25) (26) (27) and (32) aro put into (31). The following equation yields

$$
\begin{equation*}
T_{1, n \cdot m}=\frac{1}{4 \pi R} \cdot G_{1, n \cdot m} \cdot \frac{2 n+1}{n-1} \cdot \frac{1}{2 n+1} \cdot 4 \pi R^{2} \tag{33}
\end{equation*}
$$

or

$$
\begin{equation*}
T_{1 . n \cdot m}=R \cdot \frac{1}{n-1} \cdot G_{1, n \cdot m} \tag{34}
\end{equation*}
$$

(34) corroborates (29b) and (30).

Consequently, it is verified that the Stokes integral (31) is the solution of the identity of Green for a spherical model Earth, (23).
4. The decomposition of the identity of Green into the spherical and the topographical constituents

The identity of Green of the shape of (17) refers to the real surface of the Earth $u$. The oblique straight line $e$, the unit normal vector $n$ of the surface $u$, and the surface element du refer to the oblique surface of the earth $u$ shaped by the topography. All the two integrands on the right hand side of (17) come now to be multiplied with and divided through the term cos ( $\left.g^{\prime}, \mathrm{n}\right) . \nmid\left(g^{\prime}, \mathrm{n}\right)$ is the angle defined by the positive directions of the two vectors $g^{\prime}$ and $\underline{\underline{n}}$, taken for points on the surface of the Earth $u$. $\mathrm{g}^{\prime}$ is the vector of the standard gravity heading into the interior of the Earth. In case of the here chosen spherical standard Earth, g' points always to the centre 0 of this sphere. $\underline{\underline{n}}$ is also heading into the interior of the Earth, Fig. 4.


Fig. 4.

Along these lines, (17) turns to

$$
\begin{align*}
T(P)= & \frac{1}{2 \pi} \iint_{u} \frac{1}{e(P, Q)} \cdot \frac{\partial T}{\partial n} \cdot \frac{1}{\cos \left(\xi^{\prime}, n\right)} \cdot d u \cdot \cos \left(E^{\prime}, n\right)- \\
& -\frac{1}{2 \pi} \iint_{u} T \cdot \frac{\partial\left(\frac{1}{e\left(P, Q^{2}\right)}\right)}{\partial n} \cdot \frac{1}{\cos \left(g^{\prime}, n\right)} \cdot d u \cdot \cos \left(\pi^{\prime}, n\right) \quad .
\end{align*}
$$

Now, the terms in the two integrands of (35) are decomposed into their spherical parts and into the residual non - spherical parts of them. The latter parts vanish if the heights it tend to zero, Fig. 2.
The following equations (36) to (39) governe the decomposition procedure,

$$
\begin{align*}
& \frac{\partial T}{\partial n} \cdot \frac{1}{\cos \left(g^{\prime}, n\right)}=-\frac{\partial T}{\partial r}+D(1.1)=K_{1}+K_{1}^{\prime},  \tag{36}\\
& \frac{1}{e(P, Q)}=\frac{1}{e}=\frac{1}{e^{\prime}}+D(1.2)=K_{2}+K_{2}^{\prime}, \tag{37}
\end{align*}
$$

$$
\begin{equation*}
\frac{\partial \frac{1}{e}}{\partial n} \cdot \frac{1}{\cos \left(g^{\prime}, n\right)}=-\frac{\partial \frac{1}{e}}{\partial r}+D(1.3)=K_{3}+K_{3}^{\prime}, \tag{38}
\end{equation*}
$$

$$
\begin{equation*}
d u \cdot \cos \left(g^{\prime}, n\right)=d w+D(1.4)=K_{4}+K_{4}^{\prime} \tag{39}
\end{equation*}
$$

$$
\begin{equation*}
d w=\left(R+H_{P}\right)^{2} \cdot \cos \varphi \cdot d \varphi \cdot d \lambda \tag{40}
\end{equation*}
$$

$$
e^{\prime}=2 \cdot\left(R+H_{p}\right) \cdot \sin p / 2
$$

The meaning of the symbols $K_{1}, K_{1}{ }^{\prime}, K_{2}, K_{2}{ }^{\prime}, K_{3}, K_{3}{ }^{\prime}, K_{4}, K_{4}{ }^{\prime}$ follows even from the relations (36) to (39).
These relations, (36) to (39), are now introduced into (35).
(41) follows,

$$
\begin{align*}
2 \pi T & =\iint_{u}\left(K_{2}+K_{2}^{\prime}\right) \cdot\left(K_{1}+K_{1}^{\prime}\right) \cdot\left(K_{4}+K_{4}^{\prime}\right)- \\
& -\iint_{u} T \cdot\left(K_{3}+K_{3}\right) \cdot\left(K_{4}+K_{4}^{\prime}\right) . \tag{41}
\end{align*}
$$

Generally, the primed terms $\mathrm{K}_{1}{ }^{\prime}, \mathrm{K}_{2}{ }^{\prime}, \mathrm{K}_{3}{ }^{\prime}, \mathrm{K}_{4}{ }^{\prime}$ are much more small than the terms $K_{1}, K_{2}, K_{3}, K_{4}$. Hence, the multiplications in the integrands of (41) should consider only such products of three factors which have not more than one primed term $K_{1}^{\prime}$ or $K_{2}$ ' or $K_{3}$ ' or $K_{4}$ '。 There is only one exception, it is the product $K_{2} \cdot K_{1} \cdot K_{4} \cdot$ Along these lines, the integrand of the first integral on the right hand side of (41) gets the form

$$
\begin{align*}
& K_{2} K_{1} K_{4}+K_{2} K_{1} K_{4}^{\prime}+K_{2} K_{1}^{\prime} K_{4}+K_{2} K_{1}^{\prime} K_{4}^{\prime}+ \\
& +K_{2}^{\prime} K_{1} K_{4}+K_{2}^{\prime} K_{1} K_{4}^{\prime}+K_{2}^{\prime} K_{1}^{\prime} K_{4}+K_{2}^{\prime} K_{1}^{\prime} \quad K_{4}^{\prime} \cong \\
& \cong K_{2} K_{1} K_{4}+K_{2} K_{1} K_{4}^{\prime}+K_{2} K_{1}^{\prime} K_{4}+K_{2}^{\prime} K_{1} K_{4}+K_{2}^{\prime} K_{1}^{\prime} K_{4} \circ \tag{42}
\end{align*}
$$

Analogously, the two braces in the integrand of the second integral of (41) yield

$$
\begin{align*}
& K_{3} K_{4}+K_{3} K_{4}^{\prime}+K_{3}^{\prime} K_{4}+K_{3}^{\prime} K_{4}^{\prime} \cong \\
\cong & K_{3} K_{4}+K_{3} K_{4}^{\prime}+K_{3}^{\prime} K_{4} . \tag{43}
\end{align*}
$$

The introduction of (42) (43) and (36) (37) (38) (39) into (41) gives

$$
\begin{align*}
& 2 \pi T=-\iint_{w} \frac{\partial T}{\partial r} \cdot \frac{1}{e^{T}} \cdot d w-\iint_{w} \frac{\partial T}{\partial r} \cdot \frac{1}{e^{T}} \cdot D(1.4)- \\
& -\iint_{w} \frac{\partial T}{\partial r}-D(1.2) \cdot d w+\iint_{w} \frac{1}{e^{1}} \cdot D(1.1) \cdot d w+ \\
& +\iint D(1.1) \cdot D(1.2) \cdot d w+\iint T \frac{\partial \frac{1}{e^{r}}}{\partial r} d w+ \\
& \text { W } \\
& +\iint_{w} T \cdot \frac{\partial \frac{1}{e^{1}}}{\partial r} \cdot D(1.4)-\iint_{w} T \cdot D(1 \cdot 3) \cdot d w \cdot \tag{44}
\end{align*}
$$

The 2nd, $3 \mathrm{rd}, 5 \mathrm{th}, 7 \mathrm{th}$, and the 8 th term on the right hand side of (44) are put together under the denomination $D(2.1)$,
$D(2.1)=-\iint_{W}-\frac{\partial T}{\partial r} D(1.2) \quad d w-\iint_{W} \frac{\partial T}{\partial r} \frac{1}{e^{1}} D(1.4)+$
$+\iint_{W} T \frac{\partial\left(\frac{1}{e^{i}}\right)}{\partial r} D(1.4)-\iint_{W} T \cdot D(1.3) \cdot d w+$
$+\iint_{1} D(1.1) \cdot D(1.2) \cdot d w \quad$.

The 5 expressions on the right hand side of (45) get individual denominations,
$E(1)=-\iint_{W} \frac{\partial}{\partial} \frac{T}{r} D(1.2) \cdot d w$,
$E(2)=-\iint_{W} T \cdot D(1 \cdot 3) \cdot d w$,
(45b)
$E(3)=-\iint_{W} \frac{\partial T}{\partial r} \frac{1}{e^{\prime}} \cdot D(1.4)$.
$E(4)=\iint_{W} T \frac{\partial \frac{1}{e^{T}}}{\partial r} D(1.4) \quad$,
(45d)
$E(5)=\iint_{w} D(1.1) \cdot D(1.2) \cdot d w$.

Consequently, (45),
$D(2.1)=E(1)+E(2)+E(3)+E(4)+E(5)$
(44) and (45) are combined to
$2 \pi T=\iint_{W}\left[-\frac{\partial T}{\partial r}+D(1.1)\right] \frac{1}{\partial^{\prime}} \cdot d w+$

$$
\begin{equation*}
+\iint_{w} T \frac{\partial \frac{1}{e^{T}}}{\partial r} \cdot d w+D(2.1) \tag{46}
\end{equation*}
$$

The terms on the right hand side of (46) are now rearranged, in order to bring them into a shape which is convenient for numerical routine calculations.

In this context, the following relations are of use, Fig. 2 and 3, equation (1),
$-\frac{\partial T}{\partial r}=\Delta g_{T}+\frac{2}{x} T \quad$,
$e^{\prime}=2\left(R+H_{P}\right)$ sin $p / 2=2 R^{\prime}$ sin $p / 2$,
$\frac{\partial e^{\prime}}{\partial r}=\sin p / 2=\frac{e^{\prime}}{2 R^{\prime}}$,
$\frac{\partial\left(\frac{1}{e}\right)}{\partial r}=-\left(\frac{1}{e r}\right)^{2} \frac{\partial e^{\prime}}{\partial r}$
$\frac{\partial\left(\frac{1}{\sigma^{T}}\right)}{\partial I}=-\frac{1}{2^{\frac{1}{2}} R^{r}}=-\frac{1}{4 R^{2} \sin p / 2}$,

$$
\begin{equation*}
R^{\prime}=R+H_{P} \tag{53}
\end{equation*}
$$

$p$ is the spherical distance, for instance between the points $P$ and $Q$, or between $Q$ and $Y, F i g .2 . H_{P}$ is the height of the test point $P$ above the sphere $v$, having the radius $R$, Fig. 2 . The sphere $w$ has the radius $R^{\prime},(48)(53)$, and the surface element dwi is

$$
\begin{equation*}
d w=\left(R^{\prime}\right)^{2} \quad d l=\left(R^{\prime}\right)^{2} \cos \varphi d \rho d \lambda \tag{54}
\end{equation*}
$$

di is the surface element of the unit-sphere. $\varphi$ and $\lambda$ is the geocentric latitude and longitude. With (47) to (53), the equation (46) turns to (55),

$$
\begin{align*}
2 \pi T= & \int_{W}\left(\left[\Delta g_{T}+\frac{2}{x} T+D(1.1)\right] \frac{1}{2 R^{\prime} \sin p / 2} d w\right. \\
& -\int_{W} T \frac{1}{4\left(R^{\prime}\right)^{2} \sin p / 2} d w+D(2.1) . \tag{55}
\end{align*}
$$

Further,
$4 \cdot \pi \cdot R^{\prime} \cdot T=\left(/\left[\Delta g_{T}+D(1.1)\right] \cdot \frac{1}{\sin p / 2} \cdot d w+\right.$

$$
\begin{equation*}
+\iint_{w}\left[\frac{2}{r}-\frac{1}{2 \cdot R^{\prime}}\right] \cdot T \cdot \frac{1}{\sin p / 2} \cdot d w+2 \cdot R^{\prime} \cdot D(2 \cdot 1) \tag{56}
\end{equation*}
$$

The term in the brackets of the second integral on the right hand side of (56) is transformed and expressed by the heights. The radius $r$ of the point $Q$ is, Fig. 2,

$$
\begin{align*}
& r=R^{\prime}+Z=R+H_{P}+Z  \tag{57}\\
& Z=H_{Q}-H_{P} \tag{57a}
\end{align*}
$$

Hence, (57),
$r=R^{\prime} \cdot\left(1+\frac{Z}{R^{\prime}}\right) \quad$,
$\frac{1}{r}=\frac{1}{R^{\prime}} \cdot\left(1+\frac{2}{R^{\prime}}\right)^{-1} \quad$,
$\frac{1}{x}=\frac{1}{R^{\prime}} \cdot\left[1-\frac{Z}{R^{\prime}}+\left(\frac{Z}{R^{\prime}}\right)^{2} \cdots+\ldots.\right],\left|\frac{Z}{R^{\prime}}\right|<1$.
Consequently, for the expression in the second brackets of (56),

$$
\begin{align*}
& \frac{2}{r}-\frac{1}{2 R^{\prime}}=\frac{3}{2 R^{\prime}}-\frac{2 Z}{\left(R^{\prime}\right)^{2}}+\frac{2}{R^{\prime}} \cdot\left(\frac{Z}{R^{\prime}}\right)^{2} \quad .  \tag{61}\\
& \text { (56) and (61) yield } \\
& 4 \cdot \pi \cdot R^{\prime} \cdot T=\left(\int_{w}\left[\Delta E_{T}+D(1.1)\right] \cdot \frac{1}{\sin p / 2} \cdot d w+\right. \\
& +\frac{3}{2 \cdot R^{\prime}}\left(\int_{W} T \cdot \frac{1}{\sin p / ?} \cdot d v r+2 \cdot R^{\prime} \cdot D(2.1)+\right. \\
& +\int\left(\frac{T}{R^{\prime}} \cdot\left[-\frac{2 \cdot \%}{R^{\prime}}+2 \cdot\left(\frac{Z}{R^{\prime}}\right)^{2}\right] \frac{1}{\sin p / 2} d w\right. \tag{610}
\end{align*}
$$

(61a) and (50) give rise to the following equation (61b),
$4 \cdot \pi \cdot R^{\prime} \cdot T=\int_{V}\left[\Delta g_{T}+D(1.1)\right] \cdot \frac{1}{\sin p / 2} \cdot d \boldsymbol{w}+$

$$
+\frac{3}{2 R^{\prime}} \cdot \int_{\mathbb{W}} \int_{\sin p / 2} \cdot \frac{1}{\sin }+2 \cdot R^{\prime} \cdot D(2.1)+
$$

$$
+2 \cdot R^{\prime} \cdot \int_{W}\left(\frac{T}{R^{\prime}}\right) \cdot\left[-\frac{2 Z}{R^{\prime}}+2 \cdot\left(\frac{2}{R^{\prime}}\right)^{2}\right] \cdot \frac{1}{\theta^{\prime}} \cdot d w_{0}(61 b)
$$

A lot of rearrangements, given in the appendix, leads to an expression for $D(2.1)$ which is convenient for numerical routine calculations in our applications. $D(2.1)$ has the subsequent development,

$$
\begin{equation*}
D(2.1)=F_{1}+F_{2} \tag{62}
\end{equation*}
$$

The explicit expression for $F_{1}$ is represented by the relations (A 484 )(A 485)(A 471) (A 472)(A 473) in the appendix. These expressions of the appendix are convenient for routine calculations. The amount of $F_{1}$ is relative small.Obviously, $F_{1}$ will have an amount of not more than about a relative change in the height anomalies $\zeta$ by $\mathrm{Z} / \mathrm{R}$. With $\zeta=100 \mathrm{~m}$ and $Z=3 \mathrm{~km}$, a $\mathrm{F}_{1}$ value of about 5 cm follows, only. By (A 485) , $\mathrm{F}_{1}$ can be computed by a global $10^{\circ} \times 10^{\circ}$ compartment division of $\mathrm{T}, \Delta \mathrm{g}_{\mathrm{T}}$, and $H$, - or by any equivalent procedure, for instance. The computation of $F_{1}$ by means of (A 485), introducing the $T-, \Delta_{\mathrm{g}_{\mathrm{T}}}$, and the H - values, can be handled easily by a computer. The formula (A 485) demands an extension of these calculations over the whole globo.

The $F_{2}$ value of (62) is described by the formula (A 486); the terms on the right hand side of (A 486) are represented by ( 4474 ) ... (A 477). Also, the F values are small.

For iest point $P$ situated in the lowlands or in low iountain ranges, the $\mathrm{F}_{2}$ values will have negligible amounlis, dlways. This fact is vory probable.

The developnent for $F_{1}$ is of gonoral importance. It is of importance for both cases, for high mountain test points and for lowland test points $P$. But, the development for $F_{2}$ is of praclical importance for high mountain test pointe, only.

For test points $P$ situated in high mountains, only in this case, the value of $F_{2}$ will reach such amounts which are of interest in our applications, possibly. But, to be sure and to aroid misunderstomilngs, also for high mountain test points $P$, the $F_{2}$ values will never take a dominating share on the finally computed $T$ values
values of the test points. Also in case of a topography with extreme cliffs, the computation of the $\mathrm{F}_{2}$ term can be handled without any complication and without any singularity.

Also for test points $P$ situated in high mountain ranges, the $F_{2}$ values will exert an impact on the height anomaly of the test point which is not greater than some centimeters, hardly surmounting the standard deviation of these $\zeta$ values in the high mountains.

The calculation procedure of (A 486) giving $F_{2}$ has to cover only the near surroundings of the test point up to a distance of 100 km or 1000 km about.
'These calculations can be handled easily by a computer which is fed with approximative amounts of $T, \Delta \mathrm{~g}_{\mathrm{T}}$ and Z .

Exterior of the high mountains, the simplifisd expression $F_{1.1}$ of (A 487) (A 495) (A 497) is always adequate in our applications, instead of $F_{1}+F_{2}$.
Thus, (62) turns to

$$
\begin{equation*}
D(2.1) \cong F_{1.1} \quad, \text { for }: x^{2}=\left(Z / e^{1}\right)^{2} \lll 1 \text {, } \tag{63}
\end{equation*}
$$

for test points exterior of the high mountains. The computation of $\mathrm{F}_{1.1}$ can be handled easily.

The 3 rd and 4 th term on the right hand side of (61b) gets the abbreviating denomination $F$, after a division through $2 R^{\prime}$,

$$
\begin{equation*}
F=D(2.1)+\left(\int_{W}\left(\frac{T}{R^{\prime}}\right)\left[-\frac{2 Z}{R^{\prime}}+2\left(\frac{Z}{R^{\prime}}\right)^{2}\right]\left(\frac{1}{e^{\prime}}\right) d w\right. \tag{64}
\end{equation*}
$$

This expression for $F$, (64), implies only topographical terms, i.e. terms depending on the height differences $Z$. If $Z$ does tend to zero all over the globe, in this cass, $F$ does tend to zero simultaneously. The relations (62) and (64) can be combined,

$$
\begin{equation*}
F=F_{1}+F_{2}+\int\left(\int_{\mathbf{w}}\left(\frac{T}{R^{\prime}}\right)\left[-\frac{2 Z}{R^{\prime}}+2\left(\frac{Z}{R^{\prime}}\right)^{2}\right]\left(\frac{1}{e^{\prime}}\right) d w\right. \tag{65}
\end{equation*}
$$

The reliefs, which follow by the transition from (62) to (63), are now put into the fore. This transition is governed by the condition that the test point $P$ has to lie in the lowlands and not in the high mountains; thus, (A 487),

$$
\begin{equation*}
x^{2}=\left(\frac{2}{e^{1}}\right)^{2} \ll 1 \tag{66}
\end{equation*}
$$

Further, this transition implies the neglection of relative errors of the order of $Z / R$. The details of this transition are described in the appendix by the equations from (A 485) to (A 497). Even these reliefs, ( (66) and toleration of relative errors of $Z / R$ ), transform the squation (65) into the equation (67), by the transition

$$
\begin{equation*}
F \rightarrow F^{*} \quad ; \quad x^{2} \ll 1 \tag{66a}
\end{equation*}
$$

Thus, (A 499),

$$
\begin{equation*}
F^{*}=F_{1.1}+\left(\int_{W} \frac{T}{R^{1}}\right) \cdot\left(-\frac{2 Z}{R^{1}}\right) \cdot\left(\frac{1}{e^{1}}\right) \cdot d w \quad, x^{2} \ll 1 \tag{67}
\end{equation*}
$$

$$
\begin{align*}
& \text { or, equating } R^{\prime} \text { with } R \text { in sufficient approximation, } \\
& F^{*}=F_{1.1}+\left(\left(\left(\frac{T}{R}\right) \cdot\left(-\frac{2 Z}{R}\right) \cdot\left(\frac{1}{e^{\prime}}\right) \cdot d w, x^{2} \ll 1 .\right.\right. \tag{68}
\end{align*}
$$

After this consideration of the functions $F, F_{1}, F_{2}, F_{1.1}, F^{*}$, now the identity of Green is in the fore again. (61b) and (64) yield, dividing (61b) through $2 \mathrm{R}^{\prime}$,

$$
\begin{align*}
2 \cdot \pi \cdot T & =\left(\left(\left[\Delta g_{T}+D(1 \cdot 1)\right] \cdot\left(\frac{1}{e^{\prime}}\right) \cdot d w+\right.\right. \\
& +\left(\int_{W} \frac{3}{2} \cdot \frac{T}{R} \cdot \frac{1}{e^{T}} \cdot d w\right. \tag{69}
\end{align*}
$$

In (69), only the two terms $D(1.1)$ and $F$ depend on the topographical heights $H$. All the other terms of the lequation (69) do not depend on the heights $H$, they are described by pure spherical expressions.

A short discussion about the topographical terms $D(1,1)$ and $F$, of (69), seems to be convenient to be added.

The term $D(1.1)$ in (69) refers to the potentigl Te This speciality is denoted by the suffix $T$ in tile following j.fnes, $\mathrm{D}_{\mathrm{r}!}(1.1)$, since later on, $\Pi(1.1)$ is also understood to iefer to another potientiol. From the appentix, by the equation (A 21 ) , $D_{\mathrm{T}}(1.1$ ) is

$$
\begin{equation*}
\bar{D}_{\mathrm{T}}(1 \cdot 1)=\theta \cdot g \cdot \tan \left(g^{\prime}, n\right) \cdot \cos \left(A^{\prime} \cdot-A^{\prime}\right) \tag{70}
\end{equation*}
$$

In the above equation (70), the symbol $\Theta$ is introduced, it is here the absolute amount of the plumb-line deflection, for the potential $T$,

$$
\begin{equation*}
\theta^{2}=\xi^{2}+\eta^{2} \tag{71}
\end{equation*}
$$

$\xi$ and $\eta$ : the north-south and the east-west component of the plumb-line deflection at the Earth's surface $u$,

$$
\begin{align*}
& \xi=-\frac{1}{R^{\prime}+2} \cdot \frac{1}{g} \cdot \frac{\partial T}{\partial \varphi}  \tag{72}\\
& \eta=-\frac{1}{R^{\prime}+2} \cdot \frac{1}{\cos \varphi} \cdot \frac{1}{g} \cdot \frac{\partial T}{\partial \lambda} \tag{73}
\end{align*}
$$

$\varphi$ and $\lambda$ are the geocentric latitude and longitude, in (72) and (73). Here, the elobe $v$ was taken as reference figure, $\varphi$ and $\lambda$ refer to this globe $v$, also. $R^{\prime}+Z$ is the geocentric radius $r$ of the moving point $Q$ at the Earth's surface $u$, Fig. 2. g is the real gravity at this point 2 . $A^{\prime}$ is the azimuth of the slope of the terrain, counted clockwise from the north, ( see Fig. A 1). A" is the azimuth of the plumb-line deflection $\Theta$, counted clockwise fron the north.

Tise north-south and the east-west derivatives of the perturbation potential $T$ are understood that they are taken in horizontal direction ; thus, $r$ is constant during these derivations of $T$.

As to the expression for $F(T)$, being equal to the function $F$ of the equation ( 54 ) , the detailed, complete, and comprehensive development for it, valid also in the high mountains, is given by (64), (A 461), (A 462) to (A 468), and from (A 471) to (i $47 \%$ i, Alorg these lines, the following universally valid formula for $F(T)$ is found, neglecting the powers of $\left(2 / R^{\prime}\right)^{2}$ in 2 . term on the right hand side of (64), $F(T)=D(2.1)+\iint_{W} \frac{T}{R^{\prime}} \cdot\left[-\frac{2 \cdot 2}{R^{\prime}}\right] \frac{1}{e^{\prime}} \cdot d w$, $F(T)=\sum_{i=1}^{8} f_{i}(T)$
$f_{1}(T)=\iint_{W} \Delta g_{T} \cdot \frac{Z}{R} \cdot\left[2-\frac{1}{y+y^{2}}\right] \cdot \frac{1}{e^{1}} \cdot d \overline{ }$,
$f_{2}(T)=\iint_{w} \frac{T}{R} \cdot \frac{Z}{R}\left[1-\frac{2}{y+y^{2}}\right] \frac{1}{e^{1}} \cdot d w$,
$f_{3}(T)=\int\left(\frac{T}{R} \cdot \frac{v_{1}}{R} \cdot d w\right.$
$\dot{d}$ is the azimuth, variating during the integration from the north, from zero to $2 \pi$, counted clockmise.

In the expressions for $f_{1}, f_{2}, f_{3}, f_{4}$, the integration covers whole the globe. But in the integrals for $f_{5}, f_{6}, f_{7}, f_{8}$, the integration has to be extended over the surroundings of the test point $P$, only, up to a distance of not more than about 100 km.

The equations from (74) up to (74h) contain the following abbreviations, ( $\dot{A}$ 39) (A 40) (A 393) (A 395) (A 375),

$$
\begin{equation*}
x^{*}=\left[x^{2}+\frac{e^{\prime} \cdot x}{R^{\prime}}\right] \cdot \frac{1}{x^{\prime}+\left(x^{\prime}\right)^{1 / 2}} \tag{75}
\end{equation*}
$$

,

$$
\begin{equation*}
x=\frac{2}{e^{\prime}} \tag{76}
\end{equation*}
$$

,

$$
\begin{equation*}
x^{\prime}=1+x^{2}+\frac{2}{R^{\prime}} \tag{77}
\end{equation*}
$$

,
.

$$
\begin{equation*}
y^{2}=1+x^{2} \tag{78}
\end{equation*}
$$

The considerations connected with the transition procedure described by (66a), and also the deliberations about the validity of the equation (67), have demonstrated that the expression for $F$, (64), can be replaced by the more simple expression for $F^{*}$, (68), - at least in the lomlands and in not too rugged mountains. Only in high mountains, the universally valid formula (64) will be better than the simple form (68) of $F$.

$$
\begin{align*}
& f_{4}(T)=-\iint_{w} \frac{\partial T}{R \partial p} \cdot \frac{1}{R} \cdot-\frac{(\cos \mathrm{p} / 2)^{2}}{\sin p} \cdot b_{7} \cdot d w, \\
& f_{5}(T)=-\int\left(\Delta \mathrm{g}_{\mathrm{T}} \cdot \frac{\mathrm{x}^{2}}{\mathrm{y}+\mathrm{y}^{2}} \cdot \mathrm{de} \cdot \mathrm{dA},\right.  \tag{74e}\\
& f_{6}(T)=\iint \frac{T}{R} \cdot\left[-\frac{2 \cdot x^{2}}{y+y^{2}}+v_{3}\right] \cdot d e \cdot d A \quad,  \tag{74f}\\
& \mathrm{f}_{7}(T)=\int\left(\frac{\partial \mathrm{T}}{\partial \mathrm{e}^{\prime}} \cdot\left(\mathrm{v}_{2}-\mathrm{b}_{11}\right) \cdot \mathrm{de} \cdot \mathrm{dA},\right.  \tag{74g}\\
& f_{8}(T)=-\iint \quad g \cdot Z \cdot \Phi\left(x^{*} \cdot \xi, x^{*} \cdot \eta\right) \cdot d e^{\prime} \cdot d A \quad \text {. } \tag{74h}
\end{align*}
$$

Thus, (66:), $F^{*}$ has the following detailed expression which is convenient for routine calculations, (A 497) (68).

$$
\begin{align*}
& F^{*}=F^{*}(T)=\sum_{i=1}^{3} f_{i}^{*}(T) ;  \tag{79}\\
& f_{1}^{*}(T)=\iint_{w} \Delta g_{T} \frac{z}{R} \frac{3}{2} \frac{1}{e^{\prime}} d w,  \tag{79a}\\
& f_{2}^{*}(T)=\iint_{w} \frac{T}{R} \frac{Z}{R} \frac{1}{e^{\prime}} d w .  \tag{79b}\\
& f_{3}^{*}(T)=-\iint_{W} \frac{\partial T}{R^{2} \partial \bar{p}} \frac{Z}{4 R^{2}} \frac{\cos p / 2}{(\sin p / 2)^{2}} d w .
\end{align*}
$$

(79c)

In the above lines, by the relations from (35) to (69), it was discussed how the pure spherical constituents (being free of the heights $H$ ) in the identity of Green can be separated from the topographical constituents D(1.1) and F (which tend to zero if the heights $H$ tend to zero).

The functions $v_{1}, v_{2}, v_{3}, b_{7}, b_{11}$, which appear in the relations from (74) to (74h), should be given in detail, here. From (A 307) to (A 346) follows:

$$
v_{1}=(1 / 2) \cdot(x+\operatorname{arsinh} x) ;
$$

$v_{2}=-x \cdot(1 / y)+\operatorname{arsinh} x+(\sin p / 2) \cdot\{1-(3 / y)+2 \cdot y\}$,
$,-\infty<x<+\infty \quad, \quad e^{\prime}<1000 \mathrm{~km} ;$
$v_{3}=1+(1 / 2) \cdot y-(3 / 2) \cdot(1 / y)+x^{2} \cdot(1 / 2) \cdot\left\{-(1 / y)+(1 / y)^{3}\right\}+$
$+x^{3} \cdot(1 / y)^{3} \cdot(\sin p / 2)+x^{4} \cdot(1 / 2) \cdot(1 / y)^{3}$,
$,-\infty \lll+\infty, e^{\prime}<1.000 \mathrm{~km} ;$ l
$b_{7} \quad=\operatorname{arsinh} x$;
$b_{11}=x \cdot x^{*}(P, O)=\left\{x^{3}+\frac{\left(e^{\prime}\right) \cdot x^{2}}{R^{\prime}}\right\} \cdot \frac{1}{x^{\prime}+\sqrt{x^{\prime}}}$.

[^0]5. The representation of the perturbation potential $T$ by the Stokes integral and the topographica]. supplements

It is generally acknowledged that the $S$ tokes integral (31) is a good approximation to the precise shape of the solution of the integral cquation (69). Thereforc, it is intended here to bring the orecise solution of (69) in such a form which has the Stokes integral as the dominating main term, and which has to be completed by the addition of some supplementary topographical terms. The latter go to zero if the heights go to zero. Following up this problem, it is convenient to bring the relation (69) into the subsequent form,
$T=\frac{1}{4 \pi R^{\prime}} \iint_{W} \frac{\alpha}{\sin p / 2} \cdot d w+\frac{3}{8 \pi(2 \cdot)^{2}} \iint_{W} \frac{T}{\sin n / 2} \cdot d w+\beta \quad$.

Here is, Fig. 2,

$$
\begin{align*}
\alpha & =\Delta \tilde{S}_{T}+D_{T \Gamma}(1 \cdot 1)  \tag{86}\\
\beta & =\frac{1}{2 \pi} \cdot F  \tag{87}\\
R^{\prime} & =R+H_{P}  \tag{88}\\
d w & =R^{\prime}{ }^{2} \cdot \cos \varphi \cdot d \varphi \cdot d \lambda  \tag{89}\\
d w & =R^{\prime}{ }^{2} \cdot \sin p \cdot d p \cdot d A \tag{90}
\end{align*}
$$

$R^{\prime}$ is the geocentric radius of the test point $P$ at the Earth's surface, Fig. 2. (85) can be brought into the following shape,
$\frac{q^{\prime}}{R^{\prime}}=\frac{1}{4 \pi} \iint_{1} \frac{\alpha}{\sin p / 2} \cdot d l+\frac{3}{3 \pi} \iint_{1} \frac{q^{\prime}}{R^{\prime}} \cdot \frac{1}{\sin p / 2} \cdot d l+\frac{\beta}{R^{\prime}}$,
with
$d I=\left(\frac{1}{R^{1}}\right)^{2} \cdot d w=\cos \varphi \cdot d \varphi \cdot d \lambda \quad$.
The functions $\alpha, \frac{\beta}{R^{\prime}}, \frac{T}{R^{\prime}}$ and $\sin p / 2$, appearing in (91), can be represented in terms of the geocentric latitude and longitude, $\varphi$ and $\lambda$, of the running point, Fig. 2. These functions can be fj.ven by series developments in spherical harmonics, because $\alpha$ and ( $\beta / R^{\prime}$ ), and (T/R') are continuous functions of $p$ and $\lambda$, (94) (95) (96) (97).

For the sake of briefness and clarity in the further deductions, the following harmonics developments are not written down up to the last detail. Considering the harmonics of the degree $n$, not all the concerned zonal, tesseral and sectorial harmonics of the degree $n$ are written down in the following lines. As usual, to have expressions easily to handle and to survey, only the zonal harmonics are written down the tesseral and the sectorial harmonics of the same degree fulfill analogous relations, in this context. With the substitution given by (93) , ( see also (24) and (27) ) ,

$$
\begin{equation*}
R_{n_{0} 0}(\varphi, \lambda) \quad \longrightarrow \quad Y_{n}(\varphi, \lambda) \quad \text {. } \tag{93}
\end{equation*}
$$

the following developments for $\alpha, \beta, \gamma$ yield,

$$
\begin{align*}
\alpha & =\sum_{n=0}^{\infty} a_{n} \cdot Y_{n}(\varphi, \lambda) \\
\frac{\beta}{R^{\prime}} & =\frac{F}{2 \pi R^{\prime}} \\
\gamma=\frac{T}{R^{\prime}} & =\sum_{n=0}^{\infty} c_{n} \cdot Y_{n}(\varphi, \lambda)  \tag{95}\\
\gamma & =\sum_{n=0}^{\infty} d_{n} \cdot Y_{n}(\varphi, \lambda) \tag{96}
\end{align*}
$$

In analogy to (27), the subsequent relation (97) is here introduced. 'This relation is of use for the representation of the inverse of $\sin p / 2$ which appears in (91);Fig.2, 3. The functions of (94) (95) (96) can be considered to be distributed along the unit sphere. The point $P$ has the same latitude and longitude as the point $P{ }^{*}$; the same is valid for the points $Q$ and $Q^{*}$. Thus, with Fig. 3,

$$
\begin{equation*}
\frac{2 R}{e\left(\bar{P}^{*}, Q^{*}\right)}=\sum_{n=0}^{\infty}\left[\frac{R}{R+\infty}\right]^{n+1} \cdot \frac{2}{2 n+1} \cdot Y_{n}(\varphi, \lambda)_{P^{*}} Y_{n}(\varphi, \lambda)_{Q^{*}} . \tag{97}
\end{equation*}
$$

For $\nrightarrow 0$, the point $\bar{P}^{*}$ subsides down to the point $P^{*}$, and the left hand side of (97) turns to the inverse of $\sin \mathrm{p} / 2$, Fig. 3.

Furthermore, the relation (96) is inserted in (91), the equation (98) yields,

$$
\begin{equation*}
\gamma=\frac{1}{4 \pi} \int_{1} \frac{\alpha}{\sin p / 2} \cdot d l \quad-\frac{3}{8 \pi} \int_{1} \frac{\gamma}{\sin p / 2} \cdot d l+\frac{\beta}{R^{\prime}} \tag{98}
\end{equation*}
$$

Further on, with (97), and accounting for (98a),

$$
\begin{equation*}
\lim _{\ngtr \rightarrow 0}\left[\frac{2 R}{e\left(\bar{P}^{*}, Q^{*}\right)}\right]=\frac{1}{\sin p / 2}, \tag{98a}
\end{equation*}
$$

the expression (99), for the spherical harmonics developments, follows

$$
\begin{align*}
& \sum_{n=0}^{\infty} d_{n} \cdot Y_{n}(\varphi, \lambda)_{P^{*}=} \frac{1}{4 \pi} \sum_{n=0}^{\infty} a_{n} \frac{2}{2 n+1} \cdot Y_{n}(\varphi, \lambda)_{P^{*}} \cdot 4 \pi+ \\
& +\frac{3}{3 \pi} \sum_{n=0}^{\infty} d_{n} \cdot \frac{2}{2 n+1} \cdot Y_{n}(\varphi, \lambda)_{P^{*}} \cdot 4 \pi+ \\
& +\sum_{n=0}^{\infty} c_{n} \cdot Y_{n}(\varphi, \lambda)_{P^{*}} \tag{99}
\end{align*}
$$

The orthogonality relations for $Y_{n}$ are, (92), (93), (20) (29),

$$
\iint_{1} Y_{i}(\varphi, \lambda) \cdot Y_{j}(\varphi, \lambda) \cdot d l=\left\{\begin{array}{lll}
0, & \text { if } & i \neq j  \tag{100}\\
4 \pi, & \text { if } & i=j
\end{array}\right\}
$$

(99) and (100) yield

$$
\begin{align*}
a_{n}= & a_{n} \cdot \frac{2}{2 n+1}+\frac{3}{2 n+1} \cdot a_{n}+c_{n}  \tag{101}\\
& (n=0,1,2, \ldots) \tag{102}
\end{align*}
$$

(101) leads to
$0=2 a_{n}+(2 n+1) c_{n}-2(n-1) d_{n} \quad$,

$$
(n=0,1,2, \ldots)
$$

For $n=0$ and $n=1$ follows

$$
\begin{equation*}
0=2 a_{0}+c_{0}+2 d_{0} \tag{105}
\end{equation*}
$$

$0=2 a_{1}+3 \cdot c_{1}$

Thus, the idertity of Gieen, (91), yields the condition equations (103) (104) for the Stokes constants of tic developments for $\Delta_{\mathrm{T}} \mathrm{T}+\mathrm{D}_{\mathrm{T}}(1.1)$, for $\mathrm{F} /\left(2 \pi_{i} \mathrm{i}^{\prime}\right)$, and for $\mathrm{T} / \mathrm{R}^{\prime}$ 。

For a moment, the relation (107) is supposed to be the solution of the system (103). This supposition is verified belov by the relations from (103) to (114).
$\frac{T}{R^{\prime}}=\frac{1}{4 \pi} \iint\left[\left(\alpha+\frac{3}{4 \pi} \cdot \frac{F(T)}{R^{\prime}}\right] S(p) \cdot d l+\frac{F(T)}{2 \pi R^{\prime}} \quad\right.$.
$S(p)$ is the Stokes function, (32).
(107) has the character of an explicit representation of $T$ in terms of $\alpha$, since $F(T)$ on the right hand side of (107) comes from rough approximations of the $T$ values, - for instance obtained by (31).

As to the verification of (107) by (103), the Legendre functions $P_{n}$ ( $\cos p$ ) of (32) have the expression (108), according to the decomposition formula,

$$
\begin{align*}
P_{n}(\cos p) & =\frac{1}{2 n+1} \sum_{m=0}^{n}\left[R_{n \cdot m}(\varphi, \lambda)_{P^{*}} R_{n \cdot m}(\varphi, \lambda)_{Q^{*}}+\right. \\
& \left.+S_{n \cdot m}(\varphi, \lambda)_{P^{* *}} S_{n \cdot m}(\varphi, \lambda)_{Q^{*}}\right] . \tag{108}
\end{align*}
$$

Hence, the here preferred brief manner of writing gives, (93),
$S(p)=\sum_{n=2}^{\infty} \frac{1}{n-1} Y_{n}(\varphi, \lambda)_{P^{*}} \cdot Y_{n}(\varphi, \lambda)_{Q^{*}} \quad$.
(103) is valid for the harmonics of all degrees, but (107) and (110) are valid for the harmonics of the degrees $n=2,3,4, \ldots$, only. The harmonics of the degree $n=0$ and $n=1$ will be discussed later on in the special chapter 6 .

$$
\begin{align*}
& \text { From (107) follows, with (94) (95) (96) (109), } \\
& \sum_{n=2}^{\infty} d_{n} \cdot Y_{n}=\sum_{n=2}^{\infty} a_{n} \frac{1}{n-1} y_{n}+\sum_{n=2}^{\infty} \frac{3}{2} c_{n} \frac{1}{n-1} y_{n}+ \\
&+\sum_{n=2}^{\infty} c_{n} \cdot Y_{n} \tag{110}
\end{align*}
$$

(110) gives
$d_{n}(n-1)=a_{n}+c_{n}\left[\frac{3}{2}+n-1\right]$,
and further on,

$$
\begin{gather*}
0=2 a_{n}+(2 n+1) c_{n}-2(n-1) d_{n},  \tag{112}\\
(n=2,3,4, \ldots) \tag{113}
\end{gather*}
$$

(112) is identical with (103), for $n=2,3,4, \ldots$

Consequently, the relation (107) is verified to be the unique solution of the problem formulated by the equation (103) and (85).

The final form of (107) is obtained by the introduction of (86). Further, by putting the surface functions $T$ and $F(T)$ into parentheses $\}$, the fact is marked that the constituents represented by the spherical harmonics of 0 th and 1 st degree in the surface functions $T$ and $F(T)$ are split off. Hence, $\{T\}=-\frac{R^{\prime}}{4 \pi} \int\left(\left[\Delta g_{T}+D_{T}(1.1)+\frac{3}{4 \pi} \cdot \frac{F(T)}{R^{\prime}}\right] \cdot S(p) \cdot d l+\frac{\{F(T)\}}{2 \pi^{\prime}}\right.$.

1
dl is the surface olement of the unit sphere.
iith (A9), the relation (115) which is specified 3 lines below follows for $D_{T}(1.1)$, if the suffix $T$ denotes the fact that the operator $D(1.1)$ is applied to the perturbation potential $T$,

$$
\begin{equation*}
D_{T}(1.1)=\frac{\partial T}{\partial n} \cdot \frac{1}{\cos \left(g^{\prime}, n\right)}+\frac{\partial T}{\partial r} \tag{115}
\end{equation*}
$$

## 6. The spherical harmonics of 0 th and 1 st degree

The perturbation potential $T$ is the difference between the gravity potential $W$ and the standard potential $U$, in the exterior space and on the Earth's surface $u$. This is the definition of $T$,

$$
\begin{equation*}
T=W-U \tag{115a}
\end{equation*}
$$

This harmonic perturbation potential $T$ has the following uniform convergent series development in spatial spherical harmonics for test points in the exterior of the body of the Earth, [4] [5], $T=\sum_{n=0}^{\infty}\left(\frac{R^{*}}{r}\right)^{n+1} \sum_{m=0}^{n}\left[J_{1, n \cdot m} \cdot R_{n \cdot m}(\varphi, \lambda)+T_{2, n \cdot m} \cdot s_{n \cdot m}(\varphi, \lambda)\right]$, in $\Gamma(116)$
$T^{7}$ denotes both the exterior space of the Earth and the surface of the Earth u. $r, \varphi_{1} \lambda$ are the spatial polar co-ordinates. The origin of this co-ordinate system is chosen jn such a way that it does coincide with the grevity center of the Earth, (barycenter). Hence, the Stokes constants of the spherical harmonics of the 1 st degres are equal to zero, (116),

$$
\begin{equation*}
T_{1.1 .0}=T_{1.1 .1}=T_{2.1 .1}=0 \tag{117}
\end{equation*}
$$

Whole the gravitating scources which give rise to the standard potential IJ have a total mass which is equal to the mass of the Earth, 'Ihus, also the Stokes constant of the spherical harmonic of Oth degree ( $n=0$ ) is equal to zero,

$$
\begin{equation*}
T_{1.0 .0}=0 \tag{118}
\end{equation*}
$$

Whether the $T$ values obtained from the boundary value problem, (114), are compatible with the four conditions (117) (118) or not, that is the open question now to be discussed. It is intended to formulate certain criterions which make it possible to find out whether the conditions (117) and (118) are fulfilled by the $T$ values of (114) or not. Furthermore, these criterions will make it possible to determine certain supplements to the harmonics of the Oth and 1st degree of the $T$ values obtained by (114). Of course, in the surface values of $T$ obtained by (114), the constituents described by the harmonics of the Oth and 1st degree are equal to zero, per definitionem. The addition of certain
supplements to the $T$ values of (114) completes the $T$ values
of (114) in such a way that (117) and (118) are observed, in the spatial representation
of the $T$ values given by (116).
If $\rho=\rho(\varphi, \lambda)$ is equal to the geocentric radius of the Earth's surface $u$, then, the series development (116) takes the following shape for test points situated on the surface $u$,
$(T)_{u}=\sum_{n=0}^{\infty}\left(\frac{R}{\varrho}\right)^{n+1} \sum_{m=0}^{n}\left[T_{1_{0} n_{0} m} \cdot R_{n_{0} m}\left(\varphi_{1} \lambda\right)+T_{2_{0} n_{0} m} \cdot S_{n_{0} m}\left(\varphi_{1} \lambda\right)\right] \quad$.

All the functions of the manifold
$\left(\frac{R}{\rho}\right)^{n+1} \cdot R_{n \cdot m}(\varphi, \lambda) \quad$ and $\quad\left(\frac{R}{\rho}\right)^{n+1} \cdot S_{n \cdot m}(\varphi, \lambda) \quad$,
$(n=0,1,2, \ldots), \quad(m=0,1,2, \ldots, n)$,
are linear independent functions, $[4],[5]$ pg. 162 and 163,

Henceforth, the functions of (120) get now a running numeration, as given by (122),

$$
\begin{equation*}
\omega_{k}=\omega_{k}(\varphi, \lambda), \quad(k=1,2,3, \ldots) \tag{122}
\end{equation*}
$$

Thus, the development (119) for the surface values of the potential $T$ can be written in the following form,
$(T)_{u}=\sum_{k=1}^{\infty} t_{k} \cdot \omega_{k}(\varphi, \lambda)$
$t_{k},(k=1,2,3, \ldots)$, are the constant coefficients of this development.

The relations (117) (118) (123) give

$$
\begin{align*}
& t_{1}=T_{1.0 .0}  \tag{124}\\
& t_{2}=T_{1.1 .0}  \tag{125}\\
& t_{3}=T_{1.1 .1}  \tag{126}\\
& t_{4}=T_{2.1 .1} \tag{127}
\end{align*}
$$

The Schmidt orthonormalization procedure leads from the functions $\omega_{k}(\varphi, \lambda),(122)$, to the system of the orthonormalized functions $\omega_{k}^{*}$, $\omega_{k}^{*}(\varphi, \lambda)$, since the functions $\omega_{k}(\varphi, \lambda)$ are linear independent, $[4]$ [5],

$$
\left(\begin{array}{l}
\omega_{1}^{*}  \tag{128}\\
\omega_{2}^{*} \\
\omega_{3}^{*} \\
\cdots
\end{array}\right)=\stackrel{B}{=} \cdot\left(\begin{array}{c}
\omega_{1} \\
\omega_{2} \\
\omega_{3} \\
\cdots \cdot
\end{array}\right)
$$

or, in short, in vector form,

$$
\begin{equation*}
{\underset{\omega}{\omega}}_{=}^{\approx} \underset{\underline{B}}{=} \stackrel{\omega}{=} \tag{129}
\end{equation*}
$$

The Gram determinants implied in (129) are never equal to zero. Consequently, (129) can be inverted,

$$
\begin{equation*}
\underset{\cong}{\omega} \stackrel{B}{B}^{-1} \cdot{\underset{\cong}{\omega}}^{*} \tag{130}
\end{equation*}
$$

with

$$
\begin{equation*}
\operatorname{det} \quad \underset{=}{B} \quad+\quad 0 \tag{131}
\end{equation*}
$$

The right hand side of (123) can be writton in the form of a scalar product,

$$
\begin{align*}
& \text { (T) } u=t^{T} \cdot \underset{=}{\omega} \text { 。 }  \tag{132}\\
& \stackrel{t^{T}}{=}=\left(t_{1}, t_{2} ; \ldots .\right) \quad \text {. } \tag{133}
\end{align*}
$$

In (132), the subscript $u$ danotes the fact that the test point lies on the surface $u$, and the superscript $T$ is the symbol for the transposition. (130) and (132) yield
$(T)_{u}=\stackrel{t}{ }^{T} \cdot{\underset{\underline{B}}{ }}^{-1} \cdot{\underset{\sim}{\omega}}^{*}$

The systcm of the base functions $\omega_{k}(\varphi, \lambda)$, (122), is complete, as so as the system of the functions $\omega_{k}^{*}(\varphi, \lambda)$, (129), at least in the spase of the continuous functions; the proof is given in [5].

Thus, the base functions $\omega_{k}(\varphi, \lambda)$ can be developed in surface spherical harmonics $\omega_{k}^{* *}(\varphi, \lambda)$, and these rolations have a well-defined inversion. The same is valid for the representation of the orthonormal functions $\omega_{k}^{*}(\varphi, \lambda)$ in terms of the functions $\omega_{k}^{* *}(\varphi, \lambda)$. Hence,

$$
\begin{align*}
& \omega^{*}=\stackrel{\underline{A}}{\underline{A}} \underline{\omega}^{* *}  \tag{135}\\
& \underline{\omega}^{* *}=\underline{A}^{T} \cdot{\underset{\omega}{\omega}}^{*}  \tag{1166}\\
& \underline{\Xi}^{* *}=\underline{\underline{A}}^{T} \cdot \underline{\underline{B}} \cong \tag{136a}
\end{align*}
$$

The vector $\omega^{* *}$ comprises the surface spherical harmonics $\omega_{k}^{* *}(\varphi, \lambda)$
 [5] pg. 166...170,

$$
\begin{gather*}
\operatorname{det} \underline{\underline{A}}=\operatorname{det} \underline{\underline{A}}^{T}=1,  \tag{136b}\\
\underline{\underline{A}} \cdot \underline{\underline{A}}^{T}=\underline{\underline{E}} \tag{136c}
\end{gather*}
$$

E is a unit matrix.

The combination of (134) and (135) gives
$(T)_{u}=\underline{\underline{t}}^{T} \cdot \underline{\underline{B}}^{-1} \cdot \underset{\equiv}{A} \cdot{\underset{\underline{\omega}}{ }}^{*} * \quad$.

Yriting, abbreviating,
$\left(\underline{\underline{t}}^{*}{ }^{*}\right)^{\mathrm{T}}=\underline{\underline{t}}^{\mathrm{T}} \cdot \underline{\underline{B}}^{-1} \cdot \mathrm{~A}$
the following form of (137) is obtained
$(T)_{u}=\left(\underline{\underline{t}}^{* *}\right)^{T} \cdot \underline{\omega}^{* *}$;
$\left(\underline{\underline{t}}^{* *}\right)^{\mathrm{T}}=\left(\mathrm{t}_{1}^{* *}, \mathrm{t}_{2}^{* *}, \ldots ..\right)$,
$(T)_{u}=t_{1}^{* *} \cdot \omega_{1}^{* *}+t_{2}^{* *} \cdot \omega_{2}^{* * *}+\cdots \cdot$
(139) and (139b) is the devolopment of the surface values of the potential $T$ in terms of spherical harmonics. These $T$ values come from (114), from the boundary value problem.

Along the surface of the Earth $u$, the amounts of $\{T\}$ are known by the gravity anomalies $\Delta g_{T}$, using (114). From these $\{T\}$ values, the coefficients $t_{i}^{*}$ of the suriace spherical harmonics series dovelopment (139) (139b) can be computed, it is self-explanatory. Thus, the vector $\underline{\underline{t}}^{* *}$ is known,
$\stackrel{t}{=}=\left(\begin{array}{l}t_{1}^{* *} \\ t_{2}^{* *} \\ t_{3}^{* *} \\ \cdots\end{array}\right)$.
(140)
(140a)
$\delta_{i . j}$ is the Kronecker symbol, (141r), (28) (29).

I is the unit sphere, (92).

By definition, the $\{T\}$ values obtained by (114) are free of the spherical harmonics of 0 th and 1 st degree. Hence, the first four elements of (140) are equal to zero, (117)(118), (124)...(127),

$$
\begin{equation*}
t_{1}^{* *}=t_{2}^{* *}=t_{3}^{* *}=t_{4}^{* *}=0 . \tag{141}
\end{equation*}
$$

The relation (138) can be transformed, using the fact that the matrices $B$ and $A$ are non-singular; thus,

$$
\begin{equation*}
\left(\underline{\underline{t}}^{* *}\right)^{T} \cdot A^{T} \cdot \underset{=}{B}=\underline{t}^{T} \tag{141a}
\end{equation*}
$$

By (129), B is a subdiagonal matrix. The transposition of (141a) yields

$$
\begin{equation*}
\underset{\underline{t}}{=} \stackrel{B}{\underline{T}}^{T} \cdot \stackrel{A}{=} \cdot{\underset{\underline{t}}{ }}^{* *} \tag{141b}
\end{equation*}
$$

The relation (141b) shows how to compute the vector $t$, (132), from the vector $\underline{t}^{\boldsymbol{*} *}$, (140), and from the matrices $\underset{=}{B}$ and $A$. This vector $\underset{=}{t}$ is the vector of the coefficients $t_{i}$ of the harmonics development (123).

Simultaneonsly, these $t_{i}$ values are also the coefficients of the spatial spherical harmonics series development (116).

Consequently, the relation (141b) gives automatically the amounts of the coefficients $T_{1, n, m}$ and $T_{2, n, m}$ which yield from the solution of the boundary value problem, (114).
 $\mathrm{T}_{1.1 .0}, \mathrm{~T}_{1.1 .1}, \mathrm{~T}_{2.1 .1}$ are known, (124) to (127). These four amounts have to satisfy the constraints (117) and (118).

The relation (141b) gives the desired criterion convenient to check whether the constraints (117) (118) are fulfilled or not. The conditions (117) (118) can be brought into the following form,

$$
\begin{equation*}
t_{1}=t_{2}=t_{3}=t_{4}=0 \tag{141c}
\end{equation*}
$$

In case, these equations (141c) are not fulfilled by the $t_{i}$ values of (141b), ( $i=1,2,3,4)$, the measure turns out to be necessary that the center of the reference ellipsoid has to be shifted in the threedimensional space until the 3 condition equations for $t_{2}, t_{3}, t_{4}$ are satisfied, (141c) (117). Eventually, further on, the spherical symmetric constituent of the standard potential $U$ has to be modified also until the condition equation for $t_{1}$ is fulfilled, (141c) (118) (115a).

In case, the four equations (141c) are not observed by the $t_{i}$ values $(i=1,2,3,4)$, obtained from the $t=v e c t o r$ deduced from \{n\}, (141b) (114), (140a), in this case, it is possible to reach the fulfillmen $t$ of (141c) afterwards, by the subsequently described procedure of (141c) to (141 v). Here, the equation (141b) is in the fore. In (141b), the vectors $\underset{=}{t}$ and $\underline{\underline{t}}^{* *}$ are amplified by the supplements $\delta \underline{\underline{t}}$ and $\delta_{\underline{t}}{ }^{* *}$, which have to bring about an adjustment of the $T$ potential with intent to observe the constraints (141c).
Thus,

$$
\begin{equation*}
\underline{\underline{t}}+\delta \underline{\underline{t}}=\underline{\underline{B}}^{T} \cdot \underline{A}_{\underline{\underline{t}}}^{\underline{t}} \cdot\left(\underline{\underline{t}}^{* *}\right) \tag{141d}
\end{equation*}
$$

$\delta \underline{\underline{t}}$ obeys the following conditions, a priori valid,
$d t_{i}=-t_{i}, \quad(i=1,2,3,4)$.
(1416)

The relations (141e) make the left hand side of (141d) equal to
zero, for $i=1,2,3,4$, in accordance with (141c). ( $t_{i}$ values of (141e) taken from (141b)). $\delta_{\underline{\underline{t}}}^{\text {ti* }^{*}}$ fulfills the subsequent conditions, a priori valid.
(see (114)),

$$
\begin{equation*}
\delta t_{i}^{* *}=0,(i=5,6,7, \ldots) . \tag{141f}
\end{equation*}
$$

The following amounts of (141g) and (141h) have to be determined, a posteriori,

$$
\begin{equation*}
\delta t_{i},(i=5,6,7, \ldots), \tag{141g}
\end{equation*}
$$

and

$$
\begin{equation*}
\delta t_{i}^{* *} \quad(i=1,2,3,4) . \tag{141h}
\end{equation*}
$$

These values are a priori unknown, they have to be determined in such a way that (141d) (141e) (141f) are valid.

Putting, abbreviating,

| $\delta \underline{\underline{t}}$ | $=$ | $\stackrel{1}{\underline{1}} 1$ | , | (141i) |
| :---: | :---: | :---: | :---: | :---: |
| $\delta \underline{\underline{\underline{t}}}^{* *}$ | $=$ | $\underline{\underline{1}} 2$ | , | (141j) |
| $\underline{\underline{B}}^{T} \cdot \underline{\underline{A}}$ | = | $\underline{\underline{L}}$ |  | (141k) |

denoting the vector of the four a priori known components of (141e) by

$$
\begin{equation*}
\stackrel{1}{=} 1.1 \tag{1411}
\end{equation*}
$$

,
and denoting the vector of the four a priori unknown components of ( 141 h ) by
$\stackrel{1}{\underline{=}} 2.1$
,
(141m)
then the equation (141n) follows from (141b) (141d) (141i)
(141j) (141k) (141m), - since the relations (141b) and (141k) yield

$$
\underline{\underline{t}}=\underline{\underline{I}} \cdot \underline{\underline{t}}^{*} \quad .
$$

$$
\begin{equation*}
\underline{\underline{1}}_{1} \quad=\quad \leqq \cdot{ }_{=}^{1} 2 \tag{141n}
\end{equation*}
$$

,
or, by a self-explanatory rearrancement,

The determinant of $\quad \stackrel{I}{\equiv} 1$ is the minor in principal position (covering the indices $\dot{i}=1,2,3,4$ ) of the matrix $\triangleq$.
(141f) is introduced into (1410); thus the ralation

$$
\begin{equation*}
\frac{1}{\equiv} 2.2=0 \tag{141p}
\end{equation*}
$$

has to be considered, treating the matrix equation (1410). Obviously, (141q) is the result,

$$
\begin{equation*}
\underset{\equiv}{\underline{l} .1} \quad=\quad \varliminf_{1.1} \quad \stackrel{l}{\equiv} 2.1 \text {. } \tag{141q}
\end{equation*}
$$

I_1.1 is about a unit matrix, in close approximation. This fact can be evidenced by the structure of the terms (120) which are identical with the functions $\omega_{i}$ of (122). Putting the radius
$\rho\left(\varphi_{l}, \lambda\right)$ of the surface of the Earth $u$ equal to the radius $\vec{R}$ by the neplection of relative errors of the order of $2 / R$, the following relations for the first four functions of $\omega_{i}(\varphi, \lambda), \omega_{i}^{* *}(\varphi, \lambda)$, and $R_{n_{0} m}(\varphi, \lambda)$, and $S_{n_{0} m}(\varphi, \lambda)$ are obtained,

$$
\begin{aligned}
& \omega_{1} \cong R_{0.0}=\omega_{1}^{* *} \\
& \omega_{2} \cong \\
& \omega_{3} \cong R_{1.0}=\omega_{2}^{* *} \\
& \omega_{4} \cong R_{1.1}=\omega_{3}^{* *} \\
& S_{1.1}=\omega_{4}^{*}
\end{aligned}
$$

A comparison of (141r) with (136a) (141k) (1410) yields the following relation,

$$
I_{=1.1} \cong\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Consequently,
get L $_{1.1} \neq 0 \quad$.
(141t) shows that the matrix $\stackrel{L}{m}_{=1} 1$ has a well-defined inverse. Thus, the inverse of (141q) is

(141u) allows the computation of
1 그․ 1 from 1.1
The vector $\quad \xlongequal{\equiv} 1.2$ is the other vector, which is to be determined, besides of $\quad \underset{=1}{1} 1$, (141u). $\quad{ }_{\equiv 1} .2$ is obtained by (1410) (141p) (141u),


The relations (141u) and (141v) solve the here discussed problem.

