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Abstract1

Since 1991, induced earthquakes have been observed and linked to2

gas production in the Groningen field. Recorded waveforms are com-3

plex, resulting partly from a Zechstein salt layer overlying the reservoir4

∗corresponding author: daniela@norsar.no
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and partly from free-surface reverberations, internal multiples, inter-5

face conversions, guided waves and waves diving below the reservoir.6

Therefore, picking of polarities or amplitudes for use in moment tensor7

inversion is problematic, whereas phase identification may be circum-8

vented employing full waveform techniques. While moment tensors9

have become a basic tool to analyse earthquake sources, their uncer-10

tainties are rarely reported. We introduce a method for probabilistic11

moment tensor estimation and demonstrate its use on the basis of a12

single event within the Groningen field, concentrating on detailed tests13

of input data and inversion parameters to derive rules of good prac-14

tice for moment tensor estimation of events recorded in the Groningen15

field. In addition to the moment tensor, event locations are provided.16

Hypocentres estimated simultaneously with moment tensors are often17

less sensitive to uncertainties in crustal structure, which is pertinent18

for the application to the Groningen field, since the task of relating19

earthquakes to specific faults hitherto suffers from a limited resolution20

of earthquake locations. Due to the probabilistic approach, parameter21

trade-offs, uncertainties and ambiguities are mapped. In addition, the22

implemented bootstrap method implicitly accounts for modelling er-23

rors affecting every station and phase differently. A local 1D velocity24

model extracted from a full 3D velocity model yields more consistent25

results than other models applied previously. For all velocity models26

and combinations of input data tested, a shift in location of 1 km to27

the south is observed for the test event compared to the public cata-28
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logue. A full moment tensor computed employing the local 1D velocity29

model features negative isotropic components and may be interpreted30

as normal fault and collapse at reservoir level.31

Keywords— p robabilistic – moment tensor inversion – induced seismicity –32

Groningen gas field33

Introduction34

Since 1991, induced earthquakes have been observed and linked to the gas35

production in the Groningen field (for a detailed description of seismicity, see36

e.g., Dost et al., 2017). Despite the relatively low magnitude of earthquakes,37

their impact is considerable due to their shallow origin and the presence of38

soft shallow sediments that amplify wave motion (Paap et al., 2018). Events39

with magnitudes ML > 2 are commonly felt and larger earthquakes have40

damaged buildings and thus, pose a safety hazard to the population (Paap41

et al., 2018).42

Kraaijpoel and Dost (2013) computed focal mechanisms assuming a pure43

double couple mechanism for four specific events within the western part of44

the field from P-wave first motion polarities and P/S amplitude ratios. Due45

to the limited azimuthal coverage of the network before 2015, accelerograms46

were employed in addition to seismograms. Kraaijpoel and Dost (2013) iden-47

tified the Zechstein salt layer situated above the reservoir as challenging due48

to the defocussing of seismic energy and potential presence of strong S-wave49

3



precursors. The presence of salt layers is a well-known challenge for imaging50

and interpretation in reflection seismology (Ogilvie and Purnell, 1996; Lu51

et al., 2003) and a similar problem is encountered in earthquake analysis; for52

instance, for the largest event in the field so far, the MW 3.6 Huizinge event53

on August 16, 2012, an attempt was made to recover the focal mechanism,54

but no stable solution could be found (Dost and Kraaijpoel, 2013). Since55

2015, the network was upgraded extensively by introduction of a multitude of56

shallow borehole stations, which reduced interstation distances considerably57

(Dost et al., 2017). Nevertheless, even waveforms recorded at small distances58

are complex due to free surface reverberations, internal multiples, interface59

conversions (Spetzler and Dost, 2017) as well as guided waves at reservoir60

level and waves diving below the reservoir (Willacy et al., 2018). Thus, pick-61

ing of polarities and amplitudes, for example for use in focal mechanism or62

moment tensor inversion is problematic (Dando et al., 2019), while the use63

of full waveforms circumvents the problem of phase identification. By this64

means Willacy et al. (2018, 2019) employed a sophisticated grid search and65

a 3D velocity model to compute full moment tensors based on the method66

presented by Li et al. (2016) for 100 events recorded by the shallow borehole67

network between 2015 and 2017.68

While seismic moment tensors have become a basic tool to analyse earth-69

quake sources and are calculated routinely by a number of agencies for global70

and regional earthquakes, however, parameter uncertainties are still not al-71

ways provided (Mustać and Tkalčić, 2015). Such uncertainties are important72
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especially in the case of earthquakes with significant non-double couple com-73

ponents since the amount of double couple and isotropic components may74

vary significantly already for small perturbations of parameters (Zahradnik75

et al., 2008). In addition, the source location is usually determined by seis-76

mic wave arrival times and thus, is identical to the hypocentre - the starting77

point of the rupture - as opposed to the centroid - the average location of the78

seismic energy release recovered by moment tensor inversion (Mustać and79

Tkalčić, 2015). In addition, the location estimate determined from moment80

tensor inversion, especially its depth, is often less sensitive to uncertainties in81

crustal structure (Zahradnik et al., 2008). For both reasons, it is advisable to82

include the centroid earthquake location as parameter in the inversion, espe-83

cially since for the Groningen field, the task of relating earthquakes to specific84

faults hitherto suffers from the limited resolution of earthquake locations.85

Earthquake source inversions require a comparison between model pre-86

dictions and observations in a quantitative way. In a well-behaved over-87

determined inversion problem, with normally distributed measurement errors88

and no mismodelling, the choice of how the comparison is done should not89

influence the result as long as the full information from the observations is90

included and errors are propagated correctly. In practice, hardly any of the91

above prerequisites holds and an objective function has to be designed that92

enhances or extracts robust features of the waveforms and suppresses the93

parts that cannot be modelled accurately. Typically, waveforms are at least94

filtered and tapered before fitting to extract specific phases. E.g. Li et al.95
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(2011) and Tan et al. (2018) show that it can be beneficial to include P-wave96

