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Summar;y 

A teet ie etated tor the oaee that the :M.aruesi oonditiorr in regard of· 
a gDavit�tion (gra�ity.) potential is no� fu1fille�; this mea.ne �hat the 

' . ' 

Marueei_ terieor is singular. It relates the main ourva�ures of·the

equipotential-surface to the_ oomponente ·of the curvature of the plumblinf' 
in the di�ectione of the main curvature&o A g�enerally valid neceeaary 
conditio:n: followe� The e·quipotential aurface in the tea1t point must be 
hyperbolioally curved, 1. e. ·a saddle. point must exist;. In the _geodetio 
practioe, the Marussi-condition will be fulfilled.' 

Zusammenfassrmg· 

Es wird ein Kriterium !Ur die Erfüllung der-Marusei-Bedingu;ng in bezug 
auf ein Gravitationspotential �Schwerepotential) angegeben. Es wird eine 

.Beziehung zw_1achen den Hauptk:r,-Ummungsradien der Niveaufläche, und den
Komponenten der KrUmmung der Lotlinie in den HauptkrUmmungsricht:ungen 
aufgeste!lt für Cen Pall, daß der Marussi-Tensor singulär is�. Der �ensor. 
ist singulär, wenn die Äquipotentialfläche 1Di Aufpw:tltt hyperbolisch ge..r 
krümmt ist, so daß ein S�ttelpunkt �orliegt. Die�er Pall_uitt ee� sel-. 
ten ein. Die Marussi-Bedingung dürfte daher praktisc� immer ertUllt sein. 

YRa.3HBaeTcn: KJ)HTepmi BHnoJIHemm yCJIOBM MapyccH OTHoc:wre.niHo rpa-
, BHTanßOIIllOI'O noTeHUHaJia 1noTemntaJI CßJIH TmiteCTH}. 

YCTa.Ha.BJmBaeTCß: COOTHomeHHe Mem,ny OCHOBBmm: Pa.D:HYC� HCRpeBJieH­
HOH IlOBepxHOCTß H ROMIIOH0HT8MH HCKpmiJremur R Jimnm JIOTa B Ha­
npaBJiemm OCHOBHOro HCKpHBJieHl'!J'I .IT,1JJI TOI'Ö CJiyqaR, 0QJDII MapyCCH­
T8H30p CHHI'YMPeH. Teasop ·cHHryJIRpeH B TOM c.nyqae, eCJm·9KBmIO­
T8Hl�Ma.Jll>HaR noBepxHOCTH rmrep60.Jmq8CKH HsorHyTa B·To"IRe Bocxox­
�e:mm, Tal( -q•ro HMeeTCß: ceTJIOBaR TO"IRa. :3TOT CJiy'qa:tt Ha6JIID.naeTcn: 
o-qem, ·pe,D;Ro� IIosTOMy, ycJIOBM MapyccH .I(OJD!tHH npaRTHtl0CRH, noCTO.fIH­
HO BHilQJIHJITl,Cß:. 

,.. 

. .

., 
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1. �he llarussi condition,

'l!h.e Ma.russi tensor has the following form 

' . 

, 

x-, y, z �e reotangular CartesiQ.n co-ordinates . in space and W is 
the gravitation potential of the non-rotating Earth, /1]·/2] [3]. 
The x, y, z-systeD). is,non-rotating and fixed in the space; the 
Barth�s. fixed in the·x, y, z sys�em,in the considerations of 
sectio_n 1 and 2. In equa�ion ( 1 ) , -the . following 'ab breviations 
were set for the second derivatives of the potential function •. 

wxy' • • • (2) 

eimilar relations hold for·the other elements of the Marusai-tenaor. 
The x, y-plane is the plane'of·the equator of �he Earth; the z-axis 
is directed to the north,and perpendicular to the- x, y-plane. The 
well-lmown rela�ions of the differential calculus yield 

"' w 
yx 

(.3) 

(4) 

(5) 

The Marilsai tensor (1) is SYJl!!Iletric, aa follows frQlll the equations 
(3), (4), (5)

M = . . (6) 

'-

• 

' 

' . 

( 1) 

wxy t 

wxz = wzx t 

wy; = wzy , 

/ 

' "' 
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. F 

2l!. d F
e 

6 

(6a) 

f is the gravitational constant, dm the elemen� of the mass of .the· 
Earth, F is the volume of the Earth, an� e is the mu�ual straight: 
distance between the test point and the running point of the 
int-ßgration procedure covering the volume F. 

. 

During the recen� years, t�e Marussi tensor has gained a special'. 
actuality in oertain problems ?f the physical geodesy, /2} /3/. In
the investigations on the wiiqueness of the boundary value problem, 
the presupposition is introdu�ed that the invers� matrix �-1 is
nori-singular. Thus, the deteI'll!-inant� derived from the Marussi 
ten'sor �, ( 6), has not to be equal to zero, 

w
xx 

w
xy 

W
7;Z 

det � = . w
xy 

w
yy 

wyz. + o. (7) 

wxz wyz wzz

The equation (7) is the,so-called Marussi condition whioh is to be 
irivestigated now. 

The equati� (6)- show� the Marussi ten�or with regard to the 
reotangular x, y, z-system whi•ch iß in relation to the equator plane. 

For the following investigations, it is of advantage to transform 
the � matrix into the local horizontal Cartesian u, v, w-co-ordinate 
system. 

The w-axis shows into the exterior space, and it has the opposite 
direction of the gravLtation_ force of the E�rth. The u-axis is the 
intersection line of the horizontal plane and the plane of the z- and 
w-a.xis. The u-axis shows · to the south, Fig. 1.- The v-axis is directed
to the east. The u; v-plane is the horizontal plane of the·test point •

• 

= 
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Fig. 1: The �eocentric equatorial x, y, z-system and the local horizontal 
u, v, w-syatem. The base vectors � and X determine the horizontal 
plane. 

In the u, v, w-system, the· ·M matrix has the followü1g shape, 
= 

wuv wuw

C
u 

M = wuv w
vv

w� ) • ' (8) 

wuw w
vw 

w
ww 

The u, v, w system is fixed in the space. 

The � matrix oan be derived from the potential W by the scalar 
llfultiplication of the nabla operator with the gradient, 

This fonn 
system. 

P · f7w

1s free of the introduction of a special ooordinate 

The gr�vitation potential W fulfibls the Laplac� differential 
equation in the exterior space of the Earth, 

6w = . o

(9) 

( 10)

.. 
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or, in the' x, y, z- co-ordinates 

w
xx 

+ w
YY 

+ WZ'B,-

= 0 , ( 11 ) 

and, in the u, v, w- co-ordinates 
'

'wuu + w
vv

+ w
ww

= 0 • (12) 

The equations (1 1) ( 1 2) show that '·the· trace of the M matrix is equal to 
:a 

zero. The trace of a tensor-is one of its invariante. 

The elementa of the Marussi tensor of the form (8) can be expressed by 
the entiret,y of all the five curvature parametera of both 1ihe plumbline and 

· the level, surface W = const •• The concerned mathematical deduoti·ons ahall
not; be given here in detail, /1/ /2] /3/ [4),' The followi�g expression for
the Maruasi tensor ia the reault,

'.s 

( 13) 
2 

-92
- (oe 1 

The equation (13) is· in keeping with the equation (1 0). g ia the amount of 
the vector of the gravitation intensicy-. ;,ier ia the normal curvature of the 
level aurface. W = const. in the direction of the u-axia., 1. e. in the 

- north - aouth direction. ;;ie 2 is the corr_esponding value in the direction of
the v-axis, i�, e. in the eaat - west direction. _A positive amount; of ae 

1

or · "Be 2 meana convexi ty. 't: is the amount o·f the torsion of t'he geodeaic
line which is traced on the level surface \V = c.onst. in the direc1iion of

1 • 

the parallel, /3) /4/. The plumbline through the test. point haa the curvature
component ,$ 1 in the_ u, w-plane • .[). '2 ia the. an�9us value in. the v, w:..
plane. The curvat.ure of_ the plumbline itaelf ia 7,9,

1

2 ·+ -Si 2 
2 · • 1 

,.., 
L, 

ae 
2 .f), 1 + ;x!J . 
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2. The criterion eguati?n in case of a gravitational potential,

In case that the Marusai tensor ia singular, the following equation ia
found from the formulas (7) and ( 13), accounting for the faot thaü g is
never equal to zero, 

at1 r 1 
0 = !' ae2 

� • ( 14) 
2 

-(ae � ) ,91 �2 
+ 

1 2 

Now, the u, v, w-system is rotated around the w-a.xis till the u-axis 
and the v•a.xis show in the dir.eotions of the main ourvature lines. Thus,
(\.14) takes the followi� form, -/11, [2] [3] {4],

- 0 ( 15) 

This matrix transformation - execu�ed by a rotatiön - does not. ohange the 
amount of det �• The reason is the faot that a rotation can be expressed 

by the multiplication with oertain rotation.matrices. These matrices have 
the character of orthonormal matrioes. The determinants of such matrices 
are equal to the u.nity. And, the multiplication of a determinant with the 
unity does not change the value of H. 

In the ·equation·(15), k1 and k4 are the main o�atures, 11 and 1
2 

&re
- the compon�nta of the curvature of the plumbline, 1. e. the projection of
the ourvature of the plumbline on the vertical p�anes of the main curvatures
k1 and k2• The geodesio torsion in the direotion of. the m ain curvature lines
is well-known tobe equal t� zero, [3] [4/.

Hence, !rom ( 15) tif k1 , k
2 

are the main curva tures of the le..ve1· aurface w::const • ,

(16) leads to

( 2 2) (k2+l2)-k1 �2 + 12 '+ k2 1 1 = 

I' 

o, _' ( 17)

= 

( 16) 
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or, finally, 

k k 2 2 
+ 11 ( 18) 1 1 • 

� 
. =

k 2 1 2
2 + 2 

This equation (18) is the necessary and suffioient condition for the 
fuifillment of (14)·.and (15). In case,the formula (18) is right, the M

' 
-

matrix is singular and the Marussi condition is not fulfilled. The four, 
curvature paramet:ers k1, k2, 11, 12 observe the relation ( 18,), i.f the _
Marussi condi�ion-is violated. 

The equation (18) leads t-o the following sufficient condition for the 
determinant det M being zero, 

( 19) 

This inequation describes the fact tha� k1 mu7t have the inverse sign•of
k2• Thus, the geometrica;I._s�ape of the level surface W - const. at the test
point is a saddle point. The Gauss curvature 

(20) 

follows by (19) to-be negative, 

K < 0 . (21) 

The level surface of the test point has a. hyperbolic curvature, Fig. 2. 
The curvature center of the main curvature k1 is· situated on th� one side
of the level surface, and the curvature _cent.er of the other main curvature 
k2 is situated,on the other side of this level surface.

Further on, the relation (18) is valid if 

= = o. -(22) 

The relation (22) 'demands that one main curvature, k1, has to be equal to 
zero. This is the condition for the existence of a point in which the level 
surface has parabolic curvature. Furtherm°ore, the relation (22) demands that 
the curvature component of the plumbline in the direction of this·ma1ni 
curvature, 11, has to be equal to zero, too.

, 
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· If g is the gravitation. foroe, and if dp is the ele.ment ot length in
the dir�otion of the main c�ature line of k

1
, in this oase, 1

1 
has the 

following formula, /J] [4], 

= 
• (23) 

-v. p 

In case of (22) and because of (23). the horizontal g;i.-adient of the 
gravitation force in the direction of the main curvature line attributed 
to k:1 has to be equal to zero. The horizontal gradient of the gravitation
force g follows to be perpendicular.to the direction of that main curvature 
line which is attributed to k1• This gradient,has the direction of the main
curvature line which is attribut.ed_ to k2• -

In the above derivationa andin the formulation of the shape of the 
cri�erion.det.erminant, (1�), the whole auiount of the gi-avitational potential 
W was involved. Sure, W ca.n be replaced �Y the sum oi the periiurbation 
,Potential� and the stan�ard potential. The sum of both these potentiale is 
identical with w.

Fig. 2: In the point s, the level s�faoe has hyperbolio ,curvature, 
( saddle point ).. 
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J. !he crit:.erion eguat-ions in oase of a gravity potential,

If a rotating and gravitating Earth is.considered, the gravitational 
potential must ·be-supplemented by the potential of the centrifugal 
force z. Instead of the_ Laplace differential equation, the-Poisson 
differential equation :Ls valid now• /1/, in 1ihe ex11erior space, 

hv = 2 W 2
• 

V ::a W + z-

• 

<.tJ is the angular velqoi ty of the rotation of the Earth, 

( ·24) 

(25) 

(26) 

. lv =:- 7.J • to-5 [rad s-1J. W is considered constant. The Marussi
tensor of the field of the V potential is denominated by �' 

(27) 

In the new hor.izontal u, v, w:--system which relates to the potential V, 
the·crit-.erion equa1iion, 

de1i, N = 0 

haa the following shape, in analogy to (14), [1/, 

c}e 1 
,.., 

Ji.1 " 

0 = t' ae 2 .9, 2 
---

-Bi 1 �2 
-(ae, + .3e2)-

(28) 

(29) 
412 

2-·
g 

The tenaor ! .in the new horizontal u, v-, w-s1stem, -is ta-ansformed by a 
rotation around the vertioal w-axis, till the horizontal u� and �-axia 
ooincide. w;th the tangential ve�tors of the main curvature linea, 
[1/ /2/ /3]·[4/. This are th"e main cur.vature lines which run along the, 
leveL aurface V= const. of .the grayity potential V 

1 (25). 

.. 

V , 
xy 

vyy 

- vzy 
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Thus, in case of a gravity potential, the criter:l.on for the existenoe 
of a singularity of the Marusai tensor has the follo.wing shape, 

k1 0 1, 

0 = ,o -k2 l· . 
• (.30) 2 

w2
1, 12 ;:..(k1 + k2) 2--

g

k1, k2, 11, 12 are again the curvature parameters, apply;l.ng to the
system of the main curvature lines. The determinant (30) leads to 

= o. C.31)

In the relation (31), the values w2 and g are always positiv�, 

> 0 , g > o. .(32) 

Thus, both the main curvatures __ k1 and k2 cannot be positive simultane.f)usly.
Therefore, the level sürface V =  const. can not be convex. 

Furthermore, k.1 = 0 nec_essitates either k
2 

= 0 o-r 11 = o.

For the inves,tigation of a type of special intereat, the formula (�1) 
is 1iransformed to 

112 + k 2 ( 1 + _g_ W.
2 1 

) 1 . g Ic:" 
- = ------,,,-----.�------·-

• _(.33)
1 2 + k 2

2 - 2 

Obviously, this relation (J3) leads to the following inequa�ions, 

.k 1 (.34) 

Therefore; (34), if one of the main curvatures is positive, e. g. 
k1 > O, the other main �urvature has to observe the inequation k2 < ·o�
Hence, the curvature „of t_he level surface- V = const. hae l. hyperbolic 
charact.er, in case of (34)'. 

The following curvature type, (35), re�a±ns to-be 1considered, 

< 0 ' , <. 0 . 05)

• 

> o, < o. 
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The relations (35) describe a level surface type with concave curvature. 
Thus, (31) and 05) lead to -ihe fact that the term in the braces of (31) 
has �o have a positive value, 

w'2 . (k1 + k2 + 2 �) ) o, if k1 < 0 and k2 < o. (36) 

'Thus, from' (36,), 

05) , and (37) lead to

A similar inequation is valid for k2•

The inequation (38). is equ.ivalent to the following relation, 

1 
� 

1- 1
> 160 R •

k1 

(37) 

(38) 

(39) 

R is the radius of the globe� The curvature k2 has a similar formula,as
(39) for k1•

In ca·se of 07) (38) (39), · the two components of the plumbline 
deflections 0 alter along a horizontal distance of one kilometer by 
about -�2". This fact is evidenced in the following way. If,in the 
surroundings of the test point, the level surface approximates a plane, 
in this case, the plumbline deflections alter by ✓ 0 = -32 .' 1138 along 
·the distance of one kilometer, it is on the strength of the curvature
of the reference surface which is here the globe. Now, if the level
surface in the near surroundings of the test point undergoes a
downbuckling according· to (35) 07) (38) (39) ! the amounts of both the
main Qurvatures of the level surface have the possibility to diminish
from zero to·- � .so,the curv�1iure type of the level surface becomes
concave. T�is downbuckl;ng of the l�vel surface alters the plumbline
deflections supplementary by the amount o -f - o. "20 within a kilometer.

Thus, the equation& (31) and (35) ,lead to the following relation, 

- 32. 1158 <, J'f) < - 32."38; k1 < 0, k2 < 0. (40)
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In ( 40), ö e is the al teration of the plumbline deflection along the 
distance of one kilometer. 

Summarizing, in case of a gravity potential, (24) (25), the Marussi 
tensor (27) is possible t.o be singular only if tli.e relation (34) is 
fulfilled, i. e. the curvature of the level surface is hyperbolic, or, 
if '(35) (37) or (40) is valid; i. e. the level surface has a slight 

· concavi ty.
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B. On the evaluat�on of t�e numerical amount of- the residual 1ierm
of the solution of the geodetic boundap value problem

1 

Coatents 

Summary 
Zusammenfassung 
Pes10Me 

1. The evaluation of the potential e�pression /B]".

- [ QB]" 
2. The -evaluation.of t�e radial derivative 

-�� .•

,. The evaluation of the·horizontal deriv6tives ·Q /pJ
n 

� x, 

4. The residual terms �or the fixed and for the free
boundary value pr.obl�.
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The aolution of the -geodetic boundary value problem, for the aurface 
of the .Earth- aa bow;,.dary aurface, oonaista ·1n the'addition of the plane_ 
topographic correction to the free-�ir anomaly in the_Stokes aolution. 
Under certain circumstanoea, a small term which is expressed by the 
height gra�ient of the Bouguer anomalies has to. be addFd• Further, a 
residual term of vecy small amount generally to· 'be neglected ia to be 
considered. It has a olosed matheniatical expression in terms of the 
difference o� two certain potentiale: The potential of the apatial 
visible mountain masses (but having the standard 4ensity) minus the 
potential of theae masses condenaed at the glöbe in form of a apherical 
surface diatribution of maases.In order to find the reeiduum by this differen�e · 
potential, three explicit rormu.J.aa are developed here. They allow the 
computation of_ this difference potential- /B}'.' and of i ta vertical- and 

� horizontal derivatives. 

Zusammenfaaanng 

Die l,öaung des geodätischen Randwertprobleme für die_Erdoberfläche 
besteht in der Addit�on·der ebenen Gel�dereduktion der Schwere zu den 
Freiluftanomalien im Integral von Stokes. In bestimmten Fällen sollte 
ein kleiner Ausdruck hinzugenommen werden, der von dem vertikalen 
Gradienten der Bougue�anomalien· aohängt; Zu diesem Integral muaa e1:n -
Restglied addiert werden�_Dieaes hat einen geachloaa�nen mathematischen
Ausdruck, und es kann meistens ve�achläaaigt_werden. Ea ist sehr klein. 
Das Restglied wird ausgedrückt durch ein �if�erenzpotentia+• Di:aes ist 
die Differenz zwischen dem Potential der aich�baren Massen mit Standard­
dichte und dem Potential dieser Massen nach Kondensation an·der Erdkugel. 
Für die Abschätzung der Grösae des· Restgliedes werden ausführliche 
Rechenformeln entwickelt, und zwar für dieses Potßntial selbst und für 
seine vertikalen und horizontalen Ableitungen." 

AHHOTa:rnm 

PemeHHe �eo�eaJNeCRO� RpaeBOM aa�a'tßl! ;rI,1IfI IlOBepxHOOTH aeMJIH COCTOHT 
B CyMMHpOBamm JipHMOH TOilOl'pacpn-qecROH noIIp'aBim rpaBßTfilUIJJ,'[ c· aHOMa­
RHeü B03,ny.x:a Ha OTRPHTOÜ MeCTHOCTH B mITerpaJie illTORa •. B onpe�eReH­
HHX MyqaRX �OJiJRHO HCilOJii,30BaTnCJI BHpruiteHHe, ·aaBHCJimee OT BepTH­
:ooJI:&� rpa;rnieHTOB aHOMaJIHH Eyrypä •. B 'STOM mrrerpaJie cyw,mpyeTCJ! 
OTCTaTO'tlHHfi 'tJJ.IeH. ÜH np��CTaBJIReT .co6oü 3aKOH'tleHHoe MaTeMaTH'tleCROe 

-BHpruiteHHe H HM Mo,mo B 60JII,111HHCTBe CJiyg:aeB npeHe6pe% Ha-aa ero
HeaHa'tlHTeJII,HO:i-t Be�HHH. OcTaTO'tlHHH 'tJJ.IeH Bl:lpaJKaerrcH,.:ztmixpepe�HäJII,­
HNM IlOTeHUEaJI�M, KOTopuil SiBJIB8Tß$! pasmi:uefi Mem.ny IlOT8IIUE8JIOM BH,Wr­
MllX Macc CO CT�apTHOH ILJIOTHOCTnID H IlOTeHUHaJIOM 8TlDC Macp IlOCRe
KOH,IteHCaIUIH.Ha 38MJie. }LJm otieHKH B8RJNHHH OCTaTO'tlHOI'O 'tJJ.IeHa paapa-
6aTl:lBaIDTCJI HC'tlepmBaIOO.tHe �opMyJil:l pac'tleTa, a HMeHHo KaK ,I1,7Ilr oaMoro
IlOTe�HaJia, TaK H ,I1,7Ilr ero BepTm<am>amc l'I rop:H30HTMDHLIX npOH8BO�­
Hl,I;JC.

; ' 

Summary 

• 

..-

DOI:https://doi.org/10.2312/zipe.1987.089



18 

1 • The evaluation of the potent.ial expression /Bi",

The following .3 t:erms are considered in this chapter C, 

[B]" B B L.....J = = co.nd. 

[ !:1' 
vB �B 

= = -- - cond1 

2 �r vf 

•,--, c) {_B/.."
'----' 'i5 x, y • "-, 

.3 

At first, the potential expression is in the fore, ( 1 ) •

According to the purposes of the following derivations, the 
expressio�s for q'

1 
and 2

2
, /1] /2] [.3], are to be modified 

( 1 ) 

(2) 

(2a) 

in order to bring them into a shape convenierit for routine nwnerical 
computations. 

.---, 

At first, the i..::,1 .term is considered. The potential of the visible
mountain masses above the sea level, (with the standard density f ,

65 /i -.3:; ) . .p = 2 � g cm , is -

B = 

R +·hQ _ _

� ( t) r2 Sin"J' dr df cl oL
r = R P 

P specifies the t.est pbint at the surface of the Earth, Fig. 1. 
' ...... . -

The integration over the g�ocentric radius r is divided into two sl;eps. 
The first step has the interval: R � r � (R + hp)• The second step
is: (R + hp) •·· r ••· (R + hQ). hp is the height o{ the t.est. point P
above the spherical reference sphere. hp is a fixed value within' the
course qf the integration. hQ is the height of the running point Q at
the surface of the ·Earth. The point·Q moves over the Earth in the course' 
of the integration, Fig. 1. Along thes� lines, the integral (.3) changes 
to 

/ 

R + h ,,.-

( Jw:2R + hp

sinV, dr d r d°'- • (4) 
. ' ' 

/ 

' (3) 

• 1 
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<1. 

c)ep 

,
Fig. 1 s The test point P and the running point Q on the surfaoe of the Earth � ; 

their mutual distanoe and their height differenoe. The spheres c)e
p 

and .;,e • 

' 

.1 

• 

• 
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Xhe potential -of the mo1,U1tain ·mas.ses (o:t the standard dens�ty � ).: 
is now oondense�·at the sur:taoe of the globe � with �he radius .R� In 
the test points Pa€. .. of the globe ae , the potential of. the oondensed 
-masses has the·subsequent formula, Fig. 1,

B . oond.

uJ is the• uni t sphere, 

d)
w)_ = oos " d'f dA 

/. 
(6) 

<yand A are the geooentrio latitude and longitude, 

eo =c 2 R sin 1// 
2 .- (7) 

e
0 

is the lep.gth o-f the ohord defin.ed by the foots of the perpendioulars 
. of the two points P and Q, Fig. 

_
1 ,it are_ the piercing points ·p

re 
and �•

'llhe oblique di·etanoe � between the test po:l.nt P and the running -
point � of theperpendioular of Q is developed by the oosine theorem, 
Fig. 1, 
1 • 

. €. 2 = -(R + hp)2 + (R + �p + z)2 " -

2 (R + hp) (R + hp + z) cos 'f' • 1 (8) 

z is the height of Q above the geocentrio sphere through P. The following 
rearrangements of (8).are self�explanatory,

e 
2 ,,. R2 + 2 R�hp. + h./ + R2 + h

:p 
2 + z2 , +

+ 2 Rhp + 2.Rz + 2 hpz 

? . ( R2 + Rhp +, Rz + hpR + hp 2 + 

+ hpz) oos "1/1. 1

' ' 

(9)

• 

+ ff R
2 f [ {h~ 

4) 

., 
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= 

I 

2 R2 + 4 Rhp +, 2Rz + -2 h/ + z2 + 2 hpz -

2 (R2 + 2 Rhp + Rz +_ h/ + hpz) cos V • (10)

' 
Obviously, i t is recommended t.o replace th� cos!ne function of 7f'.

by the aine funct�on, using 

cos 'f 1_ - � sin2 -{- • 

(,10) and ( 11) reveal, 

f 2 = z2 + 4 R2 sin2 -f-+

+ 4 (2 Rhp + Rz + h/· + hpz) si_n2 {- •

Hence, 

E. 2 =, 4 R2 si:q2 
+ +. zf +

2 hp . z hp hp 
+ 4 R2 .sin2 .Jt..

2 [ 2 -+-+:r+ 
R R R R2 

(7) and _(13)

f. 2 _ 

or, 

t. 2 

- Further· on,

E. 
2 · 

give, 

= 

= 

= 

e 2 + z2 + 
0 

h 2 

+ -� 2 

[ 

hp z. 
, 

p 
2- t

- +
i20 R R 

' : 

e 2 · + z2 + eo
2 [ 

2 hp + z 
Q R 

e 2 + z2 + 
0 

e 2
Z- , - + P +[ 

1 h 
1 o . R i2" 

+ 
2 

2 r 
2 hp hp 

J e --+� o. R R 

hpz 

] +
:T" ,
R 

'2 

+ . hp + hpz

R2
1 

• 

( 11 ) 

( 12) 

z]. ( 1.3) 

( 14) 

J • (15)

(16) 

,, . 

,, . 

r 

= 
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2 2 2 2 { 
eo

2 z 
e + z + (e + z) 2 o o z2eo + 

+ ./ A
2

Rhp < )

2 

]} • 

The main term on the right �and side of (17) is 

e 2 
0 +

It is faotored out, 

With the 

o,.

and 

. D2
1 

follows, 

2 
E = 

<•. 2 +•2 >
f

1 
e 2 z+ 0 
e 2 + z2

0 

e 2
+. 0 

e 2 +
0 

[
2 hp h/

] l 2 --+� 
z R . R , 

abbreviations 

e 2 

z [ hp J 
e 2 + z2

. 

i 
1 + ;-

0 

e 2
2 hp 

[ 
hp .o 

e 2 + z2 
• - 1 +-

2 R 0 

(e> + z2) I 1 + D1 ":. D2
]

[ 1 · h 1· ';+i7 + 

• 

) 

• 

(17) 

( 18) 

(19) 

( 0) 

( 21) 

_(22) 

Neglecting a relative error of about 10-3 to 10-4
.,- the })rackets of (20)

and ( 2,1 ) can be omi tted,

eoo, . 2 !7-2 eo +·
(23)

z2 • 

= 

::z 
o __ 

= --

..., 
::z 

2 

R 

z 

R 

, 

[ 
1 hp 1 - + - + 
R R2 ' 
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�
e 2

•
. 2 h

p
.

D2
0 

e 2 + z2 
. 

0 
R 

(24). 

Because of 

1 D1 1 << 1 ' ln2 I << 1, (25) 

it is. allowed to apply certain binomial series developments for·the 
powers of th� term in,the brackets of (22). Thus, 

1 1 

.,-.[, 
1 � D ]

-

= 

Fo2 +

:- D 
2 1 2 2 (26) 

with D1 and D
2 

a.ccording to (23) (24).

Lat�r on, this formula for l shall be introduced in the-integrand 
of (4). But., before doing so, the integration covering the interval 

R ·,<. r � (R + h
p

) (27) 

should be discussed sepa.ra.tely. It will conduct in the vicinity of 
( 5). 

This relevant part of the integra.tion a.ccording to (4) has the 
following form, 

: A,/ 
(T 

2 'iY R + 

hp (iJ M = 
ff -i 1 )

r2 ein V'. dr �1" do( • ( 28).

,y = 0 <X,= 0 r = R 

�he mea.n1ng of the potential M allows a simple interpretation. Since 
Rand h

p 
are constant values for the integration according to (28),

M is t.�e potent;i.al of a homogeneous shell of _the standard density q
ßl;d· of the thickness hp, the inner radius is Rand the exterior is 
R + hp• The test point P lies on the exterior margin of this shell. 
Further on, M can be interpreted also as the difference of two 

· spherical potentiale,

\ 

/ 

,-
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(29) 

,. 

M1 is the potential of a homogene�us sphere of the'radius R + h
p,e 

The
test point is situated on the surfa� 0 of this sphere. Thus, 

(30) 

-M2 is the potential �f a h�m�geneous sphere of· the radius R. The tesu
point.has now the distance R + hp from the center, as in case of M1,

M2 ""

'-

(29) (JO)

·14 =

fr
R3.

.f r • 

R + hp 
01) 

(31) reveal,

. f·Oj 4 11 (R + h
.
p >

3 
_ ! 'if R3 ·

] = 1 [ . l , - ! U f f . (R 
,
+ hp )3 - R3

_ 
= 

R + hp - _ R + hp _ . , . R + hp 

1 
[ 3 2 ·2· 3 ' 3]·

. R + 3-R hp + 3 R hp + hp - � = 
R + hp 

(32) 

The denominatQr of (32) al:J_ows a·development into a binom1al series, 

h 
(R :·hP)-1 

= tt ( 1 + ..!)
R 

-1 
1 hp hp 

f 

2 
= Tr 1 - ;- + [;-]

The oombina tioil of (32) and (33) leads to 

or, 

J- + ••• (33) 
, 
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'---

[' •, r:-r 1- 05) 

Therefore _, the first, part of the integral {""4-:) -oan be repl:,ao�d by (35.) • 

·' . In oase, the re.oiprooal distanoe ½ is replaoed by a d·evelopment in
Legendre .funotions, ( 28), the relation. 05} .for M is oorroborated. ·
Beo�use of the ox-thogonality relations of the Legendre funotions, the 

\ Legendre fW1otion of the degree.n = 0 only ·has to be taken into aooowit 
in this problem� 

Finally,· the expressi?n for M
0

ia introduoed into (4), (see (28)

. �35)). The· resultin� expression for B-is t-a.ken as the first: term on the 
right .hand s,ide of ( 1 ) • 

The formula (5) replaoes the seoond iterm on the right·hand side .o.f 
--. 

(1). Alöng these lines, the term· d1 proves to hav� this form,

K1 = [B J" '[. (h')2 J_ _ = _ B
. 

-r B
0�nd. <=

0 

4 i,' f f R hp 1 + j 
R

P + 

2\y R 

� 

h
Q -( tl „

2 sin 'f dr di'. d « 

\ 

„ 'lf =_ 0 o(= 0 r = R+hp 

(36) 

The first term on the right. hand side of (36) has the expression 

. 1 p 

. · th )
2 

3 '�­
R 

' 

' .,r 

07) 

in the braokets •. It gives rise to an impaot on the potential value o.f,.....,, 
w

1 
�Y the ter11. 

' 
2 

B • ! U f f R hp ( :•)

1. 

/ 

• 

.
1 

(38) 

' ,,, 

./

--4: ff R ~ - ff R
2 g {hQ - h;) ~o~"'• . 

Cu , 

.' 
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With 

09) 

follows 

N = G • o.3 mm, (40) 

G is·the global mean value of the gravity. Thus, the relation (40) 
shows that the refleotion of Non the height anomaly is not more than 
0.3 mm, a value 'that oan· be ne'glected. 

The impaot of Non the gravity is equal 

. 2 

fgalIf IN = 0.1 • 

This term is negligible, too. 

Henoe, (36) turns to 

........ 

H 

..,___, 
= 

,.J 

21r R + ,,_.hQII 

) ) \ (r1f
f 

,Y = 0 · o(= 0 r = R+hp 

, f a2 -J (c¾ - h;) !
0 

d<.> ,

w 

t'o 

(41) 

r2 sin 1/' drdy d� 

(42) 

Now, (42) undergoes further rearrangements. Th'e reoiprooal distanoe 
is·replaoed by (26). In the !irst integral on the right ha�d side of 
(42), the integration over the radius r gives, aooounting for 

hQ = hp + Z / (43) 

y = 

·rp +,

(t}p 
r

2 
dr =

r = R + hp

= 
R + f' + Z 

(t)p (R + hp + z)2 d z • (44) 

r = R + hp 

'-

I 

J Jan 

1' 

1 
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z-

y = (a (R + hp) 2 [ 1

r =- R + hp 

and with 

-r T + _
R_·:-h-p ( 

>'

follows; 

z = 0 

or, 

z 
1+2---

z = 0

,, 

y· = 

\Wp •. + 2 R \WF 
z -= 0 z = 0

dz, (45) 

'(46) 

(47) 

z dz • (48,) 

In (48.), all the terma �e neglected which are: e-quivalent to a relat:f,ve 
error of.-the order 

or (;) 2 

(49) 

in the main term of (48). It ia i� keeping with the preciai;on of the 
emp:i_:r::,ical determination of the ··location. of the geodetic control. pointa. 

( 48 i takea the following ahape, introducing ( 26) ·�a the subati tute 
for the rec�procal distance, 

'- . 

. \ 

' 

z , 

y = J (i)p 

z z 

z_ 

(R + hp) 2 --- dz, 
. R + hp 
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z 

-4- 2 R.). 
z = 0

28 

z. 