The surface potential $\{T\}$ along the surface $u$, according to (114), has to be amended by an alteration that consists in the addition of the constituents formed by the spherical harmonics of 0 th and 1 st degree. The Stokes constants of these harmonics are well-defined by the relation (141u).

Further on, in the harmonics series development for the spatial potential $T$, (116), the Stokes constants of the degree $n \geqslant 2$ undergo certain amendments and alterations by the values of (14/v).

But, the surface harmonics of the degree $n \geqslant 2$ in the $T$ potential of (114) remain unchanged. They conserve the values obtained (in terms of the gravity anomalies) by the computations according to (1|4).

Furthermore, in the spatial development (116), the Stokes constants of 0 th and 1 st degree fulfill after these amendments the required constraint that they have to be equal to zero, finally, (117) (118), as demanded in our applications.
7. The superposition of tho perturbation potential $T$ upon the potential $B$ of the mountain masses with standard density

The here discussed mountain masses are the masses which are situated above the mean Earth-ellipsoid in the domain of the continents. Thus, they lie between the mean ellipsoid of the barth and the surface of the Earth $u$. In the here discussed boundary value problem, the flattening of the Earth is neglected; the ellipsoid is replaced by the globe $V, F i g .2$. Consequently, in this context, the mountains and the $h$ eights $H$ rise above the globe $v$, but not above the mean ellipsoid of the earth. Further facilities and computation reliefs, connected with this model of the mountains, coisist in the fact that these masses have the standard density $\quad \mathcal{O}=2650 \mathrm{~kg} \mathrm{~m}^{-3}$ and not the real density.

The gravitational potential $B$ of these mountain masses can be expressed by the following integral, Fig. 5,

$$
\begin{equation*}
B=f \Omega\left(\iint \frac{1}{\bar{e}} \quad d V\right. \tag{142}
\end{equation*}
$$

$V$ is the volume of the mountain masses considered above; the integral (142) cov*rs the continental domain only. $f$ is the fravitational constant. $\bar{e}$ repres?nts the straight distance between the running volume element dV and the test point $\bar{P}$ in the exterior of the body of the Earth, Fig. 5 。


Fig. 5.

The hero considerod mountain masses fill the crosswise hatched domain, shown in Fig. 5. Parpendicular below the test point $\vec{P}$ and, moreover, in the level of the globe $v$, the point $p^{*}$ is situated, Fig. 5. The volume element $d V$ has the equation

$$
\begin{equation*}
d V=r^{2} \cdot \sin p \cdot d r \cdot d p \cdot d A \tag{143}
\end{equation*}
$$

In (143), $r$ is the distance which the volume element $d V$ has to the barycenter of the globe $v$ ( $v$ havine the radius $R$ ). p is here the spherical distance between the volume element $d V$ and the point $P^{*}, F 1 \varepsilon .5$. A is the clockwise counted azimuth. It is defined as the angle, which has the point $P^{*}$ as the virtex, and which measures clockwise the direction the volume element $d V$ shows with regard to the north.

The height of the surface of the Earth $u$ above the globe $v$ is $H$, (see Fig. 2 and Fig. 4). Hence, the integral (142) turns to

$$
\begin{align*}
& \text { Now, the potential } M \text { is introduced by tho equation } \\
& M=T-B \quad \text {. } \tag{143}
\end{align*}
$$

$M$ is a harmonic and continuous potential in the extsrior space of the body of the Earth. The potential $M$ has about the same structure as the vetential $T$. The amounts of $|M / G|$ will not be greater than about ten times the amounts of $|T / G|$, at least in the global average. $G$ is here the global mean of the gravity. If it is intended to compute $M$ by the relation (145), the potential $B$ on the right hand side of (145) comes from (144). But, the integration according to (144) doas not imply the isostatic compenstion masses, situated below the isostatic compansation depth of 30 km , in case of the Airy - Heiskanen system.
Because (144) does not imply the compensating mountain roots, the amount of $|\mathrm{M}|$ will generally be greater than the amount of $|T|$, (145). $|M / G|$ can amount up to 1000 m , about.
rit this place, before a further discussion about the potertial $M$, it shoule be stressed that only the coming equa;ion (1 1 ) on the next page defines the term
$\Delta g_{[:}$! : specially ia (6), it is not allowed simply to substitute $T$ by $!$, and $g$ by $g^{\prime \prime \prime}$, without any inclusion of any additives. Replacing $\mathcal{D}_{\mathbb{E}:}$ by $\mathrm{g}^{\prime \prime \prime}$ - g', this procedure will be wrong, or, more precisely, it will not be sufficient precise. A term quadratic in ( $\mathrm{M} / \mathrm{g}^{\prime}$ ) has to be added as a more or less important additive. The deeper reason is the fact, that ( $\mathrm{M} / \mathrm{E}^{\prime}$ ) is in its absolute amount 5 time or 10 time greater than $\left|\left(T / c_{i}^{\prime}\right)\right|$. In the subsequent deliberations and deductions about the boundary value problem, these additives do not occur. The following deductions make no mention of these additives. - But in (6), the analogous term quadratic in (T/E') can be neglected, according to common use. The reason is, that $\left|\left(T / E^{\prime}\right)\right|$ is generally considerably smaller than $\left|\left(M / g^{\prime}\right)\right|$.

$$
\begin{align*}
& \text { It is possible to apply the equations }(114) \text { and (115) to the potential } \\
& \text { M, defined by }(145) \text {. Thus, if } M \text { serves as substitute for T, } \\
& \left.\left\{r^{\prime}\right\}=\frac{R^{\prime}}{4 \pi} \iint_{G_{M}}+D_{M}(1.1)+\frac{3}{4 \pi} \frac{F(M)}{R^{\prime}}\right] S(p) \cdot d l+\frac{\{F(M)\}}{2 \pi} \tag{146}
\end{align*}
$$

The relation (115) turns to

$$
\begin{equation*}
D_{M}(1.1)=\frac{\partial M}{\partial n} \cdot \frac{1}{\cos \left(g^{\prime}, n\right)}+\frac{\partial M}{\partial r} \tag{147}
\end{equation*}
$$

The fundamental equation of Physical Geodesy gives, (1),

$$
\begin{align*}
\Delta \delta_{T} & =-\frac{\partial T}{\partial r}-\frac{2}{r} T  \tag{148}\\
\Delta g_{B} & =-\frac{\partial B}{\partial r}-\frac{2}{r} B \tag{149}
\end{align*}
$$

Thus, (145),

$$
\begin{align*}
\Delta g_{\mathrm{Li}} & =\Delta \mathrm{g}_{\mathrm{T}}-\Delta g_{B}  \tag{150}\\
\Delta g_{M} & =-\frac{\partial M}{\partial r}-\frac{2}{r} M  \tag{151}\\
\Delta g_{M} & =-\frac{\partial T}{\partial r}+\frac{\partial B}{\partial r}-\frac{2}{r} \cdot(T-B) \tag{152}
\end{align*}
$$

The transformations of (147) happen along the same way as those of (1i5); but, considering (147), the fact has to be in view that the amounts of $|\mathrm{M} / \mathrm{G}|$ can reach about 1000 m , whereas the amounts of $|T / G|$ hardly reach 100 m . The concerned rearrangements of (115) can be found in the appendix, by the equations from (A9) up to (A 21). Some hints at the amounts of $|M / G|$ can be found in the following publication: Veröff, d. Bayerischen Koniaission f. d. Intern. Erdmessung, Astr.-Geod. Arbeiten, Heft Nr. 48, München 1986, S. 153.

As to the rearrangements of (147), taken in the potential field M, $\mu_{1}$ is the plumb - line deflection component at the surface of the Earth $u$, taken in the north - south direction. $\mu_{2}$ is the corresponding east - west component, (71) (72) (73).

$$
\begin{equation*}
\mu_{1}=-\frac{1}{R^{\prime}+2} \cdot \frac{1}{g^{\prime \prime \prime}} \cdot \frac{\partial m}{\partial \varphi} \tag{153}
\end{equation*}
$$

$$
\begin{equation*}
\mu_{2}=--\frac{1}{R^{\top}+Z} \cdot \frac{1}{g^{\top}+\frac{1}{\cos \varphi}} \cdot \frac{\partial M}{\partial \lambda} \tag{154}
\end{equation*}
$$

$\mu:$ the absolute amount of this plumb - line deflection,

$$
\begin{equation*}
\mu^{2}=\mu_{1}^{2}+\mu_{2}^{2} \tag{155}
\end{equation*}
$$

$\mu, \mu_{1}, \mu_{2}$ have smoothed values, but the functions of $\Theta, \xi, \eta$ are not smoothed, (71) (72) (73).

The standard gravity $g^{\prime}$ is the amount of the gradient of the standard potential U. The amount of g'' ${ }^{\prime \prime}$ is the intensity of the gravity in the potential fisld $U+M ; U$ and $U+M$ are rotating potentials. Thus, by the gradient, (Fig.A 1),

$$
\begin{equation*}
g^{\prime \prime \prime}=|\nabla(U+M)| \tag{156}
\end{equation*}
$$

A''' is the azimuth of the plumb - line deflection $\mu$. As it is found in the above mentioned Bavarin publication Nr. 48, the horizontal altration of the amounts of $|\mathrm{Fi} / \mathrm{G}|$ is maximal about 0.5 km for a distance of 2000 km . Here, the fact has to be regarded, that, in this Bavarian oublication, the mountains have the density-surplus of $2670 \mathrm{~kg} \mathrm{~m}{ }^{-3}$ and the ocean basins the density-defect of $-1640 \mathrm{~kg} \mathrm{~m} \mathrm{~m}^{-3}$. But, in the here discussed calculation of the $M$ values, the mass deficiency in the domain of the oceans has to be discarded. Consequently, the amounts of $|M / G|$ will be a little greater, in reality, than the valuシs taken from the above cited publication Nr. 48. Summarizing, the maximal amount of $\mu$ can be charact:rised by

$$
\begin{align*}
& \mu_{\max }=0.5 \mathrm{~km} / 2000 \mathrm{~km}=2.5 \cdot 10^{-4} \\
& \text { Obvicusly, the relstion }(157 \mathrm{a}) \text { is valid, } \\
& \mathrm{M}=(\mathrm{U}+\mathrm{M})-\mathrm{U} \tag{157a}
\end{align*}
$$

Introducing $M$ as a substitute for $T$, and $U+M$ as a substitute for $W$ (being equal to $U+T$ ), the ralation (A 14) turns to, (156),

$$
\begin{equation*}
\frac{\partial M}{\partial n}=g^{\prime \prime \prime} \cdot \cos \left(g^{\prime \prime}, n\right)-g^{\prime} \cdot \cos \left(g^{\prime}, n\right) \tag{158}
\end{equation*}
$$

Analogously as (A 15), the equation (159) can be obtainミd,
$\cos \left(g^{\prime \prime \prime}, n\right)=\cos \left(g^{\prime}, n\right) \cdot \cos \mu+\sin \left(g^{\prime}, n\right) \cdot \sin \mu \cdot \cos \left(A^{\prime} \prime^{\prime}-A^{\prime}\right)$.
This above relation (159) can be obtained also froin rig.A 1 and the cosine formula or a spherical triangle. In Fig. A 1 on the page 95, the vector
 In Fig. A 1, the normalized vectors $\left(-g_{=}^{\prime}\right)^{0},(-\underline{=})^{0},(-g)^{0}$, and $\left(-g^{\prime} '^{\prime}\right)^{0}$ are the radii of a unit sphere with the surface point $Q$ as center.

Considering

$$
\begin{align*}
& \sin \mu=\mu-\frac{1}{6} \mu^{3}+-\ldots  \tag{160}\\
& \cos \mu=1-\frac{1}{2} \mu^{2}+-\cdots \tag{16.1}
\end{align*}
$$

the relation (162) follows from (159),

$$
\begin{align*}
\cos \left(g^{\prime} \prime \prime, n\right) & =\cos \left(g^{\prime}, n\right)-\frac{1}{2} \cdot \mu^{2} \cdot \cos \left(g^{\prime}, n\right)+ \\
+ & \mu \cdot \sin \left(g^{\prime}, n_{1}\right) \cdot \cos \left(A^{\prime} \prime \prime-A^{\prime}\right)- \\
& -\frac{1}{6} \cdot \mu^{3} \cdot \sin \left(G^{\prime}, n_{1}\right) \cdot \cos \left(A^{\prime} \prime \prime-A^{\prime}\right) . \tag{162}
\end{align*}
$$

The relation (157) yields

$$
\begin{equation*}
\left(\mu_{\max }\right)^{2}=6 \cdot 10^{-8} \tag{163}
\end{equation*}
$$

The relation (163) makes it clear, that the 4 th term on the right hand side of (162) is insignificant in comparison with the 3rd term. Thus,

$$
\begin{align*}
\cos \left(g^{\prime \prime \prime}, n\right) & =\cos \left(g^{\prime}, n\right)-\frac{1}{2} \cdot \mu^{2} \cdot \cos \left(g^{\prime}, n\right)+ \\
+ & \mu \cdot \sin \left(g^{\prime}, n\right) \cdot \cos \left(A^{\prime} \prime \prime-A^{\prime}\right) . \tag{164}
\end{align*}
$$

The combination of (158) with (164) gives (165),

$$
\begin{align*}
\frac{\partial M}{\partial n} \cdot \frac{1}{\cos \left(g^{\prime}, n\right)} & =g^{\prime \prime \prime}-E^{\prime}-\frac{1}{2} \cdot \mu^{2} \cdot g^{\prime \prime \prime}+ \\
& +\mu \cdot g^{\prime \prime \prime} \cdot \tan \left(\mathcal{I}^{\prime}, n\right) \cdot \cos \left(A^{\prime \prime \prime}-A^{\prime}\right) \quad . \tag{165}
\end{align*}
$$

$\mu$ is the angle the direction of g'' makes with the radius $r$; thus, (166) follows

$$
\begin{equation*}
g^{\prime \prime \prime} \cdot \cos \mu=-\frac{\partial(M+U)}{\partial r}, \tag{166}
\end{equation*}
$$

or, with (161),

$$
\begin{equation*}
g^{\prime \prime \prime}=-\frac{\partial(\Pi+U)}{\partial r}\left[1+\frac{1}{2} \mu^{2}\right] \text {. } \tag{167}
\end{equation*}
$$

Further, (A 13),

$$
\begin{equation*}
g^{\prime}=-\frac{\partial U}{\partial r} \tag{168}
\end{equation*}
$$

The difference of (167) and (168) is, in sufficient approximation,

$$
\begin{equation*}
g^{\prime \prime \prime}-g^{\prime}=-\frac{\partial M}{\partial r}-\frac{\partial U}{\partial r} \cdot \frac{1}{2} \cdot \mu^{2} \tag{169}
\end{equation*}
$$

or, (168),

$$
\begin{equation*}
g^{\prime \prime \prime}-g^{\prime}=-\frac{\partial M}{\partial r}+\frac{1}{2} \cdot g^{\prime} \cdot \mu^{2} \tag{170}
\end{equation*}
$$

(165) and (170) are combined to
$\frac{\partial M}{\partial n} \cdot \frac{1}{\cos \left(g^{\prime}, n\right)}=-\frac{\partial M}{\partial r}+\mu \cdot g^{\prime \prime \prime} \cdot \tan \left(g^{\prime}, n\right) \cdot \cos \left(A^{\prime \prime \prime}-A^{\prime}\right) \quad$.

In (171), the amount of

$$
\begin{equation*}
\frac{1}{2} \mu^{2} \cdot\left(g^{\prime}-g^{\prime \prime \prime}\right) \tag{172}
\end{equation*}
$$

was neglected, since it is considerably smaller than $1 \mu$ gal.
The 2nd term on the right hand side of (171) contains the gravity value of g'''. Replacing here g''' by the standard gravity g', a relative error of ( $\left.g^{\prime \prime \prime}-g^{\prime}\right) / g^{\prime}$ is the consequence. Putting the amount of $\left|g^{\prime \prime \prime}-g^{\prime}\right|$ equal to 0.3 gal and $g^{\prime}$ equal to $10^{3}$ gal (i.e. $10^{3} \mathrm{~cm} / \mathrm{sec}^{2}$ ), this relative error amounts to

$$
\begin{equation*}
\frac{g^{\prime \prime \prime}-g^{\prime}}{g^{\prime}} \cong 3 \cdot 10^{-4} \tag{173}
\end{equation*}
$$

The neglection of such a small relative error of the order of (173) can always be tolerated in the second term on the right hand side of (171). Obviously, the admissibility of this neglection is due to mere the fact that the plumb-line deflection can never be determined empirically better than within a relative error of $3 \cdot 10^{-4}$. Thus, (171) turns to

$$
\begin{equation*}
\frac{\partial M}{\partial n} \cdot \frac{1}{\cos \left(g^{\prime}, n\right)}=-\frac{\partial M}{\partial r}+G \cdot \mu \cdot \tan \left(g^{\prime}, n\right) \cdot \cos \left(A^{\prime} \prime^{\prime}-A^{\prime}\right) \tag{174}
\end{equation*}
$$

In (174), g' (or better g''') was put equal to $G$. $G$ is the global mean value of the gravity. (174) and (147) yield

$$
\begin{equation*}
D_{M}(1.1)=G \cdot \mu \cdot \tan \left(g^{\prime}, n\right) \cdot \cos \left(A^{\prime} '^{\prime}-A^{\prime}\right) \quad . \tag{175}
\end{equation*}
$$

Summarizing the details of the three mathematical expressions representing the three symbols $\Delta \mathrm{g}_{\mathrm{M}}, \mathrm{D}_{\mathrm{M}}(1.1)$ and $\mathrm{F}(\mathrm{M})$ on the right hand side of (146), the following is found: In (146), $\Delta \mathrm{g}_{\mathrm{M}}$ is obtained by (151). $D_{M}$ (1.1) comes from (175). $F(M)$ is represented by (64), and by (74), (74a) to (74h), (replacing $\Delta \mathrm{g}_{\mathrm{T}}$ by $\Delta \mathrm{g}_{\mathrm{M}}$, T by M , and further $\xi, \eta$ by $\left.\mu_{1}, \mu_{2}\right)$.

## 8. Gauss' integral theorem

The torm $D_{M}$ (1.1) exerts the following impact on the integral on the right hand side of (146), in the computation of $\{M\}$, (175),

$$
\begin{equation*}
J=\frac{R^{\prime}}{4 \pi} \iint_{I} D_{M}(1 \cdot 1) \cdot G(p) \cdot d l \tag{176}
\end{equation*}
$$

This expreseion for $J$ undergoes now some rearrangements using the Gauss' integral theorem, in order to bring the expression for $J$ into a shape more convenient for numerical routine calculations.
(175) and (176) yield

$$
\begin{equation*}
J=\frac{G}{4 \pi R^{\prime}} \iint_{w} \mu \cdot \tan \left(g^{\prime}, n\right) \cdot \cos \left(A^{\prime} \prime^{\prime}-A^{\prime}\right) \cdot S(p) \cdot d w \tag{117}
\end{equation*}
$$

$A^{\prime}$ is the azimuth of the slope of the terrain, $A^{\prime \prime \prime}$ that of the plumb - line deflection $\mu$, Fig. A1. The north - south and the east - west componsnt of the plumb - line deflection $\mu$ are denoted by $\mu_{1}$ and $\mu_{2}$, (153) (154),

$$
\begin{align*}
& \mu_{1}=\mu \cdot \cos A^{\prime \prime \prime}  \tag{178}\\
& \mu_{2}=\mu \cdot \sin A^{\prime \prime \prime} \tag{179}
\end{align*}
$$

The expressions for $\mu_{,} \mu_{1}$ and $\mu_{2}$ are functions which represent these values along the surface of the Earth $u$.

$$
\begin{equation*}
\mu^{2}=\mu_{1}^{2}+\mu_{2}^{2} \tag{179a}
\end{equation*}
$$

Thus, the values $\iota^{\ell}, \ell_{1}$, and $\mu_{2}$ have two - parametric functions of $p$ and $\lambda$. They can be understood as functions the values of which are distributed along the unit sphere or along the sphere..w, having the radius $R^{\prime}$.

In the point $Q$ situated at the surface of the Earth $u$, in the direction of growing $p$ - values, (i. e. in the direction the great circle connecting $P$ and $Q$ is heading for,in the point $२)$, the component of the plumb - line deflection $\mu$ has the following relations (153) (154),

$$
\begin{align*}
\mu_{p} & =-\frac{1}{R^{\prime}+2} \cdot \frac{1}{g^{\prime T}} \cdot \frac{\partial M}{\partial p}= \\
& =-\left[\frac{1}{R^{\top}+Z} \cdot \frac{1}{g^{1+T}} \cdot \frac{\partial M}{\partial p}\right]_{u} \cong  \tag{180}\\
& \cong-\quad-\frac{1}{R^{\prime} \cdot G} \cdot\left[\frac{\partial M}{\partial p}\right]_{u}
\end{align*}
$$

$p$ is here again the spherical distance from the test noint $P$ (fired within one integration) and the point $Q$, which is variable within one integration covering whole the sphere $v, ~(177)$. I'hus, also $\mu_{p}$ is a two - parametric function, similarly as $\mu, \mu_{1}$, and $\mu_{2}$. Hence,

| $\mu$ | $=\mu(\varphi, \lambda)$ |
| ---: | :--- |
| $\mu_{1}$ | $=\mu_{1}(\varphi, \lambda)$ |
| $\mu_{2}$ | $=\mu_{2}(\varphi, \lambda)$ |
| $\mu_{p}$ | $=\mu_{p}(\varphi, \lambda)$, |

In (153) (180), the derivations of $M$ have to be taken in horizontal direction; that is to say, these derivations happen along the horizontal plane of the considered Earth's surface ppint, in north - south or east - west, or in radial direction. The values of (131) (182) (183) (184) refer to points situated on the surface of the Earth u.

The values $\mu_{1}$ and $\mu_{2}$ can be considered as the components of a rector $\mu$ which is tangential to the sphere $w$ (having the radius $R^{\prime}$ ). Thus,

$$
\begin{equation*}
\underline{\underline{\mu}}=\mu_{1} \cdot \underline{\underline{e}} 1+\mu_{2} \cdot \underline{e}_{2} \tag{185}
\end{equation*}
$$

$\underline{E}_{1}$ and $\underline{e}_{2}$ are orthogonal unit vectors, Fig. A1. Each point on the sphere $w$ has a vector $\varrho_{1}$ which is tangential to the sphere $w$ and which is heading to the north. The same is valid for the vactor $\underline{e}_{2}$ which is heading to the east. Hence,

$$
\begin{align*}
& \underline{e}_{1}^{2}=\stackrel{e}{e}_{2}^{2}=1  \tag{186}\\
& \mu_{=}^{2}=\mu^{2}=\mu_{1}^{2}+\mu_{2}^{2} \tag{187}
\end{align*}
$$

The slope of the terrain is described by $\tan \left(g^{\prime}, n\right)$, Fig. 4, Fig. A1. This expression allows certain developments which are similar to the above developments for $\mu$, from (178) to (187). The north south and the east - west component of the slope of the terrain are denoted by $s_{1}$ and $s_{2}$, they have the following expressions, (see Fig. A1 of the appendix),

$$
\begin{align*}
& s_{1}=\tan \left(g^{\prime}, n\right) \cdot \cos A^{\prime},  \tag{138}\\
& s_{2}=\tan \left(g^{\prime}, n\right) \cdot \sin A^{\prime} . \tag{139}
\end{align*}
$$

The height difference $Z$ is equal to $H_{Q}$ minus $H_{P}$, (57a), whereat $H_{P}$ is fixed because $P$ is the fixed test point, but, whereat $H_{Q}$ is variable because the point $Q$ varies over the whole globe. $s_{1}$ and $s_{2}$ can be obtained by the derivation of the height $H_{2}$ of the point 2 in the north - south and in the east west direction.
Therefore, it is possible to find $s_{1}$ and $B_{2}$ also by derivations of this kind but with regard to the height difference $Z$, instead of $H_{Q}$. Honce, for the point 2 ,

$$
\begin{align*}
& s_{1}=-\frac{1}{R^{\top}+Z} \cdot \frac{\partial z}{\partial \varphi}  \tag{190}\\
& s_{2}=-\frac{R^{\top}+2}{R^{\top}} \cdot \frac{1}{\cos \varphi} \cdot \frac{\partial z}{\partial \lambda} \cdot \tag{191}
\end{align*}
$$

The integral $J$ is a relative small supplemantary term, (177). Thus, in the integrand of $J$ and, consequently, also in the expressions for $s_{1}$ and $s_{2}$, a relative error of the order of $2 / R^{\prime}$ or $2 / R$ can be tolersted. $2 / R$ reaches not more than about $10^{-3}$ to $10^{-4}$, (see also the appendix, (A386) to (A 387b). Consequently,

$$
\begin{align*}
& s_{1} \cong-\frac{1}{R^{\top}} \cdot \frac{\partial z}{\partial \varphi}  \tag{192}\\
& s_{2} \cong-\frac{1}{R^{T} \cos \varphi} \cdot \frac{\partial z}{\partial \lambda} \tag{193}
\end{align*}
$$

(192) and (193) are valid for the point $Q$.

A vector $\underline{s}^{\text {s }}$ can be constructed,
$\underline{\underline{\underline{s}}}=s_{1} \cdot \underline{\underline{e}}_{1}+\mathrm{s}_{2} \cdot \underline{\underline{e}}_{2} \quad$.
The height differences $Z$, taken with regard to the fired test point $P$, construct a scalar field of two - parametric values along the sphere $w$ (having the radius $R^{\prime}$ ). Obviously, the vector $S$ can be represented by the gradient of the scalar 2 field, taken along the sphere $w$, (192) (193),

$$
\begin{equation*}
\cong=-\nabla \cdot H_{Q}=-\nabla \cdot 2 \tag{195}
\end{equation*}
$$

Or,

$$
\begin{align*}
& s_{1}=-(\nabla \cdot 2) \cdot \underline{\underline{e}}_{1}  \tag{196}\\
& s_{2}=-(\nabla \cdot 2) \cdot \underline{e}_{2} \tag{197}
\end{align*}
$$

(196) and (197) follow from (194) and (195).

For any scalar function $q$, defined on the surface $w$, the gradient has the subsequent shape,

$$
\begin{equation*}
\nabla \cdot q=-\frac{1}{R^{\boldsymbol{r}}} \frac{\partial q}{\partial \varphi} \underline{\underline{e}}_{1}+-\frac{1}{R^{\boldsymbol{1}}} \cos \varphi \frac{\partial q}{\partial \lambda} \underline{\underline{e}}_{2} \tag{198}
\end{equation*}
$$

$P, \lambda:$ the geocentric latitude and longitude. (199) is selfexplanfïcy, (188) (189) ,

$$
\begin{equation*}
\underline{\underline{s}}^{2}=s^{2}=\left(\tan \left(g^{\prime}, n\right)\right)^{2}=s_{1}^{2}+s_{2}^{2} \tag{199}
\end{equation*}
$$

$$
s \text { is the slope of the terrain. }
$$

The decomposition formula for the cosine function gives for (175)
$D_{M}(1.1)=G \cdot \mu \cdot \tan \left(g^{\prime}, n\right) \cdot\left[\cos A^{\prime \prime \prime} \cos A^{\prime}+\sin A^{\prime \prime} \sin ^{\prime}\right] \quad$. with (178) (179) and (188) (189), the relation (200) turns to

$$
D_{M}(1 \cdot 1)=G\left(\mu_{1} \cdot s_{1}+\mu_{2} \cdot s_{2}\right)
$$

The inner product of the two vectors $\mu$ and $\cong$ leads to , (185) (194) ,

$$
\begin{equation*}
D_{M}(1 \cdot 1)=G \cdot \mu \cdot \underline{=} \tag{202}
\end{equation*}
$$

Thus, the integral expression for $J$ takes the following shape, (176) (202),

$$
\begin{equation*}
J=\frac{G}{4 \pi R^{\prime}} \iint \mu \cdot \underline{\underline{\underline{s}} \cdot \mathrm{~S}(\mathrm{p}) \cdot \mathrm{dw}, ~ . ~ . ~} \tag{203}
\end{equation*}
$$

With intend to rearrange the integrand of (203), a new vector a ${ }^{\circ}$ is introduced,

$$
\begin{equation*}
\varepsilon_{0}=Z \cdot S(p) \cdot \mu \tag{204}
\end{equation*}
$$

In (204), the scalar value $Z$ and the expression $S(p)$, and the components of the vector $\mu$ are all continuous functions of $\varphi$ and $\lambda$, (182) (183). Thej can be considered as functions distributed along the sphere $w$. In this context, they are understood that they are functions of the variable co-ordinates of the point $Q$, only. But, in this context, the comordinates of the point $P$ are constant.

The gradient of a scalar function $q$ has the relation (198), for a function $q$ distributed along the surface of the aphere $w$. Further,

$$
\begin{equation*}
\mathrm{d} \mathbf{w}=\mathrm{R}^{2} \cdot \mathrm{dl} \tag{205}
\end{equation*}
$$

Now, a vector $g$ is introduced; it has the comporents $q_{1}$ and $q_{2}$, in the direction of $\underline{\varrho}_{1}$ and $\underline{\underline{e}} 22$. The divergence of this vector $q$, defined for points on the surface of the sphere $w$, can be described by $q_{1}$ and $q_{2}$ (in the spherical co-ordinates $\varphi, \lambda$; for points with the radius $R^{\prime}$ of the sphere w). (206) follows,

$$
\operatorname{div} \underset{\equiv}{q}=\nabla \cdot \underline{\underline{q}}=\frac{1}{R^{\top}} \cdot \frac{\partial q_{1}}{\partial \varphi}+\frac{1}{R^{\top} \cos \varphi} \frac{\partial q_{2}}{\partial \lambda} \tan \varphi_{R^{1}} q_{1}
$$

Thus, the divergence of the vector field $\underline{\underline{a}}_{0}$, distributed over the sphere $W$, has the form, (204) (205),

$$
\begin{align*}
\nabla \cdot \underline{\underline{\theta}}_{0} & =\operatorname{div} \underline{\underline{a}}_{0}=\operatorname{div}(Z \cdot S(p) \cdot \mu)=\nabla \cdot(Z \cdot S(p) \cdot \mu)= \\
& =(\nabla \cdot Z) \cdot S(p) \cdot \mu+z \cdot(\nabla \cdot S(p)) \mu+2 \cdot S(p) \cdot(\nabla \cdot \mu) \tag{207}
\end{align*}
$$

The function $S(p)$ has a peculiarity. In case of approaching the tost point $P$, the parameter $p$ does tend to zero and $S(p)$ does tend to infinity: If $p \rightarrow 0$, follows $S(p) \cong(2 / p) \rightarrow \infty$. Since only contisuous functions are tolerated in (207), the close neighborhood of the point $P$ is soparated, avoiding the above discussed singularity of $S(p)$, Fig. 6.

This mear environment of the point $P$ haw the shape of a spherical cap, nemed $w_{0}$. $w_{0}$ is concertric to the point $P$, it has the pherical radius $R^{\prime} p_{0}$ measured along the sphere $\boldsymbol{W}$, and the circular bounds of $w_{0}$ are denoted by $c_{0}$. That part of $w$ which is complemestary to $\nabla_{0}$ is denoted by ${ }^{W_{00}}$. Thus, the sum of $\nabla_{0}$ and $\nabla_{00}$ is equal to $w$. In the domain $W_{0 O}, Z$ and $S(p)$ and the components of $\mu$ are contimuous fuactions. Coxsequestly, the vector an of (204) is continuous in tho domain $W_{00}$. Therefore, it is allowed to apply the integral the orem of Gauss (for the domain $\mathbf{w}_{00}$ ) to the vector field a ${ }_{\mathrm{a}}^{0}$. The equation (208) follows,


$$
\begin{equation*}
\iint_{w_{00}}\left(D \cdot \underline{a}_{0}\right) d w=-\int_{c_{0}} \underline{\underline{a}}_{0} \cdot\left(n_{0}\right)^{0} \cdot d c_{0} \tag{208}
\end{equation*}
$$

$\left(\underline{N}_{0}\right)^{\circ}$ is the unit vector of the noxmal of the circle $c_{0}$ which is the boundary of the spherical cap $\nabla_{0}$, the positive direction of ( $\left.\underline{\underline{E}} 0^{0}\right)^{0}$ is heading to the exterior of $w_{0}$, Fig. 6 .

The circulatory integral on the right hamd side of (208) does vasish, if the radius of the spherioal cap does vanish, $R^{\prime} p_{0} \longrightarrow 0$. This transition behavior is easily proved along the following lines. The definition of the inner product leade to

$$
\begin{equation*}
\varepsilon_{0} \cdot\left(\underline{n}_{0}\right)^{0} \leqslant\left|\varepsilon_{0}\right| \cdot\left|\left({\underset{m}{n}}^{0}\right)^{0}\right| \tag{209}
\end{equation*}
$$

䵟 comes from (204) 。In (204), the height difference $Z$ does vanish in case the point $Q$ approaches the point $P$. Further, the quotient $Z /\left(R^{\prime} \cdot p_{0}\right)$ has a finite value if $R^{\prime} \cdot p_{o}$ does vanish approaching the point $P$, whatever the azimuth $A$ of the approach may be, Fig. 6. But, the Stokes function $S(p)$ of (204) has another transition behaviour. For small values of $p, S(p)$ can be approxjnated by $2 / p$. Thus, the Stokes function tends to infinity as $2 / \mathrm{p}$, if $p$ tends to zero. Consequently, for small values of $p$, the product $Z \cdot S(p)$ has the limit (for a starmanaped Earth with finite slopes of the terrain)

$$
\begin{aligned}
& \lim [Z \cdot S(p)]=\lim \left[\begin{array}{ll}
2 & \frac{2}{p} \\
& p \rightarrow 0 \rightarrow 0 \quad \lim \left[\frac{Z}{R^{\prime} p}\right. \\
p \rightarrow 0
\end{array}\right]
\end{aligned}
$$

Since $Z /\left(R^{\prime} p\right)$ has a finite value if $p$ tend to zero, the limit value of (209a) is a fimite amount, also. Further on, the amount of the vector $\underset{=}{\mu}$ ia also always finite, obviously. Consequently, approching the test point $P$, the amount of the vector $a_{0}$ of (204) is always finito. As to the inequality (209) and the vector ( $\left.\underline{\underline{n}}_{0}\right)^{\circ}$ of this relation, the amourt of the vector ( $\left.n_{0}\right)_{0}^{0}$ being $\left|\left(n_{0}\right)^{0}\right|$, is by definition alwayv equal to the unity. Thus, the absolute amount of the integrand of the circulatory integral on the right haind side of (208) has an upper limit if $p_{o}$ tends +0 zero,

$$
\begin{aligned}
& \lim \left|{\underset{\underline{I}}{0}} \cdot\left(\underline{n g}_{\underline{m}_{0}}\right)^{0}\right|<N \quad . \\
& \mathrm{p}_{\mathrm{o}} \rightarrow 0 \\
& \text { Hence, (208) (210), for } p_{0} \text { tonding to zero, } \\
& \lim \left|\int_{c_{0}}^{\underline{a}_{0}} \cdot\left(\underline{n}_{0}\right)^{0} \cdot d c_{0}\right|<2 \pi R^{n} N p_{0} \quad . \\
& \mathrm{p}_{\mathrm{o}} \longrightarrow 0
\end{aligned}
$$

In case, $p_{0}$ tonds to zoro, the right hand side of (211) tende to zero and, consequently, the left hand side of (211), too.

Thus, finally, (211) and (208) yiold,
$\lim _{p_{0} \rightarrow 0}\left[\int_{w_{00}}\left(\nabla \cdot \underline{\underline{a}}_{0}\right) \cdot d w\right]=0$,
or, abbreviating the donotation, Fig. 6,

$$
\begin{equation*}
\iint_{w}\left(\nabla \cdot \underline{\underline{a}}_{0}\right) \cdot d w=0 \tag{212}
\end{equation*}
$$

The integrand of (212) comes from (207). In (207), the gradiont of the Stokes function is equal to

$$
\begin{equation*}
\nabla \cdot S(p)=\frac{d S(p)}{R^{\prime} \cdot d p} \cdot \underline{e}_{p} \tag{213}
\end{equation*}
$$

op is a unit vector, distributed over the sphere $w$ as a tangent vector of it. It is headiag into the direction of growing values of the parameter p. Thus, the combination of (207) (195) (213) leads to,

$$
\operatorname{div} \underset{=0}{a_{0}}=-\underline{\underline{E}} \mu \cdot \mathrm{~S}(p)+\frac{\mathbf{z}}{R^{\prime}} \cdot \frac{d S(p)}{d p} \cdot \underset{=}{e} p \cdot \mu+2 \cdot S(p) \cdot(\nabla \cdot \mu) ;(213 a)
$$

further, with (203) (212), and with

$$
\begin{equation*}
\mu_{\mathrm{p}}=\underline{\varrho}_{\mathrm{p}} \cdot \mu \tag{213b}
\end{equation*}
$$

$$
\begin{equation*}
\iint_{w} \underline{\underline{\underline{a}}} \cdot \underline{\underline{\underline{\mu}}} \cdot S(p) \cdot d w=\iint_{W} Z \cdot(\nabla \underset{\underline{\underline{\mu}}}{ }) \cdot S(p) \cdot d w+\iint_{\mathrm{W}} \frac{2}{} \frac{d S(p)}{d p} \cdot \mu_{p} \cdot d w \tag{214}
\end{equation*}
$$

$\mu_{\mathrm{p}}$ is the component of the vector $\mu$ pointing into the direction of the unit vector $\stackrel{e}{p}_{p}$.

Hence, the here needed integral $J$ turns to, (203),

$$
\begin{equation*}
J=-\frac{G}{4 \pi R^{\prime}} \iint_{w} z \cdot(\nabla \cdot \mu) \cdot S(p) \cdot d w+\frac{G}{4 \pi R^{\prime 2}} \iint_{w} z \cdot \frac{d S(p)}{d p} \mu_{p} \cdot d w \quad . \tag{215}
\end{equation*}
$$

With (206) and (A.44.4), the expression for $\nabla$. $\xlongequal{\mu}$ takes on the following shape,

$$
\begin{align*}
& \Phi\left(\mu_{1}, \mu_{2}\right)=\frac{\partial \mu_{1}}{R^{\prime} \partial \varphi}+\frac{\partial \mu_{2}}{R^{\prime} \cdot \cos \varphi \cdot \partial \lambda}-\frac{1}{R^{\prime}} \cdot \mu_{1} \cdot \tan \varphi  \tag{216}\\
& \Phi\left(\mu_{1}, \mu_{2}\right)=\nabla \cdot \mu \tag{217}
\end{align*}
$$

In the here discusssed applications, $\mu_{1}$ and $\mu_{2}$ are understood that they are the components of the plumb-line deflection at the Earth's surface $u$, i.e. $\mu_{1 . u}$ and $\mu_{2 . u}$, (153) (154).

Thus, more precisely written than in (216),

$$
\begin{align*}
& \Phi\left(\mu_{1}, \mu_{2}\right)=\Phi\left(\mu_{1 \cdot u}, \mu_{2 \cdot u}\right)= \\
& =\frac{1}{R^{\prime}} \cdot \frac{\partial \mu_{1 \cdot u}}{\partial \varphi}+\frac{1}{R^{\prime} \cdot \cos \varphi} \cdot \frac{\partial \mu_{2 \cdot u}}{\partial \lambda}-\frac{1}{R^{\prime}} \cdot \tan \varphi \cdot \mu_{1 \cdot u} \cdot  \tag{217a}\\
& \Phi\left(\mu_{1}, \mu_{2}\right)=\Phi\left(\mu_{1 . u}, \mu_{2 . u}\right)=\nabla \cdot \mu_{u}  \tag{217b}\\
& \text { The value of } \mu_{p} \text { can be transforned in the following way, (180) } \\
& \text { (215), if } \mu_{p} \text { is understood that it is the radial component of the } \\
& \text { plumb-line deflection for the potential } M \text { taken ot the Earth's surface } u,
\end{align*}
$$

$$
\mu_{\mathrm{p}}=\mu_{\mathrm{p} \cdot \mathrm{u}}
$$

(217c)

$$
\begin{equation*}
\mu_{p}=-\left[\frac{1}{G \cdot R^{\prime}} \cdot \frac{\partial \mathrm{M}}{\partial \mathrm{p}}\right]_{u} \tag{218}
\end{equation*}
$$

Introducing the relations from (216) to (218) into (215), the expression for $J$ turns to,

$$
\begin{align*}
J & =\frac{G}{4 \pi R^{\prime}} \iint_{W} Z \cdot \Phi\left(\mu_{1}, \mu_{2}\right) \cdot S(p) \cdot d w \\
& -\frac{1}{4 \pi R^{\prime} 2^{-}} \int\left(z \cdot \frac{d S(p)}{d p} \cdot \frac{1}{R^{\prime}} \cdot \frac{\partial M}{\partial p} \cdot d w \quad\right. \tag{219}
\end{align*}
$$

With (176) and (219), the relation (146) for the potential M takes on the following shape,

$$
\begin{align*}
\{M\} & =\frac{1}{4 \pi R^{\prime}} \iint_{W}\left[\Delta g_{M}+G Z \cdot \Phi\left(\mu_{1}, \mu_{2}\right)+\frac{3}{4 \pi} \cdot \frac{F(M)}{R^{\prime}}\right] S(p) \cdot d w+ \\
& +\frac{1}{2 \pi} \cdot\{F(\mathbb{M})\}-\frac{1}{4 \pi R^{\prime} \tau^{2}} \iint_{W} Z \cdot \frac{d S(p)}{d p} \cdot \frac{1}{R^{\prime}} \cdot \frac{\partial M}{\partial p} \cdot d w \cdot \tag{220}
\end{align*}
$$

9. The model potential $M$ represented by the Stokes integral and the supplementary topographical terms

### 9.1. The formula for test points in high mountains

With regard to the further developments, the equation for $M$ of the form (220) undergoes some rearrangements. The topographical terms of (220) are now denominatéd by new symbols.
They are given by (221) and (222),

$$
\begin{equation*}
C_{1}(M)=G \cdot Z \cdot \Phi\left(\mu_{1}, \mu_{2}\right) \tag{221}
\end{equation*}
$$

$$
\begin{align*}
\Omega_{1}(M) & =\frac{1}{4 \pi R^{\prime}} \iint_{W} \frac{3}{4 \pi} \cdot \frac{F(M)}{R^{\prime}} \cdot S(p) \cdot d w+\frac{1}{2 \pi} \cdot\{F(M)\}- \\
& -\frac{1}{4 \pi R^{\prime 2}} \iint_{W} 2 \cdot \frac{d S(p)}{d p} \cdot \frac{1}{R^{\prime}} \cdot \frac{\partial M}{\partial p} \cdot d w \tag{222}
\end{align*}
$$

(220) (221) (222) yield the final expression,

$$
\begin{equation*}
\{M\}=\frac{1}{4 \pi} R^{\prime} \int\left(\left[\Delta g_{M}+C_{1}(M)\right] S(p) \cdot d w+\left\{S_{1}(M)\right\}\right. \tag{223}
\end{equation*}
$$

$\Omega_{1}(M)$ has the following explicit expression, convenient for numerical routine calculations, (74) (222), (75) to (78), (80) to (84),
$S_{1}(M)=\frac{3}{\left(4 \pi R^{\prime}\right)^{2}} \iint_{w} F(M) \cdot S(p) \cdot d w+$
$+\frac{1}{2 \pi} \iint_{w} \Delta g_{M} \cdot \frac{Z}{R}\left[2-\frac{1}{y+y^{2}}\right] \frac{1}{e^{\prime}} \cdot d w+$
$+\frac{1}{2 \pi} \int_{W} \frac{M}{R} \cdot \frac{Z}{R}\left[1-\frac{2}{y+y^{2}}\right] \frac{1}{e^{\prime}} \cdot d w+$
$+\frac{1}{2 \pi} \iint_{w}-\frac{V_{1}}{R} \cdot \frac{V_{1}}{R} \cdot d w \quad+$
$+\frac{1}{2 \pi} \iint_{w} \frac{\partial \pi}{R \partial p} \cdot\left[-\frac{1}{R} \cdot \frac{(\cos p / 2)^{2}}{\sin p} \cdot b_{7}-\frac{2}{2 R^{\prime 2}} \cdot \frac{d S(p)}{d p}\right] \cdot d w+$
$+\frac{1}{2 \pi} \int\left(\Delta_{g_{M}} \cdot \frac{-x^{2}}{y+y^{2}} \cdot d e^{\prime} \cdot d A+\right.$
$+\frac{1}{2 \pi} \iint \frac{M}{R} \cdot\left[\frac{-2 x^{2}}{y+y^{2}}+v_{3}\right] d e^{\prime} \cdot d A+$
$+\frac{1}{2 \pi} \int\left(\frac{\partial M}{\partial e^{\prime}} \cdot\left(v_{2}-b_{11}\right) \cdot d e^{\prime} \cdot d A+\right.$
$+\frac{1}{2 \pi} \int\left((-G Z) \cdot \Phi\left(x^{*} \cdot \mu_{1}, \quad \underset{x}{*} \cdot \mu_{2}\right) \cdot d e^{\prime} \cdot d A \quad\right.$.

In (224), - if, there, $d \boldsymbol{w}$ is used as integration element - , the integration has to cover whole the globe. But, - if the product $d e^{\prime} \cdot d A$. is the integration element - , the integration can be limited to the near surroundings of the test point $P$, up to a distance of some tens of kilometers, only.

As to the function $F(M)$ in the integrand of the first verm on the right hand side of (224), the values of $F(M)$ can be computed by (74) and by the relations from (74a) up to ( 74 h ). But now, $T$ has to be replaced by $M$, and $\Delta_{g_{T}}$ by $\Delta_{g_{M}}$, furthermore, $\xi$ and $\eta$ have to be replaced by $\mu_{1}$ and $\mu_{2}$. These modifications lead to the relations (225), (225a) to (225h),

$$
\begin{align*}
& F(M)=\sum_{i=1}^{8} f_{i}(M) \text {; } \\
& f_{1}(M)=\left(\int_{W} \Delta g_{M} \cdot \frac{Z}{R} \cdot\left[2-\frac{1}{y+y^{2}}\right] \cdot \frac{1}{e^{\prime}} \cdot d w,\right. \\
& f_{2}(M)=\int_{W}\left(\frac{M}{R} \cdot \frac{Z}{R} \cdot\left[1-\frac{2}{y+y^{2}}\right] \cdot \frac{1}{e^{\prime}} \cdot d \mathbf{w},\right. \\
& f_{3}(M)=\iint_{R} \frac{M}{R} \cdot \frac{v_{1}}{R} \cdot d \pi \\
& \mathrm{f}_{4}(\bar{H})=-\quad \int_{W} \frac{\partial M}{\mathrm{R} \partial \mathrm{p}} \cdot \frac{1}{R} \cdot \frac{(\cos \mathrm{p} / 2)^{2}}{\sin p} \cdot \mathrm{~b}_{7} \cdot \mathrm{~d} w,  \tag{225d}\\
& f_{5}(M)=-\iint \Delta g_{M} \cdot \frac{x^{2}}{y+y^{2}} \cdot d \theta \cdot d A \\
& f_{6}(M)=\iint \frac{M}{R} \cdot\left[\frac{-2 x^{2}}{y+y^{2}} \cdot+v_{3}\right] \cdot d \theta^{\prime} \cdot d A \\
& f_{7}(M)=\iint \frac{\partial M}{\partial e^{\prime}} \cdot\left(\nabla_{2}-b_{11}\right) \cdot d \theta^{\prime} \cdot d \Delta  \tag{225g}\\
& f_{8}(M)=-\int\left(G \cdot Z \cdot \Phi\left(x^{*} \cdot \mu_{1}, x^{*} \cdot \mu_{2}\right) \cdot d e^{\prime} \cdot d A\right. \tag{225h}
\end{align*}
$$

(225e)
(225f)

The expressions $x^{*}, x, y, v_{1}, \nabla_{2}, \nabla_{3}, b_{7}, b_{11}$ are explained by (75)(76) (78), (80) up to (84). Again, the symbol dw stands for the global coverage by the
integration, de'd $\mathrm{d} A$ for the coverage of the near surroundings, only.

The universally valid formulas, from (223) to (225h), can be applied wherever the test point $P$ may be situated, even in high mountains. The relations (223) to (225h) can be handled without any complication, they have no singularity and no divergences.

### 9.2. The formula for test points in low mountain ranges or in the lowlands

The detailed universal formulas (224) and (225) for $\Omega_{1}(M)$ and for $F(M)$ will find an application in seldom and extreme situations, only. They will be of use if the cliffs in the surroundings of the test point will reach an inclination of $30^{\circ}$ or $45^{\circ}$, and more. They are valid for all finite inclination values, since a star-shaped Earth was presupposed.

Exterior of such regions, the formulas (224) and (225) can be simplified enormously. Such a simplification, often permitted, was already discussed in connection with the transition from the formula (74) to the formula (79), (i. e. from $F(T)$ to $F^{*}(T)$ ). These simplifications are governed by the constraint, that the inequality

$$
x^{2} \ll 1
$$

has to be fullfilled, (66). Only in high mountains, the inequality (225i) will be violated. Besides of (225i), these simplifications imply also the neglection of a relative error of the order of $2 / R$ in the small topographical supplements (i.e. $F(M)$ and $\Omega_{1}(M)$ ). A relative error of $10^{-3}$ to $10^{-4}$ is permitied in these supplements, which do not reach an amount of about 1 m . An error smaller than $10^{-3} \mathrm{~m}$ can be tolerated in any case.

In the course of these simplifications, caused by the transition from the high mountai ns to the lowlands, $F(M)$ of (225) can be replaced by the simple lowland expression $F^{*}$ (M), described by (227). Further on, $\Omega_{1}(M)$ of (224) turns to the lowland expression $\Omega_{1}^{*}$ (M), described by (226) (230). Thus, accounting for (225i) and neglecting relative errors of the order of $Z / R$, (225) and (224) change to the simple shape of (227) and (226) for the lowland expressions, $\Omega_{1}(M) \rightarrow \Omega_{1}^{*}(M) \quad$,
$F(M) \longrightarrow F^{*}(M) \quad$.

Thus, (222) turns to

$$
\begin{align*}
Q_{1}^{*}(M)= & \frac{1}{4 \pi R} \iint_{W} \frac{3}{4 \pi} \cdot \frac{F^{*}(M)}{R} \cdot S(p) \cdot d w+ \\
& +\frac{1}{2 \pi} \cdot\left\{F^{*}(M)\right\}- \\
& -\frac{1}{4 \pi R^{2}} \int\left(Z \cdot\left\{\frac{d S(p)}{d p}\right\} \cdot \frac{1}{R} \cdot \frac{\partial M}{\partial p} \cdot d w \quad\right. \tag{226}
\end{align*}
$$

Further on, by (79),

$$
\begin{align*}
& F^{*}(M)=\sum_{i=1}^{3} f_{i}^{*}(M) \\
& f_{1}^{*}(M)=\int\left(\Delta g_{M} \cdot \frac{2}{R} \cdot \frac{3}{2} \cdot \frac{1}{e_{0}} \cdot d \boldsymbol{w},\right. \\
& f_{2}^{*}(M)=\iint_{\pi} \frac{M}{R} \cdot \frac{2}{R} \cdot \frac{1}{e_{0}} \cdot d \boldsymbol{\pi}, \tag{227b}
\end{align*}
$$

(227a)

$$
f_{3}^{*}(M)=-\iint_{W} \frac{\partial M}{R \partial p} \cdot \frac{2}{4 R^{2}} \cdot \frac{\cos p / 2}{(\sin p / 2)^{2}} \cdot d w
$$

$$
e_{0}=2 \cdot R \cdot \sin p / 2
$$

The third term on the right hand side of (226) and the term of (227c), multiplied with (1/2 $\pi$ ), can be combined to the following expression, (229),

$$
\begin{equation*}
-\frac{1}{8 \pi R^{2}} \iint_{w} \frac{\partial M}{R \partial p} \cdot z \cdot\left[\frac{\cos p / 2}{(\sin p / 2)^{2}}+2 \frac{d S(p)}{d p}\right] \cdot d w \tag{229}
\end{equation*}
$$

The relations (227), (227a) to (227c), and (229) are introduced into (226). Along these lines, the final form of $S R_{p}^{*}(M)$ is reached, (230).

$$
\begin{align*}
S_{1}^{* F}(M) & =\frac{3}{(4 \pi R)^{2}} \cdot \iint_{W} F^{*}(M) \cdot S(p) \cdot d w+ \\
& +\frac{1}{2 \pi} \int_{W} \Delta g_{M} \cdot \frac{Z}{R} \cdot \frac{3}{2} \cdot \frac{1}{e_{0}} \cdot d w+ \\
& +\frac{1}{2 \pi} \int_{W} \frac{M}{R} \cdot \frac{Z}{R} \cdot \frac{1}{e_{0}} \cdot d w \\
& -\frac{1}{8 \pi R^{2}} \iint_{W} \frac{\partial M}{R \partial p} \cdot 2 \cdot\left[\frac{\cos p / 2}{(\sin p / 2)^{2}}+2 \frac{d S(p)}{d p}\right] \cdot d w
\end{align*}
$$

In the integrand of the first term on the right hand side of (230), the value of $F^{*}(M)$ can be computed by the formulas described by (227), (227a) to (227c).

Consequently, in the most frequent cases of our applications, if the test point $P$ is not situated in the peak area of the high mountains: about the following form, it is emphasized that it is convenient for routine calculations, (223) (221) (227) (230); it is the lowland form,

$$
\begin{equation*}
\{M\}=\frac{1}{4 \pi R^{\prime}} \iint_{W}\left[\Delta \varepsilon_{M}+C_{1}(M)\right]^{\prime} S(p) \cdot d w+\left\{S C_{1}^{*}(M)\right\} \tag{231}
\end{equation*}
$$

Later on, this formula undergoes a rearrangement, transforming the left hand side back, from the potential $M$ to the potential $T$, (see chapter 11).

## 10. The Helmert condensation method

Now, the mountain masses situated above the mean globe $v$ having the radius $R$ ( or above the mean ellipsoid of the Earth, to be more precise) are condensed along this sphere $\nabla$. The real mountain masses of the real density cannot be considered here, since the precise values of these real density values are unknown. But, for the here discussed problem, it is possible to substitute the real density of the mountain masses by the standard density having the amount of $\vartheta=2650 \mathrm{~kg} \mathrm{~m}{ }^{-3}$, (142), (see Fig. 5). As to the use of the standard density, this easy substitution is opportune, and it makes no trouble. The crucial point for the introduction of the potential $B$ of the visible mountain masses is the fact that, in the main, the gravitational force caused by the difference potential. $T-B$ has no perceptible correlation with
the topographical heights. This peculiarity is right, may the potential
$B$ be computed in terms of the real densi.ty values, or in terms of the standard density. The here sxecuted derivations make use of the letter version.
If the density of these masses changes over from the real values to tne standard value, the accompanying alteration of the gravitational force is relative small, it has no clear correlation with the heights. A long wave residual correlation of this kind is discussed by the relations (289)(290). For a test point $P^{*}$ situated on the spherical surface $v$, the gravitational potential $B^{*}$ of these condensed mountain masses has the following representation, (condensed at the sphere $v ; R$ : Radius),

$$
\begin{equation*}
B^{*}=\left(L_{1}+L_{2}\right)_{P^{*}} \tag{232}
\end{equation*}
$$

For this potential $B^{*}$, the derivative with regard to the radius $r$ has the following expression, if approaching the test point $P^{*}$ at the surface $v$ from the exterior space of the globe v, Fig. 5, Fig. 2,

$$
\begin{equation*}
\frac{\partial B^{*}}{\partial r}=\left(L_{3}+L_{4}\right)_{P^{*}} \tag{233}
\end{equation*}
$$

The symbols $\mathrm{L}_{1}, \mathrm{~L}_{2}, \mathrm{~L}_{3}, \mathrm{~L}_{4}$ of (232) and (233) have the following equations,

$$
\begin{align*}
& \left(L_{1}\right)_{P^{*}}=4 \cdot \pi \cdot \mathrm{f} \cdot \boldsymbol{Q} \cdot \mathrm{R} \cdot \mathrm{H}_{\mathrm{P}} \text {, }  \tag{234}\\
& \left(I_{2}\right)_{P^{*}}=f \leadsto \int_{V} Z \cdot \frac{1}{e_{0}} \cdot d v \text {, }  \tag{235}\\
& \left(\mathrm{I}_{3}\right)_{\mathrm{P}^{*}}=-4 \cdot \pi \cdot \mathrm{f} \cdot \boldsymbol{\AA} \cdot \mathrm{H}_{\mathrm{P}} \text {, }  \tag{236}\\
& \left(L_{4}\right)_{P^{*}}=-£ \Omega \int_{V} Z \cdot(\sin p / 2) \cdot \frac{1}{\left(e_{0}\right)^{2}} \cdot d v \quad . \tag{237}
\end{align*}
$$

$f$ is again the gravitational constant, $R$ is the radius of the sphere v, Fig. 2,

$$
\begin{equation*}
e_{0}=2 R \cdot \sin p / 2 \tag{238}
\end{equation*}
$$

As it is evident from Fig. 2, $H_{P}$ is the height attached to the test point $P^{*}$, within the scope of the condensation method. Obviously, the density of the surface distribution underlying the potential $B^{*}$ is equal to $S \cdot H_{Q}$. The equations (234) (235) (236) (237) represent the values $L_{1}, L_{2}, L_{3}, L_{4}$, taken for the test point $P^{*}$.

For the moving point $Q^{*}$ at the sphere $v$, the following relations are valid, analogous to the above relations for $P^{*}$, Fig. 2,

$$
\begin{align*}
& \left(L_{1}\right)_{Q^{*}}=4 \cdot \pi \cdot \mathrm{f} \cdot \Omega \cdot R \cdot H_{Q} \quad \text {, }  \tag{239}\\
& \left(L_{2}\right)_{Q^{*}}=f \mathcal{A} \int\left(H_{Y}-H_{Q}\right) \cdot \frac{1}{e_{o o}} \cdot d v \quad \text {, }  \tag{240}\\
& \text { v } \\
& \left(L_{3}\right)_{Q^{*}}=-4 \cdot \pi \cdot f \cdot O_{2} \cdot H_{Q} \quad \text {, }  \tag{241}\\
& \left(L_{4}\right)_{Q^{*}}=-\mathrm{f} \operatorname{S} \int\left(\frac{\mathrm{H}_{Y}-\mathrm{H}_{Q}}{\left(e_{o o}\right)^{2}} \cdot\left(\sin (\mathrm{p} /)_{0 O}\right) \cdot d v \quad \cdot\right. \tag{242}
\end{align*}
$$

The values $e_{o}$ and sin $p / 2$ refer to the distance between the two points $Q^{*}$ and $P^{*}$. But, the values $e_{o o}$ and $\sin (p / 2)$ relate to the distance between the points $Y^{*}$ and $Q^{*}$, Fig. 2,

$$
\begin{equation*}
e_{00}=2 \cdot R \cdot \sin (p / 2)_{00} . \tag{243}
\end{equation*}
$$

In chapter 3, a detailed solution was derived for the problem of a spherical boundary surface. This solution is rigorously valid. It can be applied to the potential $B^{*}$ which has a spherical surface distribution as the underlying gravitating scource, (31), (232) (234) (235). The potential $B^{*}$ causes certain mravity anomalies in the exterior of the aphere $v$. Along the spherical surface $v$, these gravity anomalies are represented in terms of the potential $B^{*}$, by the relation (244), (see also (22)).

$$
\begin{equation*}
\Delta_{\mathrm{g}^{*}}=-\frac{\partial \mathrm{B}^{*}}{\partial \mathrm{r}}-\frac{2}{\mathrm{R}} \cdot \dot{B}^{*} \tag{244}
\end{equation*}
$$

The integral relation (31) leads to
$B^{*}=\frac{1}{4 \pi \mathrm{R}} \iint \Delta \mathrm{E}_{\mathrm{B}^{*}} \mathrm{~S}(\mathrm{p}) \cdot \mathrm{dv} \quad$,
or, writing it with a more clear distinction of the different points the various values refer to,
$\left(B^{*}\right)_{P^{*}}=\frac{1}{4 \pi R} \iint_{V}\left(\Delta g_{B^{*}}\right)_{Q^{*}} S(p) \cdot d v$.