polarities and S/P amplitude ratios in addition to waveform fits. Alvizuri97

et al. (2018) as well include P-wave polarities for very small events. Silwal98

and Tape (2016) find that using an L1 norm gives more robust results. It99

depends on application and dataset which approach proves to be best-suited100

as there is no standard solution. The performance of different objective func-101

tions may be compared by quantifying uncertainties.102

To this aim, Bayesian or probabilistic inversions are now increasingly103

being applied in geophysical inversion problems. Probabilistic inversions can104

be roughly grouped into two families: (1) The problem is formulated directly105

in terms of Bayes’ theorem, such that data and modelling uncertainties enter106

as a priori information into the inversion (Bayesian inference, popularized in107

geophysics by Tarantola et al. (1982), applications to point source inversion108

by e.g. Duputel et al. (2012); Stähler and Sigloch (2014); Mustać and Tkalčić109

(2015); Gu et al. (2017); Fichtner and Simutė (2018). (2) The problem110

is expressed indirectly in terms of a stochastic inversion with randomized,111

re-weighted, or noise-perturbed datasets (jackknife resampling and various112

types of bootstrapping, see e.g. Wéber (2006); Heimann (2011); the term113

bootstrap being coined by Efron (1979)). In addition, some authors argue114

that under certain assumptions, a classic misfit function evaluated on a dense115

grid around the neighbourhood of a best-fitting solution can be converted into116

a probability density or confidence function (e.g. Tape and Tape, 2016; Silwal117

and Tape, 2016; Alvizuri et al., 2018).118
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Due to the composite nature of linear and non-linear constituents of the119

centroid moment tensor inversion problem, most probabilistic inversion ap-120

proaches differ in how they treat centroid locations. For example, Stähler and121

Sigloch (2014) use a waveform similarity measure based on cross-correlation122

values in a teleseismic application to be independent of source location. Oth-123

ers, as e.g. Gu et al. (2017), align observed and synthetic traces before a124

Bayesian inversion or divide the problem into a chain of coupled samplers,125

e.g. Wéber (2006); Mustać and Tkalčić (2015). Since we apply an inversion126

to data recorded locally, we expect that by including position and origin127

time as inversion parameters and by not discarding phase information, the128

inversion will be constrained better, especially since the azimuth to close-by129

stations varies significantly depending on source locations.130

Within this paper, we introduce a method for probabilistic centroid mo-131

ment tensor estimation based on the Bayesian bootstrap method (Rubin,132

1981) and demonstrate its use on the basis of a single event within the133

Groningen field, presenting detailed test results of input data types, velocity134

models, station depths, resolvability of source mechanisms and influence of135

noise. The use of the bootstrap method to quantify uncertainties enables136

us to easily combine the fitting of different waveform attributes during the137

inversion and to employ an L1 norm succeeding in more robust results com-138

pared to the L2 norm. Furthermore, the method is easier to handle than139

applying Bayesian inference with full error propagation, because it does not140

require noise estimates as prior information. Still, our method is able to ef-141
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fectively account for noise in data and to some extent for mismodelling apart142

from a systematic bias, since it exploits statistical properties of the residuals.143

Computational costs are reduced substantially by the implementation of a144

sophisticated and flexible search algorithm. In a second paper (Dost et al.,145

2020, this issue), we show the application of the algorithm to events occur-146

ring within the Groningen field for the time period January 2016 to July147

2019 and give an interpretation of results.148

Method149

We implemented our inversion using the Grond framework (Heimann et al.,150

2018), an open source Python software package for probabilistic earthquake151

source inversion based on the Pyrocko package (Heimann et al., 2017). We152

compute source model estimates and uncertainties by employing a bootstrap-153

based probabilistic joint inversion. The optimisation routine offers a flexi-154

ble design of objective functions, explores the full model space and maps155

model parameter trade-offs. Forward modelling is accelerated by the use of156

pre-computed Green’s function databases, which are handled by the related157

Python Pyrocko-GF software library (Heimann et al., 2019). For forward158

modelling of regional seismological data, the incorporated orthonormal prop-159

agator method QSEIS (Wang, 1999) is well suited and used for computation160

of the Green’s function databases in the following.161

The misfit between observed and synthetic data is represented by the ob-162
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jective function, whose global minimum is searched during the optimisation163

process. Input data, weights, norm and error treatment influence the shape164

of the objective function. We systematically explore different combinations165

of waveform processing and misfit functions in either time or frequency do-166

main. The misfit is based on the Lp norm and p is set commonly, but is not167

restricted to, to 1 or 2. Misfits are normalised in groups to enable relative168

weighting of individual target misfits. By target we refer to the contribution169

of a processed waveform at a given station and component. Pre-processing170

of waveforms involves the removal of instrument responses, frequency band-171

limited conversion to displacement and extraction of desired phases by ta-172

pering.173

We restrict the following explanation to the use of the L1 norm, which we174

employed in the inversion. Thus, the normalized global misfit is constructed175

as176

M =

∑
iwimi∑
iwini

, (1)

where mi is the misfit combined from the individual target misfits, ni is the177

corresponding normalisation factor, and wi is the weighting factor discussed178

below. For time domain- or frequency domain-based misfits, the target mis-179

fits and normalisation factors are computed as180

mi =
∑
j

|oij − sij| and ni =
∑
j

|oij| , (2)

where oij is the observed processed sample with index j of target i and sij181
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is the corresponding synthetic sample. For cross-correlation based waveform182

similarity measures, we use instead183

mi =
1

2
− 1

2
Ci and ni =

1

2
, (3)

where Ci is the maximum of the normalised cross-correlation between the184

processed traces oij and sij in time domain.185

To derive the weighting factors in Eq. (1), we employ the product of186

balancing, manual and bootstrap weights:187

wi = wbalance,iwmanual,iwbootstrap,i . (4)