\ 
. 1 

dz -

Y eo 
2 + z2 „ 

z = 0 
z 

3/2 

Z·= 0 

z-

dz -

(e _2 + z2) 3/2 dz·+ 
0 

1 
z Jl,z. 

Y 
eo

2 + z2 

Some simple IIJOdifications of (50) e;ive' 

z 

(R + hp)� 

.� 

= 
Ve 2-� �2

dz -
-

0 
' 

1i = 0 

z 

R e 2

)
·z

e 2___ o_ .. 

dz - Rhp 
� . (e 2 + z2) 3/2 0 

·' 

0 

z ... o 

)• 

z 

+ 2 R � z·dz. 

z = 0 

1. 

., 

z 

) 
/ 

1 • 

' 

. 

,-

(50). 

dz + 
(e 2 + z2) 3/2

'-

o 

z = 0 

. ( 

y 

.r 

o · z 

~ 
8 

2 

- -(--eo""'2.--+ .... z...,2_)_ 

z "' 0 

1 

·f . ~ ' 2' 
e-0 + z 

.. 

e' 2 
_o_ 

L 

- . 

1 

(51} 
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With 

and 

1 

/ 

z

W = - a 
hQ..,. hp

, 

eo eo

z 

U1 = 

�. 
,je 2 -� z2.

/ 
-0 . � 

z = 0 

= arsinh w 

z 
= 

dz = 

� 

'dz 

\2 
(e 2 

+ z2 ) .J/2 
0 

z =- 0 

,z 

1 ·U3 ==-

(e ·2 + 
3/2 

dz
z2) 

0 

z = 0 

z , 

1 J 

29 

in[ w + �r 
' 

1 1 1 
= 

, t- -, , 

11 
eo + w2 'eo

' 

1 w 

= 
� eo j1 

+ 

w2
' 

f 1 ��- w� , 

°Q;4 =-' z dz = e
0 

- ·eo

t �o 2 '
+ 

2 ' 
t 

/" 

and 

k1 =

k
2 

= 

Z', = 0 

.. 
2 (R + hp) 

- ½ R eo
2 

,, 

t 

z 

\ 

, 

1 -

(52) 

(53) 

.(54) 

·'

(55) 

/ , 

(56) 

(57) 

(58)

1 
\ 

z 

u· 

~ ---

) 

_, 

, 
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k , h 
2 

3 
= - R P e

0 
� 

follows for Y, (51), 

4 

y : 

1 = 1 

JO 

/ 

(_59) 

"(60) 

\ 

/ 
(61) 

The above·expression for Y is equal to the Y value 
I 

of (44). It is-
introduced into the equation (42). 

,,.,, 

oi. = 0 

And,with (61), (6), 

i ... 1 

(43), (52) and (63) reveal 

4
,--, 

Y sin "f'_ · d "f d Ol. -

• 

I 

• 

' 

(.62) 

(.63) 

'f 
H 

- t f R2 § w d._, ;L
...... = - k1 U

i. 
d(.c) (64) 

.'--', 
1 = 1 

w "' - .

' . 

,The second hrm on the right hand side of {64) is jo:1.ned with the k1 u1
expr�ssions of the first te:rm on the right hand side of (64), 

' 

:/ 

C 

ff 

'I' = 0 

- ' .f R2 ff (l,Q - hpl :o d<O 

w 

1 

~ 'f H t: 
-~/.~ }j (hQ - hp) -~ - d4, 

, 0 

"· 
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Thus, (6-4) turns to 

w 

,. 

(65) 

(66) 

(67) 

The eqti.ations (53) to (.60), (65), (66), (67) can-be comb�ned, 

H L �I = 
:f:�

viL-...,1 
i = 1 . 

V 1 = (R + hp)2 ar�inh w, 

= ½ R I 1, 
V2 eo 

2 ' + w , l
w 

V3 = - R hp
11 + 

w2 
'. 

[-,/1 + w2 ' - 1 .jV 4 = 2 R e
0 

y 

v
5 

"' - R2 .w 

d(v 

,' 

(68) 

(69) 

(7,1) 

(72) 

(73) 

The above formulas (68) to ( 73) are a repr_esentation of ( 1 ) , immediately 
suitable for numerical computations. They_are appl�ed·to the model 
computations in Chapter B of {3]. 

Further, in this context, a certai� special property of the sum of 

(74) 

should be pointed out since it is important in the numerioal 

. I, 

/ 

., 

5 

w 

1 
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ai;,plioations. In many -cases� in espe�i�l 1f the distance e
0 

is .
sutficient_great, 1llie quotient w, (52), fulfiils the !ollowing inequation, 

<<. ; 

\ -
. {53) allows a.convergent series development of (69), 

(76)' is oonv_ergeni; . 1:t' • 

t" J < 1,. 

With 

and w:ith 

\ hp 
<< 1

follows 

,-1 2I . 1 1 v1 =- R _w - '6' W"' + -

• 

... ] •

Henoe. in oase the constraint (75) is observed, 

Thus, in the sum 

- (75)

(76) 

\ -

(77) 

(78) 

(.79) 

(80) 

{a1) 

(82} 

of (68),. the terms· v1 änd v5 caneel each other more or less.

\, 

/ 

. . 
1 w J 

R 

Q 

. 1 R2 w3 
l> / . , 

,,. 
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,. 

This-phenomenon refl�cts,in the subsequent inequattons: 
In cas�, (75) is valid, the inequations 

1 v, + V5 << tv,-} (ijJ) 

� 1 
v, + :V5. << lv5 l· , (84) 

are fulfilled. 

/ 

. 2. The evaluation of the radial deriv�ti-ve 4� J 
II 

• 

The second term which is to be developed here is :;:.,
2

, (2). Here,
the radial derivative of the-potential B, (3), 

(85) 

and the radial derivative of the potential of the conden��d masses, 
( 5-), 

(86) 

j 
• 

are of importance. they have the f�llowing integral expressions, 

11' = 0 ßl = 0 r' • il 

• (ßB)

•. (S.7) 

[-

'· 

R + hQ 

I [:_v.r~)p 2 . } v . r' ein 1/f 1r' dV,jd~ 

and, (see ·R~g. 2 ), 
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r is in (87) iµid (88) the geocentric radius of the test point Presp. P, r' 
is the geocentric radius of the running volwne �leme�t of the integra­
tion (87). P

ee 
is the foot of the perpendicular of the �urface_ test 

point � taken in the level of the globe with the.radius R, Fig. 1. 
Pis a test point in the exterior of this globe, Fig. 2. In (88), e,Jlf, 

is the straight distance l;>etween the point P and the running point on 
the globe. The relation for the exterior normal derivative of the 
potential 1of a surface distribution transforms (88) into the following 
expression which is valid for surface test points, [4} [5], 

l �. J R
2 

ff 
'u 1{ e

0 co.ndo 
- 2

N f f hp + f 
f

hQ dW , (89) = ff 

'v r

with._ 

ur . . p 
w 

u 1/e
0

' 

-[ � ;:"]_ ur.
p ➔P

The term· 2,;
2 

is the difference of. (87) and (89),

= [ �:cond,) 

P 

(90) 

(see (,2)),

.. '· ( 91 ) 

;Je 

At first, the integral (87) undergoes a certain transformation. The 
integration over the radius r' from_the lower bound R to the upper 
bound R + hQ is subdivided into two steps, (3) (4). The first step is
again the intr:rval R � r' � (R + hp), and the' second is 
(R + h�) • • • r'• • • (R + hQ)o The first step contributes to (87) by-

�: 

2

f 

R 

{\ 
1)?

1�[1 r' 2 dr' •� 

1f = d r:/..= ö r' = R 

/ 

• (92)

The expression A has a simple interpretationo If a homogeneous shell 
of the density f and of the boundary spheres with the radius r' = R 
and r' = R + hp is considered, the expressi�n of -Ais the gravitat1on 

intensj_ ty that this shell exerts on the puints of the upper boundary 

sphere-, (r' ,. R + hp). Thus, -Ais equivalent to,the gravitation

. ) 

22 - [!: r 
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intensity-that ·two balle exert on a test point of the radius R + hp, 
the ont: oall has the radiua R + hp and the densi ty f , the other has 
the radius Rand the density - � • Conseqµently,

A=- -r 
f t 'it

+ff 4 ,r

(R + hp) 3 C 
1 

+ 

(R + hp)2 

R3 1 
2 (R_ + l.p) 

The following rearrimgements of (93) are self-explanatory, 

A=-4 u ff 

h 
• 3 J.

h 
2.J. +

R

[ 1 + :p + ½ (:p) 2]

(93) 

(94) 

(98) 

• (99)

• 

/ 

• 

1 1 1 

(R + h )2 = 7 h 2 = 
. p . ( 1 + 2.) 

R 

= ~ [ -~ ~ · 2 :p + 3 ( :p ) 2 

- + • : • , ] , (95) 

A=-t//ff R[1 -

R 

2 

. [ - hRp + !. (-hRp) l A=-4i, ffhp 1 1° 
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The oombination of (87) and (92) gives, 

-= 

,, 2-;( 

\ \ 
R + h' 

� Q[ _v_
c)
-
1
-�-• l. r•2 dr' d«>. (100)

1 

1/' '."- 0 0/. = 0 r, =-R�hp

Further on, (100) and (�9)·are introduoed into (91). Thus, the subsequent 
relation is obtained, (43),

7- 4 "'.f ",, [1

/ ) 

+

f
f 

. 

II 

R,+t 
+ [ v 1/t] 

'J r P
ol. = -o r = R + hp

+
2 # f f hp - f f R2 ff hQ

w 

1 

r'2 dr' dW +

( 101) 

In the last term, E, on the right hand side of ( 101 )., hQ is to be
replaoed by hp and z; (43). Hence,

E'=F- fr R2 ff Z � 1/•o 
d Gv

�r 
,(102) 

(JJ 

F = - ff R2 hp ff 
� 1/e

0 
dW 

'V r 
• (103) 

The computation of the integral of (103) inoludes the comput�tion of 
the oblique dista.noe e* , (90). The one of }he two end points o.f this 
straight line e,N:- - the lower - is situated in the level of the globe 
with the radius R, '(Fig. 2, (7) (8) (11) (90)), and :the other end point 

- the upper - is the point �. lying in a-certa�'n.height _a9ove the globe.

r 

.)6 

z 

'v 1/e 
0 

. ~ r ' 
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Fig. 2: Geometrical relations about the oblique distance e
-H-

• 

The subsequent deductions are self-explanatory, Fig. 2, 

e X- 2 = r2 + .R2 - 2 rR cos -y, 

2 eH- de* = 2 rdr - 2 R cos '/', • -d.r, 

�e0 1 
- = - R ( 1 - cos 1f ) ,

�r e0

c) eo 1
. 

2 ""' -=-2Rsin � ,  
c)r · e0 2 

. I 

(104) 

( 105) 

( 106) 

(107) 

( 108) 

(109) 

' 

.. 

r ~ R 

e0 9-~o w) dr, = R (1 _ cos T · 
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�e 1 
-----2. = - e ' 

'i)r 2 R � 

·38

u 
1 .
e0 1 c) e0 1 1 

� = - � � = - 2 Re
0 

= - _4_R_,2...-s
-
in

--,
'f

- •

)f 
'-;) 1 /e0 

dW
ur, 

2'ir 

1 

) =--7":2' 4 R 

1 
= - 4 R2

,...,, 
/1 

d 0l 

� 

1 

r --,-,- d41 -
sin-f- · 

. L_ sin 'f- d 'f =
�in 2

Ol= 0 'lj/= 0 

1 
= -�.4 R 

"" 
,, 

2;, f 2 'cos f d )"

'Y = 0

1 
=- - � • '2 ·// • 4

4 R 

, (112) is introduced into (103), giving 

Hence, the last term E on the right hand side of (101)turns to 

E • Q "' f hp - f �R2 r ( Z d
',)

1
�•0 dw ,

lu 
( 101 ) , (111) and ( 114) are· combined to 

~ 

II 

� 

f 
,-., = ff ._,2· 

1/1 = 0 O(= 0

+ ½ 'J' R f) ,:
0 

d '<I + � ff f f

41 

c) ·11 i- .) r• 2 dr•:d41 +
"Ll r / p 

( 110) 

( 111) 

(112) 

(113) 

( 114) 

( 115)

' 2 11 ~ u 

f 
w C{_ = 0 1f =- 0 

1 

F = 2 'ii f . f hp - • 

.. ---

• 

i 
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In (115), the quadratic term in the brackets of the first expression on 
the right hand side of {101), 

- 4 1t • !' hp • t Gp r . ) (116)

1s omitted. For hp = 3000 m� (116) contribu.tes by not more than
ö.2 f gal.

The next step 1s the development of the term 

appearing in the first integrand of (115). 

(_117) 

The vector E points from the test po·int P to the running point Q 
. . . :::: 

which has the height z above the sphere �P of the test point P. The
amount of 5 _is E • The vector f can be expressed by the orthogonal 

- -

base vect.ors _;1 
and �2

, Fig. 1, Fig. 3.

!11 • a.

dr� 
V • 

-�p ,,, 
.t2 

Fig. 3: The differentiation of E 

• 
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The differential_quotient (117) leads to 

1 - = 
";) r E - E2

A look on Fig. 3 shows that 

,/ 

Thus, 

= - cos )1 

-= 

= -

• 

• 

(119) 

(120) 

According to Fig. 1 and 3, ·the vector t: has the tollowing expression, '
:= 

°f;_ = [<R+hp-+z)cos"t-(R+hp)·J.�1 + 

+ (R + hp + z) sin ,y • �2 • ( 121) 

The length € of the vector � �s already represented by (19). n
1 

and n
2 

com� from (23) and (24): But in this context, the chord e
0 

situated in the- sea level is replaced' now by the cho-rd e' situated 
in the level.of the test point P 

. ' 'V' e_' = _2 (R + hp)-ein� • 

�he equations (7) and (122) relate e
0 

and e', 

e 2 
0 

The.relation � 22)-and (1231 lead to 
•, 

2 [ 2 hp
) 2 ·1 t. =- e' ( 1 - •2 - + z · ( 1 + �n1 + n

2
) ,;;:

. "R, • 

. h
== ( e 1 2 + z2 - 2 e ·2 ...1:) ( 1 + n1 + D

2
_)·O ·R 

J 

\ a 

(122) 

( 123)

1 

t 

1 
(118) 

hp 
2 -). 

R 
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c2•[e'2+ 
eo 

2 ./
2 :•}, + •1 z2 (e ,2 + z2) + D2

) • .
e'2 + z2 

<•'2 + z2)
e 2 hp 

(1 - 2 g D1 + D2) (124) -

e'2 + z2 
-+ 

WUh :tihe n1 and n
2 

terme ot (23) and (24) ,· föe development (124) reveale,

·t (125) 

(126) 

WUhin the negleoUone. i,onneote·d with (23) · - 1. e. ae li>ng ae 
relative errore ot about 10-7 in the dietanoee beiween ihe oontrol poinie
are negleoted - fäe amount o't n3 ie equal to that ot D1, (23) (1.26).
Becauee ot ihe inequaiion 

1D31, <� 1 (127) 

ii ie aclmitied io have binomial seriee developmenis for the powere of· 

1 + D · 
3 

(1 28) 

Reiurning back io ihe relaiion (120), the denominator on the right 
hand side ot (120) can be pubetiiute� by 

( 129) 

The nominaior gt thts righi hand •eide ot (120) ie obiained by föe ·eoalar 
muliipltoaiion ot (1 21) wiih t1,

t t,
1 

• (R .+ hp + z) cos 'Jf _- (R + hp) • ( 1,30) 

(130) and (.129) are eubeUtuiea tor the nominator and denominetor ot
( 12_0),

"Jr 

\ 

1 (R + hp + z) coe l// (R + hp) 
i - • -----...--...--,,..,....

T 
_______ (1 -

D3) 
e (e'2 + z2

)
J/2 

·' 

(131)

2 2 1 2 E. •(e'_ +z) · (1+D
3

) 

e 2 z · 
0 

D.3 • ·e 2 + z2 • R 
0 

• 

• 

R 
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The nominator of (131) ia aubjected to a certain rearrangment, (11), 

With 

(R + hp + z) coa 'f - (R + hp) •

(R + hp) (1 - 2 ain2 -f-> � (R + Jlp) + z (1

.. z - 2 (R + hp + z) ain2 --f-

K • R + hp

r' = K + z 

• 
2 '1/f 

2 ein 2) •

(132) 

(13J) 

(134) 

and regarding (131) (132), the expreaaion (115) geta the following 
shape, 

+½ff R \(z:
0

dW + 4 11 f f (135) 

n3 is characterized by (126) an� (127).

For the further deductions, the term· B 2 is compared wi'th the plane
topographic reduction of the gravity, C; [1J [3] [4/. C can be expressed 
by the following formula, 

ß 211 

dyt. \ d 0( • K
2 

)
z d z 

= ff 
. 1f (z2 + K2 , y,-2)3/2 

(136) 

1ft = 0 ol= -0
' z „ 0

It is well-known about the ,computation of the plane topographic reduction, 
the integration over the 1f' parameter must not be exhnted up to f = f7. 
The term ß 1:zi (136) is understood as a .aufficient great upper bound for· 
the 1Jf parameter. Beyond of /3, the integration by (136) has �o perceptible 
impact on C, The plane surface element whicli ie introduoed in 

z 

)( 
\ 

. 2 1/1' 
2 z - 2 (K +~)ein °T 

= ff dW (K + z) 2 2 312 
' (e' + z) 

w z = 0 , 

z 

C 
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(136) has the ehape, (133),,

(137) 

it is the surface element of a pfane polar coordinate system. 

The firs1i, integral on the right. hand side of. ( 135) has an integrand 
that can be divided into two parte. ihe first part is 

with 

,-., 
H 

....__, = 

2.1 

d W = ein 1fi d lf d Q( 

.ein
_ 
'lf_( (K + z)2 

z 
(1 - .2.

2 
D'l) dz, (138) 

J (e' 2 + z2)3/2 .1 

z = 0 

• (139) 

In- ( 136), the (!, · value wi;l.l not b_e greater than about 1 °. Therefore, a 
oomparieon of (136) and (138) ehows that these two expreesions have 
co�reeponding terms of eimilar amounte. The analogy ie, 

� ein 1/1 ' (140) 

K2 � \K + z> 2 ( 141) 

(z2 + K2 '/' 2)3/2 � (z2 + e·' 2)3/2 ( 142) 

1 � (1 - ! DJ) • ( 143) 

Obviously,· the difference between the integrands of (138) and of (136) 
ie much more emall than the amounte of the individual integrarids of ( 138) 
or (1.,6). An impre_ssive compensation effect; does work if the difference 

C ( 144,) 

is treated. With 

if 2«' Z 

'f l •r \ ·~ 
'1/1=0 <x=O 

V! 
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- V, K� -------
(z2 + K2 · 1/' 2)3/2 •

I z II z 
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B 2•1 - C • if \ d 1' ( d« ( L dz , 

yt=OC\'.=O z=O 

(145) 

r' (146) 

•_The !irst md the seoond 1t4rm on the right'hand side o! (145) paralyze 
each other· nearly. 

The. combination r ! ( 135) -( 1 J.6.) ·( 1 J8) ( 140) leads to 
r"Y 
-.....,2 - C =

r-, � ..,. C , -,__, 2.1 - + .__. 2.2
� 

.... 

......,2•2 has the !ollo�ing expression,

z 

• (147) 

E2•2� - ff)\ dw\(K + 2 -2 (K + z) sin2 + 
z) . 2 2 3/2. ( 1 - � D3) dz +

(e' + z ) 

w. 

+½.t� R \( Z�·dW (148) 

The tirst and the seoond term on the right hand side o! (148) paralyse 
each other oonsiderably, �oo. 

In this context, the integrand o� the first term of (148) undergoes 
·a rearrangement. �e subsequent deduotions are sel!-explanatory, (7),

8 2 

2 (K +
. 
z) sin2 -f- .. 2 (� + z) � •

4 R 

1 1 1 
= - - e 3 (K + z) -

e 2 o R� 
0 

• 049)' 

z • 0 
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Thus, (14q) transforms the first: integrand o:t ( 148) 'into 
form, 

1 (K + z-)3 e 3 
1 

- � f 
r 

R-· 
Rj eo 

0 (1 
(e' 2 + z2)3�2 - i �2) d4,J 

The abbreviation 

reveaJ.s, 

'H" 

'-' 2. 2 

Finally, 

z = 0 

(148), 

(K + z)3 

Rj 

=_ ½ f � R f. s dw +4n'ff 
h

p h· - • 
p R

(146) (147) (152) lead to

7,' 2'ii' Z , ' 
.: C = ff � d'{/. � dl>l � L dz +

.1/f = 0 ol= 0 z = 0

+ ½ ff R ll :. s ... 
·h 

+4ii'fph ..l..) p R 

the following 

dz. .{150) 

(151) 

(152) 

(153) 

Finally, in the construction of the residual term of the solutioi+ of 
the geodetio b6undary value problem according to [1] [2] [3], the �erm 

II 

B · - C = [�-] , - C2 . "vr 

has to'be supplem�nted by the expression for 

2 r-o 7" 
R LB.i •· 

(154) 

(155, 

Thus., the expression in the -relevant residual 1t.erm haa the following 
accomplished form, (156) ., This relevant residual term.is obtained in the 
chapter B of [3), equation ("�). by the integrand ·or the x4 term, and it. 
, s trea ted aJ..1>0 DY the equa tions (89 i , ';·7) nt' tb.e same chap1,er of [ 3 ] • 

-

, , 

-------

z 

S = \ [1 ._ -- - (-e12 :o:2)3/2 (1 - ¾ D2) ] dz, 

w 

w 

DOI:https://doi.org/10.2312/zipe.1987.089



46 
·I 

. [-o.=B
r

] II 

[ ] " v 
.+ i /B_/n - C = �� + i B . - C =

,........ 2 /i' 7 ,-, 

= -� 2 - C + R BJ 11 :: ::::, 2 - C + 2 f f 

The term 

oomea from (153),and .the Vi terma from (68) to (73).

In /3/, the numerioal amounts of ( 157) and of 

( 156) 

. ( 157) 

( 158) 

are computed for some mountain modele. They pfoved to be negligible; 
(aee [3], chapter B, aection 7.1. and 7.2.). 

,,. 

.' 

-·

trrt Vi dW • 
)) i = 1 

4.J 

{B/ 11 and j /B/ 11 
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3. The evaluation of the horizontal derivatives 
0/B/" 
"u:1, 1 

• 

In the formula for the .determinat ion· of the height anomalies t; , 

the residual term contains the value of /Bj�, ( 1); (see also /1] {2] 
/3/ and the equations (1)· (2) ot the chapter D nf this publication). 
In a eimilar way, the residual term in the formula for he surtace 
plwnb-line deflectione � and � involvee the amount of, [1] /2] [3/,(2a), 

R 
'-'J =

� :x, y 
= [-c)B ]· _ [ 'd �co�d,] .

'i) :x, y 0:x, y . 
fF' ae 

At the eurface teQt point P, d:x and dy are the horizontal arc 
elements which are introduced for the differentiation in the 

( 159) 

eouth - north and in the west - east direction. The differentiation 
with regard to d:x or dy neceseitates that the concerned function 
which is to be differentiated hae to be detined not only along the 
oblique eurface of the Earth, but, further on, even �long the parts of the 
horizontal plane lying near by the point P ,The function B hae to be 
known for the horizontal plane area of the vicinity of P; Fig. 4. 

However, the differentiation with regard to dx and dy happe�s 
along the surface of -the globe oe , (159); Fig. 4; 

Thue, B 3 hae the following e:xpression, (4) (5) , [1] [2J [3/,

" 2 11 R + hp 

l lf�:�:.). � 

\- \ [ \ r2 r-1 = t� + siny drdlfl dac 
'--'3 

ir= 0 a{: 0 r = R r = R + hp 

' 

(hp + Z) dlJ (160) 

w 
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\p d!-.(P'_!_) ----'------______,_ � - -- ' ----'�\ �

-

.h 
p 

P-ae,

dx.,.l {eo)
{R ) . -ae 

e
o 

Fig. �: Th.e horizontal derivations of the straight distances e, e0, s.

(f

' 

-4'­
(X) 

• -

' ' 

- r 

---- ·o.ae ·-- - - - ---------
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r is the radius of the rwining integration point. 

In the firat integral o� the right hand side of (160), the 
integrati�n over the radius r within the interval 

R <: r. � (R + hp) , (161) 

. ,, 
leada to the expression for the h�rizontal components of the 
gravitation force of a homogeneous apherical ahell with. the wi'dth 
hp• These components are well-known to be equal to zero, it is 
obvious. 

An analogous property is found for �he horizontal derivatives of 
the potential of a homogeneous apherical surface distribution. 
Therefore, /4/, and with hp = const., 

'i'! 2 // 
"i) 1 /f. 

R 

'tr \ � Ylp 
r2 0 =: ff sinf ��yrd� , (162) 

'c>_x, 

"f= 0 .oc'.= 0 r = R I 

a.rtd 

0 = 

:f � 
R2 h \\ [ 

u1/eo .] dw- • (163)· p 
� x, _l> y 

- • p
;ie 

w 

For the computation of .the horizontal derivations of a spherical 
surface distribution, (163 )_, any special jwnp relation - which · show 
�p_in case of the normal d�rivations - have not to be taken into
acco-qnt.

(162) and (16'3) transform (1�0) into. the subsequent form,

,., 
II R + hp + Z 

. ) , ) [ � : : \ ] / ein '/f drd '/1 do: -

'I'-• O· c< = 0 r = R + hp 

-ff
'i)1/eo) Z dw 
ui, 'y 

..... 

• 

(164) 

I 

/ 

/ 

r 

. 

( 

p ae 
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The differential quotient with regard to the arc element dx or dy 
is found as the limit value of the concerned difference quotient, 

'ü E

'-;) JC 

\rhe value 
( 16), 

6 2 

( 
(t)-E, 

)= lim 
P,(P}·I 

p ,(P)

f_ which figures in (165) hae the 

= 
eo 

2 + z 2 -2 + e
0 

z l+
R 

2 2 hp 
e --

o 
R 

. (165) 

-+-0 

following e:xpression, 

. ( 166) 

In (166), a relative error of the order ot 10-7 in the distances e 
' 

1 • 

is neglected, it is in keeping with the noise ot the coordinates of 
. 2 the control points. In (166), e0 is factored oui, 

E,, 2 = -z 2 + .eo 
2 [ 1 + 1 + 

2

R 

h
p ] •

An analogous formula is valid for ( l )2, see Fig. 1 and Fig. 4. 

The passage to the limit of (165) reveals, 

( c ) = E, + d:x

and, in a similar way, Fig. 4, 

'Z) e 
= eo + � di"

'ui 

The difference of (167) and (168) givee,

(167) 

(168) 

(169) 

(170) 

( 171) 

The dif,ference on the left hand side o! (171) is e:xpressed by the 
differential'_ quotient of E· , using (169). ,, 

• 

(e ) 
0 

c_ 2 [ 2 2J[ z+2hpJ. c = (e 0 ) - e 0 1 + ---~ 
R . 
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The difference on the right hand stde of .(171) is in relation to the 
differential quotient of e0, see (170). The following lin�s are aelf­
explanatory, 

and, 

( E )2 .,. E. 2 =

c'e )2 - 2 eo0 

,., = 

JE 
dx 

[(eo) + eo]
ue 

--

0 dx 
';)i' 

2 eo
<) eo dx

�i' 

by combination with (171), 

-;) E . �e 
[ 

z + 
2 E, -- dx = 2 e

0
--:!- dx 1 ·+

'Jx �X 

and with Fig. 4,

h 
= (dxl c1 + 2 ....f)

R 

hence, (174) (175), 

·,

.� dx = ';) eo eo.
[ 1 + z + hi, ) dx

";:>x· 0i" E. • R J 

0 1 lt.
= 

ux 

'Z) e 
___ o =
";) i" 

�e 
___ o 

vi 

- 1
e

0 

[ E J 

de
0 ':) 11/ 

d"f' -;;) i' 

+ z:
hp] 

2 hp ]. R 
' 

( 172) 

( 17 J) 

(174)' 

(175) 

' ' 

( 176) 

(177) 

(178) 

( 179)

'v .X / 

N 
= 
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The infinitesimal spherical triangle of Fig. 5 -and the reYation (7) 

ehow that 

de 
......2. 
dy 

V R COB -2-

= - cos Co(__ 

Ol·ie the azi�uth, counted clockwiee from the north./ 

( 

Nord 
• G.ae

dx 

• 

(180) 

(181) 

Fig. 5: The south-no·rth derivative of the spherioal distanoe 'VJ • 

The infinitesimal spherical triangle is plotted on the globe 

with the radius R. 

' 
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Thus, from (179) (180) (181), 

and with (178), 

"{/ cos -2- cos 0..::, 

53 

. ' (182 ) 

"'f , - · e
�J . [ 1 + z : hp J

= COS ""2"° • 00S o<.. 

c; 

(183} 

Further on, 

't) e 
0 

'u x, y

(183) and (184) are introduced into (164),

2Ü 

( 
1 1P -

f. f R
f . ":""'2 cos ""T.

eo 

'ljl= 0 «. = 0 

Z, • 

( 184,) 

z + hp] - 2 + 
R 

r s1n1f' ,dr dlfl d<X.. 

r·�, 
sinoe 

dw • ( 185) 

The first integrand on the right hand side of (185) oontains the
produot 

o�s -f- • e
0 

• �in if' = coe O -f.-. 2 R 'si� {- • 2 sin -f- oos· : =

= 4· R sin2 -{- cos2 -f = R sin2 � • (186) 

\ 

J 

• .:. oos + 1-::: :1-

,., 
// 

1 
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· The formulas (22) up to (26) �ive,

(+( .. (e/+ z
2 )-¾ (1 -¾n

4
)

e 
2 

0 

D4 
= 

e 2 + z2 •
0 

z. + 2 hp _
R 

• 

( 187) 

(188) 

( 189) 

. With (133) (134), - if the prima at r is no more taken along -, follows, 

2 · 2 2 z 2
2 z 2 r = (K + z) = K (1 + -) = � (1 + 2 -) = K (1 + D6)

K, K 

N 
z 

DG = 2 -
R 

• 

A produ6t f;he first. integrand of ( 185) follows to be e_qual to 

( + ( r
2 

[ 1 + •Z : hp J a 

[1 - ¾ 

z hp+·z 
]
. 

+2-+ ......... --
R R . 

(185) (186) and (192) give,

,, 2 l7 

• 

:s, = ff R r ain2
)" 

t=O

d,;, ( ( ��
B �ld °' . ,X -

l sin� 
ot. = o.

-r= 0 « = 0

1 ,;, - cos - •
e � 2 

0 

I • 

l
cos Cl.!! z • a.w 
sin ot 

(190) 

( 191) 

. ( 192) 

(193)

= (e 2 + z2)3/2 
0 

DOI:https://doi.org/10.2312/zipe.1987.089



55 

X = 

R 
+,tp 

+ 
z, (�1 )3 [ 

h 

l )_ 
c.. 

'1 •+ z : P · r2 �r

r = R + hp 

• (194)

(192) is considered as a substitute for the integrand in (194). With

dr = dz 

follows, 

z 

X= ·\ 

z =· 0 

2 z hp + z l 
+ - + ----- dz..

R R 

2 
- :.l eo

2 e 2 + z2 

0 

( 195)

2 hp + z 
------+ 

R 

(196') 

Since it is intended to carry �ut the integrations on the right hand 
side .of (196) along the lines of the analytical integrations, the 
integrand is developed into four �erms which are identical with 
standard integrands which can_ be found in- the integration t�bles, 

4 
X = .L xj 

j = 1 

z 

X1 
= K2 (1

h
p 

\ 

+ -) 
R _ (e/ + z2)J/2

(133) gives,

thus, 

X1 

hp K 
+-= 

R R 

K3 
z 

-

=-

R 
z = 0 

z = 0 

dz 
(e 2 + z2)3/2

0 

' 

(197) 

qz . (198.) 

( 199) 

{200) 

I 

1 

)- 1 
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(z2 + e 2)3/2 dz
0 

X'l • - .3 K e - ------• . 2 2 hp f dz 

J · o R (z2 + e 2)5/2

z =- 0

z 

X _.1K2 .,_
21 ( 

· 4 ... '2" .. o rr ) 

0 

. . (201) 

• (202) 

dz • (203) 

The second integral on. the right hand side of (193) undergoes some 
.self..:;explanatory rearrangeme.nts . lt is, 

1 , . 1 'r . Y' 
7'" cos 2 sin 1/' = ---,;- e coe -2- ein 'V' = 
e 

· 
e J 0 

0 0 

1 
+ y, 

1 2 
. = 7" 2· R ein coi, 2 sin � "" R :-"'! ein 1/-' •. eo, 

eo 
/ ) 

With {204), the eecond integral of (193) turne to 

' . 

(204) 

. (205) 

A comparieon of (193) (197) and (205) reveals .that·a further 
!\.mction x5 oe.n be'defined, 

' '2 1 
x5 = - R :-1 Z • ( 206) 

e
o 

Henoe, (193)-
;r 2• ..

�3 -·is. R, (sin2 ·
V' 

dr{ t x
j 

(
cos 

°'L (10( 
)' j • 1 -lsino< f 

ya-O .tX=O 

• (207)

z 

z 

z 

z = 0 

217 . 

f. {
008

~Ld°' [- R
2
;; z 1· • ) t SinCllc ( _ · 0 . 
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�5 has a satisfactory expression, (206). �or Xj, (j = 1,· 2, 3, 4),
a look on the integration tables indicates, within the here 

. ·1ntroduced e;pp�oximations, 

�
1 

= - • --...---....... -............... ,.,.. 
R 8 2 (e 2 + z2)1/2 

0 0 

x2 = 3 R [ � -
1

, ] 
eo. (eo

2 +_z2)1/2_ •

.3 R hp [ z. + ! ; J . 2 
1
�

)

3/2 
. . eo (eo + 

(208) 

(209) 

' (210) 

°(21 1) 

It is important tha1i a comparison of. x
1 

and x5, (208) and (206J, 
revea�s that th�se tarms compensate and paralyze eac� othe�,_more 
or less, as long as. e0 is muc�.more great'than the absolute amount 
of z.