The relations from (232) to (244) are introduced into (246).
Hence,

$$
\begin{align*}
& \left\{\left(L_{1}\right)_{P^{*}}\right\}+\left\{\left(L_{2}\right)_{P^{*}}\right\}= \\
& =\frac{1}{4 \pi R} \iint_{V}\left[-\left(L_{3}\right)_{Q^{*}}-\left(L_{4}\right)_{Q^{*}}-\frac{2}{R}\left(L_{1}\right)_{Q^{*}}-\frac{2}{R}\left(L_{2}\right)_{Q^{*}}\right] \cdot S(p) \cdot d v \tag{247}
\end{align*}
$$

In the relation (247), the parentheses stand for the direction that the constituents described by the surface spherical harmonics of the 0 th and 1 st degree are split off.
11. The retransformation from the model potential $M$ back to the potential $T$

The essential property and the very important advantage of the relations (223) (231) is the fact that, in the integrand of (223) (231), the smoothed and small term $C_{1}(M)$ does appear. Whereas in (114), the relative great and rugged term $D_{T}$ (1.1) gives rise to a lot of trouble, if it is intended to compute this term. The transition from $D_{T}$ (1.1) to $C_{1}(M)$, that is the main reason for the introduction of the model potential $M$. However, not $M$ ss the required potential, but $T$ is the potential to be determined. Consequently, in (223), a retransformation from $M$ back to $T$ is necessary. But, in the course of this retransformation, the term $C_{1}$ (M) keeps to be unchanged. it is not retransformed.

In this context, the equations (145) and (150) are introduced into (223). Hence,

$$
\begin{align*}
\{M\} & =\{T\}-\{B\}= \\
& =\frac{1}{4 \pi R^{\prime}} \iint_{W}\left[\Delta g_{T}-\Delta g_{B}+C_{1}(M)\right] \cdot S(p) \cdot d w+ \\
& +\left\{\Omega_{1}(M)\right\} . \tag{248}
\end{align*}
$$

The equation (142) gives the possibility to compute the potential $B$ for the test point $P$ at the Earth's surface $u$, as it is needed in. (248).

In case of the condensed masses, the potential $B^{*}$ can be computed by (232) (234) (235) for the test point $P^{*}$ situated at the spherical surface $v$, Fig. 2. On condition that $P^{*}$ lies perpendicular below the point $P$, the difference between $B$ in the point $P$ and $B *$ in the point $P^{*}$ is introduced by $[B]^{\prime \prime}$, (248a),

In an analogous way, the radial derivatives of these potentials $B$ and $\mathrm{B}^{*}$ have the following equations, (233) (236) (237),

$$
\begin{equation*}
\left(\frac{\partial B}{\partial r}\right)_{P}-\left(\frac{\partial B^{*}}{\partial r}\right)_{P^{*}}=\left[\frac{\partial B}{\partial r}\right]^{"} \tag{248b}
\end{equation*}
$$

Taking the liberty to omit the suffix $P$ at both the term $B$ and the radial derivative of $B$, further, omitting also the suffix $P^{*}$ which appears at $B^{*}$ and the derivative of it (or at $L_{1}, L_{2}, L_{3}, L_{4}$ ), the subsequent relations are obtained,

$$
\begin{align*}
& B=L_{1}+L_{2}+[B]^{\prime \prime}  \tag{249}\\
& \frac{\partial B}{\partial r}=L_{3}+L_{4}+\left[\frac{\partial}{\partial} \frac{B}{r}\right]^{\prime \prime}  \tag{250}\\
& \text { The combination of (249) and (250) with (149) gives } \\
& \Delta g_{B}=-L_{3}-L_{4}-\frac{2}{r} L_{1}-\frac{2}{r} L_{2}-\left[\frac{\partial B}{\partial r}\right]^{\prime \prime}-\frac{2}{r}[B]^{\prime \prime} \tag{251}
\end{align*}
$$

$r$ is the geocentric radius of the surface of the Earth $u$,

$$
\mathrm{r}=\mathrm{R}+\mathrm{H}_{\mathrm{P}}+\mathrm{Z}
$$

(252) leads to

$$
\begin{equation*}
\frac{2}{r} \cong \frac{2}{R} \cdot\left[1-\frac{H_{P}+Z}{R}\right]=\frac{2}{R}-2 \cdot \frac{H_{P}+Z}{R^{2}} \tag{253}
\end{equation*}
$$

(253) is introduced into (251),

$$
\begin{align*}
\Delta \mathrm{g}_{\mathrm{B}}= & -\mathrm{L}_{3}-\mathrm{L}_{4}-\frac{2}{\mathrm{R}} \cdot \mathrm{~L}_{1}-\frac{2}{\mathrm{R}} \cdot \mathrm{~L}_{2}- \\
& -\left[\frac{\partial \mathrm{B}}{\partial \mathrm{r}}\right]^{\prime \prime}-\frac{2}{r} \cdot[\mathrm{~B}]^{\prime \prime}+ \\
& +2 \cdot \frac{\mathrm{H}_{\mathrm{P}}+\mathrm{Z}}{\mathrm{R}^{2}} \cdot\left(\mathrm{~L}_{1}+\mathrm{L}_{2}\right) \quad . \tag{254}
\end{align*}
$$

Now, the relations (249) an ar (254) are put into (248). The amount of $(2 / r) \cdot[B]^{\prime \prime}$ does not surmount some microgal ( $10^{-6} \mathrm{~cm} \mathrm{sec}{ }^{-2}$ ); thus, a relative error of the ord $\overline{\mathrm{r}}$ of $\mathrm{H} / \mathrm{R}$ or $2 / \mathrm{R}$ can be neglected there, [4] [5] . Consequently, (248) turns to (255),

$$
\begin{align*}
\{M\} & =\{T\}-\left\{\left(L_{1}\right)_{P^{*}}\right\}-\left\{\left(L_{2}\right)_{P^{*}}\right\}-\left\{[B]^{\prime \prime}\right\}= \\
& =\frac{1}{4 \pi R^{\prime}} \iint X^{\prime} S(p) d w+\left\{\Omega_{1}(M)\right\}, \tag{255}
\end{align*}
$$

with

$$
\begin{align*}
X^{\prime} & =\Delta g_{T}+\left(L_{3}\right)_{Q^{*}}+\left(I_{4}\right)_{Q^{*}}+\frac{2}{R} \cdot\left(L_{1}\right)_{Q^{*}}+\frac{2}{R} \cdot\left(L_{2}\right)_{Q^{*}}+ \\
& +\left[\frac{\partial B}{\partial r}\right]^{\prime \prime}+\frac{2}{R} \cdot[B]^{\prime \prime}-2 \cdot \frac{H_{P}+Z}{R^{2}} \cdot\left(I_{1}+L_{2}\right)_{Q^{*}}+ \\
& +C_{1}(M) \quad . \tag{255a}
\end{align*}
$$

The transition from $R^{\prime}$ to $R$, and from the surface w to the surface $v$, has the following equations, Fig. 2,

$$
\begin{equation*}
\frac{1}{R^{\prime}}=\frac{1}{R+H_{P}} \cong \frac{1}{R}-\frac{H_{P}}{R^{2}} \text {. } \tag{256}
\end{equation*}
$$

and

$$
\begin{equation*}
d w=\left(\frac{R^{\prime}}{R}\right)^{2} \cdot d v \cong d v+2 \cdot \frac{H_{P}}{R} \cdot d v \tag{257}
\end{equation*}
$$

The relations (256) and (257) are introduced into (255), neglecting a relative error of the order of $H_{P} / R$ in the amount of $\left\{\Omega_{1}(M)\right\}$. These rearrangements lead to the equation (258),

$$
\begin{align*}
&\{T\}-\left\{\left(I_{1}\right)_{P^{*}}\right\}-\left\{\left(L_{2}\right)_{P *}\right\}-\left\{[B]^{\prime \prime}\right\}= \\
&=\frac{1}{4 \pi R} \iint_{V} X \cdot S(p) \cdot d v+\left\{\Omega_{1}(M)\right\}- \\
&-\left\{\frac{H_{P}}{R} \cdot M\right\}+2 \cdot\left\{\frac{H_{P}}{R} \cdot M\right\}, \tag{258}
\end{align*}
$$

with, (255a) , replacing in (254) the multiplier ( $2 / \mathrm{r}$ ) by (2/R), at [B]",

$$
X=X^{\prime}+2 \cdot \frac{H_{P}+Z}{R^{2}} \cdot\left[\left(L_{1}+L_{2}\right)_{Q^{*}}-B\right] \cong X^{\prime} . \quad \text { (258a) }
$$

In the transition from $X^{\prime}$ to $X$, the errors of the kind already discussed by the lines between the equations (254) and (255) are neglected.

The potential $B$ in the brackets on the right hand side of (253a) refers to the point $Q$ at the Earth's surface $u$, $Q$ lies vertical above $Q^{*}$, Fig. 2.

The relation (247) of the condensation method and the equation (258) yield

$$
\begin{equation*}
\{P\}=\frac{1}{4 \pi R} \iint_{v} X_{1} \cdot S(p) \cdot d v+\left\{\Omega_{1}(M)\right\}+\left\{\frac{H_{P}}{R} \cdot M\right\}+\left\{[B]^{\prime \prime}\right\}, \tag{259}
\end{equation*}
$$

This above equation (259) is important. As to the topographical additives appearing in (259) completing the original shape of the Stokes integral, these additives are non expressed in terms of the smoothed $M$ potential and the smoothed anomalies $\Delta g_{M}$, instead of the $T$ potential, and instead of the anomalies $\Delta \mathrm{g}_{\mathrm{T}}$ which are not smoothed in the mountains. The term $X_{\text {, }}$ appearing in (259), this term has the following expression (259a),
$X_{1}=\Delta g_{T}+\left[\frac{\partial B}{\partial r}\right]^{\prime \prime}+\frac{2}{R}[B]^{\prime \prime}+C_{1}(M)-2 B \frac{H_{Q}}{R^{2}}$
! ?59a)

In case the test point $P$ at the surface of the Earth $u$ is not situated in high mountain ranges, the relation (225j) and (225 k) can be applied in (259). Then, $\Omega_{1}(M)$ can be replaced by $\Omega_{1}^{*}(M)$, according to (230). The computation of $R_{1}^{*}(M)$ is much more easy than that of $\Omega_{1}$ (M).

```
12. The final formula for the perturbation potential }T\mathrm{ in terms of
```

    the gravity anomalies
    
### 12.1. The periturbation potential $T$ expressed by the Stokes integral

 and the topographical supplementsIn the expression for $X_{1}$ described by (259a), the second and the third term on the right hand side depend on the potential B. These two terms can be expressed by the plane terrain reduction of the gravity which is generally denoted by the symbol $C$, (sae [4] page 38, equation (97)). The following relation is valid

$$
\begin{equation*}
\left[\frac{\partial B}{\partial r}\right]^{\prime \prime}+\frac{2}{R}[B]^{\prime \prime}=C+\delta C, \tag{260}
\end{equation*}
$$

with

$$
\begin{equation*}
\delta c=\delta_{1} c+\delta_{2} c+\delta_{3} c+\delta_{4} c \tag{261}
\end{equation*}
$$

In seldom cases only, the first three terms on the right hand side of (261) will surmount the amount of $1 \mu \mathrm{gal},[4]$. Therefore, these terms can be neglected. As to $\delta_{4} C$, it has the rather simple formula

$$
\begin{equation*}
o_{4} \mathrm{C}=4 \pi \pm \oiint H_{Q} \frac{\mathrm{H}_{\mathrm{Q}}}{\mathrm{R}} \tag{262}
\end{equation*}
$$

as can be taken frow $[4]$.
For $H_{Q}=2 \mathrm{~km}$, the expression of (262) leads to an amount for $\delta_{4}{ }^{C} \quad$ which is equal to 0.1 mgal (i. e. $10^{-4} \mathrm{~cm} \mathrm{sec}^{-2}$ )。
Thus, also the term $\delta_{4} C$ seems to be within the noise of the method(gravity data noise) in the routine applications, generally. To be complete, $\delta_{4} C$ is
taken along; with (260), and with (262), we have the following relation, thus,

$$
\begin{equation*}
\left[\frac{\partial_{B}}{\partial r}\right]^{\prime \prime}+\frac{2}{R}[B]^{\prime \prime} \cong C+4 \pi f ß H_{Q} \frac{H_{Q}}{R} \tag{263}
\end{equation*}
$$

Further on, the last term on the right hand side of (259a)
undergoes a rearrangement and a combination with (263).
Considering (232) (239) (240), the following development is found,
$-2 B \frac{H_{Q}}{R^{2}} \cong-2\left(L_{1}+I_{2}\right)_{Q^{*}} \frac{H_{Q}}{R^{2}}=$
$=-8 \pi \pm \oiint H_{Q} \frac{H_{Q}}{R}-2\left(\mathrm{H}_{2}\right)_{Q} * \frac{H_{Q}}{R^{2}}$.

In (264), the term

$$
\begin{equation*}
-\frac{2}{R}[B]^{\prime \prime} \frac{H_{2}}{R} \tag{264a}
\end{equation*}
$$

was neglected, since it will not be greater than about $10^{-3} \mu \mathrm{gal}$ (ice. $10^{-9} \mathrm{~cm} \mathrm{sec}{ }^{-2}$ ), (sse $[4]$, pace 36)。

The combination of the 2 nd , the 3 rd , and the 5 th term on the right hand side of (259a) sives (265), accounting for (263) (264),

$$
\begin{equation*}
\left[\frac{\partial B}{\partial r}\right]^{\prime \prime}+\frac{2}{R}[B]^{\prime \prime}-2 B \frac{H_{Q}}{R^{2}}=C+C_{2} \tag{265}
\end{equation*}
$$

with

$$
\begin{equation*}
C_{2}=-4 \pi+\infty H_{Q} \frac{H_{2}}{R}-2\left(L_{2}\right)_{Q^{*}} \frac{H_{Q}}{R^{2}} \tag{266}
\end{equation*}
$$

The relations (259) (259a) (265) (266) lead to the following final
result for the solution of the boundary value problem

$$
\begin{equation*}
\{T\}=\frac{1}{4 \pi R} \int\left(\left[\Delta g_{T}+C+C_{1}(M)\right] S(p) \cdot d v+\{Q(M)\}\right. \tag{267}
\end{equation*}
$$

The topographical supplement of (267) has the following expression

$$
\begin{equation*}
\Omega(M)=\Omega_{1}(M)+M \cdot \frac{H_{P}}{R}+[B]^{\prime \prime}+\frac{1}{4 \pi R} \cdot \int\left(C_{2} \cdot S(p) \cdot d v\right. \tag{268}
\end{equation*}
$$

As to (267), $C_{1}(M)$ comes from (22i) and (216), (217a) and (217b),

$$
\begin{equation*}
C_{1}(M)=G Z \cdot\left[\frac{\partial \mu_{1}}{R^{\prime} \partial \varphi}+\frac{\partial \mu_{2}}{\left(R^{\prime} \cdot \cos \varphi\right) \partial \lambda}-\frac{\tan \varphi}{R^{\prime}} \mu_{1}\right] \tag{269}
\end{equation*}
$$

As to (268), $\Omega_{1}(M)$ is described by (224), valid also in the high mountain ranges.In (269), $\mu_{1}$ and $\mu_{2}$ stand for the surface values $\mu_{1, u}, \mu_{2 . u},(217 a)$.

$$
\begin{aligned}
& \text { The potential } M \text { is computed by (145), with approximative values } \\
& \text { of } T \text { and with } B \text { according to (142) (144) . } \\
& \text { The } M \text { valucs along the surface of the Farth } u \text { are computed by } \\
& M=T-P\left(\int_{V}^{1} \cdot d V\right.
\end{aligned}
$$

The 1st and the 2nd term on the right hand side of (268) depend on the $M$ values of (270), valid for points along the surface $u$. In (270), $e$ is the straight distance between the test point $P$ at the surface of the Earth $u$ and the volume element $d V$. The potential M influences the expression (268) after multiplication with the very small factor ( $H_{P} / R^{\prime}$ ). Thus, in (270), approximative values can be accepted not only for $T$, but also for $B$. Hence, $B$ is replaced by the potential $B^{*}$ of the condensed masses. (270) turns to, (232) (234) (235),

$$
\begin{equation*}
M \cong T-f \leadsto \int_{V} \int_{Q} \cdot \frac{1}{e_{o}} \cdot d v \tag{271}
\end{equation*}
$$

A precision of $\pm 10 \mathrm{~m}$ to $\pm 50 \mathrm{~m}$ in the computed amount of $i=/ \mathrm{G}$ will suffice, in any case, computing the amount of ( $M / G$ ) by the formula (271); - since later on, in the relation (268), this amount of (M/G) comes to be multiplied by the factor ( $H_{P} / R$ ) the amount of which reaches about (1/1000) or (1/10000), only.

As to the 3 rd term of (268), the amount of $[B]^{\prime \prime} / G$ will seldom surmount some centimeters. $[B]^{\prime \prime}$ can be computed by the formulas given in $[4]$, page 35, 36; (see also [5, chapter B).

The 4 th term on the right hand side of (268) can easily be calculated by (266).

The relation (267) is the high mountain variant of the solution of the boundary value problem. The much more simple lowland variant of the solution has the following shape,

$$
\begin{gather*}
\{T\}=\frac{1}{4 \pi R} \int_{V}\left[\Delta g_{T}+C+C_{1}(M)\right] \cdot S(p) \cdot d v+\left\{S_{R}^{*}(M)\right\},  \tag{272}\\
(225 j)(225 k)(226)(227) \text { and }(230), \text { with } \\
S_{R}^{*}(M)=S R_{1}^{*}(M)+M \cdot \frac{H_{P}}{R}+[B]^{\prime \prime}+\frac{1}{4 \pi R} \cdot \iint_{V} C_{2} \cdot S(p) \cdot d v \cdot \tag{273}
\end{gather*}
$$

The expression (267) should be applied for test points situated in high mountains. For test points situated in the lowlands, the simple shape (272) will bring a computation relief.

The relation (273) is derived from (268) under consideration of the substitutions described by (225j) (225k), and applying (230); (see also [6]).
12.2. The supplementary term $C_{1}(M)$

Beforehand, the structure and the main properties of the term $C_{1}(M)$, appearing in (267) (269) (272), should be sketched. Seldom only, the amount of $C_{1}(M)$ will be greater than 1 mgal (1.e. $10^{-3} \cdot \mathrm{~cm} / \mathrm{sec}^{2}$ ); further, it will be positive and negative. Thus, the $C_{1}(M)$ values will generally not surmount the noise of the free-air anomalies $\Delta g_{T}$. Further, the $C_{1}(M)$ values will generally not exel the noise of the errors committed in the determination of the $C$ values, obtained by numerical computations in terms of the heights. Consequently, in most cases, the neglection of $C_{1}(M)$ in the brackets of (267) and (272) will be justified, before the background of the noise of the $\Delta g_{T}$ and $C$ values.

Now, the details of the computation of the $C_{1}(M)$ values are to be discussed.

The formula (269) representing the $C_{1}(M)$ values in terms of the deflections $\mu_{1}$ and $\mu_{2}$ was applied in the Austrian Alps. Along the lines of (269), the following results were obtained, if

$$
\mathrm{H}_{\mathrm{Q}}-{ }^{H_{P}}=\mathrm{Z}=1 \mathrm{~km}:
$$

a) The mean value of $\left|\mathrm{C}_{1}(\mathrm{M})\right|$ over a distance of 300 km was about 0.1 mgal .
b) The mean value of $\left|C_{1}(M)\right|$ over a distance of 200 km was about 0.1 mgal.
c) The mean value of $\left|C_{1}(M)\right|$ over a distance of 40 km was about 0.8 mgal .
d) The mean value of $\left|C_{1}(M)\right|$ over a distance of 20 km was about 0.5 mgal .

These above results can be found in: [4], page $42,43,44,45$ of chapter B.
As to the relation which connects the radial derivative of the $M$ potential with the Bouguer anomalies, the investigations of $[5]$, chapter D, section 5, contain all the needed deliberations. In [5] , the following equation was obtained, (eq. (67) in another place),

$$
\begin{equation*}
\frac{\partial M}{\partial r}=-\Delta g_{\text {Bouguer }}+\sigma \tag{274}
\end{equation*}
$$

with

$$
\begin{equation*}
\sigma=2 \pi \mathrm{f} \boldsymbol{\gamma} \varphi-\frac{2 G}{R} \varphi+\frac{1}{2} \mathrm{f} \vartheta_{R} \iint_{\eta} H_{Q} \frac{1}{e_{o}} d l \tag{275}
\end{equation*}
$$

In $[5]$, chapter $D$, section 5 and 6 , it was shown that $\sigma$ has a small amplitude and a great wave length. Thus, the height gradient of $\partial \mathrm{M} / \partial r$ can be identified with the height gradient of the Bouguer anomalies, in sufficient approximation, (see eq. (131), page 140, at another place,$[5]$ ).

The determination of $C_{1}(M)$ by the plumb-line deflections $\mu_{1}, \mu_{2}$ according to (269) allows to get an idea of the amounts of $\mathrm{C}_{\uparrow}(\mathrm{M})$. But, this method is not convenient for a general application in the routine determinations of $C_{1}(M)$, since there is not a sufficient dense net of the global $\mu_{1}, \mu_{2}$ values. Therefore, (269) is now rearranged expressing $C_{1}(M)$ in terms of the Bouguer anomalies (the refined Bouguer anomalies are here considered implying also the plane terrain reduction of the gravity, C). The $\mu_{1}$ values are understood that they are distii buted along the surface of the Earth $u$, Fig. 7. In the derivations of $\mu_{1}$ (resp. $\mu_{2}$ ), the way from $P_{1}$ to $P_{2}$ conducts via $P_{1.2}$. The two points $P_{1}$ and $P_{2}$ are situated on the oblique surface of the Earth $u ; \nu_{x}$ is the inclination of the terrain in the vertical plane thraugh $P_{1}$ and $P_{2}$. In Fig. 7 , these two surface points are situated in the north-south direction.


Fig. 7.

The following lines are self-explanatory, (153) (154) (269), (217a) and (217b), $\frac{\partial \mu_{1} \cdot \mathrm{u}}{\mathrm{R} \partial \varphi}=\lim \underset{\Delta \mathrm{x} \rightarrow 0}{ }\left[\frac{\left(\mu_{1}\right)_{P_{2}}-\left(\mu_{1}\right)_{P_{1}}}{\Delta \mathrm{x}}\right]=$
$=\frac{\partial \mu_{1}}{\partial z} \cdot \frac{d z}{d x}+\frac{\partial \mu_{1}}{\partial x} \quad$.
$\frac{d z}{d x}=\tan \nu_{x}, \quad \frac{d z}{d y}=\tan \nu_{y} \quad$.

The arc element $d x$ has horizontal direction, Fig. 7. Thus, $d x$ is equal to the value of $R$. J $\varphi$. Analogously, the other arc element is horizontal in the east-west direction, i.e. the arc element dy. Hence, dy is equal to the amount of $R \cdot \cos \varphi \cdot \partial \lambda$. In (276), the deflection $\mu_{1 . u}$ (resp. $\mu_{2 . u}$ ) is the value of the deflection of the plumb-line $\mu_{1}$ (resp. $\mu_{2}$ ) taken on points situated on the oblique surface of the Earth $u$.

Neglecting the 3rd torm in the brackets of (269), (it amouts to not more than some tens microgals), the subsequent relations yield,

$$
\begin{align*}
& C_{1}(M)=C_{1, a}+C_{1 \cdot b}  \tag{278}\\
& C_{1 . a}=G Z\left[\frac{\partial \mu_{1}}{\partial x}+\frac{\partial \mu_{2}}{\partial y}\right],  \tag{279}\\
& C_{1 . b}=G Z\left[\frac{\partial \mu_{1}}{\partial z} \cdot \tan \nu_{x}+\frac{\partial \mu_{2}}{\partial z} \tan \nu_{y}\right] \cdot  \tag{280}\\
& \mu_{1}=-\frac{1}{G} \cdot \frac{\partial m}{\partial x},  \tag{281}\\
& \mu_{2}=-\frac{1}{G} \cdot \frac{\partial m}{\partial y} \cdot  \tag{282}\\
& C_{1 . a}=z\left[-\frac{\partial^{2} M}{\partial x^{2}}-\frac{\partial^{2} M}{\partial y^{2}}\right] \tag{283}
\end{align*}
$$

and, with the Laplace equation,

$$
\begin{equation*}
c_{1 . a}=z \cdot \frac{\partial^{2} \frac{1}{\partial z^{2}}}{} \tag{284}
\end{equation*}
$$

And with (274), considering the fact that the vertical gradient of $\sigma$ can be neglected (see [5], chapter D, section 6,page 139,140;eq.(124)...(133) ),

$$
\begin{align*}
& c_{1 \cdot a}=-z \cdot \frac{\partial}{\partial z}\left(\Delta g_{\text {Bouguer }}\right) \quad .  \tag{285}\\
& c_{1, b}=z\left[-\frac{\partial^{2}{ }_{I I}}{\partial x \partial z} \cdot \tan \nu_{x}-\frac{\partial^{2} M}{\partial y \partial z} \cdot \tan \nu_{y}\right] \text {, }  \tag{236}\\
& c_{1 . b}=C_{1 . b .1}+c_{1 . b .2} \quad,  \tag{287}\\
& c_{1 . b .1}=z\left[\frac{\partial}{\partial x} \quad \Delta g_{\text {Bouguer }}\right] \tan \nu_{x} \quad,  \tag{288}\\
& C_{1 . b, 1}=z\left[\frac{\left(\Delta g_{\text {Bouguer }}\right)_{o}-\left(\Delta g_{\text {Bouguer }}\right)_{u}}{\Delta \mathrm{x}}\right]\left[\frac{(\mathrm{H})_{o}-(\mathrm{H})_{u}}{\Delta \mathrm{x}}\right] \tag{289}
\end{align*}
$$

$C_{1 . b .2}$ follows in a similar way, as $C_{1 . b .1}$, exchanging $x$ and $y$.
In (2ع9), the differential quotient was replaced by the difference quotient; this procedure is allowed, since the Bouguer anomalies have
the advantage to have not a pronounced correlation with the heights, in any case if short distances are considered. Over longer distances, in the areas of isostatic mountain roots, a certain correlation of these values can be observed, possibly. It is brought to bear by the formula (289).
As to (289), the parameters $Z=1 \mathrm{~km},(H)_{o}-(H)_{u}=1 \mathrm{~km}$, $\Delta x=50 \mathrm{~km}$, and a value of 60 mgal for the difference of the Bouguer anomalies in the first nominator of (289) (these Bouguer anomalies, perhaps, are caused by the isostatic mountain roots of the Alps) lead to a value of

$$
\begin{equation*}
\left|c_{1 . b .1}\right|=0.02 \mathrm{mgal} \tag{290}
\end{equation*}
$$

For $\left|C_{1 . b .2}\right|$, a similar amount can be awaited. Consequently, $\left|C_{1 . b}\right|$ will be smaller than 0.04 mgal , for the here underlying parameters. $C_{1 . b}$ can be neglected, therefore. $C_{1}(M)$ can be replaced by $C_{1 . a}$, (285).

$$
\begin{equation*}
c_{1}(M)=-2 \cdot \frac{\partial}{\partial H}\left(\Delta g_{\text {Bouguer }}\right) \tag{291}
\end{equation*}
$$

The above equation is equivalent to the relations (122) (132) of [5] , chapter D, section 6. As demonstrated in [5], (291) leads to, (eq. (123c) at another place),

$$
\begin{equation*}
c_{1}(M)=-2 \cdot \frac{R^{2}}{2 \pi} \iint_{1} \frac{\left(\Delta \mathrm{~g}_{\text {Bouguer }}\right)_{Y}-\left(\Delta \mathrm{g}_{\text {Bouguer }}\right)_{Q}}{e_{o o}^{3}} \cdot d l \tag{292}
\end{equation*}
$$

It may be stressed that in (291) a neglection of terms with higher powers of $Z$, (i.e. $z^{2}, z^{3}, \ldots$ ), did not take place. The right hand side of (291) comes not from a truncation of any series development of rising powers of $Z$.

The impact that $C_{1}(M)$ exerts on $T$ can be found by (267) and (291). It is denoted by $K$.

$$
\begin{equation*}
K=-\frac{1}{4 \pi R} \iint_{v} z \cdot\left[\frac{\partial}{\partial H}\left(\Delta g_{\text {Bouguer }}\right)\right] \cdot S(p) \cdot d v \tag{293}
\end{equation*}
$$

The following very useful and instructive deliberation should be added to the relation (293).

The Bouguer anomalies are caused by certain density anomalies in the crust. The deviation of the real mass density from the standard density $)^{\text {I }}$, that is the underlying gravitational source. In reality, these underlying mass anomalies $\delta_{m}$ have the depth $t$ below the surface of the Earth $u$. The impact that $\delta m$ exerts in reality on the $T$ value of the test point $P$ can be approximated by the consideration of a spherical model.

A globe with the radius $R$ is introduced. The test point lies on the surface of this globe. Tre mass anomaly $\delta m$ lies below the surface of this globe, in a depth of $t$. The spherical distance between $\delta m$ and the test point $P$ has in the spherical model the same value as in reality. Thus, the impact of $\delta m$ on $T$ is about, Fig. 8,

$$
\begin{equation*}
K_{1}=f \cdot \frac{1}{e_{1}} \cdot \delta m \tag{294}
\end{equation*}
$$

$e_{1}$ is the straight distance between the test point $P$ and the mass anomaly. Vertical above $\delta m$, at the surface of the globe, $\delta m$ (or its potential) causes a gravity anomaly of about $\left(\Delta g_{\text {Bouguer }}\right)_{1}$. Hence,

$$
\begin{equation*}
K_{1}=\frac{1}{4 \pi R} \iint_{V}\left(\Delta g_{\text {Bouguer }}\right) \cdot \mathrm{S}(\mathrm{p}) \cdot d v \tag{295}
\end{equation*}
$$

A second variant of this spherical model is now considered. The test point has the same position as before, but $\delta \mathrm{m}$ is shifted downwards to a depth of $t+|2|$. For this second variant, the relation (296) follows, instead of (294), - ( $t$ is positive, always ),

$$
\begin{equation*}
\mathrm{K}_{2}=\mathrm{f} \cdot \frac{1}{\mathrm{e}_{2}} \cdot \delta_{\mathrm{m}} \tag{296}
\end{equation*}
$$

(295) turns to

$$
\begin{equation*}
K_{2}=\frac{1}{4 \pi R} \iint_{\nabla}\left(\Delta g_{\text {Bouguer }}\right)_{2} \cdot S(p) \cdot d v \tag{297}
\end{equation*}
$$

As to the gravity anomalies in (295) and (29'7), they follow in a self-explanatory may by the surface values of $K_{1}$ and $K_{2}$ for the test point vertjcal above $\delta m$,

$$
K_{1}^{\prime}=f \cdot(1 / t) \cdot \delta m \quad, \quad K_{2}^{\prime}=f \cdot(1 /(t+|2|)) \cdot \delta m \quad .
$$

These potensials $K_{i}^{\prime}$ and $K_{2}^{\prime}$ are inserted into the fundamental equation of the nhysical geodesy. We find, (Fig. 8),
$\left(\Delta g_{\text {Louguer }}\right)_{1}=-\left(\partial K_{1}^{\prime} / \partial r\right)-(2 / R)_{1}^{\prime} \cong-\left(\partial K_{1}^{\prime} / \partial r\right)$.
(297b )

A similar formula is valid for $\left(\Delta g_{\text {Bouguer }}\right)_{2}$.


## Fig: 8 。

Obviously,

$$
\begin{equation*}
\left(\Delta \mathrm{g}_{\text {Bouguer }}\right)_{2} \cong\left(\Delta \mathrm{~g}_{\text {Bouguer }}\right)_{1}+|z| \cdot \frac{\partial}{\partial \mathrm{H}}\left(\Delta \mathrm{~g}_{\text {Bouguer }}\right)_{1} . \tag{298}
\end{equation*}
$$

Thus, (295) (297),

$$
\begin{equation*}
K_{2}-K_{1}=\frac{1}{4 \pi R} \int^{\prime}\left(|z| \cdot\left[\frac{\partial}{\partial H} \quad\left(\Delta g_{\text {Bouguer }}\right)_{1}\right] \cdot S(p) \cdot d v\right. \tag{299}
\end{equation*}
$$

Whereas, the relations (294) and (296) give

$$
\begin{equation*}
K_{2}-K_{1}=f \cdot\left(\frac{1}{e_{2}}-\frac{1}{e_{1}}\right) \cdot \delta m \tag{300}
\end{equation*}
$$

The oblique distances $e_{1}$ and $e_{2}$ have the following equations (see [4] page 35, [5] [6] ), (the t value is always positive, here ),

$$
\begin{align*}
& e_{1}^{2}=e_{0}^{2}+t^{2}-e_{0}^{2} \cdot \frac{t}{R}  \tag{301}\\
& e_{2}^{2}=e_{0}^{2}+(t+|z|)^{2}-e_{0}^{2} \cdot \frac{t+|z|}{R} \tag{302}
\end{align*}
$$

Generally, the amount of $e_{o}$ is here much more great than $t$ or $|z|$. Hence 。

$$
\begin{equation*}
\frac{1}{e_{2}}-\frac{1}{e_{1}} \cong+\frac{|z|}{2 e_{0} R} \tag{303}
\end{equation*}
$$

Consequently, (293) (300) (303), [6],
$\left|K_{2}-K_{1}\right|=|K| \cong-\frac{f \cdot\left|\delta_{m}\right| \cdot|Z|}{2 \cdot e_{0} \cdot R}$.
Finally, the order of the amount of $|K|$ is to be estimated approximatively. The isostatic mountain roots, compensating the mountain masses situated above sea level, are the underlying sources of a great part of the Bouguer anomalies. These mountain roots have always a density defect of about $-600 \mathrm{~kg} \mathrm{~m} \mathrm{~m}^{-3}$; the sign of this value is always negative, thus, it can give rise to an accumulating effect which can cause biases.

The model computations may use the following parameters. The mountain roots have a horizontal extension of a square of $100 \mathrm{~km} x$ 100 km side length. The vertical extension of the mountain roots is 10 km . The amount of $|\mathrm{Z}|$ is equal to 2 km . For the value of $e_{o}$, in the denominator of (304), the amount of 2000 km is introduced. If one single mountain root of the above parameters is the underlying source, an amount of

$$
\begin{equation*}
\delta \zeta=\frac{|K|}{G}=3 \cdot 10^{-3} \mathrm{~cm} \tag{305}
\end{equation*}
$$

is obtained for the effect exerted on the height anomaly at the test point $P$.

In case of a global extension of the considerations, for the total number of these mountain roots, a total number of $\mathrm{N}=1000$ of such mountain roots seem to be a plausible basis. In our applications, here discussed, the amount of $\delta \mathrm{m}$ has always the same sign; the same property can be valid also for
$Z$. Consequently, the amount of (305) has to be multiplied by $N$ and not by the square root of N , in order to obtain the global effect. The amount of $\mathrm{N} \cdot 3 \cdot 10^{-3} \mathrm{~cm}=3 \mathrm{~cm}$ follows for the global effect.

Thus, summarizing the above considerations, the share that $C_{1}(M)$ exerts on the height anomaly $T / G$ of the test point $P$ is not more than about 3 cm , as long as the integration by (267) covers areas which are more than about 1000 km distant from the test point $P$, ( $e_{o}>1000 \mathrm{~km}$ in (304)).

But, for the estination of this $C_{1}(M)$ effect resulting by the integration over the surroundings of the test point $P$ up to a distance of 1000 km , a special and individual computation appears to be desirable.

It may be stated that the publication [6] does contain a discussion of the impact that the short wave constituents ( or, better, the constituents having short rave lengthes ) of $C_{1}(M)$ exert on the height anomaly $L$ of the test point $P$. In [6], it is shown that this impact will not reach the amount of 1 cm in the height anomalies $\zeta$. There, for the global distribution of the Bouguer anomalies, a convenient model with plausible parameters was introduced ( See [6] , page 25... 27, equations (38)...(41)).
12.3. The supplementary term $C_{2}$

Some lines about the term $C_{2}$ of (266) (268) and (273) should be added. The relations (240) and (266) give

$$
C_{2}=-f \cdot Q \cdot \frac{H_{Q}}{R} \cdot\left[4 \cdot \pi \cdot H_{Q}+\frac{2}{R} \cdot \iint_{V} \frac{H_{Y}-H_{Q}}{e_{00}} \cdot d v\right]
$$

In the brackets of (306), the potential $B$ can be represented by $B^{*}$ in sufficient approximation, (232) (239) (240). Thus,

$$
\begin{equation*}
c_{2}=c_{2.1}-2 \cdot B \cdot \frac{H_{Q}}{R^{2}} \tag{307}
\end{equation*}
$$

with

$$
\begin{equation*}
c_{2.1}=4 \pi \rho \vartheta H_{Q} \cdot \frac{H_{Q}}{R} \tag{308}
\end{equation*}
$$

12.4. Whe supplementary term $\Omega(M)$.

As to the term $\Omega(M)$ of (267) and (268), the amount of this term should now be considered. The first term of (268) is $\Omega_{1}(M)$, it has the development (224).

The 4. term on the right hand side of (224) is, $\mathrm{mith}^{2}(80),\left(v_{1} \cong \pi=2 / \theta^{\prime}\right)$,
(for $\pi^{2}=0$ and $\left.y^{2}=1\right)$, (see also the term $(1 / 2 \pi) \cdot f_{2}^{*}(M)$ of equation (22 bb) $)$,

$$
\begin{equation*}
\frac{1}{2 \pi} \int_{W} \frac{M}{R} \cdot \frac{Z}{R} \cdot \frac{1}{e^{T}} \cdot d w \tag{309}
\end{equation*}
$$

(309) requires an integration over whole the globe. Therefore, $x^{2}$ is put equal to zero. Consequently, $y^{2}$ is equal to the unity, (76) (78). The integral (309) is transformed into the shape of a sum,

$$
\begin{equation*}
\frac{1}{2 \pi} \Delta w \sum_{i=1}^{I}\left(\frac{M}{G R} \cdot \frac{2}{R} \cdot \frac{1}{e^{r}}\right)_{i} \tag{3i0}
\end{equation*}
$$

In (310), the multiplication with $1 / G$ transforms from the perturbation potential $T$ to the height anomalies. The following parameters are introduced: $\Delta w=2000 \mathrm{~km} x 2000 \mathrm{~km}, \mathrm{M} / \mathrm{G}=0.3 \mathrm{~km}$, $2=1 \mathrm{~km}, \quad R=6000 \mathrm{~km}, e^{\prime}=3000 \mathrm{~km}, I=130$. For the above parameters, a single summand of the sum described by (310) is computed. This summand is multiplied with the square root of I, being the total number of the members of the sum given by (310). Along these lines, for the global average of the amount of (310), a value of about 0.02 m is computed. It approximates the average amount of the integral (309). Thus, the amount of 0.02 m , found above, is a good estimation of the impact which the 4 . term on the right hand side of (224) exerts on the final height anomaly $\mathcal{\zeta}$ of the test point.

The corresponding impact, which the 2nd, the 3 rd , and the 5 th term on the right hand side of (224) exert on the final height anomaly, can be computed in a similar way. Similar amounts will result for them, but the 3rd term will be considerably smaller since the value in its brackets is very small.

As to the 6th term on the right hand side of (224), it has the subsequent form,

$$
\begin{equation*}
\frac{1}{2 \pi} \iint \Delta g_{M} \cdot \frac{-x^{2}}{y+y^{2}} \cdot d e^{\prime} \cdot d A \tag{311}
\end{equation*}
$$

This integration requires not a global coverage, an integration over the near surroundings suffices. In the evaluation of the amount of (311), or better, of the order of this amount,$- x^{2}$ may be equal to the unity and $y^{2}$ equal to two, (76) (78). Thus, cliffs of extreme inclinations are considered in the near surroundings of the test point $P$. Integrating in (311) up to a radius of $3 \mathrm{~km}, \Delta \mathrm{~g}_{\mathrm{M}}$ can be introduced as a constant value of 100 mgal (i. e. $0.1 \mathrm{~cm} \mathrm{sec}{ }^{-2}$ ). With these presuppositions, (311) turns to (312), considering the absolute amount,

$$
\begin{equation*}
\frac{1}{\mathrm{G}} \cdot \frac{1}{2 \pi} \cdot \Delta \mathrm{~g}_{\mathrm{M}} \cdot 0.3 \int(\mathrm{de} \cdot \cdot \mathrm{dA}=0.09 \mathrm{~m} . \tag{312}
\end{equation*}
$$

The division through the mean global gravity $G$ gives the impact which the 6 th term of (224) exerts on the height anomaly of the test point $P$. It will not be more than about 0.09 m .

The 7 th, 8 th, and the 9 th term on the right hand side of (224) have an amount that can be estimated in a similar way; a similar amount will yield.

The first term on the right hand side of (224) is, in a rough approximation, the global average of such valuse as given by (309) and (311). Thus, probably, this term will not be greater than some centimeters, integrating globally over $F(M)$ according to (225).

The lowland variant of the expression in the brackets of the 5th term on the right hand side of (224) was discussed already in $[4] ;\left(X_{6} / \mathrm{G}\right): \mathrm{pg}$. 45; page 29. There, a graph shows the depondence of the kernel function $S^{*}$ on the spherical distance. This term of the lowland variant is equal to the 4 th term on the right hand side of the development (230). This 5 th terta yields about 2 cm .

After the above discussion of the term $\Omega_{1}(M)$ in the expression for $\Omega(M)$, the second term of this expression is now in the fore. It is equal to $\left(M H_{P}\right) / R$, (268). With $M / G=0.5 \mathrm{~km}, H_{P}=2 \mathrm{~km}$, $R=6000 \mathrm{~km}$, the following value is obtained,

$$
\begin{equation*}
\frac{M}{G} \cdot \frac{H_{P}}{R}=0.17 \mathrm{~m} \tag{313}
\end{equation*}
$$

The effect, which the 3rd term on the right hand side of (268) takes on the height anomaly of the test point $P$, can be estimated by

$$
\begin{equation*}
\frac{[B]^{\prime \prime}}{G}=0.03 \mathrm{~m} \tag{314}
\end{equation*}
$$

for an extreme topographical situation, as can be found in $[4]$, page 36.

At last, the 4 th term on the right hand side of (268) is to be considered. It has the shape of a Stokes integral, $C_{2}$ stands here for a kind of gravity anomalies which covers whole the globe $v$. The height anomalies which are obtained from the field of the $C_{2}$ values, this are the values here to be estimated. The $C_{2}$ values are in the vicinity of the following value,

$$
\begin{equation*}
\frac{2}{R} B \cdot \frac{H_{Q}}{R} \tag{315}
\end{equation*}
$$

(see (232) (239) (240) (306) (307)).

With $B=G \cdot 0.5 \mathrm{~km},{ }_{H}=0.8 \mathrm{~km}$, the amount of (315) is 0.02 mgal (i. e. $0.02 \cdot 10^{-3} \mathrm{~cm} \mathrm{sec}{ }^{-2}$ ) ${ }^{Q}$

Since a global ficld of gravity anomalies of about 20 mgal gives rise to height anomalies of about 30 m , the above obtained field of global values of 0.02 mgal exerts an effect on the height anomalies by about

$$
\begin{equation*}
30 \mathrm{~m} \cdot \frac{0.02}{20}=0.03 \mathrm{~m} \tag{316}
\end{equation*}
$$

This is a very small amount. By (308), the share of $C_{2.1}$ has about the same amount as $C_{2}$, by (316).

### 12.5. On the suporposition with the potential of the isustatic masses

By the relation (145), the superposition of the perturbation potential T with the potential $B$ of the visible mountain masses was introduced into the mathematical developments, in order to represent the additive to the Stokes integral by a functional depending on smoothed arguments, only.

[^1]masses.

These isostatic masses are understood that they consist of the following parts:
a.) The mass surplus of the mountains situated above the sea level; here, the masses have the standard density $2650 \mathrm{~kg} \mathrm{~m}^{-3}$.
b.) The mass defect of the ocean basins; this density defect is the density of tho water minus the standard density $2650 \mathrm{~kg} \mathrm{~m}^{-3}$.
c.) The mass defect of the compensating mountain roots situated below the depth of 30 km , if the Airy-Heiskanen isostatic nodel is applied.
d.) The mass surplus of the anti-roots in the area of the ocean basins.

In a way similar as that followed up by the introduction of (145), we have

$$
\begin{equation*}
N=T-I . \tag{317}
\end{equation*}
$$

Further on, in the expression representing the $T$ potential, (114), the T potential can be replaced by the $N$ potential given by (317). This thus obtained version of (114) undergoes some rearrangements which lead, finally, to a representation of the $T$ potential in terms of the isostatic gravity anomalies and of the isostatic potential $I$.

Also in this case, applying the isostatic superposition, the finally obtained $T$ values have the property to be situated on the Earth's surface $u$, [see also: Arnold, K. : Die Methoden der Freiluftreduktion und der isostatischen Reduktion in ihren gegenseitigen Beziehungen. Gerlands Beitr. z. Geophysik, 70 (1960), 131-136; cf. also: Bulletin Gधodधsique, 65 (1962), 259-2647.

Before the background of the above chapters, the details of this superposition with the isostatic masses is intended to be dealt with anew, later on, at another place。

## 13. References

```
[1] Arnold, K.: Zur Bestimmung der Geoidundulationen aus Freiluft-
anomalien. Veröffl.Geod. Inst. Potsdam, Nr. 12,
Berlin, Akademie - Verlag 1959.
```

[2] Arnold, K.: Zur strengen Theorie der Figur der Erde. Gerlands Beiträge z. Geophysik 68 (1959), 257 - 262 .
[3] Arnold, K.: A closed solution for the boundary value problem of geodesy. Gerlands Beiträge z. Geophysik
94 (1985), 83-101.
[4] Arnold, K.: Geodetic boundary value problems I. Veröff. Zentralinst. Physik d. Erde, Nr. 84, Potsdam, 1986.
[5] Arnold, K.: Geodetic boundary value problems II. Veröff. Zentralinst. Physik d. Erde, Nr. 89, Potsdam, 1987.
[6] Arnold, K.: The solution of the geodetic boundary value problem by the Runge - Krarup theorem. Krarup - Festschrift, Dan. Geod. Inst., Meddelelse No. 58, Copenhagen, 1989.
Contents Page
14.1. The expression for the term $D_{T}(1.1)$ ..... 93
14.2. The impact of the term $D(1.2)$ and the representation of it by the expression for $E(1)$ ..... 97
14.3. The renresentation of $\cos (e, n)$ ..... 103
14.4. The development of $\sin \left(e, e^{\prime}\right)$ and $\cos \left(a, e^{\prime}\right)$ in texims of the beights ..... 107
14.5. The terms $X_{1}, X_{2}, X_{3}, X_{4}$ ..... 110
14.6. The representation of $E(2)$ by a sum of 3 terms ..... 116
14.6.1. The develomments and decompositions of the expression for $E(2.1)$ ..... 116
14.6.1.1. The formula for $E(2.1 .1)$ ..... 117
14.6.1.1.1. The formule for $E(2.1 .1 .1)$ ..... 118
14.f.1.1.2. The formula for $\mathrm{E}(2.1 .1 .2)$ ..... 121
14.5.1.1.3. The inteorand proportional to $x^{2}$ in axeas
a grest distance away from the test point ..... 122
14.6.1.2. The formula for $E(2.1 .2)$ ..... 126
14.6.1.2.1. The formula for $E(2.1 .2 .1)$ ..... 127
14.6.1.2.2. The formula for $E(2.1 .2 .2)$ ..... 132

|  | Page |
| :---: | :---: |
| 14.6.1.2.3. The final expression for $\mathrm{E}(2.1 .2)$ | 139 |
| 14.6.1.3. The final formula for $\mathrm{E}(2.1)$ | 140 |
| 14.6.2. The developments and decompositions of the formula for $E(2.2)$ | 140 |
| 14.6.2.1. The decomposition of $E(2.2)$ into expressions in terms of $V_{1}, V_{2}, V_{3}$ | 140 |
| 14.6.2.2. The formula for $\mathrm{E}(2.2 .1)$ | 146 |
| 14.6.2.3. The formula for $\mathrm{E}(2.2 .2)$ | 146 |
| 14.6.2.4. The formula for $\mathrm{E}(2.2 .3)$ | 147 |
| 14.6.2.4.1. The decomposition of the formula for E (2.2.3) | 147 |
| 14.6.2.4.2. The formula for $\mathrm{E}(2 \cdot 2 \cdot 3.1)$ | 148 |
| 14.6.2.4.3. The formula for $\mathrm{E}(2.2 \cdot 3.2)$ | 149 |
| 14.6.2.4.4. The formula for $\mathrm{E}(2.2 .3 .3)$ | 150 |
| 14.6.2.4.5. The formula for $\mathbb{E}(2.2 .3 .4)$ | 151 |
| 14.6.2.4.6. The integration by parts | 152 |
| 14.6.2.4.7. The final formula for the calculation of $E(2.2 .3)$ | 158 |
| 14.6.2.5. The final schape of the formula for the computation of $\mathrm{E}(2.2)$ | 159 |
| 14.6.3. The formula for E (2.3) | 160 |
| 14.7. The formula for $\mathrm{E}(2)$ | 160 |
| 14.7.1. The expression for the computation of $\mathrm{E}(2)$ | 160 |

14.7.2. The terms $b_{1}, b_{2}, \ldots, b_{10}$ ..... 161
14.7.3. The term $\mathrm{v}_{1}$ ..... 163
14.7.4. The term $\mathrm{v}_{2}$ ..... 163
14.7.5. The term $v_{3}$ ..... 164
14.8. The formula for $E(3)$ ..... 166
11.9. The formula for $F(4)$ ..... 169
14.10. The formula for 5 (5) ..... 171
14.11. The formulae for $D(2.1)$ ..... 191
14.11.1. The univers? formula for $D(2.1)$ ..... 191
14.11.2. The lowland formula for $D(2.1)$ ..... 194
14.1. The expression for the term $D_{T}(1.1)$

The equation (46) of the section 4 is the starting point,

$$
\begin{equation*}
2 \pi T=\left(\int_{\mathbf{w}}\left[-\frac{\partial T}{\partial r}+D(1.1)\right] \frac{1}{e^{\prime}} d w+\iint_{w} T \frac{\partial\left(1 / e^{\prime}\right)}{\partial r} d w+D(2.1)\right. \tag{array}
\end{equation*}
$$

The equation (45) gives the expression for the term $D(2.1)$ of (A 1). The fundamental equation of the physical geodesy is

$$
\begin{equation*}
\Delta g_{T}=-\frac{\partial T}{\partial r} \quad-\frac{2}{r} T \tag{array}
\end{equation*}
$$

it leads to

$$
\begin{equation*}
\frac{\partial \mathrm{T}}{\partial \mathrm{r}}=-\Delta \mathrm{g}_{\mathrm{T}}-\frac{2}{\mathrm{r}} \mathrm{~T} \tag{array}
\end{equation*}
$$

By means of (A 3), it is possible to substitute the radial derivative of the perturbation potential by the free-air anomalies. Hence,

$$
\begin{align*}
2 \pi T & =\iint_{W}\left[\Delta g_{T}+\frac{2}{r} T+D(1.1)\right] \underset{e^{\prime}}{1} d w+ \\
& +\int_{W} T \frac{\partial\left(1 / e^{\prime}\right)}{\partial r} d w+D(2.1) \tag{array}
\end{align*}
$$

In the second term on the right hand side of (A 3), the term $r$ is replaced by $R$,

$$
\begin{equation*}
\frac{\partial T}{\partial T}=-\Delta \mathrm{g}_{\mathrm{T}}-\frac{2}{R} T+D(2.2) \tag{A5}
\end{equation*}
$$

Further, for abbreviation, the suffix $T$ affixed to the free-air anomálies is no more taken along; hence, we have this subsequent substitution by (A $5 a$ ), - (In our applications, the slopes of the terrain are considered to have continuous functions; this property is found in the topographical maps, of course. Thus, each point at the surface of the Earth $u$ has a clearly defined tangential plane. ) -

$$
\begin{equation*}
\Delta g_{\mathrm{T}}=\Delta \mathrm{g} \tag{A5a}
\end{equation*}
$$

For $D(2.2)$, the difference of (A 3) and (A 5) yields the relation (A 6),

$$
\begin{equation*}
D(2 \cdot 2)=-\left(\frac{2}{r}-\frac{2}{R}\right) \quad T . \tag{A6}
\end{equation*}
$$

(A 4) and (A 6) are combined to (A 7), accounting for (A 5a),

$$
\begin{align*}
& 2 \pi T=\iint_{W}\left[\Delta g+\frac{2}{R} T+D(1.1)\right] \frac{1}{e^{\prime}} d w+\iint_{w} T \frac{\partial 1 / e^{\prime}}{\partial r} d w+D(3.1)  \tag{17}\\
& D(3.1)=-\iint_{W} D(2.2) \frac{1}{e^{\prime}} d w+D(2.1) \tag{A8}
\end{align*}
$$

The equation (36) of the section 4 gives

$$
\begin{equation*}
D(1.1)=D_{T}(1.1)=\frac{\partial T}{\partial n} \frac{1}{\cos \left(R^{\prime}, n\right)}+\frac{\partial T}{\partial r} \tag{array}
\end{equation*}
$$

Here, the suffix $T$ is affixed calling special attention to the fact that $D_{T}(1.1)$ has to be computed for the potential $T$.
$W$ is the raal pravity potentina,
$U$ is the standard potential. The perturbation potentind $T$ has the equation

$$
\begin{equation*}
T=W-U, \tag{A10}
\end{equation*}
$$

In the exterior of the body of the Barth, $T$ obeys the Laplace differential equation.
By means of the gradient operation, (A 10) leads to (4 11),

$$
\begin{equation*}
\frac{\partial T}{\partial n}=(\operatorname{grad} T) \cdot \underline{\equiv}=(\operatorname{grad} W) \cdot \underline{n}-(\operatorname{grad} U) \cdot \underline{\underline{n}} \cdot \tag{A11}
\end{equation*}
$$

$\xlongequal{n}$ is the unit vector of the normal of the Earth's surface, u, heading into the interior, (see: section 2, Fig. 2). Accounting
for ( $A$ 12) and (A 13),

$$
\begin{equation*}
(\operatorname{grad} W)^{2}=g^{2}, \tag{A12}
\end{equation*}
$$

$(\operatorname{grad} U)^{2}=g^{2}$,
the relation (A 11) turns to

$$
\begin{equation*}
\frac{\partial T}{\partial n}=f \cdot \cos (g, n)-g^{\prime} \cdot \cos \left(g^{\prime}, n\right) \quad . \tag{array}
\end{equation*}
$$

( $\mathrm{f}, \mathrm{n}$ ) and ( $\mathrm{g}^{\prime}, \mathrm{n}$ ) symbolize the angles spanned by the two vectors within the concerned braces, i. e. the vectors grad w and $\underline{\underline{n}}$, resp. grad $U$ and no.

Now, the angle ( $g, n$ ) is expressed in terms of the inclination angle of the terrain, which is denoted by ( $\mathrm{g}^{\prime}, \mathrm{n}$ ). At the surface of the Earth, the three vectors - g, - $\mathrm{g}^{\prime},-\underline{\underline{n}}$ can be defined. They are heading into the mass - free space, and they construct the spherical triangle which is shown by Fig. A 1.

As to this spherical triangle of Fig. A 1, a unit sphere is constructed having the surface point $Q$ as center, Fig. 2. Then, the vectors $-\underline{\underline{E}}, \underline{\underline{n}} \underset{=}{(n)}$ and $-\underline{g}$ at the point $Q$ are ploted from the center $Q$ of this unit sphere. In Fig. $A 1$, the points at the normed vectors $\left(-\underline{g}^{\prime}\right)^{0},(-\underline{\underline{n}})^{0}$ being equal to $-\underline{\underline{n}}$, and $(-\underline{\underline{g}})^{0}$, they mark the places where these three vectors, or these three normed vectors, pierce this above defined unit sphere. They are the projections of these three vectors on this unit sphere •


Fig. A 1

In Fig. A 1, $A^{\prime}$ is the ezimuth of the slope of the terrain, and $A^{\prime \prime}$ is that of the plumb - line deflection. Both of them are measured clockwise from the north. But, $\Theta$ denotes the full absolute amount of the plumbline deflection, taken at the surface of the Earth. $\xi$ and $\eta$ are the north - south and the east - west component of this deflection (in the potential field $T$ ). The cosine law for the side of a spherical triangle leads to the relation (A 15), Fig. A 1,

$$
\cos (\Gamma, n)=\cos \left(\rho^{\prime}, n\right) \cdot \cos \Theta+\sin \left(g^{\prime}, n\right) \cdot(\sin \Theta) \cdot \cos \left(A^{\prime \prime}-A^{\prime}\right) \cdot(A 15)
$$

In cose, $\Theta$ has an amount of about 10 ' , the following approximations are valid,

$$
\begin{align*}
& \sin \Theta \cong \Theta=10^{\prime \prime} / \rho^{\prime \prime}=0.5 \cdot 10^{-4}, \\
& \cos \Theta \cong 1-(1 / 2) \cdot \Theta^{2} \cong 1-(1 / 8) \cdot 10^{-8} . \tag{array}
\end{align*}
$$

(A 15) and (A 16) arn combined to (117),
$\cos (r, n)=\cos \left(\varepsilon^{\prime}, n\right)+\Theta \cdot \sin \left(r^{\prime}, n\right) \cdot \cos \left(A^{\prime \prime}-A^{\prime}\right)-(1 / 2) \cdot \Theta^{2} \cdot \cos \left(g^{\prime}, n\right) \cdot(A \quad 17)$

Thus, the relation (1 14) turns to
$\frac{\partial T}{\partial n}=\left(g-g^{\prime}\right) \cdot \cos \left(g^{\prime}, n\right)+\Theta \cdot g \cdot \sin \left(g^{\prime}, n\right) \cdot \cos \left(\Lambda^{\prime \prime}-A^{\prime}\right)-$

$$
\begin{equation*}
-(1 / 2) \cdot \Theta^{2} \cdot g \cdot \cos \left(g^{\prime}, n\right) \tag{array}
\end{equation*}
$$

Neplectinf some microrals only
( 1 to ? $\mu$ sol, i.e. 1 , to $2 \cdot 10^{-6}$ pal),
the relation (A 18) leads to
$\frac{\partial T}{\partial n}=\left[g-g^{\prime}+\Theta \cdot g \cdot \tan \left(g^{\prime}, n\right) \cdot \cos \left(\Lambda^{\prime \prime}-A^{\prime}\right)\right] \cdot \cos \left(g^{\prime}, n\right)$.

In (A 19), s ?nd $\sigma^{\prime}$ refer to the same moving point ? at the surface of the Earth $u$, Fior. 1 ?, Tio. 2. It is emphasized, that the amount of $g^{\prime}$ in (1) 1 ) is not the stondard gravity at the telluroid $t$, point $P_{t}$; (see: section 1, Fig. 1).