Balancing weights are computed using the adaptive station weighting method188

of Heimann (2011), which represents a technique to compensate for amplitude189

variations of seismic waves at different distances due to geometrical spread-190

ing, between different phases or introduced by different processing schemes.191

An additional correction has to be applied when combining misfits based192

on individual samples with misfits based on cross-correlation, because of193

their different scaling behaviour with respect to the scalar moment of the194

source (normalisation families Heimann et al., 2018). Manual weights can be195

optionally introduced to further tune the objective function based on user196

experience.197

For optimisation, the Bayesian bootstrap optimisation algorithm (BABO,198

Heimann et al., 2018) is employed. Multiple objective functions Mk are ex-199
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plored in parallel as individual bootstrap chains, which allows for a proba-200

bilistic interpretation of the result ensemble. During each iteration, an in-201

dividual misfit is computed for each bootstrap chain. Each bootstrap chain202

indexed by k differs from the others by an additional random weight factor,203

the bootstrap weight wbootstrap,ki, which is attached to each misfit target i.204

The bootstrap weights are chosen according to the scheme presented by Ru-205

bin (1981), which allows to treat the result ensemble as a non-parametric206

posterior distribution. In the optimization, an individual highscore list is207

maintained for each bootstrap chain, holding its current best L models. This208

list is updated after each iteration, when all objective functions Mk are eval-209

uated for a candidate model. L depends on the number of parameters and a210

configurable factor, commonly L > 100. Bootstrap chains converging to dif-211

ferent areas of the model space represent the uncertainty of the models with212

respect to errors in the data. Once these areas start to become disjunct,213

further iterations will not significantly improve results and error estimates.214

From the combination of results from all bootstrap chains’ highscore lists,215

the current best and mean solutions can be retrieved. The optimisation may216

be tweaked to overcome ill-posed problems or to cover multiple minima of217

the objective function.218

The parameter space is first sampled uniformly followed by a directed219

search phase; the number of iterations required for each phase depends on the220

optimisation problem. New models are distributed normally, either centered221

around the mean of the parameter distribution of the models on the highscore222
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lists, around a random model from the highscore list or from a distribution223

corrected for excentricity, all with a freely adaptable search radius based224

on the standard deviation of model parameters in the highscore list. Thus,225

strictly speaking, since the algorithm searches for minima in the parameter226

space covered by a high number of forward models, it does not represent227

an inversion in the mathematical sense. Nevertheless, we will use the term228

”inversion” in the following in the broader sense of solving an inverse problem.229

For a more detailed description of the methodology, see Heimann et al. (2018)230

or the application of the algorithm to events in the region between Halle and231

Leipzig, Germany (Dahm et al., 2018).232

For reproducibility, we provide the Grond input configurations and de-233

tailed output reports for all inversion runs in a separate data publication234

(Kühn et al., 2020).235

Data and processing236

In order to test inversion parameters, we employed the 11th March 2017237

(12:52:48 GMT) event close to the village of Zeerijp, featuring a magnitude238

of ML 2.1. This event is located in the central part of the Groningen gas field239

in the region of maximum compaction due to gas production. The reservoir240

below Zeerijp is characterized by large lateral differences in net hydrocarbon241

produced as well as by NNW SSE striking faults identified from detailed 3D242

seismics (de Jager and Visser, 2017). Zeerijp is among the most seismogenic243
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areas within the Groningen gas field, yielding detectable seismicity from 1996244

onwards. The largest event in this region was the 8th January 2018 earth-245

quake featuring a magnitude of ML 3.4. Thus, the magnitude of the event246

analysed in this paper is at the lower end of the range of felt events (ML >247

1.8).248

Fig. 1a displays the event location together with the stations of the G-249

network. For the inversion we employed data from stations within a 10 km250

range, since beyond this distance, direct phases are influenced by the presence251

of guided waves (Willacy et al., 2018, see also Fig. 2d). Stations within this252

distance range represented by a diamond did not provide recordings for this253

event.254

Stations255

After the occurrence of the largest event in the region of the Groningen256

field in 2012 close to Huizinge, the monitoring network was substantially257

extended, adding 70 stations between 2014 and 2016 and resulting in a total258

of 337 geophones at the end of the year 2016 (Dost et al., 2017). Thus, the259

average station spacing was condensed from 20 km to below 5 km. Due to the260

high-noise conditions in the north of the Netherlands, each of these stations261

consists of four levels of 4.5 Hz geophones with 50 m spacing from 50 - 200 m262

depth accompanied by a surface accelerometer (Dost et al., 2017).263

Sensor orientations were determined using correlations with surface sen-264

sors (Hofman et al., 2017) and using a combination of check-shots, local265
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events and ambient explosions (Ruigrok et al., 2019). In addition, we tested266