�he,formulas (207), (208) to (211), ( 206) represent a,solution 

'i) x, y 
' (212) 

(aee (159) ), which is convenient for an application in, the numerical
computations. 

The publication [3] c�ntains a·numerical est�ation. of the 
amounts of x

1
, x

2
, x3, x4, x5, and, thus, �lso an evaluation_ of the 

amount of (2'12), the above equation; (see [.V, chapter B, vquation 
(118) to (122)). The first model mounte.iJ?. has the following
parameters: hp .. ·o, Z = .2 _ lan, the base surfaoe of the mountain .is

·equal to R2 AW a (4 km)2, the distance between the test, point. 

/ 

-; 1 

' 

,1 
/ 

, 

z 

for 
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and the oent:er o! the mounilain is R '/J • e
0

. = 5 km. !l!he computations
resulted 

. - "'
G 

. �[Br f 
" 

\)� 

• - = · 

G 
O."J

j 
(212a) 

The direction· !rom the test·point to the center o! the model mounta:1,n 
has the azimutk 0(. = o

0 • Consequently� in extreme situations in the 
lllidst of the high mount,ains, it is possible that the amount of 

r--. @" 
·'""' . � 

J G 

(212b) 

e�fects the amounts o! the plumb-line de·fle·ct.i.ons comput.ed !rom the 
!ree-air anomalies by more than 0. 111. In such a situation, the term 
(212b) has to be included into the expression for the deflections, in
order to oomplete the theory;; (see /3), chapter B, equation. (66)):

with 

r,dg
!ll 

+ C - dw· J 
dS 

l
cos

o<.I 
[ , d 'f' sina.. 

i = 4, 6, 7, 8 
r 

� f" X • -- =· 
'i:>x, -;J y .4 G

. "i) ·1 

--
-1x1

.0 x, 'v y 1 

II 

. --

G 

being equal to, (21 2), 

• 

G 

( 212c) 

(212d) 

(212e) 

The second model mortain has the parameters: hp • O, _z_ = J km,
R2 L::. w = ( 40 km) , R 'I' = e

0 
= 100 km. These values lead to an„

1 • 

s 
) 

:r- 1 

4,r o' 

-1 --
1 

,......, ,_. 
__,/ 

3, 

• 

f 
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amount of not more than 

1 fl" '<> [p,]11 f" 10-4. -= -=J"·• t 

'-' ·J G LJX G 

(212!) 

for 0( = o0
• Thus, it can be taken for granted that the effect 

exerted on ( 212) ·( 212b) by distant mountains )s insignifioant. 

4. The residual terms for the fixed and for the free boundary
value problem,

As to the basing theoretical conception that is behind the here 
discussed boundary'value probl�m, it.-must be stated that the 
hei�ts hp and hQ are the heights abov� the sphere; or, considering
the flattening o·f the Earth, they are the heights above the 
ellipsoid; (see Fig. 1). Thus, �f the here int�oduced h values are 
considered to be a priori given values, the basing conception has 
the character of a boundary value problem for the real surface of 
the Earth. In case, the h values w.•e definitely known, the probleni 
has the charaoter of a fixe�boundary value problem. 

aut in reality, the h values - the heights above the sphere -
are not known

1
a priori. 'llhe reason is that the height ano1.11al.1es t, 

are the unknown values of the problem. 'Jlhe heights above the sphere, 
h, consist of the sum of the known normal heights, h' , and the a 
priori unknown height. anomalies t; , 

h = h' + /; • {213) 

The v_alue of 1:. is unknown I a priori; i t is the value to be
deterniined •. Therefore, the shape of the surface of the Earth, 
being the boundary surfaoe, is also unknown a priori - at least 
within the limits of the amounts of � -. Consequently, the 
problem preaenta i tself in our applioations by the charac1ter 

. I 

of a free boundary value problem. 

,,,. 

. 1 
1 

•

, . 
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However, this free boundary value problem - for the free-air 
anomalies L1 g

'l!
· e.a boundary values ·alot\g the unkr1:own ·surface of 

the Earth - is placed in th-e very near vic�ni ty of the fixed 
boundary välue problem for the telluroid as given boundary 
surface,-for·the free-air anomalies as boundary values, too. 
This close vici;nity is founded ·on the fact that the surface of 
the Earth and of the telluroid differ by relative small and 
smoothed vertical point; shifts, being t:tie height anomalies c; •

Thus, the transition. from the free boundary.value problem 
(for the surface 9f the Earth) to the fixed boundacy value 
problem (for the _tellur�id as�boundary surfaoe) happens by the 
introduction of h' instead of h in the above derivations 

_presented by the above equations, from· (1) to (212). 

The effect' this transition takes on the final result is to 
be discussed now. The closed solution for the boun�ary value 
problem has the following shape, [1] ['cj [Jj, (see also 
chapter D, equation: ( 1 ) , of this publication.),, 

( [[,1,;, + C + c, l s ( y,. ) doo
\ 

w 

+ �
�1

(21 4) 

The free-a.ir anomalies L!gT do no�_change if .the boundary
sur·face changes :;rom the surfa_ce of the Earth to the telluroid, 
i. e. if h changes to ·h'. In the mathematical developments of 1 

[1] '['2] [3j, the surf�ce of the Earth was introduced as the
boundary 'aurface' shaped by the heights h.above the.sphere.
Hence, the supplenientary terms c, c1, 3

1 
of (214),a.re

understood to be expressed by these h values. Corisequently, 
these supplementary terms C, c1, 31 will be effected by the
transition from the h values to the h' value�. 

In this cont�xt, in the computation of.the plane topographic 
reduction of the gravity c, (being a term which has to. be addBd 
to the free-air anomalies.in the Stokes integral (214)), h' has 
to be in.troduced instead of h. But, there is no doubt,, the , 
interchange of.h-with h' by 

h � h' ·( 215)

t 

-

-
rp 

T· = 
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takes �o
1

perceptible_ impact on the C values. Of course, the precise 
version of (215) is (213). Since the C value depends on the,differencee 

• 
J of the heights in the eurroundinga of about 100 km radius around the · 

test point, (136'), therefore, the disrege.rd of the differences _of the 
/; values in th�ae eurroundings.iwill effect the error in the C value. 

_ This error is caused by the in t erchange of h with h, '., in ( 136) • The 
/; valueä e.re smoothed. In the mountaine, the differences between 

neighboring t values of a mutual distance, of not more than 100 km 
·are witnin ·about 10 m._And this value is often within fhe noise.. of the
plotted heights in the maps.-,Thus, the interchange-of the h v·e.lueer 

with the h' values has no perceptible effect on the oomputatione of
·c according to (136) and (153), since even t_he height differences

and. the differences of the f: values &I'e effective here , on·1y. The
' 

. 

transitiqn from the h values to the h' values changes ·the C values 
by not more than some /Lgal, _as an uncomPlicated computation does 
show. This .value can be neglected! 

Further on, in the constituent �
1 

of the residual term of the 
, solu�ion of the ·g'eodetic boundary ve.lue problem, (214), a certain 

term appears that exerts a change of the resulting "perturbation 
potential T by an amount of the form of 

hp
R. 

(1:1ee /1], [2] [3/, and the equation (2) of the -chapter D of this 
public'�tion). Consequently,, if h' is taken as a substitut.e for h, 
the final T value undergoes a change by an error of 

t" 
R 

(216) 

(217) 

The corresponding error effect in the final _C value is obtained
v 

• 
by e. division of (2_17) through the mean global gravity value. 
Thus, the resulting error.in the !: value will not surpass a 
centimeter� It can be. neglecte.d inmost 1 cases (e.g. 1;;=100 m,B

0
/G=600 m). 

The exchange of•h with h' influences e.lso the rp value which 
appears- before the integral Qf (214). Also this fact will effect 
the final T value by a negligible error which is of the order of 

-. 
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. \ 

the amount of the term (217). Here, the term (217) ie·replaced by 
C .·11R • T. 

' 

Obviouely, the here diecuesed transition from h to h' changee also 
' . 

the _term c
1
'
t 

(214), (eee also the equation (11) of the chap.ter D of 
thie publication). · Since the amount of c1 is not greater. than about
1 mgal, the difference 

(218) 

which yields to be effective here will always be by far a ne�ligible 
term. ,lt is obv'ioue. 

Principally, the three values rela t ing to the real surface of the Earth 

(219) 

which ·appear in. the supplementary terms on the right hartd side of 
(214) can be computed by a further iteration,step. This approach is 
equivalent tq the p�ocedure to compute the t:' value on the right hand
eide of the �quation for h, (213), by an iterat_ion process. For a 
firet etep, the /; valuee in the formula (21 J) ·can be tak:en from fäe 
global mape of the t; values already obtained by cosmic and terrestrial 

m.ethods. Thls first step of thie procedure will lead· to an appro:ximation 
of the h values that is better than the replacement ·of ·h by h'. 

Thus, in the geodetic applicatione, it makee no difference whether 

the real surface of the ·Earth or the telluroid is introduced as the 
boundary·eurface. There is no essential difference between the fi:xed· 
and t:he free bo.:indary value probiem. The free b·oundary value problem 
can be replaced b,: the fi:xed one and vice versa; in our ap.plications 
at all events. 

' 

'J .1 gBouguer (hQ - hp) -
'clr · 

u Ll gBouguer (h' Q - h 'p) 
'vr 
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c. The solution of -the first mixed bo1mdary value pr�blem .of 11he
geodesy as an optimal method for the oompu1i:ation.of -11he
altimet.ry gravimetry problem,
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Summary 

,,. Within the course of \he - �omputation of the soluHon ot the 
altimetry - gravimetry problem, it is possibl� to accowi� for 
the alt imetry_ data· on the oceens by a two-.step-method.: At first, 
the oceanic gravity anomaliee are c�mpute·d from the observed 
a-l,timeter data by the- inyerse Stokes equation. Then, t};le height · 
-anomaliee are obtaine_d frqm th� lree-ai3: .!l.Ilomalies; integrating
the Stokes integral QVer whole the globe.

/ 

On the. other hand, -�onsideririg the equat.ion� that de_termine 
the solution of the first mi:xed boundary value probLem,. it is 
possible to express· the height anomalies directly in terms-of 
the oceanic altimeter data.and of the continental free-:air 

. ' 

anomalies. This· ie the direct ,way-: 

The reeults of th� _direct way are more · pr.ecise than those 
obtained by the indirect method, ae numer�cal computatione show., 

The biaBeb caueed by the sea surface ,topography can be 
eliminated by an adaptation of the reeulting· height anomalies 
to some ·Doppler-derived height anomalies. 

· ·-

Zueammenf aes ung 
r . 

Die ozeanischen .iUtimeterdaten können he·i der Bes_timmung des 
glopalen Potentiilfeldes in verschiedener Weise·herangezogen_ 
werden. Mit der. inversen Sto�es-echen Gleichung kann inan zwiächet 
die ozeanischen�Freiluftanomalien der Schwere errechnen. Aue 
dem damit bekannten-globalen Feld dieser Anomalien erhält man 
mit dem Stokes-sehen Integral das globale Potentialfeld--. / 

Die Lösung des ersten gemis.chten Randwertprobleme fUhrt dagegen 
• 4irekt ,,von den Altimeterdaten zu dem glooalen Potentialfeld. Es

. , . 1 ' 

zeigt sie , dass dieser direkte Weg genauere Ergebn1ase bringt 
als der ind:irekte.. • 

Die.Toy��raphie des Meeres ruft kl,ine ey�tematieche Fehler_
in ·dem erhaltenen Potentialfeld hervor. Die_se Fehler können durch 
Anfelderung an solche Höhenanomallen_bestimmt-werden,. die aus 
Dopplerbeobachtungen von Satelliten- gewonnen wurden. 

/ 

◄ 1 

; 

, 
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,, 

Pe310ue 

0KeaHWI9CKHe namme 8JILTllM8TPHH MOryT HCIIOJil,30B8T:&OX B pa3Jm'IHI,tX 

Ba�zrurrax npz onpeneJieHim rJI06aJII:,HOro noTeHIUt8JILHO,ro BOJJ'JI. C no-

MOl!l1>� HHBepoHoro paBeHOTBa illTOKa MOJltHO OH811Ma paoo�aT:& OK8aH;H-

1190Kß9 aHoMa.mm rpaBwranmt Bosnyxa Ha OTKPHTofl: MeOTHOOTH. Ha IIOJJ'JI 

8TIDC aHOMaJIJd, ll3B9OTHOr0 TaKl!M o6pa3OM -qepe3 l11HT8rpM IIIToRa no­

Jiy'IJaJDT rJIO6aJ11:,HO8 IIOT0HitPI0Jtt,HOe IlOJie. 

PemeHHe �e nepBott oMemaHHott reones}!qecKoA KJ)aeBott sa,na'IJH BeneT, 

HB.IlpOTHB, HenoopenoTB0HHO OT nammx 8JILTßM8TPHH R 3Ha'IJ8Hm0 rJio-

68JIL�oro IIOT8Bini8JILHOro IIOJUI. ÜKB.3MOC:&, 'IJTO 'eTOT npJIMOit Icy'T:& na-

eT 6oJiee TO"IHHe peay�TaTH, �eM KOOBemml. 

Tonorpaif>RfI MOpJI BH3HBaeT CHOT0MaTH118ORH0 omm6KH B IIO�eHHOM IIO� 

Tem:utam,HOM IIOJie. 3TH onm61m MO!'yT onpe.n;eJUIT:&OK JJyT8M HaJIOllt8mIJ! 

TaIGDC aHOMMHtt mrooT,· KOTOppe IIOJIY'llaJDT zs acfxpeKTa ,UOIIJiepa aa6.7m>.n;ae­

Moro CO OIJYTHHKOB. 

1 ,

/ 

• ... 
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1. -Introduotion;

The here disoussed problem does base on an observational material 
of the mixed type. �e boundary values on the oc.eans are the 
alt�eter data. Along the continents, the free-air anomalies of the 

·gravity serve as the empirically given data.

At.the beginning of the considerations, the sea surface topography 
is _neglected� T�e impact the sea surface topography t�es on the 
result is la'ti,er.discussed, at 1lhe end of-the investigations. 

Starting from the above described observational data� the-problem 
• • 

1 

consists ;in the construction of a glooal represent.ation of the 
gravity field or of the potentia� field. These final field data have 
to be determined as precise as possible, ,[1] /21 [3] [6./ [9] [ioj 
[12] [13] /14].

/ 

,, 

' ' 

, . 
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\' 

2. �he indirect solution by the :!inverse Stokes eguation,
.1 

The �inversion of the fundamental. diff.erential equatipn of the 
physical geodesy,- [6] [9},

'c)T 2· 
- -- -T =

c)r r
( 1) 

leads to an expression that gives the height an�malies t; in t:.erms 
of the free-�ir anomalies 6.gF of the gravity, (see also chapter B, .
equation,_ (214), of this ptiblication), 

t: = S(<j,) (2) 

41 

T is the surface perturbation potential, r is the geocentric-radius, 

_u.J is the und.t sphere, S(<j,) the Stokes funcfion, lf' is_ the
spherical _dis-tance between the test paint 1md the p'oin11 ifilOVing 
within th� integration procedure. Cis the plane terrain. oorrection 
of the gravity, R is the mean radius of-the Earth·. ,'ff'_ is the standard 
gravity at the surface test poin� P. fille interdependence of T, t; , ;r,_ 

is expressed by 
'

.( 
T . (T),p ,

=-=- (3) 
'd' � 'l'P 

The residual te;t'lU c will rare reaoh more than a�out some 
centimeters, it oan be neglect.ed.in vlew of the present. standard of -
the gravi ty nets,. [5] -[6]. € is in the v;l.cini ty of the height. 
gradient o! the Bouguer anomalies, (see chapter D of this 

· publioation) •.

;;, 
R 

'\( 
'0 A gBouguer 

t =< - (hQ - hp) S(c/i) dw. (4)_ 
,4 lt/ r �h 

tu 

, , 

• 1 

I 

d c...J ' + t, , • 
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,. 

' 

hQ is the he.i'ght of the point moving within the lntegration, and
hp is the height of tht'test point,./5] /6/ • 

. For the flxation of the subsequent ideas, it'is recornmended to .
transform the relation (2) into the matrix shape. In this context, 
the whole surface of the,Earth is_divided'into a numbe� X of 
finite surface elements of th� oonstant size L1'w • Thu�, the 
relation (2) turne to 

(5) 

The,mean value of � for the finite surface elements-are the 
oomponents of the vector �• 

t1

C2 ..

z = 

= 

... 
• 

Cu 

. .. 

Cx

In an analogou� way, the vector � r�fers to the ( bgF + C)
values, 

( L\ gF + C)1
( Ll gF -1' C)2

g = ••• � '

( .6 gF +' C)u 
·-·.

_( .6 gF + C)X

u = 1, 2, ••• , x.

., 

/ 

" 

/ ' 

(6) 

(.7) 

(8) 

' 

• I 

• 

' 

= 

., 
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In the relation (5.), the meaning of the matrix � -derivee from 
(2), it stande for the kernel function 

4 i/ 'lf' 
S(<!i) • 

in a self-explanatory way. The c term of (2) is neglected 1n 
(5)�

The two vectors i and.l consist of continental and oceanio
components. Thus, they can be devided into a continental part 
and into an oceanic one, [JJ (6/, (5); • 

z = l:: l .. 
·,

J = (:) • 

The matri:x S can be devided 1n a sin:iilar way, ( 5), 
-

[" 
S' 

}s :
o,c' ""c,e 

•s,c • e, s
/ 

or 

/ 

(9) 

(10) 

( 11) 

(12) 

(1.3). 

ls in (10) and lc 1n (11) are the g iven· _data. io and le are the
unknown data, they can be determin�d along the subsequent_ 
developmente • 

• 

R 

-.. 
s 

s 
= . [ ::J ,. 
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In the sub-space ot the spherical hermonics of the 2nd. and higher 
degree, the invereion ot (5) ie well

-

detined,·/Y 19] f11J, 

... s-1 { 14)

The matr1.J:: relation (14) represents the following integral rela�ion, 

dw (15) 

The function s-1 depends on V' , it is- the well-known inverse Stokes
function. In the relation .(15), · t; Q is the t; value for föe running­
point Q, �d l:p ie the L."value tor the test point.P which is tiJc�d 
within the course of ·thie integrati�n. The explicit expression of 
(15) 1■, [9].

-�g + C _ _  L Cp
- -1:._

R2 

(( 
tg tp dw (16) 

13 
t 

R 2 K' 

1 � 2 1/1 
{ 17) Rein 2 • 

In the here diecuseed problem, the vector part i ie known. ·But,. . _c . 
i

e 
ie an unknown vector. Theretore, the matrix relation.(14) ie 

applied ·1;0 the oceanic teet points only. Wit� the symboliem 

s-1 

_- [ ;;' l-
s-1 
iiiilS 

(18) 

and 

r·-, t s-1

J
„c.c •c.e

s-1

s-1
" 

s-1
=s.c •s.e

� 19) 

follows symbolically, { 1 .)) .(14) ( 18), 

/ 1 

. l 

• i • 

~ g + c "' ff [ C Q - , t P) s-1c cv) 
w 

w 

-

• (20) 
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Along the linee of (16), it ie poeaib�e. to compuh_, point for 
point, the io.cal _val�ef! of the _ componente Jf ie' i. e. the local
v�lue� of. ( ..6g + C) along the oceans. Averaging over these local 
values ,aituated w:i;thiil a certain compartment,- these ·1ocal values 
lead to the mean values of ( 2.g + C) !or the introduced 
compartments. The relationa (15) (16) are well-�nown tobe. 
inatable, eince the amount of the kernel function of (16) increaaes 
enormously if the distanc� l to the test point dlminishee. 

_'rhe relationf:l (16) and (20) permit to determine the mean oceanic values

of ( .6 g + C) of the cop1part�ent s Ll w • T}?.�y have a standard e.rror 
of_ about ± 2 to ± 5 mgal, -if the .compartments of 200 km :x 200 km 
aize are introduced, hJ /11], (Se'e -also: Rapp, R. H. ;., Df;ltailed 
gravity anomalies- and aea surface heights derived from GEOS � 3/ 
SEASAT altimeter data. Ohio State Univ., Dept. geod. Sei., Rep. 
365 (1985)). Thus, for the subsequent mode} computations, it is 
aliowed to int�oduce a standard error of 

/"' = ± 4 mgal (21) 

for the here ·discussed average of the gravity ano�alies of 
the 1° :x 1° compartment e; these. gravi ty anomaliea are viewed as computed 
by "the inverse Stokes relation, (15) (16).

_ Now, _th_e computation modele are to be described. Tl'le .ocean is 
represented by a aquare of 7° :x ·7° side length. The center of 
this ·ocean square has the geographical position: � = ö0

, 

·A = o
0 • �hie square is subdivided into a grfd'of 49 compart­

ments of 1° :x 1° size. In the subsequent cona·iderations,- this 
0 0 

. 

7 x 7 oceanic aquare ia the integration area. The in _tegration 
/ 

. 

·cons-ists in a summing _up over_ the 49 elements of 1° _;x 1° size
which the ocean dol;!B consist of. The pointe Pk, . (k = 1, _2, ••• ,
49) ,, are the center pointa of the' individual grid meshes.

Furtherm6re, th.e five t�at points Pi' (i = 1, 2, ••• , 5)°,
are· introduced.· Thia are, the points for which the height 
anomaliea are to be c0mputed.· These pointa have the following 

, 

,, 

> 

' 
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,. 

positions, Fig. 1, 

p1 (
0 

f 1 = 0 , \ ::s 50) (22) 

P2 (
0 

'f'2 = 0 , 
,\

2 = 100) (23) 
' 

P3 (
0 . � 

3 
= 20�) (24) Y,3 = 0 , , 

P4 (
. 0 -14 =. 4_0° > (25) 'P 4 = .o , ,. 

P5 (
0 � 5 =< 700) (26) Y'5 = 0 , • 

The effect that the integration over this model .ooean o! 
7° x 7° size-does exert on the continental height anomalies at 
these 5 test poillts, (22) to (26), even·this is the problem tobe

investigat�d here. 
• 1 

\ 

�e computation model, the model ocean, the 49 oceanic compart­
ments and the 5 t.est points are plotte.d in the· figure, 1. 

A- 0° , '· 

0 0 0 0 0 

' U'l 0 0 C) 0 
- - N ...:, � 

II • • H H • 

;k 
- N M ...:, Ln 

,< r< - « � � 

,2 3 4 5 6 7 
8 9 10 11 12 13 14 

15 16 17 18 19 20 21 Pi.t P·· ·2 P,=3 P'i_•4 P., =23 25 26 27  28 
I• 

22 24 -

-

5 

29 30 31 32 33 .34 35 - cp= o o . 

36 37 38 39 40 41 ·42 11 �

43 44 45 46 47 48 49 ,/ 

. 

10

Fig. 11 The computation model ,_consistirig of an ooean of 1° x 7° 

· square and o.f the 5 test points P 1• 

' . 

... 

I 
• 

.1 

' 

I ' 

- 1----1-----+-t--+---t--r--, 

• 
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· . The figt.tre 2 :Le a graph of the boundary values of the indireot
way. Here, a oircle e.erves as a eubstitute for the eurtace of the 
Earth. The leUer s eymbolizes the ooeanic part of the Earth's 
surface, the let1er c etands for the continental part. Along the 
oceanic part s, the values of the perturbation potential T are 
,empir�cally given; on .1ihe co.nt:i.nents o. tha eame is valid for the 
free-air anomalies. 

The. equatione (14), (16) allow to oompüh the ooeanic L::,. Sp
val�•� from the oceanic T values. 

Thus, the model of the figure 2 changes over to the model of 
t.he figure 3. The transition from the figure 2 over to the figure „
is the first step of the indirect method.

Pig. 2. The boundary values before the first step of the inclireot 
method. 
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Fig. 3. The bounde.ry values before the second step of the 

indirect method. 

The seoond step of the indirect solution.is nothing more than 

the integration over the globally. giv�n free-air anom�lies, 

(see Fig. 3). It happens by the Stokes integral, (2). For the 

continental test pointa, the relations (5) (10) (11) (12) give 

Z D S tl__ ao =c.o � (27) 

/ 

r 

/' 
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In the here discussed problem� only the integrat2on over the model 
9cean of 7° x 7° square-is in_the fore, (see Pig. 1). Therefore, 
only, the second term on the right _hand side of (27) ·1s here 
considered ,' to inves:,igate the precision obta_ined along t_he second way,

z• = S =c =c.s (28) 

This re.lation is applied to. the fi've test points P
:i,
, (i = 1, 2·, J, 

4, 5), and to the 49 oc�anic compartments of the here introduced 
model ocean, Fig. 1.

Thus, the relations (2) and (6) and (28) lead to 

( sr,' >p P . i' k
=----

p-, comes from (21), the index i 
points_, Ci = 1, 2,- 3, 4, 5)._ (

S(<ji p p')i' k 
(29) 

stands for one of the 5 test 
6(, ' ·) is the shift of the pi' pk 

height anomaly at the test point Pi '
caused by a shift of the free-air anomaly of the 1° x 1 ° oceanic 
compartment of the number k, (k = 1 1 2, ••• , 49).. �e amount; of 
the gravity anomaly shift, (i. e. the independent shift), 'is 
equal to f<, , . (21 ).

. _/ 

The four figures 4, 5, .6, and 7 show the values ( o{,' ),p p, 
if k 

with regard to the four test points P1, P2, P3, P4, respectively,,
(i = 1, 2, 3, 4). The numbers plotted in the meshes o! this grid 
represent the effect in,111111 that a 4 mgal shift of the free-air 
anomaly, of such a 1 ° x 1°· compartment takes on the height anomaly 
at the- considered test. point. Thus', 

( 

( 

( 

( 

r ~ I ) 01c,_ p 1' P25 
= 17 mm

p(, 1 ) P2, p25 
= 9 mm

67:, 1 
)p P25 

= 3 mm 

3' 

0?;. • Dp p = - o. 1 mm 
4' 25 

(30) 

(32) 

• 03) 

,,.. 

,· 
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Further, 

C -o(' lp P = -- 1.4 mm
5' 25 

77 

04) 

The nonpl_.otted va.lues of the _ whi te _meshes of the four figures 4, 5, 
6, 7 can be interpolated between the neighbouri_ng da.ta.. The 
reia.tions (30) to (.34) refer to the central compa.rtment or the 
model ocean, (k = 25).

Tb.e figures 4 to 7 give the impacts tha.t the compartment va.lues 
of ..6 gF = /" = 4 mga.l exert ori .the f:: �aluea at: the test points,
( 29.). 

15 ' 23 6 8 .11 

29 12 

36 ' 12 

12 14 17 21 28 40 6 7 8 9 10 11' 12 
\ 

36 12 

29 
-

12 ,, 
- 1 

15 2l 6 8 11 

Fig. 4. Fig, 51

I ' 

• 

1 7 1 

-

l l 
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• 3 4 -0.4 -0.1

. , 4 ' 

4
. 

-

3 3 3 4 4 4 - 0.4 - 0.3 -0.2 -0.1· ·o 

4 

4 
•. 

3 4 - 04 ' -0.1

Fig1 61 
Fig, 71

Fig, 41 51 61 71 
Tll,e results of the model oomputa�ions for the

C ' • 

indirect or two-step-method; - the altimeter 
data ---,-.the gravity anomalies �the 

continental height anomalies. The numbers in 
the individual compartments of these 4 grids 
give respectively the amoun.ts in mm that a 

4 mgal shift of the gravity anomaly of the 
concerned compartmen� does_ exert on the 

height anomaly C at the 4 test points P 1,.

P2, P
3
, P4, respeotively. Fig. 4 refers to

the test point P1, Fig. 5 td the test point

P2, F±g. 6 to P) end Fig. 7 to,P
4
•

0.2 
' 0.2 

0.2 
. 0.1 0.2 

0.2 

0.2 

0.2 

' 
-

1 
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J. The direct solution by the firs�mixed boUndary value problem,

. 

Now, the 'direo� method is to be studied. It. works- even by that 
solution of the altimetry - gravimetry problem_which is also 
denominated as the first mixed boundary value'problem of the. 
geodesy. The rnathematical aspects of this solution method was 
disoussed in /31 /61 [12/ [13] [14]. Fig. a. represents the two 
different oomputation methods\: The indirect or two-st_ep-method 
on the one hand, 1- 2- 3, and the direct. or-one-step-method on 
the other hand. �hie latter procedure is represented_by the step 
1 - 3·of Fig. a.

2s 

1•·-·-----------------------�3 

1s first mixed boundary value pr�blem 
!c

/ 

Fig, a, '.llhe indireot wa�, running from the oceanio altimeter data 

is via the oeeanio gravity anornalies §� to the oontinental
height anornalies �: 1- 2- J. Further, the cµrect way, 
brought �bout by means of the first mixe� boundary value 
problem: 1 - J. 
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A computation procedure for· the ,eolution of thie firs1 mi:xed 
problem was derived in /J/ /6/, it 1ie eepecially recomm:ended for 
numerical applicatione. For the co�eideratione which are herein 
the fore, the baeic ideae of this computation procedure are to 

_ be sketched now by eome ehort linee. 

First of all, the. global equation (5) ie divided into the

oceanic and futo 1ihe continental part, (10) (11) (12). 

z •=c 

z = 
=9• 

s =c.c 

s =e.c 

+ s •c.e

· + s •e.s 

� our applications, �s.e ie a positive definite, syrnrnetrical
and cloeed matri:x; the elemente of it are regtiJ..ar functions 
which co�er the oceane. Thus, the �ang defect of �e 8 

ie equal
to zero. In our applications, the elements of thie ;atri:x can be . . ,. ' 

(35) 

(36) 

considered to have limited amounte, eince the Stokes function must 
be averaged over the compartments, [JJ [6}. The inverse of 

�s.s 
follows to be well-defined.

The elements of the matrices. �s.s' �c.c' �c.s' �8-00, 05) 0�),
are proportional to the mean values of the Stokes function for 
the running integration compartmente.Pr, with other word� ,. 

the spherical harmonics are, in imagination, not summed up over 
the degrees 2 � n � o0 , (3Gb), as· in caee of S,· but over th� 
degrees 2 � n �N. N ie a limited integer, N is in keeping with 
the size of the compartment e L'.l � and' with the empirically gi ve'n 
details of the � gF and T boundary values •. The· eummation over

. the interval 2 � n � N leads to the function, /9/ ,_ 

N 2 n + 1 
- s .. I: n - 1 

-, 

n • 2 

whereae the e:xtenMon or the eummation to the infinity 

s = z 
n = 2 

2 n + 1 
P (cos y -) 

n -1 ·. n

(J6a) 

(J6b) 

\. 

~e 

.le 
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gives the original Stokes function,. Pn are the Legendre
polynomiais, . [9]. S is a regular and. finite function,· for all 
values of y •. S fulfills all the th�oretical prere9uisi.tes
for the inversion of the kernel function (symmetrica.I, positive 
definite, 'con�inuous, finite, closed, the defect is equal to 
zero in the subspace of the functions of the degrees· 
2 � n � N). However, there is no doubt, in sufficient 
approximation. the averaging of S over a compartment 6w 

·yields approximatively the same_amount as an averaging'of S
in such_a way. In• the S function, the· degrees _which are
greater than N are averaged out in this way. Thus,.
s . ,V "S' =s.s =s.s 

s � "S' =c.s =c.s

' s =c.c 

s =s.c 

� "S' =c.c

..., 

"S' = =s.c

·Hence, swnmarizing firially, there comes no trouble from

(36c) 

J the fact that S(<!i) --,... °<:' , 1f y; � o. This singularity 
1s removabl�. 

-

Before the background of the above lines, it is allowed 
to inverse the matrix �

8 • 8 1and to formulate' the following
·matrix relation, ( 36),

g = s z - s
-1 [

=� =SoB =B =SoC 
,(37) 

The relation (37)' 1s introduced into (35),. and the final form 
·ror the s.olution of the firsif mixed boundary value problem is
o�tained. It has the following shape,

z = s s-1 z + [ s =C =c.s =s.s =s =c.c (38} 

Iri the following calculations, only the oceanic v�rt on the 
• I 

• . • 

right hand side of (38) is considered, it is the first term on 
the right side of (38). This scientific approach 1s in keeping 
with the way along �hich the indirect method was followed up, 
{_28) ( 29) •. Hence, from (38), ' 

Z II = $ s-1 • Z - =c =c.s =s.s =S· • (39) 

/ 

= 

• 
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(39) represents the impact which the oceanio altimeter data take
on the continental height anomalies. It is the impact to be
investigated.

In the subsequent computations about the 5 models, sketched 
by Fig. 1, a standw;-d error of 

V = t 0.3 m (40) 

is introduced now for the mean 1° x 1° compartmen� values of the 
surface function t , ( see Fig. 1 ) • This V vaJ.ue 1s compatible 
with the empir�cally obtained results of the satellite aitimetry, 
[10]; (see also the yournal "Marine Geodesy", Vol. 8, 1 - 4, 
(J-984)_). 

For the ensuing 1e�ailed computations, it ,is convenient to 
introduce now the abbreviation 

A .,; S . s-1
= =c.s =-s.s (41) 

i is free of instabilities, since �c.s has in (41) the efficiency
of a stabilizer. (39) a.nd (41 ). le�d to 

• (42) 

The explicit shape of (42) is as follows, (see (29)), (40), 

( OS II 
) Pi, pk = ai.k • V - , (43) 

with 

a1 • 1 a1.2 ••• a1.49

{ ai�k}

a2.- 1 a2.2 ... a2.49
:::s 

• • • . . . ' ... • ••

(44) 

a5.1 a5.2 ••• a5.49

1 = 1, 2, 3, 4, 5; (45)

z II 
=C 

A 
= 

= 

-
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k = 1, � •••• 49 (46) 

The sequenoe of the i subindioes refers �o. the test points,, and that 
cf the k subindices to the running i 0 x 1° oompa+-tments of the 
ocean modal, Fig •. 1. ai.k is a twofold table. The first. suffix 
i, (44_), specifies the row, the Recond suffix k specifies the 
oolwnn. 