Neglecting the flattering of the best-fitting ellinsoid of the Earth, the relation (A 10) rives, (considering (A 16), and considering that

$$
\left(g, g^{\prime}\right)=\Theta \text { and } \cos \left(g, g^{\prime}\right)=\cos \Theta \cong 1-(1 / 2) \cdot \Theta^{2}
$$

and considering that the direction of $r$ is the direction of $\mathbf{- g}^{\prime}$, since we have a sphere as reference figure),
$-\frac{\partial T}{\partial r}=-\frac{\partial W}{\partial r}+\frac{\partial U}{\partial r}=|\operatorname{grad} W| \cdot \cos \left(g, g^{\prime}\right)-|\operatorname{grad} U|=$

$$
\begin{equation*}
=g \cdot \cos \left(g, g^{\prime}\right)-g^{\prime}=g-g^{\prime}-\frac{1}{2} g \cdot \Theta^{2} \cong g-g^{\prime} . \tag{A19a}
\end{equation*}
$$

Here, in (A $19 a$ ), the fact is considered that the angle ( $g, g^{\prime}$ ) is equal to the deflection $\Theta$, Fig. A 1.
Accounting for (A16), the developments of ( $A 19$ ) are easily understood. (A 19a) yields,

$$
\begin{equation*}
g-g^{\prime}=-\frac{\partial T}{\partial r} \tag{A20}
\end{equation*}
$$

The reader is asked to compare also the deductions given by the equat ons from (158) to (174) of the section 7 .

With (A 10) (A 20), the relation (A 20a) is obtained,
$\frac{\partial T}{\partial n} \cdot\left[1 / \cos \left(g^{\prime}, n\right)\right]=-\frac{\partial T}{\partial r}+\Theta \cdot g \cdot \tan \left(g^{\prime}, n\right) \cdot \cos \left(A^{\prime \prime}-A^{\prime}\right), \quad$ (A 20』)
(see also (165) (169) (179) of the section 7).

The two equations (A 9) and (A 20a) are combined to

$$
D_{\mathbb{T}}(1 \cdot 1)=\Theta \cdot p \cdot \tan \left(g^{\prime}, n\right) \cdot \cos \left(A^{\prime \prime}-A^{\prime}\right)
$$

In (A 21), the nerlection of terms smaller than sbout 1 microan took place.
14.2. The impact of the term $D(1.2)$ and the representation of it by the ____ expression for $E(1)$

Now, an expression for the term $D(1.2)$ of the relation (37) of the section 4 is intended to be found. Further, an expression for $E(1)$ will be found. $E(1)$ depends on $D(1.2)$ by the relation (45a) of the section 4. The relation (37) and Fig. A ? yield,

$$
\begin{align*}
& D(1 \cdot 2)=1 / e-1 / e^{\prime}=\left(e^{\prime}-e\right) / e \cdot e^{\prime}  \tag{array}\\
& e^{\prime}=2 \cdot R^{\prime} \cdot \sin p / 2=2 \cdot\left(R+H^{\prime}\right) \cdot \sin p / 2 \tag{A23}
\end{align*}
$$



Fig. a 2.

The oblique distsnce $e$ is understood as the distance between the
two points $P$ and $Q$, Fig. A 2. $Z$ is the difference of the
heights of the two points $Q$ and $P, Z=H_{Q}-H^{\prime} .\left(H^{\prime}=H_{P}, Z=H_{Q}-H_{P}\right)$.
The cosine law gives, Fig. A 2,

$$
\begin{equation*}
e^{2}=e^{\prime 2}+Z^{2}-2 \cdot e^{\prime} \cdot z \cdot \cos \left(e^{\prime}, g^{\prime}\right) \tag{A24}
\end{equation*}
$$

Further, from Fig. A 2 and with

$$
\begin{align*}
& R^{\prime}=R+H^{\prime}, \\
& \cos \left(13 \partial^{\circ}-\left(e^{\prime}, g^{\prime}\right)\right)=-\cos \left(e^{\prime}, g^{\prime}\right)=e^{\prime} /\left(2 \cdot R^{\prime}\right) \tag{A25}
\end{align*}
$$

(1) 24) and (A 25) are combined to

$$
\begin{equation*}
e^{2}-e^{2}=z^{2}+e^{\prime 2} \cdot Z / R^{\prime} \tag{A26}
\end{equation*}
$$

Abbreviating, the symbol $x$ denotes the quotient $Z / e^{\prime}$,

$$
\begin{equation*}
x=2 / e^{\prime} \tag{array}
\end{equation*}
$$

(A 27) कnt (A 26) give

$$
\begin{equation*}
\left(e^{2}-e^{\prime 2}\right) / e^{\prime^{2}}=x^{2}+Z / R^{\prime} \tag{array}
\end{equation*}
$$

From (A 26) follows

$$
\begin{align*}
& \left(e^{\prime}-e\right) \cdot\left(e^{\prime}+e\right)=-Z^{2}-e^{\prime 2} \cdot Z / R^{\prime}  \tag{array}\\
& e^{\prime}-e=-\left(Z^{2}+e^{\prime ?} \cdot Z / R^{\prime}\right) \cdot\left(e^{\prime}+e\right)^{-1} \tag{array}
\end{align*}
$$

The symbol $x^{\prime}$ is introduced now, jt has the following meaning,

$$
\begin{equation*}
x^{\prime}=1+x^{2}+2 / R^{\prime} \tag{array}
\end{equation*}
$$

Thus, combining (A 26) and (A 31),

$$
\begin{align*}
& e^{2}=e^{\prime 2} \cdot x^{\prime}  \tag{A32}\\
& e=e^{\prime} \cdot\left(x^{\prime}\right)^{1 / 2} \tag{array}
\end{align*}
$$

$$
\begin{align*}
& e \cdot e^{\prime}=e^{\prime^{2}} \cdot\left(x^{\prime}\right)^{1 / 2}  \tag{array}\\
& e+e^{\prime}=e^{\prime} \cdot\left\{1+\left(x^{\prime}\right)^{1 / 2}\right\},  \tag{A35}\\
& e \cdot e^{\prime} \cdot\left(e+e^{\prime}\right)=e^{\prime 3} \cdot\left[\left(x^{\prime}\right)^{1 / 2}+x^{\prime}\right] \tag{A36}
\end{align*}
$$

(A 22), (A 30) and (A 36) nre combined to

$$
\begin{equation*}
n(1 \cdot 2)=-\left(e^{\prime}\right)^{-3} \cdot\left(z^{2}+e^{\prime 2} \cdot z / R^{\prime}\right) \cdot\left\{x^{\prime}+\left(x^{\prime}\right)^{1 / 2}\right\}^{-1} . \tag{A37}
\end{equation*}
$$

In the expression for $D(2.1)$, in the first intepral on the ri.ght hand sile of (45), (in the section 4), the term $0(1.2)$ does anoear. Therefore, it is necessary to develop a convenient oxpression for $E(1)$, see (45a),

$$
\begin{equation*}
E(1)=-\iint_{w} \frac{\partial T}{\partial r} \cdot D(1 \cdot 2) \cdot d w \cdot \tag{i38}
\end{equation*}
$$

For the sake of abbrevistion, the symbol $y$-is introducod; it has the followinf menninf,

$$
\begin{equation*}
y^{2}=1+x^{2} \geqslant 1 \tag{1}
\end{equation*}
$$

Thus, (A 21) turns to

$$
\begin{equation*}
x^{\prime}=y^{2}+z \pi^{\prime} \tag{array}
\end{equation*}
$$

For the inverse of $x^{\prime}$. $\left(x^{\prime}\right)^{1 / 2}$ apnearine in (: 37), it is intented, now, to find oserios avelopment of risine nowers of $z / \Omega^{\prime}$. Because the inequality ( $\therefore \Delta 1$ ) is mimys fulfilleत,

$$
\left|Z / R^{\prime}\right| \ll 1
$$

the binominel series leats to

$$
\begin{align*}
& x^{\prime}=y^{2}+2 \cdot / R^{\prime}=y^{2} \cdot\left\{1+z /\left(R^{\prime} \cdot y^{2}\right)\right\}  \tag{A4?}\\
& \left(x^{\prime}\right)^{1 / 2} \cong y \cdot\left\{1+z /\left(2 R y^{2}\right)\right\} \tag{array}
\end{align*}
$$

(A 42) ตnt (A 43) yield
$x^{\prime}+\left(x^{\prime}\right)^{1 / 2}=y \cdot\left[1+y+z /\left(2 \cdot R \cdot y^{2}\right)+z /(R \cdot y)\right]$.
Hence, if $1+y$ is put before the brackets, $x^{\prime}+\left(x^{\prime}\right)^{1 / 2}=\left(y+y^{?}\right) \cdot\left[1+\frac{1}{y+y^{2}} \cdot\left(1+\frac{1}{2 \cdot y}\right) \cdot z / R\right]$.

Noglecting a relative error, which is smaller than

$$
\begin{equation*}
|2 / \mathrm{k}| \cong ? \mathrm{~km} / 6000 \mathrm{~km}=1 / 2000 \tag{A16}
\end{equation*}
$$

the following rela ${ }^{\text {ion }}$ on is obtained,

$$
\begin{equation*}
x^{\prime}+\left(x^{\prime}\right)^{1 / 2} \cong y+y^{2} \tag{A47}
\end{equation*}
$$

Znv, the aquation (A 3, for $E(1)$ is consiferet. For $\partial y / \partial r$ aיmari."r in the inteprand of (A 3B) follow the subsequent lines, with


$$
\begin{gather*}
\partial r / \partial r=-\Delta r_{p}-(2 / r) \cdot T \quad, \\
r=R+Z+I I_{\prime}^{\prime}, \\
r=R\left(1+\frac{Z+I^{\prime}}{R}\right), \\
1 / r \cong(1 / R) \cdot\left\{1-\left(Z+I^{\prime}\right) / R\right\}, \\
-[(? / r) \cdot(2 / R)] \cong(2 / R) \cdot\left[\left(Z+H^{\prime}\right) / R\right] . \tag{A47b}
\end{gather*}
$$

(A 17ロ) गnd (A 47b) yi\&ld
$\frac{\partial T}{\partial r}=-\Delta \sigma_{T}-\frac{2}{R} \cdot T+\frac{2}{R} \cdot \frac{Z+H^{\prime}}{R} \cdot T+-\cdots \quad$.
The relations (A 37), (A 45), ant (A 47c) are combined to (A 47d),

$$
\begin{align*}
& -\frac{\partial T}{\partial r} \cdot D(1 \cdot \partial)=a \cdot b \quad,  \tag{A47d}\\
& Z=-\Delta \mathscr{R}^{T}-\frac{2}{R} \cdot T+\frac{2}{R} \cdot \frac{Z+H^{\prime}}{R} \cdot T, \\
& b=\frac{1}{e^{\prime}} \cdot\left(x^{2}+Z / R\right) \cdot \frac{1}{y+y^{2}} \cdot\left[1-\frac{1+2 \cdot y}{2 \cdot y^{2}+2 \cdot y^{3}} \cdot(Z / R)\right] .
\end{align*}
$$

In the term represented by (A 47d), relative errors of the order $1 / 2000$ can be neglected, (A 46). Thus, if in (A 47d) the gravity anomaliss and the $T$ values aremultiplied with coefficients of the order of

$$
x^{2} \cdot(2 / R)
$$

( 147 f )
or with

$$
(2 / R)^{2}
$$

it is allowed to neglect these amounts. Hence,

$$
-\frac{\partial T}{\partial r} \cdot D(1.2)=c \cdot त
$$

v:ith

$$
\begin{aligned}
& c=-\Delta_{T}-\frac{2}{R} T \\
& त=\frac{1}{e^{1}} \cdot\left(x^{2}+2 / R\right) \cdot \frac{1}{y+y^{2}}
\end{aligned}
$$

Thus, finelly, the expression for $\mathbb{P}(1)$ follows to be, see (A 38),
$E(1)=-\int\left(\langle r+2 T / R) \cdot \frac{1}{e^{3}}\left[z^{2}+e^{\prime 2} \cdot Z / R^{\prime}\right] \cdot \frac{1}{y+y^{2}} \cdot \Delta v z \cdot\right.$

And with ( 1 27), neglectine the suffix $\cong$ affixed to the rravity anomalies,
$E(1)=-\int\left([\Delta x+2 T / R] \cdot\left(x^{2}+z / z\right) \cdot \frac{1}{y+y^{2}} \cdot\left(e^{\prime}\right)^{-1} \cdot d w \cdot\right.$

It is convenient to divide $\quad(1)$ into two ports,

$$
\begin{gather*}
?(1)=(1.1)+\mathbb{R}(1 \cdot 2),  \tag{A50}\\
R(1 \cdot 1)=-\iint_{W}(\Delta r+2 T / R) \cdot x^{2} \cdot \frac{1}{y+y^{2}} \cdot\left(e^{\prime}\right)^{-1} \cdot d w  \tag{A51}\\
E(1.2)=-\int(\Delta E+2 T / R) \cdot(Z / R) \cdot \frac{1}{y+y^{2}} \cdot\left(s^{\prime}\right)^{-1} \cdot d w \quad . \tag{152}
\end{gather*}
$$

$$
\begin{align*}
& \text { The relation (38) of the section } 4 \text { determines the term } D(1.3) \text {, } \\
& D(1.3)=\frac{\partial 1 / e}{\partial n}\left[1 / \cos \left(g^{\prime}, n\right)\right]+\frac{\partial 1 / e^{\prime}}{\partial r} \text {. }  \tag{A53}\\
& \text { The normal terivative of the inverse of the oblique distance e } \\
& \text { is equal to, (Fig.2,page } 15: \text { Fig. 3, page } 16 ; \text { Fig.A } 2, \text { page } 98) \text {, } \\
& {\left[\frac{\partial}{\partial n}(1 / e)\right]=-\cos (e, n) \cdot \frac{1}{e^{2}}} \tag{A54}
\end{align*}
$$

In ( $1 \sim 4$ ), first, of all, the term $\cos (e, n)$ has to be developed in terms of the slope of the terroin.

In this contoxt, $\cap$ spherical triangle is considered. It is constructod by the following 3 vectors, (see Fig. A 3). The first vector is the nerfative vector of the standard gravity in the surface
 the normal of the surface of the Earth in the surface point $Q$, i. e. - n . Since the vectnr $\underline{\underline{n}}$ is heading into the interior of the ?arth, the voctor - $n$ points into the extorior of the bndy of the Farth. The third vector has the spatial direction of the oblique straisht line e which connects the two surface points $P$ and $\partial$, Fif. A 2. This vector e is heading from the point $P$ to the point, ?. Fig. A 3 shows this spherical triangle spanner by the 3 vectors $-\underset{a}{g},-\underset{=}{n}$, and $e$ In Fig.A 3, the 3 vectors $\left(-g^{\prime}\right)^{0},(-n)^{0}$, and $(e)^{0}$ are the normalized vectors of our 3 vectors $-\underline{g}^{\prime}, ~-\underset{=}{=}$, and $\xlongequal[=]{e}$ They meet our unit sphere (having the point $Q$ at the surface of the Earth $u$ as center point ) at the dots plotted in Fig.A 3 .


Fig. A 3 。

Some simple goniometric equations and some well-known relations from
the spherical trigonometry lead to the following developments, (A 55), (A 56a ... e), and (A 57), Fig. A 3,

| $\cos (e,-n)=\cos \left(e,-g^{\prime}\right) \cos \left(g^{\prime}, n\right)+\sin \left(e,-g^{\prime}\right) \sin \left(g^{\prime}, n\right) \cos \sigma$, | $(A 55)$ |
| :--- | :--- |
| $\cos (e,-n)=-\cos (e, n)$, | $(A 56 a)$ |
| $\cos \left(e,-e^{\prime}\right)=-\cos \left(e, g^{\prime}\right)$, | $(A 56 b)$ |
| $\sin \left(e,-g^{\prime}\right)=$ | $\sin \left(e, g^{\prime}\right)$, |
| $\cos \left(-g^{\prime},-n\right)=\cos \left(g^{\prime}, n\right)$, | $(A 56 C)$ |
| $\sin \left(-g^{\prime},-n\right)=\sin \left(g^{\prime}, n\right)$. | $(A 56 e)$ |

The relations (A 55), and (A 56a) to (A 56e), yield
$\cos (e, n)=\cos \left(e, p^{\prime}\right) \cdot \cos \left(g^{\prime}, n\right)-\sin \left(e, p_{3}^{\prime}\right) \cdot \sin \left(g^{\prime}, n\right) \cdot \cos \sigma \cdot$

The center of the Earth ?nd the points $P$ and $Q$ at the Earth's surface तetermine a certain plane, (seo Fif. A 2, Fig. A 1, Fig. A 5). the 3 vectors $-\underset{=}{g}, \underset{=}{e} \underset{=}{e}$ are situated in even this plane. Thus, also these three vectors - g', e, é, or at least two of them; define this plann here considered. Consequently, the vector é having the direction of the straight line e' of Fir. A 2, (the positive Jirection $\cap$ f $e^{\prime}$ is shown by Fig. A 5 and Fig. A 2), is situatod in the plane spanned by the vectors $-\underset{=}{g^{\prime}}$ and $\xlongequal[=]{e}$.
Further, the spharical representation of the vector $\stackrel{e}{g}^{\prime}$ is situated on the great circle spanned by the two vectors $\xlongequal[=]{e}$ and $-\underline{g}^{\prime}$, Fig. A 3. The two added figures show this situation, Fig. A 4, Fig. A 5.

As to the spherical representation of a vector, this representation is defined in the following way : The vector ( e.g. é ) is translated in such a way that the starting point of this vector coincides with the center of the unit sphere. In this case, the vector e' ( or the prolongation of it ) pushes through the surface of the unit sphere in a certain point; this point is the spherical representation of the vector $\underline{e}^{\prime}$.

In Fig. A 4 , the vectors $\left(0^{\prime}\right)^{0},(\underset{=}{0})^{0}$, and $(-\underline{\underline{g}})^{0}$ are the unit vectors of the vectors $\Theta^{\prime}, \stackrel{O}{\equiv}$, and $-\underline{=}$.


Fig. A 4.


Fig. A 5.

In the here conatheren case，the teel；point $P$ lies hifher than the mover point $2 ; 2$ is nofntivo；Fig．$\Lambda 4$, Fip．A 5， Thus，for all spherical dialances $p$ between tho tro points $P$ and $Q$ s．（A 58）is valid，

$$
\begin{equation*}
\left(e,-p^{\prime}\right)=\left(e^{\prime},-p^{\prime}\right)+\left(e, e^{\prime}\right) . \tag{A58}
\end{equation*}
$$

（A 56b）and（ 1 5B）yield
$\cos \left(e, g^{\prime}\right)=\cos \left(e^{\prime}, y^{\prime}\right) \cdot \cos \left(e, c^{\prime}\right)+\sin \left(e^{\prime}, g^{\prime}\right) \cdot \sin \left(0, e^{\prime}\right)$,
and，funther on，
$\sin \left(\Omega,,^{\prime}\right)=\sin \left(e^{\prime}, \AA^{\prime}\right) \cdot \cos \left(e, e^{\prime}\right)-\cos \left(e^{\prime}, g^{\prime}\right) \cdot \sin \left(e, e^{\prime}\right) \quad 0 \quad$（A 60）

Whe combination of（ 1 57）（ 150 ），and（150）gives

$$
\begin{equation*}
\frac{\cos (e, n)}{\cos \left(g^{\prime}, n\right)}=a+b+c \tag{A61a}
\end{equation*}
$$

with
$\Rightarrow=\cos \left(e^{\prime}, r^{\prime}\right) \cdot \cos \left(e, e^{\prime}\right)+\sin \left(e^{\prime}, g^{\prime}\right) \cdot \sin \left(e, e^{\prime}\right)$,
$b=-\sin \left(e^{\prime}, g^{\prime}\right) \cdot \cos \left(e, e^{\prime}\right) \cdot \tan n^{\prime}$,
$c=\cos \left(e^{\prime}, r^{\prime}\right) \cdot \sin \left(e, e^{\prime}\right) \cdot \tan n^{\prime} \cdot$

In tho above equations，（A 61c）and（A 61d），the following relation is valid from the rules of the sphericnl trigonometry（see：Fig．A 3， Fis． 1 5），

$$
\begin{equation*}
\tan n^{\prime}=\tan \left(p^{\prime}, n\right) \cdot \cos \sigma . \tag{array}
\end{equation*}
$$

The meaning of $n^{\prime}$ is shown in Fig．A 3 and Fig．A，6．
$n^{\prime}$ is $e$ component of the slops of the terrain．$n^{\prime}$ is understood that it i．s taken for the mover point， $2 ; \mathrm{n}^{\prime}$ is tho component of the slope of the terrain measured in the direction of the line $\overrightarrow{P Q}$ ，in radinl dicretion，for prowine fistances from the test noint $P$ ；
 diminish for prowing distances to the point $P$ ，the amount of $n^{\prime}$ is positive．Fusther，in this case，the angle $\sigma$ of Fig．A 3 is smaller than $90^{\circ}$ ；this fact is also evidenced fron the equation（A 62）．The letter fact is also corroborated by the following deliberation ：Per definitione山， the angle（ $g^{\prime}, \mathrm{n}$ ）is always smaller than $90^{\circ}$ ，since we have a star－shaped Earth。Consequently， $\tan \left(g^{\prime}, n\right)$ is always positive．Thus，in（A 62），the sign of $\tan n^{\prime}$ is the same as that of $\cos \sigma$ 。
14.4. The development of $\sin \left(e, e^{\prime}\right)$ and $\cos \left(e, e^{\prime}\right)$ in terms of the heights

On the right hañ aide of (A 61a), the terms $\cos \left(e^{\prime}, p^{\prime}\right), \sin \left(e^{\prime}, g^{\prime}\right)$, $\cos \left(e, e^{\prime}\right)$, and $\sin \left(e, e^{\prime}\right)$ appear. They have to be expressed as functions which depend on the spherical distance $p$ from the test point $P$ and, further, on the hoipht difference $Z$.

From Fig. A 5, it is learnt thet

$$
\begin{equation*}
\left(e^{\prime}, f_{2}^{\prime}\right)=90^{\circ}+p / 2 \tag{163}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
\sin \left(e^{\prime}, f^{\prime}\right)=\cos p / 2=1-(1 / 8) \cdot p^{2}+\cdots \cdots \tag{A64}
\end{equation*}
$$

If the distonces $e^{\prime}$ are small, if $e^{\prime}$ is smaller than about 50 km , the following relation is valid

$$
p \cong \frac{e^{\prime}}{R^{\prime}} \leqslant \frac{50 \mathrm{~km}}{6000 \mathrm{~km}}=\frac{5}{600}
$$

Thus,

$$
\begin{equation*}
\sin \left(e^{\prime}, g^{\prime}\right) \cong 1-10^{-5}, \quad\left(e^{\prime}=50 \mathrm{~km}\right) \tag{A65}
\end{equation*}
$$

Furthermore, from (A 63),

$$
\begin{equation*}
\cos \left(e^{\prime}, g^{\prime}\right)=-\sin p / 2=-(p / 2)+-\cdots \tag{A66}
\end{equation*}
$$

From Fig. 45 and from the sine law of plane trigonometry, and from (A 27), it is learnt that

$$
\begin{equation*}
-\left(Z / e^{\prime}\right)=-x=\sin \left(e, e^{\prime}\right) / \sin \left(e, g^{\prime}\right) \tag{A67}
\end{equation*}
$$

Further on, Fig. A 4, Fig. A 5,

$$
\begin{equation*}
\left(e, e^{i}\right)+\left(e, g^{\prime}\right)=\left(e^{\prime}, g^{\prime}\right) \tag{A68}
\end{equation*}
$$

(A 67 ) and (A 68) are combined to
$\sin \left(e, e^{\prime}\right)=-x \cdot \sin \left[\left(e^{\prime}, g^{\prime}\right)-\left(e, e^{\prime}\right)\right] \quad$.
Thus,
$\sin \left(e, e^{\prime}\right)=-x \cdot \sin \left(e^{\prime}, f^{\prime}\right) \cdot \cos \left(e, e^{\prime}\right)+x \cdot \cos \left(e^{\prime}, g^{\prime}\right) \cdot \sin \left(e, e^{\prime}\right),(A \quad 70)$
$\tan \left(e, e^{\prime}\right)=-x \cdot \sin \left(e^{\prime}, g^{\prime}\right)+x \cdot \cos \left(e^{\prime}, g^{\prime}\right) \cdot \tan \left(e, e^{\prime}\right)$,
$\tan \left(e, e^{\prime}\right)\left[1-x \cdot \cos \left(e^{\prime}, g^{\prime}\right)\right]=-x \cdot \sin \left(e^{\prime}, g^{\prime}\right)$.
With

$$
\begin{equation*}
x^{\prime \prime}=x \cdot \cos p / 2 \tag{A70a}
\end{equation*}
$$

and with (A 64) and (A 66), the relation (A 71) yields,
$\tan \left(e, e^{\prime}\right) \cdot(1+x \cdot \sin p / 2)=-x^{\prime \prime}$.
(A 23) and (A 2.7) give for an expression on the left hand si!e of (A 71)
$x \cdot \sin p / 2=\left(Z / e^{\prime}\right) \cdot \sin p / 2=z /\left(2 \cdot R^{\prime}\right)$.
(A 71) and (A 72) are ?ombjed to

$$
\begin{equation*}
\tan \left(e, e^{\prime}\right) \cdot\left[1+2 /\left(2 \cdot R^{\prime}\right)\right]=-x^{\prime \prime}, \tag{A73}
\end{equation*}
$$

or,
$\tan \left(e, e^{\prime}\right)=. \cdot x^{\prime \prime} \cdot\left[1+Z /\left(2 \cdot R^{\prime}\right)\right]^{-1}$,
or,
$\tan \left(e, e^{\prime}\right)=-x^{\prime \prime} \cdot\left[1-Z /\left(2 \cdot R^{\prime}\right)+-\cdots\right]$.
After $\tan \left(e, e^{\prime}\right)$ is represented in terms of the heights, by (A 75), the function of, $\sin \left(e, e^{\prime}\right)$ in terms of the heights is easily found by $\tan \left(e, e^{\prime}\right)$. In the interval

$$
-90^{\circ}<\left(e, e^{\prime}\right)<+90^{\circ} \text {, }
$$

the subsequent formula is valid,
$\sin \left(e, e^{\prime}\right)=\tan \left(e, e^{\prime}\right) \cdot\left[1+\tan ^{2}\left(e, e^{\prime}\right)\right]^{-1 / ?}$.
Neglecting terms of the order of $\left(Z / R^{\prime}\right)^{\text {? }}$, the combination of ( $A 75$ )
and (A 75a) leads to
$\sin \left(e, e^{\prime}\right) \cong-x^{\prime \prime} \cdot\left\{1-2 /\left(2 \cdot R^{\prime}\right)\right\} \cdot\left[1+\left(x^{\prime \prime}\right)^{2} \cdot\left\{1-Z / R^{\prime}\right\}\right] \quad-1 / 2$
As to (A 76), since -x" has the sign of - 2 (because we have the following equation : $\left.-\mathrm{x}^{\prime \prime}=-\left(2 / \theta^{\prime}\right) \cdot \cos \mathrm{p} / 2\right)$, since the term in the parentheses $\}$ of (A 76) is always positive, and since the term in the brackets [ ] of (A 76) is almays positive, too, therefore, $\sin \left(\theta, \theta^{\prime}\right)$ has always the sign of -2 . The same is valid for the function $\tan \left(\theta, \theta^{\prime}\right)$.

Some self-explanatory rearrangements yield, in the brackets of (A 76), the onsuing form,

$$
\begin{align*}
& {\left[1+\left(x^{\prime \prime}\right)^{2} \cdot\left\{1-z / R^{\prime}\right\}\right]^{-1 / 2}=} \\
& =\left[\left\{1+\left(x^{\prime}\right)^{2}\right\} \cdot\left\{1-\left(x^{\prime \prime}\right)^{2} \cdot\left(1+\left(x^{\prime \prime}\right)^{2}\right)^{-1} \cdot(Z / R)\right\}\right]^{-1 / 2}= \\
& =\left[1+\left(x^{\prime \prime}\right)^{2}\right]^{-1 / 2} \cdot\left[1+\left(x^{\prime \prime}\right)^{2} \cdot\left(1+\left(x^{\prime \prime}\right)^{2}\right)^{-1} \cdot(Z /(2 \cdot R))\right] \cdot \tag{A77}
\end{align*}
$$

(A 77) is introduced into (A 76), the equation (A 78a) follows,

$$
\begin{align*}
& \sin \left(e, e^{\prime}\right)=a \cdot b, \\
& a=-x^{\prime \prime} \cdot\left[1+\left(x^{\prime \prime}\right)^{2}\right]^{-1 / 2}, \\
& b=1+\left\{\left(x^{\prime \prime}\right)^{2} \cdot\left[1+\left(x^{\prime \prime}\right)^{2}\right]^{-1} \cdot(Z /(2 \cdot R))\right\}-(Z /(2 \cdot R)),
\end{align*}
$$

The second and the third term on the right hand side of (A 78c) can be substituted by one term, only. We have

$$
\frac{\left(x^{\prime \prime}\right)^{2}}{1+\left(x^{\prime \prime}\right)^{2}}-1=-\frac{1}{1+\left(x^{\prime \prime}\right)^{2}}
$$

Thus, instead of (A 78a, b, c),
$\sin \left(e, e^{\prime}\right)=-x^{\prime \prime} \cdot\left[1+\left(x^{\prime \prime}\right)^{2}\right]^{-1 / 2} \cdot\left[1-\left\{1+\left(x^{\prime \prime}\right)^{2}\right\}^{-1} \cdot\{z /(2 \cdot R)\}\right]$.
As to the function $\cos \left(e, e^{\prime}\right)$ of the relations (A 61b) and (A 61c), it can be obtained from tan (e, é) by , ( $90^{\circ}>\left|\left(e, e^{\prime}\right)\right|$ ),

$$
\begin{equation*}
\cos \left(e, e^{\prime}\right)=\left[1+\tan ^{2}\left(e, e^{\prime}\right)\right]^{-1 / 2} . \tag{AB0}
\end{equation*}
$$

(A 75) and (A 80) yield

$$
\cos \left(e, e^{\prime}\right)=\left[1+\left(x^{\prime \prime}\right)^{2} \cdot\{1-2 /(2 \cdot R)\}^{2}\right]^{-1 / 2},
$$

or

$$
\cos \left(e, e^{\prime}\right)=\left[1+\left(x^{\prime \prime}\right)^{2} \cdot\{1-z / R\}\right]^{-1 / 2} .
$$

The last expression on the right hand side is already known from (A 77).
Consequently,

$$
\begin{align*}
& \cos \left(e, e^{\prime}\right)=c \cdot d  \tag{A81a}\\
& c=\left[1+\left(x^{\prime \prime}\right)^{2}\right]-1 / 2  \tag{A81b}\\
& d=1+\left(x^{\prime \prime}\right)^{2} \cdot\left[1+\left(x^{\prime \prime}\right)^{2}\right]^{-1} \cdot\{z /(2 \cdot R)\} \tag{A81c}
\end{align*}
$$

A special discussion about the sign of $\tan \left(e, e^{\prime}\right)$ and that of $\sin \left(e, e^{\prime}\right) \quad$ obtained by (A 75) and (A,79) is necessary. The sign of $\tan \left(e, e^{\prime}\right)$, and that of $\sin \left(e, e^{\prime}\right)$ is positive if the straight line $e$ lies above the straight line $e \quad$, if $Z$ is negative, i.e. if the point $Q$ is deeper than the point $P_{g}$ (see Fig.A 5 ).
(In case, the reader prefers the moremnemonic conception that $\tan \left(e, e^{\prime}\right)$ and $\sin \left(e, e^{\prime}\right)$ should have the same sign as $Z$, the following formulas yield, (A 75),

$$
\tan \left(e, e^{\prime}\right)=x^{\prime \prime} \cdot[1-2 /(2 R)+\cdots \cdots]
$$

and, (A 79),
$\sin \left(e, e^{\prime}\right)=x^{\prime \prime} \cdot\left[1+\left(x^{\prime \prime}\right)^{2}\right]^{-1 / 2} \cdot\left[1-\left\{1+\left(x^{\prime \prime}\right)^{2}\right\}^{-1} \cdot\{z /(2 R)\}\right] \cdot$
In this latter case, further on, (A 58) turns to

$$
\left(e,-g^{\prime}\right)=\left(e^{\prime},-g^{\prime}\right)-\left(e, e^{\prime}\right)
$$

But, the coming formula (A 82) is not changed, may the first or the second variant for the sign of ( $e, e^{\prime}$ ) be introduced).
$\underline{\text { 14.5. The terms } X_{1}, X_{2}, X_{3}, X_{4}}$

Now the relation (A 61a) is in the fore. The equations (A 64), (A 66), (A 79), and (A 81a) are introduced into (A 61a). The following relation is found,

$$
\begin{align*}
& \frac{\cos (e, n)}{\cos \left(g^{\prime}, n\right)}=X_{1}+X_{2}+X_{3}+X_{4}  \tag{A82}\\
& X_{1}=\cos \left(e^{\prime}, g^{\prime}\right) \cdot \cos \left(e, e^{\prime}\right)  \tag{A82a}\\
& X_{2}=\sin \left(e^{\prime}, g^{\prime}\right) \cdot \sin \left(e, e^{\prime}\right)  \tag{A82b}\\
& X_{3}=-\sin \left(e^{\prime}, g^{\prime}\right) \cdot \cos \left(e, e^{\prime}\right) \cdot \tan n^{\prime}  \tag{A82c}\\
& X_{4}=\cos \left(e^{\prime}, g^{\prime}\right) \cdot \sin \left(e, e^{\prime}\right) \cdot \tan n^{\prime} \tag{A82d}
\end{align*}
$$

By ( $\dot{A} 64$ ), ( $\mathbf{A} 66$ ), ( $\mathbf{A} 79$ ), and (A 81a), the terms $X_{i},(i=1,2,3,4)$, turn into the following shape,

$$
\begin{aligned}
& X_{1}=-\sin p / 2\left[1+\left(x^{\prime \prime}\right)^{2}\right]-1 / 2, x_{1.1}, \\
& X_{1.1}=1 \div\left(x^{\prime \prime}\right)^{2} \cdot\left[1+\left(x^{\prime \prime}\right)^{2}\right]-1 \cdot\{Z /(2 R)\}, \\
& x_{2}=\cdots \cos p / 2\left[1+\left(x^{\prime \prime}\right)^{2}\right]^{-1 / 2} \cdot x^{\prime \prime} \cdot x_{2.1} \quad \text {, (A 84) } \\
& X_{201}=1-\left[1+\left(x^{i}\right)^{2}\right]^{-1},\{y /(2 R)\}, \quad \text { (ii 84a) } \\
& X_{3}=. \cos p / 2\left[1+\left(x^{\prime \prime}\right)^{2}\right]^{-1 / 2} \cdot X_{1.1} \cdot \tan n^{\prime} \text {; (A 85) } \\
& X_{4}=\sin p / 2\left[1 \cdot\left(x^{\prime \prime}\right)^{2}\right]^{-1 / 2} \cdot \pi^{\prime \prime} \cdot X_{2,1} \cdot \tan n^{\prime} \cdot\left(\begin{array}{ll}
\text { ( 36) }
\end{array}\right.
\end{aligned}
$$

Later on, ill the coming investigations, in the integrations over the Globe, it will be convenient to distinguish between the integration over the whole globe and that over the near surroundings of the test point $P$, up to a aistance of aboul 100 kin or 1000 km from Y .

Fow, the teras $X_{i},(i=1,2,3,4)$, are brought into a special form which does suffice for the integrations over the near surroundinss of the test point. In the near surroundings, the following inequality is riEhts

$$
\begin{equation*}
\epsilon^{\prime} \ll R \tag{A86a}
\end{equation*}
$$

Further, the integrations over the ncar surroundings are governcd by the fact that such integrands are taken along which are proportional. to $x^{2}, x^{3}, \ldots$.Indecd, if $e^{\prime}>100 \mathrm{~km}$ or $e^{\prime}>1000 \mathrm{~km}$, the amounts of $x^{2}$ and $x^{3}$ are extremaly small. i'hey are so small that they can be neglectca in the domain beyond the near surroundings of the test point P. I'his is the underlying mechanisn wich allows a restriction of the interrations to the near surroundings, only. Later on, it will be fouind that the integrations over the near surroundings of the test point $P$ have to be executed only for test points situated in the bigher mountains; and they will share to the hei crot anomaly at the point $P$ by not more than about a decimeter. For lowland points, ine impact of these integrends proporitional to $x^{2}$ or $x^{3}$ will be smaller than a centimeter, - negligibly small amounts in most cases. iherefore, it is allowed to neglect relative errors of the order of $Z / i$, in any case, in these above discussed integrations over the near surroundings.
Thus, introducing the approximations
$1+(Z / R) \cong 1, p^{2} \cong\left(e^{\prime} / R\right)^{2} \cong 0$,
the expressions of (A 83), (A 84), (A 85), and of (A 86) turn to

$$
\begin{align*}
& x_{1}=-\sin p / 2\left[1+\left(x^{\prime \prime}\right)^{2}\right]^{-1 / 2},  \tag{A87}\\
& x_{2}=-x^{\prime \prime \cdot\left[1+\left(x^{\prime \prime}\right)^{2}\right]^{-1 / 2}}  \tag{A88}\\
& x_{3}=-\left[1+\left(x^{\prime \prime}\right)^{2}\right]^{-1 / 2} \cdot \tan n^{\prime} \\
& x_{4}=\sin p / 2\left[1+\left(x^{\prime \prime}\right)^{2}\right]^{-1 / 2} \cdot x^{\prime \prime} \cdot \tan n^{\prime} ; \tag{A90}
\end{align*}
$$

The above 4 equations are valid if

$$
\begin{equation*}
\left(\theta^{\prime} / R\right)^{2} \ll 1,|z / R| \ll 1 . \tag{A90a}
\end{equation*}
$$



Fig. A 6

The function tan $n^{\prime}$ and the sign of $\tan n^{\prime}$ are defined by ( $A$ 62). For a star-shaped Earth, tan ( $g^{\prime}, n$ ) is always positive. Thus, the sign of tan $n^{\prime}$ is that of $\cos \sigma: I f$ the height of the terrain diminishes for rising values of $p$ at the point $Q$, in this case,tan $n$ 'is positive as cos $\sigma$, also. (See Fig. A 3, Fig. A 6).

The unit vector $(\overline{\underline{n}})^{0}$ of Fig. A 6 and of Fig. A 3 is the projection of the unit vector of the normal of the Earth's surface (pointing into the interior of the body of the Earth) into the plane constructed by the points P, Q, O.

Now, the term tan $n^{\prime}$, appearing in (A 85), (A 86) and (A 89), (A 90), is expressed by a formula, depending on $x$ and ( $Z / R^{\prime}$ ). The following differential relati on is easily obtained, Fig. A 6,

$$
\begin{equation*}
\tan n^{\prime}=-d Z /\left[\left(R^{\prime}+Z\right) \cdot d p\right] \tag{A91}
\end{equation*}
$$

Here, $R^{\prime}$ has to be considered as a constant value. (A 91) can be brought in the form of an integral,

$$
\begin{equation*}
Z=-\int^{p}\left(R^{\prime}+Z\right) \cdot\left(\tan n^{\prime}\right) \cdot d p \tag{A92}
\end{equation*}
$$

The spherical distance $p$ and the straight line $e^{\prime}$ are connected by a one - one mapping. Thus, in (A 91), dp can be expressed by de', and inverse. It is easily found that

$$
\begin{align*}
& e^{\prime}=2 \cdot R^{\prime} \cdot \sin p / 2 \\
& d e^{\prime}=R^{\prime} \cdot(\cos p / 2) \cdot d p \\
& d p=\left[R^{\prime} \cdot(\cos p / 2)\right]^{-1} \cdot d e^{\prime} \tag{A93}
\end{align*}
$$

The combination of (A 91) and '(A 93) yields

$$
\begin{equation*}
d Z / d e^{\prime}=-\left(1+Z / R^{\prime}\right) \cdot(\cos p / 2)^{-1} \cdot\left(\tan n^{\prime}\right) \tag{A94}
\end{equation*}
$$

(A 27) gives, for $x=x\left(H^{\prime}, e^{\prime}\right), H^{\prime}=$ const., and for $Z=Z\left(e^{\prime}\right)$, (for $\left.x=Z\left(e^{\prime}\right) / e^{\prime}\right)$,

$$
\begin{equation*}
\partial x / \partial e^{\prime}=-\left(2 / e^{\prime 2}\right)+\left(1 / e^{\prime}\right)\left(\partial z / \partial e^{\prime}\right) \tag{A95}
\end{equation*}
$$

and further, (A 94) (A 95),

$$
\begin{equation*}
\partial x / \partial e^{\prime}=-x / e^{\prime}-\left(1 / e^{\prime}\right) \cdot\left(1+2 / R^{\prime}\right) \cdot(\cos p / 2)^{-1} \cdot\left(\tan n^{\prime}\right) \tag{A96}
\end{equation*}
$$

(A 96) leads to the following expression for tan $n^{\prime}$,
$\tan n^{\prime}=-(\cos p / 2) \cdot\left(1-7 / R^{\prime}\right) \cdot\left[e^{\prime} \cdot\left(\partial x / \partial e^{\prime}\right)+x\right] \quad$.

Now, regarding the simplified formulas (A 88) and (A 89) for $X_{2}$ and $X_{3}$, they offer to get combined to one single expression. With the constraints (A 90a), this fusion of $X_{2}$ and $X_{3}$ is, considering (A 70a),

$$
\begin{equation*}
x_{2}+X_{3}=-\left[1+\left(x^{\prime}\right)^{2}\right]^{-1 / 2} \cdot\left(x^{\prime \prime}+\tan n^{\prime}\right) \tag{A98}
\end{equation*}
$$

The following rearrangements of (A 97) are self-explanatory,

$$
\begin{aligned}
& \tan n^{\prime}+x^{\prime}=-(\cos p / 2) \cdot\left(1-Z / R^{\prime}\right) \cdot e^{\prime} \cdot\left(\partial x / \partial e^{\prime}\right)+x^{\prime} \cdot Z / R^{\prime}, \\
& \left(\tan n^{\prime}+x^{\prime}\right) \cdot\left(1+Z / R^{\prime}\right) \cong-(\cos p / 2) \cdot e^{\prime} \cdot\left(\partial x / \partial e^{\prime}\right)+x^{\prime \prime} \cdot Z / R^{\prime}
\end{aligned}
$$

and, neglecting relative errors of the order of $Z / R^{\prime}$ in the two expressions (tan $\left.n^{\prime}+x^{\prime \prime}\right)$ and $x^{\prime \prime},(A 90 a)$, the following relation is obtained

```
tan n' + x''\cong-(cos p/2)
```

This above equation turns (A 98) to

$$
\begin{equation*}
X_{2}+X_{3}=\left[1+\left(x^{\prime}\right)^{2}\right]^{-1 / 2} \cdot e^{\prime} \cdot(\cos p / 2) \cdot\left(\partial x / \partial e^{\prime}\right) \tag{A99}
\end{equation*}
$$

for the constraints (A 90a).

With (A 87), (A 99), (A 90), and (A 97), the simplified form of (A 82) turns to (A 100), - observing the range of validity of the constraints (A 90a) - ,

$$
\begin{align*}
& {\left[x_{1}+x_{2}+x_{3}+x_{4}\right]_{0}=} \\
& =\left[1+\left(x^{\prime \prime}\right)^{2}\right]^{-1 / 2} \cdot\left[-\sin p / 2+e^{\prime} \cdot(\cos p / 2) \cdot\left(\partial x / \partial e^{\prime}\right)-\right. \\
& \left.-(\sin p / 2) \cdot(\cos p / 2) \cdot x^{\prime \prime}\left\{e^{\prime} \cdot\left(\partial x / \partial e^{\prime}\right)+x\right\}\right] \tag{A100}
\end{align*}
$$

In (A 100), the suffix [ ] behind the brackets denotes that the simplified form of the sum $X_{1}+X_{2}+X_{3}+X_{4} \quad$ is specified here. The relation (A 100) is allowed to be applied only if it appears as a factor which is multiplied with $x^{n},(n=2,3, \ldots)$. Thus, (A 100) has the restriction to appear only within the forms

$$
\begin{equation*}
x^{n} \cdot\left[x_{1}+x_{2}+x_{3}+x_{4}\right] \tag{A100a}
\end{equation*}
$$

for

$$
\begin{equation*}
n=2,3, \ldots \tag{A100b}
\end{equation*}
$$

$x^{2}$ diminishes quickly for growing distances from the test point $P$, since $x=2 / e^{\prime}$ 。 This is the reason why integrations over integrands of the form (A 100a)
need to be extended over the near surroundings of the test point $P$, only, up to a distance of about 1000 km , perhaps.

The integrations over this near surroundings, up to 1000 km distance from $P$, are accompanied by the following approximation (A 102). Further, (A 101) is applied.

```
sin p/2 = e' / (2·R'),
cos p/2\cong1, (e'< < 1000 km) .
```

(A 70a), (A 101), and (A 102) are introduced jnto (A 100). The relation
(A 103) is the consequence,

$$
\left.\begin{array}{l}
{\left[x_{1}+x_{2}+x_{3}+x_{4}\right]_{0}=a \cdot b} \\
a=\left[1+\left(x^{\prime}\right)^{2}\right]^{-1 / 2} \\
b=-\left\{e^{\prime} /\left(2 \cdot R^{\prime}\right)\right\}+\left\{e^{\prime} \cdot\left[1-x \cdot e^{\prime} /\left(2 \cdot R R^{\prime}\right)\right] \cdot\left(\partial x / \partial e^{\prime}\right)\right\}-\left\{x^{2} \cdot e^{\prime} /\left(2 \cdot R^{\prime}\right)\right\},
\end{array} \quad \text { (A 103) } 103 \mathrm{~b}\right)
$$

valid for

$$
\begin{equation*}
\mathrm{e}^{\prime}<1000 \mathrm{~km} \text { 。 } \tag{A103c}
\end{equation*}
$$

In the brackets of the second term on the right hand side of (A 103b), a rearrangenent leads to

$$
1-\left\{x \cdot e^{\prime} /\left(2 \cdot R^{\prime}\right)\right\}=1-\left\{Z /\left(2 \cdot R^{\prime}\right)\right\} \quad \text { (A 103d) }
$$

A relative error of the order of $Z /\left(2 \cdot R^{\prime}\right)$ can be neglected in the second term on the right hand side of (A 103b), (for (A 103c)). Hence,

$$
\begin{aligned}
& {\left[x_{1}+x_{2}+x_{3}+x_{4}\right]_{0}=} \\
& =\left[1+\left(x^{\prime}\right)^{2}\right]^{-1 / 2} \cdot\left[-1+2 \cdot R^{\prime} \cdot\left(\partial x / \partial e^{\prime}\right)-x^{2}\right] \cdot\left\{e^{\prime} /\left(2 \cdot R^{\prime}\right)\right\}
\end{aligned}
$$

In the above equation (A 104), the terms of the relation (A 103d) are inserted after they are put equal to the unity, neglecting relative errors of the order of $Z / R^{\prime}$ in the relations (A 103d) as well as in the second term in the second brackets on the right hand side of (A 104). Sure, these approximations are allowed before the background of the constraints (A 90a) as well as before the background constructed by the fact that, in the course of the coming investigations, the expression of (A 104) Will come to be treated after multiplication with the factors $x^{2}, x^{3}, \ldots$, in any case, (A 100a) (A 100b). Here, it is essential that the amounts of $x^{2}, x^{3}, \ldots$ diminish rapidly for growing distances $e^{\prime}$ to the test point $P$ at the oblique surface of the Earth u.

### 14.6. The representation of $E(2)$ by a sum of 3 terms

(A 53) and (A 54) yield for $D(1.3)$

$$
\begin{equation*}
D(1.3)=-\left(1 / e^{2}\right) \cdot \frac{\cos (e, n)}{\cos \left(g^{\prime}, n\right)}+\frac{\partial\left(1 / e^{\prime}\right)}{\partial r} . \tag{A105}
\end{equation*}
$$

This form is inserted into the relation (45b) of section 4 ,

$$
\begin{equation*}
E(2)=-\iint_{w} T \cdot D(1,3) \cdot d w \tag{A106}
\end{equation*}
$$

(A 105) is divided into the spherical and into the topographical part,(Fig.A 2,A 5),

$$
\begin{equation*}
1 / e^{2}=1 / e^{2}+\left(e^{2}-e^{2}\right) /\left(e^{2} \cdot e^{2}\right) \tag{A107}
\end{equation*}
$$

(A 105), (A 106), (A 107), and (A 82) result

$$
\begin{equation*}
E(2)=E(2.1)+E(2.2)+E(2.3), \tag{A108}
\end{equation*}
$$

with

$$
E(2.1)=\iint_{M} r^{\prime} \cdot\left(e^{2}-e^{2}\right) \cdot\left(e \cdot e^{\prime}\right)^{-2} \cdot\left(X_{1}+X_{2}+X_{3}+X_{4}\right) \cdot d w \quad, \quad \text { (A 108a) }
$$

$$
\begin{equation*}
E(2 \cdot 2)=\iint_{W} T \cdot\left(1 / e^{2}\right) \cdot\left(X_{1}+X_{2}+X_{3}+X_{4}\right) \cdot d w \tag{A109}
\end{equation*}
$$

$E(2.3)=-\iint_{w} T \cdot \frac{\partial\left(1 / e^{\prime}\right)}{\partial r} \cdot d w \quad$.
14.6.1. The developments and decompositions of the expression for $\mathrm{E}(2.1)$.

E(2.1) is given by (A 108a). From (A 28), (A 31), (A 32) follows

$$
\begin{gather*}
\left(e^{\prime 2}-e^{2}\right) / e^{\prime 2}=-x^{2}-2 / R^{\prime},  \tag{A110a}\\
e^{2}=e^{\prime 2} x^{\prime} \\
x^{\prime}=1+x^{2}+2 / R^{\prime},
\end{gather*}
$$

Thus,

$$
\begin{equation*}
\left(e^{\prime 2}-e^{2}\right) \cdot\left(e \cdot e^{\prime}\right)^{-2}=-\left(x^{2}+Z / R^{\prime}\right) /\left(e^{2} \cdot x^{\prime}\right) \tag{A111}
\end{equation*}
$$

The following decomposition of $\mathrm{E}(2.1)$ is recommended,

$$
\begin{equation*}
E(2.1)=E(2 \cdot 1 \cdot 1)+E(2 \cdot 1.2), \tag{A112}
\end{equation*}
$$

with

$$
\begin{equation*}
E(2 \cdot 1 \cdot 1)=-\int_{W} r \cdot\left(X_{1}+X_{2}+X_{3}+X_{4}\right) \cdot\left[x^{2} /\left(e^{2} \cdot x^{\prime}\right)\right] \cdot d w \tag{A113}
\end{equation*}
$$

and

$$
\begin{equation*}
E(2 \cdot 1 \cdot 2)=-\iint_{W} T \cdot\left(X_{1}+X_{2}+X_{3}+X_{4}\right) \cdot\left[2 /\left(R^{\prime} \cdot e^{\prime 2} \cdot x^{\prime}\right)\right] \cdot d w \cdot \tag{A114}
\end{equation*}
$$

### 14.6.1.1. The formula for $E(2.1 .1)$

In the integrand of (A 113), the term $x^{2}$ stands in the numerator of the fraction in the brackets. $x^{2}$ diminishes quickly for growing distances $e^{\prime}$ from the test point P. For $e^{\prime}=1000 \mathrm{~km}, x^{2}$ will be of the order of $10^{-6}$, for instance. Thus, in (A 113), the integration has to cover only the area with

$$
\begin{equation*}
e^{\prime}<1000 \mathrm{~km} \tag{A115}
\end{equation*}
$$

(see also: (A 100a), (A 100b)).
Consequentily, in (A 113), the sum over the four $X_{1}$ values can be replaced by the simplified expression (A 104). With (A 104), (A 70a), (A 39), (A 40), neglecting relative errors of the order $Z / R^{\prime}$ and (e'/R') ${ }^{2}$,

$$
\begin{aligned}
& x^{\prime \prime} \cong x \\
& x^{\prime} \cong y^{2}=1+x^{2},
\end{aligned}
$$

and, with the constraint (A 115), we find the subsequent equation (A 115a),

$$
\begin{align*}
& {\left[x_{1}+x_{2}+x_{3}+x_{4}\right]_{0} \cdot\left[x^{2} /\left(e^{2} \cdot x^{\prime}\right)\right] \cong} \\
& \cong x^{2} \cdot\left(1+x^{2}\right)^{-3 / 2} \cdot\left[2 \cdot R^{\prime} \cdot\left(\partial x / \partial e^{\prime}\right)-1-x^{2}\right] \cdot\left\{1 /\left(2 \cdot \theta^{\prime} \cdot R^{\prime}\right)\right\} \tag{A115a}
\end{align*}
$$

(A 113) and (A 115a) lead to

$$
\begin{equation*}
E(2 \cdot 1 \cdot 1)=E(2 \cdot 1 \cdot 1 \cdot 1)+E(2 \cdot 1 \cdot 1 \cdot 2), \tag{A116}
\end{equation*}
$$

with

$$
\begin{equation*}
E(2 \cdot 1 \cdot 1 \cdot 1)=-\iint_{W} T \cdot x^{2} \cdot\left(1+x^{2}\right)^{-3 / 2} \cdot\left(\partial x / \partial e^{\prime}\right) \cdot\left(1 / e^{\prime}\right) \cdot d w \tag{A117}
\end{equation*}
$$

and

$$
E(2 \cdot 1 \cdot 1 \cdot 2)=\iint_{W} T \cdot x^{2} \cdot\left(1+x^{2}\right)^{-1 / 2} \cdot\left\{1 /\left(2 e^{\prime} R^{\prime}\right)\right\} \cdot d v
$$

### 14.6.1.1.1. The formula for $\mathrm{E}(2.1 .1 .1)$

The formula (A 117) undergoes some transformationsconsidering the fact that the integration has to cover only the near surroundings, (A 115). Thus, the spherical surface element $d w$ can be substituted by the plane surface element,

$$
d w \rightarrow e^{\prime \cdot d e} \cdot d A
$$

A is the azimuth counted clockwise from the north. (A 117) turns to

$$
\begin{equation*}
E(2 \cdot 1 \cdot 1 \cdot 1)=\int_{A=0}^{2 \pi} E \prime \cdot d A \text {, } \tag{A118a}
\end{equation*}
$$

with

$$
E^{\prime}=-\int_{e^{\prime}=0} T \cdot x^{2} \cdot\left(1+x^{2}\right)^{-3 / 2} \cdot\left(\partial x / \partial e^{\prime}\right) \cdot d e^{\prime} .
$$

An integration by parts is introduced. It uses the substitutions (considering $\mathbb{E}^{\prime}$ )

$$
\begin{aligned}
& a_{1}=-T, \\
& \partial a_{1} / \partial e^{\prime}=-\partial T / \partial e^{\prime}, \\
& b_{1}=e_{e^{\prime}=0}^{e^{\prime}} x^{2} \cdot\left(1+x^{2}\right)^{-3 / 2} \cdot\left(\partial x / \partial e^{\prime}\right) \cdot d e^{\prime} ;
\end{aligned}
$$

in the above integrand, $x$ is understood that it is a function of $e^{\prime}$, only,

$$
x=x\left(e^{\prime}\right)
$$

Thus,

$$
\begin{align*}
& \partial b_{1} / \partial e^{\prime}=x^{2} \cdot\left(1+x^{2}\right)^{-3 / 2} \cdot\left(\partial x / \partial e^{\prime}\right), \\
& b_{1}=-x \cdot\left(1+x^{2}\right)^{-1 / 2}+\operatorname{arsinh} x, \tag{A119}
\end{align*}
$$

with

$$
\partial b_{1} / \partial e^{\prime}=\left\{\left(d b_{1}\right) /(d x)\right\} \cdot\left(\partial x / \partial e^{\prime}\right)
$$

The integration by parts gives

$$
E^{\prime}=\int_{e^{\prime}=0}^{e_{0}^{\prime}} a_{1} \cdot\left(\partial b_{1} / \partial e^{\prime}\right) \cdot d e^{\prime}=\left|a_{1} \cdot b_{1}\right|_{u}^{e^{\prime} 0}-\int_{e_{u}^{\prime}}^{e^{\prime}} b_{1} \cdot\left(\partial a_{1} / \partial e^{\prime}\right) \cdot d e^{\prime}:
$$

the upper and the lower bound have the following transition behavior,

$$
e_{u}^{\prime} \rightarrow 0 ; \quad e_{0}^{\prime} \rightarrow 1000 \mathrm{~km}
$$

Hence,

$$
\begin{align*}
& E^{\prime}=\left|(-T) \cdot\left[(-x) \cdot\left(1+x^{2}\right)^{-1 / 2}+\operatorname{arsinh} x\right]\right|_{e^{\prime}}^{e^{\prime} 0}+ \\
& +\int_{e^{\prime}}^{0}\left[(-x) \cdot\left(1+x^{2}\right)^{-1 / 2}+\operatorname{arsinh} x\right]\left(\partial T / \partial e^{\prime}\right) \cdot d e^{\prime} . \tag{A120}
\end{align*}
$$

According to (A 118a), E' has to be integrated with regard to the azimuth $A$. Thus, the first term on the right hand side of (A 120) leads to

$$
\begin{equation*}
\int_{\Lambda=0}^{2 \pi}\left|(-T) \cdot\left[(-x) \cdot\left(1+x^{2}\right)^{-1 / 2}+\operatorname{arsinh} x\right]\right|_{e^{\prime}}^{e^{\prime}} 0 \tag{A121}
\end{equation*}
$$

In case, approaching the test point $P, e^{\prime}{ }_{u} \rightarrow 0$, the $T_{Q}$ value tends to its value at the test point $P$. Thus, if $e_{u}^{\prime} \rightarrow 0$, it follows that $T_{Q} \rightarrow T_{P}=$ constant. $Q$ is the moving point, Fig. A 6 . The slopes of the terrain aro considered to be continuous functions, as found in the topographical maps.

Further, if $e_{u}^{\prime} \rightarrow 0$, the moving point $Q$ at the surface of the Earth $u$ tends to lie more and more close on the surface element of the tangential plane of the surface $u$ at the test point $P$. Thus, on this supposition, the x value tends to an expression of the following shape,

$$
\begin{equation*}
x=\left(Z / e^{\prime}\right) \cong n_{1} \cdot \cos A+n_{2} \cdot \sin A,\left(e_{u}^{\prime} \rightarrow 0\right) \tag{A122}
\end{equation*}
$$

In (A 122), the coefficients $n_{1}$ and $n_{2}$ denote the north - south and the east - west component of the slope of the terrain in the test point $P$. A is in (A 122) the azimuth. The term $b_{1}$, ( $A 119$ ), appearing in the brackets of ( $A 121$ ), is expressed by an odd function of $x, b_{1}(x)=-b_{1}(-x)$. This fact has the following consequence. For small values of $e_{u}^{\prime}$, in the azimuth $A=A_{a}$, the function $T \cdot b_{1}$, (see (A 119) ), will have an expression of the following shape : $T \cdot b_{1}=k_{a}+k_{a_{0} 1} \cdot e_{u}^{\prime}+k_{a .2} \cdot\left(e_{u}^{\prime}\right)^{2}+\cdots$. Further, for small values of $e_{u}^{\prime}$, in the azimuth $A=A_{a}+180^{\circ}$, the function $T \cdot b_{1}$ will have an expression of the ensuing type : $T \cdot b_{1}=-k_{a}+k_{a_{0} 1}^{\prime} \cdot \theta_{u}^{\prime}+k_{a \cdot 2}^{\prime} \cdot\left(e_{u}^{\prime}\right)^{2}+\cdots$. Thus, considering the limit of $T \cdot b_{1}$ for $e_{u}^{\prime} \rightarrow 0$, in the azimuth $A_{a}$, we find $T \cdot b_{1} \rightarrow k_{a}$; and, in the azimuth $A_{a}+180^{\circ}$, we will obtain $T \cdot b_{1}-k_{a}$. (For a terrain of continuous slopes).