the orientation of vertical components employing the PKP-phase of the 3rd
267

January 2017 event south of Fiji islands at 145◦ distance. Before applying268

the moment tensor inversion, the P-wave polarization was computed and269

analysed with regard to the catalogue location of the event. Based on these270

analyses, depth levels on which the sensor orientation was not well resolved271

were excluded from the inversion. For two stations (marked by a dark trian-272

gle in Fig. 1a), data from only one depth level could be employed. Fig. 1b273

visualises seismograms recorded at 100 m depth (2nd level). No seismogram274

is presented for station G11, since only data from its first level was deemed275

to be of sufficient quality to be included in the inversion. Evaluating the276

power spectral densities of ambient seismic noise, restituted data recorded277

on the geophones seems to represent amplitudes well down to frequencies of278

0.3 Hz.279

Velocity models280

For a description of the geological structure as well as a discussion on ob-281

tainable information on velocity models and the justification to use locally282

extracted 1D velocity models, see Dost et al. (2020, this issue). In order to283

build an average 1D velocity model for station distances up to 10 km from284

the catalogue event location, 17 1D velocity profiles were extracted from285

the available 3D velocity model (Romijn, 2017) at regular intervals and the286

average value of each layer’s depth was computed.287
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Fig. 2a offers an overview over velocity models that were tested for the288

current event, while Figs. 2b-d demonstrate ray paths traced from a source289

within the reservoir layer, illustrating differences in wave types to be ex-290

pected at the recording stations up to source-receiver distances of 10 km.291

Fig. 2a compares P-wave velocity profiles with a focus on the layers above292

the reservoir, in which most of the seismicity is assumed to occur. The dashed293

line corresponds to the average velocity profile used by the Royal Netherlands294

Meteorological Institute (KNMI) for routine event location in all of Northern295

Netherlands (denoted ”NN” in the following), the dotted line represents the296

velocity model for Groningen employed by Kraaijpoel and Dost (2013, de-297

noted ”KD” in the following) and the solid line is the local 1D velocity model298

averaged from the 3D velocity model by Romijn (2017). The P-wave velocity299

of the NN model is monotonically increasing and summarises layers to larger300

blocks. The KD model follows the local velocity model closely, but possesses301

a smaller velocity gradient in the overburden and omits two thin high-velocity302

layers representing an anhydrite floater overlaying the Zechstein evaporites303

as well as an anhydrite layer at the base of the Zechstein evaporites with304

a thickness of approximately 50 - 100 m. The reservoir corresponds to the305

low-velocity layer at approximately 3 km depth. In the NN model, receivers306

at larger distances than approximately 3.5 km are reached only by wave en-307

ergy originating from a headwave travelling along the reservoir-overburden308

boundary. Ray paths in the KD model highlight the strong defocussing of309

wave energy described by Kraaijpoel and Dost (2013). In the local 1D model,310
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only receivers up to a distance of approximately 2 km are reached by direct311

waves, whereas receivers at larger distances record energy guided within the312

high-velocity anhydrite layer at the base of the Zechstein evaporites.313

For all three velocity models, Green’s functions were computed employing314

a tapered Heaviside wavelet, a sample rate of 25 Hz and a grid spacing of315

50 m allowing for interpolation of Green’s functions between nodes. The316

databases comprise source depths from 1 to 4 km and receiver depths from 0317

to 200 m. Further, we supplied an S-wave model to the NN model using the318

formula by Castagna et al. (1985) that was employed as well by Kraaijpoel319

and Dost (2013).320

Inversion parameters321

After testing, the following inversion parameters were employed in the BABO322

optimisation: the L1 norm was applied for calculation of the misfit between323

observed and synthetic data; 100 bootstrap chains were traced; 97 high score324

models were kept from each bootstrap chain, while models could be shared325

between chains; 4000 iterations were performed during the uniform sampling326

of the parameter space; 60 000 further iterations were computed in the di-327

rected search phase; new candidate models were selected from a distribution328

covering the volume of highscore models. This distribution was designed to329

be roughly flat within the neighbourhood of populated model space (excen-330

tricity compensation, Heimann et al., 2018). The definition of neighbour-331

hood was chosen based on marginal parameter median densities. With such332
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a setup, the BABO algorithm can effectively sample irregularly shaped and333

multi-minimum objective functions. The explorativeness of the algorithm334

can be tuned with a scalar factor, which can grow or shrink the neighbour-335

hood volume. We exponentially decreased this factor (scatter scale, Heimann336

et al., 2018) from 2 to 0.5 during the directed search phase in order to sample337

more exploratory in the beginning, while converging more effectively at the338

end of the optimization. The result ensemble was compiled from the 10 best339

models per bootstrap chain, i.e. 1000 solutions in total. The moment tensor340

is decomposed according to the Frobenius norm (Silver and Jordan, 1982).341

Details on the optimisation setup and complete results can be found in342

a separate data publication (Kühn et al., 2020), including all information to343

reproduce the presented solutions.344

Probabilistic moment tensor estimation345

Unless described differently, we employed the local 1D velocity model dur-346

ing the following tests. Further, if not mentioned otherwise, we inverted for347

deviatoric moment tensors. To this end, we used both P- and S-phases. Due348

to the complexity of the waveforms (Fig. 1b), P- and S-wave windows were349

inverted separately to avoid mismodelling of phases in between both onsets.350

P-waves were extracted from vertical components, S-waves from transversal351

components. The additional information content of S-wave windows selected352

on radial components is low, while at the same time, converted waves ar-353
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rive shortly after the P-wave onset. In addition, errors in the velocity model354

affect the radial component much stronger than the transversal component,355

rendering the inversion unnecessarily difficult. By manual analysis of seis-356

mograms both P- and S-wave window length were chosen as 0.5 s, starting357

with the respective theoretical onsets and allowing for a shift of up to 0.1 s358

between observed and synthetic waveforms reflecting inaccuracies in the ve-359

locity model. P-wave traces (or targets) were filtered from 2 to 4 Hz, S-wave360

traces from 1 to 3 Hz. Due to the complexity of waveforms, S-wave target361

weights were halved with respect to P-wave targets.362

Testing types of input data363

From the input data types available in the algorithm, we tested: time traces,364

amplitude spectra, cross-correlation traces (maximizing the highest cross-365

correlation value), absolute amplitudes and envelopes. When testing with366

synthetic data, the mechanism was resolved in all cases with only the in-367

herent inabilities that amplitude spectra, absolute amplitudes and envelopes368

cannot resolve the ambiguity between compression and dilatation and that369

cross-correlation traces, since normalised, do not carry information on the370

magnitude of the event (see also Kühn et al., 2020). Thus, we did not ob-371

serve intrinsic trade-offs between inversion parameters as described by Cesca372

et al. (2017) e.g. due to insufficient coverage of azimuths or inclination an-373

gles. When tested on observed data, resulting event locations were most374

consistent when inverting time traces and least consistent when inverting375
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amplitude spectra.376