Before the results of the oomputations are desoribed b1 the 
o_oncerned elements a.1.k of the matrix i• it seems t.o_ be 
convenient to give an ins_ight; into the struoture of the matrix 
�.s and of g;:s• The multiplioation with the stabiliz:ing matrix 

�c.s leads from �;�s to the matrix �, (41). �s.s is a square 
matrix, 

s = 

[ uk.k'} , (47) 
=BoB 

k, k' = 1, 2, 
. . . ' 49 • (48) 

u1.1 u1 .-2 ••• u1.49 )
u2.1 u2.2 ••• u2.49 

{ 
uk.k'} = • • • . . . •.• . . • •• • (49) 

%9.1 u49,.2 ••• U49.49 

The first row of th:ls matrix, (49), relates to the upper left 
mesh of the 1° x 1 ° net that does oover the 7° x 7° square of 
the model ooean, Fig. 1, (k = 1). The sequenoe of the elements 
of this row 

consists of the following amourits, disregarding.a oommon 
multl.pJ.;l.er, 

1 
/ 

(50) 

1 
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406, 125, 65, ,45, 34, 28'., 23, 
125, 90, 59, 43, 33, 27, 23, 

65, 59, 47, 38� 31, 26, 22, 
45, 43, 38, 33-, 28, 24, 21, (51) 
34, 33, 31, 28, 25, 2.2, 20, 
28, 27, 26, 24; 2·2, 20, 18, 
23, 23� 22, 21, 20, 1_8, 17.

The row of th'e number 25 of the matrix described by (49� 
refers to the·9eniier compartment-of the model ocean, (ic = ·25). 
It has the following sequenoe, 

( 52). 

The amounts of (52) are as f°ollows, disregarding again. the same 
mul tiplier as in aase, of_ ( 51 ) , 

I 

,.. 

33, 38, 43, 45, 43, 38, 33, 
38, 47, 59, 65, 59, 47, 38, 
4J, 59, 90, 125,, 90, 59, 43,
45, 65, 125, 406, 125, 65, 45, (�3) 
43; 59, 90� 125i 90, 59, 43, 
38, 47, 59, 65, 59, 47·, .J8, 
33, 38, 43, 45, 43, 38, 3). 

The amounts of the elements of the two sets (51) an4 (53) are 
directly oomputed as the ·values of tl(le Stokes· funotion S(<jJ) , 
(36b). Thus, they are precisely equal to the amounts of this 
function S(<jJ) for the arguments 'f'k.k' ; whereat the suffixes
k and k' specify the concerned compartment oenter points which 

·are:the endpoints of th:j._s· spherica1·arc·, , 'l'k.k'! ,-(47) (48),
[9]; e. ß• S(<jJ = 1 0) = 1_25. Therefore, tne amounts of (51)
and (53) ca.n be taken,immediately and unchanged from the table
of W. D. Lambert and F. W. Darling; (see: Tables for· determining
the form of th·e geoid and i ts indireot effeot on gravi ty,
u. s.·coast and Geodetic Survey, Special Pubi •. No. 199,
Washington 1936). In_the expression 'f"k.k' apd in -(47), the
first suffix � specifies ·the row, the second the column-, k'. 

' 

, 
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As to the inverse, this is the matrix/

s-1 
=s_.s = { vk.k'} (54) 

1, 

k, k' = 1 , 2, . . . ' 49 • (55) 

v1.1 v1.2 . .. v1.49•

v2.1 v2.2 . .. v2.49
{ �k.k1-} = • (56)

. . . . . . . . . • • •

V 49.1 V49.2 . . . V 49.49

The first row of (56) has the followi!lg amounts, (k =· 1)' 
disregarding a �ommon multipiier, 

+ 2956, 626, 74, 43, 26, - , 19, 19,
626, 164, - 33·, - 18, - 11 ·, - 8, - 11, 
74, - 33, - 20, - 12, 8 , 

- 6, - 9,
43, - 18, - 12, - 9, - 6, - 5, - B,, (57) 
26, - 11, - 8, - 6, - 5, - 4,

' 

- 7,
19, - 8, 6, 5, - 4, - 4, - 6, 
19, .1 1 , 9, 8, - 7, 6, 8. 

The 25th row of ( 56,) is as follows,disregarding again the same 
common multiplier <>s-in (57), (k = 25), 

9, 8 - 11, - 12, 11, - 8, - 9,- ,._
10' 18, - 15, 18, - 1 o, 8, a, 1 .

11, - 18, - -141, - 508, 141, 18, - 11, 

12, - 15, 508, •+ J27C>, 508, 15, 12, (58) 
- 18, 141, - 508, 1.41, -:- ,18, 11, 11, 

a, 1 o, 18, 15, 18, -- 1 o, 8, 
8, 11 , 

- 12, 11 ', - a, 9. J 

9, 

Now, the equation (43) is applied to the 5 mode1s of the figure .1 

which .are already treated in the discussion of the indirect 1 

metho�. These 5 modele differ by the position �f the test points 
/ 

' 

\ 
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J 

Pi only, (i = 1, 2, 3, 4, 5), �ig. 1. In (43), the index k assum.es

all.the elements of the sequence: k 
= 1, 2, ••• , 49. Thus, all 

the' compartment.s of the oceanic grid are considered. 

Fig. 9 shows the ,amounts of ai.k • V , ·for the V value
according to (40), and for i = 1, and f�r the index k running 
through all the numbers 1, ••• , 49. In Fig. 9, these amounts 
are written in all the concerned 1° x 1° compartments of the grid. 
They show'the impacts that the shifts of the oceanic 1° x 1° nrean 
a_l timet er da ta exert on the neight anomaly at the test point · P 1,
(i = t), for V =  0.J m, Fig. 9. 

Fig. 10. gives the corresponding values of a2.k • Y for the
test point P2, (i = 2). Fig. n and Fig. 12 show these amounts
for i = 3 and i = 4. All these amounts which are represented by 

- the figures 9, 10, 11 , 12 are measured in mm. ,They base on a' 0 0 shift by Y = o. 3 m I for the mean 1 x 1 · compartment value of
the !; function. 

1.5 1.9 2.6 3.7 9.2 1.5 1 .6 2.0 2.7 

12.0 

18.0 

0.9 0.6 0,8 1.1 1.9 3. 6 2.3.0 0.9 0.6 0.6 0.7 -1.0 1.5 

18.0 

12.0 

1.5 1.9 2.6 3.7 ·9_2 1.5 1.6 2.0 2.7 

Fig. 9. Fig. 1 o. 

/ 

/ 

5.6 

4.4 

4.4 

4.5 

4.4 

1..4 

5.6 

f 

' 
1 

-
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0. 7, 0 .7 2.1 -0.3 0 0.2 

1.5 0.2 

1.4 0.2 

0.4 0.2 0.3 0:3 0.4 0.5 1.4 -0.2 - 0.1 0 0 0 0 0.2 

' 1.4 0.2 

1.5 0.2 

0.7 0.7 2.1 -0.3 0 ·0.2

Fig. 11. Fig. 12. 

Fig. 9, 10
1 11

1 
12. The results of the model computations for the 

.direct method according to the first Ai�ed. 
boundary value problem. The numbers in the 
individual compartments of these 4 grids give 
the amounts (in mm)•of the impact that a 
shift of the regarded-1° :x 1° mean altimeter 
data (by v = 0.3 m) does e:xert on the_ 
height.anomaly_ !; at the 4 test 'points P1,
P2, P3, P41respectively.

As to the 5th test point P5, the effect of v on the ( valu�
. at P5 is a

5.k • Y , (43), (Je = 1, 2, ••• , 49). In dependencel upon
the parameter k, this effect ranges between -: o.6 mm and - 0.1 mm 
within the 7° :x 7° model ocean, Fig. 1. For the center compartment 
of the ocean, k = 25, this impact· is equal to - 0.13 mm. 

0 0 ( ) · Now, the central 1 :x 1 compaP'tment, k = 2�, is brought 
into the .fore. A data shift of C: 

1
within. this compartment,�as 

'- certaizl impac't on the t values at the 5 test points. 
- The concerned_values obtained formerly by the indirect or
two-step-method are tabulated by ·the equatione (30) to (34) -.
The analogous amounts_found along the lin&s of the direct or
one-step-method of the first mi:xed boundary value problem are as
follows, (4.3), Fig. 9, 10, 11, 12; (. Y • 0.-3 m). ,

... 
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✓ 

( ÖS I
I 

) 

p1, P25
= 1 .1 llDn (59) 

( 0� lt ) P2, P25
= 0.7 llDn , (60) 

ÖS II ) P3, p25
= 0.3 mm t 

1
( 61)

( 6(, II ) 
P4, p25

= o mm· (62) 

. -,. 

6(, ,, ? P5, p25
= 0.13_ mm {63) 

'· 

. , 

d 

,,, 

., 

, 

I 
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4. The direct way in compa�ison with the indirect procedure,

A comparison o·f the relations (30) to (34) 1 on the one hand1with
the relatione (59) to (6.3)1on the other hand1shows that the la;tter
amounte are muoh more small than the values of (30) to (34). Thus, 
obyiouely, the resulting �ontinental height. anomalies � at the· 
five test points are·muoh more precise if the dtrect method of the 
first mixed boundary value problem was preferred 1 instead of the 
1?,direot method proceeding along the roundabout way via the gravity 
anomalies as an intermediary system'(approximating z' to z" ,(28)(39) ).

. . . , . ' =0 =C 

Preferring the direct method instead of the indirect 
m_ethod,/ the amounte of t,he standard deviations of the resulting
height anoma:,ties are lowered down by the mul tiplier ;;;e i,
(i = 1, 2, 3, 5).- For the different test points'P1, (i = 1, 2, -3,
5), ;,i,e1 has the following amounts:

(30) and (59) give,

- (64)

(31) and (60) lea'.d to

0.7 

re2 
= --= o.os (65) 

(32)_ and (61) have the consequence, 

0.3 
re3

= =- 0.1 (66) 

· 04) and (63) yield- a diminution coefficient of

0.13 
=- -- = 0.09 • (67) 

/ 

' 
-

1 .1 
= rr =,0.06 

, 

9 
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Of courae, a_glanoe on (64) (65) (66) and (67) does it show 
"lmpressively, the precision o� the results is greatly improved 
by the transition �rom the indirect method to the direct one. 

The· coeff°icient � 4 is not considered here beoause
the Stokes function r. is equal to zero if. y is in the vicini ty 
of 40°. Indeed, the spherical distances between tlie test point 
P4 and the 1° x 1° meshes,of the model ocean are in the
vicinity of 40°, Fig. 1. 

A look at the 4'figures 9, 10, 11, 12 demonst.rates the fact 
that. there is not a trace of an instability�(but; ( 15) has instabili­
ties) .The guessed instabilities are not corroborate�,as for ( 39), (14J� 

Sure, it is 'one of the main• tasks of the theoretical geodesy 
to find o�t suoh e�aluation methods whioh give the most precise 
ano. optimal results from the geodetic observations. A geodetic 
procedure consists, among others, of the observations e.nd of 
the subsequent mathematioal evaluations. On principle, this 
procedure oan be compared with a chain. This chain cannot be 
stronger than t�e-weakest link.of it. The evaluation method should 
not be the weak point of the procedure. 

/ 

' 
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5. The difference roethod,

As to the practical applications of the relation (38), it 
seeros to be convenient to introduce a difference roetho.d 
determining not the full amounts of the continenta� height 
anoroalies_ t; but the differences of these height anomalies 
relative to the height anomaly at a reference point situated 
in the considered continent.. The transi tion from the absolute 
t, values to the relative amounts of them is a procedure that. 

will bring about a clear relief to· the numerical computations. 

In this case, now, the differences of certain vectors and
matrices (attached to the test points) are to be considered, 

6 J: 
, 

J i. e. �c -,.... �c• gc.s � gc.s' gc.o � · gc.c' (3B).

Hence, 

d�
c 

will contain the differences by which the continental s
values•differ from the one ( value at the selected reference test

point, [3] /6].

In order to have a fixa�.ion of the 
difference roethod, a short example is 

ideas connected with this 
sketched now. Along these 

lines, the differences 

CA - Cs = t AS (68a) 

and 

·t V - '( s = ( vs (68b) 

can be comp�ted by t�e solution of the first mixed boundary value 
problem1introducing the relation (68). Here, the suffix A. 

, ' 
1 

symbolizes Cape Arcona on the Rilgen island in the Baltic Sea, 
S stands for Sopron and V denotes Varna at �he Black Sea. The 

= t s s-1 z 
/ =C • S =S • S =S 
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( AS a.nd { vs 
values on the right hand side of (68a) and (6_8b) 

are computed by-(68)
1
integrating over the continental free-air 

anomalies and over the oceanic altimeter data. Even-these values 

c; AS • and t VS can be improved by · an adjustment p�ocedure, in the
course of a further treatment. Indeed, these computed !:As and 

( VS values can be anchored on the disc�ete. al timet.er data 
offshore the coasts of the GDR and of Bulgaria, i. e. CA and 

t; V' [1 Oj. This possibili ty ieads to the fo].lowing condi tion 
equation, 

• (69) 

The two terms oli the left hand side �f (69) come by c_omputation 
from th� first mixed boundary value problem,integrating over the 

- observed b_o.undary values on the continents and oceans by (68). The
ref1ection of the boundary values of the areas very distant. from
Europe on the left hand side o� (69), will be very small. This is
the essential advantage of the -difference method. It allows to
simplify the integrations' over the distant· areas by fonnula (68),[(J.

The right hand side of (69) comes
0

directly from the maps of
the altimeter data, br a simple interpolation, /10].

Thus, finally, (69) leads to an adjustment P,rocedure according
to .the ·method of least squares.

-
' 

. / 

, .
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.6. The influence·of the sea surface topography on the solution of 
the first mixed boundary va-lue problem • 

. The sea surface topography is the height of the ocean surface 
above the geoid. It is denominated by. q. Thus, the q values do 

· e:xist along the ocea.iui only. The satellite altimetry data are
t,ermed by . ( Al.timetry• The height anomalies are denoted by (
t_he ( values derive from the surface perturbation potential by
the rela.tion (3). Qonsequently, thes·e J terms have the subsequen�
e9uation,

J- + q = ( c, Altimetry • 

The equation (70) is yalid along the oceans only -. (70) gives an
e:xpressi�n for q, 

q = ( Altimetry - ( 

(70) 

(71) 

The q valu�s can be determined empirically by a low-low mission 
of satellite - to - satellite tracking, for instance ;- (see /4/, 
p. 420, 421� •. Under the supposition that t·hese q valu-es are known
by these independent methods,(discussed in [4], or along another
way ), in this·· case, it is possible to free the al timeter data from
the impact of the sea surface topography by

t 
- q Altimetry 

I 

Strictly speaking, the thus obtained !:: values are the dat"'a which

(72) 

are understood to be,introduced as the componente of the z vector
=s 

in the earlier discussed two-step and one-step method for the
determination of the contine�tal height anomalies, �

0
; (5) (6)

(10) (14) (15) (16) (.35) (J6) (37) (38) (39) (42). Thus, if the
aea surface topography q is known, 1.hie effec_...t can be s·ubtracted
from the altimeter data· in order to obtain the needed !; values at sea,

' 

(72). In this c�se, there is no further trouble about any influehce
which the q values possibly would talce_ on the cont inental 2;' values,
compu�ed by (38) or (68).

I • 

I .

· '

\ 

/ 

# 
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However, the q values are not yet determined in a reliable wa,. 
Thue, it ia recommended· to sketoh �ot�er method for the elimination 
of the biaeee in the continental C. valuee computed by (38) or 
(68)� These.biaeee are understood as a reflection of the q valuee.
lt is the z vector of (J8) and (68) which-ie direcfly influen�ed

=s 

by the q valuee. The propagatione of_ thie influence on the 1
0
·valuee

are these biaees, caused.by the neglection of the q-values at sea. 

From different sourcee whi�h muet not be discueeed here, it ie 
possible to have a cert'ain idea of_ the order of the amplitudes an�
wave lengthes in the field ,of the oceanic q values. Several publications 
are devoted to thie question, /8/. The knowledge of the main sti•uctures 
in the q value field ie an aid for the evaluation of their infiuence 
on the continental t: values which are. computed along the lines of the 
f_irst mixed boundary valU'e problem. 

The publication /8/ doee contain the results of such an eetimation. 
The influ�nce of the sea surface topography on the results of the 
first mixed boundary value · problem, (according to (38) or (68)), -

1. e. the /; values on the continents, - is now denominated by

·t =-t.< 'f, A > (73) 

i t is a function of the latitude and. longitude. lJ. the European area, 
the lines of constant values of f run in the east - west direction 
ab out, they are equidistant ab out·; in the north - south_ direction, 
the gradient of the·f field describes a change of the f valuea by 
about 0.1 m over 1000 km, /a/. 

Therefore, -in the European area, · the f field can be apprortmated 
by an analytical e.xpression which is linear in the ditferences of 
the latitude and longitude, <f- and A ,

t = f ( Y' , A ) ';; c
0 

+ c1 • Ll tp . + c2 • .aA � ·74) 

The three constant coefficienta c
0

, c1, c2 in (74) can -0e
determined by the eyaluation of three Doppler-determined l; value■• 
lt happens along the f�llowing lines. 
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In case of boundary values which are free of the q value ·impact, 
the solution vector is obtained, by (38). In' case, the altimeter data 
are falsified by the q values, the equation (J8,) leads to the 
following computation procedure, 

�c· + _,d�c (q) ':' �o.s �;�s [ �s + �J + 

� 1 . 
] + l--8c.c - -��.s s-

8 S 3s. C gc .. .,. • = .• :::: 
• (75)·

. \ 
g is the vector-representation of the q values. Ä�c {q) is the 
vector representation of. the .contizient.al f function, ( 7 4). The 
right hand side of (75) is determined em�irically-by the altimeter 
data 

�s + g (76) 

and by the continental free-air anomalies 

('(7) 

This right,hand side of (75) is denoted by 

�: = �c.s �;�s [ �s + :@] + [ �c.c - �c.s �;:s. �s.�
] �c• (7ß.)

1 

it is a known vector, in this context. The relations (75) and (78) 
give 

�c + l'.1 �c {q) = 
�o • (79)

Some discr�te values of the field represented by �c can be 
determined by Doppler observations of satellites, 4n 1 , (aad - . 0� � 

precise levellings ). The expression ..tJ �c ( q) in ( 79) is the. vector ·
representation of. the field of the f values, (74). In (79), �.:is 
the vector· representation,of the field of certain values which are 
now denominated by i:;�, they are obtained by the computation along 
the lines of the first. mixe,d boundary value problP'll, (78). Thus, 
by the transitions 

(79a) 

,-
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I 

.LJ�c (q) � f { �' A ) ' ' (79b) 

* � 
�c --.- ( (79c) 

the 
\ 

vector·relation (79) turns to·the following equation for the 
componenta, 

L. Doppler. + f ( lf ·' 
A > =- c:* • (80)

(74) and (80) lead to

( J?oppler (*
1 

=
� 

C
O 

- c1 
. 

.6,. 'f 
- c2 .· bA . (81)

The right hand side of (81) co�tains the three �own 
coefficients c

0
, c1, c2• If the t·Doppler va�ues are measured at 

3 different andladequately spaced points of the considered 
. 

t� 
. 

continental area, an� if - further on - the - values are computed 
for even these 3 pointa, in this case,it is possible to find the 
valuP.s of c

0
, c1,. c2 by an evalu�tion of (81). 

. .

· Thüs, the function_ f ( 'f' , /1. ). comeß to be known. Conseq_uently:,
also the vect·or representatio� .d ?ic ( q) of the function f ( f , i\ ) 
follows to be known by the inversion of (79b).-Even this fact 
leads to the possibility o; computing the unbiased height anomaliea, 

�• as a two-dimensional function which covers whole the considered 
continent •. The concerned-compÜtation formula is - a continuous vector -
. 

, . 

� 
�c = �c - L1 �c (q) _(82) 

�ee (79). The first. term on the right. hand side of (82) is computed 
by (7�). And the second term is reached by an adjustment of (81), 

a pr?cedure that gi:ves at first the coefficients c
0

, c1, c2 and 
then, consequently, the continuous functi.on f ( '-{), �) by meana 
pf _ ( 7 4); the inversion of ( 7i9b) leads to the _ wanted vector , L1 �c ( q) •

Further on, tobe more oomplete, and to avoid misunderstandirigs, the 
;elation (82) has the vectors ?c , !: LJ�

0
(q) which can represent 

the ·vector shape of certain continuous funotions, well-defined even over 
whole the area of all the continents , - inoreaeing the range of ideas 
in this way - .1 but, in this case„ the func�ion f has to be defined in 

' 

-.. 

j 

. , 
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a new way, introduoing several oontinents 1nstead of one, (85 )( 91). 

It is, (6) ( 10), extend1ng th._!l l!ICOpe to several·continents,

C1 

C:'2 

, .. 
f 

ic 
=

- ( p , (83) 

••• 

t 
K 

K is the number of· the oontinental oompartments, K �X, (p = 1, 2, 
•• �, K). Further, in (8?), the continental vector it must be
identified with the right hand side of {75), (78). It is oomputed 

� . 
• 

1 

by the mixed boundary-values, i. e. 
( 75) ( 78) ; ( t i "' c:,*i ) •

t1

t2
* ... 

Z' =
=C t p

••• 

tK

the values �s + g· and �o•

.. (84) 

The seoond vect.or 4�
0 

(q) on the right hand side of (82) refers 
to the continuous function f ( 'f , /l ) , the S:rgument . domain of i t 
is now the area of all the continents, as it is +:e case for �c
and �/also, (82) (74), 

. . .

= 

••• 

f ( ·'f' , /1. >1 

1. lf., >i );2

••• 

. . . .

•

·, 

u, 

u2 

A~c(q) = f · ( 'I' ' ). ) ,;) 
up , · P 

UK !(y,,A. )K 
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From now, it is self-explanatory, the one single .linear 
.expression for f (V', A) of the Shape of (74) cannot be valid 
for whole. the area of all the continents. Naturally! Its validity is, 
restricted to properly choosen partial areas of the continents, 
e. g. of 10° 

x 10° or 20° 
x 20° squares, [8/.(For a continuous enumeration,

'the meaning of the functions f (. 1f , A )
P 

1� explained by ( 85 )1 ) •

In case, whole the continental area of the globe is considered, · 
(85'), in tlii�. case, the continents should be divided into a certain number of 
properly chosen partial areas ,in total number L,which have the 
following mean values for the individual compartments, · 

t < 'P ' A >1.v . (86) 

The index 1 denotes the regarded partial system and v tre running 
compartment within of it, 

1 = 1 ' 2, 

V = 1, 2, 

K1 + K2 +

... ' L

• • •' - Kl

••• + KL

' 

' 

= K • 

(87) 

(88) 

(89) 

K1 denbminates the total n�ber of all the compartments which·
divide up the regarded partial area, - i. e. ·the partial area · 
distinguished by the suffix l -, (88). 

Withim each individual partial area, a linear expression for 
the function f ( rp , A ·) is supposed to be valid, (74) (86.). The 
shape of such a function is 

The relation (90) is valid within the partial area of the number 
1. Thus, the discrete values of the function.f for all the

· compartment.s, (v = 1, 2, •· •• , K1), which divide up·a o�rta:l:ti
partial area (of -the number 1), are

V= 1, 2, •••• Kl
l = 1, 2, •-. •. , L •

· (92)

(93)

r 
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The terms ( � �l.v and (LÜ)l.v. are the dU'f'erenoea of latitude
and longitude wi th regard to a oertain oentral oompartment,. tor this 
oompartment the value of' f(�,A)l is equal to 01,0.

The disoret;e values f ( cp , A )1 v oan be det.erniined for each
partial system (distinguished by th; index 1) separately and by them­
selves alone. For the partial area whioh is dis�inguished by �he 
suffix 1, or for a fixed oerttain value of 1, 

1 = oonst. 

and for, 

v =0 1 , 2, •• -. , K1 ,

the coeffioients 

(94) 

. (95) 

(96) 

can b.e deitermined - separated from the ooeffioients of the other 
partial areas � by empirical mee.ns from the Doppler determined 4
values, 1: Doppler• Th� prooedure oonnected w1 tli the evaluation
of (81) has to be applied here. 

A oombination of all the funotions f · ( · fP , A · )1, (see ( 90)),
leads to a glqbal representation of the funotion f = f (So, A ), 
covering �he continents. This combinati�Iliprocedure can happen by 
a unifioation along the priµoiples of the anblooking method, for 
inste.nGe. There is no need to add another word about the details 
of this anblocking, sinoe it is wen:...known and seif-explanatory. 

\ 

. ' 
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7. Conoluaiona,

The preoeding developments demonafu-ate that the aolution of the 
. . ) 

altimetry - gravimetry problem ahould happen at a profit a1).ong the 
rulea of the first·mixed bou:hdary value problem, sinoe this way is 
of- aignif;f.oa.nt; a_dvantage for the preoision of the reaulting h!,!ight 
anomaliea on the continents. 

As tp the procedure of the two-step-method-which oomputes the 
ooeanio free-a:ir anomaliea as a.p. intermediary syatem, thia _two-step­
Il!.ethod leads to a solution of a olear inferiority in precision, iDI,-· 
comparison withi.the solution of the first mixed bowidary value 
problem. 

If the one-atep-method of the first mixed bowidary value problem 
ia preferred instead of the indireot two-ateP.-method, in this _case, 
this exchange of the methoda will be_ aooompanied by a d:i.minution of 
the atandard devia:t:i.on of the resuiting continenta.l height 
anomalies. A reducing multiplier of about 0.1 does work here • 

Further on,_a method is aketched which allows the el�ation of 
the-impact the aea surface topography takea on the result�ng height 
anomaliea. The introduction of some Doppler - determined height 
anomalie,s is essential for this method. 

• 

I am indebted to Eng. Helga Jurczyk for her essential 
in the electronic computer calculations.-

co-operation 

Korrigendum 

In the below oited p�blioation (ARNOLD 1984), page J5o; line 7,8 and 9, is an 
erratum. The 0symb_ol T has to be ;rep�aoed by c5T,, and simil-arl;y- J gF- by 6.dgF'
in ,ori;ler to. qe right.-<lT and o.1gF are the residuale before the adjustment: 

Obs-erved values minus ,the oomputed ones. The preoia'e shap'e ·of JT and cl'.dgF 
oan be found in the braokets_of the equation (4) of the publioation (ARNOLD 
1981). �ut, for the oomputation of QT and J�gF 

and their r.m.s. values /UT 
and JU, the Stokes oonstants T appearing in these braokets are taken from 

/ g - , n 
a beforehand given approximate harmonios development. -The right prooedure how 

. ' 
. 

to oompute the_ residuale �T a.nd cf.4g
F 

a.nd their r.m.s. values_ /1T a.nd ('lg 
is.

desori,bed by the passage a.ppea.ring between the equations (6) and (7) of the _ 
publioation (ARNOLD 1981). 

ARNOLD, K., 1981 :_ Oomplex eva.luation of gravi ty anomalies and of data 
obta.ined from satellite a.ltimetry. 
Gerla.nds Beitr. Geophysik, -Leipzig 90; PP• J8-42. 

ARNOLD, K., 19841 The _oompa.tibility. oonditions, the uniqueness a.nd the 
solution of the •niixed bounda.ry value probl·em 9f ge_odesy. 
Gerlands Bei tr. Gi

t
ophysik, Leipzig 9J, PP• JJ�-J55. 

\ 

" 
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Summary 

The_ vertical derivatives of the' perturbation potential at the surface 
- ' 

of the Earth serve as boundary values. They are identical with the gra-
vity disturbances. The· perttirbation potential is superposed by the model 
potential of the mountain massee. The solution of this bowidary �alue 
problem turne qut to have the shape of· an integral representatio� for 
the perturbation p·otential a'li the surface of the Earth. The Hotine 
fun�tion ie the kerne! function. Two supplements must be added to the 
gravity disturbances. The first term is the plane .topographical 
reduction of the gravi�y which �epends in the main on the square of 
the height differences. The second term is rather small 'and often 
negligible_, i t is proportional to the he ight gradient of the Bouguer 
anomalies. Thus, this term depends chiefly from the geological density 
anomalies and the isostatic mountain roots. The final solution has the 
character of a closed expression, free of seriee developments of _bad or 
dubious convergence, it is free of uninvest�gated residual terms of 
certain series developmente. 

Zusammenfassung 

Die vertikalen Ableitungen des Störpotentials an qer Erdoberfläche 
werden als Rand�erte eingeführt. Man nennt diese.Werte auch_die Schwere­
störungen. Das Störpotential wird mit dem Modellpotential der Gebirgs­
massen superponiert. Es ergibt sich eine Integraldarstellung filr das 
Störpotential an der Erdoberfläche. Die Funktion von Hotine dient als 
Kernfunktion. Zu den Schwerestörungen im Integranden treten zwei additive 
Grössen. Die !Jrste 'ist die vor allem von den- Quadraten der _Höhenunter­
schiede abhängi'�e ebene Geländereduktion der Schwere. Die zweite Grösse 

,ist sehr_klein und kann meistens vernachlässigt werden. Sie ist propor­
tional dem Vertikalgradienten der Bougueranomalien, sie hängt damit von 

- den geologischen �ichteanomalien und den isostatis.chen Gebirgswurzeln
ab. Das Finalergebnis ist ein geschlossener,mathematischer Ausdruck,
Reihenentwicklungen mit schlechter oder unbewiesener Konvergenz erschei­
nen nicht.

/ 
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Pes10Me 

BepTBK8JII>Hlle npOH8BO,nHHe MernalOIIlero IlOT8HU;HaJia Ha noBepxHOCTH 38M­

.JIH BBO,IJJ{TM B Ka.1i8CTB8 RpaeBWC 3Ha1ieHl'l:0:. 8TH 3Ha-qe"mm Ta.IOKe Ha8l:l­

BaIOT rpaBHTaI(l'IOHHliIMH HapymeHHJIMH. MemaIOII{HH nOT8HnHaJI COBMemaeTCJr 

C MO,I1;8JIT)HRM IlOTe�aJIOM MaCCH ropHiilX nopo,n:.· B pe3yJIT)TaTe 3Toro 

noJlllJIHeTCH mrrep_p8.7II>Hoe mipaJKeirne ;rr;,m Memaromero noTeHnßaJia Ha no-
. 

' 
' 

BepxHOCTl'I seMJm. � XOTHHe CJiy)Km' B �-qecTBe OCUOBHOÜ ipyHR-

i:um. ·K M8illBlOII{8MY ßOT8ImJllaJiy ßOHBJI.ßlOTCH ''ABe' cyMimpyeMae BeJmtn'IHll. 

IIepBaH Be.7Il11'mHa, SaBHCRI!laH, npe,ime Bcero, oT RBMPaTo:s pas� 

·Bl:lCOT, npeicTaBJJJi8T co6oi npsIMy10 pe,IJ;yKIU'l]O rpaBl'!Ta.I(ßH. �a nepece-qeH­

HOi:I: M8CTHOCTl'I. BTopaH BeJJFmHa, B 60JIT)lliHHCTBe CJiy,IaeB o-qem, MaJia 

. l'I ei:I: MOm.HO npeHe6pe%. 0Hä nponopr,;HOHaJIDl'la B8PTl'IRaJI:t.HllM ·rpa.,nHeH-
1 

TaM aHOMaJilllli Byrypa, Oßa 8aBl'ICHT TeM CaMHM OT reoJiorH1IeCKl'IX aHOMa-

Jid ITJIOT�ocTl'I H HaocTa'TH1IecKIDC itopHett ropHiilX nopo,n:. I<oiiel!Hl:lit 'pe-
, / . 

. . . . 

syJI:t.TaT npe,n:oTaBJIJieT·M6ota 8aROH"l!eHHoe MaTeMaT�ecRoe BHl)aJKeirne, 

r.n;e He IIQJUIJI!{lOTM pa8JIOX8HHH B p.ll)J.Jl O ITJIOXO:ti HJIH H8,I(ORa8aHHOH 

CXO,n:HMOCT:t.R>. 

p 

..... 

' . 
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1. Introduction.

In an earlier publication, the boundary value problem of Molodenekij
was treated as a emoothed boundary value problem for a Bjerhamrnar sphere 
as boundary surface. The following closed solution was found, [1] [3],
. ' 

T = /: [[ [ dgT ,+·C _+ c1]

w 

with 
- r 

S(<j,) dw. + (1) 

� 
L-J 1

= f M"f - 4� ff 
h 

2 B
0 

� 
R 

S(<j,) dw - [ :p B
0

} - • (2) 

w

The braces { } denote the fact that the, shares of. the spherical 
harmonics of the 0th and 1st degree should be subtracted in the 
expression (2) representing · S 1• T is th� harmonic perturbation 
potential at the eurface of the Earth 6" , it fulfills the Laplace 
differential equation, 

= 0 . ., (J) 

fp is the exterior space of the EPrth. r
p 

ie the geocentric radiue
- a 

of the test point P for which the amount of the perturbation po�ential T 
is to ):>e computed. w is ·the unit ephere, 

dw = cosCf • dlf • dA 

where 'f and A. are the geocentric latitude and longitude • .LI gT 
represente the frwe-air anomaliee, 

0T 2 

'.) r r 

* 

=g-'lf 

(4) 

. (5) -

g ie the vertical inteneity of the gravity at the running point Q on the 
� 

. 