Before the background of these deliberations for $e^{\prime} u \rightarrow 0$, the two equations (A 119) and (A 122) lead to the fact that the following relation is valid, ( A 121)

$$
\begin{equation*}
-\int_{A=0}^{2 \pi}\left(I \cdot b_{1}\right)_{e^{\prime}=e^{\prime} u} \cdot d A \rightarrow 0 \tag{A123}
\end{equation*}
$$

if

$$
\begin{equation*}
e_{u}^{\prime} \longrightarrow 0 \tag{A123a}
\end{equation*}
$$

Herewith, the consideration of the relation (A 121) for the lower value of the argument $e^{\prime},\left(i . e . \quad e^{\prime} u^{\prime}\right.$ ), is already settled.

The relation ( $\Lambda$ 121) for the upper value of the argumert $e^{\prime},\left(i . e . e_{0}\right)$, is now in the fore. $e^{\prime} \quad \mathrm{o}$ is the amount of $e^{\prime}$ for the periphery of the circle vith the radius $e^{\prime} 0=1000 \mathrm{~km}$, and with the test point $P$ as center. The following inequality is valid,

$$
\begin{equation*}
|x| \ll 1 \text {, if } e^{\prime}{ }_{0}=1000 \mathrm{~km} \tag{A123b}
\end{equation*}
$$

In case of ( $\Lambda$ 123b), the function $b_{1}$ has the following convergent series development, (A 119),

$$
\begin{equation*}
b_{1}=(1 / 3) \cdot x^{3}-+\cdots ; x^{2}<1 \tag{A124}
\end{equation*}
$$

Consequently, for the upper argument $e^{\prime} O^{\prime}$, the relation ( $A$ 121) takes the folloving shape,

$$
\begin{equation*}
-(1 / 3) \int_{A=0}^{2 \pi}\left(T \cdot x^{3}\right)_{e^{\prime}=e^{\prime}}^{0} \tag{A124a}
\end{equation*}
$$

With $x=(2 \mathrm{~km}) /(1000 \mathrm{~km})=2,10^{-3}$, and estimating the height anomalies with $\zeta=T / g^{\prime}=100 \mathrm{~m}$, the term (A 124a) influences the final result of the height anomaly $\zeta$ at the test point $P$ by less than $(1 / 1000)$ millimeter, (see equation (44) of section 4 ).
For the model potential $M$ (according to the equation (145) of the section 7), the subsequent version of the parameter data is chosen: $\zeta=M / g^{\prime}=1000 \mathrm{~m}$, $\bar{x}=(10 \mathrm{~km}) /(1000 \mathrm{~km})=10^{-2}$; thus, by $(\mathrm{A} 124 \mathrm{a})$, for the effect on the final $\zeta$ value, the amount of 0.3 millimeter follows. This latter amount can be taken as the maximal amount of (A 124a).

$$
\begin{align*}
& \text { Finally, (A 118a) }(A 119)(A 120) \text {, } \\
& E(2 \cdot 1 \cdot 1 \cdot 1) \stackrel{n}{=} \int_{A=0}^{\pi} \int_{e^{\prime}=0} \cdot\left(\partial T / \partial e^{\prime}\right) \cdot d e^{\prime} \cdot d A \cdot \tag{A125}
\end{align*}
$$

In order to shorten the writing , the following abbreviating symbolism is now introduced,
(A) (E) $\Psi \cdot \Psi^{\prime} \cdot \mathrm{de} \cdot \cdot \mathrm{dA}=\int_{A=0}^{2 \pi} \int_{e^{\prime}=0} \Psi$ de' $\cdot \mathrm{dA} \cdot$

Here, the upper bound of the integration over e' is $e^{\prime}=1000 \mathrm{~km}$. If in the relations of the kind of (A 125a) the differentials $d e^{\prime}$ and d A appear, in this case, necessarily, the integration area extends to $e^{\prime}=1000 \mathrm{~km}$, only. The combination of (A 125) and (A 125a) leads to

$$
\begin{equation*}
E(2.1 .1 .1)=(A)(E) b_{1} \cdot\left(\partial T / \partial e^{\prime}\right) \cdot d e^{\prime} \cdot d A \quad . \tag{A125b}
\end{equation*}
$$

The essence of the rearrangements of $E(2.1 .1 .1)$ by the relations from (A 118a) to ( A 125 b ) is the fact that the derivative of x with regard to $e^{\prime}$ is replaced by the derivative of $T$ with regard to $e^{\prime}$. The latter derivative is much more smoothed than the first one, a great relief for the numerical computations is the consequence. The right hand side of (A 125b) needs no further transformations, it can be introduced in the calculations, directly.

### 14.6.1.1.2. The formula for $E(2.1 .1 .2)$

After $E(2.1 .1 .1)$ has a form convenient for numerical computations, ( $A$ 125b), the consideration of $E(2.1 .1 .2$ ) is now in the fore, ( $A 118$ ). The form of the right hand side of (A 118) has already a form convenient for numerical calculations.
Similarly as in the integrand of (A 117), the term $x^{2}$ appears in the integrand of (A 118). The amount of $x^{2}$ diminishes quickly for growing values of e'. Thus, the integration area on the right hand side of (A 118) can be restricted to the near surroundings of the test point $P$, of not more than 1000 lm distance from $P$, as in case of (A 125b). Again, plane polar co-ordinates are introduced. Thus, (A 118) turns to

$$
E(2 \cdot 1 \cdot 1 \cdot 2)=(A)(E)(1 / 2) \cdot\left(T / R^{\prime}\right) \cdot x^{2} \cdot\left(1+x^{2}\right)^{-1 / 2} \cdot d e^{\prime} \cdot d A \cdot(A 126)
$$

With (A 116), (A 125b), and (A 126), the following form for E(2.1.1) is obtained,

$$
\begin{align*}
E(2.1 .1) & =(A)(E) b_{1} \cdot\left(\partial T / \partial e^{\prime}\right) \cdot d e^{\prime} \cdot d A+ \\
& +(A)(E)(1 / 2) \cdot\left(T / R^{\prime}\right) \cdot x^{2} \cdot\left(1+x^{2}\right)^{-1 / 2} \cdot d e^{\prime} \cdot d A \cdot \tag{A127}
\end{align*}
$$

14.6.1.1.3. The integrand proportional to $x^{2}$ in areas a great distance away from the test point

Considering the integral for $E(2.1 .1)$, (A 113), it is obvious that $x^{2}$ has very small values if $e^{\prime}$ is greater than 1000 km . In (A 127), it is intended to integrate only as long as $e^{\prime}$ is smaller than 1000 km . The following lines intend to verify that the restriction to e'values smaller than 1000 lm is justified. A reliable evidence will be given.

However, in this context, not the simplified form for the sum of the four $X_{i}$ terms will be applied, (A 104), simplified by superposition with(A 90a). But, it is necessary to base on the precise form for the four $X_{i}$ terms, (A 83) to (A 86). But, of course, relative errors of the order of ( $Z / R^{\prime}$ ) can be neslected in the expressions from (A 83) to (A 86), at least in this context discussed in this sub-section. Along these lines, the following formulas are found,

$$
\begin{array}{ll}
x_{1}=-\sin p / 2\left[1+\left(x^{\prime \prime}\right)^{2}\right]^{-1 / 2}, \\
x_{2}=-\cos p / 2\left[1+\left(x^{\prime \prime}\right)^{2}\right]^{-1 / 2} \cdot x^{\prime \prime}, & (A 128) \\
x_{3}=-\cos p / 2\left[1+\left(x^{\prime \prime}\right)^{2}\right]^{-1 / 2} \cdot \tan n^{\prime}, & (A 129) \\
x_{4}=\sin p / 2\left[1+\left(x^{\prime \prime}\right)^{2}\right]^{-1 / 2}, x^{\prime \prime} \cdot\left(\tan n^{\prime}\right) ; & (A 130)
\end{array}
$$

in the above lines, relative errors of the order of $Z / R^{\prime}$ are neglected,

$$
\begin{equation*}
\left|Z / R^{\prime}\right| \ll 1 \tag{A132}
\end{equation*}
$$

Considering (A 132), the relation (A 97) turns to

$$
\begin{equation*}
\tan n^{\prime}=-e^{\prime} \cdot(\cos p / 2) \cdot\left(\partial x / \partial e^{\prime}\right)-(\cos p / 2) \cdot x \tag{A133}
\end{equation*}
$$

Consequently, with (A 70a),

$$
\begin{equation*}
\tan n^{\prime}=-e^{\prime} \cdot(\cos p / 2) \cdot\left(\partial x / \partial e^{\prime}\right)-x^{\prime \prime} \tag{A134}
\end{equation*}
$$

Thus, if the distance $e^{\prime}$ is allowed to have values greater than 1000 km , the equation (A 99) is transformed to

$$
\begin{equation*}
x_{2}+x_{3}=\left[1+\left(x^{\prime \prime}\right)^{2}\right]^{-1 / 2} \cdot e^{\prime} \cdot(\cos p / 2)^{2} \cdot\left(\partial x / \partial e^{\prime}\right) \tag{A135}
\end{equation*}
$$

The relations (A 128), (A 131), (A 135) yield

$$
\begin{equation*}
\left[x_{1}+x_{2}+x_{3}+x_{4}\right]_{00}=\left[1+\left(x^{\prime \prime}\right)^{2}\right]^{-1 / 2} \cdot\left\{q_{1}+q_{2}+q_{3}\right\} \tag{A135a}
\end{equation*}
$$

with

$$
\begin{array}{ll}
q_{1}=-\sin p / 2, & (A 135 b) \\
q_{2}=-(\sin p / 2) \cdot\left(x^{\prime \prime}\right)^{2}, & (A 135 c) \\
q_{3}=\left[(\cos p / 2)^{2} \cdot e^{\prime}-(\sin p / 2) \cdot(\cos p / 2) \cdot x^{\prime \prime} \cdot e^{\prime}\right] \cdot\left(\partial x / \partial e^{\prime}\right) \cdot & (\text { (A 135d) })
\end{array}
$$

The relation (A 135a) derives from the universal formulas ( A 83), (A 84),
(A 85), and (A 86),by neglecting relative errors of the order of $Z / R$, only.
(A 135a) is valid for whole the globe, for all values of $p$ between $0^{\circ}$ and $180^{\circ}$.

With

$$
\begin{array}{ll}
\sin p / 2=e^{\prime} /\left(2 R^{\prime}\right), & \text { (A 135e) } \\
|x|=\left|z / e^{\prime}\right| \ll 1, & \text { (A 135f) } \\
\left|x^{\prime \prime}\right|=|x \cdot \cos p / 2| \ll 1, & \text { (A } 135 \mathrm{~g}) \\
x^{\prime}=1+x^{2}+2 / R^{\prime} \cong 1, & \text { (A 135h) } \\
e^{\prime}>1000 \mathrm{~lm}, & \text { (A 135i) }
\end{array}
$$

the equation (A 135a) turns to

$$
\left[x_{1}+X_{2}+X_{3}+X_{4}\right]_{0 \supset 0} \cong\left(e^{\prime} /\left(2 R^{\prime}\right)\right) \cdot\left[-1+(\cos p / 2)^{2} \cdot 2 \cdot R^{\prime} \cdot\left(\partial x / \partial e^{\prime}\right)\right] \cdot(A 136)
$$

In the construction of (A 136), the following development for the expression in the brackets of (A 135d) is taken into account,

$$
\begin{aligned}
& (\cos p / 2)^{2} \cdot e^{\prime}-(\sin p / 2) \cdot(\cos p / 2) \cdot x^{\prime \prime} \cdot e^{\prime}= \\
& e^{\prime} \cdot(\cos p / 2)^{2}[1-(\sin p / 2) \cdot x]= \\
& =e^{\prime} \cdot(\cos p / 2)^{2}\left[1-2 /\left(2 R^{\prime}\right)\right] \cong \\
& \cong e^{\prime} \cdot(\cos p / 2)^{2} \quad .
\end{aligned}
$$

The relation (A136), (the second term in its brackets on the right,only), is put into (A 113). Instead of (A 117), the following expression is obtained for $E(2.1 .1 .1)$, in order to check the impact exerted by the integration area of (A 135i),

$$
\begin{equation*}
E(2 \cdot 1 \cdot 1 \cdot 1)=-\int\left(T \cdot(\cos p / 2)^{2} \cdot x^{2} \cdot\left(\partial x / \partial e^{\prime}\right) \cdot\left(1 / e^{\prime}\right) \cdot d w \cdot\right. \tag{A137}
\end{equation*}
$$

Similarly as in case of (A 117), the integration by parts allows to transform the relation (A 137). The following rearrangements of (A 137) are self - explanatory,

$$
d w=\left(R^{\prime}\right)^{2} \cdot \sin p \cdot d p \cdot d A \quad \cong R^{2} \cdot(\sin p) \cdot d p \cdot d A
$$

$$
\left(1 / e^{1}\right) \cdot d w \cong\left(R^{2} \cdot \sin p \cdot d p \cdot d A\right) /(2 \cdot R \cdot \sin p / 2)
$$

$$
\left(\partial x / \partial e^{\prime}\right)=(\partial x / \partial p) \cdot\left(d p / d e^{\prime}\right)
$$

$$
\left(d p / d e^{\prime}\right) \cong 1 /(R \cdot \cos p / 2)
$$

$$
\left(\partial x / \partial e^{\prime}\right) \cong(\partial x / \partial p) \cdot\{1 /(R \cdot \cos p / 2)\},
$$

$$
\left(\partial x / \partial e^{\prime}\right) \cdot\left(1 / e^{\prime}\right) \cdot d w \cong[\partial x / \partial(R \cdot p)] R \cdot d p \cdot d A \quad ;
$$

consequently, (A 137) turns to the subsequent relation, putting $1+(2 / R) \cong 1$,

$$
E(2 \cdot 1 \cdot 1 \cdot 1)=-\int\left(T \cdot(\cos p / 2)^{2} \cdot x^{2} \cdot[\partial x / \partial(R \cdot p)] \cdot R \cdot d p \cdot d A\right.
$$

A step, analogous as that from (A 117) to (A 125), leads from the above equation to the following one

$$
E(2 \cdot 1 \cdot 1 \cdot 1)=(1 / 3) \int x^{3} \cdot\left[\partial\left\{T \cdot(\cos p / 2)^{2}\right\} / \partial(R \cdot p)\right] \cdot R \cdot d p \cdot d A
$$

or,

$$
E(2 \cdot 1 \cdot 1 \cdot 1)=(1 / 3) \int x^{3} \cdot\left[\partial\left\{T \cdot(\cos p / 2)^{2}\right\} / \partial(R \cdot p)\right] \cdot\{1 /(R \cdot \sin p)\} \cdot d w \cdot \text { (A 137a) }
$$

Here, the following amounts for the different parameters are introduced, now,

$$
\begin{aligned}
& (1 / 3) \cdot x^{3}=(1 / 3) \cdot(2 \mathrm{~km} / 10000 \mathrm{~km})^{3} \cong 3 \cdot 10^{-12} \\
& (1 / G)\left[\partial\left\{T \cdot(\cos \mathrm{p} / 2)^{2}\right\} / \partial(R \cdot p)\right] \cong 10^{\prime \prime} \cong(1 / 2) \cdot 10^{-4}
\end{aligned}
$$

(G is the global mean value of the gravity), further, if $\Delta w$ is the size of the surface compartments,

$$
\begin{aligned}
& (d \mathrm{w}) \cdot(1 /(\mathrm{R} \cdot \sin \mathrm{p})) \cong \Delta w \cdot(1 /(\mathrm{R} \cdot \sin \mathrm{p})) \cong \\
& \cong(500 \mathrm{~km} \cdot 500 \mathrm{~km}) / 6000 \mathrm{~km} \cong 40 \mathrm{~km} .
\end{aligned}
$$

The global total number of the compartments $\Delta w$ of the constant size of $500 \mathrm{~km} \cdot 500 \mathrm{~km}$ is $2 \cdot 10^{3}$. Summing over the values of the integrand for the individual compartments by the square root law, the amount of $\mathrm{E}(2.1 .1 .1)$ is estimated as follows, if integrating over distances greater than $e^{\prime}=1000 \mathrm{~km}$ by means of (A 137a),
$3 \cdot 10^{-12} \cdot(1 / 2) \cdot 10^{-4} \cdot 40 \mathrm{~km} \cdot\left(2 \cdot 10^{3}\right)^{1 / 2}=3 \cdot 10^{-7}$ millimeter

In case, the model potential $M$ according to (145) of the section 7 is implied, instead of $T$,

$$
\mathrm{T} \rightarrow \mathrm{M},
$$

a multiplication with the factor 10 will be necessary. But, also the thus obtained amount of $3 \cdot 10^{-6}$ millimeter is absolutely insignificant in our applications.

Hence, it will be of no use to extend the integration domain of $E(2.1 .1 .1)$ according to ( $A$ 125b) up to a distance $e^{\prime}$ from the test point $P$ which is beyond of $e^{\prime}=1000 \mathrm{~km}$.

Now, the term $\mathbb{E}(2.1 .1 .2)$ is in the fore, ( A 118 ). The share of the integrations covering the domain $e^{\prime}>1000 \mathrm{~km}$ is to be evaluated. In this context, the first term in the brackets on the right hand side of (A 136) is introduced into ( A 113). The global form for $\mathrm{E}(2.1 .1 .2$ ) is obtained, instead of (A 118),

$$
E(2 \cdot 1 \cdot 1 \cdot 2)=\iint_{W} T \cdot x^{2} \cdot\left(1 / e^{\prime}\right) \cdot\left(1 / x^{\prime}\right) \cdot\left(1 /\left(2 \cdot R^{\prime}\right)\right) \cdot d w,
$$

and with (A 135 h ),

$$
\begin{equation*}
\mathbb{E}(2 \cdot 1 \cdot 1 \cdot 2)=\iint_{w^{\prime}} T \cdot x^{2} \cdot\left[1 /\left(2 \cdot e^{\prime} \cdot R^{\prime}\right)\right] \cdot d w \cdot \tag{A138}
\end{equation*}
$$

The integrand of (A 138) has already a shape convenient for numerical evaluations about the impact of the area beyond of $e^{\prime}=1000 \mathrm{~km}$. The following parameter values are introduced, globall y averaged,

$$
\begin{aligned}
& T / G \cong 0.05 \mathrm{~km}, \\
& x^{2} \cong(2 \mathrm{~km} / 10000 \mathrm{~km})^{2}=4 \cdot 10^{-8}, \\
& (R \cdot \sin p) /\left(2 \cdot R^{\prime} \cdot e^{\prime}\right) \cong \frac{1}{2 \cdot R^{\prime}} \cong(1 / 12000) \mathrm{km}^{-1}, \\
& \Delta w \cdot[1 /(R \cdot \sin p)] \cong 40 \mathrm{~km} .
\end{aligned}
$$

Thus, summing in (A 138) over the individual compartments ${ }^{-}$(of total number $2 \cdot 10^{3}$ ) by the square root law, (A 138) gives

$$
0.05 \mathrm{~km} \cdot 4 \cdot 10^{-8} \cdot(1 / 12) \cdot 10^{-3} \mathrm{~km}^{-1} \cdot 40 \mathrm{~km} \cdot\left(2 \cdot 10^{+3}\right)^{1 / 2}
$$

or,

$$
3 \cdot 10^{-10} \mathrm{~km}=3 \cdot 10^{-4} \text { millimeter . }
$$

This amount is absolutely insignificant.
In case, instead of $T$, the potential $M$ is applied, a multiplication by 10 will be necessary; but the thus found amount of $3 \cdot 10^{-3}$ millimeter is also negligible.

In (A 118), it is not necessary to extend the integration areas beyond of $e^{\prime}=1000 \mathrm{~km}$. The same is valid in case of the relation (A 117).

### 14.6.1.2. The formula for $E(2.1 .2)$

The expression for $\mathrm{E}(2.1 .2)$ is now in the fore, it is given by (A 114). In the brackets of the integrand of (A 114), the very small factor $Z / R^{\prime}$ turns up, the amount of this factor is of the order of about $10^{-3}$ or $10^{-4}$. In the sum of $X_{1}+X_{2}+X_{3}+X_{4}$ in the braces of (A 114), it is allowed, consequently, to neglect relative errors of the order of $Z / R^{\prime}$. They share to that terms in the integrand of (A 114) which are of the order of $N\left(\begin{array}{l}\left.\text { ( } / R^{\prime}\right)^{2} \text {, }\end{array}\right.$ an amount not greater than about $T \cdot 10^{-6}$ or $T \cdot 10^{-8}$. A relative error of smaller than $10^{-6}$ can be neglected in the $T$ potential values in any case, since the impact of it on the height anomalies $\zeta$, being equal to $T / g^{\prime}$, will be smaller than 0.1 millimeter. A relative error of smaller than $10^{-6}$ in the amount $M / G$ will be smaller than 1 millimeter, because $|M / G|$ will be smaller than 1000 m , if M is the model potential $T$ - $B$.

Consequently, the $X_{i}$ values here to be applied are not the universal expressions by (A 83), (A 84), (A 85), (A 86). Here, for the computation of $E(2.1 .2)$, the expression (A 135a) for the sum $\left[X_{1}+X_{2}+X_{3}+X_{4}\right]_{00}$ is recommended. (A 135a) represents the procise values of the $X_{i}$ terms, globally valid within the interval $0 \leqslant p \leqslant 130^{\circ}$, but free of terms which cause a. relative change by the order of $Z / R$. Along these lines, the following formula for $\mathrm{E}(2.1 .2)$ is obtained,

$$
\begin{equation*}
E(2 \cdot 1 \cdot 2)=-\iint_{W} T^{\prime} \cdot\left[1+\left(x^{\prime \prime}\right)^{2}\right]^{-1 / 2} \cdot(\sin p / 2) \cdot a \cdot\left\{Z /\left(R^{\prime} \cdot e^{\prime 2} \cdot x^{\prime}\right)\right\} \cdot d w, \tag{A139}
\end{equation*}
$$

with

$$
a=-1-\left(x^{\prime \prime}\right)^{2}+2 \cdot R \cdot\left\{(\cos p / 2)^{2}-(\sin p / 2) \cdot(\cos p / 2) \cdot x^{\prime \prime}\right\} \cdot\left(\partial x / 0 e^{\prime}\right) \quad(\quad(A 139 a)
$$

The reader is remembered that

$$
\begin{align*}
& x^{\prime \prime}=x \cdot(\cos p / 2)  \tag{array}\\
& x^{\prime}=y^{2}+Z / R^{\prime}=1+x^{2}+Z / R^{\prime} \tag{A141}
\end{align*}
$$

The expression for the term a is now considered, ( $A$ 139a). It contains amounts as -1 and $\left\{2 \cdot R^{\prime} \cdot(\cos p / 2)^{2} \cdot\left(\partial x / \partial e^{\prime}\right)\right\} .-1$ is constant, and $2 \cdot R^{\prime} \cdot(\cos p / 2)^{2}$ has not an expressed tendency to go to zero for growing values of $p$. But, the amounts of $-\left(x^{\prime \prime}\right)^{2}$ and $\left\{-2 \cdot R^{\prime} \cdot\left(\sin p / L^{\prime}\right) \cdot(\cos p / 2) \cdot x^{\prime \prime} \cdot\left(\partial x / \partial e^{\prime}\right)\right\}$ appearing in (A 139a) have a clear tendency to go to zero for growing distances $e^{\prime}$ from the test point $P$, on the strength of the fact; that these amounts contain- $x^{\prime \prime}$ and $\left(x^{\prime \prime}\right)^{2}$, (A 140). Consequently, in (A 139), it will be of use to separate such terms, which diminish rapidly for $p \rightarrow 180^{\circ}$.

This division into two parts is described by the following relations, (A 141a) (A 142) (A 143),

$$
\begin{equation*}
E(2.1 .2)=\mathbb{E}(2.1 .2 .1)+\mathbb{E}(2.1 .2 .2), \tag{A141a}
\end{equation*}
$$

with

$$
\left.\begin{array}{l}
E(2 \cdot 1 \cdot 2 \cdot 1)=\iint_{w} T \cdot\left[1+\left(x^{\prime \prime}\right)^{2}\right]^{-1 / 2} \cdot(\sin p / 2) \cdot q_{4} \cdot\left\{Z /\left(R^{\prime} \cdot e^{\prime} \cdot x^{\prime}\right)\right\} \cdot d w, \quad(A 142) \\
q_{4}=\left(x^{\prime \prime}\right)^{2}+x^{\prime \prime} \cdot e^{\prime} \cdot(\cos p / 2) \cdot\left(\partial x / \partial e^{\prime}\right) ; \\
E(2 \cdot 1 \cdot 2 \cdot 2)=\iint_{W} T \cdot\left[1+\left(x^{\prime \prime}\right)^{2}\right]^{-1 / 2} \cdot(\sin p / 2) \cdot q_{5} \cdot\left\{Z /\left(R^{\prime} \cdot e^{\prime 2} \cdot x^{\prime}\right)\right\} \cdot d w, \quad(A 142 a) \\
q_{5}=1-2 \cdot R^{\prime} \cdot(\cos p / 2)^{2} \cdot\left(\partial x / \partial e^{\prime}\right) \quad .
\end{array} \quad \text { (A 143a) }\right)
$$

### 14.6.1.2.1. The formula for $\mathcal{E}(2.1 .2 .1)$

In the near surroundings of the test point $P$, for $e^{\prime}<1000 \mathrm{~km}$, it is allowed to put $\cos p / 2 \cong 1$, $x^{\prime \prime} \cong x, x^{\prime} \cong 1+x^{2}$. With these simplifications, the relation (A 142) turns to

$$
E(2 \cdot 1 \cdot 2 \cdot 1)=\iint_{W} T \cdot\left(1+x^{2}\right)^{-1 / 2} \cdot(\sin p / 2) \cdot q_{4} \cdot\left\{x /\left(R^{\prime} \cdot e^{\prime}\right)\right\} \frac{1}{1+x^{2}} \cdot d w,(A 144)
$$

with

$$
\begin{equation*}
q_{4} \cong x^{2}+x \cdot e^{\prime} \cdot\left(\partial x / \partial e^{\prime}\right) \tag{A144a}
\end{equation*}
$$

And further

$$
\begin{equation*}
E(2 \cdot 1 \cdot 2 \cdot 1)=\int_{W} T \cdot x^{2} \cdot\left(1+x^{2}\right)^{-3 / 2} \cdot\left[x+e^{\prime} \cdot\left(\partial x / \partial e^{\prime}\right)\right] \cdot\left(1 /\left(2 \cdot R^{2}\right)\right) \cdot d w \cdot \tag{A145}
\end{equation*}
$$

The relation (A 145) offers itself to get divided into two parts,

$$
\begin{equation*}
E(2.1 \cdot 2 \cdot 1)=E(2 \cdot 1 \cdot 2 \cdot 1 \cdot 1)+E(2 \cdot 1 \cdot 2 \cdot 1 \cdot 2), \tag{A146}
\end{equation*}
$$

with

$$
\begin{equation*}
E(2 \cdot 1 \cdot 2 \cdot 1 \cdot 1)=\iint_{W} T \cdot x^{3} \cdot\left(1+x^{2}\right)^{-3 / 2} \cdot\left(1 /\left(2 \cdot R^{2}\right)\right) \cdot d w, \tag{A147}
\end{equation*}
$$

and
$E(2 \cdot 1 \cdot 2 \cdot 1 \cdot 2)=\left(\int_{W} T \cdot x^{2} \cdot\left(1+x^{2}\right)^{-3 / 2} \cdot\left(\partial x / \partial e^{\prime}\right) \cdot\left\{e^{\prime} /\left(2 \cdot R^{2}\right)\right\} \cdot d w\right.$,
for

$$
e^{\prime}<1000 \text { km }
$$

The form of (A 147) is in close neighborhood to the relation (A 126).
The introduction of plane polar co - ordinates and of (A 135e) turns (A 147) to
$E(2 \cdot 1 \cdot 2 \cdot 1 \cdot 1)=(A)(E) T \cdot x^{3} \cdot\left(1+x^{2}\right)^{-3 / 2} \cdot(\sin p / 2) \cdot(1 / R) \cdot d e^{\prime} \cdot d A \cdot$
(A 149) has already a form convenient for the calculations.
The reader is already acquainted wi th the above used abbreviating writing style, (A 125a).

Now, the expression for $E(2.1 .2 .1 .2)$ is considered, (A 148).
The representation by plane polar co-ordinates yields, (A 125a),

$$
\begin{equation*}
E(2 \cdot 1 \cdot 2 \cdot 1 \cdot 2)=(A) \cdot E " \cdot d A \tag{A150}
\end{equation*}
$$

with

$$
\begin{equation*}
E^{\prime \prime}=(i i) 2 \cdot T \cdot x^{2} \cdot\left(1+x^{2}\right)^{-3 / 2} \cdot(\sin p / 2)^{2} \cdot\left(\partial x / \partial e^{\prime}\right) \cdot d e^{\prime} \tag{A151}
\end{equation*}
$$

In (A 150), this following relation is valid,

$$
\begin{equation*}
(\mathrm{A}) \cdot \Psi \cdot \mathrm{dA} \quad=\int_{\mathrm{A}=0}^{2 \pi} \Psi \cdot \mathrm{dA} \tag{A151a}
\end{equation*}
$$

and in (A 151),

$$
\begin{equation*}
(i) \cdot \Psi \cdot d e^{\prime}=\int_{e^{\prime}=0} \Psi \cdot d e^{\prime} ; \tag{A151b}
\end{equation*}
$$

the upper bound of the integration by (A 151b) is $e^{\prime}=1000 \mathrm{~km}$, (see (A 125a)).

The integral of (A 151) is integrated by the method of the integration by parts. The following substitutions are used; ( In (A 152b), dp/de' comes from (A 93) ),

$$
\begin{gather*}
a_{2}=2 \cdot T \cdot(\sin p / 2)^{2}  \tag{A152a}\\
\partial a_{2} / \partial e^{\prime}=2 \cdot(\sin p / 2)^{2} \cdot\left(\partial T / \partial e^{\prime}\right)+2 \cdot T \cdot(\sin p / 2) \cdot\left(1 / R^{\prime}\right)
\end{gather*}
$$

(A 152b)
and, with (A 119),

$$
\begin{equation*}
b_{2}=b_{1}=-x \cdot\left(1+x^{2}\right)^{-1 / 2}+\operatorname{arsinh} x=(1 / 3) \cdot x^{3}-+\cdots, \tag{A152c}
\end{equation*}
$$

at the end of the above relation, (A 152c), a series development for the function $b_{2}$ appears : $(1 / 3) \cdot x^{3}-+\cdots$. This series development is valid for $x^{2}<1$, only, ( see (A 124) ) ;

$$
\begin{equation*}
\partial b_{2} / \partial e^{\prime}=x^{2} \cdot\left(1+x^{2}\right)^{-3 / 2} \cdot\left(\partial x / \partial e^{\prime}\right) \tag{A152d}
\end{equation*}
$$

The integration by parts turms (A 151) into

$$
\begin{gather*}
E^{\prime \prime}=E_{1}^{\prime \prime}+E_{2}^{\prime \prime}  \tag{A153}\\
E_{1}^{\prime \prime}=\left|2 \cdot T \cdot(\sin p / 2)^{2} \cdot b_{2}\right|_{e^{\prime} u}^{e^{\prime}} 0
\end{gather*}
$$

$E_{2}^{\prime \prime}=-2 \int_{e^{\prime}{ }_{u}}^{0} b_{2}\left[T \cdot(\sin p / 2) \cdot\left(1 / R^{\prime}\right)+(\sin p / 2)^{\prime 2} \cdot\left(a T / \partial e^{\prime}\right)\right] \cdot d e^{\prime} \cdot(A 153 b)$

In case that $e^{\prime} u$ tends to zero, the amount of $T$ and that of $b_{2}$ is finite, since T. has continuous values, and since a starmshaped Earth is introduced (the slopes of the terrain of it havinf finite values). Further, if $e^{\prime} u$ tends to zero, the amount of $\sin p / 2$ terds to zero, simultaneously. Consequently, (A 153a), the following liransition behaviour is right,

$$
\begin{equation*}
\left[2 \cdot T \cdot(\sin p / 2)^{2} \cdot b_{2}\right] e^{\prime}=e_{u}^{\prime} \quad \longrightarrow 0 \tag{A154}
\end{equation*}
$$

if $e^{\prime} u$ tends to zero.
As to the upper bound of (A 153a), this bound is defined by $e^{\prime} 0=1000 \mathrm{~km}$.
Here, the following data are useful,
$(\sin p / 2)^{2}=\left[e^{\prime}{ }_{o} /\left(2 R^{\prime}\right)\right]^{2} \cong 1 / 144$,
and, (A 152c),
$b_{2}=(1 / 3) \cdot x^{3}-+\ldots \cong(1 / 3) \cdot(2 \mathrm{~km} / 1000 \mathrm{~km})^{3}=3 \cdot 10^{-9} \quad ; \quad$ (A 154b)
With $(T / G)=0.1 \mathrm{~km}$, the following self - explanatory developments are right, sure,for the upper bound eo appearing in (A 153a), ( see (A 154a)(A 154b) ), $\left[2 \cdot T \cdot\left(1 /(\mathrm{G}) \cdot(\sin \mathrm{p} / 2)^{2} \cdot \mathrm{~b}_{2}\right]_{e^{\prime}=e^{\prime}} \cong 10^{-5} \mathrm{~mm} \cong 0 \quad\right.$ (A 154 c$)$

In case, $T$ is replaced by the model potential $M=T-B$, (see
(145) of section 7), the anount of (A 154c) has to be multiplied with a factor of about 10 ; a negligible amount reveals,furthermore .

Summarizing, the amount of $\mathrm{E}_{1}^{\prime \prime}$ can be neglected.
Hence, with (A 150) (A 151) (A 153) (A 153b),

$$
E(2 \cdot 1 \cdot 2 \cdot 1 \cdot 2)=(A)(E)(-2) \cdot b_{2} \cdot q_{6} \cdot d e^{\prime} \cdot d A
$$

w.ith
$q_{6}=T \cdot(\sin p / 2) \cdot\left(1 / R^{\prime}\right)+(\sin p / 2)^{2} \cdot\left(\partial T / \partial e^{\prime}\right) \quad$.
(A 154e)

The estimotion of the average amount of $E(2.1 .2 .1 .2)$ is now the work which is to be done.
In this context, the following parameter values are introduced in the integrand of (A 154d) (A 154e): $\mathrm{i} / \mathrm{G}=0.05 \mathrm{~km} ; \operatorname{sin~} \mathrm{p} / 2=(20 \mathrm{~km} / 6000 \mathrm{~km})$; $1 / R^{\prime}=(1 / 5000 \mathrm{kn}) ;(1 / \mathrm{G}) \cdot\left(\partial \mathrm{T} / \partial \mathrm{e}^{\prime}\right)=(0.05 \mathrm{kn} / 1000 \mathrm{~km}) ;$
$b_{2}=(1 / 3) \cdot x^{3}=(1 / 3) \cdot(3 \mathrm{~km} / 30 \mathrm{kn})^{3} ; \mathrm{d} \mathrm{e}^{\prime}=100 \mathrm{~km}$.
These data reve:l

$$
q_{6} / G \cong(0.05 \mathrm{~km}) \cdot(1 / 300) \cdot(1 / 6000 \mathrm{~km})+(1 / 300)^{2} \cdot 5 \cdot 10^{-5}
$$

thus,

$$
q_{6} / G \cong(1 / 4) \cdot 10^{-7}
$$

Consequently, (A 154d),

$$
(1 / G) \cdot|(1 / 2 \pi) \cdot E(2 \cdot 1 \cdot 2 \cdot 1 \cdot 2)|=2 \cdot(1 / 3) \cdot(1 / 1000) \cdot(1 / 4) \cdot 10^{-7} \cdot 100 \mathrm{~km}
$$

or

$$
(1 / G)|(1 / 2 \pi) \cdot \mathbb{U}(2 \cdot 1 \cdot 2 \cdot 1.2)|=(1 / 6) \cdot 10^{-2} \quad \text { millimeter }
$$

If $T / G$ is replaced by $M / G$, again, a multiplication by the factor 10 will bring about this transformation. A value of (1/60) millimeter is now the result, always to be neglected.

In order to avoid misleading deliberations, the nearest surroundings of the test point $P$, up to a distance of 1 km or 2 km , are now especially considered, for the case of steep cliffs of $|x|>1$. For $|x|>1$, the series development for $b_{1}$ cannot be applied, ( $A 152 c$ ). The closed expression on the right hand side of (A 152c) is now of use.

For

$$
x=\frac{Z}{e^{\prime}}=\frac{H_{Q}-H^{\prime}}{e^{\prime}}=-1
$$

(A 152c) leads to

$$
b_{2}=(1 / 2)^{1 / 2}+\operatorname{arsinh}(-1)
$$

or,

$$
b_{2}=0.707-0.881=-0.174 .
$$

(A 154f)

Integrating in (A 154d) over the interval $0 \leqslant e^{\prime} \leqslant 2 \mathrm{~km}$, we choose these data: $b_{2}=-0.174, T / G=0.05 \mathrm{~km}, d e^{\prime}=2 \mathrm{~km}$, $\sin p / 2=(0.5 \mathrm{~km} / 6000 \mathrm{~km})=(5 / 6) \cdot 10^{-4}$. With these data, it follows that the integration over the domain $e^{\prime} \leqslant 2 \mathrm{~km}$ takes the following share on the amount of $|(1 / 2 \pi) \cdot \Xi(2.1 \cdot 2.1 .2)| \cdot(1 / G)$, (see (A 154d)),
$(-2) \cdot(-0.174) \cdot(0.05) \cdot(5 / 60000) \cdot(1 / 6000) \cdot 2 \mathrm{kn}=5 \cdot 10^{-4}$ millimeter .
The transition from $T / G$ to $M / G$ leads to $5 \cdot 10^{-3}$ millimeter.

$$
\text { Also the very extreme case of } x=-10 \text { brinss no trouble. } b_{2} \text { is computed }
$$ by

$$
b_{2}=10 \cdot(101)^{-1 / 2}-\operatorname{arsinh} 10
$$

or,

$$
\begin{equation*}
\mathrm{b}_{2}=0.995-2.998 \cong-2 \tag{A154g}
\end{equation*}
$$

arsinh x is an odd function.
A comparison of ( A 154 f ) and ( A 154 g ) shows that now, for $\mathrm{x}=-10$, the amount of the integration over the domain $e^{\prime} \leqslant 2 \mathrm{~km}$ is about ten times zreater. A value of $5 \cdot 10^{-3}$ millimeter, resp. $5 \cdot 10^{-2}$ millimeter, js now the consequence. It is always negligible - this amount of (1/G). $3(2 \cdot 1.2 \cdot 1.2$ ) - , even in case of very steep cliffs of $x=-10$, too.

I'hcrefore, in the subsequent deductions, it is allowed to put

$$
(2 \cdot 1 \cdot 2 \cdot 1 \cdot 2) \cong 0 \quad \quad(A 154 h)
$$

Consequently, (A 146) (A 149) (A 154h),

$$
\begin{aligned}
E(2.1 \cdot 2 \cdot 1)= & (A)(E) T \cdot x^{3} \cdot\left(1+x^{2}\right)^{-3 / 2} \cdot(\sin p / 2) \cdot(1 / R) \cdot d e \cdot d A \quad, \quad \text { (i 155) } \\
& e^{\prime}<1000 \mathrm{~km} .
\end{aligned}
$$

### 14.6.1.2.2. The formula for $\mathrm{E}(2.1 .2 .2)$

$E(2.1 .2 .1)$ according to (A 155) is the first term in the expression for $E(2.1 .2)$, ( $A$ 141a). The second term is $E(2.1 .2 .2)$, it is defined by the equation (A 143). $E(2.1 .2 .2)$ is divided into two parts, since $q_{5}$ consists of two parts of different kind, (A 143a). Hence, the decomposition is

$$
\begin{equation*}
E(2 \cdot 1 \cdot 2 \cdot 2)=E(2 \cdot 1 \cdot 2 \cdot 2 \cdot 1)+E(2 \cdot 1 \cdot 2 \cdot 2 \cdot 2), \tag{A156}
\end{equation*}
$$

with the conśtituents

$$
\begin{equation*}
E(2 \cdot 1 \cdot 2 \cdot 2 \cdot 1)=\iint_{w} T \cdot\left[1+\left(x^{\prime \prime}\right)^{2}\right]^{-1 / 2} \cdot(\sin p / 2) \cdot\left\{2 /\left(R^{\prime} \cdot e^{\prime 2} \cdot x^{\prime}\right)\right\} \cdot d w, \tag{A157}
\end{equation*}
$$

and

$$
\begin{equation*}
E(2 \cdot 1 \cdot 2 \cdot 2 \cdot 2)=-\iint_{W} T \cdot\left[1+\left(x^{\prime \prime}\right)^{2}\right]^{-1 / 2} \cdot(\sin p / 2) \cdot(\cos p / 2)^{2} \cdot\left(\partial x / \partial e^{\prime}\right) \cdot\left\{2 \cdot z /\left(e^{\prime 2} \cdot x^{\prime}\right)\right\} d_{w} \tag{A158}
\end{equation*}
$$

At first, the consideration of $\mathrm{E}(2.1 .2 .2 .1)$ is in the fore, (A 157). In the integrand of (A 157), the height dependence is brought to bear by the expressions $Z / R,\left(x^{\prime \prime}\right)^{2}$, and by $x^{\prime}$. There do not appear any derivatives of height dependent terms, as $\partial \mathrm{x} / \partial \mathrm{e}^{\prime}$ for instance. But, to stress the essence of the deliberations about (A 157), it is of great importance for our applications that the form (A 157) can be divided into two parts of different kind. The constituent of the first kind needs only an integration over the near surroundings of the test point $P$, (A 148a). But, the constituent of the second kind requires an extension of the integration over whole the globe; p covers the interval from $0^{\circ}$ to $180^{\circ}$, in the latter kind.

The rearrangements of (A 157) happen along the following self- explanatory lines,

$$
\begin{aligned}
& e^{\prime}=2 \cdot R^{\prime} \cdot \sin p / 2, \\
& \sin p / 2=e^{\prime} /\left(2 \cdot R^{\prime}\right),
\end{aligned}
$$

$$
\begin{aligned}
& x=z / e^{\prime}, \quad y^{2}=1+x^{2} \geqslant 1, \\
& x^{\prime}=1+x^{2}+z / R^{\prime}, \\
& x^{\prime \prime}=x \cdot(\cos p / 2)
\end{aligned}
$$

(A 158a)

The above 6 equations are rigorously valid. Neglecting a relative error of the order of $Z / R^{\prime}, x^{\prime}$ follows as

$$
\begin{equation*}
x^{\prime} \cong 1+x^{2} \tag{A159}
\end{equation*}
$$

Further on,

$$
\begin{aligned}
& \left(x^{\prime \prime}\right)^{2}=x^{2} \cdot(\cos p / 2)^{2}=x^{2} \cdot\left[1-(\sin p / 2)^{2}\right], \\
& 1+\left(x^{\prime \prime}\right)^{2}=1+x^{2}-x^{2} \cdot(\sin p / 2)^{2}, \\
& 1+\left(x^{\prime \prime}\right)^{2}=\left(1+x^{2}\right) \cdot\left[1-x^{2} \cdot\left(1+x^{2}\right)^{-1} \cdot(\sin p / 2)^{2}\right], \\
& x^{2}(\sin p / 2)^{2}=\left(z / e^{\prime}\right)^{2} \cdot\left(e \cdot /\left(2 \cdot R^{\prime}\right)\right)^{2}=\left[z /\left(2 \cdot R^{\prime}\right)\right]^{2}, \\
& 1+\left(x^{\prime \prime}\right)^{2}=\left(1+x^{2}\right) \cdot\left[1-\left(1+x^{2}\right)^{-1} \cdot\left\{z /\left(2 \cdot R^{\prime}\right)\right\}^{2}\right\}, \\
& \left\{z /\left(2 \cdot R^{\prime}\right)\right\}^{2} \cong(2 \mathrm{kn} /(2 \cdot 6000 \mathrm{~km}))^{2} \cong 3 \cdot 10^{-8} .
\end{aligned}
$$

Thus, neglecting a relative error of smaller $\operatorname{th}$ an $\left\{Z /\left(2 \cdot R^{\prime}\right)\right\}^{2} \cong 3 \cdot 10^{-8}$, $1+\left(\mathrm{x}^{\prime \prime}\right)^{2}$ has the following approximate formula valid over whole the globe

$$
\begin{equation*}
1+\left(x^{\prime \prime}\right)^{2} \cong 1+x^{2} ;\left(p=0^{\circ}, \ldots, 180^{\circ}\right) \tag{array}
\end{equation*}
$$

With (A 159) and (A 160), (A 157) turns to

$$
E(2 \cdot 1 \cdot 2 \cdot 2 \cdot 1)=\iint_{W} T \cdot\left[\left\{\left(1+x^{2}\right)^{-3 / 2}-1\right\}+1\right] \cdot\left(Z / R^{\prime}\right) \cdot\left[1 /\left(2 \cdot R^{\prime} \cdot e^{\prime}\right)\right] \cdot d w \quad \cdot \quad(A 161)
$$

The integrand of (A 161) is right within relative errors of the arder of $Z / R$, (see the precision of (A 159)).

The expression in the parentheses $\}$ of (A 161) diminishes rapidly for growing di stances from the test point P. It gives rise to the constituent of the first kind in the integrand of (A 161). Fur ther, it is satisfied with a limitation of the integration domain to the near surroundings of the test point $P$, only.

The rest of the integrand of (A 161) gives rise to the constituent of the second kind, it requires an extension of the integrations over whole the globe.

The division of (A 161) into these two constituents leads to the following form, (A 162), considering (A 125a) and
(A)
(E) $\Psi \cdot d w=\iint_{w} \Psi \cdot d w \quad$.
( $A$ 161a)

Thus, such a form as that on the left hand side of (A 161a), which contains the surface element $d w$, - even by putting the symbol $d w-$, this form points out the necessity that it requires the extension of the integrations over whole the globe.

Hence,


Some short lines will show that the first integral on the right hand side of (A 162) can be neslected, always; since, substantially, it does contain products of $x^{2}$ time $2 / R^{\prime}$,

Sure, in this first integral on the right hand side of (A 152), the integration is intended for the near alrroundings, only, (if $\left.e^{\prime}>1000 \mathrm{~km}:\left(x^{2} \cdot z / R^{\prime}\right) \cong 0\right)$,

$$
\begin{equation*}
e^{\prime}<1000 \mathrm{~km} . \tag{A163}
\end{equation*}
$$

In the concerned integrand, the term in the brackets diminishes rapidly for frowing values of e'. low, the amount of this integral is evaluated. At first, the domain (of the first integral on the right of (A 162) )

$$
\begin{equation*}
0 \leqslant e^{\prime} \leqslant 5 \mathrm{~km} \tag{A164}
\end{equation*}
$$

is considered. The parameter data are chosen es follows: $I / G=0.1 \mathrm{~km}$, $\left|\left(1+x^{2}\right)^{-3 / 2}-1\right| \cong 0.5$ (for steep cliffes), $|z|=2 \mathrm{~km}$. Integratine over tine area of (i $16 C_{\text {) }}$ ), the first intesral on the right hand side of (A 162) yields, multiplied : :ith (1/is),
$(0.1 \mathrm{~km}) \cdot 0.5 \cdot(2 \mathrm{~km} / 6000 \mathrm{~km}) \cdot(1 / 12000 \mathrm{kn}) \cdot 5 \mathrm{~km} \cong 0.001 \mathrm{~cm}$.
(A 165)

Now, the same intecral is evaluated, but for the domain

$$
\begin{equation*}
10 \mathrm{~km} \leqslant c \leqslant 100 \mathrm{~km} \tag{i.166}
\end{equation*}
$$

Here, the parameter data are as follows: $T / G=0.1 \mathrm{~km}$, $\left|\left(1+x^{2}\right)^{-3 / 2}-1\right| \cong(3 / 2) \cdot x^{2} \cong 0.01$ (the here applied series is valid for $\left.x^{2} \ll 1\right),|z|=2 \mathrm{~km}$. Intesrating over the area (A 166), tie first integral on the richit hand side of ( $A$ 162) contributes, (multiplied vith 1/心),
$(0.1 \mathrm{~km}) \cdot 0.01 \cdot(2 \mathrm{~km} / 6000 \mathrm{~km}) \cdot(1 /(12000 \mathrm{~km})) \cdot 90 \mathrm{~km} \cong 0.0002 \mathrm{~cm} . \quad\left(\begin{array}{ll}\mathrm{A} & \left.16^{\prime} 7\right)\end{array}\right.$

Sumnarizing (A 164) (A 165) (A 166) (A 167), the first integrand on the right hand side of (a 162) will hardly surmount the val ue of 0.001 cm . It can be neglected, cons€quently.

In case, the perturbation potential $\mathbb{T}$ is replaced by the model potential lin (accordine to equation (145) of the section 7), we have to multiply with a factor of about 10 in the results of (A 165) and (A 167). The thus obtained results amount to 0.01 cm resp. 0.002 cm ; they are negligibie, likewise .

Considering the above lines, (A 165) (A 167), the relation (A 162) turns to

$$
\begin{equation*}
E(2 \cdot 1 \cdot 2 \cdot 2 \cdot 1)=(A)(E) T \cdot(Z / R) \cdot\left[1 /\left(2 \cdot R \cdot e^{\prime}\right)\right] \cdot d w \tag{array}
\end{equation*}
$$

(A 168) has a shape convenient for numerical calculations.

Now, the expression for $E(2.1 .2 .2 .2)$ is in the fore, (A 158).
with (A 159) and (A 160), the subsequent relation comes out, neglecting relative errors of the order of $Z / R$.
$E(2 \cdot 1 \cdot 2 \cdot 2 \cdot 2)=-(A)(E) T \cdot\left(1+x^{2}\right)^{-3 / 2} \cdot(\cos p / 2)^{2} \cdot(2 / i x) \cdot\left(1 / e^{\prime}\right) \cdot\left(\partial x / \partial e^{\prime}\right) \cdot d w \cdot(A 169)$

Further, it follows
$E(2 \cdot 1 \cdot 2 \cdot 2 \cdot 2)=-(A)(E)(T / K) \cdot(\cos p / 2)^{2} \cdot x \cdot\left(1+x^{2}\right)^{-3 / 2} \cdot\left(\partial x / \partial e^{\prime}\right) \cdot d w \cdot$