A criterion for the stability of the solution is the coincidence of best377

and mean solution, which was only the case for the inversion of time traces378

and cross-correlation traces. A systematic trend between compensated lin-379

ear vector dipole (CLVD) components and event location as well as CLVD380

component and individual moment tensor components (mostly mnn, mee,381

mdd and mne) was revealed when inverting only time traces, which could be382

resolved best by employing cross-correlation traces (Fig. 3). Thus, we con-383

cluded that is beneficial to apply a combination of input data. This insight384

is not new, but the impact of each choice can only be illustrated when em-385

ploying probabilistic inversion methods allowing for the determination of a386

multitude of solutions with comparable misfit and thus, a mapping of the387

their distribution in the inversion parameter space.388

Testing all potential combinations of input data types is outside the scope389

of this paper; instead, we resorted to combinations of time traces with one390

additional input data set. Again, for synthetic tests, the assumed source391

mechanism was retrieved well and is not presented here (see instead Kühn et392

al., 2020). When testing combinations of input data types for observed data,393

resolved event depths were very consistent. Especially for the combination394

of time traces and cross-correlation traces, epicentral locations agreed very395

well in addition and the variation of the CLVD component was reduced396

substantially, now clustering without exception on the positive CLVD axis397

(Fig. 4).398
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In Fig. 4, best double couple mechanisms as derived from the decomposi-399

tion of the deviatoric moment tensors are displayed in the Hudson diagram,400

since we believe that this adds additional information to the plots. The alge-401

braic sign and size of isotropic and CLVD part are already indicated by the402

placement of mechanisms within the Hudson plot’s coordinate system and403

showing the best double couple mechanism as well allows an assessment of404

its stability or instability.405

The combination of time traces with only amplitude spectra on the other406

hand was not satisfactorily (Fig. 5). The consistency of solutions could be in-407

creased again, however, when employing a combination of time traces, cross-408

correlation traces and amplitude spectra. We settled for this combination of409

input data for the following inversions.410

Testing the resolvability of source mechanisms411

To analyse the resolvability of different source mechanism for the field-case412

source-receiver geometry, we varied the source mechanism in a series of tests413

inverting synthetic data. In addition to systematically varied mechanisms414

(Fig. 6), we tested the focal mechanisms retrieved by Kraaijpoel and Dost415

(2013). Further, we investigated an explosive mechanism as well as 20 double416

couple and 20 full moment tensors varied randomly as displayed in Fig. 7.417

Most mechanisms were retrieved perfectly. Mechanisms marked by a418

dashed box in Figs. 6 and 7 were found, but their magnitude was underes-419

timated. Only one mechanism was not retrieved (marked by a black box in420
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Fig. 7). However, if a homogeneous velocity model was employed instead421

of the local 1D velocity model, magnitudes and mechanisms were computed422

correctly. The answer to this problem lies in the event depth that was chosen423

for the synthetic tests: only if the event is located within the basal anhy-424

drite, as was the case for the tests depicted above, the mechanism cannot425

be resolved. If the depth was changed to any of the other layers, also these426

mechanisms were retrieved perfectly. From comparing seismograms by for-427

ward modelling, we note that the retrieved erroneous mechanism placed at428

the erroneous event depth results in very similar waveforms as the original429

source at correct depth. That means that for certain source mechanisms,430

even a moment tensor inversion employing full waveforms can not differen-431

tiate between events within the basal anhydrite and the reservoir. This is432

an important insight, although from efforts on event location, there are no433

indications for events occurring within the Zechstein layers (Pickering, 2015;434

Daniel et al., 2016; Willacy et al., 2018, 2019). Spetzler and Dost (2017)435

found events near an overlaying brittle anhydrite layer. Applying the same436

location method in a 3D velocity model, though, all events were located437

within the reservoir layer (Spetzler and Dost, manuscript in preparation).438

Thus, the ambiguity between solutions could potentially be solved by in-439

verting for the strain-based source tensor instead of the stress-based moment440

tensor, since the amplitude of the observed displacements is related to the441

displacements or strain at the source while conversion from stress to strain442

involves material parameters which are discontinuous at interfaces.443
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Testing station depths444

We tested both the usage of data from a single three-component sensor per445

borehole as well as combinations of data from multiple sensors. Not surpris-446

ingly, the resolution was lowest if employing only data from the uppermost447

borehole sensor at 50 m depth, since it is subjected to the highest noise levels.448

In case only data from a single sensor was used, the resolution increased for449

sensors at 100 m and 150 m depth, but surprisingly, it deteriorated again for450

the sensor at 200 m depth (Fig. 8).451

When only data from the sensor at 200 m was used, a second minimum in452

the objective function indicated larger event depths of approximately 3.6 km.453

For all runs employing data of single or multiple depth levels, the resulting454

deviatoric moment tensor was stable with respect to the agreement between455

best and mean solution, apart from when using only data from the sensor456

at 150 m depth. Due to the nature of the inversion involving bootstrapping,457

the resolution increased significantly once data from different depth levels458

were combined. Furthermore, at single depth levels, interferences between459

upgoing and free-surface reflected downgoing waves lead to notches in the460

amplitude spectra. These notches vary with sensor depth and therewith the461

loss of source information at one depth level is substituted by the information462

content at a different depth level. Thus, data should not be extracted from463

either one of these sensor levels alone and therefore, the best result was464

achieved when combining data from all sensor levels.465
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Comparing velocity models466