� su�face of the Earth. 7J' is the *�andard �ravity at the telluroid, 'o' 
belongs to �he telluroid point Q which ie situated vertical below the 
point Q, Fig. 1. The· vertical distance from the point Q to the point 
Q* is equal to the height anomaly 1;· , 

T 

t=-
1 ;r* 

(6)

r 
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\ 

The amount of C in (1) 1s the p lane topographical reduction of the 
gravity, 

• '(7)

f 1s the gravitational constant, f is the standard density o� the 
Earth, f = 2.65 [ g cm-3 J. 1/f is the spherical distance. ß. is a
Eiufficient great value of 'f ; if )lt" > ß , the integrat:l,.on with 
regard to 'f' can be finished, since an eventual extension beyond of -

ß will h819'e no effect- on c. ex. is- the azimuth. rp has the equation, 
(Fig. 1 ), 

(8) 

hp is the height which the point P hae abeve the globe. The flattening 
is neglected here. _It is necessary to stress .the fac� that the hp
value is not the height above .the geoid1 and not the normal· height h* •
The geocentric radius of any surface point has·the relation, Fig. 1, 

r = R + h = R + h* ,+ ( (9) 

· The r values of the test point P and of· the running point Q differ by 

* * 

Z = r
Q 

- rp = h
Q - hp c h

Q - hp + -( Q - ( P ( 10)

z 

,, 
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•� Y.
. ►"- � 

t,Q. " ., 
_,,,,,,.•-"-eQ Y** 

/. a.� "
". ...... ...... " 

�phere aep P ./ ""-

/ 

____ .--•---------- --7--•-------•-' ·e o' .6 1 -----· . Q-•• · Y•�. 
,o.v '-'(< . t

p 
. ./ 

,_..:>( "-_(:;.
'<.

. 1. .,...- • -. - ·- • _,,,,,,,, 
-., e v · o'°/' P* ·-·-· 

..... � �..:>( • 
. . . 

'\•�1/ hp . -
/ 

cpi 

hi 

Globe ae -----'----•--------------•---------
P•�• ' Q• •• 

Figura 1 z -The hat point P and ihe moving point Q, tlie height 

/ 

- anomalie■ /; , the normal. heighta h �, and the heig}lta h. ** above the globe. The poini Q is the point where the 
plumb-line of Q meete the sphere ;jt>p• Thia plwnb-line
meets the telluroid at· the point Q*. 

0. 

/ 

' , 
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./ 

The term o1 in the integrand of (1) d�rivea - on the continents -
froqi the Bouguer _anomalies, .LI gBouguer• Along the o�eane, o1 derivea
from the free-air an�maliea. o1_is proportional to the amount ot the
height gradient of the retined Bouguer anomalies - on the continente .-, 
i.e. the familiar Botiguer anomalies, supplemented by. the O values . The 

�ount of the. o1 term represents the change the refined Bouguer
anomalies undergo if they are tran�port�d from the surface of the 
Earth 6' in the vertical direction to the level of the teet point P, 

b.J, 

.. - (11) 

The r�lation (11) is a good �epre_sentation ot the 01- ,term1 aa long
as the following -inequat ion ie valid,{ /.J],chapter A ), 

.. 

1 (12) 

T�e length Dis the horizontal· extension of the area of the •positive 
or negative Bouguer anomaly „ see (100�. The relation (12). is valid 
pear,ly at all places of the globe . 

But, -if the length D is undereto�� to be the horizontal extension, 
of the areas - on the continents - where the free�ai� anomalie■ have 
positive or negative amounts; 1n this ·caee, the inequation (12) will 
be · valid for lowland �reas 1only. The "rea_eon is found ,in the fact that
the free-air anomalie·11 show ·a strong correlation w:Uh the heights. 

'\ 

In case, tlie criterion (12) is fulfilled by the Bouguer anomalie■, 
it is allowed to expreQ� the o1 term by an int�gral which co.!e;a the
Bouguer anomalies in the .surroundings ot the test•p�int P, 

.As to ( 1.J),, the followi,ng rel:ations are valid, . 

/ 

( 1.3) 

• 

C "" 1 • 

c1 ~ - (h . - h ) _ 1_ '-)\ ( L1 gBoug~ei-> Y. -
· 1 Q P 2'if ej . 

. 0 
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d ae = R2· d W = R2 cos f d So d;l 

• 

• • 

(14) 

· <15 r .·

Within the process of the integration according to (13), the point Y 
is the moving point ,( see Fig. 1 ). 

/ 

In the relation (1), S(q,) represents the well,-known Stoke_s function. 
The amount of 81 can be neglected in many cases. Bis the model 
potential of the mountain masses which are situated above the ocean 
level. The standard den�ity f „ 2.65 [g cm-3 J is applied here,- B

0 
is the

potential of these mountain masses condeneed at the globe ae , Fig. 1, 
(aee the equation-(44), later onl. In the relatione (1) and (2), the term 
/B/" appears also. It is the difference ,between the Potential B at the 
surface point P and the potential B

0 
at the point p**� Fig. 1, /1]

,, f2J [3]. 

The interpretation of the terms L1gT, C, c1 which appear in the
Stokes integral is interesting. 

As t o .dgT, thi� term depends on the global gravimetric measurement s
only, (5). It depends on the gravity measurements g at the surface of 

-x- ·  the Earth. Further on, the normal height h is involved·, eince the

standard gravity '(f � �t the telluroid point Q* hae to be computed by 
· 7f * � . , Fig. 1 • .And, h is determined by the real potential values at the 
surface of the Earth which are obtained by a_ combination of the levellings 
with the gravity measurements.-

As to the plane to·pographic reduction of the ,gravity C, (7), thie 
term haa the character of a gravity value� 

• 

Kere,for-the computation of C by (7), the differences of the rough 
data of the height■ a·re of importance,, with the precision of about some 
meters only. The height differences enter into the C term quadratic. 

As to the c1 term of (1),'it depend■ on the isosta1ic mo�tain,roots 
and on the density anonialiea in the interior of the Earth, 1. e. the 
amount by which the density-of the geological massas dev1Rtes from the· 
aiandard de�aity f • The c1 hm 1■ proportional to the ■econd vertical
derivative of the potential of these density anomaliea, (11) (13). 

• 
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With other �ords, c1 ie proportional to the first vertical derivative

of the Bouguer anomalies - along the continental areas -. It has tobe

replaced by the first ver�ical derivative of the free�air anomalie■, 
in case of oceanic areas. 

Thus, the three terms ,dgT, C and c
1 

have different sourcea and
they have different charaoters, too. 

Ae.developed at other places, [J], the relation (1) ie t�e ■olution 
of the boundary value problem of Molodenekij. Thie eolution ie of 
interest for the firet mi:xed boundary value problem also, fV" [3]. - The other 
kind of .solution (Green theorem),[1], does not involve,any eeriee

development of b�d or dubious convergence. In /1], -the gravimetric 
or physical Vafues do not .move from the surface of the Earth to the 
globe, or tQ the aphere 'clep, by eeriea developmenta; but th� geometric 
values, ae the straight linea for instance, move from. the sphere � p
to the eurface of the Earth by closed mathematical transformations, 
- e. g. the square of the chord hae to be supplemented by the addition
of the equare of the height diffe�ence (Pythagoras), and by other

· terms , too • 
/. 

Now, a variant of the boundary value problem of Molodenskij is to 
be discussed. This variant is of importance al:so for the second mi:xed 
boundary value problem of the geodesy. This modified Molodenskij problem 
has not the free-air anomaliea L1gT, (5), as bo_undary value■; ·but the
gravity disturbances. Jg serve now as boundary valuea at the surface 
of the Earth, 

0T 

cfg = (g = g - r l 16)

Here, in (16), the g value ·is again the meaeured gravity at the running 
point Q at the surface of the Earth 6" • The standard gravity � refers 
in (1 6) to even the same. point �• For' the. computatiÖn of the standard 
gravity at the poin_t Q, the data of the heights hQ must be known_
empirically, Fig. 1. The point Q* ia here not introdu�ed, Q-:lfenters into 
the computation of the free-air.anomalies, (5).

, 1 

Tne·problem now intended to be solved coneiets in the determination 
of the perturbation potential T at the Earth's eurfac.e by mean11 of -f;he 

- = 
"Z> r 
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bowidary valuea. of (16),. ·measured at the surface of the Earth, Thie are 
the gravity dieturbancee J �- Further on, the thus'obtaiped global T 
valuea at the surface· of the Earth w111 lead to the T valuea in the 
e:xterior space of the Earth, following the way given by ·the Dirichlet 
boll!1dary value problem. 

Introducing the f g ·boundary valuea on the surface of the Earth,. 
the investigation of the thus obtained bowiaary value problem will 
conduct to a solution by a kernel fwiction, at least for,the main term 
of the solution.Addition_ally,some small e�pplementary terma have to 
be added. 

2. The Bjerhammar sphere.

It ia allowed to introduce the globe c'le with the radius Ras a 
�jerhammar sphere. The following ideae are connected with this procedure: 
In the e:ii:-terior of the globe cte , that is in the space p = p + p. 

. . a " 

it is allowed to introduce-a potential V. V is a harmonic fwiction, 
regular in the space � ,· Fig. 1. P i ia the, space between the two

surfaces ti' and ·öe • l is the space exterior of 6- • The ·amo�ts 
a , - . 

of the potent i.al V at the surface of the Earth 6'; and in the e:xterior 
space ja �are e<f'ual to the �ounts of the perturbation potential T,: at
least-within certain'discrepanciea the amounts of which are arbitrary 
amall. 

It is possible to apply the theorem of Keldysh-Lavrentiev on the 
,potentiala Y and T: 

/ 

There ie given a function T which is harmonic .in the exterfor spa�e 
of the surface of the Earth vi" __ • Thus,, i t. is 1:i.armonic · in . p a. Thie·
fwiction T is regular in the ex.terior space / and on the surface fr • 

- .,, . a -

·After -this pz:esuppositiÖn is fulfilled, it is all,owed to introduce e:
harmonic funct.ion V which is .harmonic and regular in the e:xterior
space � of the globe ae (§. regula_r function is unique and continuous)'.

• l 
„ 0 ' in (16a) 

1 

The globe ee lies completely within the mass of the Earth. According to 
the theorem of Keldyeh-Lavrentiev, this epatial function .v approximates 

• 
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the spatial fwiction T in Pa ·and on � in the following way, [4]:,
lt ie possible to find an arbitrary small and positive number €1' 
thus, that 

T - V ..( c1 , .in p. and on 6" ( 17) a 

with 

�1 > 0 . (18) 

Thus; in the here diecuesed application·s„ i1i ie admitied to equalize 
·T and V in P, and on. er • The geophy·sical meaning of the potential V in
the epace 1

1 
must not be interpreted in thie context, i� ie of no _uee

for the subsequent developmente.

Thie theorem of Keldyeh-Lavrentiev ie e·aeily derived, e. g� by a 
- procedure that employe the fact that the epherical harmonice s�ries

development for T is unifor� convergent in tp a _and along 6" , /3]. The
truncation of this seriee at a term of eufficient high degree and order
leade to the neglection of an arbitrary small residual term. The trunca-

. . 

teä eeriee ie a eu:m, the validity of it can be extended downwarde into
the space /1• _The tr�cated eeries repreee�te the pot�ntial v.

Thue·, the considerat ione · abouii the theorem of Keldysh-L_avrent iev ehow 
that the area of validity of the harmonic potential T is allowed to be 
extended. The perturbation potential T can be coneidered ae a function 
that ie harmonic and regular in. the exterior 5P of ae . In : � a and
along fö , T ie the gr�vimetri-cally well-defined perturbation potential.· 
In thie conte:z:'t, the epace i; 

1 
ie coneidered· ·ae being free of maases.

Hence, obviouely, 

6 T = 0 ,. in P • (19) 

T = W - U, :Ln f a and on � • (20) 

W ie the re'al gravity potential and U :i.e the _etandard potential of the'
level _ellipsoid. The meaning o; T. in ffe

1 
muet n�t ,be diecueeed in thie

conte:xt. 

These ideas connected with the Bjerhammar ephere con9-uot to the
following con·siderat ione • 

' 
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. The test point .P is situated on the sphere -ae P which has the
rad:i.us rp, Fig. 1. The surface of ae p is placed completely in the space 

ff which is the area of validity of the perturbation potential T, _ 
according to (19) and (20). aep serves now as the spherical boundary 
surface along which the gravity di_sturbances 

cfg .. (dg) 
clep (20a) 

are distributed as boundary values. The following rigoro_us solution is . 
easily found,. /6], 

rr Jg H(()>)

wHh, (16), 

J g = ( cf g)Q 
*-.¼' .. - [ 

u T 
J f or r = rp • 

'0r ** Q 

(21) 

(22) 

The values o! (22) are understood as valid for t_he pointe placed on the 
ephere c!ep• _The geophysical interpretation of the boundary valuee of 
(22) ie not neceseary. H(()>) ie the Hot:l..ne function, /5/ /6/, ·

H(()>) = \2n+1

Ln+ 1

n = 0 

P (coe � ). n 
.. 

• coeec + - 1n (1 + coeec r ). (23) 

The Hotine !unction comprisee the epherical harmonice of all degreee, the 
degreee n =- 0 and n -= 1 included. But, the Stokes function ie free o! 
theee degreee of the numbere n = 0 and n = 1, (1). 

' 
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J. The model potential o! the.mountain maaaee,

• 

The mountain maasee which are situated above the ocean level are 'rtow 
in the fore of the conaiderations. In the subsequent model computations, 
the standard density f = 2. 65 [ g cm-3] ia attributed to these maeses.
These model mountain rnaaaee are the gravitating eourcee of the potential 
B which is well-defined in the exterior space ?Pa' Fig. 1,

II 2 'iY R + h 

B • I = ff ( ( ) _1_ r2 sin -V, d 1f d� dr. (24) 
a , E. 

1Jt=O Ol=O r = R 

8 ie the oblique distance between the test point P and the mass element 
which ie moving in the course of the integration. 

It ie now intended to apply the theorem of Keldyah-Lavrentiev to the 
potential B. A similar procedure was already considered with regard to 
the potential T, (19) .(20): ,The p�tential B is introduced as a harmonic 

. and regular function in the exte.rior space of the globe � ; thia is the 
space � = {ff i + <j • By the integral (24), B is a well-defined function

. a 
aloilg the surface 6" and in the e:xterior. apace p �. Since the theorem o! 
Keldysh-Lavrentiev is. intended to be applied, the apace <Pi ie now
conaidered to be free of gravitating maases. Therefore, the B potential 
is now defined in the following way, (24), 

L:1)3 = o, in g, • (25) 

B . = Ia' in (26) 

The relation (26) describes the geophysical meaning of B in·the space

Pa• The geophysical meaning of the function B, (25) and _(26), in the
space !Pi is not discuaeed. Such a discussion would be of no uee.

The values of the potential B ·at the surface of the Earth f. can be

obtained froti �he radia,l derivative o! B on the aphere ae p• 'The following 
integral traneformati0n performed by the Hotine kernel doee solve thie 
pro blem, ( 2.1 ) , 

/ 
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(! H(qi) 

The radial derivative in the in1iegrand of (?7), 

";) B 

';) r - - [ �: ] - '

l . 

(27) 

(28) 

is understood that it does lie_on ·th'e surfaoe of the sphere äe'p whioh 
hae the radius rp• 

In the exterior spaoe �
a

' the.potential B oan be represented by_ a 
uniform oonvergen1 spherioal harmonios series development, /3/, 

oo n n+1 · ..

B • L [(J) •n,� (sin �) [ tn.mcos mA + b ein mA ] , in � 
8 

� ( 29)
2.n.m.

n •O m =O 

Sinoe the series of B, (29), is proved to be uniform oonvergent, ·it is 
poesible to bring it into the following abbreviating 'shape, 

in I a

with 

mA + b ein 
2.n.m

(30) 

(JOa) 

The following theorem deeoribe� the uniform oonvergenoe of (29): 
Corresponding to an arbitrary small positive number 

> 0 (31) 

•it is possible to find an integer N such that the inequation

1 �- 1 1 
< (32)

d w 

w 

-- --. [ ::1 
- ae P 

BN =;, ~(!i)n+\ (ein <.p) [b coe 
Li~ r n.m ,.n. m 

n=Om=O 

. . 

.. 
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The relat.ion _ (30a) r�presents the function BN by a sum_. This sum fulfills
the Laplace differential equation, since the individual terms of it. 
fulfill this equation. Th� term \EN I is neglig-i�le, if N is sufficie�t
great. Thus, B can be substituted by �• in sufficient· approximation in 
the area of �a• Consequently, � can take up the role of B in (25) and
(26). Hence, it is self-,explanatory, the validity of the theorem of 
Keldysh-Lavrentiev is proved in a rather simple way by the introduction of. 
the c·onvergent series development (29). 

As to the perturbation po_tential T, 1t hae also euch a convergent 
eeriee development in l a' ae the form (29) of B.

J 

,. 
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4. The superposition,

The difference of the two potentiale T and B leads to the potential
M, 

M =T -B. (33) 

The vertical derivatives of the potentiale T and B show a dietinct 
correlation with the topographic heights. The vertical derivatives of 
the two potentiale T and B yield certain gravity values which depend 
from the heights by a linear function. The conce;rned corr.elation 
coefficient is well-known by empirJ.cal means, the amount of it is 
about 0.1, 

ö g' = 0.1 • h (34) 

The gravity variation Jg' is measured in mgal, h in meters. However, 
the correlation with th� heighte does no more exiet in the difference 
of these two gravity values, 

0T 
. .

.. -- -

�r 
(35) 

Indeed, the two individual terms on the right hand side of (35) show 
a distinct correlation with the topographic heights, but the left hand 
side of this equation is,on the whole,f_ree of a correlation of this 
kind. The radial derivative of M is a smonthed function, it is as so 
smoothed as the Bouguer anomalies; and a clear correlation with the 
heighte is no more existent, (70a). 

The th�orem of.Keldysh-Lavrentiev is valid also for the potential M. 
T�erefore, the potential M which is well-defined in the exterior space 

Pa obeys the followlng r_elations, (19) (20) (24) (25) (26) (33), 

AM = O, in P 

M „ W - U - Ia' in {P 8 • 

(36) 

.(37) 

The· equation (37) ehows the geophysical meaning of M in the exterior 
spa�e, if, 

8
• The geophysical meaning of M in the interior space I i 

'0 B 

r;) r 
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must not be discus.sed in this context. 

The N potential. can be expreseed by the Hotine kernel funct:i.on and 
the radial derivatives of M along the sphere with the radius rp, (27).

Mp = -
r: rr-

4 II 
) H(<ji) dw (39) 

The radial derivatives 

"or 
09) 

are again underetood that they are valid for pointe placed at the surface 
of the sphere ce'p which has the radius rp ; Fig. 1.

The relation (38) is of fundamental importance tor the following 
deduct ions. 

�* 

. Q 
ie the moving point &t the sphere aep_·, Q is ·the corresponding

point at the eurface of the �arth 6', the place of Q is vertical above 
** h Q ; L"ig. 1. The height of Q above cle P is hQ - hp• Now, the r�dial

derivatives according to the relatioil (39).must be expreeeed by these 
derivatives placed at the surface c--- , instead of the surface aep 

The following relation can be formulated, 

( ':) M• J - . 0r 
Q

�� 

or, 

c, = 

• - [ � :] + c1
. 

Q 

.. 

(40) 

(41) 

(42)

- -- .. 
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. , 

The relations (�3) (35) (41) turn the expressioD (38) into 

T - B - - 4i rm �:
w 

�r i · c, ( 
Q 

H(<j,) dw (43) 

The inhgral (24) expresses' the potential B at the surtace 6' by the 
mountain maeses of the standard deneity. In t_he further· developmeI?,te, 
the potential ot theee mountain maeeee· conden�ed at the globe re is 
introduced also. Thie potential ie denoted by B

0
• lt has t_he following

expreeeion yalid in test pointe at the globe oo which hae the radiue R, 
(4) (14),

B0 • f 'f R2 \ { hQ :
. 

dw 

/.V 

(44) 

B
0 

ie the potent_ial of a epherical eurface distribut ion. For teet point e 
on ue , the potential B

0 
has the following. limit valu.e for its vertical

derivative, if appr_oaohing the ephere ae from the exterior epace,:(B
0 

, 'uB
0

/'vr ·
-lf-Jf;I(- . ¾N-* �. without the suffix P resp. Q • in the equatione (45) to (49) ) ,/3/

::c • - 4 7, t f ", - t � R2 
)) (hQ - hpl

lv 

ein L' 2
e 2 0 

The potential B at � ie now divided into two parts, (24) (44), 

The radial derivative of B at &" r ie di vided in ·a similar· way, 

'dB 

c) r

') B 
___ o + 

�r-

. 

(45) 

(46) '.

(47) 

The. seoond terms on·th� right hand eide of. (46) and (47) are alwaye mu.ch . , 

more small than the correeponding first terms on the right hand eides of 
theee equ.ations. The two expressions 

' ·, 

[ 
~B 

0r 

0B 

r 
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·r :rB ,][B]" and 
"' 

(47a) 

depend on the equares of the heights, above all, [1] /2] [Jj. 0bviouely, 
the following relation is right, (JB), at poirits eituated on the•ephere 

ae 

R 

ff 
'JBo B H(qi) .. - ---

- C '411 'Jr 

w 

The. relatione (46) and 

With 

T - B .- [B/11 ; 
, C , 

rp 
- - --

4,r ff K ::1 . Q 
w 

rp „ R + hp 
1 

. 

and with- (48) followe, 

(47) and

- 'JB<>

'i)r

dw 

(43) give,

- r ::r c,} H(<jJ) dw

· T • /; ff { -( :: ) 
Q 

+ [ �:] ", + c1} H(.) d<u + 

+/B/"+ 1:: f[ 'J
B

c H((ji) dw, •
411 j 'ür 

w· 

An earlier publicat1,.on ehow:s, f"1} /J], 

'VB]" 
[ "Jr 

-c

;, ~ z .. 2 // 

= f� ( d� ( d« ,( if{ 
-yr =- 0 <lt • .0 a • 0 

., 

da+ 

• 

(48) 

• (49)

(50) 

(51) 

\. 

.,, 

J 

w 
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0 

\V2 dw 

w 

122 

·/ 

(52) 

Z comea from (10). Aß it ia evidenced by the computationa in [3], the 
aum of the firat and aecond term on the right band aide of (52) is aaaller 
than 1 flgal for a neighbouring mountain of about 2 or 3 km height. The 
rather simple third hrm. of (52) amounta to about 0.15 mgal for a height 
hp of 3 km.

The.introduction of the relation 

[ �: r C 

and of. (16) and (48) transforma the equation (51) to, 

with, 

T • /'; J( ( Jg + C + c1) H(</,)

w

8
2 

.. /B/11 

,-., 

dw + . ,!:::!, �

(53) 

(54) 

(54a) 

Now, in ·order to be more precise, the braces f l are. introduced in the
-e:x_pre s·a ion (54a).

,-, 

{ [B]" 
hp 

f = i.'.:'.,2 = -B 
R C 

/ 

= [IBJ11j { :P .Bel
.. 

' 

- { hp B !
(V [B]" (54b) = • 

R C 

_ The bracea 4 l are understood to have the meaning that the constituenta 
contributed by the apherical harmonics of the 0th and 1st degree have to 

...... 

(V 

• 

+ 4 11 t f 

IV 

hp 
h -p R 
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be aubtracted. 

AB it ia evidenced by an earlier publication, [3], the firat term 
on the right harld eide of (54a) amounte to not more than some millimeter, 
after 1t ie divided through the globäl mean of ·the gravity i'G� 

tt [B]" (55) 

The eecond term on the right hand side of (54ä) is also very small. 
,The relation (44) allowa the precise evaluation of i't. A rough estimation 
leads to 

� 6 cm (55a) 

if B
0 

= 200 m • 3, and hp „ 2 km. This is the amount by which the final·
reaul�, the height anomaly C , is shifted. 

In extreme cases, it seems to be posaible that the amount of 
B

0 
= 1000 m • can be ·reached-. This value and an amount of hp = 4 km

lead to the considerable value of 0.7 m•for the expression of (55a); 
(see: Drewes, H. et al.1 Wirkung der Undulationen der Grenzfiäcµen der 
Lithosphäre auf das. Geoid. Veröff. d. Bayerischen Kommission f. d. 

. 
J . 

Internationale Erdmessung. Aetron. - Geod. Arbeiten, 4§ (Milnchen) 1986). 

Before thie background, the term 2 2 on the right hand eide of (54)
is not coneidered ,ifurther on.,in the following deduc,tione. Therefore, 
the evaluation of the·amount of the c1 term, (42), remaine as the task
of the subsequent developmente. 

1 
G 

hp 
-B 
R c 
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5. The relation between the Bougµer anomaliee and ·the model anomaliee,

At fir�t, the amount of the 

[ �:] 
_,_ 

Q 

on the right hand side of (42) 

(33) (35) give,

'J M- ., ÜT uB 
,. _____

'0 r "Jr ur 

(45) and (47) lead to,

-- = -

'1-ld with ( 14 J , 

ein -f-
e 2

0 
=---

term 

ie to be considered. The 

w 

(56) 

relations (5) 

(57) 

II . +[ ';) Bj . ., (58)
�r 

(59) 

The introduction of (53) and (59) into (58) has the followipg result, 

( 16), 

'JB -- - -
0r 

/ 

(57) and

�M 
- -- =

'Dr

/ 

\ 
' 

1 R \ \ (hQ � hpl4· 'ii t f hp - 2 ff -_dw + c. (60) 
e

o 

w 

(60)· are combined,

cS g - 4 )1 f '; hp - l f � � � � (hQ -
_
hP) � 

0 
d w + C. ( 61 t

·w

•

\(

• 'Jf" 
2 ein 2 

4 11 f ~ hp - f f R (hQ - hp) 2 d w 
-e 

0 

1 
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With 

�r� dw
- eo 

• 

follows for (61), 

0M\ 
Jg - 2 -- -- = 

.'0r 

125 

4 ,_; , ' "R ' . , 
(62) 

„ 
r r

1 

ff '· 
hp - 2 f f. R hQ eo

dw + c. (6J) 

Now, ther:1'elation reprea�nt ing the refin.ed Bouguer anomalies 11 gBouguer . 
is required, (see: Ledersteger,· Astronomische und physikalische Geodäsie: 
Jordan/Eggert/Kneissl, Handbuch der Vemessung�kunde, Band ·V, Stu+tgart 
1969.)' (8) (9J (10)·. 

d gBouguer "' g + � (64) 

g is the gravity messured st the surfsce of the Earth. hp is,the normal

,height. Oe 
is the standard gravity'at. the level ellipsoid. The gravity 

disturbance has the fol:l.owing e:xpression, (6) (16), 

Jg.= g - 7f

(64) and (65) give

.d gBouguer „

and with (6J) 

LI gBouguer +

.. g - ö.e + 2

d'g - 211ff 

,c> M 
__ ., 

'ur 

Gl 
R 

�· 
hp +

- �  

C (�p + )

2 G 
c--c. - � 

2 G 

R !; + 

+ l fp R()h -
1 

dW . 2 ) . Q e 
' 0 

' 

(65) 

(66) 

,(67) 

,, 

. ,

w 

{() 

* hp 
G­

R 

. ' 
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The following reiaUons are well-known, they define the_ at tract ion of 
the Bouguer plate and the free-air gradient of the gravity, /5], 

2 'ii' f f = 0. 1119 [ mgal m -1 
] (68) 

and 

2 _q 
R 

• 0.)086
l,mgal m-1 

l . (69) 

Thus, 

'JM 
,9, .:1 --a gBouguer + 

'Jr
(70) 

or 

'vM 
= ·- LI gBouguer + 'V j 

- r
. 

. .

('.70a) 

with, (67) (68) (69), 

+ (71) 

�1 = - 0.2 [mgal m-1J �. (72) 

,s, · 2 = ½ f� R (
) �Q �o

dr (73) 

w 

In the equation (72), ,,9, 1 _ is measured in mgal and ½ in meter.

�ow, the amounts of -0,� and "'9,2 are evaluated for a mountain modal.
This ·model consists of a mountain maseif- of 2 km ·height and a horizontal 
exte,!lsion of 50 km x 50 km. •The amount of -9i 2 was, comput�d up to a
d:istance of 200 km from this mountain massif. The amount of . � 1 was'
computed !or the same area,and for a course of the C: values which is in' 
keeping with a plumb-line deflection of 20 11

, 

.. 20" --,r = • (74) 

~ 2 

'J t; . 1 
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Along theee line_e. the table 1 wae computed. 

Table 1

eo ( �1 ,{)., 2 ,8,-

[km] [ m J [mgal] (.mgal] [ mgal] 

0 0 0 0.5 /0.5 

40 4 - o.8 0.2 - o.6

60 6 - . 1 .2 0.1 - 1.1

80 8 - 1.6 0. 1 - 1.5

100 10 - 2.0 · 0.1 - 1.9

140 14 - 2.8 o. 1 - 2.7

160 16 - J.2 o.o - 3.2

180 18 J.6 o.o J.6 

200 20 - 4.0 o·.o - 4.0

In order to avoid mieunderetandinge. it ie neceeaary to etrel!la the 
fact that not the -9> valuea themeelvee are of direct intereet. they do not 
figure :Im the eolution of thie �.oundary value problem !!:e terme to be added 
to any _grav;f.ty value. by no meane. It ie the verticai' derivative of the .$, 
valuee that ia here of direct interest. The effect that ie of intereet 
here , that ie the inf luence the. � valuee take on the c

1 
term. Of couree. 

(42)�nd(7o)and(7oa) can be combined to

or 

01 = ( LlgBouguer - .9,)

Q
�� - ( 

,.-, 

01 = 01.1 + 01.2

c1.1

c1.2
[ ,SiQ�* - -9, Q ] 

L'.1 gBouguer -9, ) (75) 

(76) 

(77) 

• (78) 

Q 

.. -
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The effect that the ,S, valuee 'e:xert on the c1 •2 term that ie the matter
of intereet. 

The amount of the c1•2 term will be computed later,·in conte:xt with the
evalutation of 'the c1•1 term, (125) (130) (133). Already now, it can be
anticipated, .the -& function of the etructur,e given by the table 1 givee 
rise to a c1•2 term that amounte to not more than about 0.06 mgal, (130).
Thie value can be· neglected. 

, 

I 

.. 
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6. The height gradient of. the Bouguer-anomaiies,

In the_sucoeeding fnvestigations, the vertioal ohange of the­
Bouguer anomalies is in the �ore, (77). Th.e model potential M is 
divided into two -parta, M1 and .. �• (76), (42}, 

c1• c;, 1 + c1,2 • - f �:11Q*�+ [ �:l )Q 
\ 

. )

! .-;)'½] 
� Q-:IHI'" + 

j ';)�1-
�-Q

• (79) 

A- oo�parison,; wi tht the formulas from -( 75) tci ( 78) shows that "the
foilowing substitutions are right,

- 'uM1 (80) 

and 

$,. 
= oM2 

ur 
(81) 

In ca�e, a spherical model Earth is oonsidered,�the vertical . 
gradient of the free-air anomalies has a ✓well-kn�wn integral
-representation, L 1] /5], 

c>_ L1 gF R2

fl 
,.dgF -

. Lt gi,o= -

e 3 
dW • (82). 

0h 2 7i' ' 
0 ·-

w 
. .

The essential part of the amount on the right; hand side of (82)
is obtained· by an extension of the in;begr�tion.only over the 
surroundings of about A = 100 Jan, arouild the test point. !lllius;· 
a oonsideration ·of the vertioal gradient whiQh appears .in (79) 

depends essentially on the-struoture of the gravity field of the 

'i 

/ 

•

= 
";)r ' 

• 
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near surroundings of the tes� point, u� to a distance of A = 100 lon. 
In case, the following inequation is valid, 

A· 

<< 1 
R 

(83) 

the here intended.investigations �ill allow to neglect the eurvature 
of the surface of the Earth/ Therefore, the essential parts of the 
succeeding evaluation of· c101 and c1•2 will undergo no mo1ification
if the spherical geometry is repla�ed by the plane geometry. This 
fact is corrobor�ted by an investigation whioh: uses spherical 
·harmo.nics.

In this context, a rectangular Cartesian co-ordinate system is 
introduced. The x, y = plane·is the horizontal'plane of the point Q** 
in the level of the sphere aep• The z = axis shows perpendicular
upwards, Fig. 1. In this situation, the potential function M1, (79),
which satisfies the Laplace differential equation, 

,. (84) 

can be represented by an analytical expression of the following shape, 
(see chapter A of [3]), 

m1 [ eo,
X �Y 

M1 = 2 "· • ·COS 211- -

p q 

2 ;j
X 

� ]- sin sin 2 'lf 
p 

exp (- � y 1 + 1

') 
,., , in p (85) II Z •

77 

In case of a global extension, M1 can be·developed in spherical
harmonics 1 .instead of the Fourier development according to (85). 

Returning back to the relatioh (85), it is to be stresse� that 
the representatiom (85) is valid for a;1.1 the points above 
the x, y = plane and for a horizontal extension of the system of the 

" 

= 0 

- . 
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x, y = co-ordinates of some hundred kilometers, -according to the 
theorem of Keldysh ... Lavrentiev,{19)(20), -.,m1 is the amplitude,
p and q are the wave_lengthes in the x = ap.d in.the y = direotion. 
A symmetrical distribution .. is ohoosen, 

p=q=-L (86) 

The Bouguer·anomalies which!. are determ;ined by the model potential 
M

1
, (85), are understood that they have a maximum for x = o,

y = O; therefore, the sinus functions in the braokets of (85) are 
not taken in:to aooount,from now1. Henoe, oombining (85)° and (86.), 
M1 gets this shape, . -

X y 
M1 = m1 oos 2 71 - cos 2 'i( - •

· L L 

• 

(87)( fulfills the Laplao'e differential equation. 

The rad:j.al derivative of (87) is 
. I 

'J r 

1• 

- 2 i, i2 - - M1 . •
L 

(80) (87,) (88) result· the following Bouguer anomalies,

I -,/7" 1 
ff 

X ~ y
LJgBouguer = 2 ;, r 2 - lll',j cos 2 - coß 2 11 - • 

. L L L 

• exp -21112 ( .,r::-, i:'
z 

) •

(87) 

(88) 

- For x = o, y = o, .the Bouguer anomalies have a maximum value with
an amplitude of the amount K,,

1 · z 
K = K(z) = 2 71 f2' - m1 • exp (-2 ii 12'- ) • • 

L L 

(96) 

,_ 
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According to (89), the positive amounts of the Bouguer anomalies
extend around the origin of the x, y = co-ordinate syst·em up to· a
distance, of ¼L• In case that_x or-y_has this amount, the Bouguer
anomalie1;1 are equal to zero, (89). Hence, the total horiz'ontal
extension o·f the positive Bouguer anomalies amounts to

• 

1 

The combination:.o! (89) and (91) gives,

·" ,-/ .,r;:" 1 
LJg - II f2 --m..Bouguer - D 1

,_,x ,.., y,
COS II - COS II - • 

and,

z 

e� (- 'ir ff -)
D 

D D 

with-(87), !or the potential M1, _

X ,.,Y 
exp (- z. 