She following lines are self - explanatory,

```
    dw = R'R
    de'=}\mp@subsup{K}{}{\prime}\cdot(\operatorname{cos}p/2)\cdotdp
    de'/dp = R' ( (cos p/2),
    dp/ de' = 1/( R'..cos p/2),
    \partialx/\partiale'=
    \partialx/\partiale'=(\partialx/\partialp)[1/(R'\cdot\operatorname{cos}p/2)].

The relations (A 170), (A 171), and (A 174) are combined to
\(E(2 \cdot 1 \cdot 2 \cdot 2 \cdot 2)=-(A)(i) T \cdot(\cos p / 2) \cdot(\sin p) \cdot\left(1+x^{2}\right)^{-3 / 2} \cdot x \cdot(\partial x / \partial p) \cdot d p \cdot d A \cdot(A 175)\)

If, in (A 175), only the integration with regard to the parameter \(p\) is considered, before the integration over the azimuth \(A\), the following integral is obtained,
\[
\begin{equation*}
E^{\prime \prime \prime}=-\int_{p=0}^{\pi} T \cdot(\cos p / 2) \cdot(\sin p) \cdot\left(1+x^{2}\right)^{-3 / 2} \cdot x \cdot(\partial x / \partial p) \cdot d p \tag{array}
\end{equation*}
\]

The relation (A 176) is transformed by the method of the integration by parts, avoiding forms as \(\partial x / \partial p\). Hence,
\[
\begin{equation*}
E^{\prime \prime \prime}=\left|a_{3} \cdot b_{3}\right|_{p=0}^{p=\pi}-\int_{p=0}^{\pi} b_{3} \cdot\left(\partial a_{3} / \partial p\right) \cdot d p ; \tag{A177}
\end{equation*}
\]
with
\[
a_{3}=-T \cdot(\cos p / 2) \cdot \sin p
\]
\[
\begin{align*}
& \partial a_{3} / \partial p=-(\partial T / \partial p) \cdot(\cos p / 2) \cdot \sin p+(1 / 2) \cdot T \cdot(\sin p / 2) \cdot \sin p-T \cdot(\cos p / 2) \cos p \\
& b_{3}=1-\left(1+x^{2}\right)^{-1 / 2},  \tag{A178}\\
& \partial b_{3} / \partial p=x \cdot\left(1+x^{2}\right)^{-3 / 2} \cdot(\partial x / \partial p)
\end{align*}
\]
\[
\begin{aligned}
& \text { Consequently, for }(A 177) \text {, } \\
& \qquad E^{\prime \prime}=\left|-T \cdot(\cos p / 2) \cdot(\sin p) \cdot\left[1-\left(1+x^{2}\right)^{-1 / 2}\right]\right|_{p=0}^{p=\pi}
\end{aligned}
\]
\[
\begin{equation*}
-\int_{p=0}^{\pi} b_{3} \cdot\left(\partial a_{3} / \partial p\right) \cdot d p \tag{A179}
\end{equation*}
\]

As to the first term on the right hand side of (A 179), in the two cases \(p=0\) and \(p=\pi\), the function \((\sin p)\) is equal to zero. Thus, the first term on the right hand side of (A 179) is equal to zero. The relation (is 179) turns to
\[
\begin{equation*}
E \cdot \prime=\int_{p=0}^{\pi} b_{3} \cdot t_{1} \cdot(\sin p) \cdot d p, \tag{A180}
\end{equation*}
\]
wi th
\[
t_{1}=(\cos p / 2) \cdot(\partial \mathrm{T} / \partial \mathrm{p})+[(\cos \mathrm{p} / 2) \cdot(\cot \mathrm{p})-(1 / 2) \cdot(\sin \mathrm{p} / 2)] \cdot T .
\]
(A 171), (A 175), and (A 130) yield
\[
\begin{equation*}
E(2.1 \cdot 2.2 .2)=(A)(E) \quad b_{3} \cdot t_{1} \cdot\left(1 / R^{2}\right) \cdot d w . \tag{A181}
\end{equation*}
\]

This above integral, (A 181), is now evaluated for the more distant area of
\[
\begin{equation*}
\mathrm{e}^{\prime}>1000 \mathrm{krn} \tag{A182}
\end{equation*}
\]

In the integrand of (A 181), the function \(b_{3}=b_{3}(x)\) appears. The averaged value of \(b_{3}\) according to (A 178), averaged over the exterior domain of ( \(A 182\) ), can be computed by the following belf - axplanatory line,
\[
\begin{aligned}
& \mathrm{b}_{3} \cong(1 / 2) \cdot \mathrm{x}^{2} \cong(1 / 2) \cdot(2 \mathrm{~km} / 10000 \mathrm{~km})^{2} \\
& \mathrm{~b}_{3} \cong 2 \cdot 10^{-8}
\end{aligned}
\]

\section*{Further,}
\[
(1 / G) \cdot(\partial T / \partial p)=R \cdot(1 / G) \cdot(\partial T /(R \partial p) ;
\]
on the right hand side of the above equation stands a component of the plumb-line deflection, multiplied with the Earth's radius \(R\). For a deflection component of 20'', it follows,
\[
(1 / G) \cdot(\partial T / \partial p)=R \cdot\left(20^{\prime \prime} / 206265^{\prime \prime}\right) \cong R \cdot 10^{-4}
\]

In the computation of a rough mean value of \(t_{1}\), (A 180a), averaged over the domain of (A 132), it is aliowed to operate with the subsequent men values for \(\cos p / 2, \cot p\), and \(\sin p / 2\),
\[
\cos p / 2 \cong 1, \cot p \cong 1, \sin p / 2 \cong 1
\]

Ihus, for \((I / G) \cong 0.1 \mathrm{~km}\), the concerricd averaged value of \((1 / G) \cdot t_{1}\) is, (A 130a),
\[
(1 / \mathrm{G}) \cdot t_{1} \rightarrow \mathrm{R}\left[10^{-4}+(0.1 \mathrm{~km} / 6000 \mathrm{~km})\right]
\]
or,
\[
(1 / \mathrm{G}) \cdot t_{1} \rightarrow R \cdot 10^{-4}
\]

The corcerned averafed value of \((i / G) \cdot b_{3} \cdot t_{1}\) follows by.
\[
(1 / G) \cdot b_{3} \cdot t_{1} \rightarrow 2 R \cdot 10^{-12}
\]

Ihe integration according to (A 131) is now replaced by a sumation over the compartments \(\Delta v\) of a division of the iarth's surface by a not of meshes of \(1000 \mathrm{~km} x 1000 \mathrm{~km}\) size. Thus, it is \(\mathfrak{k c l f f} \mathrm{f}\) explanatory, \(\left(1 / R^{2}\right) \cdot d w \rightarrow\left(1 / R^{2}\right) \Delta w=(1000 \mathrm{~km} / 6000 \mathrm{~km})^{2}=1 / 36 \quad\). (A 182b)

Hence, (A 182a) (A 182b),
\[
\begin{equation*}
(1 / \mathrm{G}) \cdot \mathrm{b}_{3} \cdot \mathrm{t}_{1} \cdot\left(\Delta \mathrm{w} / \mathrm{R}^{2}\right)=(1 / 18) \cdot \mathrm{R} \cdot 10^{-12} \tag{array}
\end{equation*}
\]

A comparison of (A 133) and (A 181) shows that the term of (A 183) is the averaged amount a single compartment of \(1000 \mathrm{~lm} x \quad 1000\) lon size ererts on the value of \((1 / G) \cdot E(2.1 .2 .2 .2)\); here, a value of \((1 / 3) \cdot 10^{-3}\) millimeter is reached. Whole the surface of the Earth has an extension of about 500 millions \(\mathrm{km}^{2}\). Thus, a number of about 500 compartments of \(1000 \mathrm{kan} x 1000 \mathrm{~km}\) size come into question. It will. be justifiable to introduce the hypothesis the function \(t_{1} / G\) to vary between the individual compartments similarly as A randon variate, (A 180a). J'hus, the error-effects of the individual 500 compartments propagate to the impact on the sum of these 500 compartments by the square root law, it is plaucible. Hence, in (i 183), we have to multiply with \((500)^{1 / 2} \cong 22\),
in order to find the average amount of \(\mathrm{E}(2.1 .2 .2 .2)\), according to (A 181). This amount results to be equal to 0.007 millimeter,
\[
\begin{align*}
& \int_{A=0}^{2 \pi} \int_{p_{1}}^{\pi} b_{3} \cdot t_{1} \cdot\left(1 / R^{2}\right) \cdot d w \rightarrow 0.007 \mathrm{~mm}  \tag{array}\\
& p_{1}=(1000 \mathrm{k} / \mathrm{n} / \mathrm{R}) \cong(1 / 6) \cong 10 \% \rho^{\circ} .
\end{align*}
\]
(A 184a)

A transition from the perturbation potential \(T\) to the model
potential \(\mathbb{M}=T-B\) in ( \(A\) 180a) and ( \(A\) 184) is accompanied by a multiplication with a factor of about 10 , since the order of \(M\) is about 10 times the order of \(T\), (see equation (145) of the section 7). Thus, this substitution tuins the amount according to (A 184) from 0.007 millimeter to 0.07 millimeter, always negligible, too،

Therefore, it is not neccssary to integrate in (A 181) over the domain (A 132). Thus, the integration of (A 181) has to cover only the near surroundings of the test point \(P\),
\[
e^{\prime}<1000 \mathrm{~km} .
\]

The integrand of (A 181) has still to be adapted to this speciality, putting
\[
\begin{aligned}
\cos p / 2 & \cong 1, \\
\cos p & \cong 1, \\
\sin p / 2 & =e^{\prime} /\left(2 R^{\prime}\right) \\
\sin p & \cong e^{\prime} / R^{\prime} \\
d w & \cong e^{\prime} \cdot d e^{\prime} \cdot d A
\end{aligned}
\]

With the above liness \(t_{1}\) of (A 180a) turns to
\[
\begin{equation*}
t_{1} \cong \partial T / \partial p+\left[\left(R^{\prime} / e^{\prime}\right)-(1 / 4) \cdot\left(\epsilon^{\prime} / R^{\prime}\right)\right] T \quad . \tag{A184c}
\end{equation*}
\]

In the brackets of (A 184c), the first term dominates the second one; hence,
\[
\begin{equation*}
t_{1} \cong \partial T / \partial p+\left(R^{\prime} / e^{\prime}\right) \cdot T \tag{A184d}
\end{equation*}
\]
(A 181) and (A 184d) give - for the constraint (A 184b) given above -
\[
b_{3} \cdot t_{1} \cdot\left(1 / R^{2}\right) \cdot d w \cong
\]
\(b_{3}\left[\left(\partial T / \partial e^{\prime}\right) \cdot\left(e^{\prime} / R^{\prime}\right)+T / R^{\prime}\right] \cdot d e l \cdot d A\) 。
\(E(2.1 .2 .2 .2)\) turns to
\(E(2 \cdot 1 \cdot 2.2 .2)=(A)(E) b_{3} \cdot\left[\left(\partial T / \partial e^{\prime}\right) \cdot\left(e^{\prime} / R\right)+T / R\right] \cdot d e^{\prime} \cdot d A \quad\). (A 185)

With (A 168), we have reached \(E(2.1 .2 .2 .1)\). With ( \(\Lambda\) 185) , \(\mathrm{E}(2.1 .2 .2 .2)\) is found. Thus, \(E(2.1 .2 .2)\) is obtained, it is the ain of this submsection, - (soe (A 156)).

It will be of interest to know the order of the amount of \(\mathrm{E}(2.1 .2 .2 .2)\) according to (A 185). Here, a test point \(P\) situated in the high mountains comes into question, only, since, the upper bound of the value of \(\mathrm{E}(2.1 .2 .2 .2)\) should be evaluated. This evaluation of the amount of \(2(2.1 .2 .2 .2)\) for steep cliffs happess by the followine data: \(e\), \(<2\) lang \(x^{2}=1\), \(\mathrm{b}_{3}=0.3,(1 / G) \cdot\left(\partial \mathrm{I} / \partial e^{\prime}\right)=20^{\prime \prime} / 206265{ }^{\circ} \mathrm{F}, \mathrm{T} / \mathrm{G}=0.05 \mathrm{~km}\), and \((e, / R)=(1 \mathrm{~lm} / 6000 \mathrm{~km})\) as an avonaçed value. (A 185 ) yields in a selfexplanatory way,
\((1 / G) \cdot(1 / 2 \pi) \cdot E(2.1 .2,2,2) \stackrel{N}{=} 0.3 \cdot\left[10^{-4} \cdot(1 / 6000)+(0.05 \mathrm{~km} / 6000 \mathrm{kn})\right] \cdot 2 \mathrm{~km} \cdot\) In the brackets, the sccond term dominates.
\((1 / G) \cdot(1 / 2\) ii \() \cdot E(2.1 \cdot 2 \cdot 2.2) \cong 0.3 \cdot(5 / G) \cdot 10^{-5} \cdot 2 \mathrm{~km} \cong 0.5 \mathrm{~cm}\).
(A 186)

The exchance of the \(\underline{\prime}\) potential by the model potential wives here, (A 186), a value of about 5 cm .

In vary rucged mountains only, \((1 / G) \cdot\left(1 / 2 \pi^{\prime}\right) \cdot E(2.1 .2 .2 .2)\) will surmount the value of 1 cm .

In (A 186), the term \(\mathrm{E}(2.1 .2 .2 .2)\) is considered after the multiplication with the factor \((1 / G) \cdot(1 / 2 \pi)\). On the strength of this fact, the anount of 0.5 cm doteireu by (A 1BE) gives directly the full impact which E (2.1.2.2.2) exerts cin the hejght anomaly of the test point \(P\), as can be seen hy the equation (44) of the section 4 and by (A 106). (1/2 \(\pi\) ) \(E(2.1 .2 .2 .2)\) is idertical win the effect that \(E(2.1 .2 .2 .2)\) takes on the 1 value at the test point P.

The equations (A 156), (A 168), and (A 185) yield
\(E(2.1 .2 \cdot 2)=(A)(i i) b_{3} \cdot\left[\left(\partial I / \partial c^{\prime}\right) \cdot\left(e^{\prime} / R\right)+I^{\prime} / R\right] \cdot d e^{\prime} \cdot d A+\)
\(+(A)(E) T \cdot(Z / R) \cdot\left[1 /\left(2 \cdot R \cdot e^{\prime}\right)\right] \cdot d w \quad\) -

\subsection*{14.6.1.2.3. 'The final expression for \(\mathbb{E}(2.1 .2)\)}

The relations (A 141a), (A 155), and (A 187) are combined. They give
\(E(2.1 .2)=(A)(E)\left(\partial T / \partial e^{\prime}\right) \cdot b_{3} \cdot\left(e^{\prime} / R\right) \cdot d e^{\prime} \cdot d A+\)
\(+(A)(E)(T / R) \cdot\left[b_{3}+b_{4}\right] \cdot d e^{\prime} \cdot d A+\)
\(+(A)(E) T \cdot(Z / R) \cdot\left[1 /\left(2 \cdot R \cdot e^{\prime}\right)\right] \cdot d w \quad\),
with
\[
\begin{align*}
& b_{3}=1-\left(1+x^{2}\right)^{-1 / 2}  \tag{A189}\\
& b_{4}=x^{3} \cdot\left(1+x^{2}\right)^{-3 / 2} \cdot(\sin p / 2) \tag{A190}
\end{align*}
\]

\subsection*{14.6.1.3. The final formula for \(\mathbb{E}(2.1)\)}

The expressions (A 112), (A 119), (A 127), and (A 138) lead to the subsequent formula for \(\mathrm{E}(2.1)\),
\(E(2.1)=(A)(E)\left(\partial T / \partial e^{\prime}\right) \cdot\left[b_{1}+b_{3} \cdot\left(e^{\prime} / R\right)\right] \cdot d e^{\prime} \cdot d A+\)
\(+(A)(E) \cdot(T / R) \cdot\left[b_{3}+b_{4}+b_{5}\right] \cdot d e^{\prime} \cdot d A+\)
\(+(A)(E) T \cdot(Z / R) \cdot\left[1 /\left(2 \cdot R \cdot e^{\prime}\right)\right] \cdot d w ;\)
(A 191)
\(b_{1}=\operatorname{arsinh} x-x \cdot\left(1+x^{2}\right)^{-1 / 2}\),
\(b_{3}=1-\left(1+x^{2}\right)^{-1 / 2}\),
\(b_{4}=x^{3} \cdot\left(1+x^{2}\right)^{-3 / 2} \cdot(\sin p / 2)\),
(A 192c)
\(b_{5}=(1 / 2) \cdot x^{2} \cdot\left(1+x^{2}\right)^{-1 / 2}\).
14.6.2. The developments and decompositions of the formula for \(\mathrm{E}(2.2)\)
14.6.2.1. The decomposition of \(\overline{\mathrm{I}}(2.2)\) into expressions in terms of \(\mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{~V}_{3}\)

The equations (A 108) and (A 109) deliver the following expression for E(2.2),
\[
\begin{equation*}
E(2.2)=\iint_{W} T \cdot\left(e^{\prime}\right)^{-2} \cdot\left(X_{1}+X_{2}+X_{3}+X_{4}\right) \cdot d w . \tag{A193}
\end{equation*}
\]

In case, the integration has to cover whole the globe, the integration element is formed by the surface element dw. Here, the subsequent abbreviating form is used again, (A 161a),
\(\iint_{w} \Psi \cdot d w=(A)(E) \Psi \cdot d w\),
where the arguments cover the domain
\[
\begin{array}{ll}
0 \leqslant p & \text { (A 195a) } \\
0 \leqslant A \leqslant 2 \pi, & (A 195 b)
\end{array}
\]

But, if the integration extends only over the near environment of the test point \(P\),
\[
\begin{equation*}
0 \leqslant p \leqslant(1000 \mathrm{kn} / 6000 \mathrm{~km}) \tag{A196}
\end{equation*}
\]
we have, ( \(A\) 125a), instead of the writing style on the right hand side of (A 194), the following form,
\[
(A)(E) \Psi \cdot \mathrm{de}^{\prime} \cdot \mathrm{dA}
\]
(A 193) and (A 194) yield
\[
\begin{equation*}
E(2.2)=(A)(E) T \cdot\left(e^{\prime}\right)^{-2} \cdot\left(X_{1}+X_{2}+X_{3}+X_{4}\right) \cdot d w \tag{A197}
\end{equation*}
\]

As to (A 197), the precise expressions for the \(X_{i}\) terms have to be introduced. They are given by (A 83), (A 84), (A 85), and (A 86). It is convenient to introduce a bifurcation of the sum of the \(X_{i}\) terms; the first branch \(U_{1}\) is free of a horizontal derivation of the \(x\) term, but the second branch \(U_{2}\) involves the slope of tine terrain.
\[
\begin{equation*}
X_{1}+X_{2}+X_{3}+X_{4}=U_{1}+U_{2} \tag{A198}
\end{equation*}
\]

The following developments are self-cxplanatory,
\[
\begin{align*}
U_{1} & =-(\sin p / 2)\left[\left\{1+\left(x^{\prime \prime}\right)^{2}\right\}^{-1 / 2} \cdot X_{1 \cdot 1}-1\right]-\sin p / 2- \\
& -(\cos p / 2) \cdot x^{\prime \prime} \cdot\left\{1+\left(x^{\prime \prime}\right)^{2}\right\}^{-1 / 2} \cdot X_{2 \cdot 1} \cdot  \tag{A199}\\
U_{2} & =-\left\{1+\left(x^{\prime \prime}\right)^{2}\right\}^{-1 / 2} \cdot q \cdot \tan n^{\prime} \cdot  \tag{array}\\
q & =(\cos p / 2) \cdot X_{1 \cdot 1}-(\sin p / 2) \cdot x^{\prime \prime} \cdot X_{2 \cdot 1},  \tag{A200a}\\
X_{1 \cdot 1} & =1+\left(x^{\prime \prime}\right)^{2} \cdot\left[1+\left(x^{\prime \prime}\right)^{2}\right]^{-1} \cdot\{Z /(2 \cdot R)\},  \tag{i200b}\\
X_{2 \cdot 1} & =1-\left[1+\left(x^{\prime \prime}\right)^{2}\right]^{-1} \cdot\{2 /(2 \cdot R)\} \tag{A200c}
\end{align*}
\]

The texn tan \(n^{\prime}\), appearing in (A 200), has the following development, (A 97),
\[
\begin{align*}
\tan n^{\prime} & =-e^{\prime} \cdot(\cos p / 2) \cdot\left[1-Z / R^{\prime}\right] \cdot\left(\partial x / \partial e^{\prime}\right)- \\
& -(\cos p / 2) \cdot\left[1-Z / R^{\prime}\right] \cdot x \tag{A201}
\end{align*}
\]

The relations (A 199), (A 200), and (A 201) imply the following abbreviations, (A 158a),
\[
\begin{array}{ll}
x=2 / e^{\prime}, & (A \quad 202) \\
x^{\prime}=1+x^{2}+2 / R^{\prime}, & (A 20,3) \\
x^{\prime \prime}=x \cdot \cos p / 2, & (A \text { 204) } \\
y^{2}=1+x^{2} & (A-205)
\end{array}
\]

Neglecting relative esrors of the order of \(2 / R^{\prime}\), the term \(x^{\prime}\) changes into these forms,
\[
\begin{align*}
& x^{\prime}=\left(1+x^{2}\right) \cdot\left[1+\left(1+x^{2}\right)^{-1} \cdot\left\{z / R^{\prime}\right\}\right] \\
& x^{\prime} \cong 1+x^{2}=y^{2} \tag{array}
\end{align*}
\]
and with (A 159a),
\[
\begin{aligned}
& 1+\left(x^{\prime \prime}\right)^{2}=\left(1+x^{2}\right) \cdot\left[1-\left(1+x^{2}\right)^{-1} \cdot\left(2 /\left(2 \cdot R^{\prime}\right)\right)^{2}\right], \\
& 1+\left(x^{\prime \prime}\right)^{2}=y^{2}\left[1-y^{-2}\left\{Z /\left(2 \cdot R^{\prime}\right)\right\}^{2}\right]
\end{aligned}
\]
neglecting relative errors of \((2 / R)^{2}\),
\[
\begin{array}{ll}
1+\left(x^{\prime \prime}\right)^{2} \cong y^{2}, & \left(A^{2} 200\right) \\
{\left[1+\left(x^{\prime \prime}\right)^{2}\right]^{n} \cong y^{2 n}} & \left.\quad(i s i v)^{n}\right) \tag{i,x}
\end{array}
\]

The relation (A 201) is introduced into (A 200). The form for in, which is found in this way, is combined with \(\mathrm{U}_{1}\), (A 199). The development for \(U_{1}+U_{2}\) found along these lines is brought into a certain ofder classifying the terms into three types. The first type is fre of the toposraphy, \(V_{1}\). The second type depends on \(Z, x\), and \(x "\), but it deperdss not on the horizontal derivative of \(x_{1}\left(2 . t y p e: V_{2}\right)\). The third type is labelled by \(V_{3}, V_{3}\) is proportional to \(\partial x^{\prime} \partial e^{\prime}\). Thus, (A 198), the following relations are found,
\[
\begin{align*}
& X_{1}+X_{2}+X_{3}+X_{4}=V_{1}+V_{2}+V_{3} \\
& V_{1}=-\sin p / 2 \\
& V_{2}=q_{1} \cdot(\sin p / 2)+q_{2} \cdot(\cos p / 2)+q_{3} \cdot(\cos p / 2)^{2}+q_{4} \cdot(\sin p / 2) \cdot(\cos p / 2) \\
& V_{3}=q_{5} \cdot(\cos p / 2)^{2}+q_{6} \cdot(\sin p / 2) \cdot(\cos p / 2) \tag{A.213}
\end{align*}
\]

Tho dovelopments for \(q_{1}, q_{2}, q_{3}, q_{4}\) have the following exprossions,
\[
\begin{align*}
& q_{1}=-\left[1+\left(x^{\prime \prime}\right)^{2}\right]^{-1 / 2}\left[1-\left\{1+\left(x^{\prime \prime}\right)^{2}\right\}^{1 / 2}+\left(x^{\prime \prime}\right)^{2} \cdot\left\{1+\left(x^{\prime \prime}\right)^{2}\right\}^{-1} \cdot(Z / 2 R)\right] \text {, (A 213a) } \\
& q_{2}=-\left[1+\left(x^{\prime \prime}\right)^{2}\right]^{-1 / 2} \cdot x^{\prime \prime} \cdot\left[1-\left\{1+\left(x^{\prime \prime}\right)^{2}\right\}^{-1} \cdot(2 /(2 \cdot R))\right] \text {, } \\
& \text { (A 213b) } \\
& q_{3}=\left[1+\left(x^{\prime \prime}\right)^{2}\right]^{-1 / 2} \cdot x \cdot q_{3.1} \quad \text {, } \\
& q_{3.1}=\left[i+\left(x^{\prime \prime}\right)^{2} \cdot\left\{1+\left(x^{\prime \prime}\right)^{2}\right\}^{-1} \cdot\{z /(2 \cdot R)\}\right] \cdot[1-(2 / R)] \text {, } \\
& \text { (A 213d) } \\
& q_{4}=-\left[1+\left(x^{\prime \prime}\right)^{2}\right]^{-1 / 2} \cdot x \cdot x^{\prime \prime} \cdot q_{4 \cdot 1} \quad, \\
& \text { (A 213e) } \\
& q_{4.1}=\left[1-\left\{1+\left(x^{\prime \prime}\right)^{2}\right\}^{-1} \cdot\{z /(2 \cdot R)\}\right] \cdot[1-(Z / R)] \text {, }  \tag{A213f}\\
& q_{5}=\left[1+\left(x^{\prime \prime}\right)^{2}\right]^{-1 / 2} \cdot q_{5.1} \cdot e^{\prime} \cdot[1-(2 / R)]\left\{\partial x / \partial e^{\prime}\right\} \text {, } \\
& \text { (A 213g) } \\
& q_{5.1}=1+\left(x^{\prime \prime}\right)^{2} \cdot\left\{1+\left(x^{\prime \prime}\right)^{2}\right\}^{-1} \cdot\{z /(2 \cdot R)\} \text {, } \\
& \text { (A 213h) } \\
& q_{6}=-\left[1+\left(x^{\prime \prime}\right)^{2}\right]^{-1 / 2} \cdot q_{6.1} \cdot e^{\prime} \cdot[1-z / R] \cdot x^{\prime \prime} \cdot\left(\partial x / \partial e^{\prime}\right) \text {, } \\
& \text { (A 213i) } \\
& q_{6.1}=1-\left[1+\left(x^{\prime \prime}\right)^{2}\right]^{-1} \cdot\{z /(2 \cdot R)\} . \tag{A213j}
\end{align*}
\]

The relation (A 209a) is inserted into the expressions of (213a) to (213j).
Hence it follows, ne slecting relative errors of the order of \((Z / R)^{2}\), as in ( 1200 ),
\[
\begin{array}{ll}
q_{1}=-(1 / y) \cdot\left[1-y+\left(x^{\prime \prime}\right)^{2} \cdot(1 / y)^{2} \cdot\{z /(2 \cdot R)\}\right], & (A 214 a) \\
q_{2}=-(1 / y) \cdot x^{\prime \prime} \cdot\left[1-(1 / y)^{2} \cdot\{z /(2 \cdot R)\}\right], & (A 214 b) \\
q_{3}=(1 / y) \cdot x \cdot\left[1+\left(x^{\prime \prime}\right)^{2} \cdot(1 / y)^{2} \cdot\{z /(2 \cdot R)\}\right] \cdot[1-z / R], & (A 214 c) \\
q_{4}=-(1 / y) \cdot x \cdot x^{\prime \prime} \cdot\left[1-(1 / y)^{2} \cdot\{z /(2 \cdot R)\}\right] \cdot[1-z / R] ; & (A 214 d) \\
q_{5}=(1 / y) \cdot e^{\prime} \cdot\left[1+\left(x^{\prime \prime}\right)^{2} \cdot(1 / y)^{2} \cdot\{z /(2 \cdot R)\}\right] \cdot[1-z / R] \cdot\left\{\partial x / \partial e^{\prime}\right\}, & (A 215 a) \\
q_{6}=-(1 / y) \cdot x^{\prime \prime} \cdot e^{\prime} \cdot\left[1-(1 / y)^{2} \cdot\{z /(2 \cdot R)\}\right] \cdot[1-z / R] \cdot\left\{\partial x / \partial e^{\prime}\right\}, & (A 215 b)
\end{array}
\]
\(\mathrm{q}_{5}\) turns to, (A 215a),
\[
\begin{equation*}
q_{5}=(1 / y) \cdot e^{\prime} \cdot\left[1+\left\{-2+\left(x^{\prime \prime}\right)^{2} \cdot(1 / y)^{2}\right\}\{\{z /(2 \cdot R)\}]\left\{\partial x / \partial e^{\prime}\right\}\right. \tag{A216}
\end{equation*}
\]

In the course of the transition from ( A 215 a ) to (A 216), relative errors of the order of \((Z / R)^{2}\), - being about \(10^{-7}\) - , are neglected. The same is valid for the transition from (A 215b) to ( 1 217), described subsequently.
\(q_{6}\) changes into, (A 215b),
\[
q_{6}=-(\cos p / 2) \cdot(1 / y) \cdot x \cdot e^{\prime}\left[1-\left\{2+(1 / y)^{2}\right\} \cdot\{z /(2 R)\}\right] \cdot\left\{\partial x / \partial e^{\prime}\right\} \cdot \quad(A 217)
\]

From now, the \(q_{i}\) values of (A 214a) to (A 217) are used instead of the forms from ( \(\mathrm{A} 213 a\) ) to ( A 213 j ).

Considering the relations (A 213), (A 216), and (A 217), it is possible to distinguish into terms which are free of the factor \(Z / R\) or not. Along these lines, \(V_{3}\) gets the following shape
\[
\begin{aligned}
& V_{3}=(1 / y) \cdot q_{7} \cdot\left(\partial x / \partial e^{\prime}\right)+(1 / y) \cdot e^{\prime} \cdot(\cos p / 2)^{2} \cdot q_{8} \cdot(z / R)\left(\partial x / \partial e^{\prime}\right) \quad \text { (A 218) } \\
& q_{7}=\epsilon^{\prime} \cdot(\cos p / 2)^{2}-e \cdot(\sin p / 2) \cdot(\cos p / 2)^{2} \cdot x \quad \text { (A 218a) } \\
& q_{8}=-1+(1 / 2) \cdot\left(x^{\prime \prime}\right)^{2} \cdot(1 / y)^{2}+(\sin p / 2) \cdot x \cdot\left\{1+(1 / 2) \cdot(1 / y)^{2}\right\} . \quad \text { (A 218b) }
\end{aligned}
\]

The expression ( \(h_{2}\) 218) for \(V_{3}\) can be rearranged according to rising powers of \(x\). Hence, it follows, considering
\[
\begin{array}{cc}
z=x \cdot c^{\prime} \\
V_{3} \cdot y=q_{9}+q_{10}+q_{11}+q_{12}+q_{13} ;
\end{array} \quad \text { (A 219) }
\]
with
\[
\begin{aligned}
& q_{9}=(\cos p / 2)^{2} \cdot e^{\prime} \cdot\left(\partial x / \partial e^{\prime}\right), \\
& q_{10}=-(\sin p / 2) \cdot(\cos p / 2)^{2} \cdot e^{\prime} \cdot x \cdot\left(\partial x / \partial e^{\prime}\right), \\
& q_{11}=-(\cos p / 2)^{2} \cdot e^{\prime 2} \cdot(1 / R) \cdot x \cdot\left(\partial x / \partial e^{\prime}\right), \\
& q_{12}=(\sin p / 2) \cdot(\cos p / 2)^{2} \cdot e^{e^{2}} \cdot(1 / R) \cdot x^{2} \cdot\left[1+(1 / 2) \cdot(1 / y)^{2}\right] \cdot\left(\partial x / \partial e^{\prime}\right),(A 220 c) \\
& q_{12}=(1 / 2) \cdot(\cos p / 2)^{4} \cdot e^{\prime 2} \cdot(1 / R) \cdot x^{3} \cdot\left(1 / y^{\prime}\right)^{2} \cdot\left(\partial x / \partial e^{\prime}\right) \quad, \quad \text { (A 220e) }
\end{aligned}
\]

As already mentioned, - see also (a 214a) to (A 215b) - , the expression
(A 220) for \(V_{3}\) neflects such terms which cause relative errors of the order of \((\pi / R)^{3}\) in \(V_{3}\), ( A 209 ),
\[
\begin{equation*}
(z / R)^{2} \cong 10^{-7} . \tag{A221}
\end{equation*}
\]

The neelection of shich terms is justified.
ifter the expression (A 213) for \(V_{3}\) is brourht into the shape of (is 22.), the expresaion (A 212) for \(V_{2}\) underioes a similar rearrangement, too, at which the coefficients \(q_{1}, q_{2}, q_{3}, q_{4}\) come from (A \(214 a, b, c, d\) ). Herce, the rearmargement of \(V_{2}\) according to rising powers of \(x\) leads to (A 222),
\(\mathrm{V}_{2} \cdot \mathrm{y}=\mathrm{q}_{14}+\mathrm{q}_{15}+\mathrm{q}_{16}+\mathrm{q}_{17}+\mathrm{q}_{18}+\mathrm{q}_{19}+\mathrm{q}_{20}+\mathrm{q}_{21}\).

The terms on the right hand side of (A 222) have the following representations,
\[
\begin{aligned}
& q_{14}=(\sin p / 2) \cdot(y-1), \\
& q_{15}=-(\cos p / 2) \cdot x^{\prime \prime} \text {, } \\
& q_{16}=(\cos p / 2)^{2} \cdot x \text {, } \\
& q_{17}=-(\sin p / 2) \cdot(\cos p / 2) \cdot x \cdot x^{\prime \prime}, \\
& \text { (A 2220) } \\
& q_{18}=-(\sin p / 2) \cdot\left(x^{\prime \prime}\right)^{2} \cdot(1 / y)^{2} \cdot\{z /(2 \cdot r)\} \quad \text { (的 } 2220 \text { ) } \\
& q_{19}=(\cos p / 2) \cdot x^{\prime \prime} \cdot(1 / y)^{2} \cdot\{z /(2 \cdot R)\} \cdot \text { (A 222f) } \\
& q_{20}=(\cos p / 2)^{2} \cdot x \cdot\left\{\left(x^{\prime \prime}\right)^{2} \cdot(1 / y)^{2}-2\right\} \cdot\left\{z /\left(2 \cdot R^{\prime}\right)\right\},(\underset{\sim}{1} 222 ;) \\
& q_{21}=(\sin p / 2) \cdot(\cos p / 2) \cdot x \cdot x^{\prime \prime} \cdot\left\{(1 / y)^{2}+2\right\} \cdot\{z /(2 \cdot R)\} \text { (A 2z2F) }
\end{aligned}
\]

From the terms \(q_{14} \cdots q_{21}\), it serves the purposes to construct the following four couples, regarding (i 2.04), al so,
\[
\begin{aligned}
q_{22} & =q_{14}+q_{17}=(\sin p / 2) \cdot\left\{y-1-\left(x^{\prime \prime}\right)^{2}\right\}, \\
q_{23} & =q_{15}+q_{16}=0 \\
q_{24} & =q_{18}+q_{21}=(\sin p / 2) \cdot(\cos p / 2)^{2} \cdot x^{2} \cdot(2 / R), \\
q_{25} & =q_{19}+q_{20}=(\cos p / 2)^{2} \cdot x \cdot\left\{(1 / 2) \cdot(1 / y)^{2}-1\right\} \cdot(2 / i z)+ \\
& +(1 / 2) \cdot(\cos p / 2)^{4} \cdot x^{3} \cdot(1 / y)^{2} \cdot(z / R)
\end{aligned}
\]

The relations (A 222), (A 223), (A 224), (A 225), ( \(\therefore 2252\) ) can be combined to
\[
v_{2} \cdot y=q_{22}+q_{24}+q_{25}
\]

Returning back to the right hand side of (A 210), which sives the sum of \(V_{1}+V_{2}+V_{3}: V_{1}\) has the development ( \(A\) 211), \(V_{2}\) is represented by (A 225b), (A 223), (A 225), (A 225a), and, finally, \(V_{3}\) has the expression (A 220), ( \(\dot{\operatorname{s} 220 a, b, c, d, e) \text {. }}\)

Thus, returning back to (A 197) and (A 210), obviously, \(\ddot{C}(2.2)\) can be decomposed into 3 terms,
\[
\begin{equation*}
\mathrm{E}(2.2)=E(2.2 .1)+\mathbb{E}(2.2 .2)+E(2.2 .3) \tag{array}
\end{equation*}
\]

With (A 197), (A 210), (A 211), (A 225b), and (A 220), the individual parts on the ri.cht hand side of (A 226) heve the following expressions,
\[
\begin{align*}
& E(2.2 .1)=(A)(E) T \cdot\left(1 / e^{\prime}\right)^{2}, V_{1} \cdot d W,  \tag{A227}\\
& E(2.2 .2)=(A)(E) T \cdot\left(1 / e^{\prime}\right)^{2} \cdot V_{2} \cdot d W,  \tag{A228}\\
& E(2.2 .3)=(A)(E) T \cdot\left(1 / e^{\prime}\right)^{2} \cdot V_{3} \cdot \text { (A 227) }
\end{align*}
\]

\subsection*{14.6.2.2. The formula for \(\mathrm{H}(2.2 .1)\)}

The relations (A 211) and (A 227) yield.
\(E(2.2 .1)=-(A)(E) T \cdot\left(1 / e^{\prime}\right)^{2} \cdot(\sin p / 2) \cdot d w 。\)
(A 230)

Obviously, \((2.2,1)\) is a pure spherical term, it does not imply the topographical heights \(Z\) 。

\subsection*{14.6.2.3. The formula for \(E(2.2 .2)\)}

The treatment of the procedure that shows the way how to compute \(E(2.2 .2)\) is a short work only. The consideration of the streucture of the expression (A 225b) represerting \(V_{2}\) is in the fore, here, (A 223). \(V_{2}\) has the essential property that the amount of it diminishes quickly for growing distances \(e^{\prime}\) from the test point. It diminishes as quick as \(x^{2}\), a fact that will be delivered by the further linee, (A 234), (A 236 ).

For \(e^{\prime}=1000 \mathrm{~km}\), the amount of \(x^{2}\) vill be of the order of about \(10^{-6}\). In the expressions (A 223), (A 225), (A 225a), which appear on the right hand side of (A 225b), it is convenient to undertake some transformations. Considering
\[
\begin{align*}
& \sin p / 2=e^{\prime} /\left(2 \cdot R^{\prime}\right)  \tag{A231}\\
& d w \cong e^{\prime} \cdot d e^{\prime} \cdot d A  \tag{A232}\\
& Z / R^{\prime}=\left(x \cdot e^{\prime}\right) / R^{\prime} \tag{A233}
\end{align*}
\]
and
\[
\begin{equation*}
1+\left(x^{\prime \prime}\right)^{2} \cong y^{2} \tag{A233a}
\end{equation*}
\]
( the latter relation neglects rolative errors of the order of \((Z / R)^{2}\), according to (A 209) ), the expression (A 225b) for \(V_{2}\) in terms of \(q_{22}\), \(q_{24}, q_{25}\) turms to the following representation of \(V_{2}\) in terms of \(q_{26}, q_{27}, q_{28}\), it is self-explanatory,
\[
\begin{equation*}
\left(1 / e^{\prime}\right)^{2} \cdot y \cdot V_{2} \cdot d w=(1 / R) \cdot\left(q_{26}+q_{27}+q_{28}\right) \cdot d e^{r} \cdot d A \tag{A234}
\end{equation*}
\]
here is,
\[
\begin{array}{ll}
q_{26}=(1 / 2) \cdot\left(y-y^{2}\right), & \text { (A 234a) } \\
q_{27}=x^{3} \cdot(\sin p / 2) \cdot(\cos p / 2)^{2}, & (A 234 b) \\
q_{28}=\dot{x}^{2} \cdot(\cos p / 2)^{2} \cdot q_{29} ; & (A 234 c) \\
q_{29}=\left\{(1 / 2) \cdot(1 / y)^{2}-1\right\}+(1 / 2) \cdot x^{2} \cdot(\cos p / 2)^{2} \cdot(1 / y)^{2} \quad & (A 234 d)
\end{array}
\]

The abbreviating symbol \(b_{6}\) is introduced,
\[
\begin{equation*}
b_{6}=(1 / y) \cdot\left(q_{26}+q_{27}+q_{28}\right) ; \tag{A235}
\end{equation*}
\]
(see also (A 343), beine a scries for \(b_{6}\) with rising powcrs of \(x: b_{6}=-(3 / 4) x^{2}+\cdots\) ).
The relations (A 234) and (A 235) are combined with (A 228). Hence it follows
\[
\begin{equation*}
E(2.2 .2)=(A)(H)(I / R) \cdot b_{6} \cdot d e^{\prime} \cdot d A \quad . \tag{A236}
\end{equation*}
\]

The expression for \(b_{6}\) diminishes for growing values of \(e^{\prime}\), as the expression \(x^{2}\), (A 343). Thus, the integral for \(E(2.2 .2)\) must not be integrated for the area \(e^{\prime}>1000 \mathrm{~km}\), (see the integral (i 138) and, at that place, annexed to (A 138), the deliberations about the extension of the integration domain). For the integrations according to (i 236); the coverage of the interval \(0 \leqslant e^{\prime} \leqslant 1000 \mathrm{~km}\) will suffice.

Consequently, the relation ( \(A\) 236) is the final form of \(E(2.2 .2)\), convenient for numerical integrations.

\subsection*{14.6.2.4. The formula for \(\mathrm{E}(2.2 .3\) )}

The integral for \(\mathbb{E}(2.2 .3)\) is given by (A 229). The integrand contains the term \(V_{3}\).

\subsection*{14.6.2.4.1. The decomposition of the formula for \(2(2.2\) )}

According to (A 220), \(V_{3}\) is represented by the sum of 5 terms. (A 220) is introduced into (A 229); wi.th this, the two torms \(q_{10}\) and \(q_{11}\) are combined. Along these lines, \(E(2.2 .3)\) gets a form which consists of the sum o? \(\{\) torms. Hence it follows
\(E(2.2 .3)=E(2.2 .3 .1)+\mathbb{E}(2.2 .3 .2)+E(2.2 .3 .3)+E(2.2 .3 .4)\)
(A 237)
with,
\begin{tabular}{ll}
\(E(2.2 \cdot 3 \cdot 1)=(A)(E) T \cdot\left(1 / e^{\prime}\right)^{2} \cdot(1 / y) \cdot q_{9} \cdot d w\), & (A 237a) \\
\(E(2.2 \cdot 3 \cdot 2)=(A)(E) T \cdot\left(1 / e^{\prime}\right)^{2} \cdot(1 / y) \cdot\left(q_{10}+q_{11}\right) \cdot d w\), & (A 237b) \\
\(E(2.2 \cdot 3 \cdot 3)=(A)(E) T \cdot\left(1 / e^{\prime}\right)^{2} \cdot(1 / y) \cdot q_{12} \cdot d w\), & (A 237c) \\
\(E(2.2 \cdot 3 \cdot 4)=(A)(E) T \cdot\left(1 / e^{\prime}\right)^{2} \cdot(1 / y) \cdot q_{13} \cdot d w\) & \((A 237 d)\)
\end{tabular}

The relatione (A 237) and (A 237a,b,c,d) define the decomposition of E(2.2.3) into 4 parts.

\section*{14.6 .2 .4 .2 . The formula for \(E(2,2.3 .1)\)}
(A 237a) and (A 220a) give the expression for \(E(2.2 .3 .1)\),
\(\mathbb{E}(2 \cdot 2 \cdot 3 \cdot 1)=(A)(E) T \cdot\left(1 / e^{\prime}\right) \cdot(\operatorname{cosp} p / 2)^{2} \cdot(1 / y) \cdot\left(\partial x / \partial e^{\prime}\right) \cdot d w\)
(A 238)

In the main, the integrand of (A 238) is linear in \(x\). Substantially, (A 238) is not square in \(x\). Thus, we have to take into account a global extension of the integration area. The independent variable \(e^{\prime}\) is replaced by \(p\). In (A 238), by means of (A 174), the derivative \(\partial x / \partial e^{\prime}\) is replaced by \(\partial \mathrm{x} / \partial \mathrm{p}\). A short rearrangement follows. Hence, from (A 238),
\(E(2 \cdot 2 \cdot 3 \cdot 1)=(A)(E) T \cdot(1 / 2) \cdot(\cot p / 2) \cdot(1 / R)^{2} \cdot(1 / y) \cdot(\partial x / \partial p) \cdot d w\)

The term \(\partial \mathrm{x} / \partial \mathrm{p}\) variatcs considerably. Therefore, it is recomended to replace this term by \(\partial \mathbb{T} / \partial p\), which variates within narrov limits, only. Following up this aim, the integration of (A 239) has to happen by the method of the integration by parts. In this context, dw has to be expressed by the differentials \(d p\) and \(d A\). With
\(d w=r^{\prime 2} \cdot(\sin p) \cdot d p \cdot d A \quad\),
the relation (A 239) turns to
\(E(2 \cdot 2 \cdot 3 \cdot 1)=(A)(E) T \cdot(\cos p / 2)^{2} \cdot(1 / y) \cdot(\partial x / \partial p) \cdot d p \cdot d A \cdot\)

The integral on the right hand side of (A 240a) will be treated later on, by the method of the integration'by parts with the argument \(p\) ranging from \(0^{\circ}\) to \(180^{\circ}\). In this context, the two functions \(a_{7}\) and \(b_{7}\) are concerned. The product
\[
\begin{equation*}
a_{7} \cdot\left(\partial b_{7} / \partial p\right) \tag{A240b}
\end{equation*}
\]
is defined to be the integrand of (A 240a). Hence, it follows
\[
\begin{align*}
& \begin{aligned}
a_{7} & =T(\cos p / 2)^{2} \\
\partial a_{7} / \partial p & =(\partial T / \partial p) \cdot(\cos p / 2)^{2}-T \cdot(1 / 2) \cdot \sin p \quad,
\end{aligned}  \tag{A242}\\
& \text { (A 241) } \\
& \partial a_{7} / \partial \mathrm{p}=(\partial 1 / \partial \mathrm{p}) \cdot(\cos \mathrm{p} / 2)-1 \cdot(1 / 2) \cdot \sin \mathrm{p} \quad \text {, } \\
& \partial b_{7} / \partial p=(1 / y) \cdot(\partial x / \partial p) \quad,  \tag{A243}\\
& \mathrm{b}_{7}=\operatorname{arsinh} x ;  \tag{array}\\
& b_{7}=x-(1 / 6) \cdot x^{3}+\cdots, \quad x^{2}<1 . \tag{A244a}
\end{align*}
\]

The last line corroborates the fact that the integrand on the right hand side of (A 240a) is linear in \(x\), in the main.

\section*{14.6 .2 .4 .3 . The formula for \(E(2.2 .3 .2)\)}
\(E(2.2 .3 .2)\) is defined by (A 237b).
Here is, (A 220b) (A 220c),
\((1 / y) \cdot\left(q_{10}+q_{11}\right)=-(3 / 2) \cdot(\cos p / 2)^{2} \cdot\left(e^{\prime}\right)^{2} \cdot(1 / R) \cdot(1 / y) \cdot x \cdot\left(\partial x / \partial e^{\prime}\right) \quad\).
(A 244b)

The above expression ( \(A 244\) b) is square in the height \(Z\), since the product
\[
x \cdot\left(\partial x / \partial e^{\prime}\right)
\]
appears. Thus, in the integration, the argument \(e^{\prime}\) ranges from 0 to 1000 lm , only. In this area, a plane co-ordinate system is an adequate approximation. Consequently,
\[
\mathrm{dw} \cong e^{\prime} \cdot d e^{\prime} \cdot \mathrm{dA} \quad, \quad(\therefore 244 \mathrm{c})
\]
\(\left(1 / e^{\prime}\right)^{2} \cdot d w \cong\left(1 / e^{\prime}\right)^{2} \cdot 2 \cdot R^{\prime} \cdot(\sin p / 2) \cdot d c^{\prime} \cdot d A \cdot\)

The combination of ( \(A\) 244b) and ( \(A\) 244d) yiclds
\(\left(1 / e^{1}\right)^{2} \cdot d w \cdot(1 / y) \cdot\left(q_{10}+q_{11}\right)=\)
\(=-3 \cdot(\sin p / 2) \cdot(\cos p / 2)^{2} \cdot(1 / y) \cdot x \cdot\left(\partial x / \partial c^{\prime}\right) \cdot d e^{\prime} \cdot d A \quad \cdot\)
( \(\dot{\sin } 244 \mathrm{e}\) )

Hence,
\(E(2 \cdot 2 \cdot 3 \cdot 2)=(A)(E)(-3) \cdot T \cdot(\sin p / 2) \cdot(\cos p / 2)^{2} \cdot(1 / y) \cdot x \cdot\left(\partial x / \partial e^{\prime}\right) \cdot d e^{\prime} \cdot d A \cdot\) (A 245)
Here, the integration by parts has the following substitutions (regarding the relation (A 173) for \(d p / d \epsilon^{\prime}\) ),
\[
\begin{equation*}
a_{8}=-3 \cdot T \cdot(\sin p / 2) \cdot(\cos p / 2)^{2} \tag{A246}
\end{equation*}
\]
\(\partial a_{8} / \partial e^{\prime}=-3 \cdot\left(\partial T / \partial e^{\prime}\right) \cdot(\sin p / 2) \cdot(\cos p / 2)^{2}-\)
\[
-3 \cdot T \cdot\left\{\partial\left[(\sin p / 2) \cdot(\cos p / 2)^{2}\right] / \partial p\right\} \cdot\left(d p / d e^{\prime}\right)
\]
(A 24.6a).

For the term in the parentheses \{\}, of the above equation, tho followine rearrangement is self-explanatory,
\(\partial\left\{(\sin \mathrm{p} / 2) \cdot(\cos \mathrm{p} / 2)^{2}\right\} / \partial \mathrm{p}=\)
\(=(1 / 2) \cdot(\cos \mathrm{p} / 2) \cdot(\cos \mathrm{p} / 2)^{2}-(\sin \mathrm{p} / 2) \cdot 2 \cdot(\cos \mathrm{p} / 2) \cdot(\sin \mathrm{p} / 2) \cdot(1 / 2)=\)
\(=(1 / 2) \cdot(\cos \mathrm{p} / 2)^{3}-(\sin \mathrm{p} / 2)^{2} \cdot(\cos \mathrm{p} / 2)=\)
\(=(\cos p / 2) \cdot\left\{(1 / 2) \cdot(\cos p / 2)^{2}-(\sin p / 2)^{2}\right\}=\)
\(=(\cos p / 2) \cdot(1 / 2) \cdot\left\{1-3 \cdot(\sin p / 2)^{2}\right\}\).
With (i 173), the second term on the right hand side of (i 246a) turns to
\[
-(3 / 2) \cdot(T / R) \cdot\left\{1-3 \cdot(\sin p / 2)^{2}\right\} \quad \text {. }
\]
( \(A\) 246b) is introduced into (A 246a), hence it follows
\(\partial a_{3} / \partial e^{\prime}=-3 \cdot\left(\partial T^{\prime} / \partial e^{\prime}\right) \cdot(\sin p / 2) \cdot(\cos p / 2)^{2}-(3 / 2) \cdot(1 / R) \cdot\left\{1-3 \cdot(\sin p / 2)^{2}\right\} \cdot(A 24 T)\) Further, regarding (i 245),
\[
\partial b_{3} / \partial e^{\prime}=(1 / y) \cdot x \cdot\left(\partial x / \partial e^{\prime}\right), \quad \text { (i 2.48) }
\]
\[
\begin{equation*}
b_{3}=y-1 ; \tag{array}
\end{equation*}
\]
the series development for \(b_{3}\) is
\[
\begin{equation*}
b_{0}=(1 / 2) \cdot x^{2}-(1 / 0) \cdot x^{4}+-\cdots, x^{2}<1 \tag{A219a}
\end{equation*}
\]
(A \(: 49 a\) ) corroborates that the terin \(b_{8}\) diminishes as quick as \(x^{2}\),
for rising e' values.

\subsection*{14.6.2.4.1. The formula for \(2(2.2 \cdot 3.3)\)}
\(\mathbb{E}(2.2 .3 .3)\) has the expression of (A 237 c ). The \(t \in \mathrm{rm}_{12}\) comes from (A 220d). (A 220d) and (a 244d) are combined to
\(\left(1 / \epsilon^{\prime}\right)^{2} \cdot(1 / y) \cdot 112 \cdot d w=\)
\(=2 \cdot(\sin p / 2)^{2} \cdot(\cos p / 2)^{2} \cdot x^{2} \cdot(1 / y) \cdot\left\{1+(1 / 2) \cdot(1 / y)^{2}\right\} \cdot\left(\partial x / \partial e e^{\prime}\right) \cdot d e \cdot d A \quad\) (A 249b)
Since (A 249b) implies the term \(x^{2}\), the intcgration must not ranee further than to \(e^{\prime}=1000 \mathrm{~km} .\left(\begin{array}{l}\text { 2 237c }\end{array}\right)\) and (A 249b) lead to
\(\mathbb{E}(2 \cdot 2 \cdot 3 \cdot 3)=(A)(N) I^{\prime} \cdot(1 / 2) \cdot(\sin p)^{2} \cdot(1 / y) \cdot\left\{1+(1 / 2) \cdot(1 / y)^{2}\right\} \cdot x^{2} \cdot\left(\partial x / \partial e^{\prime}\right) \cdot d e^{\prime} \cdot d \hat{A} \cdot\)
(A 250)

Here, the integration by parts makes use of the following substitutions:
\[
\begin{equation*}
a_{9}=(1 / 2) \cdot I \cdot(\sin p)^{2} ; \tag{array}
\end{equation*}
\]
in the derivation of \(a_{\rho}\) with regard to \(e^{\prime}\), ( \(A 251\) ), the following expression appears, obviously, (see (A 173)),
\(\left\{\partial(\sin p)^{2} / \partial p\right\} \cdot\left(d p / d e^{t}\right)=\)
\(=2 \cdot(\sin p) \cdot(\cos p) \cdot\{1 /(R \cdot \cos p / 2)\}=(4 / R) \cdot(\sin p / 2) \cdot \cos p \cdot\)
Hence it follows,
\(\partial a_{o} / \partial e^{\prime}=\left(\partial T / \partial e^{\prime}\right) \cdot(1 / 2) \cdot(\sin p)^{2}+(T / R) \cdot 2 \cdot(\sin p / 2) \cdot \cos p \cdot\)

The rest of the interrand of \(\mathrm{i}(2.2 .3 .3)\), (A 250), left over by the term ag, is
\[
\begin{equation*}
\partial b g / \partial e^{\prime}=\left\{(1 / y) \cdot x^{2}+(1 / 2) \cdot(1 / y)^{3} \cdot x^{2}\right\} \cdot\left(\partial x / \partial e^{\prime}\right) \tag{array}
\end{equation*}
\]

The interration gives
```

$b_{9}=(1 / 2) \cdot x^{3} \cdot(1 / y) \quad$,
it has the series developinent

$$
\begin{equation*}
b_{g}=(1 / 2) \cdot x^{3}+\cdots \cdots, \quad x^{2}<1 \tag{3}
\end{equation*}
$$

The amount of $b_{9}$ diminishes very quickly for growiñ values of $e^{\prime}$. Thus, the Iimitation of the inteeration to the cap of $\mathrm{e}^{\prime}<1000 \mathrm{~km}$ is justivicid, (A 250) .

### 14.6.2.4.5. The formula for $2(2.2 .3 .4)$

The term $\mathrm{E}(2.2 .3 .4)$ is represented by (A 237d). The term $q_{13}$ appearing in (A 237d) has the expression ( $A 200$ ).
Consequently, (A 244d),
$\left(1 / e^{\prime}\right)^{2} \cdot(1 / y) \cdot q_{13} \cdot d w=$
$(\sin \mathrm{p} / 2) \cdot(\cos \mathrm{p} / 2)^{4} \cdot(1 / \mathrm{y})^{3} \cdot \mathrm{x}^{3} \cdot\left(\partial \mathrm{x} / \partial \mathrm{e}^{\prime}\right) \cdot \mathrm{de} \cdot \mathrm{dA}$.
(A 254b)

Hence it follows,
$E(2 \cdot 2 \cdot 3 \cdot 4)=(A)(E) T \cdot(\sin p / 2) \cdot(\cos p / 2)^{4} \cdot(1 / y)^{3} \cdot x^{3} \cdot\left(\partial x / \partial e^{\prime}\right) \cdot d e \cdot \cdot d A \cdot(A 25 \bar{\prime})$

Here, the integration by parts comes about by the following substitutione

$$
\begin{equation*}
a_{10}=T \cdot(\sin p / 2) \cdot(\cos p / 2)^{4}, \tag{A256}
\end{equation*}
$$

In the derivation of $a_{10}$ with regard to $e^{\prime}$, the following expression is needed, (A 173),
$\left[\partial\left\{(\sin \mathrm{p} / 2) \cdot(\cos \mathrm{p} / 2)^{4}\right\} / \partial \mathrm{p}\right] \cdot\left(\mathrm{dp} / \mathrm{de} \mathrm{e}^{\prime}\right)=\mathrm{q}_{30}\{1 /(\mathrm{R} \cdot \cos \mathrm{p} / 2)\}$,
with

$$
q_{30}=(1 / 2) \cdot(\cos p / 2) \cdot(\cos p / 2)^{4}+(\sin p / 2) \cdot 4 \cdot(\cos p / 2)^{3} \cdot(-\sin p / 2) \cdot(1 / 2)
$$

Thus,

$$
\begin{aligned}
& q_{30}\{1 /(R \cdot \cos p / 2)\}=(1 / R) \cdot\left\{(1 / 2) \cdot(\cos p / 2)^{4}-2(\sin p / 2)^{2} \cdot(\cos p / 2)^{2}\right\}= \\
= & (1 / R) \cdot(1 / 2) \cdot\left\{(\cos p / 2)^{4}-(\sin p)^{2}\right\}
\end{aligned}
$$

Hence, it follows by the derivation of (A 256)
$\partial a_{10} / \partial c^{\prime}=\left(\partial \mathrm{i} / \partial \mathrm{e}^{\prime}\right) \cdot(\sin \mathrm{p} / 2) \cdot(\cos \mathrm{p} / 2)^{4}+\{T /(2 \cdot R)\} \cdot\left\{(\cos \mathrm{p} / 2)^{4}-(\sin p)^{2}\right\} \cdot(\mathrm{A} 257)$
The rest of the integrand of $E(2.2 .3 .4)$, left over by the term $a_{10}$, has the followine shape,

$$
\begin{equation*}
\partial b_{10} / \partial e^{\prime}=(1 / y)^{3} \cdot x^{3} \cdot\left(\partial x / \partial e^{\prime}\right) \tag{A258}
\end{equation*}
$$

Whe integration of (A 258) gives

$$
\begin{equation*}
b_{10}=y+(1 / y)-2 \tag{A259}
\end{equation*}
$$

it has the series development

$$
\begin{equation*}
b_{10}=(1 / 4) \cdot x^{4}-+\cdots, x^{2}<1 . \tag{A259a}
\end{equation*}
$$

${ }^{b} 10$ implies the term $x^{4}$. Thus, the integration range does not need to surpass an upper bound of $e^{\prime}=1000 \mathrm{~km}$.

### 14.6.2.4.6. The integration bil parts

Now, the integration by parts of the intograls for $\mathrm{E}(2.2 .3 .1)$, $\ddot{C}(2.2 .3 .2), E(2.2 .3 .3)$, and $\mathscr{E}(2.2 .3 .4)$ is discussed, (A 239) (A 245) (A 250) (is 255). If the jntegration ranges from $p=0^{\circ}$ to $p=180^{\circ}$, the spinerical distance $p$ serves as the independent variable argument. If the integration procedure covers only the cap around the test point $P$ ot. 1000 km radius, the length $e^{\prime}$ of the chord is the independent variable argument.

In the course of these different examples of an integration by parts, now to be developed, in the first stop, the integration over the values of the azimuth A is not considered. This integration is considered in the succeeding second step, later on. During the first step, it is split off.

Considering (A 194) and (A 196a), the symbolic relation (A 260) is introduced,
$\int_{A}^{2 \pi} d A=(A) \cdot d A ;$ or, $\quad \int_{A}^{2 \pi} \Gamma \cdot d A=(A) \Gamma \cdot d A \cdot \quad(A 260)$

The four exprossions $E(2.2 .3 . i)$, (with $i=1,2,3,4)$, are represented by four integrals. If the integration over the azimuth $A$ is split off, the remaining integrals $W(i)$, $(i=1,2,3,4)$, have the integration with regard to $p$ or $e^{\prime}$, only. Hence, the expressions for $E(2.2 .3 . i)$ can be written in the following shape, (A 260), (A 240a)(A 245)(A 250)(A 255),
$E(2 \cdot 2 \cdot 3 \cdot 1)=(A) W(1) \cdot d A \quad$,
$E(2.2 .3 .2)=(A) W(2) \cdot d A \quad$,
$E(2.2 .3 .3)=(A) \quad \mathbb{Y}(3) \cdot d A$,
$E(2.2 \cdot 3.4)=(A) \quad W(4) \cdot d A \quad$
(A 261)
(A 262)
(A 263)
(A 264)

The procedure of the integration by parts is governed by the following relation, it is well-known from the text-books,
$\int u \cdot v^{2} \cdot d x=u v-\int v \cdot u^{\prime} \cdot d x \quad 0$
(A 270)
(A 271)
$w(1)=w(1.1)+w(1.2)$,
$W(1,1)=\left|a_{7} \cdot b_{7}\right|_{p=0}^{\pi} \quad$,
(A 271a)
(A 2.71b)
(A 272)
(A 272a)
(A 272b)
(A 273)
$W(3.1)=\left|a_{9} \cdot b_{9}\right|_{e^{\prime}=0}^{2 R^{i}}$,
(A 273a)
$W(3.2)=-(E) b_{g} \cdot\left(\partial a_{g} / \partial e^{i}\right) \cdot d e^{\rho} ;$
(A 273b)
$W(4)=W(4 \cdot 1)+W(4.2)$,
(A 274)
$W(4.1)=\left|a_{10} \cdot b_{10}\right|_{e^{\prime}=0}^{2 R^{\prime}}$,
$W(4.2)=-(E) b_{10} \cdot\left(\partial a_{10} / \partial e^{\prime}\right) \cdot d \varepsilon^{\prime} \cdot$
(A 274b)
At first, $W(1)$ is considered, (A 271).
The formula for $W(1.1)$ contains the term $\left(a_{7} \cdot b_{7}\right)$ for the upper bound $p=180^{\circ}$. The cosine function $(\cos p / 2)$ is equal to zero for $p=180^{\circ}$. Thus, $a_{7}$ is equal to zero at the upper bound, also.
Consequently, $\left(a_{7} \cdot b_{7}\right)$ is equal to zero for $p=180^{\circ}$. Hence, it follows
$W(1.1)=-\left\{T \cdot(\cos p / 2)^{2} \cdot \operatorname{arsinh} x\right\}_{p=0} \quad$.
(A 275)

The term on the right hand side of (A 275) necesisitates special deliberations, similar as (A 121) and (A 122). These deliberations are governed by three facts. At first, $\left\{T \cdot(\cos p / 2)^{2}\right\}$ tends to the constant value ( $T)_{P}$, the value of $T$ at the test point $P$, if $p$ tends to zero. Secondly, the function arsinh $X$ is an odd function,

$$
\operatorname{arsinh} \quad x=-\quad \text { arsinh }(-x) \quad .
$$

Thirdly, the expression $\quad$ tends to the value of the slope of the terrain in the azimuth $A$, at the place of the test point $P$, if $p$ tends to zero.

Thus, (A 275),
$W(1.1)=-(T)_{P} \cdot\{\operatorname{arsinh} x\}_{p \rightarrow 0}$.
And, considering (A 122),
$W(1.1)=-(T)_{P} \cdot \operatorname{arsinh}\left(n_{1} \cdot \cos A+n_{2} \cdot \sin A\right) \quad$.
$n_{1}$ and $n_{2}$ are constant values. Before the background of (A 276), the following equations are important,

$$
\begin{array}{ll}
\cos \left(A+180^{\circ}\right)=-\cos A & (A 278 a) \\
\sin \left(A+180^{\circ}\right)=-\sin A & (A 278 b)
\end{array}
$$

Consequently, regarding. (A 276),
$\operatorname{arsinh}\left(n_{1} \cdot \cos A+n_{2} \cdot \sin A\right)=$
$=-\operatorname{arsinh}\left(n_{1} \cdot \cos \left(A+180^{\circ}\right)+n_{2} \cdot \sin \left(A+180^{\circ}\right)\right) \quad$.

Thus, (A 278) (A 279), if $c$ is tho value of $\operatorname{li}(1.1)$ for the azimuth $A$, then, - c is the value of $W(1.1)$ for the azimuth $A+180^{\circ}$. Consequently, it is obvious that. the integration of the expression (A 278) over the full range of the azimuth $A,\left(0 \leqslant A \leqslant 360^{\circ}\right)$, will lead to the following relation, (A 261),
(A) $i W(1.1) \cdot d A=0$.
(A 280) is right, because the $\because(1.1)$ value for the azimuth $A$ and for the azimuth $\mathrm{A}+180^{\circ}$ will cancel each other.

Hence, the expression for $\mathbb{E}(2.2 .3 .1)$ given by ( $A 261$ ) turns to ( $A$ 281), regarding (A 271) (A 280) (A 271b) (A 244) (A 242),
(A) $W(1) \cdot d A=(A) W(1)_{0} \cdot d A+(A) W(1)_{00} \cdot d A$,
(A 281)
with the following two equations (A 281a)(A 281b), integrating over whole the globe,
$W(1)_{0}=-(E)(\partial T / \partial p) \cdot(\cos p / 2)^{2} \cdot(\operatorname{arsinh} x) \cdot d p \quad, \quad$ (A 281a)
$W(1)_{0 O}=(E)(1 / 2) \cdot T \cdot(\sin p) \cdot(\operatorname{arsinh} x) \cdot d p \quad$.
(A 281b)

Now, W(2) is considered, (A 272).
The formula (A 272a) for $W(2.1)$ contains the product ( $a_{8} \cdot b_{8}$ ) for the argument $e^{\prime}=0$, (i.e. $p=0$ ). For $p=0, b_{8}$ is finite, (A 249);(star-shaped Earth). For $p=0, a_{8}$ is equal to zero, since $\sin p / 2$. is equal to zero in this case, (A 246). Thus, the product $\left(a_{8} \cdot b_{8}\right)$ is equal to zero, for $e^{\prime}=0$. For $e^{\prime}=2 \cdot R^{\prime}$ or for $p=180^{\circ}, b_{8}$ is finite, ( $A$ 249). Further, for $p=180^{\circ}, a_{8}$ is equal to zero, since $\cos p / 2$ is equal to zero in this case, ( $A 246$ ). Thus, the product $\left(a_{8} \cdot b_{8}\right)$ is equal to zero also for the upper bound $e^{\prime}=2 \cdot R^{\prime}$ 。

Consequently,

$$
\left[a_{8}: b_{8}\right]_{e^{\prime}=0}=\left[\begin{array}{lll}
a_{8} & \cdot & b_{8} \tag{A282}
\end{array}\right]_{e^{\prime}=2 R^{\prime}}=0
$$

Thus,

$$
\begin{equation*}
W(2.1)=0 \tag{A283}
\end{equation*}
$$

Hence, the relations (A 272) and (A 272b) lead to
(A) $W(2) \cdot d A=(A) W(2)_{0} \cdot d A+(A) W(2)_{00} \cdot d A \quad$,
(A 284)
with, (A 24.7) (A 249),
$W(2)_{0}=(E) 3 \cdot\left(\partial T / \partial e^{\prime}\right) \cdot(\sin p / 2) \cdot(\cos p / 2)^{2} \cdot(y-1) \cdot d e^{\prime}$,
$W(2)_{00}=(E)(3 / 2) \cdot(T / R) \cdot\left\{1-3 \cdot(\sin p / 2)^{2}\right\} \cdot(y-1) \cdot d e^{\prime}$.
The integration described by (A 284) covers the spherical cap defined by $e^{\prime}<1000 \mathrm{~km}$, only.

The next step is the consideration of $W(3)$, (A 273). According to (A 273a), the expression for $W(3.1)$ is governed by the product $a_{9} \cdot b_{9}$. $\mathrm{b}_{9}$ has always finite amounts, (A 254). At the lower bound, at $e^{\prime}=0$ or $p=0$, $a_{9}$ is equal to zero; it is evidenced from (A 251), since we have the fact: $\sin p=0$ if $p=0$. At the upper bound, at $e^{\prime}=2 \cdot R^{\prime}$ or $p=180^{\circ}$, the same property is found for $a_{9}$ : namely $a_{9}=0$. Thus, for a star-shaped Earth, being an Earth of finite slopes of the terrain,
$\left[a_{9} \cdot b_{9}\right]_{e^{\prime}=0}=\left[\begin{array}{lll}a_{9} & b_{9}\end{array}\right]_{e^{\prime}=2 R^{\prime}}=0$.

Hence it follows, (A 273a),

$$
\begin{equation*}
w(3.1)=0 \text {. } \tag{A286}
\end{equation*}
$$

Finally, the relations (A 273) and (A 273b) yield
(A) $W(3) \cdot d A=(A) W(3)_{0} \cdot d A+(A) W(3)_{00} \cdot d A$,
with, (A 252) (A 254),
$W(3)_{0}=-(E)\left(\partial T / \partial e^{\prime}\right) \cdot(1 / 4) \cdot(\sin p)^{2} \cdot x^{3} \cdot(1 / y) \cdot d e^{\prime}, \quad(A 287 a)$
$W(3)_{00}=-(E)(T / R) \cdot(\sin p / 2) \cdot(\cos p) \cdot x^{3} \cdot(1 / y) \cdot d e^{\prime} \quad(A 287 b)$
The terms $x^{3}$ in the expressions for $W(3)_{0}$ and (3) 00 diminish rapidly for growing values of $e^{\prime}$. For $e^{\prime}=1000 \mathrm{~km}$ and $Z=2 \mathrm{~km}$, $x$ has the amount $2 \cdot 10^{-3}$. Thus, $x^{3}$ is not more than $8 \cdot 10^{-9}$. Consequently, it is out-of-place here to think on an integration over distances e' of more than 1000 km , in the relation (A 287).