In the following section, inversion results obtained employing three different467

velocity models (NN, KD and local 1D model) are compared. In case of syn-468

thetic tests, the same velocity model was applied for both the computation469

of the synthetic waveforms as well as its inversion. When inverting synthet-470

ically computed seismograms, the source mechanism was retrieved equally471

well independent of which velocity model was employed (Kühn et al., 2020).472

However, when inverting the observed data, results differed depending on the473

velocity model. In any case, a 1 km shift of the epicentral location towards474

south from its public catalogue location was observed (Fig. 9, top). This475

shift was also recognised by Willacy et al. (2019) and was confirmed by an476

event relocation using the EDT method (Spetzler and Dost, 2017).477

Only for the local 1D model, best and mean solution were fully consis-478

tent in the Hudson plot (Fig. 9, bottom). In addition, the variation in CLVD479

component was smallest and only allowed for positive signs. Inversions em-480

ploying this model also resulted in the most consistent hypocentral locations,481

with the event depth of 3 km fitting the reservoir depth. For both NN and482

KD model, event depths were either more shallow or larger (and thus outside483

the reservoir layer). For the KD model, epicentral locations are more am-484

biguous. Fig. 10 presents a comparison of observed and modelled waveforms485

for sensor G172 at a depth of 100 m, an epicentral distance of 8.2 km and486

an azimuth of approximately 95◦.487
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Although we display the results in terms of P-phase waveforms in or-488

der to be more easily comparable, results were derived from three different489

types of input data: waveforms (Fig. 10a), amplitude spectra (Fig. 10b) and490

cross-correlation traces (Fig. 10c). The amplitudes of the traces are scaled491

according to the target weight and normalised relative to the maximum am-492

plitude of the targets of the corresponding normalisation family (i.e. P-phase493

waveforms, P-phase amplitude spectra and P-phase cross-correlation traces).494

Fig. 10 (bottom) displays the moment tensors and their decomposition. In495

terms of moment tensor solution, the CLVD component had a similar ori-496

entation for NN and local 1D model. The DC component, however, showed497

strike-slip faulting for both NN and KD model, but normal faulting on a498

steeply dipping fault for the local 1D model, which is in accordance with499

mechanisms found earlier in the field by Kraaijpoel and Dost (2013).500

Full moment tensor501

As was the case when inverting synthetically computed seismograms for a502

deviatoric moment tensor assuming a deviatoric mechanism as source, the503

source mechanism was again retrieved well when inverting modelled seismo-504

grams for a full moment tensor assuming a source including a volumetric505

component, independent of the velocity model employed (Kühn et al., 2020).506

When comparing the waveform fit for the inversions of observed data for de-507

viatoric and full moment tensor, the overall fit of waveforms as recognisable508

by eye is similar (Fig. 11). In addition, a similar shift in event location was509
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observed as when inverting for a deviatoric moment tensor (Fig. 12, top).510

Although according to the tests employing synthetic data, both NN and511

KD velocity model should be able to resolve a full moment tensor, solutions512

were very unstable as recognisable in both event locations and Hudson dia-513

gram (Fig. 12, top and middle). Whereas the isotropic component indicated514

a volume expansion when the NN or KD velocity model was assumed, it was515

negative in case of the 1D local velocity model amounting to -20%, agreeing to516

expectations in case of an event occurring within a depleted reservoir. Both517

in space as well as in the Hudson diagram, solutions were tightly clustered,518

suggesting that the retrieved moment tensor is more stable as for the NN and519

KD velocity models. This was also suggested by the fact that best and mean520

solution (Fig. 12, bottom) were identical and the double couple percentage521

was higher than the CLVD percentage. Interestingly, the best double couple522

was similar no matter if inverting for a deviatoric or a full moment tensor523

when using the local 1D velocity model, but not when employing the NN or524

KD model.525

Stability of solution and influence of noise526

A further suite of tests analysed the influence of random complex noise. The527

frequency spectra of synthetic waveformsWsyn were multiplied with a random528

frequency response Frand(σ) drawn from a normal distribution. Thus, phase529

and amplitude of the synthetic waveforms were distorted to Wpert:530
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Wpert = Wsyn · Frand(σ). (5)

When the standard deviation σ of both real and imaginary part of the531

random frequency response coefficients was chosen to be < 5, moment tensors532

were retrieved perfectly, no matter which velocity model was employed or if533

the inversion was performed for a deviatoric or a full moment tensor (Kühn et534

al., 2020). In case that the standard deviation amounted to 10, both retrieved535

moment tensors (Fig. 13, top) as well as event locations deteriorated.536

The simpler the velocity model, the more unstable were the event loca-537

tions. For both KD and local 1D velocity model, uncertainties in epicentre538

location were similar, but the depth resolution remained better for the local539

1D velocity model. for the NN model, event location uncertainties increased540

further if the inversion was either restricted to a double couple mechanism541

or allowed for a full moment tensor (Fig. 13, bottom). However, even when542

a double couple mechanism was enforced, no rotation of the double couple543

component due to the noise distorting the orientation of fault planes was544

found, in contrast to the observations by Jechumtálová and Śılený (2005).545

In addition, for both inversions for a deviatoric and a full moment tensor,546

the double couple was correctly retrieved in case that either the KD or 1D547

velocity model was employed.548

When we inverted for a deviatoric moment tensor, the noise was mostly549

mirrored in the CLVD component, which could assume both positive and550
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negative values, the variation being especially high in case that the NN model551