M1 
,V ~ 

R-=.,m1 cos II - 00S " . 

D D

The relations (90), (92) and (93) lead to

) .. 

. . 

LI ~-.r:, 1 ,.., x �y 
gBouguer = 11 r 2 - � -= K(z) cos 11 - cos 11 - • 

D . D D 

( 91)

(92)

(93)

(94).

�e repeated vertical derivative o! the potential_M1 has the following
recursiom !ormula, (87) (88.) ,, 

'c) i 
---r-"f 

M1�r 
/' 

or,· with, (94),

Ji 
�

M

1

={-
. 

i 

u -fi' � ) M1 , ·
D 

= .-(-
. 1 . i ·-

ir -y;-';) 

. . 

(i = 1,, 2, ... ) • (95)

1

_.,d gBouguer' (i = 1, 2, ... ) . (96) 

---

• 

II 
D 

\ 
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The x, y =--·plane was introduoed as the horizontal· plane of the 
poin� Q*�, F_ig� 1. Therefore, this point Q**is ·defined by the 
relation. x = y = z:. = o. The corresponding point Q has the .relations, 
(77), 

x = 0-, y = 0, z = Z, = hQ - hp• 

(77) and (94) yield,

c1•1 .;, [ K(
.
0) - K(z)J�os 7t; cos·'ii'; ,

or, with (90) and (�1), 

= "'tt _..,c,2 
1 . ,,., X � 

c1 •1 / � - m1 cos 11 - cos ,, 
D D 

- · exp ( - 'ff fi' ;> ]

Introducing, the' substitution 

:: [1 -
D' 

/ 

1
(97) 

(98) 

(99) 

(100) 

the folloydng series development of the term in the brac kets of ( 99) · is 
a -convergent expression for all the amounts of °'-, 

or, 

·[ex 1 < �-
-, 

1 - exp ( :- o<. ) = 1 
1 1 

1 + O(_ --- ex.. 2 + - O(.J - +

21 - JI

[ 
1 - exp (- � ) ' : (- 1 )n + 1 

nl
n = 1 

�n 
• 

• 

Hence, (99), 

•••• 

/, 

(101) 

(102) 

(f02a) 

I 

...r:7 z. 
ll f 2 = 

D 

oO 

1 
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c1•1 = ll 12 - m1 cos, 

D 

134 

00 

X 

y 

L r, - cos 'if - (-
D D 

n,... '1 

1 n
-O<. . 
nl 

The series development. ( 1 OJ) is alwaya convergent-. In case, the 
amount .ofl<X- 1 ia sufficient amall, 

( 103) 

( 103a) 

it is allowed to truncate the series (103) behind the term linear in 
o.:: , (77) (99) (103), 

. ,.; ~7r-"1 ,.,, X ~ y 
I j . 

c1• 1 = '' f 2 
D 

m� cos 11 

D 
cos II 

D 
• 10(. , C.C. I << 1 � (104) 

A com!>arison, of ( 92) �d ( 104 )· yields ( fo.r z = o in ( 92)) the following
relation, 

( L1 gBouguer] H X- • :x 'Q . . l Qc, l << 1• ( 105) 

The equation (105) is a representation·of c,1•1 by the Bouguer
anomalies which a�e distributed along the Bjerhammar sohere with 

** the radius rp(with the running point Q ).!These anom1:-lies are not 
directly measured. The directly measured Bouguer anomalies are 
placed in the points Q·at the surface of the Earth e--, Fig. 1. 
Thus, in the equation (105), the Bouguer anomalies in the points 
Q�:lfshould be lifted upwards by the .h�ight �, they should·be replaced 
by the corresponding a.nomalies in the points Q, � it is a �hought 
that auggests itself. Following up this aim, the relations (92), 
(99), (100) lead to 

0t.1 · = { LlgBouguer) q [, - exp (- °' ) ] eXp ( "'- ) ( 106) 

or, 

C 1 • 1 = · [ A gBouguer J Q [ exp (. � ) - 1 J • ( 107) 

In this olo�ed relation, the development (108) is introduced, 

/ 

• 

I . 

; 
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00. 

exp ( � ) - 1 = \' 
1 

ex.· n,L nl 
n = 1 

! ex. 1. < 00 ( 108) 

The truncation of this series by taking along i ts first term only gi vesithe 
succeeding expression, inst�ad of (105),, 

c, .1 = ( .d gBouguer J Q • � \ex.)<< 1. ( 109) 

Now, the Bouguer anomaly is replaced_·by the analytical expression 
.of i t, ( 94). The equations ( 94) and ( 109} are combined to 

= e<: • K(Z) 
X . y 

• cos 'i'f - cos v
D D 

(110) 

As the above relation doos show, the a:mounts of the c1•1 term are
positive and negative , ( for - D � x � + D,- D �Y � + D). 

The amount of this c1•1 term, (109), is intended tobe
evaluat·ed .for two models of Bouguer anomalies. The test. points Q 
e.re situated on t·he z-axis, (J:. = o, y· = 0), in these computations. 
Consequently, a relative maximum of the c1•1 values is -con�idered, 

because the Bouguer �nomalies spread over the x, y = plane have 
a·maximum, if x = 0, y = 0, (see (11�)). Therefore, the model com­
putations can h�ppen by the-subsequent relation, with x = y = 0, 
z = z, (110) (lJ9), 

C = <:x. • -K(Z) = ( . 1 • 1 (110a) 

Along the oceans, the Bouguer anomalies have tobe· replaced by the 
free-air anomalies� in <11oa). 

The first model ·has the following paramet�rs; 

L1 
gBouguer = 20 mgal;

• h
Q 

- �p-= 1 km

D = 50 Ion. 

(111) 

•

L1 gJ;louguer) Q • ~ • 
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.,. 

They lead to these v'alues, (100),

D(. = 0.09 << 1 (112) 

and, ( 11 Oa)', 

_ c1• 1 = 1.a mgar • (113). 

The second model is-characterized by 

LI gBouguer = 40 mgal,
1 -

( 114) 

D = 200 km. 

The amounts 

0(. = 0.02 1' ( 115 )• 

and 

c1•1 = 0.9 ipgal ( 116) 

resul t by the computations. The values of ( 113) and ( 116) · computed 
for c1•1 are the maximal values of this term,�or' the considered 
waves. The mean value for c1•1 will be smaller.

- . 

. The relations (113) and (116) show that the amounts of c1•1 are
within the precision.of the global gravit_y- net of the present: state. 

, , . . ' 
·The cosmic missions of the future, as satellite gradiometry and 
satellite - to .. - satellite tracking, are-ho'ped to give a global 
gravity field with a staridard deviat:1.on of about,± 2 mgal for the 
compartments of 500 x 800.km size. (See: Wichienc_!larqen, c.;

REtcovery of 1° - mean,anomalies ·in a local region from � lo� - low 
. satellite -· to - sa.tellite tracking mission. Ohio State Univ., 
Dept. geod. Sei., Rep. 363 (1985), ) •

The fo:r;-mula. (.109) res�l ts by a. speotra.l represe!ltation of the. ·, 
fie.1d· of the Bouguer anomalies. In the praotioal appl;oations, 

'/ 

= 1 km, 

<< 

' 

\ 
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such a spectral_anal�sis of the Bouguer anomalies is not current· 
in use in the routine computations. But, the continuous two­
dimensional !unction._of the Bouguer anomalies along the surface of 

. . ' 

. 

the Earth is well-k:nown by the concerned maps. Therefore, it is 
useful to show a'w.ay that leads to the determination of the amount 
of c1.1\_ e�ressed by the continuous funotion of the Bouguer
anomal�es, without any Fourier analysis of these anomalies. 

rn·this oontext, the terms in the_ equation t92) are differentiated in 
the vertioal direotion, the ·relat�on.. (100 ) is introduced,and the 
resulting power series development is truncated behind the term 
linear in ex, , 

-· .dg . = -[ � - - ] '[';) . 'i) h . Bouguer � = Z . v h 
�gB -l (1 - Cl ). (117)· 

LJ ouguerj z = 0

Further, the•relation (92). leads to 

( L1 
gBouguer] z : z. = [ ..::1 

gBouguerJ z = 0
( 1 - °' ) ' ( 118 ) 

and 

J ,lgBoUgUer ]
. _ z 

(- 7f ]/2 ;
. ) • · ( 119)

The relations (109) and (119) are combined. They give the equation 
(121 ), for 

C1 .1 · = -

lcxl<< 1

(hQ - hp) 

f : h 
Lf gBougu�r J • 

z = z 

(120) 

( 121 ) 

A look on {-117) and 
.
(118)· reveals the :f'ollowing situation. The

height dependenoe of the Bougue� anomalies and that of the vertical

•

·, 
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gradients of them is small, if 0<. is small, (120).·If the height 
dependenoe of these values is omitted, ·a relative. error of the 
order of 0(, is the oonsequenoe, only. Along these li_nes, the 
relation (121) gets the following form 

C1 • 1 = - (hQ - hp) {_2-, 4 gBouguer] · ( 122)
'vh z=O 

The above vertioal gradient of the Bouguer anomalies, (122), oan 
be oomputed in terms of the Bouguer anomalies which·are distribu­
ted along the sphere wi th rp as radius. Hence, ·( 13.), 

R
2

~
, !Jf (,1gB

_
ouguer)

_
y** - (L'.lgBouguer) Q,** ·

c1•1 = - (hQ - hp) ____ __.._____________ d w Y** ·
2 II e · ' 

. 0 

w (12.3) 

Regarding (118) and (120), it is allowed to replace the Bouguer 
anomalies along the sphere � P� by the oorr_esponding values 
measured at the surface of the Earth 6" , Fig. 1 ,-( z = zl). Thus, in. 
(12.3), the following transitions are allowed 

[ L1 gBouguer ) Q *� --,... [ L1 gBouguer] 
Q

{·:LtgBouguer) y** --+- [ LI gBouguep] y

and, finally, 

"' 

c1.1 = -

R
2 

,.
}f 

( LlgBouguer) Y 
(hQ - hp) -::;- .3 
_ 

2 ,, · _ e0 

(12.3a) 

( 12.3b) 

( 12.3,c) 

As to the further procedures for th� computation of_c1•1, the
integral equation for the downwards continua�ion 'ot the 
gravity anomalies/ ,derived by Bjerhammar from the Poisson integral 
is-·of interest h�re, /4./. -If' the rugged free-air anomalies are 
repl�oed by the ·smoothed Bouguer anomalies, and if th� kernel 
funotion remains unchanged, this integral equatiön of [4.J turns 

• 

J 

' ) Q. 
( .LI gBouguer d w y .• 

,, 

,. 
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into a shape suitable for the here discussed problem, 1. e. for the 
determination of c1•1, (see (136)).

,· 

Tha.nks to the advantage t�at c1•1 is small and that tne Bouguer
anomalies are smoothed, · the numeric.al computation of c1 •1 in terms
of the Bouguer anomalies is a rather uncomplicated and stable 
procedure, rela�ive easy to handle. 

Finally, tlie evaluation of the amount. of the c1•2 term is a
problem needful. to be discussed, (78.) (79), (70) to (73). The 

. 

. 

. 

. , 

deduci;ions follow the way that d-id lead to the amount of c1•1
• The

substitution, (81 ), 

1 • 0"2 
.,a =

'c)r 
(124) 

1s introd�ced, (81) (70a) (78) (79); and a look on (109) gives 

(125) 

Considering the shape of the _.Q function represented by the table 
1, the horizontal extension of the gravity anomaly has about the 
valu·e 

D = 400 km, (126) 

and the amount of the amplitude of the . ,S,-wave ·1s about 

=· 5 mgal. ( 127) 

With 

(128) 

.and with the' formula (100), the following equation. yielda, 

Ol.'=0.0 111 (129) 

'-

. 1 
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the ---relations ( 125) -( 127) and ( 129) lead to 

1, c1 •2 1 = 0.06 mgal (1.30) 

As is evidenced by (1.30), the amount. of c1•2 can be neglected
without any hesitation. In order to avoid misunderstanding�: The 
� values are not of inter�st here directly, but the vertical 

gradi-ents o:t:these values are in the fore, since the vertical 
gradients det.ermine the c1•2 term.

Consequently, in the.here discussed geodetic applications, the 
following relatio,ns can -be taken to be righ'tt, ( 70) ( 76), 

C 
1 •. 1 

"' = C1

• 

0M 
= --

�r 

, 

• 

And, with (77), 

C1 = { LfgBo�er) Q;(.* - (.LfgBougue�) Q

Consequently, (10.3a) (12.3j (12Jc) and Fig. 1, 

01 = _ (h _ h
p
) _::=_}f (AgBouguer)y -

Q 
21i' 

· 
e 3

. 0 

w 

( 131) 

( 1.32) 

(1.3.3) 

• (1.34)

( 1.35 )_ 

Further on, certain other procedures exist for the computation 
of c1, being defined according to (1.34). These procedures are free
of spherioal approximations for the surface of the Earth, and they 
are free of the condition - (10.3a) for oc.. • The fo�ula of Poisson 
gives rise to a regional development, of the form (1,36.),, (see /4/, 
eq'L\atioJi (2)), 

• 

C - ~ 0 
1.2 . 

- ) 
{ L1gBouguer Q d w X 
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' 

(( 
wi th, Fig. 1 ,

(,1 g • ) ,o, 

�ouguer Y dwy*"" (1__36)
8Q0

y.#H 

( 137) 

(138) 

eQ.Y*�is the oblique distance between the point. Q on the one hand 
and the point Y-Jf 

,/f on the other hand. Q is fixed at the surface of 
the Earth within the course of the integration, according to {136). 
y**is variable over the sphere ae p within, the course · of the 
integratiQn. Thus, 

(139) 

-The angle 1/f is here the spherical distance between the two pointsI 
Q and y** • 

The inversion of t_he integral equation of the Urst klnd, 
( 136), determines the Bou�er anomalies ( .:1 gBougu�r?Y�:lf along
the sphere with the radius rp in terms of the measured Bouguer 
anomalies ( LJ gBouguer>Q on the surf�ce of the Earth tY • ·Thus,
the inversion �f ( 136) leads to .the difference amounts: 
� LI gBougue�)Q"fH: minus ·c LI g�ouguer>Q• Thereafter, it is � easy
step to reach c

1
, (134)); 8ince this anomaly difference is equal to c

1
• 

The integral eq_uat:f:_om ( 136) can be brought into the form of an 
op�rator equatiow, 

(140)-

I.t has the following inversion,_ 

• ( 141) 

1 .

,. 

w 
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The left, hand .side of (141} inoludes also ( LI gBouguer)Q*,,. •
�he oorres�onding anomaly for the point Q is known from the 
measurements. Thus, the -01 value oan be determined as the
difference of these two values, (134). 

The introduotion of a set .of gravitating point masses m1
situated in the interior of the globe ae oonstruots another 
prooedur� for the oomputation of c1, [1/. Along these lines,
the potential M is expressed by a regional development of the 
form 

(142) 

for the test points Q at the surfaoe 6"' • The point ma�ses 

( i :. 1, 2, • • •, J) (143) 

have ·a limi;ed number J. They are understood �s a set of po:il'lt masses
1 

a set of bounded regional extension. For instanoe, they oover an 
area of 100 lon or 200 km square. In the oentral part of this area, 
the potential M will be _approximated especially good by·(142). 

Now, the introduction of vector �d mat:r;-ix symbols is 
recommended. For a seit ()f· disoret:e surfaoe points Q of the tetal 
number J plotted iri the oonsidered area. of regional extension 
in a convenienT- distribution, the M values are well-defined by 
(142). They figure now as the elements of the·veotor �, this faot 
is desoribed by 

• (144) 

In a similar way, the gravitating poin� masses m1, (143), figure
�s the alements of the vector X•

• (145) 

The equ�tion (142) follows vo have this matrix shape, 

' 
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= = = 

143 

(146.) 

The matrix X represents the kernel function of (142), it is here 
D 

understood that_ it is a quadratic and non-singular matrix. Further 
on, it is convenient to introduce the radial derivatives ot the M 
potential (in the selected surface points 9) by the form of a 
vector. It will be demonstrated by the form (147), 

� · H :: 1 i 
Q 

(147) 

At the surface 6" ,  the radial derivatives of the kernel function. 
I are as follows, 

• 

, . 

- At the sphere ae P' th"e relation ( 148a) follows similarly,

Consequently, 

w�Yv 
= = = 

The relations (131,} and (134) yield. 

The vector, (147}, 

gives, (149), 

-lt-Jf ** 

W = Y V 
= = = 

• 

• 

(148,) 

( 148a) 

( 149) 

( 150} 

( 151) 

( 152)

• 

y *~ = f -(2- . ~ ) 1 
= - l -v r Q-J(,t' ~ 
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Hence, (149) (150) 

*�-
g1 :w- w : 

= .. 

with, 

i1: { 01 } 

( 1 :,;2), 

(E - y 
·= = 

• 

H* 

144 

y-1)
= 1i ' (153) 

.. 

(154) 

The elements of tbe vector g1 are the here requi!'ed values,
o1, (153) (154). Eepecially

i
that e�ement of .g1 that ie �ituate�

in the o�ntral part of the considered regional are� is:of 

,, 

dominating interest, since i t will resul t in a relative high,. 
preoision, and ilince it will be equal to the c1 tenn tobe determined.

A similar development about gravitating mass points m1 for a
regional representation of the M potential. ( 1which _is in olose

reiation to the Bouguer - anomalies) lw�s discuss'ed earlier 'in 
anoth�r publication, /1/. fille problem ·treated in that publication 
[1} · was in a very elose relationship io the here investigated

question of the determination' s,f the residual term o1 of the
geodeti� boundary value problem. 

In tha-e- earlier publication [1], the Green id:e_nti ty adapted , 
to the surface'of the Earth was the fµndamental starting·point. 
This identity was applied to the perturbation potential T. The 
thus obtaine4 relation was rea.rranged for routine geodetio 
applications. �hes� rearrangements did not tranefer tbe physical 

:values from G" downwards to i?(J p• as .here in case of' the
Bjerha.mmar ephere; but, the geometrioal values did undergo a. 
transfer from. oe p upwards to the surface G' , replacing the 
square of the horizontal distances e0

2 by the square of the
�blique distances e

0 

2 + z
2, for instance. �he final resul_t· of 

these rearrangements of- the' identi ty of Gree,n was the Stokes . 
integral �upplemented by a olosed residual term; - which ia in the

main identical with the here obtained residual term represented

by c, c1, S 
2 

in (5�) -.In the ·publication./1], one of the
discuesed problems was the determinationi. of tbe e,mount of 

\ 

, 

✓ 
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t ( 155) 

by a regiona.l representat'ion_·of the· M potential in terms of a. set 
of gravitating mass points. p.

1 
and p.. 2 are the surface valuea

of the deflectiona of the vertical caused by the M potent·ial. 
Hence, f',-1 and /-1- 2 are two - dimensional functions. The derivat_ione, 
in ( 155 ). refer 'to the /-'-1 and f',2 functio1:1s along the. oblique· 
surface of the Earth. Further, /1/, 

· · 

di' = R d� ' 

dy = R cos 'f d ,\ 

(155a) 

( 155b) 

The step frpm ( 15_5) to the c1 tei,n is
relation, (aee equation1 (67) �n /1/), 

executed by the following 

..!, 

_"Z)p1 
+

/ ( 156) 

The functions fl 1 and f 2 are equal to the topographically
redticed plumb-line· deflections. In /1/, the amount of (155) was 
expressed by the Bouguer anomaliea ,( see equation (1oJ) of [ 1] ). 

A short diacusaion about the apatial.distribution·of the point -. 
-

masses � in the .interior of the _Earth aeems to be recommended. In_ 
the here exeout·ed developments, from ( 143) to ( 154), the places of 
the point masses mi have to obaerve the restriction that they have to
be situated only within th, globe ae with the radius R; it is on 

.. 

the atrength of the theorem of Keldysh-Layrentiev which po�tulates 
that the f:!Paoe � 1 (between � and fS' ) lias to be free of masses.
As opposed to th�s situ�tion, the developments about·the identity 
of G.reen. have other presupposi tions, [ij. In /V, the theorem of 
Keldysh-Lavrentiev is not used. Thus, the lengthes of the geocentric 

. placement vectors of the point masses_� are not reatricted to be 
�aller than the radius of the globe, R. In the developments 
deacribed in the publioation /1/,_ the point masses � are allowed

I 

a 

. 1 

/ 

I • 
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to be ai tuated also in the space � i axtended between G". and
oe • 

Therefore, the·methoda usins the identity of Green:, [1], allow 
a great:er flexibility in the ch�ice of the positions of the point 
masses mi' as opposed to the methods which are , based on the
theorem of Keldysh-Lavrentiev. ,!I!he 'f;heorem of Keldysh-Lavrentiev 
has the constraint r < R for the radii of the poinif me.ss·es. The 
theorem_of Green haa the conatraint r<r

6' 
., (r = R + h), for 

• (i' 
the geocentric radii of these point me.asea. 

Finally, it.is to·be stressed again, that the free-air 
anomalies _give the c1•1 term along the oceana, as the Bouguer
anomalies·do along the continent�, (134). In 'good approximation, 

c1,1 can be replaced by c1

/ 
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7. A comparative survey of the free and of the fixed boundary
value problem.

The solution of the boundary value problem of :Mqlo.denskij_ is 
given by the relation (1) and by the supplementary relations (7) 
(11) (13). In these equations, the h values figure as the heights
which the surface points have above the ellipsoid or above the
globe, Fig. 1. The succeeding relation, C157), is sel:f-explanatory,

( 9)' 

• (157) 

The height anomaly /::p is the unknown quantity of the problem
which;. can be determined by the boundary vnlues, (5) (6). 
Principally, the equation (1) has the charactep of the solution 
of the free boundary value proqlem, because the boundary values 
are distributed along the real surface of the Earth o ( they are 

. \ 

not placed on the telluroi�1 and it uiust be add_ed t�at the shape of ö is 

beforehand unknown. It comes to be known by the computations 
according to (1) and (6), which yield t;. After the height 
anomalies I: are. known by (1) and (6), the shape of the boundary 
surface n"' can be determined by the geocentric radius of it, 

\ . 

(158) 

But, ev� the I: values that figure in (158) are the ruucnown 
quantities which are to be determined in the course o� the 
solution of.the boundary value problem. Thus,-principally, the 
relations (1) and (6) are not- an explicit solu.tion for /; • t; 
appears not only on the left hand side of (1), t; figures also 
on the right hand side of (1), but in a more indirect or implicit 
manner. Thus, the·�hape of the boundary surface belongs to the 
unknowns of the problem.-This situation is typical for a free 

-boundary- value problem •

./ 

' 
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On the strength of this fact, and to begin with the comparative 
deliberation.e - comparing the free boundary value problem with the· 
f.ixed one -, it is useful to subjeot the free boundary value problem. ·
to a modifioation, reduoing it and ·-putt ing_ it into the olass of the

' -
. 

fixed boundary value probfem. After this transition to t;he fixed_
problem, the boundary values are plaoed on 
of _the· suri'aoe 6' , E_'ig. 1. _ '.l'here-fore, the 
(158),•but, .it has now the rela�ion

fhe telluroid, inetead
radius is not given by

• 

This mod:tfication of the rp values, (158) ' (159), influenoe� the 

-·

(159) 

ooeffioient before the integral on the right hand side of the equatioR . 
* ( 1). The negleot ion of ' ( P in the rp value, (rp � R + h'.p ) , leads to a

relative error of the amount of 

<< 1 (160) 

in the T '1'alue on the left hand side of ( 1). The height anomaly derives 
with the_same relative,error, ( C/R, (160);_ if rp�R+h; ); this fact :!.e
evidenced by the equation (6). As an example, �he quotient (160) is 
oomputed for the parameters C • · 0.1 km and R a 6 370 km. These

parameters lead to _the faot that the transi�ion from.the radiU"e of the 
eurface of the Earth fT to the radius of the telluroid_, (157) (158)(159) , 
has an impact of not more'than 

... 0.2 cm (160a) 

on the /:: value obtained from (1) and (6). 

'This amount is absolute unimpo_rtant. ·. 

The very small amount of (160a) can be included 1n thA sol•,tiou ((1) -
(6)�eas1ly

1
by a succe_eding iteratio:a eteP,, 1t ie eelf-explanatory.

_ Thie iteration procedure ie always converge�t, beoause the amoun:t of 
(160) is by far emaller -than th& unity, 1p all oases.

Further on, 
the -integrale 
that of Hotine_ 

conside'ring -the soiutions of the boundary. value problems by 
(1) and (54) which solve the Stokes's problem and

in a sufficient approximation, it is

.•

.!;_ 
R 

R 

... 

I 
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seif-explanatory, the transition from the surface 6' to the telluroid, ..,,.. 

(157) (1 58) ( 159),

+t; 1 

has.an impact on the small supplementary terms C, c
1

, 
Obviously, this impact can be neglected in all cases • 

;( 1 61) 

_.._, 1' 

. Summarizing, the transit ion from the sgrface G' to the f'ixed and' 
well-known telluroid leads to a.well-defined value for the height 

- anomaly (with a very smal_l relative error), along the lines of the fixed
boundary value proble-m, (1) (6_).

In order t o have· a more _rigorous matheinat ical base, i t will be 
-

� 

convenient to withdraw from the- intention to substitute along the linea 
Surface 6' ---+ telluroid.- In this case „ it will be neces_sary to go back 
from the telluroi'd to the real surface of the Earth. It �ill be possible 
to bring this intention to a practical realization (i. e. the intr_oduction 
of the .surface G" as the definite and free boundary surface) by a simple 
iteration proc_edure appended to the solution ·of _ the f'ixed boundary value 
problem. This iteraUon procedure consists in the appli(?ation of' ( 1 57) 
instead of (159) for the radius of the boundary surface, introducing a 
first' approximation value of t: . Furt her iterative approximati-on steps 
may follow. The_supplementary numerical amounts which yield from this 
iter�ti�n proce�ure are negligi�le. 

Therefore, the reiations (1) and. (6) · compÜte in our problem,pref'erring 
( 157) or ( 159), the solution for the free or for the fixed boundary value..

probl�m of the geodesy. The differences between ·these two probleme are
unimportarit ,as far as the impaot on the reaulti.ng· height anomaly is concerned •

• After this above discussion o� the aspects of the free and fixed 
boundary.value problem·of the Stokes type, the·corresponding situation in 
case ·of the Hotine type of the boundary value problem is now put into the 
fore, (54). }:{ere I the gravi-ty disturbances figure as the boundary values _ 
on the surface E> ,  ( 1 6). For.the c�mputation of the standard gravity at 
the surf'ace of the Earth, it is necessary t�t the shape of the Earth is 

'known in advance. The radii �p and rQ of the surfaoe po�nts P and Q must
be known in aa.vance� Along the oceans, the sate'llite altimetry offers 
convenient methods for. t,he determination of' rp and rQ. The knowledge of 
the ahape of tpe -boundary eurfa�e ia essential for the fi:xed boundary 

-

. . 

* h 
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value problem, in our applications. Thus, the Hotine type comes near the 
fi::xed versi.on(not the !ree version).,' in any c�se in our applicatione. 

0oming to a final summation, �he equation (1) repreeente the eolution 
of the free and of the fixed geodetic boundary value prob.lern .lt ·haEi 
the free-air anomalies as boundary values along the surface of the 
Earth. However, in our applications, the equat1on (54) is connected 
w�th the fix_ed boundary value problem which hae gravity dieturbancee
as boundary valuee along the Earth's surface. The corresponding free 
version of (54) ie not actual in the geodetio applicatione. 

.. 
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8. Conclusi on.

The formula (54) is a-solution of the here considered boundary va.lue 
problem of the H.otine type. (54) meets the requirements of the theory and 
qf the numerical r�ckon,ing. The gravity disturbances dg serve as the 
boundary.values placed at the surface of the Earth which is shaped by. the 
topography. AlÖng these lines, the amount of the perturbation potential T 
at the surface of the Earth is e:xpressed in terms.of the gravity 
disturbances. The Hotine function appears as the kernel function. In the 
integr1;1,l of (54), the gravity disturban_c�s must be supplemented by the 
plane topogra.phic ·reduction of the gravity, C, and, further on, by the 
c

1 
term which is rat'her small and smoothed1and_which is often negÜgible.

In (54), the third suppleinentary term 2 2 is also trifling V1 mos:t ca.ses.
The solution, (54), has no series developmen,f of bad or dubious 
convergence. 

A similar formula. is valid for the solution of the bounda.ry value 
problem of Mölodenskij which uses free-air a.nomalies as boundary �alues, 
( 1 ) (2); cf. f1] [2] /3]. Also in this case, the supplementary terms C 
a.nd c

1 
must be added to the boundary values, (1), i. e. the free-air 

anomalies. But, the Stokes function serves in ( 1) as the kernel function, 
instead of the I;fotine function of (54). Further, in .S 2, (54a), the
second term of .the e:xpression for B 

1 
does not appear, (2). 

Several different ways lead to the computation of the amount of c1•
The relations. (135) or (153)(154) are re.commended, 1f a map 
of Bouguer anoinalies is at disposal. The formula ( 1 56) . is useful, if ' 
topographically reduced plumb-line deflections ·are at ha.nd. 

A discussion of the parameters which enter into the three\terms 
d g, C and c, is of intereet. . 

The term ,d g depends only on the m�asurements develo·ped in the 
physical geodesy and 1n· �he satellite geodesy. The gravity measureniente. · 
g at the durface are here effective. Further on, the precise height of 
the·surface above the mea.n ellipsoid of the Earth is needed, since th1e 
height is required for the computaUon of the standard gravity. 1' at the
surface of the Earth, Fig •. 1. 

I 
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The C·term figures as a gravity value, since it is )he plane 
topographical reduction of the gravity. But, the parameters that 
dominate the computation of· C are the ro_ugh height differencea, a 
precision of eome metere suffices··for them-. "These height differences 
are free of the sophietications the physical geodesy has in store for 
the precise levellings. 

On the other hand, the small term c
1 

depends only on the geological 
density anomalies in the upper parfs of the Earth : This are the amoun�s _ 
by which the density ot the. geological mas·s�s differs from the · 
standard densitj p „ 2.65{ g cm-3 ] ; -and, further on, the compe�sation 
masses ,of the isoetatic mountain rc,ote are effective. The o1 t_erm is
proportional to the eecc:>nd vertical derivative of the pot-ential produced 
by · these density anomalies. Thee�· density anonialiee are close to the 
Bouguer·anoma�ies, if continental areas are considered, - �hey are �lose to 
the fr_ee-air anomaliee, if oceanic areas are treated - • 

Summarfzing, the three terms ö g, C and c
1 

have different sourcea and 
different characters. · ög can be taken as a phy�ical value, C ae a 
geometrical and c

1 
as a geological one. 

./ 

/ 

; 

• 
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Summary 

The välues which the regular function of a spatial potential takes 
at the boundary surface being a regular surface can be represented 
by a uniform convergent spherical harmonics series development. The 

' '  

vector formed by the spherical harmonics can be multiplied ·by an 
. ' 

. infinite orthonormal matrix. _The product is a new vector of an infinite 
�umber of o.rtlionormal functions. The surface values of the potential. 
are expreased in terms ·of these new f�nctions. Even these new baee functions 
are replaced by the linear independent surface functions which the solid 
spherical harmonics take along the boundary surface; it happens by the - . ' 

·inverse Schmidt orthogonalization procedure. These l�ear independent
functions construct a compl�te system of base functions. Along these
lines, a convergent series development is obtained for the surface
values of the potential. A theorem of Abel leads to the uni!orm

. convergertce of the series in whole the exterior space. Picone'� t�eorem
corrobora'Ces · the result. A proof of the completeness and a short pr.oof
of the convergence is added. ·

Zusammenfas.fil!!!ß. 

Die Werte, di'e die reguläre Funktion eine_s räumlichen Poten.tials an 
einer Randfläche annimmt, können bekanntlich durch eine konvergente 
Kugelfunktionsentwicklung dargestellt werden. Der Vektor der Kugelfunk­
tionen wird mit einer unendlichen orthogonalen M�trix multipliziert. Man 
erhält ein neues unendliches System vpn orthonormalen Funktionen. Die­
Werte des Potentials an der Randfläche werden durch diese Funktionen 

"dargestellt_._ Schliessl_ich werden die wohldefinierten Oberflächenfunktione� 
eingefilhrt, die die räumlichen Kugelfunktionen an der Randfläche annehmen. 

' < 
Man erhält ein linear unabhängiges und vollständiges System von Basis-
fun�tionen. Dabei wird tlas inverse Schmidt-sehe Orthogonalisierungsver­
l'ahren �erangezogen. Es wird.eine konvergent'e Reihenentwicklung für, die 
Werte des Potentials an der Randfläche erhalten. Ein Lehrsatz von Abel 
filhrt.zu-der Tatsache, dass die räumliche Kugelfunktionsentwicklung filr 
ein Potential im_Aussenraum der Randfläche gleichmässig konvergent ist. 
Dieses Ergebnis wird durch den Satz von Picone bestätigt. Ein Beweis �Ur 
die Vollständigke·i t und ein kurzer Beweis filr die Konvergenz schliessen 
·sich an.

··•

1 ' / 

.. 

, 
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- 1 

-Pe 3IOM e

KaK ß3B8CTHO, 3Ha't!effl,f.fl, KO'ropue rrpocTpaHCTB8HHHH IIOT8HI-Uf8JI 

npUHßMaeT Ha +'P8Hß't!HOH rronepXHOCTH, MOryT ClHTI, rrpe,n;cTaBJieHH 

rrocpe.n;c"TBOM CXO.I(ffil(81'OC.fl paSJIOilteHim_ cqiepH't!8CKOi
f 

�YHKI(HM. 