As the last one of the $W(i)$ values, for $i=4$, the term $W(4)$ has to be developed into a shape convenient for routine calculations, substituting the horizontal derivatives of $x$ by the derivatives of the two-dimensional surface values $T$ of the perturbation potential. The meaning of $W(4)$ is explained by (A 274), (A 274a), and (A 274b). The first part in the expression for $W(4)$ is $W(4.1)$, (A 274). This term is defined by the product $a_{10} \cdot b_{10}$. The amount of $b_{10}$ is always finite, for a star-shaped Earth, (A 259). At the lower bound of (A 274a), at $e^{\prime}=0$ or at $p=0$, the amount of $a_{10}$ is equal to zero; it is evidenced from (A 256), since:( $\sin p / 2$ ) $=0$ if $p=0$.
At the upper bound, for $e^{\prime}=2 \cdot R^{\prime}$ or for $p=180^{\circ}$, the amount of $\cos \mathrm{p} / 2$ is equal to zero. Hence, the relation (A 256) leads to the fact that $a_{10}$ is equal to zero at the upper bound, also. Consequently,

$$
\begin{equation*}
\left[a_{10} \cdot b_{10}\right]_{e^{\prime}=0}=\left[a_{10} \cdot b_{10}\right]_{e^{\prime}=2 R^{\prime}}=0 \tag{A288}
\end{equation*}
$$

The equations (A 288), (A 274a), and (A 274) yield

$$
\begin{equation*}
7(4.1)=0 \text {, } \tag{A289}
\end{equation*}
$$

and

$$
\begin{equation*}
W(4)=W(4.2) \tag{A289a}
\end{equation*}
$$

Hence it follows
(A) W(4) $\cdot \mathrm{dA}=(\mathrm{A}) W(4)_{0} \cdot \mathrm{dA}+(\mathrm{A}) W(4)_{00} \cdot \mathrm{dA}$,
with, (A 274b), (A 289a), (A 259), (A 257),
$W(4)_{0}=-(E)\left(\partial T / \partial e^{\prime}\right) \cdot(\sin p / 2) \cdot(\cos p / 2)^{4} \cdot\{y+(1 / y)-2\} \cdot d e^{\prime}$,
(A 290a)
$W(4)_{00}=-(E)(1 / 2) \cdot(T / R) \cdot\left\{(\cos p / 2)^{4}-(\sin p)^{2}\right\} \cdot\{y+(1 / y)-2\} \cdot d e^{\prime} \cdot$
(A 290b)

### 14.6.2.4.7. The final formula for the calculation of. $\mathrm{E}(2.2 .3)$

$E(2.2 .3)$ has the expression of a sum of 4 constituents, (A 237).
The detailed formulas for the calculation of these individual 4 constituents can be taken from the above derivations. They are obtained in the following way.

```
E(2.2.3.1): By (A 261), (A 281) (A 281a) (A 281b).
E(2.2.3.2): By (A 262), (A 284) (A 284a) (A 284b).
E(2.2.3.3): By (A 263), (A 287) (A 287a) (A 237b).
E(2.2.3.4): By (A 264), (A 290) (A 290a) (A 290b).
```

From the above sources, the comprehensive expression for the numericsl calculation of the amount of $\mathrm{E}(2.2 .3)$ is found. It gives this amount in terms of $\partial T / \partial p, \partial T / \partial e^{\prime}$, and $T$. The topography of the Earth comes from the 4 terms $b_{7}, b_{8}, b_{9}, b_{10}$; ( A 244 ) ( A 249 ) ( A 254 ) ( A 259 ). Hence it follows,
$E(2.2 .3)=$
$=(A)(\mathbb{Z})(-\partial T / \partial p) \cdot(\cos p / 2)^{2} \cdot b_{7} \cdot d p \cdot d A+$
$+(A)(E)(1 / 2) \cdot q \cdot(\sin p) \cdot b_{7} \cdot d p \cdot d A+$
$+(A)(E) 3 \cdot\left(\partial \mathrm{~F} / \partial \mathrm{e}^{\prime}\right) \cdot(\sin \mathrm{p} / 2) \cdot(\cos \mathrm{p} / 2)^{2} \cdot \mathrm{~b}_{8} \cdot \mathrm{de} \cdot \mathrm{dA}+$
$+(i)(B)(3 / 2) \cdot(T / R) \cdot\left\{1-3 \cdot(\sin p / 2)^{2}\right\} \cdot b_{8} \cdot d e^{t} \cdot d A+$
$+(A)(B)(-1 / 2) \cdot\left(\partial T / \partial c^{r}\right) \cdot(\sin p)^{2} \cdot b_{g} \cdot d e^{\prime} \cdot d A+$
$+(A)(-2) \cdot(T / R) \cdot(\sin p / 2) \cdot(\cos p) \cdot b_{9} \cdot d e \cdot \cdot d A+$
$+(A)(E)\left(-\partial T / \partial e^{\prime}\right) \cdot(\sin p / 2) \cdot(\cos F / 2)^{4} \cdot b_{10} \cdot d e^{\prime} \cdot d A+$
$+(A)(E)(-1 / 2) \cdot(T / R) \cdot\left\{(\cos p / 2)^{4}-\left(\sin 1,,^{2}\right\} \cdot b_{10} \cdot d \epsilon^{\prime} \cdot d A \cdot\right.$

As to the integrations on the right hand side of (A 291), in the first and second term, the integration has to cover whole the globe. But, from the 3. to the 8. term, the integrations can be limited to the interval $0 \leqslant e^{\prime} \leqslant 1000 \mathrm{~km}$.

### 14.6.2.5. The final shape of the formula for the computation of $E(2.2)$

The relation (A 226) represents the amount of $\mathrm{E}(2.2)$ as the surn of three constituents. $\mathrm{E}(2.2 .1)$ comes from (A 230). $\mathbb{E}(2.2 .2)$ is obtained from (A 236). $E(2.2 .3)$ has the expression (A 291). It is

```
E(2.2.1) = (A) (E) (-T)\cdot(1/e')}\mp@subsup{)}{}{2}\cdot(\operatorname{sin}\textrm{p}/2)\cdot\textrm{dw}
```

and

$$
\begin{equation*}
E(2.2 .2)=(A)(E)(T / R) \cdot b_{6} \cdot d e^{\prime} \cdot d A_{0} \tag{is293}
\end{equation*}
$$

Hence, (A.226),
$\mathbb{E}(2.2)=$
$=(A)(E)(-T) \cdot\left(1 / c^{1}\right)^{2} \cdot(\sin p / 2) \cdot d w+$
$+(A)(E)\{-\partial T / \partial(R p)\} \cdot(1 / R) \cdot(\cos p / 2)^{2} \cdot(1 / \sin p) \cdot b_{7} \cdot d w+$
$+(A)(E)(T / R) \cdot\{1 /(2 R)\} \cdot b_{7} \cdot d w+$
$+(A)(\mathbb{B})\left(\partial T / \partial e^{\prime}\right) \cdot u_{1} \cdot d e^{\prime} \cdot d A+$
$+(A)(E)(i / R) \cdot u_{2} \cdot d e e^{\prime} \cdot d A$.
The abbreviations $u_{1}$ and $u_{2}$ of (A 294) have the following meaning $u_{1}=3 \cdot(\sin p / 2) \cdot(\cos p / 2)^{2} \cdot b_{8}-$
$-(1 / 2) \cdot(\sin p)^{2} \cdot b_{9}-$
$-(\sin \mathrm{p} / 2) \cdot(\cos \mathrm{p} / 2)^{4} \cdot \mathrm{~b}_{10}$,
$u_{2}=b_{6}+(3 / 2) \cdot\left\{1-3 \cdot(\sin p / 2)^{2}\right\} \cdot b_{8} \quad$

- $2 \cdot(\sin p / 2) \cdot(\cos p) \cdot b_{9} \quad$ -
$-(1 / 2) \cdot\left\{(\cos p / 2)^{4}-(\sin p)^{2}\right\} \cdot b_{10} \cdot$

According to (A 294), the terms $u_{1}$ and $u_{2}$ appoar in the intogrations over the cap of the near surroundings of the test point $P$, only. Thorefore, in (A 295) and (A 296), ( $\cos \mathrm{p} / 2$ ) and $(\cos \mathrm{p})$ can be replaced by the unity.

### 14.6.3. The formula for $\mathrm{E}(2.3)$

The chapter 14.6.1. gives the expression for $E(2.1)$, it has the shape of (A 191). The chapter 14.6.2. gives the expression for $E(2.2)$, by (A 294). Now, in this chapter 14.6.3., the expression for $E(2.3)$ is to be developed; the developments start from (A 110). This relation gives
$E(2.3)=-(A)(E) T \cdot\left\{\partial\left(1 / c^{\prime}\right) / \partial r\right\} \cdot d w$.
Hence,
$E(2 \cdot 3)=(A)(E) T \cdot\left(1 / e^{\prime}\right)^{2} \cdot\left(\partial e^{\prime} / \partial r\right) \cdot d w \cdot$
The equation (19) of the chapter 3, (The spherical. solution), yields, (Fig. 2, 3, A 2, A 5),

```
\partiale'/\partialr= sin p/2 = ' '/(2 R') .
```

(A 298) and (A 299) are combined to
$E(2.3)=(A)(E) T \cdot\left(1 / e^{\prime}\right)^{2} \cdot(\sin p / 2) \cdot d w \quad$.
Obviously, E(2.3) is a pure spherical term, free of any impact caused by the topography, which, for instance, could be brought to bear here by the term $x$. Here, it is certainly true, the relation ( $A 300$ ) is free of $x$.

### 14.7. The formula for $\mathrm{E}(2)$

### 14.7.1. The expression for the computation of $\mathbb{E}(2)$

$E(2)$ is a sum of three terms, (A 108),
$E(2)=E(2.1)+E(2.2)+E(2.3) \quad$.
The relations (A 191), (A 294), and (A 300) give, with (A 301),

E(2) $=$
$=(A)$ (E) $\{-\partial T / \partial(R p)\} \cdot(1 / R) \cdot(\cos p / 2)^{2} \cdot(1 / \sin p) \cdot b_{7} \cdot d w+$
$+(A)(E)(T / R) \cdot\{1 /(2 R)\} \cdot\left(b_{7}+x\right) \cdot d w+$
$+(A)(E)\left(\partial T / \partial e^{\prime}\right)\left\{u_{1}+b_{1}+\left(e^{\prime} / R\right) \cdot b_{3}\right\} d e^{\prime} \cdot d A+$
$+(A)(E)(T / R) \cdot\left(u_{2}+b_{3}+b_{4}+b_{5}\right) \cdot d e^{\prime} \cdot d A \quad$.

For abbreviation, the symbols $v_{1}, v_{2}$ and $v_{3}$ are introduced, now.
In the 2., 3., and 4. term on the right hand side of (A 302), the
topography is implied by these expressions: $\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}$. Hence,
$v_{1}=(1 / 2) \cdot\left(b_{7}+x\right)$,
(A 303)
$v_{2}=u_{1}+b_{1}+(e \cdot / R) \cdot b_{3}$,
$v_{3}=u_{2}+b_{3}+b_{4}+b_{5}$.
The se relations are introduced in (A 302).
The final form for $E(2)$ is found,
$E(2)=$
$=(A)(\mathbb{E})\{-\partial T / \partial(R p)\}(1 / \mathbb{R}) \cdot(\cos n / 2)^{2} \cdot(1 / \sin p) \cdot b_{7} \cdot d w+$
$+(A)(\mathbb{R})(T / R) \cdot(1 / R) \cdot v_{1} \cdot d v i+$
$+(A)(E)\left(\partial T / \partial e^{\prime}\right) \cdot v_{2} \cdot d e^{\prime} \cdot d i+$
$+(\mathrm{A})(\mathbb{E})(1 / \mathrm{ii}) \cdot \mathrm{v}_{3} \cdot \mathrm{de} \cdot \mathrm{dA}$.
In the 1. und 2. term on the right hend side of (A 306), the intecrration has global coverage; the 3. and 4. term covers the surroundings of e' < 1000 km , only, in the course of the integration.
14.7.2. The terms $b_{1}, b_{2}, \ldots, b_{10}$

The individual func ions $b_{1}, b_{2}, \ldots, b_{10}$, which appear in the relations (A 295) (A 296), and from (is 303) to (i 306), have the following representations,
$b_{1}: B y(A 119),(A 124)$,
$b_{1}=-x \cdot(1 / y)+$ arsinh $x$,
(A 307)
$b_{1}=(1 / 3) \cdot x^{3}-+\cdots, x^{2}<1$.
$b_{2}: B y(A 152 c)$,
$b_{2}=b_{1} \quad$,
$b_{2}=(1 / 3) \cdot x^{3}-+\cdots, x^{2}<1$.

```
\(b_{3}: B y(A 178)\),
\(b_{3}=1-(1 / y)\),
\(b_{3}=(1 / 2) \cdot x^{2}-+\cdots, x^{2}<1\) 。
    (A 312)
\(\mathrm{b}_{4}: \operatorname{By}(\mathrm{A} 190\) ),
\(b_{4}=x^{3} \cdot(1 / y)^{3} \cdot \sin p / 2\),
\(b_{4}=(\sin \mathrm{p} / 2) \cdot\left\{\mathrm{x}^{3}-(3 / 2) \cdot \mathrm{x}^{5}+-\cdots\right\}, \quad \mathrm{x}^{2}<1\) 。
\(b_{5}\) ：By（A 192d），
\(b_{5}=(1 / 2) \cdot x^{2} \cdot(1 / y)\)
\(b_{5}=(1 / 2) \cdot x^{2}-(1 / 4) \cdot x^{4}+\cdots \cdots, x^{2}<1\) 。
b6：By（A 235），
\(b_{6}=(1 / y) \cdot(1 / 2) \cdot\left(y-y^{2}\right)+(1 / y) \cdot x^{2} \cdot(\cos p / 2)^{2} \cdot b_{6.1}\) ，
\(b_{6 \cdot 1}=x \cdot \sin p / 2+(1 / 2) \cdot(1 / y)^{2}-1+(1 / 2) \cdot x^{2} \cdot(\cos p / 2)^{2} \cdot(1 / y)^{2}\).
\(b_{7}\) ：By（A 244）（A 244a），
\(b_{7}=\operatorname{arsinh} x\),
\(b_{7}=x-(1 / 6) \cdot x^{3}+-\cdots, x^{2}<1 \quad\).
\(b_{8}: B y(A 249)(A 249 a)\) ，
\(b_{8}=y-1\),
\(b_{8}=(1 / 2) \cdot x^{2}-(1 / 8) \cdot x^{4}+-\cdots, x^{2}<1\).
\(b_{9}: B y(A 254)(A 254 a)\) ，
\(b_{9}=(1 / 2) \cdot x^{3} \cdot(1 / y)\) ，
\(b_{9}=(1 / 2) \cdot x^{3}+\cdots, x^{2}<1\).
\(\mathrm{b}_{10}\) ：By（A 259）（A 259a），
\(b_{10}=y+1 / y-2\) ，
\(b_{10}=(1 / 4) \cdot x^{4}-+\cdots, x^{2}<1\).

The term \(y\) has the relation
\[
\begin{equation*}
y^{2}=1+x^{2} \tag{A326a}
\end{equation*}
\]

\subsection*{14.7.3. The term \(\mathrm{v}_{1}\)}

The expression for \(\mathrm{v}_{1}\) appears in (A 306), in an integral of global extension. By (A 303), the complete expression is, (A 319),
\(v_{1}=(1 / 2) \cdot(x+\operatorname{arsinh} x)\),
(A 327)
it has the series development
\(v_{1}=x-(1 / 12) \cdot x^{3}+\cdots, x^{2}<1\).
(A 327a)
14.7.4. The term \(v_{2}\)

The full expression for \(\mathrm{v}_{2}\) is explained by (A 304). But, in (A 306), \(v_{2}\) appears only in an integral which covers the cap of the near surroundings, ( \(e^{\prime}<1000 \mathrm{~km}\) ), of the test point \(P\), solely. Thus, it is allowed to put here
\((\cos \mathrm{p} / 2) \cong \cos \mathrm{p} \cong 1, \mathrm{a}^{\prime}<1000 \mathrm{~km}\),
(A 328)
and
\((\sin p / 2)^{2} \cong(\sin p)^{2} \cong 0, e^{\prime}<1000 \mathrm{kr}\).
Regarding (A. 328) and (A 329), the form (A 295) for \(u_{1}\) turns to, (2(sin p) \(\left.{ }^{2} b_{9} \cong x(2 / R)^{2} \cong 0\right)\),
\[
\begin{equation*}
u_{1}=3 \cdot(\sin p / 2) \cdot b_{8}-(\sin p / 2) \cdot b_{10} \tag{A330}
\end{equation*}
\]
(A 330) and (A 304) yield
\[
\begin{equation*}
v_{2}=b_{1}+(\sin p / 2) \cdot\left\{2 \cdot b_{3}+3 b_{8}-b_{10}\right\} \quad, \quad e^{\prime}<1000 \mathrm{~km} \tag{A331}
\end{equation*}
\]

This is the value of \(v_{2}\) which is to be applied in the near surroundings of the test point \(P\), universally, for all amounts of \(x\), even for stcep cliffs in the near vicinity of the point P. In (A 331), \(x\) is allowed to be greater than the unity. The extensive expression for (A 331) has the following shape, (A 307) (A 311) (A 321) (A 325), \(\mathrm{v}_{2}=-\mathrm{x} \cdot(1 / \mathrm{y})+\operatorname{arsinh} \mathrm{x}+(\sin \mathrm{p} / 2) \cdot\{1-(3 / \dot{y})+2 \cdot y\}\),
valid for
\[
\begin{equation*}
e^{\prime}<1000 \mathrm{~km} \tag{A332a}
\end{equation*}
\]
and for a star-shaped Earth,
\[
\begin{equation*}
-\infty<x<+\infty \quad . \tag{A332b}
\end{equation*}
\]

Now, in the consideration of \(v_{2}\), (A 332), the inequality (A 332b) is ignored, but (A 332a) is still valid. The reason is the intention to specialize (A 332) for the case that the absolute amount of \(x\) has relative small values. Thus, (A 332b) is replaced by the inequality
\[
\begin{equation*}
x^{2} \ll 1 \quad . \tag{A333}
\end{equation*}
\]

Along these lines, the series developments for \(b_{1}, b_{3}, b_{8}\), and \(b_{10}\) are introduced in (A 331) and (A 332). The relation (A 332) turns to, (neglecting \(x^{4}, x^{5}, \cdots\) ),
\[
\begin{equation*}
v_{2}=(1 / 3) \cdot x^{3}+(\sin p / 2) \cdot(5 / 2) \cdot x^{2}+-\cdots, \tag{A334}
\end{equation*}
\]
valid for
\[
e^{\prime}<1000 \mathrm{~km},
\]
(A 334a),
and for
\[
\begin{equation*}
x^{2} \ll 1 . \tag{A334b}
\end{equation*}
\]
14.7.5. The term \(\mathbf{v}_{3}\)

The term \(v_{3}\) undergocs a similar treatment as \(v_{2}\). The underlying constituents are shom by (A 305). According to (A 306), and similarly as \(v_{2}\), the \(v_{3}\) values are necded for the argunent domain \(c^{\prime}<1000 \mathrm{~km}\), only. Thus, it is allowed to take over the approximations (A 328) and (A 329). These approximations are introduced into (A 296). Hence,
\[
\begin{equation*}
u_{2}=b_{6}+(3 / 2) \cdot b_{8}-2 \cdot(\sin p / 2) \cdot b_{9}-(1 / 2) \cdot b_{10} . \tag{A335}
\end{equation*}
\]

And, with (A 305),
\(v_{3}=b_{3}+b_{4}+b_{5}+b_{6}+(3 / 2) \cdot b_{8}-2 \cdot(\sin p / 2) \cdot b_{9}-(1 / 2) \cdot b_{10} \quad\).
(A 336 ) is valid for
\[
\begin{equation*}
e^{\prime}<1000 \mathrm{~km} . \tag{1336a}
\end{equation*}
\]

With \(b_{3}\) from ( \(\Lambda\) 311), \(b_{4}\) from (A 313), \(b_{5}\) from (A 315), \(b_{6}\) from (A 317), \(b_{8}\) from (A 321), \(b_{9}\) from (A 323), and \(b_{10}\) from (A 325), the equation (A 336) turns to, (with (A 328), (A 329)),
\[
\begin{align*}
v_{3} & =1-(1 / y)+x^{3} \cdot(1 / y)^{3} \cdot(\sin p / 2)+ \\
& +(1 / 2) \cdot x^{2} \cdot(1 / y)+(1 / y) \cdot(1 / 2) \cdot\left(y-y^{2}\right)+ \\
& +(1 / y) \cdot x^{2} \cdot\left\{x \cdot(\sin p / 2)+(1 / 2) \cdot(1 / y)^{2}-1+(1 / 2) \cdot x^{2} \cdot(1 / y)^{2}\right\}+ \\
& +(3 / 2) \cdot(y-1)-2 \cdot(\sin p / 2) \cdot(1 / 2) \cdot x^{3} \cdot(1 / y)- \\
& -(1 / 2) \cdot\{y+(1 / y)-2\} \tag{A337}
\end{align*}
\]

Some self-explanatory rearrangements of (A 337) lead to, (for e' < 1000 km ),
\(v_{3}=(1 / 2)-(3 / 2) \cdot(1 / y)+y+x^{2} \cdot\left\{-(1 / 2) \cdot(1 / y)+(1 / 2) \cdot(1 / y)^{3}\right\}+\)
\[
\begin{equation*}
+x^{3} \cdot\left\{(1 / y)^{3} \cdot(\sin p / 2)\right\}+x^{4} \cdot\left\{(1 / 2) \cdot(1 / y)^{3}\right\}+(1 / 2)-(1 / 2) \cdot y \tag{A338}
\end{equation*}
\]

A short step leads from (A 338) to (A 339), it is the final complete shape of \(v_{3}\),
\[
\begin{align*}
v_{3} & =1+(1 / 2) \cdot y-(3 / 2) \cdot(1 / y)+x^{2} \cdot(1 / 2) \cdot\left\{-(1 / y)+(1 / y)^{3}\right\}+ \\
& +x^{3} \cdot(1 / y)^{3} \cdot(\sin p / 2)+x^{4} \cdot(1 / 2) \cdot(1 / y)^{3} \tag{A339}
\end{align*}
\]
(A 339) is valid for \(e^{\prime}<1000 \mathrm{~km}\)
and
\[
-\infty<\mathrm{x}<+\infty .
\]
(A 339) is the full expression for \(v_{3}\), valid for all values \(x\) of a star-shaped Earth, (A 339b). (A 339) has only one sole restriction, that is (A 339a). (A 339) is valid, however great the steepness of the cliffs in the vicinity of the surface test point \(P\) may be.

At many places of the area described by (A 339a), the absolute amount of \(x\) will be considerably smaller than the unity. This fact leads to a relief for the computations of \(v_{3}\). Thus, in (A 339), the condition (A 339b) is abandoned, it is replaced by the inequality (A 333). But (A 339a) is still valid.

Obviously, along these lines, \(\mathrm{v}_{3}\) is expressed as a series development with rising powers of \(x\). Starting from (A 336), the power series developments for \(b_{3}, b_{4}, b_{5}, b_{8}, b_{9}\), and \(b_{10}\) lead to the following form for \(\mathrm{v}_{3}\), (A 312) (A 314) (A 316) (A 322) (A 324) (A 326),
\[
\begin{align*}
v_{3} & =(1 / 2) \cdot x^{2}+(\sin p / 2) \cdot x^{3}+(1 / 2) \cdot x^{2}+b_{6}+ \\
& +(3 / 2) \cdot(1 / 2) \cdot x^{2}-2 \cdot(\sin p / 2) \cdot(1 / 2) \cdot x^{3}+-\cdots \quad, x^{2}<1 \tag{A340}
\end{align*}
\]

The higher powers \(x^{4}, x^{5}, \ldots\) are neglected in (A 340).

A simple rearrangement of (A 340) leads to
\[
\begin{equation*}
v_{3}=b_{6}+(7 / 4) \cdot x^{2}+-\cdots, x^{2}<1 . \tag{A341}
\end{equation*}
\]

For (A 328) and (A 329), the relation for \(b_{6}\) given by (A 317) (A 318)
turns to
\(b_{6}=(1 / 2)-(1 / 2) \cdot y+(1 / y) \cdot x^{2} \cdot\left\{x \cdot(\sin p / 2)+(1 / 2) \cdot(1 / y)^{2}-1+(1 / 2) \cdot x^{2} \cdot(1 / y)^{2}\right\} \cdot(A 342)\) Neglecting highor powers of \(x\) (as \(x^{4}, x^{5}, \ldots\) ), (A 342) changes to (A 343), for \(x^{2}<1\),
\(b_{6}=(1 / 2)-(1 / 2) y+(\sin p / 2) \cdot x^{3}-(1 / 2) \cdot x^{2}+\cdots, x^{2}<1\).
(A 341) and (A 343) are combined to
\(v_{3}=(1 / 2)-(1 / 2) y+(\sin p / 2) \cdot x^{3}+(5 / 4) \cdot x^{2}+\cdots, x^{2}<1 ;\)
and with
\[
y \cong 1+(1 / 2) \cdot x^{2},\left(x^{2} \ll 1\right),
\]
\(v_{3}=(\sin p / 2) \cdot x^{3}+\{-(1 / 4)+(5 / 4)\} x^{2}+\cdots, x^{2}<1\),
and, introducing
\[
\sin p / 2=\epsilon^{\prime} /\left(2 \cdot R^{\prime}\right) \cong e^{\prime} /(2 \cdot R),
\]
and, reçarding
\[
x=2 / c^{\prime},
\]
\(v_{3}\) ets the following shepe,
\(v_{3}=\left\{e^{\prime} /(2 \cdot R)\right\}\left\{z / e^{\prime}\right\} \cdot x^{2}+x^{2}+\cdots \quad, x^{2}<1 ;\)
or
\(v_{3}=x^{2} \cdot\{1+z /(2 \cdot R)\}+-\ldots \quad, x^{2}<1\).
The ne slection of relative errors of the order of \(Z / R\) can be jolerated. Thus, finally,
\[
\begin{equation*}
v_{3}=x^{2}+\ldots \ldots, \quad x^{2} \ll 1 ; \tag{A345}
\end{equation*}
\]
(A 345) is valid for the following constraints,
\[
\begin{equation*}
e^{\prime}<1000 \operatorname{kin}, x^{2} \ll 1 . \tag{A346}
\end{equation*}
\]

\subsection*{14.8. The formule for E(3)}

The formula for \(\mathbb{E}(1)\) is given by (A 50) (A 51) (A 52). The formula for \(E(2)\) has the shape of (A 306). Now, the second term on the right hand side of the representation of \(D(2.1)\), given by the cquation (45) of the calicr section 4 , has to be transformed. It is to be brought into a shape suitable for routine computations. It is denoted by \(E(3)\), (see (45c), section 4),
\(E(3)=-(\dot{A})\)
(E) \((\partial r / \partial r) \cdot\left(1 / \epsilon^{\prime}\right) \cdot D(1.4)\)
(A 347)

The equation (39) of the earlicr treated section 4 leads to the following relation,
\[
\begin{equation*}
d u \cdot \cos \left(g^{\prime}, n\right)=d v+D(1.4) ; \tag{A348}
\end{equation*}
\]
du is the surface element of the oblique surface of the Earth \(u\), \(d w\) is the surface element of the sphere \(w\) which docs pass through the test point \(P\), (ses Fig. A 7). ( \(\mathcal{G}^{\prime}, \mathrm{n}\) ) is the anglc of the slope of the terrain. Hence, (A 348),
\[
\begin{equation*}
D(1.4)=d u \cdot \cos \left(f^{\prime}, n\right)-d w \tag{A3.19}
\end{equation*}
\]

Further, the following denotation is introduced,
\[
\begin{equation*}
\mathrm{H}^{\prime}=\mathrm{H}_{\mathrm{P}}, \tag{A349a}
\end{equation*}
\]
\(\mathrm{H}_{\mathrm{p}}\) is the height in which the test point P does lic, above the geocentric sphere \(v\) having the radius \(R\), (see Fig. i 2). This,
\[
\begin{equation*}
d w=\left(R+H^{\prime}\right)^{2} \cdot(\cos \varphi) \cdot d \varphi \cdot d \lambda ; \tag{A350}
\end{equation*}
\]
nd with
\[
\begin{equation*}
R^{\prime}=R+H^{\prime} \text {, } \tag{i350a}
\end{equation*}
\]
follows
\[
\begin{equation*}
d w=\left(R^{\prime}\right)^{2} \cdot(\cos \varphi) \cdot d \varphi \cdot d \lambda \tag{A351}
\end{equation*}
\]

The formula (i 349) is transformed, now. It is rearranged in order to find such an expression for \(D(1.4)\) that develops in terms of the following three expressions:
dw, the height difference \(Z\) taken with regard to tise test point \(P\), and the radius \(R^{\prime}\) of the sphere \(w\).


Fig. A ?

The interdependence between the surface element du and the surface element dw of the globe \(w\) is visualized by Fig. A ?. 'This interdependence is constructed by the slope of the terrain described by the inclination angle \(\Varangle\left(n, g^{\prime}\right)\), further, by the geocentric radius of the sphere \(w\), (being \(R+H^{\prime}=R^{\prime}\) ), and, finally, by the radius of the point \(Q\) on the surface \(u\), (being \(R+H^{\prime}+Z\) ). An infinitesimal cone is introduced. The vertex of this cone is identical with the gravity center \(\sigma\) of the Earth. This cone is introduced on the understanding that the vertex angle or it has an infinitesimal small amount, or, to be more precise, that the cone cuts out an infinitesimal small area out of the concentric unit sphere, Fig. A 7. Out of the sphere \(w\) passing through the test point \(P\), this cone cuts out the horizontal surface element dw, (A 350) (A 351). Out of the oblique surface of the Earth \(u\), even the same cone cuts out the surface element du, situated at the point \(Q\). The oblique surface element du is projected into the horizontal plane which passes through the surface point Q. Out of this horizontal plane, the considered cone cuts out the surface element of the following amount,
\[
\begin{equation*}
\cos \left(g^{\prime}, n\right) \cdot(d u) \tag{A352}
\end{equation*}
\]

It is learnt from Fig. A 7, the following relation connects the amount described by (A 352) and the surface element dw, it is self-explanatory,
\(\cos \left(g^{\prime}, n\right) \cdot(d u)=d w \cdot\left(R+H^{\prime}+Z\right)^{2} /\left(R+H^{\prime}\right)^{2}\).
Regarding (A 350a), the relation (A 353) turns to
\(\cos \left(\delta^{\prime}, n\right) \cdot(d u)=d w^{\prime} \cdot\left\{\left(R^{\prime}+z\right)^{2} /\left(R^{\prime}\right)^{2}\right\}\).
Hence it follows
\((d u) \cdot \cos \left(g^{\prime}, n\right)=\left(1+Z / R^{\prime}\right)^{2} \cdot d w=\left\{1+2 \cdot Z / R^{\prime}+\left(Z / R^{\prime}\right)^{2}\right\} \cdot d w \quad\).
(A 349) and (A 355) yield
\[
\begin{equation*}
D(1.4)=\left\{2 \cdot Z / R^{\prime}+\left(Z / R^{\prime}\right)^{2}\right\} \cdot d w \tag{A356}
\end{equation*}
\]

For the points \(Q\) situated at the surface of the Earth \(u\), the fundamental equation of the physical geodesy has the following shape, (see equation (A 2) ,
\[
\begin{equation*}
\Delta f_{T}=-(\partial T / \partial r)-2 \cdot T / r \text {, } \tag{A357}
\end{equation*}
\]
hence, regarding Fig. A 7,
\[
\begin{equation*}
\Delta g_{T}=-(\partial T / \partial r)-2 \cdot T /\left(R+H^{\prime}+Z\right) \tag{A358}
\end{equation*}
\]

As to (A 358), we have,by (A 350a), the following series development
\(\left(1 / R^{\prime}\right)\left[1 /\left\{1+\left(Z / R^{\prime}\right)\right\}\right]=\left(1 / R^{\prime}\right)\left\{1-\left(Z / R^{\prime}\right)+\cdots\right\}=\left(1 / R^{\prime}\right)-\left\{z /\left(R^{\prime}\right)^{2}\right\}+\cdots \cdot\).
(A 358a)

Considering (A 350a), the second term on the right hand side of (A 358)
turns to the term described by (A 359), accounting for the relation (A 358a),
\(-2 \cdot T /\left(R+H^{\prime}+Z\right)=-2 \cdot T / R^{\prime}+2 \cdot Z \cdot T /\left(R^{\prime}\right)^{2}\).

The two relations (A 358) and (A 359) are combined giving
\[
\begin{equation*}
-(\partial T / \partial r)=\Delta g_{T}+2 \cdot T / R^{\prime}-2 \cdot 2 \cdot T /\left(R^{\prime}\right)^{2} . \tag{A360}
\end{equation*}
\]

The relation (A 356) for \(D(1.4)\) and the expression (A 360) for the radial derivative of the perturbation potential \(T\) are now utilized for a transformation of the expression (A 347) representing E(3). Thus,
\(E(3)=(A)(E)\left\{\Delta g_{T}+2 \cdot T / R^{\prime}-2 \cdot 2 \cdot T /\left(R^{\prime}\right)^{2}\right\} \cdot\left(1 / e^{\prime}\right) \cdot\left\{2 \cdot Z / R^{\prime}+\left(Z / R^{\prime}\right)^{2}\right\} \cdot d w \cdot \quad(A 361)\) Some simple rearrangements of (A 361) lead to (A 362), neglecting powers of (Z/R') \({ }^{3} \ldots\),
\[
\begin{aligned}
E(3) & =(A)\left(E^{\prime}\right) \Delta G_{T} \cdot\left(1 / e^{\prime}\right) \cdot\left\{2 \cdot Z / R^{\prime}+\left(Z / R^{\prime}\right)^{2}\right\} \cdot d w^{\prime}+ \\
& +(A)(E)\left(T / R^{\prime}\right) \cdot\left(1 / e^{\prime}\right) \cdot\left\{4 \cdot Z / R^{\prime}-2 \cdot\left(Z / R^{\prime}\right)^{2}\right\} \cdot d w
\end{aligned}
\]

\section*{e' is equal to}
\[
\begin{equation*}
c^{\prime}=2 \cdot\left(R+H^{\prime}\right) \cdot \sin p / 2=2 \cdot R^{\prime} \cdot \sin p / 2 . \tag{A363}
\end{equation*}
\]
(A 362) is a form of \(E(3)\) convenient for routine calculations.

\subsection*{14.9. The formula for \(E(4)\)}

In the chapter 4, the equation (45d) represents the term in(4). It appears also as the third term on the rjeght hend side of the relation (45) of that chapter. This term \(\mathbb{Z}(4)\) is now in the fore. The cited relations give
\(E(4)=(A)(E) T \cdot\left\{\partial\left(1 / e^{\prime}\right) / \partial r\right\} \cdot D(1 \cdot 4)\).
(A 364)

The expression for \(D(1.4)\) is taken from (A 356). Further, as to the term in the braces \{\} of (A 364 ), the radial derivative of \(e^{\prime}\) is considered, now. In this context, the point \(2^{*}{ }^{*}\) is introduced, (Fig. A 2, A 8). This point lies perpendicular below the moving surface point \(Q\), and, moreover, on the spherical surface \(w\). Now, the reader is asked to imagine that this point \(Q^{*}{ }^{*}\) does move upwards, in vertical direction, by an enlargement of the radius of it from the amount \(R^{\prime}\) up to the amount \(R^{\prime}+d r\).

The impact this upwards movement exerts on the length of \(e^{\prime}\) is now describcd by the radial derivative of \(e^{\prime}\), i., e. อe'/ Or ; Fig. A 8.


\section*{Fig. A 8.}

Fig. A 8 shows how the derivation of \(e^{\prime}\) with regard to \(r\) is constructed.


The following lines are self-explanatory, Fig. A 8,
\(\partial\left(1 / e^{\prime}\right) / \partial r=-\left(1 / e^{\prime}\right)^{2} \cdot\left(\partial e^{\prime} / \partial r\right)\),
\(\partial e^{\prime} / \partial r=\sin p / 2=e^{\prime} /\left(2 \cdot R^{\prime}\right)\),
(A 366)
hence,
\[
\begin{equation*}
\partial\left(1 / e^{\prime}\right) / \partial r=-1 /\left(2 \cdot c^{\prime} \cdot R^{\prime}\right) \tag{array}
\end{equation*}
\]

Regarding (A 356) and (A 367), the expression (A 364) for \(E(4)\) turns to
\(E(4)=-(A) \quad(E) T \cdot\left\{2 \cdot Z / R^{\prime}+\left(Z / R^{\prime}\right)^{2}\right\} \cdot\left\{1 /\left(2 \cdot e^{\prime} \cdot R^{\prime}\right)\right\} \cdot d w \quad\) •
A shorttransformation gives finally
\(E(4)=-(A)(E)\left(T / R^{\prime}\right) \cdot\left(1 / e^{\prime}\right) \cdot\left\{Z / R^{\prime}+(1 / 2) \cdot(Z / R)^{2}\right\} \cdot d w \quad \cdot\)
This expression is good for numerical routine calculations.

\subsection*{14.10. The formula for \(\mathrm{E}(5)\)}

Finally, considering the relation (45) representing the term \(\mathrm{D}(2.1)\)., (see chapter 4), the 5. expression on the right hand side of this equation is to be brought into a shape which suits to calculation purposes. This term is denominated by \(\mathbb{E}(5)\), as shown by the rolation (45e) of chapter 4.

Hence,
\(E(5)=(A)(E) D(1.1) \cdot D(1.2) \cdot d w\).
(h 370)

At this occasion, a principle remark may be given. In the computation of the height anomalies \(\zeta\) in terms of the gravity anomalios, the integration of the traditional Stokes integral contributes the main share; Here, the Faye-anomalies are inscrted; they are defined to be the free-air anomalies supplemented by the plane topographical correction C: cf. equation (2) and (3) of the chapter 1, being the introduction into this publication. This integration calculation ranks at the first place. The formulas for \(\mathrm{E}(3)\) and \(\mathbb{E}(4)\) rank at the second place. They are given by (A 362) and (A 369), and they necessitate a global integration. Further, the effect the expression \(C_{1}\) (ii) exerts on the height anomaly \(\zeta\) constructs a term which does rank at the sccond place: cf. the equation (3) of the chapter 1. These terms of the second rank will contribute to the \(\zeta\) values by an amount being smaller than 1 meter, in Eeneral.

But, as to the term \(E(5)\) treated now, ( \(\Lambda\) 370), it will be of the third rank. This term will have an amount which is generally much more small than the mount of \(\mathbb{E}(3)\) and \(\mathbb{E}(4)\), and the effect of \(C_{1}(\mathbb{M})\). The roason why, in the following lines, the term \(\mathbb{E}(5)\) is transformedinto a shape convenient for numerical calculations lies also in the intention to follow up another aim, this is the intention to show that the formulas (2) and (3) of chaptor 1 can be completed by very small and tiny terms: The theoretical error of the solution of the geodetic boundary value problem according to (2) and (3) can be depressed down to arbitrary small amounts. The intention to depress this theoretical error down to any arbitrary small amount has no principle limitation, it is a procedure frec of any fundamental difficulty. The demonstration of this fact is one of tho aims followed up by the deliberations of this chapter, (theoretical error = neglected residuum).

The definition of the term \(D(1.1)\) of ( A 370 ) comes from the relation (36) of the 4. chapter,
\(D(1.1)=(\partial \mathrm{F} / \partial \mathrm{n}) \cdot\left(1 / \cos \left(g^{\prime}, n\right)\right)+\partial \mathrm{T} / \partial \mathrm{r}\),
whereas the term \(D(1.2)\) is found with (37),
\(D(1.2)=1 / e-1 / e^{\prime}\).
\(\epsilon \quad\) is the oblique distance between the two surface points \(P\) and \(Q\), Fig. A 2. e' is the length of the cord between the point \(P\) and the point \(Q^{* *}\) on the sphere w, Fig. A 2, A 8. Some rearrangements of (A 371) result the following relation, (A 21),
\(D(1.1)=D_{P}(1,1)=\theta \cdot g \cdot \tan \left(g^{\prime}, n\right) \cdot \cos \left(A^{\prime \prime}-A^{\prime}\right)\).
\(\Theta\) is here the full amount of the deflection of the vertical in the ficld of the potential \(T_{y}\) the \(\Theta\) values refer to the surface of the Earth \(u\).

Also, the term \(D(1.2)\) given by (A 372) is transformed; the relation (A 37) yields,
\(D(1.2)=-\left(0^{\prime}\right)^{-3} \cdot\left\{z^{2}+e^{\prime 2}\left(z / R^{\prime}\right)\right\} \cdot\left\{x^{\prime}+\left(x^{\prime}\right)^{1 / 2}\right\}^{-1} \quad\),
with, ( see (A 39), (A 40), and (A 4.1)),
\[
\begin{equation*}
x^{\prime}=1+x^{2}+\eta / R^{\prime} \tag{array}
\end{equation*}
\]

In (A 373), \(A^{\prime \prime}\) is the azimuth of the deflection of the vertical \(\theta\), Fig. A 1. A' is the azimuth of the inclination of the terrain. tan ( \(\mathrm{g}^{\prime}, \mathrm{n}\) ) is the amount of this inclination.

Now, the plumb-line deflection \(\theta\) is decomposed into its north-south and its cast-west component, i.e. \(t_{1}\) and \(t_{2}\),
\[
\begin{align*}
& t_{1}=\theta \cdot \cos A^{\prime \prime}  \tag{array}\\
& t_{2}=\theta \cdot \sin A^{\prime \prime} . \tag{A377}
\end{align*}
\]

The text-books on physical geodesy show that \(t_{1}\) derives from \(T\) by
\[
\begin{equation*}
t_{1}=-\left[\left(1 / g^{\prime}\right) \cdot(\partial T / \partial \bar{x} \quad)\right]_{u} \tag{A378}
\end{equation*}
\]
and \(t_{2}\) by
\[
t_{2}=-\left[\left(1 / \AA^{\prime}\right) \cdot(\partial T / \partial \bar{y}]_{u} \quad ; \quad\right. \text { (A 379) }
\]
the symbol \(u\) denotes here that the values of \(t_{1}\) and \(t_{2}\) aro to be computed for points situated on the Earth's surfacc \(u\). The horizontal arc elements \(d \bar{x}\), and \(d \bar{y}\) of (A 378) and (A 379) are here understood that they are plotted at the points of the Earth's'surface \(u\); hence it follows for the horizontal differentials \(d \bar{x}\) and \(d \bar{y}\), at the moving surface point \(Q\) on \(u_{0}\)
\[
\begin{align*}
& d \bar{x}=\left(R^{\prime}+Z\right) \cdot d \varphi  \tag{A379a}\\
& d \bar{y}=\left(R^{\prime}+Z\right) \cdot(\cos \varphi) \cdot d \lambda \tag{A379b}
\end{align*}
\]

In a similar way, the component of the plumb-line deflection in the radial direction (that is the diroction of a constant azimuth A plotted at the test point \(P\) ) has the following relation, which is given by ( \(A 380\) ).
(As to the horizontal arc elements \(d \bar{x}\) and \(d \bar{y}\), they are found in the following way : Through the point \(Q\) at the oblique surface of the Earth \(u\), the geocentric sphere, having the radius of \(R+H_{P}+Z=R^{\prime}+Z\), is constructed. Along this sphere, the two arc elements \(d \bar{x}\) and \(d \bar{y}\) are plotted even in our special point \(Q\). Thus, in the point \(Q, d \bar{x}\) and \(\bar{d} \bar{y}\) lie also on the tangertial plane . In order to avoid misunderstandings, it may be stated \(: d \bar{x}\) and \(d \bar{y}\) lie not on the obliqus surface \(u\) of the Earth, unless \(u\) is horizontal in the point \(Q\) ! ).
\(t_{p}=-\left\{\left(1 / g^{\prime}\right) \cdot\left(\partial T /\left(R^{\prime}+Z\right) \cdot \partial p\right)\right\}_{u}\)
Thus, \(t_{p}\) is the component of the plumb-line deflection at the surface point \(Q_{Q}\) taken for the direction in which only the \(p\) values do grow. \(p\) is the spherical distance between the fixed test point \(P\) and the point \(Q\) (which is moving during the integrations), Fig. A 2. Consequently, \(d \bar{x}\) and \(d \bar{y}\), and ( \(R^{\prime}+Z\) ) \(d p\) are horizontal arc elements plotted at the point \(Q\) situated at the surface \(u\) of the Earth. \(d \bar{x} \quad\) is heading to the north, \(d \vec{y}\) points to the east, and ( \(R^{\prime}+Z\) ) \(d p\) is directed into the direction in which the \(p\) values grow (This is the direction of the tangent of the great circle through \(P\) and \(Q\), taken at 2 ).

By means of \(t_{1}\) and \(t_{2}\), (A 378) (A 379), it is possible to construct a vector \(t\). In this context, \(t_{1}\) and \(t_{2}\) are two-parametric surface functions along the surface \(u, t_{1}=t_{1}(\varphi, \lambda)\) and \(t_{2}=t_{2}(\varphi, \lambda)\). The \(t_{1}\) value at the point \(\mathbb{Q}\) is mapped into the point \(Q^{* *}\), by an identical mapping. \(\}^{* *}\) lies vertical below the point \(Q\) on the surface \(w\), Fig. A 2. Thus, after this mapping, the \(t_{1}\) value of the point \(Q\) is now atiached to the point \(2^{* *}\).
The amount of \(t_{2}\) " undergoes a similar mapping from the point \(\&\) dovin to the point \(2^{* *}\). Furthermore, on the sphere \(w\) which has the radius R', two unit vectors \(\stackrel{e}{=} 1\) and \(\stackrel{e}{=} 2\) are introduced. They are horizontal vectors. Consequently, they are taneential vectors with regard to the sphere w. They
 to the east. By means of the values \(t_{1}\) and \(t_{2}\) at the point \(\imath^{*}{ }^{*}\), it is possible to construct a vector \(\stackrel{t}{=}\) which is situated on the spiere \(w\), as a tangential vector. Hence it follows,
\[
\begin{equation*}
\underline{\underline{t}}=t_{1} \cdot \underline{\epsilon}_{1}+t_{2} \cdot \underline{\epsilon}_{2} \tag{A381}
\end{equation*}
\]

Hare is,
\[
\begin{equation*}
\cdot \stackrel{\epsilon}{\epsilon}_{=1}^{2}=1, \quad \stackrel{e}{=}{ }^{2}=1 \tag{array}
\end{equation*}
\]

Considering (A 376) (A 377) (A 331), and introducing , by the symbol t, the length of the vector \(\underset{=}{t}\), the following relation is obtained,
\[
\stackrel{t^{2}}{=}=t^{2}=\theta^{2}=t_{1}^{2}+t_{2}^{2}
\]

Here, the expressions for \(t, t_{1}, t_{2}\), and \(t_{p}\) are functions of \(\varphi\) and \(\lambda\). They can be under stood as functions distributed along the sphere \(w\). Hence,
\[
\begin{array}{ll}
t=t(\varphi, \lambda), & (\dot{A} 383 \mathrm{a}) \\
t_{1}=t_{1}(\varphi, \lambda), & (A 383 \mathrm{~b}) \\
t_{2}=t_{2}(\varphi, \lambda), & (\mathrm{A} 383 \mathrm{c}) \\
t_{p}=t_{p}(\varphi, \lambda) \quad & (A 383 \mathrm{~d})
\end{array}
\]

In a similar way as the vector \(t=\) can be decomposed into a north-south and an east-west component, (A 376) (A 377), the slope of the terrain \(\tan \left(\pi^{\prime}, n\right)\) can be decomposed also into a north-south and an east-west component, \(s_{1}\) and \(s_{\hat{c}}\), Fig. A 1 . The following relations can be constructed, regarding the fact that the angle \(A^{\prime \prime}\) is the azimuth of the slope of the terrain in the point 2 ,
\[
\begin{align*}
& s_{1}=\tan \left(g^{\prime}, n\right) \cdot \cos A^{\prime}  \tag{A384}\\
& s_{2}=\tan \left(g^{\prime}, n\right) \cdot \sin A^{\prime} . \tag{A385}
\end{align*}
\]

Or, describing \(s_{1}\) and \(s_{2}\) by the horizontal derivatives of the height difference \(Z, ~\left(Z=H_{2}-H_{P}\right.\); in these derivations, \(H_{p}\) is constant and \(H_{Q}\) is variable),
\[
\begin{align*}
& s_{1}=-\left(1 /\left(R^{\prime}+Z\right)\right) \cdot(\partial Z / \partial \varphi)  \tag{array}\\
& s_{2}=-\left(1 /\left(R^{\prime}+Z\right)\right) \cdot(\partial Z /(\cos \varphi) \partial \lambda) \quad . \tag{array}
\end{align*}
\]

For tie dierivatives of \(z\), given by (A 306) and (i 387), the following relations aro valid,
\((\partial Z / \partial \varphi)=\partial\left(H_{Q}-H_{P}\right) / \partial \varphi=\partial H_{2} / \partial \varphi 。\)
( \(\left.\begin{array}{ll}\text { ( } 3379\end{array}\right)\)
\((\partial z / \partial \lambda)=\partial\left(H_{Q}-H_{p}\right) / \partial \lambda=\partial H_{2} / \partial \lambda\)
In most cases, in the relations (A 386) and (A 387), a relative error of the order of \(Z / R^{\prime}\) can be tolerated in the amounts of \(s_{1}\) and \(s_{2}\). The question is here a factor of about \(1 / 1000\) or \(1 / 10000\). Witr these cimpl.ifications, (A 386) and (A 387) change to
\[
\begin{align*}
& s_{1}=-\left(\cdot / R^{\prime}\right) \cdot(\partial z / \partial \varphi)  \tag{A387c}\\
& s_{2}=-\left(1 /\left(R^{\prime} \cdot \cos \varphi\right)\right) \cdot(\partial z / \partial \lambda) \tag{A307d}
\end{align*}
\]

In a similar way, as the functions \(t_{1}\) and \(t_{2}\) did lead to the vector \(\stackrel{t}{=}\), (A 331), it is possible to construct a vector \(s\), by means of the functions \(s_{1}\) and \(s_{2}\), (A 384) (A 385).
Hence,
\[
\begin{equation*}
\stackrel{s}{=}=s_{1} \cdot \stackrel{e}{=} 1+s_{2} \cdot \stackrel{e}{2}_{2} \tag{array}
\end{equation*}
\]

The operator of the gradient of a scalar field distributed along the sphere \(W\) is now introduced,
\[
\begin{equation*}
\nabla=\operatorname{grad}=+\left(1 / R^{\prime}\right) \cdot\left\{\frac{\partial}{\partial \varphi}\right\} \stackrel{e^{e}}{=} 1+\left(1 /\left(R^{\prime} \cdot \cos \varphi\right)\right) \cdot\left\{\frac{\partial}{\partial \lambda}\right\} \stackrel{e}{=} 2 \tag{A388a}
\end{equation*}
\]

This gradient operator is applied to the scalar field of the \(H_{0}\) values. In this context, the \(H_{0}\) values are understood that they are distributed
 (A 388a) leads to
grad \(H_{0}=+\left(1 / R^{\prime}\right) \cdot\left(\partial H_{0} / \partial \varphi\right) \cdot \stackrel{e}{e}_{1}+\left(1 /\left(R^{\prime} \cdot \cos \varphi\right)\right) \cdot\left(\partial H_{0} / \partial \lambda\right) \cdot e_{2}\)

In this context, \(H_{P}\) is a constant value . Thus, considering the scalar function \(Z=H_{Q}-H_{P}\), the derivatives of \(Z\) with regard to the latitude and longitude are eqaul to the derivatives of \(H_{O}\) with regard to these arguments, consequently. Along these lines, the relation (A 388b) can be transformed into the following shape,
\(\operatorname{grad} Z=+\left(1 / R^{\prime}\right) \cdot(\partial Z / \partial \varphi) \cdot \stackrel{\theta}{\theta}_{1}+\left(1 /\left(R^{\prime} \cdot \cos \varphi\right)\right) \cdot(\partial Z / \partial \lambda) \cdot \stackrel{\theta}{=}_{2}\).

A comparison of (A 388c) with (A 387c), (A387d), and with (A 388) shows that the vector \(S_{\equiv}\) can be represented by the gradient of the \(Z\) field,
```