was chosen. In addition, the magnitude was overestimated, especially when552

using the NN and KD model.553

When we inverted for a full moment tensor (Fig. 13, bottom), the noise554

was included in an artificial isotropic in addition to the artificial CLVD com-555

ponent, which was largest for the NN and the local 1D model (68% and 55%,556

respectively). In the Hudson plot, two groups of solutions were recognisable557

for NN and KD velocity model, whereas solutions formed a band in case of558

the local 1D velocity model. In case of KD and local 1D model, the cloud559

of potential mechanisms included the correct solution, whereas for the NN560

model, there were no solutions featuring only a low artificial isotropic com-561

ponent. Further, we would like to point out that for the local 1D model,562

the artificial isotropic component was different than the one retrieved dur-563

ing inversion of the data, which strengthens our confidence that the observed564

isotropic component is not just an artefact from noise, but can be interpreted565

geomechanically.566

Discussion and conclusions567

Employing a plethora of tests, we derived rules of good practice for moment568

tensor inversion of events recorded in the Groningen field. These concern569

the velocity model employed to compute Green’s functions, types of input570

data, input parameters and geophone depth levels. Further, we tested the571
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resolvability of different mechanisms, the influence of noise and compared572

inversions for deviatoric and full moment tensors. Especially during such573

tests, the advantages of applying a probabilistic inversion become apparent.574

A regular inversion may lead to the same solution, but its uncertainties and575

alternative models are largely obscure, whereas probabilistic methods allow576

for extraction of a range of nearly equivalent source mechanisms, such that577

parameter trade-offs, uncertainties and ambiguities can be analysed. In our578

opinion, performing tests to gain an insight of how input data and parame-579

ter settings influence the outcome of a moment tensor inversion are a vital580

prerequisite for understanding and interpreting its results.581

A great advantage of the bootstrap method employed here over other582

approaches in error propagation is that it implicitly accounts for modelling583

errors that may affect every station and phase differently (Dahm et al., 2018).584

The assessment of velocity models, though, has to be considered as inherently585

incomplete, since only a finite number of models can be tested. Instead of586

varying a single model, we preferred to compare results for widely different587

models that have been or are currently applied within the region of inter-588

est. In addition, our approach employing pre-computed Green’s functions589

data bases opens the possibility to simulate ground motions for earthquake590

scenarios as was demonstrated by Dahm et al. (2018).591

Due to our analysis, we are confident that the isotropic component ob-592

served during inversion for the full moment tensors is real; a geological in-593

terpretation, however, will be supported by the computation of source mech-594
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anisms of several events. The above mentioned rules of good practice were595

adopted by KNMI in order to compute full moment tensors of all events with596

magnitude ML ≥ 2 from January 2016 to August 2019 (Dost et al., 2020,597

this issue). A few parameters had to be adjusted due to practicality. Their598

paper also includes a discussion of results and a comparison to the placement599

and characteristics of known faults.600

The most important results of our analysis are:601

• When computing synthetic data systematically changing the source602

mechanism, there were a few mechanisms, whose magnitude was not603

resolved well. However, this was only the case when the source was604

located within the basal anhydrite layer. Employing forward modelling,605

we proved that indeed both the original and the retrieved mechanism606

led to similar waveforms recorded at the receivers. This problem can607

potentially be solved by inverting for the source tensor instead of the608

moment tensor.609

• Local 1D velocity models give more consistent results than employing610

either the Northern Netherlands model employed for event location for611

all of Northern Netherlands or the Kraaijpoel and Dost (2013) model.612

Such locally adapted velocity models have to be re-computed for each613

event that is inverted.614

• For the case of the Groningen field, a good combination of input pa-615

rameters seems to consist of time traces (allowing for a shift), cross-616
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correlation traces and amplitude spectra. The fact that a combination617

of input data is helpful in moment tensor inversion is not new, but its618

consequences can only be illustrated using a probabilistic method.619

• At depth, interference of up- and down-going waves leads to notches in620

the amplitude spectra at certain frequencies, which can partly remove621

source information when using narrow frequency bands. The detri-622

mental effect of these notches is overcome by including data recorded623

at multiple depth levels.624

• For all velocity models and combinations of input data tested, a shift in625

location of 1 km to the south was observed compared to the KNMI in-626

duced seismicity catalogue location. Enhanced event locations have im-627

portant implications for relating earthquakes with known faults within628

the Groningen field.629

• When including random noise in the synthetic tests, both moment ten-630

sors and event locations deteriorated. Noise mostly influences the es-631

timates of CLVD components and magnitudes. The orientation of the632

double couple component was stable, also when enforcing a double cou-633

ple solution during inversion. When allowing for a full moment tensor in634

addition, for the local 1D model, the noise was reflected in an artificial635

isotropic component that is different from the one that was obtained636

during full moment tensor inversion of the data.637

• When solving for a full moment tensor using the local 1D velocity638
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model, isotropic components were negative and the solution can be639

interpreted as normal fault and collapse at reservoir level.640

Data and Resources641

We downloaded the data used in the analysis from the publicly available642

KNMI data portal at http://rdsa.knmi.nl/dataportal (last accessed May643

2017) (KNMI, 1993). The Python-based inversion code Grond and its de-644

scription can be found at https://pyrocko.org/grond/ (last accessed June645

2020). Green’s functions databases were computed with the Python Pyrocko-646

GF software library residing at https://pyrocko.org/ (last accessed June647

2020). The Green’s function databases can be downloaded from the Pyrocko648

Green’s Mill at https://greens-mill.pyrocko.org(last accessed June 2020).649

All inversion runs including parameter files and complete set of check and re-650