BeRTOP ccIJepII'-I8CKMX cpyHKI.Ul'lf rrepeMHOlKSeTC.fl c 6eCKOH8''-IHOti OpTO-

l'OH8JII,HOÜ Ma'l•p�eii. IlOJIJ'-I8IOT HöByIO OeCROI-18''-IHyIO CUCTeMy 

OpTOI-!OpMaJII>HblX WYHKI.ijtfi. 3Ha't!8H.M� IlOTeHIJ,l1aJia Ha rpaHl�'-IHOß 

BepX!fOCT.0' rrpe.n;cTaBJI.mOTCR rrocpe,I(CTBOM STJlX WYHKUl'lH. HaROHell;, 

.. 

BBO)LffTC.fl BilOJIHe onpe.n;eJI8HHb18 IIOBepXHOCTHble qiyHKIJ;Trn, KOTOpble 

·rrpHHHMaIOT rrpocTpa_HCTMHHH8 cc:pep.0'1Jec1rne· WYHKIWI1 Ha rpam1't!HOH rro-

· rroBepXHOCTH. I!OJIY'I8IOT JIHH8MHYIO HesaBHCMMYIO CUCTeMy CJaSMCHb!X

WYHKD;Hli. IIpM STOM rrpHBJieKaeTC.fl l1HB8pCHHfi M8TO.I( op·roror:iaJIMsau;rn

illv1n;i;Ta. IToJIYtia!O'l' cxo.I(ffil(eec.fl pa3JIOiiteHHe B p.fl.I( .I(JI.fl s1-1a1JeHuü

IIOTeHuiraJia Ha rpam.!1rnoi1" IlOBepXHOCT.11. TeopeMa A6El'JIR npHBO,ll;'0"T

K TOMy·cj)aKTY, "-ITO rrpocTpaHCTB8HHO8 pa3JIOJK8H.M8 ccj)epM'-I8CKOti

WYHKUl:IM .I(JI.fl IIOT8HIJ;1'l8Jia BO BH8lllH0M rrpocTpaHCTBe· rpaHß'tJHOli

IlOB8pXHOCTM . .fIBJI.fl8TC.fl paBHOM0pHp CXO.I(Jill1ßMC.fl.

/ 

/ 

' 
, 

• 

., 
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1. Introduction

A regular he.rmonic function Wie intrqduced in the�three-dimeneional 
epace of the orthogonal Carteeian co-ordinatee :x, y, z, 

w · .. W(x, y, z) ( 1) 
·, 

() 2w r;) 2w u
2
w 

,6.w • --+ - + --- - 0

0x
2 0y

2 c)z2 
. (2)

Tn.e relation (2) i'e the well-kn_own Laplace differential equation, [9}
[12]. 

The · gravitating· eourcee are eituated within a cloeed, regular and 
etar-ehaped eurface D. The relation (2) is valid in the e:xterior o:r 
the surface D. W is a continuoue and regular function in the e:xterior 
of D and on the eurface D. In the e:xterior of D, W has continuous 
derivatives of the first 8.J:d higher order, [9] [1'2}. 

Now, the well-known Brillouin sphere ie introduced. It ie a 
geocentric sphere that encloses the eurface D and, thue, all the 
gravitating sources. It.has the radius R, ·(see Fig. 1). In.the e:xterior 
of the Brill9uin ephere, the_potential ·W hae the following uniform 
convergent epatial epheric�l harmo_nics eeriee development, it is well­
explained in the literature, [a] [9j. 

CO n 
- fM [ 

[Uf[ ) {
W=;-.1+ Pn.m(ein 'f

n = 2 m = 0 

wn.rn.1cos mA + w •• m.2eill mAn ,- r � ff (J) 

The center o! the spatial polar co-ordinate e�st
1

em r, tp , · A ie 

identical with the gravity center of the Earth. ·r ie the geocentric 
radiua, 'f and A are the geocentric latitude and longit1:1de. f ie ;the 
gravitational conetant, M is the mase- of ,the Earth,_ wn.m., and wn.m.2
e.re the Stokes coneta.nts, Pn.m are the aesociated s'pherioal harmonice.

..., 1 
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Fig. 1: The _Brillouin aphere with the radiue· R. The surface of the 
Earth D and ite geoöentric radiue t. 

The e�riee development (3) ie generally accepted to be unifor m c,oh­
vergent, if r � R, [8] (9] [12]. Therefore, the following theorem ie 

'valid, 

.. 

Theorem 1: 

.1ro1· sny positive number € 1,. however amall,

e: 1 > 0 (4) 

, 

·,
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. ' 

·there exists an integer H
t.. 

911fff'o-ient great, such ihat

00 n 

( 
fM [rl[ ir 

Pn.m (ein .f )

n •H+1·m a 0

wn.m.1cos ID(I. + \'#n.m.281n mA } < € 1; .r � lf . (5) 

The probl�m, .to be diecueeed. here, is the queetion whether the 
validity of the c ·onvergence of. the series (3) can be extended to whole 
t�e exterior epace of D and to the eurfaoe D, also. 

An abbreviation of the following shape� (6), is recommended for the 
dev�lopment (3) • It ie t o be applied in the subsequent deductione. 

H r\ (;)" u,,< � • A l r (6) 

n = 1 
. .

The mee.n�g of Wn and uD· is self-explana�pry, as a compariso�,of (3)

and (6) doee ehow 
Tb.e transition from the manner of writ1ng (3) to the manner of re­

presentation (6) can be understood in the fol�ow1ng way I Instead of 
writing down e�l the zonal, tesseral @nd seotorial·spherical harmonics, 
only the zonal harmoni'cs are takan along and wri tten down, sinc� the 
teseeral aind sectorial harmonics of the 'n-th degree transform '1n the 
sama_ way as the zonal _harmonics of the degree n • Tb.1s-abbraviation j ct 

a ·great reliaf in the wri t1ng. d<>wn of the mathematical developments. 
It 1s an of.ten· used procedure, a haoit usual since a -long time. 

/ 

.. 

, 

• 

'-
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2. The Schmidt orthogonalization procesa.

The expressione 

(¾t � ( lp' ). ) (7) 

which appear in the formula (6), -are now of special inte,rest. The 
functions (7) are now specialized for the teet points eituated on the 
surfäce n·. Here, they take the folluwing expression, 

. 

' 1 

. (8) 

The geocentric radius of the ·surface D 1s denominated by t, (see Fig. 1),

·= (9)

Thus, the relation (8) turne to

,(t) un(�, A )· "' 

= v
-rr 

(' f, ' ;\ ) (10) 

n •. 1, 2, ••• (10 a) 

Or 

vn ( f. ,A )•,= (--1--)•
n 

� ( tp ,A)
,t(<p,,{) 

, · [M•n < r,A>L ( 11) 

The epherical harmonics un ( '(>, A )', (n • 1, 2, .••• ) , establish an

infinite eet of orthonormal functions. Thia set is oomplete for all the 
' • 1 

regular functions on the unit sphere. On the sphere; the development ot 

,; 

/ 

1 

, 

. 
' 

t= t('f,A) 

n 

- I 

, 
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a regular function in terms of the � functions ie a uniform convergent 
series, 1t ie well-knciwn, [9] [11/ •1 · 

.. 
The functione un ( t.p , A ) are orthonormal,

�(... ( 'f • � ) "• ( f

F 

n, m • 1. 2, ••• , . 

A) dF „

F 1s the eurface of the· unit sphere J

dF = coe l{) d 4J d A 

n.m
_[1, n �m

}
l 0, n :+ m

( 12) 

( 13) 

, ( 14) 

The functions vn ( !f>., A ) are li�ear independent, (11), [1] [3] [6}
[10] /13] [14]. Thue, the relation 

. n ""K 
- 0 ( 15' 

cannot be valid for e.ny limited integer K·and L, unl�ss the constant 
ooefficients U are equal to zero, 

n 

L -� K 

K • 1, 2, • 

( 16) 

( 17) 

( 18) 

Th• proo_f of (15) and (16) is uncomplioated. In the e:xterior of D, 
the spat ial potential U is introduced by the following eum, 

. J.i 

'u - [: 
n • K 

�<lf',,l.> 

. - < 

(19)
• 

• 
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U is represented by a sum and not by an infinite series development. 
/ Therefore, .the conve.rgence problema are not invo ed. The e:xpreesion 

(19) ie harmonic and regular in the e:xterior of D. On the boundary
surface D, the relation (19)· turne to 

L D 

UD .. E· un (f) un ( t.p ,A.) (20) 

n = K 

( 11), or, 

L 

UD „ ·[: Vll Vn .< lf! ,A ) (21) 
n „ K 

I!. a potential ie zero along the boundary eurface, it ie zero, also in 
whole the exterior epace of this eurface. Thie faot ie well-proved by 
the Dirichlet boll?-dary value problem, [12]. Hence, the follow;Lng con­
dition, (22), tor the bounduy valuee of' the potent.ial u, (20) (21),

(22) 

leade necesearily to the fact that 

U = 0 ,- (23) 

in whole the exterior space of D. Coneequently, the relation (2.3) is· 
valid also along the eurface of the Brillouin ephere with the radiue �. 

ll 

Un ( i) un ( � , A ) - o· (24) 

The multiplication o� (24) with U. ( 'f; A.) and the applioation of 
(12) leade to

(25) 

(25) corroboratee the linear independenoe of the- Tll f_unction�, (15) 
( 16). 

.. 

= 0 

L 

f: 
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Since the functions vn are linear indep�ndent - bu� not neceeearily
orthogonal -, :i.t ie poeeible to find a eyetem of orthonormal functione 

(26) 

by the functione vn• Thie -aim ie reached by the Schmidt. orthonormalization
procedure, _[10]·[14] [16], a way that ie alwaye poeeible_to go, becauae 
of (15) and (16). A linear eyetem of the following ahape ie obtained, 

w2 � b2.1 v1 + b2.2 v2_
(27) 

. . .
. . , .. 

or, in the form of a matrix relation, 

(28) 

The e lernen t a of fhe main diagonal of (27) (28) (.33) are· poei t ive, [10], 

bi�i >- 0 • (28a)

')) wn wm dF • cf

-
r n •m}

(29) n.m
0, n ;, m 

_) 

n, m = 1, 2, •••• L. (JO) 

The number of the·relat�one of (27) ie e4ual to L, (eee (15) and/ 
(1�)). But, there ia no difficulty in. continuing the above_proceaa, 
(27), for a value of L getting greater and greate�. 

There is no upper bound for the amount of the integer L. The bi.k
valuee of (27) are the constant ooefficient�, free,of � and A• 

The oolumn vectors and the matrix of (28) have the following shape, 

r
1 

��-
/ 

I 1 

?L 
= (31) 

l WL / 

W aw (-n,tl) n n T 

~i, .. h ~L • 

. . 

F 

.... 

,,,. 
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v1
v2

lL 
"' ... (32) 

YL

b1.1 b1.2 ... - b1. L

b2.1 b2.2 ... b2.L

h "' ... . . . ' . . . . . .
�{bi.k r . {JJ) 

�L.1 b1;2 ... bL.L

The dimension of �L and XL is equa! to L. h is a L x L matrix. In

(Jj), the fir st suffix specifies the row, the second suffix.k specifies 
• I 

• 
• • 

the column. Since the funcitions vn are linear mdependent, the Gram. ·
1'determinants which governe the t rans;f'ormation by (27) and (28) 11re 

non-sihgular, [6] [14] [16] •. 

The ·mapping (27) and (28) -is unique, _the same :i.s valid for the invereion 
of ( 27) and ( 28). The theory of the Schmidt orthogonalizat ion -proces·e 
ehowe that 

de
1

t � =/= 0 • (34) 

(34) ie right, because the vn f'unctions are linear independent, .<'15) (16),
Thus, the invereion of' (28) is possible, 

_, 

yL = B.. WL - =L a: 
' • (35) 

h ie a t ri angular matrix, (subdiagonal matrix), · (see ( 27)). "The 
co�fficients.-b'i.k of (27) and (JJ) . have limited amounts, becäuse the
Gram..,determinants are non-eingular. 

. ,, 

\. 

-
1 

•
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3. The infinite orthonormal matrix.

The 'l;he9ry of the infinite matrices develope in the vic�ity of the 
theory of t_he finite, matricee� But, theee two theoriee have also certain 
differencee, fTJ f17}. 

For inetance, the product of two infinite matrioee ie:well-explained 
only if certain convergenoe propertiee are valid. The product pf the 
infinite matrix 

and the infinite matrix 

l = { Y1.k t
(1,- k •

1

1,_ 2, ••• ) 

ie conetruc'lied by the. infinite matrix 

• 

(36) 

(37) 

(38) 

(39) 

In (36) (37) (39), the firet euffix 1 epecifiee the rowe and t_he eeco�d
euffix k the columne. The elemente of the matrix of (39) are explained 
by 

j - 1 

X y 1.j. j·.k
(40) 

The product of theee two matricee which are coneidered here ie well­
defined only 1f the right hand eide of (40) is a convergent eeries 
development. 1 

. 

In a coneideration from a more universal etandpoint,. the theory of 
the finite matrices belange to the diecipline' of the algebra, but the 

. infinite_ matricee are more in the vicinity of the field of the 
functional IUlalyeis. 

•

- L . 
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Now, the infinit� orthonormal matrices ¼ are in the fore. These 
matricee are well-defined by the following relation /7]. 

A AT • AT A „ E= - • • • (41) 

The superscript T denominates the traneposition. ! ie the infinite_ 
unit matrix, 

det E • 1. 
-

(42) 

But, in the theory of _the infinite matrices, the value· of the deter­
minant �e lost. The reiations (41) and (42) give

det ¼ • 1, 
, 

(43) followe from

det- (! l> "'
. 

(det, i) (dej l> =

¼ 1s a twofold table, 

1, k = 1, 2, •• • 

a1 .·1 a1.2 a1.3
62.1 82.2 a2.3

¼ a
3. 1 aj.2 a

3 • .3

. . . . . . . . . 

a1.1 82.1 a.3� 1
a,.2 82.2 a

3.2
A

'l 

a1.3
a2.3

a
3. 3

. . . . .. . ..

-

(det A) 2 = det E „ 1 •
-

. 
-

... 

••• 

... 

• ••

.... 

... 

... 

. ..

(43) 

(44) 

(45,) 

(46) 

(47) 

. ( 

(48) 

' 

' 

. 1 

.. 

--
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(49) 

• (50) 

The baaing definition of the infinite orthonormal matrix, (41), leads 
' ' 

to 
Dö 

[ �i.� 8ic.j = ö i.k

j „ 1 

.oo 

[ aj • i aj .k = d i.k

. j = 1 

= {
1, 1 .. 'I( 

o, 1 + k 

j1, i = k / 

l.o, i-+ k

cf-1.k is the Kronecker eymbol.

} 
(51) 

• (52) 

In,troducing the infinite set o! the epherical harrnonice l\,i ( tp , A )
,int o the theory of the infinite orthonormal matr;cee ¾, theee harmonice 
conetruct the following infinite � dimeneional,column vector, 

u, -

u2 
ll -

• 
... • 

.Un 

.. . 

The veotor u can be traneformed by the mult·iplicatlon ·with A. The 
D 

· - · D 

(53) 

elemente of � are the·orthonormal. baeae un_('
y,

, A ). The eyetem of the

,· 

u fµnctione ie well-known to be complete and closed in the apace of then - . - - . 
regular functione on the sphere, (12). 

The multiplication 9f \l and i gives the 'vßctor i, 

(54) 

and, becau._ee iT is the inverse· of !,. (41),
• 

/' 

¾.1 . 

,, 
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e = • 

e
n 

- e
n 

e
1 

.e2
. . .

en
.... 

( 'P • � ) . 

The relation (54) leade to 

169 

' 

en = en ( tp' ). ) = L ¾.i ui ( 'f • A )

i Cl , .' 

I 

(55) 

(56) 

(57) 

-c5a)

The equations ( 12) C5P (52) (58) result- in the :f:'ollöwing o ·rthogonali ty 
relations, 

· ff "n�) 
e� em dF U

JI" 
dF 

„ L ¾.i ain.i = 

F F i = ,

(59) 

The'relatione (54) (55) describe a one - to·- one mapping;-relating 
e and u. 
.. . 

j\s to the completeness of the mappinge ·by" i and �?, the constraint 

.-

= 0 (60) 

has the coneequence, (54),

e = O • (61) 

. 1 

...... 

' 

•

00 

00 

r 

{
1,n=mr 

_cf n.m = 
O,. n + m 

u 
"' 

·-
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Thue, (54) allows to find the unique vector t by 1a .md ¼• And, vice 
versa, the conetraint 

e "' 0 

leade to, (55), 

li „ 0

(62) 

(63) 

(62) .and (63) show that (55) allows to determine, the unique vector \l
from the vector i �d the .matrix ¼T • The mappinge of � on �,and that
of � on 'il ,are uniq�e proceduree.

/ 

-

' 
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4. The repreeentation of the boundary values of the potential by
orthonormal base functions,

Now, on the r.egular eurfaoe D, a regular function 

t „t(ip,).> (64) 

is oonsidered. It ie well-known that f has the foiiowing oonvergent 
seriee development in spherioal harmonioe,_ 

(65) 

n • 1 

fn are ,f;he constant ooefficiente, (Stokes constants). Theref'.ore, the
suoceeding sentenoe ia valid, it can be found in the te:xtbooke, [BJ

[91 [12]. 

' 

Theorem 2 : 

l.i'or any positive number 1=: 12, howev_er small 1

there ßXiete an.integer M, sufficient great, euch that 

< e: 2 • 

n • M + 1 

The Pareeval relation gives for the norm of f, ( 12) (65),
(completeness relation), 

--1 ff II r II 
2 t 2 dl.i' .. z f2 

n . . 

F n "' 1 

The !!quation (65) can w- orought .into ihe for1J1 of a soalar 
two vectors, (53),

(67) 

/6] [11], 

(68) 

product of 

• 

(66) 
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f 
"'

fT 

- - -
(69) 

with 

r1
f

2 

= 
. . . • (7Ö) 

fn
. . .

In (69), the vector t-ie to be introduced as a·eubetitute for the vector 
�• (55) (56). Conaequently; 

· With (68) and (70) 1 the norm of f tak:ea on .the following form

1 • 

In a ·rigoroue conaidePation, (71) has to aesume the form 

(71) 

(72) 

(73) 

Aesociating AT with e, aa it ia ·ehown in (73), 'the right hand eide of 
.. = 

(73). ie convergent, (69). But, aseociating the two terme rT and AT in 
= -

(73), 

(74) 

it remains ae an open queetion whether the right hand side of (74) 
continuea to,be convergent.· 

�
T . 

= f T AT 
. 

= .. 
(75) 

Hence, 

,f - flT 
i . (76) 

' 

u 

f -

II :r II 2 = 

• 

f • . . 
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§ is m infinite dimensional column vector,

g1
g2

j 
= ... 

1 .

�
... 

The elements of (77) have constant values. (76) ie equivalent to,

oo· 

f • r=- gn en ( lf) , A. ) • 

n „ 1 

(77)

(78)

The individual elements g1, g2, ••• of (77) have limite.d amounts and 
convergent _developments, it" derivee from (75). This fact is obviously right, 
since the Schwarz inequality can be appiied to (75), and especially·to 
the residual term of (75),

gn = f1 8n.f + f2 an.2 + ••• = L fi 8n.i • ·

i = 1

The residual term ot'(78a) has the relation

00 

j_ = M + 1 
/ 

= M + 1

/ 

(78a)

(78b)

. Because of (68), and beoause of (51) - for i � k -, and because all the
,· 

. , aeries developmentQ of pqsi_tive terms and of limited amount are always
uniform oonvergent, it follows tha1i (68) and (51) are uniform convergent
series development,_ [13]. Th�s, each of the two faotora which construct
the product on the right hand side of (78b) tends to zero, if M tenda
t.o infiniti. Consequently, the left hand side of (78b) t�nds to· zero filso.
if M tends to infinity.

The convergence 'ot (65) is known to be proved, but the convergence of 
(78) ia a -problem to be 4iacussed- in the following paragraph.

00 

[ 
= M +. 1 

DO 

2 
8n.j • 
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The relations (41) (52) (58) (59) (68) (74) (75) and (78) lead to the 
follow1ng equations, 

00 

L· � "'!
T 

,,§ .. <t
T l> <t

? ¼T) T -

n = 1 

- II f 11
2 ('79) 

n = 1 

Conse quen t ly, 

C/0 00 

r; � ,a -L -r2
n (80) 

n = 1 n -= 1

The surface function f • f ( 'P ,· A. ) represents here the amounts of 
1 

-

the potential W for teetpoints eituated -on the sui-face D, (1 ),. For the 
eurface of the Earth, it is well-known that the potential is a �egular_ 
functipn aiong of it, 

• (81) 

'The 'relations (65) and (78) �•- the series developments for f in terms 
of the bas� functione � l y, ' A ) and •n ( 'P ' A ) • The uniform con�er- -
gence of ( 65) . ie well-known, [9] [12]. Th� unif' orm convergence of (78 )" 

· _ie ·now intended to be proved, /1)72] [3] [4] [5], r 

As to the meaning of the_essential mathematical property to be a 
I 

. � 

regular,funct�on, such a·function is uniqu� and continuous, the first · 
derivatives of•it are continuous functions. These conditions ar� obser­
ved by +,he - potentiai :values of the gravi.tating body of the Earth, (81) • 

. -

• 

t 
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5. The convergence in.the mean and .the uniform convergence of a series
development· in terms of orthonormal baee functione.

The equatione (79) and (80) conetruct the P__arseval completeness 
relation for the repre.eentation of the .function f in terms of the 
orfäonprmal base functions un ( 'fJ , A ) and en ( 'P , A. ) , (65) (78) �
These relatione, (79) (80), include the convergence in the mean of the 
eeries developments (65) and (78) for the boundary values f = f ( 'P, A)

at the regular eurface D, (see (68)). 

The convergence in the mean has the following relation: The function 

fM ( lf ' A ). • L fn un ( 'f ' ). ) (82) 
n = .1 

convergee in the meän to the function f, if 

(cf •. (64) (65)). A neceesary and sufficient condition for the convei:gence 
in the mean ie the following theorem 3. 

Theorem J: 

· The development fM· ( lf' , A ), (82), converges in the· mean, if, for a
given number e3, there·exists an integer

M' ) 0 l (83a) 

such that for 

(84) 

the inequation (85) is valid, 

I. 

M 

r 
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(( �!M ( <f' ' ). .) -
f ( 'f' .� ) ) 

2 d· J.i' <.. €
1 M2

(85) 

for ali the integere·

M1' 
M

2
> M; ' '(86) 

Thus, the very probl�m which is rlow tobe investigated demands to
show that ·(79) leads to the. uniform convergence of (78). The formula
(79) is. �y itseli" !llready the proof .that tbe. series (78) converges �
the mean to the function f ( ·<p , ). ). The convergenc'e in the mean has
the unif.orm convergence o� (78) a� consequence, as far ·as a regular
function f is .considered, it. is well-known from the textbooks, [10]
[13] [15/,_

A complete eystem of or;.thonormal functions has the same convergence
property as the well-established Fourier series development •. For regular

. funct ions, the reo-r.esentation by a .Fourier series development is unif.orm
convergent •. Thue, the representation of the regul"''t' function f by the
orthonormal and compl�te systems of the u0 ( <p ·, A ) or e-n ( f , .� 

)
base runctions leade to a uniform convergent series development, (about

the completenese, see paragraph 6.9.). �e constants of this development
are t.he well-defined Folir:Ler-type . coefficients, (see the theor.eme of
Dirichlet-Jordan and Dini-Lipschitz), /iJ] {15J.

A detailed ·description of tbe·procesa whioh .leads from the conv�rgenc�
in the mewi to the uniform convergence is now intended tobe given.

I 

Tlle left and the right hand side of (80) is a series development .af , .
constant positive terms. The amount. of it is equal to the square of the
norm of the function f. This amoun� ia limited, aince f haa·· 11m�ted 
amounta. In the theory of such B"'�iea develop�enta of constant positive
terms. the following aentence 1s proved tobe valid, [13].

Theorem 4,

The neoeseary and eufficient· condition for t·he convergence of an
intinite seriea d�velopllfent thAt consiste of positive terms onlr ·1s
1ihe fulfillment of iöhe de.mand that the p�tia.l sums of this eeriee have
l 'lmi ted value e, [1 J].

J 
p 

.. 

A 

.... 
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/· 

The partial aums of (80) are, (l�f'ti hand aide of (80)), 

2, g1 ' 

g/ + s/
' 

g 2 
1 

+ S2
2· + g 2

3 
(87) 

g 2 +
.1 

g 2 
2· + g 2

· 3
+ g 2

4 

r 

. . .

With regard .. t�- the representation of the norm, (79), _all the partial 
sums of (87) have·necessarily limited amounts, irrespective of the 
number of the terms the� consist of. These amounta have to be sm�ller 
than the square-of the norm of f. Si.nce this norm of f has a limited 
amount - the funct i9n :f_ is .l..Lmi ted -, the partial sums (87) -have _limi ted: 

. amounts. Therefore, the above theorem 4 shows that the left hand side 
·of (80) is a uniform convergent aeriea development •.

Thus·, the following the·orem ia valid. 
. .

Theorem 5: 

For any positive numb_er . e- 4-' arbi t.rary amall

(88) 

there exiata an integer N, aufficient great, such that, (79), 

(89) 

n = N + 1 

The uniform convergence of \78) ia d property that derives ae·a 
corollary of the theorelll 5, (88) (89'). As ,to the definition .of the 
unlforni convergence of a series development, the aub-aequent theorem·. 6 
is an application of this definition'to"the here discusaed seriea 
development, (78). 

... 

00 

I: Sn2 < 
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Theorem 6: 

For any positive Iiumber e: 5 -which can be chosen arbitrary emall,

(90) 

there exiete an integer Q, eufficien� great, such that 

<· e: 5 • (91) 

h = Q + 1 

As to the proof of the theorem 6, t'he formulä (54) is the matrix 
�hape of the development of the funct ione e

u. 
( 'f ' A ) in t"erme of the

epherical harmonics. The theory of the spheric�l harmonice ehowe that 
every regular function given along the ephere can be repreeented 
completely by a SP,herical harmonice eeries development, [9]. In the 
following derivations, the functions 

(92) 

are understood to be in the space of the regular fDnctions. Q is a 
./ : .. 

sufficient great integer, (see (90) (91)). There is no upper bound
for.Q.

Thus, the sum 

,n = 1 

is a regular function. (93) is a trW?-cation of (78). The .constant 
coefficients 

(93) 

(94) 

of (78) and (93) have limited amounts, (eee (78a), (78b)). It follows, 
- computing them by Fourier type integrale

' . 

,, 

-, 
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� = f ( f en ( 'P .• ·;\ ) d F (95) 

F 

as a look on the orthogonality relation (59)1 and on (78),does show. 
Because the functions f and e

0 
are introduced as regul� and limited 

functions, (92), the coefficients � .1.ollow to be li-!)lited· also, (95), 
(78a) (78b), 

Therefore, the difference e:xpression PQ, (78), 

Q 

PQ <p,A_) „ f ( 'P t ). ) - L gn en < <p ,i) .(96) 

n -= 1

is necessarily a regular function. Consequently, the function _PQ can 
be developed .in a spherical_ harmonics series development, the uniform 
convergence of it is secured,I 9] -['12] 

Co 

PQ _( 'f , A ) = r; PQ.n u' < 'f , ..1 ) . (97) n 
1 . 

n = 1
I 

I -

Sinc� pQ is a limited, continuous and regular funct ion, ,the un1Iorm 
convergence of (97) can be taken for granted, (96). The __development 
(97) allows the separation· of the arb:l,.trary small residual term .. :6,

n = 1

Theorem 7: 

E:. 6 • 
, J 

(98") 

For any positive number / e 16.o /which is chosen arbitrar'y small, 

l f. 6.o
>, 0 

there e:xists an in�eger J, ·sufficieni great, such that 

(99) 

'1 

' 
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( 100) 

n = J + 

The following linee are in the focue of intereet, in thie c?ntext: 
For a given number _e 6_0, the integer J hae the P,roperty that it ha�

a certain upper value which ie no'i. needed to be exceed,ed, J: = J Q e: 6. 0),
ae lang ae the inequation (100) has to be fulfilled, whatever· the 

• 

amount of Q- may be, (96) (98) •. Th�refore, to be more pre?iae, the 
theorem 7 can be aupplemented by tll.e foll�wing, theorem 8, (96) (98) -

(99) (100).

Theorem 8: 

For all the regular functions pQ' (96) (98), - whatever the amount
of the integer parameter Q may be - e. positive number \ e 

7 
1 can be

chosen having an arbit·rary errrall e.mount - :L?dependent of Q -

0 ( 101) 

in-euch e. way, that there exiete a fixed upp�r bound /Jj for the integer 
J, (98),

[Jj ( 102) 

fulfilling the relation 

.- fJJ' 

PQ „ 

.L PQ.n U.n ( 'f ' A ) + E
8 (Q) '

n = 1 " 

with 

/ 

Th& relatione (102) (103) (1Q4) e.re valid fo� all 
positive integ�r parameter Q. The valuee of. [Jj and 
as being independent of the ,parametere,Q, 'P, �.

(103) 

(104) 

the amounte of the 
e 

7 
can be considered

/ 

, 

DC) 

L PQ.n un ( 'f 'A ) = 1 € 61 < 1e6.01 
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The inequality of Schwarz leada to a relation for the truncated aeriee 
devel�pment (97) which ia identical with the firat term on the·right 
hand side of (10J),

[J] 

L 
n = 1 

pQ .• n �. 
( 'f' A,) � 

[J] 

L 
n = 1 

,lJ] 

•

.[:
n = 1

u; < 1f , .:\ ) , • C 105)

The orthonormal spherical harmonics un ( 'f, i\ ),

(106)

are weil-known tobe continuoua and limited functiona, [9] [12] •. Si�ce 
both the funct ions un ( lf , � ) , _·(1 � n � /Jj), 8.1').d the in�eger [Jj

have limited aniounte, (102) (10J)' (104), the- aecond term on the right · 
hand side of (10�) haa conaequently also a limited amount. Thua, 

[J] 

L 
�2 

n ( <f ' � ) < s ( 107) 

n = 1 

s ia a positive and limited amount. 

Further, wi�l} (59) (78)· (91) (96) (97),

Q 

- II PQ II
2 

L 
2 

II f [ = PQ.n =. gn en ( 'f ' A_, ) II 
2

n = 1 n = -1

00 OQ 

- II L· . gn e
n 

(f,"1 ) II 
2

[; 
2· (108)" 

- gn • 

.n = Q + 1 n ·= Q + 1

A view'on (88) and (89),Jan� (91) ahows that the integer Q in (108) can
be chosen in such a way that the last term of (108),,

. ._ 

(. 

.. 

.. 

00 

-
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< € 4 
(109) 

:'1 - Q + 1 

ie arbitrary emall., · 

Theorem 9:

Por any positive number e 9, arbitrary emall,

( 110) 

there exiete an integer Q, suffioient great, euch that 

( 111) 

n • 1 

The theorem 9 ie the ooneequenoe of the formulae (108) and (109). 

The prooedure ·oonstru.ohd by the relaUone (105) · (107) (110) · (111j 
reveale the validity. of the subsequent theorem. 

Theorem 10, 

_ Considering the relaUon (96), 

PQ ( ip , A ) • f ( 'f , A ) - .J: -� .. n ( 'f , A ) ,

n • t 

whioh' 1■- govern:ed by the 1n·teger Q, 1t is possible 'lo ohoose an 
arbi .• rary. soll poaitive n�ber & '

't O'

&110 
> 0 1

( 112) 

( 11 )) 

U repreaent·• the right hand siele of (105). There niste a suffioient 
gre�t integer Q ■i.iQb,- t�t the dev:elQpm.ent (9'1), 

' ... 

00 

Q 
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00 

�Q ( lf' ' ). ) • ·L PQ.n � ( 'f' • .,\ ) •
/ 

·, 
fulfills, - after a truncaUon .- the following inequation,. (105), 

[Jj 

. L PQ.n � ( f 'A. ) . � e: 10 � :: 9 • 3 •

n • 1 

(114 \ 

(115) 

The. relaUons (90) (91) (98) (103J and (115) prove the validity of the 
· 1nequation (116),

(116) 

Since the "jierms e: 10, e: ,9 and I f a I can take on �bitrary small amounts,
the right band side of (116) can be considered ae a term the amoun:t of 
which is arbitrary emall, if· the integer·Q is sufficient great. �erefore, 
the :f'o�lowing 1n·equation is right, C-90) (91) (96) (116), 

• (117) 

This above inequation oorroborates tbe validity of the theorem 6, 
(90) (91). The theorem 6 is the f9rmulat:l.on of tbe condiUon for the
uniform convergenoe of the here discuesed series development, (78).

Thue, the inequation (117) prove• the uniform oonvergence of the · 
. series ��velopment · (78). Th� int�oduu'liion of properly _choaen amounta for 
the integer 'l has. the consequence that (11'7) an!l the .the.ore.m 6, (90) 
(91), are valid for an arbit;rary sai.all posit1n.number e: !>" T})is faot 
ino.ludes the 'llliform convergenoe of (7H). 