s}=-\quad\mathrm{ grad Z .

```
\(s\) is the length of the vector \(\stackrel{s}{=}\),
\[
\begin{equation*}
\stackrel{s}{2}_{=}^{=} s^{2} . \tag{A389a}
\end{equation*}
\]

Regarding (A 384) (A 385) (A 388) (A 389a), the following equation is found
\[
\begin{equation*}
\stackrel{s}{\mid}^{2}=s^{2}=\left\{\tan \left(g^{\prime}, n\right)\right\}^{2}=s_{1}^{2}+s_{2}^{2} \tag{A390}
\end{equation*}
\]

Before the background of the above vector developments, the expression (A 373) for \(D_{r}\) (1.1) can be brought into the form of a scalar product or of an inner product of two vectors.
In this context, ( A 373 ) is rearranged, as follows
\[
\begin{equation*}
D_{T}(1.1)=\theta \cdot g \cdot \tan \left(g^{\prime}, n\right)\left\{\cos A^{\prime \prime} \cos A^{\prime}+\sin A^{\prime \prime} \sin A^{\prime}\right\} . \tag{A390a}
\end{equation*}
\]

Regarding (A 376) (A 377), and in view of (A 384) (A 385), the above expression for \(D_{T}(1.1)\) turns to
\[
\begin{equation*}
D_{T}(1.1)=g\left(t_{1} \cdot s_{1}+t_{2} \cdot s_{2}\right) \tag{A391}
\end{equation*}
\]
\(g\) is here the real gravity intensity for the real potential \(W\), taken at the surface \(u\) of the Earth. The braces on the right hand side of (A 391) contain the scalar product of the two vectors \(t=\) and \(s,(A 381)\) (A 388). Hence it follows
\[
\begin{equation*}
D_{T}(1.1)=g \cdot t \cdot s \tag{A392}
\end{equation*}
\]

Now, after the rearrangement of \(D_{T}(1.1)\), the expression ( A 374 ) for \(\mathrm{D}(1.2)\) is trensformed; this transformation happens by the introduction of the quotient
\[
\begin{equation*}
x=Z / \theta^{\circ} \tag{A393}
\end{equation*}
\]
which was already of service before now. (A 393) and (A 374) are combj.ned to
\(D(1 \cdot 2)=-\left(1 / e^{\prime}\right) \cdot\left(x^{2}+e^{\prime} \cdot x / R^{1}\right) \cdot\left[x^{\prime}+\left(x^{\prime}\right)^{1 / 2}\right]^{-1} \quad\).
(A 394)

For the product of the term in the second braces of (A 394), on the one hand, and of the term in the brackets of (A 394), on the other hand, a sign of abbreviation is introduced, now,
\(x^{*}(P, Q)=\left(x^{2}+e^{\prime} \cdot x / R^{\prime}\right) \cdot\left[x^{\prime}+\left(x^{\prime}\right)^{1 / 2}\right]^{-1}\),
or,
\(x^{*}(P, Q)=\left(x^{2}+Z / R^{\prime}\right) \cdot\left[x^{\prime}+\left(x^{\prime}\right)^{1 / 2}\right]^{-1}\).
Consequently, (A 394) changes to
\(D(1.2)=-\left(1 / e^{\prime}\right) \cdot x^{*}(P, q)\).

Ihis is the final expression for \(D(1.2)\).
In view of (A 392) and (A 396), the development (A 370) for (5)
transforms into
\(E(5)=-\underset{\mathrm{g}}{\mathrm{g}}(\mathrm{A})(\mathrm{I}) \underset{\underline{\mathrm{t}}}{\underline{s}} \cdot\left(1 / 2^{\prime}\right) \cdot \mathrm{x}^{*}(\mathrm{P}, \mathrm{Q}) \cdot d w\).
(A 397)
\(t\) and \(\stackrel{s}{=}\) are the above defined vectors, (A 381) (A 308). \(x^{*}(F\), i) is a scalar function, it is evidenced from (A 395a) ; in our applications, this function is understood that it varies with the moving point \(\lambda\), only, in the course of one intergation. \(\because i t h i n\) such an integration, the test point \(P\) is fixed. ilhe vector \(\stackrel{i}{=}\) and the function \(\mathbb{x}^{*}(P\), Q) are combined yielding the vector \(\underline{\underline{k}}\),
\[
\underline{\underline{k}}=x^{*}(P, q) \cdot \stackrel{t}{=}
\]

The equations (A 397) and (A 398) lead to
\[
\begin{equation*}
\mathbb{E}(5)=-\underset{6}{(A)}(\mathbb{B}) \underset{=}{\mathrm{k}} \underset{=}{\mathrm{S}} \cdot\left(1 / e^{\prime}\right) \cdot \mathrm{d} w \tag{A}
\end{equation*}
\]

Regarding (A 38c), ii(5) takes the following shape
\(I(5)=g(\Lambda)(E) \underset{\underline{K}}{\underline{k}}(\operatorname{Grad} 2) \cdot\left(1 / \epsilon^{\prime}\right) \cdot d w \quad\).
(A 399 a )

This above expression for \(E(5)\) offers the possibility for ossential rearrangements. They have the aim to avoid the horizontal derivatives of the topographical heights which are implicd in the torm (grad 2). In the course of these rearrangements, (rrad 2 ) comes to be replaced by \(Z\), and, further, instead of \(\underset{=}{k}\), the horizontal derivatives of the components of the vector \(\underline{k}\) appear. The horizontal derivatives of \(k\) are much more smoothed than the corresponding amounts of 2 . Even this fact is the esscnital reason for the coming rearrangements of \(E(5)\).

Following up this aim of those rearrangements, a new vector a is introduced by
\[
\begin{equation*}
\stackrel{a}{=}=\left(2 / e^{\prime}\right) \cdot \frac{k}{=} \tag{A400}
\end{equation*}
\]

As to the 3 symbols on the right hand side of the equation above, the scalar functions \(Z, e^{\prime}\), and the two components of the vector \(\underline{=}\)
have values which are understood (in the now discussed rearrangements of \(E(5)\) ) that they are distributed along the surface \(w\) of the sphere with the radius \(R^{\prime}\). 'rhey are functions of the two variable coordinates of the surface point \(Q\), at least in the here discussed problem. The co-ordinates of the point \(P\) are constant. \(Z\) has finite values, as so as the components of the vector \(\stackrel{k}{=}\). In ( \(A\) 398), the components of \(t\) are always finite, since the components of the plumb-line deflection are finitc, always; and \(\mathrm{X}^{*}(\mathrm{P}, \mathrm{Q})\) is also always finite; (A 395a), it tends to the unity if \(x^{2}\) tends to infinity, a property casily verificd before the background of (A 203) (A 206) for \(\quad x^{\prime}\), (see also (A 414) and (A 415) ),

Now, a short excursion into the field of vector analysis is to be undertaken.
 first derivatives, is introduced,
\[
\begin{equation*}
\mathrm{q}=\mathrm{q}(\varphi, \lambda) \tag{A400a}
\end{equation*}
\]
\(\varphi\) and \(\lambda\) are the geocentric latitude and longitude. The gradient of the function \(q\) has the following shape, (A 388a),
\(\operatorname{Frad} q=\left(1 / R^{\prime}\right) \cdot(\partial q / \partial \varphi) \cdot \underline{\underline{e}} \underset{1}{ }+\left(1 /\left(R^{\prime} \cdot \cos \varphi\right)\right) \cdot(\partial q / \partial \lambda) \cdot \underline{e}_{2} \quad\).
Along the sphere \(w\), it is possible to introduce the two arcelements \(d \overline{\bar{x}}\) and \(d \overline{\bar{y}}\), being defirred by
\[
\begin{equation*}
d \overline{\bar{x}}=R^{\prime} \cdot d \varphi \quad, \quad d \overline{\bar{y}}=\left(R^{\prime} \cdot \cos \varphi\right) \cdot d \lambda \tag{A401a}
\end{equation*}
\]

IIth (A 401a), the expression of (A 401) turns to
\(\operatorname{grad} \quad q=(\partial q / \partial \overline{\bar{x}}) \cdot{\underset{\sim}{c}}_{1}+(\partial q / \partial \overline{\bar{y}}) \cdot \underline{e}_{2} \quad\).

The meaning of \(\stackrel{e}{=} 1\) and \(\stackrel{e}{=} 2\) was already explained, some lines beforo
the equations (A 381), (A 382). Furthermore, besides of the function \(q\), a tangential vector of the sphere is introduced. It is denoted by \(q\),
\[
\begin{equation*}
\underline{\underline{q}}=q_{1} \cdot \stackrel{c}{=} 1 \quad+q_{2} \cdot{\underset{e}{e}}_{=} \quad ; \tag{A402a}
\end{equation*}
\]
\(q_{1}\) and \(q_{2}\) are continuous functions of \(\varphi\) and \(\lambda\), they have continuous firet derivatives,
\[
\begin{align*}
& q_{1}=q_{1}(\varphi, \lambda)  \tag{A402b}\\
& q_{2}=q_{2}(\varphi, \lambda)
\end{align*}
\]
(A 402c)

The scalar product of the gradient vector, (according to (A 38今a)), with the vector \(\xlongequal{q}\) gives the divergence of the vector field \(\underline{\underline{q}}\),
\[
\operatorname{div} \underline{\underline{q}}=\nabla \cdot \underline{\underline{q}}=\operatorname{grad} \cdot \underline{\underline{q}} .
\]

The divergence of a vector field is a scalar function. Thus,
\(\operatorname{div} \underset{=}{q}=\frac{1}{R^{\prime}} \cdot \frac{\partial q_{1}}{\partial \varphi}+\frac{1}{R^{\prime} \cdot \cos \varphi} \cdot \frac{\partial q_{2}}{\partial \lambda}-\frac{\tan \varphi}{R^{\prime}} \cdot q_{1}\).
After this excursion into the field of the vector analysis, demonstrated vith the holp of the function q and the vector q, wo return now back to the vector field \(a,(A 400)\). The divereence of the vector field \({ }_{\underline{a}}\) is obtained by (A 40J) and (i 403), hence
\[
\begin{equation*}
\operatorname{div} \stackrel{a}{=}=\operatorname{div}\left[\left(Z / \varepsilon^{\prime}\right) \cdot \underline{\underline{k}}\right] \tag{A403a}
\end{equation*}
\]
and furtiner,
\[
\begin{align*}
\operatorname{div} \underset{\underline{a}}{\underline{~}} & =\nabla \cdot\left[\left(z / e^{\prime}\right) \cdot \underline{\underline{k}}\right]=\nabla \cdot \underline{\underline{a}}= \\
& =(\nabla \cdot 2) \cdot\left(1 / c^{\prime}\right) \cdot \underline{\underline{k}}+2\left[\nabla \cdot\left(1 / c^{\prime}\right)\right] \underline{\underline{k}}+\left(2 / e^{\prime}\right) \cdot[\nabla \cdot \underline{\underline{k}}] . \tag{array}
\end{align*}
\]

Now, the singularity of the function \(1 / c\) hes to be considered. In case, the leneth \(e^{\prime}\) tends to zero, the functior \(1 / e^{\prime}\) tonds to infinity. But, in (A 404), the function ( \(1 / c^{\prime}\) ) can be tolerated only as lon; as it is a contiruous function . In order to avoid this discrepancy, the function div \(\stackrel{a}{=}\) is not troated for wholo the surface \(w\) of the sphere with the radius \(\mathrm{R}^{\prime},(A 404)\). Around the test point \(P\), an эroo w" which does surround \(^{\prime \prime}\) this point \(P\) is separated from the surface \(T\); was global extension. The remaining part of \(v i\) is \(w '\). Thus,
\[
w=w^{\prime}+w^{\prime \prime}
\]

As long as div a according to (A 404) is discussed for the partial area \(W^{\prime}\) only, any simelarity of the function \(1 / e^{\prime}\) does not exist, since the distance betweon the point \(P\) and the margin of the area \(w^{\prime \prime}\) has never to be equal to zero, - this is a necessary constraint.


\section*{Fig. A 9.}

From Fig. A 9, the roader learns that tho boundary-line between \(w^{\prime}\) and \(w^{\prime \prime}\) is denominated by \(c, d c\) is the arc element. \({ }_{n}^{\circ}{ }^{0}\) is the unit normal vector of the line \(c, \underline{n}_{c}^{o}\) is simultaneously a tangential vector along the sphere \(w\). \(\underline{n}_{=}^{0}\) is heading into the exterior of the domain \(w^{\prime}\), and, thus, into the interior of \(w^{\prime \prime}\) 。

Obviously, it is allowed to apply the integral theorem of Gauss to the vector field \(a\). Here, this theorem is specialized on the area \(w^{\prime}\) and its boundary c. Hence it follows
\[
\begin{equation*}
\int_{w} \int_{w^{\prime}}(\operatorname{div} \underset{c}{a}) \cdot d w=\int_{c}(\underline{\underline{a}} \underset{=}{o}) \cdot d c \tag{A405}
\end{equation*}
\]

Here, \(w^{\prime}\) is a part of the surface \(w^{\prime}\) and \(c\) is the boundary-Iino of \(w^{\prime}\).

Usually, in the text-books, the Gaussian theorem is described for a three-dimensional space and its boundary-surface. The transition from the three-dimenional case to the two-dimensional case of (A 405) is easily done by considering the fact that the vector \(\stackrel{a}{\underline{a}}\) has two horizontal components, only, further, that \(\underset{a}{ }\) does not depend on the distance \(r\) to the center of the Earth, and, finally, that \(a\) has no component in the radial direction. These special properties transform the problcm from the thieedimensional case to the two-dimensional one, ( \(\hat{A} 405\) ).

The validity of the integral theorem of Gauss for the two -dimensional vector fiald \(\underset{=}{\text { a, (sec (A 405)), is easily proved along the following lines. }}\) Just to take an example, one arbitrary infinitesimal mesh is singled out from the co-ordinate grid covering the area \(w^{\prime}\). This mesh is constructed by lines of Gauss' co-ordinates \(\varphi=\) const. and \(\dot{\lambda}=\) const., spread out over the area \(w^{\prime}\). Thus, the boundary-lines of this mesh are lines of constant latitude, on the one hand, and lines of constant longitude, on the other hand. Tho situation is shown by Fig. A 10. The area of this mosh is equal to dw; the
 If (A 405) is applied to this infinitesimal mesh (instead of the domain \(w^{\prime}\) ) and to the vector field q, describcd by (A 402a) (A 402b) (A 402c), (instead of the vector ficld \({\underset{I}{\text { a }}}^{\prime}\), the relation (A 405), furms to
\[
\begin{equation*}
\text { (div } \underline{=}) \cdot d w=\sum_{i=1}^{4}\left[\left(\underline{=} \cdot n^{0}\right) \cdot d c\right] i \tag{A405a}
\end{equation*}
\]

Here, in equation (A 405a), dw denotes again the surface element of the spherical surface \(W\). And, dc is again the arc element of the boundary-line \(c\) which separates the two partial areas \(\boldsymbol{W}^{\prime}\) and \(\boldsymbol{w}^{\prime \prime}\) of the spherical surface \(\mathbf{W}\).
The smaller the amount of \(d w\), the better valid the equation (A 405a). In (A 405a), the summation ower the suffix \(i\), \((i=1,2,3,4)\), means the summation over the four sides of the infinitesimal trapezoid represented by Fig. A 10. For these 4 sides, the concorned values of \(\underline{\underline{q}}, \underline{n}_{\underline{n}}^{0}\), and de have to be quoted. Thus, these
4 values are as follows,
\((\underline{\underline{q}})_{1},\left(\underline{\underline{n}}{ }_{c}^{0}\right)_{i},(d c)_{1} ;(i=1,2,3,4) \quad\).


Fig. A 10.
\(q_{1}\) is the component of the vector \(q\) in the north-south direction,
\(q_{2}\) is the component in the east-west direction.
Now, the validity of (A 405a) is easily proved by the developments of (A 405b). ,

The summation on the right hand side of (A 405a) refers to the four sides of the mesh, represented by Fig. A 10. The sum on the right hand side of (A 405a) develops in the following way, it follows from a look on Fig. A 10.
\[
\begin{aligned}
& \sum_{i=1}^{4}\left[\left(\underline{\underline{q}} \cdot \underline{\left.\left.\underline{n_{c}^{0}}\right) \cdot d c\right]} \mathrm{i}=\right.\right. \\
& =-\left(q_{2}\right)_{1} \cdot R^{\prime} \cdot d \varphi+\left(q_{2}\right)_{2} \cdot R^{\prime} \cdot d \varphi-\left(q_{1}\right)_{3} \cdot R^{\prime} \cdot(\cos \varphi)_{3} \cdot d \lambda+ \\
& +\left(q_{1}\right)_{4} \cdot R^{\prime} \cdot(\cos \varphi)_{4} \cdot d \lambda= \\
& =\left[\left(q_{2}\right)_{2}-\left(q_{2}\right)_{1}\right] R^{\prime} \cdot d \varphi+\left[\left(q_{1}\right)_{4}-\left(q_{1}\right)_{3}\right] R^{\prime} \cdot(\cos \varphi)_{3} \cdot d \lambda+ \\
& \quad+\left(q_{1}\right)_{4} \cdot R^{\prime} \cdot d \lambda \cdot\left[(\cos \varphi)_{4}-(\cos \varphi)_{3}\right]=
\end{aligned}
\]
\(=\left(\partial q_{2} / \partial \lambda\right) \cdot d \lambda \cdot R^{\prime} \cdot d \varphi+\left(\partial q_{1} / \partial \varphi\right) \cdot d \varphi \cdot R^{\prime} \cdot(\cos \varphi) \cdot d \lambda+\)
\(+\left(q_{1}\right)_{4} \cdot R^{\prime} \cdot \alpha \lambda \cdot(-\sin \varphi) \cdot d \varphi=\)
\(=\left[\left(1 / R^{\prime}\right) \cdot\left(\partial q_{1} / \partial \varphi\right)+\left(1 /\left(R^{\prime} \cdot \cos \varphi\right)\right) \cdot\left(\partial q_{2} / \partial \lambda\right)-\right.\)
\(\left.-(\tan \varphi) \cdot\left(1 / R^{\prime}\right) \cdot q_{1}\right] \cdot R^{\prime 2} \cdot(\cos \varphi) \cdot d \varphi \cdot d \lambda=\)
\(=(\operatorname{div} \underset{\underline{q}}{\underline{q}} \cdot d w\).
(A 405b)

The developments given by the above lines are self-cxplanatory. They prove, by (A 403), the validity of (A 405a). The integration over the whole of the infinitesimal meshes of the domain \(w^{\prime}\) leads from (A 405a) to (A 405). Thus, the validity of (A 405) is corroborated.

Now, we return back to the relations (A 404) and (A 405), and to the specialities connected with the division of the surface \(w\) into two parts, \(w^{\prime}\) and \(w^{\prime \prime}\), FiE. A 9. For the subsequent mathematical deliberations, the close surroundings \(w^{\prime \prime}\) around the test point \(P\) get the form of a small spherical cap with the spherical radius R'. . 'This cap is concentric to the test point \(P\), and it is situated on the sphere w. Thus, the fieure A g changes to the figure \(A 11\).


Fig. A 11.

In Fig. A 11, the symbol \(A\) is again the azimuth measured clockwise from the north. The line \(\overline{\bar{x}}\) leads to the north, the line \(\overline{\bar{y}}\) to the east. The vertex of the azimuth \(A\) is the conter point \(P\) of the cap \(w^{\prime \prime}\).

Consequently, if (A 404a) is considered, the relation (A 406) follows,
\(\int\left(\left(\operatorname{div} \underset{\underline{a})}{=} \cdot d w=\int(\right.\right.\) (div \(\underset{\underline{a})}{=} d w \quad\).
(A 406)
w'
w- w"

With (A 406), (A 405) turns to
\[
\begin{equation*}
\iint_{w-w^{\prime \prime}}(\operatorname{div} \underset{c}{\underline{a}}) \cdot d w=\int_{c}\left(\underline{\underline{a}} \underline{\underline{n}}^{0}\right) \cdot d c \tag{.4407}
\end{equation*}
\]

In (A 407), we refer to the special sitaation ehown by Fig. A 11.

In case, the radius \(\rightarrow\) of the cep \(w^{\prime \prime}\) teinds to zero, the area of \(w^{\prime \prime}\) tends to zero simultaneously. Here, the radius was measured by the Eeocentric angle \(\uparrow\) which belongs to \(\because "\), Fig. is 11 . Now, the specialitiss are to be considered which set in during the transition to an infinitesimal small area for \(w^{\prime \prime}\). 'ihis transition procedure comes about if i'M tonds to zero,
\[
\begin{equation*}
R^{\prime} \cdot \leadsto \rightarrow 0 \text {. } \tag{it408}
\end{equation*}
\]

The integral on the left hand side of (A 407) covers the area \(:^{\prime \prime}=W-W^{\prime \prime}\). The coverage of the area wineods a spacial consideration, since the integrand contains the inverse of \(\epsilon^{\prime}\). In case of (A 408), this inverse does tend to infinity. Hence, it is necessary to show that the integral
\[
\begin{equation*}
K=\iint_{w^{\prime \prime}}(\operatorname{div} \underset{=}{\underline{e})} \cdot d w \tag{j}
\end{equation*}
\]
tends to zero, if the transition (A 408) takes place. For a sufficient small value of \(R^{\prime}\), representation (the precise shape of \(d w\) is: ( \(\left.R^{\prime}\right)^{2} \cdot(\sin p) \cdot d p \cdot d A\) ) by (A 410)
\[
\begin{equation*}
d w=\epsilon^{\prime} \cdot d e^{\prime} \cdot d A+I_{1}\left(e^{\prime}\right) \tag{A410}
\end{equation*}
\]
\(I_{1}\left(e^{\prime}\right)\) symbolizes a relative error of tho order of \(\left(e^{\prime} / R^{\prime}\right)^{2}\) in the value of dw. \(I_{1}\left(e^{\prime}\right)\) is a function depending on \(e^{\prime} \cdot\left(\sin p=\left(e^{\prime} / R^{\prime}\right)-(1 / 8) \cdot\left(e^{\prime} / R^{\prime}\right)^{3}+\ldots \ldots\right)\) 。
(A 404) is introduced into (A 409). In doing so, \(K\) divides into three constituents,
\[
\begin{equation*}
K=K_{1}+K_{2}+K_{3} \tag{A410a}
\end{equation*}
\]

They have the following expressions, regarding (A 410) (A 404), (neglecting the term \(I_{1}\left(e^{\prime}\right)\), i.e. relative errors of the order of \(\left(e^{\prime} / R^{\prime}\right)^{2}\) in the integrands ),
\[
\begin{align*}
& K_{1}=\iint_{w^{\prime \prime}}(\nabla \cdot z) \cdot \underline{=} \cdot d e^{\prime} \cdot d A  \tag{A411}\\
& K_{2}=\iint_{w^{\prime \prime}} z \cdot\left[\nabla \cdot\left(1 / c^{\prime}\right)\right] \underset{\sim}{k} \cdot e^{\prime} \cdot d e^{\prime} \cdot d A  \tag{A412}\\
& K_{3}=\iint_{w^{\prime \prime}} z \cdot[\nabla \cdot \underline{=}] \cdot d e^{\prime} \cdot d A
\end{align*}
\]

The surface of the Barth was presupposed to be that of a star-shaped Earth, the slopes of the terrain have never infinite amounts. Thus, \(2, x\), and \(\nabla \cdot Z\) have always finite amounts. If (A 408) is applied, \(Z\) tends to zero.

The length of \(\underset{=}{k}\) is viewed by (A 398): The length of the vector \(t\) is always finite, because the plumb-line deflection \(\theta\) has finite amounts, always, (A 383), (A 376) (A 377), and, because, moreover, \(x^{*}(P, Q)\) is a function of finite values, too. The latter fact is cvidenced by (A 395a). Regarding (A 206), the relation (A 395a) yields
\[
\begin{equation*}
x^{*}(P, Q) \cong\left(x^{2}+2 / R^{\prime}\right) \cdot\left[1+x^{2}+\left(1+x^{2}\right)^{1 / 2}\right]^{-1} \tag{A414}
\end{equation*}
\]

In casc, the topographical heights tend to zero, the \(x\) values tond to zero simultancously (for finite values of \(e^{\prime}\) ). Consequently, (A 414) tends to zero, in this esse. And, furthermore, in the adverse case, if the \(x^{2}\) values tend to infinity, the amount of (A 414) tends to the unity. Thus, obviously,
\[
\begin{equation*}
0 \leqslant\left|x^{*}\right|<1 \tag{A415}
\end{equation*}
\]

Hence, the length of the vector \(\underline{\underline{k}}\) is finite.

Furthermore, the amount of the scalar value \(\nabla \cdot \underline{\underline{k}}\), being equal to div \(\underline{\underline{k}}\), has to be discussed, since this amount appears in (A 413). In this context, the question is in the fore whether div \(\underline{\underline{k}}\) has finite values. Regarding the relations (A 398) (A 378) (A 379) (A 414), and substituting the vector q in (A 403) by the vector \(\underset{=}{k}\), the following relation is obtained,
\[
\operatorname{div} \underline{\underline{k}}=\nabla \cdot \underline{\underline{k}}=
\]
\(=\left(1 / R^{\prime}\right)\left\{\partial\left(x^{*} \cdot t_{1}\right) / \partial \varphi\right\}+\left(1 /\left(R^{\prime} \cdot \cos \varphi\right)\right)\left\{\partial\left(x^{*} \cdot t_{2}\right) / \partial \lambda\right\}-\left(x^{*} \cdot t_{1}\right) \cdot(\tan \varphi) \cdot\left(1 / R^{\prime}\right) \quad\) - (A 416)
As it is evidenced by (A 414), tho function \(x^{*}(P, Q)\) is a continuous function with continuous first derivatives, since \(x\) is a continuous function of \(Z\), and since \(Z\) is a continuous function with continuous first derivatives, depending on the latitude and longitude.
\(t_{1}\) and \(t_{2}\) are the components of the plumb-line deflection. It is well-known that these functions are continuous with continuous first and higher derivatives. Thus, the values of \(x^{*} . t_{1}\), the values of the derivative of \(\left(x^{*} \cdot t_{1}\right)\) with regard to the latitude, and the values of the derivative of ( \(x^{*} t_{2}\) ) with regard to the longitude, (which appear in (A 416)), all these three values have finite amounts. Consequently, it can be taken for granted that the amount of (div \(\underline{\underline{k}}\) ) in (A 413) has finite amounts. In case of \(\varphi=90^{\circ}\), the right hand side of (A 416) has \((\tan \varphi \rightarrow \infty)\), a removable singularity. It can be removed by the choice of another convenient pole for co-ordinate system. The operator ( div k) depends not on the choice of the co-ordinate system.

As to the here discussed properties of the integrands apparing in (A 411), (A 412), and (is 413), finally, the amount of the scalar
\[
\begin{equation*}
\left[\operatorname{grad}\left(1 / e^{\prime}\right)\right] \cdot \underset{=}{k} \cdot e^{\prime} \tag{A417}
\end{equation*}
\]
appearing in (A 412) is to be considered, and that in caso of the transition described by (A 408).
Obviously, the ©radi ont vector of \(1 / \mathrm{C}\) ' has the following shape, (A 402),
\(\operatorname{grad}\left(1 / e^{\prime}\right)=\left[\partial\left(1 / e^{\prime}\right) / \partial \overline{\overline{\mathrm{x}}}\right] \cdot \stackrel{\mathrm{e}}{1}^{=}+\left[\partial\left(1 / e^{\prime}\right) / \partial \overline{\overline{\mathrm{y}}}\right] \cdot \stackrel{\mathrm{e}}{=}_{2} \quad\).
Fiere is
\(\left[\partial\left(1 / e^{\prime}\right) / \partial \overline{\bar{x}}\right] \cdot \stackrel{e}{=}_{1}=-\left(1 / c^{\prime}\right)^{2} \cdot\left(\partial c^{\prime} / \partial \overline{\bar{x}}\right) \cdot e_{1}{ }_{1} \quad\).
The cxpression (A 419) is understood that it is taken for a point in the near surroundings of tho test point \(P\). The values of (A 419) cover the area of w"Fig.A 11. The differential quotient \(\partial c / / \partial \overline{\bar{x}}\) can be interpreted as the cosinus of the angle \(\alpha\) between the dircctions of \(d c^{\prime}\) and \(d \overline{\bar{x}}\). lhus, for \(e^{\prime} \leqslant R^{\prime} \cdot \vartheta\),
\[
\begin{array}{ll}
\partial e^{\prime} / \partial \overline{\bar{x}}=\cos \alpha, & (A 41 \Omega a) \\
\partial e^{\prime} / \partial \overline{\bar{y}}=\sin \alpha \tag{A419b}
\end{array}
\]

Hence, ( \(\left.A_{2} 418\right)\) turms to
\[
\begin{equation*}
\operatorname{srad}\left(1 / e^{\prime}\right)=-\left(1 / c^{\prime}\right)^{2} \cdot\left[(\cos \alpha) \cdot \stackrel{e}{=}_{1}+(\sin \alpha) \cdot \stackrel{c}{=} 2\right] \tag{A420}
\end{equation*}
\]

In casc of approaching the point \(P\), the value of \(\cos \alpha\) tends to cos \(A\), and \(\sin \alpha\) tends to \(\sin A . A\) is here the azimuth alons wich the approach to \(P\) happens, (See Fig. A 11 ) .

Returning back to (A 417), the voctor \(\underline{=}=x^{*} \cdot \underline{t}\) has to be considered also, (A 398). The following relation is obtained referring to (A 381) and (A 398),
\[
\stackrel{k}{=}=x^{*} \cdot t_{1} \cdot \stackrel{e}{=} 1+x^{*} \cdot t_{2} \cdot \stackrel{c}{=} 2 \quad(i 421)
\]

Kegarding (A 417), the product of (A 420) and (A 421) needs to be considered,now. This product is multiplied with \(Z\) and with the length e'. Hence it follows, for the values within the area w",
\[
\begin{equation*}
z \cdot\left[\operatorname{grad}\left(1 / c^{\prime}\right)\right] \cdot k \quad c^{\prime}=-x^{*} \cdot x \cdot\left[t_{1} \cdot \cos \alpha+t_{2} \cdot \sin \alpha\right] . \tag{A422}
\end{equation*}
\]

After these investigations about the integrands of \(K_{1}, K_{2}, K_{3}\), conducted from (A 414) to ( \(A 422\) ), it is possible to estimate the amount of (A 411), (A 412), and (A 413), for tho special case that the arca of \(w^{\prime \prime}\) tends to zoro, or, that the transition (A 408) is carried out.

At first, the integral for \(K_{1}\) is considerod. Because the two vectors (grad Z) and \(\xlongequal{k}\) have limited lengthes, as proved in the lines above, the scalar or inner product of these two vectors has a limited scalar amount, too. This fact follows from the schwarz inequality, which has the following form in the here discussed problem,
\[
\begin{equation*}
|(\nabla z) \cdot \underline{\underline{k}}| \leqslant|\nabla z| \cdot|\underline{\underline{k}}| \tag{A423}
\end{equation*}
\]

Since the two factors on the right hand side of (A 423) have finito amounts, the left hand side of this inequality yiclds a finite amount, also. If \(\mathrm{k}_{1}\) is the upper bound of the amount of \(|(\operatorname{grad} 2) \cdot \underline{=}|\), obtained within the area \(w^{\prime \prime}\), the relation (A 411) gives for the absolute amount of \(K_{1}\)
\[
\begin{align*}
\left|K_{1}\right| & \leqslant 2 \cdot \pi \cdot k_{1} \cdot R^{\prime} \cdot Q  \tag{A423a}\\
k_{1} & =f \text { in } \sup |((\operatorname{grad} Z) \cdot \underline{k})| \tag{A423b}
\end{align*}
\]

The smaller the value of \(Q\), the more procise the relation (A 423a). If \(\vartheta\) tends to zero, (A 408), \(\left|K_{1}\right|\) tends to zero, too, becauso \(2 \cdot \pi \cdot k_{1} \cdot R^{\prime}\) has an upper bound. Thus,
\[
\begin{equation*}
K_{1} \rightarrow 0, \text { if (A 408) is valid. } \tag{A4:23c}
\end{equation*}
\]

At the second place, the integral for \(K_{2}\) comes into the fore, (A 412). The relations (A 412) and (A 422) yield
\[
\begin{equation*}
K_{2}=-\iint_{w^{\prime \prime}} x^{*} \cdot x \cdot\left[t_{1} \cdot \cos \alpha+t_{2} \cdot \sin \alpha\right] \cdot d \theta^{\prime} \cdot d A \tag{A424}
\end{equation*}
\]
as it was found above, the tarms \(x^{*}, x, t_{1}, t_{2}, \cos \alpha\), and \(\sin \alpha\) which appear in the integrand of \(K_{2}\) have finite amounts. Consequently, the absolute amount of the integrand of ( \(A 424\) ) has an upper bound, \(k_{2}\). Hence it follows
\(k_{2}=f\) in \(\sup \left|x^{*} \cdot x \cdot\left[t_{1} \cdot \cos \alpha+t_{2} \cdot \sin \alpha\right]\right|\).

The relation (A 424a) is inserted into (A 424); the transition behaviour described by (A 408) is regarded. Tho inequality (A 424b) is the consequence
\[
\begin{equation*}
\left|K_{2}\right| \leqslant 2 \cdot \pi \cdot k_{2} \cdot R^{\prime} \cdot N \tag{A424b}
\end{equation*}
\]

If \(\mathcal{Q}\) tends to zero, the absolute amount of \(K_{2}\) tends to zero, too. This behaviour follows from (A 424a) and (A 424b). Thus, the following relation is obtained,
\[
\begin{equation*}
\mathrm{K}_{2} \rightarrow 0 \text {, if (A 408) is valid. } \tag{A424c}
\end{equation*}
\]

At the third place, the integral for \(K_{3}\) is evaluated, for an area w" which tends to zero, (A 413). Within the area \(w^{\prime \prime}, Z\) was proved to be a finite value. In case of the transition procodure (A 408), the amount of \(Z\) tends to zero. Further, in the lines which follow the relation (A 416), it was shown that div \(\underline{\underline{k}}\) has always finite amounts. Thus, if \(k_{3}\) is the upper bound of the absolute amount of the integrand of (A 413),
\[
\begin{align*}
& k_{3}=\text { fin sup }|Z \cdot(\operatorname{div} \underset{=}{k})|,  \tag{A424d}\\
& \text { the relation (A 413) leads to } \\
& \left|K_{3}\right| \leqslant 2 \cdot \pi \cdot k_{3} \cdot R^{\prime} \cdot M .
\end{align*}
\]

Hence it follows
\[
\begin{equation*}
\left|\mathrm{K}_{3}\right| \rightarrow 0 \text {, if (A 408) is valid. } \tag{A424f}
\end{equation*}
\]

Regarding (A 423c), (A 424c), and (A 424f), the rolation (A 410a) gives
\[
\begin{align*}
& K \rightarrow 0 \text {, if (A 408) is valid. } \\
& \text { Henco, with (A 407) and (A 409), } \\
& \int(\text { (div } \underset{=}{\text { a }}) \cdot d w \rightarrow \int\left(\operatorname{div}_{\underline{a}}^{\underline{a}}\right) \cdot d w \quad,  \tag{A425a}\\
& \text { w-w" w } \\
& \text { if (A 408) is valid. }
\end{align*}
\]

Returning back to the equation (A 407), the relation (A 425a) describes the transition behaviour of the left hand side of (A 407), for a vanishing area of w". Now, the transition behaviour of the right hand side of (A 407) is in the foro,
\[
\begin{equation*}
K^{\prime}=\int_{c}\left(\underline{\underline{a}} \cdot \underline{\underline{n}}_{c}^{0}\right) \cdot d c . \tag{A425b}
\end{equation*}
\]

The vector \(\stackrel{a}{=}\) in the above inteegrand comes from (A 400) and (A 393),
\[
\begin{equation*}
\underline{\underline{a}}=x \cdot \underline{\underline{k}}=x \cdot x^{*} \cdot \underline{\underline{t}} \tag{A425c}
\end{equation*}
\]

The above investigations, (A 414) (A 415), did show that the 4 terms \(x, x^{*}\), and \(\underline{\underline{t}}\), and \(\underline{\underline{k}}\) have finite amounts. Thus, the length of the vector \(\mathfrak{a}\), along the spherical circle \(c\), has always finite amounts. The Schwarz inequality gives
\[
\begin{equation*}
\left|\left(\underline{a} \cdot \underline{\underline{n}}_{\mathrm{c}}^{0}\right)\right| \leqslant|\underline{\mathrm{a}}| \cdot\left|\underline{\underline{n}}_{\mathrm{c}}^{\mathrm{c}}\right|=|\underline{\mathrm{a}}|, \tag{A425d}
\end{equation*}
\]
the vector \(\underline{n}_{C}^{\circ}\) was introciuced as a unit vector. The inequality (A 425d) shows that the absolute amount of (a \(\underline{n}_{\mathrm{n}}^{0}\) ) has an upper bound, because \(|\underline{\underline{a}}|\) has an upper bound, since we consider a. star-shaped Earth with finite amounts of the slopes. \(k\) ' denotes this upper bound,
\[
\begin{equation*}
k^{\prime}=f i n \sup \left|\stackrel{s}{=} \cdot n_{c}^{o}\right| \tag{A425c}
\end{equation*}
\]
(A 425e) is introduced into (A 425b). Hence, it follows
\[
\begin{equation*}
\left|k^{\prime}\right| \leqslant \int_{c} k^{\prime} \cdot d c=k^{\prime} \int_{c} d c \tag{A425f}
\end{equation*}
\]

The rolation (A 425f) yiclds
\[
\begin{equation*}
\left|K^{\prime}\right| \leqslant k^{\prime} \int_{A=0}^{2 \pi}\left(R^{\prime} \not ⿴\right) \cdot d A=2 \cdot \pi \cdot k^{\prime} \cdot R^{\prime} \cdot \Re \text {. } \tag{A425g}
\end{equation*}
\]

Thus,
\[
K^{\prime} \rightarrow 0 \text {, if (A 408) is valid. }
\]
(A 425h)

Finally, rogarding (A 425) and (A 425h), the Gauss' integrol relation (A 407) turns to
\[
\begin{equation*}
\iint_{W}(\operatorname{div} \underset{=}{\underline{a}}) \cdot d w=0 \tag{A425i}
\end{equation*}
\]
if the radius of the area \(\mathrm{v}^{\prime \prime}\) tends to zero. In (A 4251), (A 425a) mas used, also.
Now, we return back to (A 404). The relation (A 404) develops the expression (div a) into 3 terms. Thus, the introduction of (A 404) into (A 425i) yiclds
\[
\begin{equation*}
0=(A)(E)(\operatorname{div} \xlongequal{a}) \cdot d w=B_{1}+B_{2}+B_{3} \tag{A426}
\end{equation*}
\]

For \(B_{1}\) follows
\[
B_{1}=(A)(E)(\operatorname{grad} 2) \cdot\left(1 / e^{\prime}\right) \cdot k \cdot d w
\]
accounting for (A 389) and (A 399a), the relation (A 427) turms to
\[
\begin{equation*}
E(5)=\sigma \cdot B_{1} \tag{A428}
\end{equation*}
\]
\(\mathcal{E}(5)\) is the term for which an expression convenient for routine calculations is to be found.
\[
\mathrm{B}_{2} \text { has the following oxpression , }
\]
\[
\begin{equation*}
B_{2}=(A)(E) Z \cdot x^{*} \cdot\left(g r a d\left(1 / e^{\prime}\right)\right) \cdot \underline{t} \cdot d w \tag{A429}
\end{equation*}
\]

In (A 429), the vector grad (1/e') is a tangential vector of even those great circles of the sphere \(w\) which are plottcd through the point \(P\). grad (1/e') is here the sradient vector of the field of the ( \(1 / e^{\prime}\) ) values taken along the sphere \(w,(A 401)\). If \(e_{3}\) is this unit tangential vector heading into the direction of growing \(p\) values, itfollows
\[
\begin{equation*}
\operatorname{srad}-\left(1 / e^{\prime}\right)=-\left(1 / e^{\prime}\right)^{2} \cdot\left(1 / R^{\prime}\right) \cdot\left(\partial e^{\prime} / \partial p\right) \cdot \stackrel{e}{=} 3 \tag{A430}
\end{equation*}
\]

The coraponent of the vector \(\underset{=}{t}\) in the direction of the above dofined groat circles is, (A 380),
\[
\begin{equation*}
t_{p} \cdot 气 \tag{A431}
\end{equation*}
\]
-
ivith
\[
\begin{equation*}
0^{\prime}=2 \cdot R^{\prime} \cdot \sin p / 2 \tag{A432}
\end{equation*}
\]
the following derivative is obtained
\[
\begin{equation*}
\left(1 / R^{\prime}\right) \cdot\left(\partial c^{\prime} / \partial p\right)=\cos p / 2 \quad . \tag{A433}
\end{equation*}
\]

Reçarding (A 380) (A 430) (A 433), the scalar product in the expression (A 429) takes the following shape
\(\left[\operatorname{srad}\left(1 / e^{\prime}\right)\right] \cdot \underline{t}=(1 / R) \cdot\left(1 / g^{\prime}\right) \cdot\left(1 / c^{\prime}\right)^{2} \cdot(\cos p / 2) \cdot(\partial T / \partial p) \quad\).
Inserting (A 380) in (A 434), relative errors of the order of \(2 / R\) are neflected, here. A comparison of (A 429) and (A 434) gives
\[
\begin{equation*}
B_{2}=(A)(X) 2 \cdot x^{*} \cdot(\cos p / 2) \cdot(1 / i) \cdot\left(1 / f^{\prime}\right) \cdot\left(1 / c^{\prime}\right)^{2} \cdot(\partial T / \partial p) \cdot d w \tag{A435}
\end{equation*}
\]

In (A 435), a simple rearrangement is now undertaken. Considering
\[
\begin{equation*}
x=Z / e^{1} \tag{A436}
\end{equation*}
\]
and accounting for (A 432), we find
\[
\begin{equation*}
Z \cdot\left(1 / 0^{\prime}\right)^{2}=x \cdot\left(1 /\left(2 \cdot R^{\prime}\right)\right) \cdot(1 /(\sin p / 2)) ; \tag{A437}
\end{equation*}
\]
hence it follows
\[
\begin{equation*}
z \cdot x^{*} \cdot\left(1 / e^{1}\right)^{2}=x \cdot x^{*} \cdot\left(1 /\left(2 \cdot R^{\prime}\right)\right) \cdot(1 /(\sin p / 2)) \tag{A438}
\end{equation*}
\]

The symbol \(\mathrm{b}_{11}\) serves as an abbreviation , (A 395),
\[
b_{11}=x \cdot x^{*}=x\left(x^{2}+z / k^{\prime}\right) \cdot\left[x^{\prime}+\left(x^{\prime}\right)^{1 / 2}\right]^{-1}
\]

Thus, \(B_{2}\) has the following final shape convenient for routine calculations, (with \(R \cong R 1\) ), \(B_{2}=(A)(E)[\partial T /(R \cdot \partial p)] \cdot\left(1 / g^{\prime}\right) \cdot(1 /(2 R)) \cdot(\cos p / 2) \cdot\{1 /(\sin p / 2)\} \cdot b_{11} \cdot d w \quad\) (A 440\()\)

The term \(B_{3}\) of (A 426) has the following expression, introducing the third term on the right hand side of (A 404) in (A 426),
\[
\mathrm{H}_{3}=(\hat{A})(E)\left(Z / \mathrm{e}^{\prime}\right) \cdot(\mathrm{div} \underset{=}{\underline{L}}) \cdot \mathrm{dw} \cdot
\]

The relation ( \(\dot{A}\) 393) Gives
\[
\begin{equation*}
\operatorname{div} \underline{k}=\operatorname{div}\left(x^{*} \cdot \underline{\underline{t}}\right) \tag{A442}
\end{equation*}
\]
where the voctor \(\stackrel{k}{=}\) is dividod into 2 components, \(k_{1}\) and \(k_{2}\),
\[
k=\left\{\begin{array}{c}
x^{*} \cdot t_{1}  \tag{A443}\\
\\
x^{*} \cdot t_{2}
\end{array}\right\}=\left\{\begin{array}{l}
k_{1} \\
\\
k_{2}
\end{array}\right\}
\]

In the numericel calculations, the vector \(k\) appoars in form of its components \(k_{1}\) and \(k_{2}\), the numerical valucs of which can be treated, if wanted, in the computations. Conscquently, in the following investigations, the
divergence operator for the vector \(\underline{\underline{k}}\) is now replaced by an operator for
the components \(k_{1}\) and \(k_{2}\), adapting the symbolic cxpression of the divergence to the specialities of the numerical applications. Hence, regardine (A 403), and with \(R \cong R^{\prime}\),
\[
\operatorname{div} \underline{\underline{k}}=\nabla \cdot \underline{\underline{k}}=\Phi\left(k_{1}, k_{2}\right)=
\]
\(=(1 / R) \cdot\left(\partial k_{1} / \partial \varphi\right)+(1 /(R \cdot \cos \varphi)) \cdot\left(\partial k_{2} / \partial \lambda\right)-(1 / R) \cdot(\tan \varphi) \cdot k_{1} \quad\).

A comparison of (A 441) and (A 444) leads to the following expression for \(B_{3}\)
\[
\begin{equation*}
B_{3}=(A)(E) \quad Z \cdot \Phi\left(k_{1}, k_{2}\right) \cdot\left(1 / e^{\prime}\right) \cdot d w \tag{i}
\end{equation*}
\]

It is the aim of this chapter to find an expression for \(E(5)\) which is convenient for routine calculations, (A 370). This aim is reached by (A 426) (A 428) (A 440) and (A 445). Henco, regarding, in addition to (A 446), the formulas for \(B_{2}\) and \(B_{3}\),
\[
\begin{equation*}
\mathbb{E}(5)=-g \cdot B_{2}-g \cdot B_{3} \tag{A446}
\end{equation*}
\]
\(E(5)=-(A)(E) g \cdot Z \cdot \Phi\left(k_{1}, k_{2}\right) \cdot\left(1 / e^{\prime}\right) \cdot d w-\)
\(-(A)(E)[\partial T /(R \partial p)] \cdot(1 / 2 R) \cdot(\cos p / 2) \cdot[1 /(\sin p / 2)] \cdot b_{11} \cdot d w\).
With (A 443), we find (A 448)
\[
\begin{equation*}
\Phi\left(k_{1}, k_{2}\right)=\Phi\left(x^{*} \cdot t_{1}, x^{*} \cdot t_{2}\right) \tag{A448}
\end{equation*}
\]

Usually, in the seodetic textmbooks, \(t_{1}\) is denominated by \(\xi\), and \(t_{2}\) by \(\eta\); thus, putting
\[
\begin{equation*}
t_{1}=\xi, \quad t_{2}=\eta \tag{A449}
\end{equation*}
\]
the relation (A 450) follows
\[
\begin{align*}
& \Phi\left(k_{1}, k_{2}\right)=\Phi\left(x^{*} \cdot \xi, x^{*} \cdot \eta\right)= \\
& =(1 / R)\left[\partial\left(x^{*} \cdot \xi\right) / \partial \varphi\right]+(1 /(R \cdot \cos \varphi)) \cdot\left[\partial\left(x^{*} \cdot \eta\right) / \partial \lambda\right]-(1 / R) \cdot(\tan \varphi) \cdot x^{*} \cdot \xi \cdot \tag{A450}
\end{align*}
\]

The amount of \(x^{*}\) diminishes rapidly for growing distances from the test point \(P\), since \(X^{*}\) is quadratic in \(x\). Consequently, the amount of the operator
\[
\Phi\left(x^{*} \cdot \xi, x^{*} \cdot \eta\right)
\]
diminishes also rapidly if the distances from the point \(P\) are growing. Thercfore, in the first tern on the right hand side of (A 447), the integration can be limited to the near surroundings of the test point \(P\). Further, in the sccond torm on the right hand sidc of (A 447), the following rearrangements can be carricd out, (A 439),
\[
\begin{equation*}
b_{11} \cdot d w=x \cdot x^{*} \cdot d w=z \cdot x^{*} \cdot\left(1 / e^{\prime}\right) \cdot d w \cdot \tag{A451}
\end{equation*}
\]

Hers, in (A 451), the factor \(\mathrm{X}^{*}\) appears, also. Thus, it can be taken for granted, that the integrand of the second term on right hand side of (A 447) diminishes rapidly, too. Consequently, the integration of this term can be limited to the near surroundings of the test point \(P\), too. Therefore, in (A 451), the plans surface olement \(0^{\prime} \cdot d e^{\prime} \cdot d A\) can be substituted for \(d w ;\) hence
\[
\begin{equation*}
b_{11} \cdot d w \cong z \cdot x^{*} \cdot d 0^{\prime} \cdot d A \text { for } 0^{\prime}<10 n 0 \mathrm{~km} \tag{A452}
\end{equation*}
\]

Along these lines, accounting for (A 452), (A 447) can be transformed into
\(E(5)=-(A)(E) g \cdot Z \cdot \Phi\left(x^{*} \cdot \xi, x^{*} \cdot \eta\right) \cdot d e^{\prime} \cdot d A-\)
- (A) (E) \(\left(\partial^{\prime} L^{\prime} / \partial e^{\prime}\right) \cdot(1 / 2) \cdot(Z / R) \cdot(\cos p / 2) \cdot\{1 /(\sin p / 2)\} X^{*} \cdot d e^{\prime} \cdot d A \quad\) (A 453)

Here is, putting approximately \(R^{\prime} \cong R\),
\[
\begin{equation*}
x^{*}=\left(x^{2}+2 / R\right) \cdot\left[x^{\prime}+\left(x^{\prime}\right)^{1 / 2}\right]^{-1} \tag{A454}
\end{equation*}
\]

\subsection*{14.11. The formulae for \(D(2.1)\)}
14.11.1. The universal formula for \(D(2.1)\)

Now, we return back to the expression for \(D(2.1)\), which is described by the cquations (45) and (45f) of the section 4. Hence it follows, (45f), on page 23,
\(D(2.1)=E(1)+E(2)+E(3)+E(4)+E(5)\)
(A 455)

The detailed developments for the 5 terms on the right hand side of (A 455) can be found at the following placos of this publication;
\(E(1):(A 50)(A 51)(A 52)\),
\(E(2):(A 306)\),
E(3): (A 362) ,
\(E(4):(A 369)\),
E(5): (A 453).
In order to have theso formulae easy to survey, they are here put together.
\(E(1)=(A)(E) \Delta g \cdot\left(-x^{2}\right) \cdot\left(y+y^{2}\right)^{-1} \cdot d c^{\prime} \cdot d A+\)
\(+(A)(E)(T / R) \cdot\left(-2 \cdot x^{2}\right) \cdot\left(y+y^{2}\right)^{-1} \cdot d e^{\prime} \cdot d A+\)
\(+(A)(E) \Delta g \cdot(-z / R) \cdot\left(y+y^{2}\right)^{-1} \cdot\left(e^{\prime}\right)^{-1} \cdot d w+\)
\(+(A)(E)(T / R) \cdot(-2 \cdot Z / R) \cdot\left(y+y^{2}\right)^{-1} \cdot\left(O^{\prime}\right)^{-1} \cdot d w . \quad\) (A 456)
\(E(2)=(A)(E)(T / R) \cdot v_{3} \cdot d e^{\prime} \cdot d A+\)
\(+(A)(E)\left(\partial T / \partial e^{\prime}\right) \cdot v_{2} \cdot d e^{\prime} \cdot d A+\)
\(+(A)(E)(T / R) \cdot(1 / R) \cdot v_{1} \cdot d w+\)
\(+(A)(E)(\partial T / \partial p) \cdot\left(-1 / R^{2}\right) \cdot(\cos p / 2)^{2} \cdot(1 / \sin p) \cdot b_{7} \cdot d w \cdot(A 457)\)
```

E(3)=(A)(E)\Deltag\cdot(2\cdot2/R)\cdot(1/\mp@subsup{|}{}{\prime})\cdotdw+
+(A) (E) (T/R)\cdot( 4 Z/R)\cdot(1/e') . dw .
(A 458)
E(4)=(A) (E) (T/R)\cdot(- Z/R)\cdot(1/0') \cdot dw .


```
    +(A)(E) (-g.Z)\cdot\Phi(\mp@subsup{x}{}{*}\cdot\xi,\mp@subsup{x}{}{*}\cdot\eta)\cdotde'.dA .

In the above formulac for \(E(1), E(2), E(3), E(4), E(5)\), rolative errors of the order of \(Z / R\) are noglected.

In vicw of the numo rical applications, a regrouping of the right hand side of (A 455) is now carried out. It is recommended to group the development for the torm \(D(2.1)\), (A 455), according to certain aspects which originato from the facts appearing in the numerical calculations. Following up this aim, terms with similar integrands are assigned into the same new group. Making this new classification on the right hand side of (A 455), the following now 7 groups \(E(a), E(b), E(c), E(d), E(e), E(f)\), and \(E(g)\) appear in the expression for the term \(D(2.1)\),
\(D(2.1)=E(a)+E(b)+E(c)+E(d)+E(e)+E(f)+E(g)\).

The se new groups have the following shape,
\(E(a)=(A)(E) \Delta g \cdot(-Z / R) \cdot\left(y+y^{2}\right)^{-1} \cdot\left(c^{\prime}\right)^{-1} \cdot d w+(A)(E) \Delta g \cdot(2 Z / R) \cdot\left(1 / e^{\prime}\right) \cdot d w \cdot(A 462)\)
\(E(b)=(A)(E)(T / R) \cdot(-2 Z / R) \cdot\left(y+y^{2}\right)^{-1} \cdot\left(1 / e^{\prime}\right) \cdot d w+(A)(E)(T / R) \cdot(1 / R) \cdot v_{1} \cdot d w+\)
\(+(A)(E)(T / R) \cdot(4 \cdot Z / R) \cdot\left(1 / e^{\prime}\right) \cdot d w+(A)(E)(T / R) \cdot(-Z / R) \cdot\left(1 / e^{\prime}\right) \cdot d w\)
(A 463)
\(E(c)=(A)(E)(\partial T / \partial p) \cdot\left(-1 / R^{2}\right) \cdot(\cos p / 2)^{2} \cdot(1 / \sin p) \cdot b_{7} \cdot d W \quad \cdot\)
\(E(d)=(A)(E) \Delta g \cdot\left(-x^{2}\right) \cdot\left(y+y^{2}\right)^{-1} \cdot d 0^{\prime} \cdot d A \quad\).
(A 465)
\(E(a)=(A)(E)(T / R) \cdot\left(-2 x^{2}\right) \cdot\left(y+y^{2}\right)^{-1}: d c^{\prime} \cdot d A+(A)(E)(T / R) \cdot v_{3} \cdot d \cdot 1 \cdot d A \quad \cdot(A 466)\)
\(E(f)=(A)(E)\left(\partial T / \partial e^{\prime}\right) \cdot v_{2} \cdot d e^{\prime} \cdot d A+(A)\left(L^{\prime}\right)\left(\partial T / \partial e^{\prime}\right) \cdot\left(-b_{11}\right) \cdot d d^{\prime} \cdot d A \cdot\)
\(E(g)=(A)(E)(-g \cdot Z) \cdot \Phi\left(x^{*} \cdot \xi, x^{*} \cdot \eta\right) \cdot d o l \cdot d A \cdot\)

In the second term, on the right hand side of (A 467), the approximately valid relations
\(\cos \mathrm{p} / 2 \cong 1\), for el < 1000 km ,
and
\[
e^{\prime}=2 \cdot R^{\prime} \cdot \sin p / 2 \quad \text {, or, approximately, } \theta^{\prime} \cong 2 \cdot R \cdot(\sin p / 2),(A 470)
\]
are made use of. In (A 470), we have used the approximation \(R \cong R^{\prime}\).

The following rearrangoments of the relations from (A 462) up to (A 468)
are self-explanatory.
\(\mathbb{E}(a)=(A)(E) \Delta g \cdot(Z / R) \cdot\left[2-\left(y+y^{2}\right)^{-1}\right] \cdot\left(1 / 0^{\prime}\right) \cdot d w\).
\(E(b)=(A)(E)(T / R) \cdot(Z / R) \cdot\left[3-2 \cdot\left(y+y^{2}\right)^{-1}\right] \cdot\left(1 / e^{1}\right) \cdot d w+\)
\(+(A)(E)(T / R) \cdot(1 / R) \cdot v_{1} \cdot d w\).
(A 472)
\(\mathrm{E}(\mathrm{c}):(\) soc (A 464)).
\(E(d):(\) see \((A 465))\).
\(E(e)=(A)(E)(T / R) \cdot\left[v_{3}-2 x^{2} \cdot\left(y+y^{2}\right)^{-1}\right] \cdot d e \cdot \cdot d A \cdot\)
\(E(f)=(A)(E)\left(\partial T / \partial e^{\prime}\right) \cdot\left[v_{2}-b_{11}\right] \cdot d e^{\prime} \cdot d A \quad\).
E(g) : (see (A 468)).

The meaning of the here appearing terms \(\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}\) can be found by (A 327), (A 332), (A 339). The meaning of the term \(b_{7}\), appearing in \(E(c)\), is found by (A 319). The meaning of \(b_{11}\) is as follows, (A 439),
\[
\begin{equation*}
b_{11}=x \cdot x^{*}=x \cdot\left(x^{2}+z / R^{\prime}\right) \cdot\left[x^{\prime}+\left(x^{\prime}\right)^{1 / 2}\right]^{-1} \cdot \tag{A478}
\end{equation*}
\]

The meaning of \(\Phi\left(x^{*} \cdot \xi, x^{*} \cdot \eta\right.\) ) is oxplained by (A 450). The meaning of \(x, y, x^{\prime}, x^{\prime \prime}, e^{\prime}\) is as follows, (A 27), (A 39), (A 31), (A 40), (A 70a),
\begin{tabular}{ll}
\(x=z / e^{\prime}\), & (A 479) \\
\(y^{2}=1+x^{2}\), & (A 480) \\
\(x^{\prime}=y^{2}+2 / R^{\prime}\), & (A 481) \\
\(x^{\prime \prime}=x \cdot \cos p / 2\), & (A 482) \\
\(B^{\prime}=2 \cdot R^{\prime} \cdot \sin p / 2\), & (A 483)
\end{tabular}

The integrals for \(E(a), E(b)\), and \(E(c)\) have the surface olement dw at the integrand. These intogrations have to cover whole the globe. But, the integrals for \(E(d), E(e), E(f)\), and \(E(g)\) have the product of the two differentials de'. dA under the integration symbol. Thus, these latter 4 integrations cover only the cap of \(e^{\prime}<1000 \mathrm{~km}\) around the test point \(P\).

In the development (A 461) for \(D(2.1)\), it is recommendable to draw a clear distinction between the integrals of global and those of regional coverage. Therefore, the relation (A 461) is writton in the following form,
\[
\begin{equation*}
D(2 \cdot 1)=F_{1}+F_{2} \tag{array}
\end{equation*}
\]
with
\[
\begin{equation*}
F_{1}=E(a)+E(b)+i(c) \tag{A485}
\end{equation*}
\]
and
\[
F_{2}=E(d)+E(e)+E(f)+\mathbb{L}(g)
\]

The term \(F_{1}\) comprises the integrals of global integration; the term
\(F_{2}\) oncloses the terms of rogional coverage, only, (i. c. for \(c^{\prime}<1000 \mathrm{~km}\) ).

Finally, it is to bo stated that the relation (A 484) is the universally valid representation of \(D(2.1)\); may the test point \(P\) be situated in the lowlands or in the high mountains, the relation (A 484) meets all requirements. In (A 484), \(F_{1}\) comos from (A 485) and \(F_{2}\) from (A 486). In (A 485): \(E(a), E(b)\), and \(E(c)\) come from (A 471), (A 472), and (A 473). In (A 486): E(d), E(e), E(f), and E(g) come from (A 474), (A 475), (A 476), and (A 477).

Consequontly, (A 484) is the fundamental form representine \(D(2.1)\). It is of universal efficiency.

\subsection*{14.11.2. The lowland formula for \(D(2.1)\)}

Sure, mostly, in the different cases of the geodetic applications, the universal formula (A 484) for \(D(2.1)\) is not fully exheusted, by far not. ihe potentiality of the expression (A 484) is fully exploited only, if the test point \(P\) is situated in high mountains, and if, simultanoously, the heičht anomalies to be determined have to have centimeter precișion, - a very rare case. In most cases, the test points \(P\), for wich the heieht anomolics \(\zeta\) are to be determined, are situated in the lovlands, or in hilly areae vith small terrain inclination, or on the oceans. In these special situations now in the fore for the place of tho test point \(P\), the amount of the term \(x^{2}\) is very small. Consequently, in this case, \(x^{2} \ll 1\), many parts of the formulas from (A 471) up to (A 477) are so small that it is allowed to neglect them, in the lowlands.

Honce, in order to save work, the univereal expression, (A 484), is now simplified for the case the test point \(P\) is situated in the lowlands, exclusing high mountain test points.

The mathematical formulation of the constraint that the test point is situated in the lowlands is given by the inequality
\[
\begin{equation*}
x^{2} \ll 1 \tag{A487}
\end{equation*}
\]
(A 487) is the definition of the condition that a lowland tost point is under considoration, to speak with other words.

Since the terms of \(F_{2}\) are quadratic in the argument \(x\), (A 486), (soe \(E(d), E(o), E(f), E(g))\), the amount of \(F_{2}\) will always be very small, if the inequality (A 487) is right. Thus,
\[
\begin{equation*}
F_{2} \cong 0 \text {, if (A 487) is right. } \tag{A488}
\end{equation*}
\]

Furthermore, considering the three expressions \(E(a), E(b)\), and \(E(c)\) on the right hand side of (A 485), the developments (A 471), (A 472), and (A 473) for the so threc expressions will simplify onormously applying (A 487).

At first, the term in the brackets of (A 471) is simplified by the opplication of (A 487). In case, the amount of \(x^{2}\) is very small, (A 487), the ralation (A 480) leads to the following approximately valid oquations
\[
y=|y| \cong 1, \quad y^{2} \cong 1 ; \text { if (A 487) is valid. (A 488a) }
\]

Thus,
\[
\begin{equation*}
2-\left(y+y^{2}\right)^{-1} \cong 3 / 2 \quad ; \quad \text { if } \quad x^{2} \ll 1 \tag{A489}
\end{equation*}
\]

Further on, the relations (A 488a) turn the brackets of (A 472) to
\[
3-2 \cdot\left(y+y^{2}\right)^{-1} \cong 2 ; \quad \text { if } x^{2} \ll 1
\]

In the second term on the right hand side of (A 472), the expression \(\mathrm{v}_{1}\) is implied. For small values of \(x\), the relation (A 327a) leads to
\[
\begin{equation*}
v_{1} \cong x=2 / e ', \text { if (A 487) is valid. } \tag{A491}
\end{equation*}
\]

The relations (A 490) and (A 491) are introduced into (A 472); hence it follows
\[
(Z / R) \cdot\left[3-2\left(y+y^{2}\right)^{-1}\right] \cdot\left(1 / e^{\prime}\right)+(1 / R) \cdot v_{1} \cong(Z / R) \cdot\left(3 / e^{\prime}\right) ; \text { if } x^{2} \ll 1 \cdot(A 492)
\]

Finally, the function \(E(c)\) given by (A 473) is adapted to (A 487). For small values of \(x^{2}\), the term \(b_{7}\) gets the following shape, (A 319) (A 320),
\[
\begin{equation*}
b_{7} \cong \mathrm{x}=\mathrm{z} / \mathrm{e}^{\prime} \text {, if (A 487) is valid. } \tag{A493}
\end{equation*}
\]

Returning back to the relation (A 485) representing \(F_{1}\), and following up the adaptation of it to the lowland conditions, the relations (A 489), (A 492), and (A 493) are introduced into the equations (A 471), (A 472), and (A 473) for \(E(a), E(b)\), and \(E(c)\). The sum of these three values
\[
\begin{equation*}
E(a)+E(b)+E(c) \tag{A494}
\end{equation*}
\]
computed observing the lowland condition (A 487) is denominated by \(F_{1.1}\) or by []\(_{1}\),
\[
\begin{equation*}
F_{1.1}=[E(a)+E(b)+E(c)]_{1} \tag{A495}
\end{equation*}
\]

Along these lines, the combination of (A 489), (A 492), and (A 493) with the expressions on the right hand side of (A 485) leads to the following shape of \(F_{1.1}\), (A 497); - here the relation (A 496) was made use of, \((-1 / R) \cdot(\cos p / 2)^{2} \cdot(1 / \sin p) \cdot\left(1 / e^{\prime}\right)=\left(-1 / 4 R^{2}\right) \cdot(\cos p / 2) \cdot(1 /(\sin p / 2))^{2} \cdot(A 496)\)
\(F_{1.1}=(A)(E) \Delta g \cdot(Z / R) \cdot(3 / 2) \cdot\left(1 / e^{\prime}\right) \cdot d w+(A)(E)(T / R) \cdot(Z / R) \cdot\left(3 / e^{\prime}\right) \cdot d w+\)
\(+(A)(E)(\partial T / \partial p) \cdot(Z / R) \cdot\left(-1 /\left(4 R^{2}\right)\right) \cdot(\cos p / 2) \cdot(1 /(\sin p / 2))^{2} \cdot d w \quad\) (A 497)

This simplified formula (A 497) for \(F_{1.1}\) is right if the lowland condition (A 487) is valid. This simple formula (A 497) representing \(F_{1.1}\) is a convenient. substitute for the extensive formula for \(F_{1}\) as long as our geodetic applications do without test points situated in the high mountains.

Returning back to the expression for \(D(2.1)\), the universal formula (A 484) gets the simplified shape if the lowland condition (A 487) is taken into regard. Thus, accounting for (A 488), and with the transition behaviour of (A 498)
\[
\begin{gather*}
F_{1} \rightarrow F_{1.1},(\text { if }(A 487) \text { is valid }), \\
\text { the universal case (A 484) turns to the lowland version (A 499), } \\
D(2.1) \cong F_{1.1},(\text { if (A 487) is valid ). } \tag{A499}
\end{gather*}
\]
(A 498)

Finally, summarizing the considerations about the computation of \(D(2.1)\), the simple formula (A 499) will be of prominent importance, it will governe most cases of our applications. (A 499) can be handled easily in the numerical calculations.The field of application of (A 499) will be much more broad than that of (A 484). The application of the universal formula (A 484) will be restricted to the seldom cases of high mountain test points \(P\), only.```


[^0]:    $\mathrm{b}_{11}$ comes from (75) and (A 439).

[^1]:    Following up this idea, it is also interesting to take into consideration the superposition of the perturbation potential $T$ with the potential $I$, being the potential of the isostatic masses. In the course of these developments about the isostatic potential, the Faye-anomalies in the Stokes integral change over to the smoothed isostatic anomalies; furthermore, the topographical additive of the Stokes integral comes out to be expressed in terms of smoothed arguments, but, to be sure, these additives have to be supplemented by the $I$ potential of the test point $P$ computad from the isostatic