sult plots are available from https://data.pyrocko.org/scratch/grond-651

reports/groningen/ (Kühn et al., 2020). The 3D velocity model (Romijn,652

2017) is available from NAM (Nederlandse Aardolie Maatschappij) on re-653

quest.654
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13 Hudson plots displaying best double couple mechanisms com-903
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Figure 1: a) Map of study region indicating the location of the 11th March
2017 event indicated by a star within the Groningen field (shaded). A dotted
circle represents a source distance of 10 km; stations are marked by triangles
and diamonds. b) Seismograms recorded on vertical components of stations
with a source-station distance less than 10 km; data are restituted and filtered
between 1 and 4 Hz. 44
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Figure 2: a) Velocity models tested for moment tensor inversion in this
paper: NN model (dashed line), KD model (dotted line) and local 1D model
(solid line); b) traced rays paths in NN model, c) in KD model and d) in
local 1D model.
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Figure 3: Cross-plots for a selection of inversion parameters demonstrating
distribution of result ensemble consisting of 1000 solutions with comparable
misfit in parameter space; comparison between inversion of time traces (top)
and cross-correlation traces (bottom). Inversion parameters shown comprise
the moment of the CLVD part MCLV D0 and several moment tensor compo-
nents (mee, mdd, mne, mnd, med; e denoting East, n North and d depth), all
scaled according to the total seismic moment M0. Colour scale according to
misfit distribution within ensemble, red/high opacity: low misfit, blue/high
transparency: high misfit (offline version: dark tones indicate low misfit,
light tones high misfit).
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Figure 4: Hudson plots (Hudson et al., 1989) representing the source decom-
position for inversions employing different types of input data; a) time traces,
b) time traces and amplitude spectra, c) time traces and cross-correlation
traces. Best double couple mechanisms (north-east-down coordinate system)
are shown for all solutions; the best solution is surrounded by a square and
the inflated focal sphere constitutes the mean solution.
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Figure 5: Cross-plots for a selection of inversion parameters demonstrating
distribution of solutions with comparable misfit in parameter space; compari-
son between inversion of a combination of time traces with amplitude spectra
(top), time traces with cross-correlation traces (middle) and time traces with
amplitude spectra with cross-correlation traces (bottom)
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Figure 6: Source mechanisms employed to compute synthetic data for test-
ing the inversion algorithm: three double couple mechanisms, three CLVDs
and the four focal mechanisms computed for the Groningen field by Kraai-
jpoel and Dost (2013); mechanisms marked by a dashed box are found, but
assigned an erroneous magnitude
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Figure 7: Randomly varied double couple source mechanisms (two top
rows) and full moment tensors (two bottom rows); mechanisms marked by
an dashed box are found, but assigned an erroneous magnitude and event
depth; a faulty solution is assigned to the mechanism marked by the black
box
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Figure 8: Testing inversions employing data from different depth levels
within the borehole: a) sensor at 50 m depth, b) sensor at 150 m depth, c)
sensor at 200 m depth, d) combining sensors from all depth levels (50 m,
100 m, 150 m, 200 m). For every test run, the resulting deviatoric moment
tensor is shown along with ensemble event locations as map view and depth
sections. As for the parameter cross-plots, the colour scale is according to
the misfit distribution within the ensemble, red: low misfit, blue: high misfit
(offline version: dark tones indicate low misfit, light tones high misfit).
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Figure 9: Comparing results for different velocity models; a) NN model,
b) KD model, c) local 1D model; top: event locations; bottom: Hudson
diagrams displaying best double couple mechanisms
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Figure 10: Comparing results for different velocity models (left: local 1D
model, middle: NN model, right: KD model). Top three rows: waveform fits
and residuals; input data to the inversion were (a) time domain waveforms,
(b) amplitude spectra and (c) normalized cross-correlations traces. Thin
lines: light grey - restituted and filtered observed traces, dark grey - same
trace processed applying a taper (background grey area). Slightly thicker
lines: modelled traces. Colors from red to blue indicate low to high misfit
of modelled traces to observed traces (offline version: dark tones indicate
low misfit, light tones high misfit). Numbers to the left of the taper win-
dow indicate starting time of the waveform relative to the event origin time,
numbers to the right refer to length of fitted time window. Lines below the
taper window indicate sample-by-sample differences between observed and
modelled traces (similar colouring), comparable only within each row, not
among rows. Bottom row: deviatoric moment tensors and their decompo-
sition. Leftmost focal sphere diagram represents deviatoric moment tensor
decomposed into CLVD (middle) and best double couple (right). Size of the
focal sphere diagrams indicates their relative scalar moments. Upper row:
best solution, lower row: mean solution averaged over 1000 best solutions.
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Figure 11: Time domain waveform fits and residuals for deviatoric and full
moment tensor inversion compared at sensors G172, G222, G232 and G672,
corresponding to level 2 (100 m depth) of stations G17, G22, G23 and G67.
For each sensor, vertical and transverse components are shown (denoted by
Z and T, respectively) and distance and azimuth with respect to the source
is given (detailed description of waveform fit plots available in caption of
Fig. 10).
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Figure 12: Comparing full moment tensor results for different velocity mod-
els: a) NN model, b) KD model, c) local 1D model; top: event locations, mid-
dle: Hudson diagrams displaying best double couple mechanisms, bottom:
solutions. In addition to deviatoric, CLVD and DC mechanisms, isotropic
part and full moment tensor are depicted (two bottom rows).
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Figure 13: Hudson plots displaying best double couple mechanisms compar-
ing results of inversions of synthetic data including noise for different velocity
models: a) NN model, b) KD model, c) local 1D model; top: inversion for
deviatoric moment tensor; bottom: inversion for full moment tensor. The
focal sphere diagram displayed in the centre represents the double couple
employed to compute the synthetic data set.
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