Before this background and with regard,,o (96), it �s yermitted to 
write the equa'liiu.u. (118), 

CX) 

f ( Y' ' A ) • L �n en ( <f ' i\ ) •
'n • 1 

Th• series development (118) can be brought �.nt_o the following 
shape, 

• 1 

( 118)

n • 1 

! 
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( tp • A ) - I: 8n_ •n ,, 
n • 1, 

1 e:111 1 < 1 8 h1.ol > 0

j e: � 1�01 is arbit-rary sm�l.l., 1't

184 

('f',A')+ 

1f Q >

oomputes 

Q· 
. 0 

the 

e: 11 (119) 

• . (120)

limited value Q0, 

(121) 

Later on,in anot�er�paragraph, the functions en ( 'f, .A ) will be 
identif ied with th� funotions •n ( 'f � i\ ) !fhich der.ive from the linear 

· indep�ndent functions vn ( 'f' ,i\ ), (10) (11), (26) (27)._ 

The linear.inqependence i� a property that is defined for a limited 
"- number of funo·uons, (15). The. Jefinition_ of pQ ( tp , A ·) according to _ 

(96) does not confliot with tha linear independence of the functions 

..: 

vn {. ip , ?t ), (15), 1f the en f11uo-Uone are substituted by t�� funo­
tions wn• •&l).d

7
further on, if the func�ions "n ( 'f'- , ). ) are substituted 

by fäe funo-Uons vn ( 'f' , A ), (see ·(27) (28)), since Q has a limited 
amount, _ (119) (120). The following sentence is derived by (119) ,and up to 
( 121) .(The completeness of the systems w�('fl, A) or vn('f'_,11.JA: See paragraph 6. 9) •

Theorem 11 : 1 

The series development (118) ie convergent, becauee, after the choioe
of a·p�sitive number, arbitrary small, 

> 0 t 
- ' (122)'

'an integer Q0 • QÖ ( e 1100) can be found such that for the integer Q, 

the 

Q > Qo f 

following relation 
r 

• . 

is 

Q 
f. ( tp •. /l ) - 2= 

n • 1 

(1?.'.3) 

valid, (96), 

� en < 'f ' J ) 
< (.124.) 

In the second t,erm on the left hand side of ( 124), the functions 
. I -

en(,p,;U can be identified with the functions wn('f,A),(26�. After it,,
1'n(_cp,.A.) oan be replaoed by vn('f,� ), introducing (27) and (,28l. The 
modified form ·of ( 124) obtaine·d along these lines ·considere vn( 'f, A_)
o·n1y for n = 1,2, ••• ,Q. Thue, this modified· form is ih · 

- · 

, 1 

Q 

f 
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keeping with (15), because Q represents a limited number. There"is,no upper bound 
for _Q._(See a}so the paragraphs 6.) and 6.4). 

The introduotion of the oonve;rgenoe cri terio·n_ .of Cauohy avoids likewise a

confliot with. the fact, that (15) refers to a limited number af terms only, (if 
en _. •n-+ vn).· in this oontext, the inequality (91) is replao�d by

Q+Q
;it 

L gn 8n ('f,,l)
n=Q+1

Theorem 12: . 

After the ohoioe of�a positive number, arbitrary small, 

-

' 

E.12 
0 '.

an integer QO.O =, �O.O ( E. 12
) can be found sqoh that for the integer Q,

and for the integer 

1 ,. 

the above inequation (125) is right. 

. ( 125) 

(126) 

(127) 

(128) 

The validity of the sentenoe expressed bf (t25) to (128) is easily proved, 
as follows: 
(125) and (96) give

Q+Q*

L gn 8n('f ,'-) ..
n=Q+1

.-

=· p § (<i,i) 
Q.Q,

(129) 

'PQ (�,Ä) an� p
Q+Q

* (y,A) are oontinuous funotions, (96). Therefore, p
Q.Q

� (�,�)

·1s a oontinuous funption also. lt has the following u�iform _conve�gent series

'development in terms of spherical harmonios, (97),

00 

p 
Q.QiJI, 

('f,.l) - L 
n=1

(129) and (1JO) give

• ·11
p 

Q.Q*
(

cp�;l
) ll 

2 
-

p 
Q�Q!n 

un ('f ,A)

"'° 

p2 •r: -

Q.Q .• n
na1 

• 

Q+Q•, 
'L 2 1. g 1. 
i=Q+1 

In analogy to (98), "the relation (1JO) is transformed to 
llf 

P * <cr,;t) -- ·I'.: P • � un <er,�) +· e1\ •
Q.Q · n•1 Q.Q- .n 

_(1JO) 

(1JOa) 

(1J1) 
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s*6 is an arbitrary small residuum, as e:6, (98). s 'll

6 
fulfills a theorem 

analogous to the Theorem 7 for €6• (10J) and (1J1) lead to 

[J ... j 
= L P JE un ('f ,il) + e• 8 

(Q,Q•) 
n=1 Q.Q .n 

[J�j is a f±xed upper bound for J•, which derives from the constraint that the 
funct!on le*

8 
(Q,Q•)j dqes not s�rmount the amount (which is independent of 

Q·, Q*) of a c.ertain upper bound I e * 
7 

j , fc°r all values of Q � 1 and Q* � 1, 
(96)(128)(129), (see Theorem 8). With (105), the inequality of Schwarz gives, 
( 1 J2), 

[J*j 
LP * un (�,�) � 
n=1 Q.Q .n 

(1J2) 

(1JJ) 

' 

The functions u
0 

(v,�) and t�e fixed !nteger [J�j have limited upper bounds. Thus, 

, LJ*] 

� u! tr ,;t) (1J4) 

SJl I is a positive and limi ted amount. After the choio/e· of a positive number c:12, 

(1J5) 

arb:1,trary small, an integer Q
0

_0 (e 12) can be found such that, considering (109) 

(110)(�11)(125)(127)(128)(129)(1J0a)(1J2), 

1 
p 

Q.Q* 
(

<f 
,it) 

1 CE 14 + l 6
Jl

0 (Q,Qll) 1-) � .. E:12 (1J6) 

_., 

with, 
[J•j 

LP, * 
un (y ,.:t) = , e 14 � t: 1J. S

JE � 6
4 

SJi (1J6a) 
n•1 Q.Q .n ' 

and with 

[J*j Q+Q. 

r� LP
2 

C-13
� L: 2 

�. C 
2 � 

C,4 (1J6b) = gi g
i 

n=1 Q.Q*.n 
i=Q+1 i=Q+1 

e13', t:14 are positive amounts, arbitrary small; E13 � e4, e14 � e:4 s• :1 

(109°)(1J4). After the choic/e of E 12, c. 11

7 
c·an· be chosen such that 

lc'll

8 
(Q,Q*)I " le*7 I �· ,½ �12, for all values of'Q and QM

1 (1J6). Q
0

_
0 

can be
chosen such that c-14 � 2 e- 12, by a sufficient far extension of Q in (96), 

before the _background of the �onvergenoe in the mean, (79)(80)(88)(89). 

Consequently, (125) is right. Thus, the uniform·oonvergence of (118) is corro-

(1J6c) 

. 
,II; borated. (1J6) doee not oonflict with (15), because Q and Q have oertain values, 

_aooording to (127)(1
°
28); they do not go to infinity, a property demanded by· the 

p K (cp,.:l.) 
Q.Q . 

r 

V 

Q 

L gn 8 n ·Cr,A) ' 
n=1 

• 
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; 

· defini tion of the linear independenoe of the vn funotions. These v0 funot_ions
lead to the "n funoti'ons identified later on with the en funotions of (1.J6c).

Now, the often disoussed counter�xample about the oonvergenoe of the 

considered series should be mentioned, (207a)(265): A point mass is introduced, 
it has the distance b- to the gravity center of a spherical body with the radius 
R, b � R. For the computation of the potential T of this, point-mass, in the 

exterior of the surfaoe of a rotat_ion ellipsoid enolositig all the masses, the 

straight distance to the point·mass is developed in spherioal harmonios oonver­
g ing only 1if a � b (a: Radius of the test point). The exterior potential T oan 
be expressed by the ma_sses mi • ThJre exists an infini ty of differen·t systems
of mass distributions mi (i_= 1,2,J, ••• ), e'ach of them gives the same exterior
potential field T, 

T = (1J6d) 

The expression (1J6d) for a_speofal parameter i has not a unique :i,nversion. The 
mass distribution in the interior can not be determined in a unique way by the 
exterior T values - a well-known fact -. Öne ma.ss distribution of the infinity of 
mass distributions mi' generating the one exterior T potential,· oan be in keeping
wi th the convergenoe. For-instanoe, the system of ·the ma.ss distri bution 

- . . ( . ' . 
within the Bjerhammar sphere gives rise to a oonvergent series, eure. Thus, the 
above counterexample is not convincing. 

A po�ential of masses wlthin an ellipsoidal boundary surface can be developed 
in Lame funotions which give a well-known co�vergent series development in the 

exterior. In case of a rotation �llipsoid, the Lame functions degenerate to 

spherical harmonics a·nd absolute oonvergent series. Also in this oase,. the 

convergence is never in question. 
The exterior potential and the _gravi tating masses have not a one-to-one mapping, 

this fact is a cleär handicup in the here discussed pI1oblem. But the exterior poten­
tial and the boundary values of it have the 'preference to be connected by a 
one-to-one �apping, as it is proved withi�_the scope of the Dirichlet boundary 
value problem. Therefore, it is not corivenient 'to consider the convergence of the 

. 
. 

here discussed series development in-terms of the gravitating masses. But, 
cert.ainly, if th�se considerations are carrie·d out in terms of the boundary 
values of the potential, the questions about the convergence of this series deve-

. lopme!1t find a clear, posit1ve, and satisfactory answer. 

. l 

ol (~)' 
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6. The convergenoe ot the_ spherical harmonics series development of a
potential in the exterior spaoe of a regular surfaoe,

6�1. The interrelations between the different sy,stems of base 
funotions, 

The Schmidt orthogonalization process oonducts from a system of 
linear independent functions, as-v1! to-a set. of orthonorm,alized
functions, as w�, (see -(27) (28)). The functions 

' ' 

construot the vector !L• they depend on th.e linea:r in_dependent and 
regular funotions v 1 ( 1f , A ) by the linear eystems ( 27) and ( 28,).
The v1 functions are linear independent, (15) (16). Therefore, the
Gram..determinantä. that appear in the,course of the orthogonalization 
procesa are necessarily non-singular, it can be ·taken from.the 
textbooks, (6] [10] [14]. Thus, the constant, coefficient_s bi.k of
(27) _and ·(28) follow to have finite amounts, a.nd the f\Ul.ctions w1,,
(1 � 1 � L), yield as continuous, regular and orthonormal functions. 
Consequently, the functions w1 have convergent series developments in
terms of the spherical harmonics, [9].

It is easily shown that the function w1, ( 26) ( 27) ( 137), ,have the
same properties as the funotionä e

i.
; (.56) ( 119). The ·functions w1 are

orthonormal, as e1; The functions wi are regular, as e1_.

There_is a one-to-one mapping between the elements wi end v1,
(w1 .... v1), (see (27)). There is also a one-to-one mapping betwee:r;i
the elements v1 and "½:• (v1· _ .. u1), (see (10)). Consequently; there
_follows also a orie-to-one mapping be�ween the elements w1 and u1,
(,w1 .... u1). Such a. one-to-one mapping exists also betw�en the
elements·e1 and �• (e1 .... ui), (see (�4) (55)). There is no �pper
bound for i, eure. 

Hence, there exists a one-to-one·mapping also between the elements 
w1 and �i' (w1 .... . e1). 1

.; 

.. 
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_ The -fu_nction� v L ( 'f , A ) are linear independent, they have the -
represe11tation aocordi"hg to ('11 ) • The functions w1 ( 'f , �A ) ensue

\ 

:i:rom the functions v 1 ( 'f , A ) by means o! -the Schmidt orthogonali­
zation prooess, (35). The functi.ons u1 ( 1fJ, ;\) are the orthonomalized 
spherical harmonics. The det.ailed mutual dependences are express�d by 
_the following, lines, ( 10), 

i = 1 

and, (27),

_ wn ( 'f' , ,:\ ·) =
i = 1 

.., . 

n = 1,- 2, ••• • 

With the inf_inite column veotor, 

u1 ( 'f , il ) 

u2 ( v, , il ), 

UJ ( 'f , A ) 
••• 

, , 

, 

(1.38) 

(1.39) 

(140) 

( 141) 

of the spherical h�rmonics, and with the represent.ation of XL and ?L
, acoording to (32) ·and (31), the subsequent matrix relations are 

obtained, (28) (35), (138_)�·

XL = �i. i ,, ( 142) 

IL = i1 XL (143) 

iIL = gL � (144) 

here is 

�L = �L �L • (145) 

n 

L bn.1: vi. ( c.p , A ) 

u „ 
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�L is a. lower tria.ngula.r ma.trix which= resul t_s· from the orthonormali­
zation procesa. !Cherefore, it i� a non-singula.r matrix, - eo ipso-• 
Thus, the inversion. of (143) is possible, (J..5), 

·, 

- (B )� 1 w 
XL = =L =L ( 146) 

(�L)- 1 is a lower tria.ngular ma.trix, too. �L and (�L)- 1 are non­
singular, square,and L • L dimensional ma.trices;

det h :j: 0 • (147) 

But the matri:x: �f, is not square ' it has the elements bi.k'
(1 =- 1' 2, . . . ' L) (k = 1, 2, ... } • 1 has a. finite sequence, but k 
does go to irifinity. 

b1.1 �L12 b1.3 ••• 

b2.1 b' 2.2 b2.3 ...

B' = ' (148) =L bj_ 1 b.3.2 b''
,,3.3 ••• 

•• • ... . .. • ••

bf,.1 bf,.2 b' ••• -,, L.3 ,� 

or, 

B' = { b! k r ' (149) =-L l.. 

wi th ( 9 ) ( 1 0 � , ( 1 2 ) ,

(150) 

For :f,, = k, the relati_on ,(150) leads to, (t > O), 

bt'i.n > 0 • ( 151) 

' ' 

( 

F 
I 
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6.2. The space of the base tunctions, 

As to the system of the functions v
0 

( 'f , A ) and that, of_ the 
functions ¾ (-lf', A ), each of them: consists of an infini11;y of 
functions. depending on yi and ). • Theyc cover th.e sphere, (11 }. 
The first system consists of linear independent functions, the 
second syst.em is orthonormal. ·But, this is not a complete description­
of the properties of the t.wo syetems. Beyond �t, vn derives from U;i -
and only from the one single function � selected from all the othei 
functions u

1 
(i = 1, 2, -3, ••• }, - by the well-defined and unique 

rela_tion,. ( 11 } whicht multiplies the function. � wi th � 1 /t )n � This 
relatioru_ ( 11} has a unique inversion, 

(152) 

A single member vn of the system of the v
0 

functions- is generated
only by a single member '¾i o,f the system of the � functions • · And 
inverse, a single member � of �he system of the t1n. functions is _ 
gener�ted only by a single member v

n 
of the system of the v

0 
functions. 

The �nterr-elation (11) demonstra�es tha� the one-to-one mapping 

V ..
.. 

n (�53) 

r , 1, 2, • • •, L, (154) 

L � Oo (155) 

is possible, su.re. There is no upper bound for the integer L, eure. 
The system of the funct:Lons v

n 
has � eo to speak - t�e same number of 

elements a.s the system ot the functions ll.ii• Further·, on the strength 
of (11 )., the regular funct:Lons v

n 
are situated in the spa.ce of the 

regular functions described by the system of th� � functions. 
'Consequently, it is:obvious that the functions v

n 
determine and 

generate completely the space of the functions 1.1:n, which. is the apace 
of the regular functions. 

By means of (27), the v
0 

functions describe completely -the samt: 
- space as the w

0 
functions. Further, · :i.n a s-imilar wa.y, by means of

~ ( lf , ). ) = ( t . ( 'f , ).. ) )n v n (. lf , A ) • 

, 
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(27l, the wn funotions deaoribe oomplet.ely the aame spaoe aa the � 
functions. 

Thua, obvioualy, a regular.· funotion. can be expreaaed oompl�tely 
by th� vn funotiona·or by the· � functions. On the strength of (11� and
·(153)(154)(155), the funotiona vn oannot determine o�ly a aubapaoe nf 
the spaoe of the funo�ions llxi• (n = 1, 2, •••• L; L--+- oo ). J,ater 
on, in this chapte;- �paragraph 6,. 9.), this faot is oorroborated by 
the detail�d investigations abou� the oompleteneaa of the ayatem of 
the vn functions, desoribed � the par�ap� 6.9 • 

. Summarizing ,- the relation ( 11) leada from the -� aystem to the vn·· 
:Jystem; The orthonormalization is the step from the vn ayatem to the 
wn aystem. The above deliberations show that the � system can be 
transformed into the w

n
_system by the multiplication with'an infinite 

_orthonormal matrix i which has the property of (41). 

6.J. The determinant of the orthonormal matrix1 

Now, the matrix �L of (142) (1�8) (149) is put into the fore. .......__
�cating the rows of (148.) behind the element of the suffix k = L, 

· the.following :r, • L dimensional square matr:tx �s obtained,

b1.1 b1.2 b1.J ••• b1.L 

bi_ 1 b2.2, 
b2.J , .. b' 2.L 

�.L = bj.1 b3.2 bj�J ••• b'-
J.L t (155a) 

••• ••• ··• - ••• • •• 

bL.1 bi_2 b'·.
t..J 

••• bL.L 

or 

R.L
= { bi.k} • ( 155b) 

1, k -_ 1, 2, 3, ... , L. ( 155c) 

The el.ements of the JIU!,in. _diagonal of �L.L are positive, there is no row 
and no oolumn of .a• which oonsists of zero elements only, (151 ). aL.L· 

/ 
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Further, the truncai:ed column vector u· 1s int:roduced, (141) ( 142), 
,1 =L 

., 

u, ( 'P ). )
' 

( lf A ) u2 

lh = '½ ( y; ' ,1 ) • ( 155d) 

. . .

UL ( 'f ' A >
I 

1 

The 1 greater the value of L the .better the product 

B' =L.L �L (155e) 

approximates the vector XL' ( 142). The great.er the value 9f: L the more
precise the row vectors of �L.L t�nd. to construct a. L „ dimensional
parallelepiped.the volume of which is nev�r equal to zero. This.im­
portant fact is right�, because these row vectors o:t: �L.L tend to be·
linear independent if L becomes.'greater antl. greater. The greater the 
value of L the bett.er the product ( 155e) represents the linear 
independent functions v

n 
( i.p , A ) , ( 142). _

The following transition behavior is valid: 
If the suffix L tends tn infinity, L � oo, the consequencea are, 

B' � Il:' 
=-L.L 

det �' t 0 

and, (143) (147), 

det � ,f,_ o,�

The relations (145) (147) (155e) (.157) and 

= C for L � oo 

,. 

( 156) 

' ( 1.57) 

. ' 

(157a) 

(157,b) 

( 158). 

1 

./ 

~L B 
= 
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lead to, 

det � = det;,� det B' + 0 • (159) 

B.ecause of (1$9), the inversion· of the matrix � is possible, (144), 

The 

u = 0- 1 w = :::a = 

w =.C u= : =

functions wn

C CT =- �= = 

a.nd 

c-= 

( 160) 

• (161) 

� are orthonormalize�.Thus,� is _orthononnal,(41). 

1 
E (162) = • 

Further·, as to the diagonal elements of �T �• these values are the 
diagonal ·elements of 

(BB1)T (BB') = = -- = = (163) 

see (1,58). Because of b�.n > O, (151), and bn.n > O, (28a), and
regarding (27) ,(28) (28a.) (152), it. is easily seen that the column 
veotors of the produot matrix B·B' have at least one oomponent whioh = - \ 
does not vanish. Thus, no diagon;l element · ot.' �T � is equal to zero. 

Consequently, the transition.L � CX>and the equation.(162) lead 
to. ( 159), 

0 

and, more preoise, 

, (det C) (de� cT) = (det c)2 = det E = 1. = ::s = � 

Henoe, more detailed than (.159) (164), 

det C "" 1 • = 

( 164) 

( 165 ), 

( 166)

.. 

= 

' 

deu g + 
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, 

The relation (166) oorroborates the faot that the matrix C is non-= 
singUlar. M oan be inverted, (160) (161). 

The subs_equent relations are self-explanatory, 

::s 

(168) gives the de.finition of an infinite orthonor·mal matrix, [7/,.
(see also (41)). Thus, the matrix � aooording to (145) and (158)
is an infinite orthonormal matrix.

6.4 The convergenoe property darived by the oonsideration of � 
determinant •. 

(167) 

(168) 

Before the baokground of the aboye lines, (see the equations from (138) 
; to (168)), it is possible to identify the funotion; wi, (1 � i � Q),

with the funotions eiJ (56) (�19), - (see, in paragraph 6.9, the detailed
completeness proof for the funotions v1 and, oonsequently, for the
funotions. w

i
, too) -, 

e1 (cp, ..t), e2 (tp, /l.), e3 (cp ,A. )', � •• , eQ (<p, Ä. ),

(i = 1, 2,· ••• , Q). 

Here, it is allower\ to ,replao'e the integer J, in (1J7) by the integer 
Q of (119). 

There· is no upper lirnit for the integer Q and for the integer L. 

(169) 

- �'urther on, it is allowed to identify the matrix C with the matrix A.- = 

Consequently, the formula (119) oan be transformed into (170),

(170)

CT. 
:: ' 
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The detailed sha.pe of the functions ·wn, n '> Q, is not reqi.rl.red here
in the equation (170); the share exerted �y these functions is 
represented by the residual term e,11 which can be neglected. The
uniform convergence of the · development ( 170) is corr'oborated later - desisting 

' 1 ' 

from using ( 119) to ( 121) - by a cons·ideration of the system of the 
w� fw10tions, (s'ee the paragraphs_6.9. and 6.10.). 

6.5. The seoaration of a limited nwnber of linear iru:lependeri.t 
fu.nctions. 

\ 

Some explanatory lines about the trans�tion from the e
1 

functions 
to, tl,e v,1 functions, (i = 1, 2, J, •• ., Q),. should be added. For
instance,, H is posslble tha:h the � matrix of (54) transforms the 

;11 ve'ctor into an � vecto1• of which the forem�st components Q in 
mllllber - are not identical wi th the orthonormal functions 

V/ 1 ( 1() , A ) , w 2 ( lf • A ) , • • • , w Q ( � , A ) ;• ( 171 ) 

(See -the transition f'.rom (119) to (170)).In th,.is case, the equution 
(54) is mult:i,plied on both sides with ·a second infinite orthonormal
l)lo.trix A' 

- '

�' :=- A' e = ¾' A '\½ •
.:: = "" 

,w, ( lf A ) 

w2 ( lf) A ) ,,,

. . .

VI 1 VIQ ( <p A, ) 

w' + 1 ( \f ). 

w' Q + 2 ( lf> ). )

. . .

As to (173), the follow:i,ng relatioq is valid; 

i . j "' 1 , , , • • , Q� 

� 
(172) 

( 173) 

( 174)( f , A ) = w•. 
J 

2 
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The product of two infinite orthonormal matrices is again an infinite 
orth0Jorm:a1 matrix, it is obvious. Therefore, A' Ais. again an , = C 

in:t'ini te orthonormal matrix, ( 172). Thus, the rela-tion ( 172) leads to 
the fact. that the vector X!' represents an infinite system of 
o'rthonormal base func·��ons-wi ( "P., A ), simi:).ar a� the systems of 
the ei and I½. functions. The .Parseval complete�ess relation is also
valid for the system of the v,1 functions, (i_,= 1, 2; ..• .), (79) (80) 
(172), similar as for the systems of the ui or ei functions. The!'e is
a one-to-one me.ppin� between the elements e1 and wi and between·u1
�d w1, (174). T.his mö.pping happens on the ba.sis of (-10) and (11)and (27). 

The subsequen-� relations are self-explanatory, (45) (59), 

.; ,i•, k' = 1 , 2, ; .•• ( 175) 

Te orthogonality relations for the _ei functions and the equutions
(172) lead to 

lll.k 
= �[ wi. ( 'P , il '.) ek ( 'f ;l ) d F ( 176) 

F 

f r , 

i = 1 ' 2, . . ' Q, ( 177) 

'l.n<l. for , 

.... = 1 ' 2, ••• • ( 178 ), 

Because of ( 17 4), the foremost components of th� ector w' , _ Q in 
numbeI• -, are equal t? the wi functions with the suffixes i = 1, 2, •• , Q.
Therefore, the relations ( 119) ·anci. ( 170) show that ;l;he subsequent 3 
equattons are right, 

:rc,p,X 

n = 1 

• 

lr 1, 'I 
1 

( 'f , A, ) ;t . '-'11 n \ 

,, 

E 11 ( 179) 

,- . 

0 

• A' 
-= 

, 

= 

• 
Q 

L 
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f ( · 'f • A. ') = L , � wn C 'f • � ) + e: 11 , . 
n 1 1 

/ 

Q 
f ( 'f , A ) = . C . � wn ( 'f • A .) + e: 11 •

n = 1; 

It' is possible to ohoose a certa:in nwnber·, arbitrary small� 

1 E' 11 .o 1 
> 0

having the property, tha� 

I e: ,1. 
(Q) 

l 11.0 

' f or a sufficient great value of the int.eger Q. 

(180) 

(181) 

( 182) 

( 18.3) 

The explici t shape of the functions w;,., for the sµffixes n > Q11 

is not necessary to be discussed in this context. These funotions are 
involved by_the effect they take on the .residual t.erm e: 11 of 

( 179) ( 180) ( 181 ) ; e: 11 can be considered as an arbi trary small 
amount • 

. Within. the course of the deductions of thie above paragraph 6._5., 
the' system (27)needs not to be extended to infinity. Therefore, it is 

I 
• , 

pos�ible to introduce the functions v1 with the, characteristic to_ be 
linear independent. 'Thus, t�e definition of this oharacteristio is 
not violated, since the above lines avoid an infinite extension.of 
the nUinber of the tunctions v1• 
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6.6.- The convergence property at, the surface
1 

The � matrix transforms the vector X ihto the vector �• (157a), 
( see ( 28) to ( 35) ) • Wi th regard to the e qua:tion ( 170 >:, the integer L 
has to be replaced by the integer Q. Hence, the matrix relation (28) 
gets the following form, 

( 184) 

"The formula (170) can be expressed by a scalar product, 

t c 'P, A > = g� ?Q + ( 185) 

In (185)-� �Q is the following column vector; for the constanit coefficients,

g1

g2·

IQ 
= 

••• • ( 186) 

gQ

The right. hand side of ( t84) is a substitute for the .function �Q
(10,5), 

f' ( lf A ) 
.T �Q XQ + 

C: 1t ( 187) ' 
= 

� •

Tlie introduction, of _the .following abbreviation ia _advantageous, (188), 
' I 

-aT;:; . T B 
=l.l = �Q =Q ( 188) 

The coefficients in the XQ system have the following column �ector,

41 

42 

5!Q. - = ••• • (189) 

qQ 

; 

= • 

e: 11. • 

in 
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Hence, 

f ( 'P , A ) = g� XQ . + ( 190) 

and the corresponding expression by the component1:1 of the concerned 
vectors is, 

Q

f ( \.f' -, ,\) = L 4n vn ( 'f
, ), + e: 11 (191 )-, ,, •

n-= 1 

1 

The formula { 191) is a uniform convergent ser;ies development for the 
surface furicti-0n f in terms of the linear independent functiona 
v

n 
( 'P,). ), (see (119) (120)). 

It is a small step only, the �ay that leads from the·series (191) 
for the surface values f ·( �-' A) to � spatial spherical harmonics 
series.development specialized for 1 test poinys situated on the 
bou.ndary surface D. The �elations (10) and (191) give 

The 

,, 
l 1

,

r 

"n ( 'ff ( 'f ). ) = · C qn-[t < 
lf t 

n = 1 

combination of (8) (192) (120) leads· to 

Q 

f 
( 'f ' ;\ ). = I:· 4n· [(�t]D 11n<\f,A )

n. =- 1 

E: 11 --+- 0, J.! Q � DO • 

t 
A ) + e: 11-· _ (192) 

+ € 11, ( 193) 

The relations (193)'and (194) are equiv�lent to the expression (195), 
loo 

f ( 'f , ): ·) = L 4n. [ (½) nJ
D 

Un ( \f,, A ), . '( 195) 

n = 1 
•. 

The formula ( 195) describes the followinß fact . ." 

., 

1 -

Q 

• f 

, 

(194) 
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If there is given a regular· function f on a-regular surface D, it is 
possible to develop f in a uniform convergen� series in terms of the 
solid or spatial spherical harmonics being specialized for the points 
of the surfac·e n. 

6.7. The convergence of a ·series developme�t in· spatial spherical 
harmonics, 

' ' 
lt .is a short. way only that leads from the convergence of·(195) along 

the sur:fac e D to the uniform convergence. of ( 3) ( 5) ( 6) in the ext-.erior 
space of D •. The formulas1 (81) and ( 195) give, , . 

( 196) 

n = 11 

For the investig�tion into whethe� the validity of the convP.rg�nce of 
(196) can be extended int.o the exterior space, a series cri terion of
Abel is in the focus ·of interest:

A co�vergent series development 

(197) 

n-= 1. 

is given. Further, a monotone sequence qf terms with limite.d amounts is 
'defined, 

( 198-) 

The theorem of Abel states that (197) and (198) lead necessarily to the 
unif9rm convergenoe· o� the subsequent series development (199), /13], 

• (199) 

n· = 1 

,, 

,.. 

'/ 

I 
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In ,he here discussed applications, the terma _an o� (197) are 
repla.ced by ,· ( 196), 

further, instead of bn' the following express1ons are introduced, 

= 
. . 

(200) 

(201) 

All -the points of tlie same geocentric�l latitudes and longftu ... es, 
i.p and � , are aituated on the same geocentrical radius vector; the 

radii of all these points have the lower, bound rD = rD ,( 'f., A }. The 
upper bound of these radii extends to infinity, 

(202) 

(202) is v�lid for � certain parameter couple �, A of fixed values.
ilenc e, ( 202) , 

0 

' 
, 

(203) 

Therefore, the b
n. 

terms construct. here a mo.notone decreasing· sequence, 

{ } _ rD 
[ 

rn}
2 

b - - , -
n , 

r r 
' ... 

(204) 

The introduction oi' the relations (200) and (201) into �he series 
(199) leads to the here importan� statement that

00 

(205) 

n = 1 

/ 

(tt 
[ ( tt] b 

• 
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is a uniform convergen� series development which is valid in the 
ext.erior space of the Earth's surface D, and on i�. 

The formula (205) shows that the spatial function W is harmonic, 
(2). W fulfills the Laplace differential equatiori, (2), b'ecause the 
members of (205) �ulfill the equation .(2), 

Lc, [ i�r .,, , '{>.Al] = 0 

the solid spherical harmonics are in°the brackets of (206). 

(206) 

As a supplementary remark, i t is ,to be stated that the first theorem 
of Harnack leaäs also from (196) to (205) - rrom the convergence on the 
surface D to the convergence in the exterior space of �• /12]. 

6.a. The unigueness,

rhe unifo� convergent series (205) valid in the exterior· space 
of D solves the Dirichlet boundary value problem: If WD, (196),_ repre­
sents the boundary values on D, the uniform convergent series develop­
ment (205) determines the attached spatial potential W in the exterio� 
space of D. 

The solution of the Dirichlet bounda.ry value problem is well-knovm 
to be unique, /12/. Therefore, the spatial representation (205) is 
neoessarily a. unique one. �here is.no other W potential whi�h, is 
harmonic :Ln the exterior space of D and whioh observes the boundary 
values WD.

:If WD on the left hand side of (19�) is given as a_regular,surface
function, this fact leads necessarily to a unique system of the qn
ooefficients on the right band side of ( 196), because the terms 

1 

(206a) 

are · linear independent: surface fwictiona. 'illis uniq_uE; system of the CJn 

[üt.] D . "n < <P , A ) 

., 
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coefficients leads necessarily to a unique spatial representation of 
W by (205). 

The bouno.ary valuea WD construct:--a regµlar_ two-dimenai:onal function;
the solution of the Dirichlet boundary'value problem is well-known to 
be a r�gular func�ion in the· exterior space of D, [12/. Hence. it; 
follows that the expression (205) is a regular function in the three-

, 
- . 

dimensional 'spa6e exterior of the boundary surface D. 

The for1111'.üa (205) - b.eing vaiid i:ri the exterior space of. D - implies an 
_extension of the validity of (3) and (6). The yalidity of the latter 
formulas is restricted to tes� points situated only in the exterior 
space of the Brillouin sphere, (r = R), (see Fig. 1). The 4n.
coefficients of the series (205) can be identified with the Wn
coefficients of (6), 

(207) 

If the relation (207) is fulfilled, the developments,(6) and (205) are 
identica], (for r � R), member· by member. 

Further, both of these series are conv7rgent for r � R. As to the · 
harmonic downwards continuation of these functiona from the Brilloµin 

\. . . 
sphere down to the Earth's surface D, the theorem about the ha,rmonic 
con�inuation has the following text: There is giv,en, a harmonic function 
V in the three-dimensional,space G. In a. aubspace G1 o; G, the V

, function is identical to_ zero. lt followa that the ha.+monic function V 
is necessarily equal to zero in whole the space G , too � 

In the here discussed applications, the harmonic potential V is the 
difference of the two harmonic expressions (1) (6) and (2Q5). 
0bviously, regardi

0

ng ( 206), this diff erence function is harmonic-. J.tl ,my 
oase tm.d for any test point. It is harmonic im the exterior of D. 
Further on, (207), this d:i,_;fference function is �qu'al to zero in the 
exterior of the Brillouin sphere (r � R). Thus, according to the . 
theorem about the harmonic continuation, it i� equal,to �ero also in 
whole the exterior of D. 

·It ·follows tpat the introduction of the Wn coefficients into ( 205)
,· leada necessarily · to the unifo+'l)l convergent. spherical harmonics series 

.., 

' 

.. 

/ 

= 

.,. 
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�evßlopment of the gravitational potential valid in·the exterior 
space of D, 

Oo 

w = L 
n = 1 

(_
r

1)
n, 1 

wn U... ( f ' /l ) • '(207a) 

The identification of'the analytical expression (205) with the real 
potential in the exterior of the Brillouin sphere inc�udes. this 
identif,ication for whole the exterio� of the surface of the Earth. 

6.9. The completeness of the system of the linear independent functions1 

The investigation' into whether· the system of the linear independen t 
functions v

1 
( 'P, � ) 1 (11), (195), is co�plete - considering the 

space of the i:egular functions f - 1.1:1 .,governed by the following 
condition: 

If all the integraLs 

f ( f,v1 ( '(> , J ) il F = 0 . ,

F 

i = 1, 2, 3, • •. , 

(208) 

(209) 

are equal to·zero, in this case, the regular function f_is necessarily
equal to zero over the whole surface of the sphere 5 [6J [iQ/ [11] [14] 
[15J [{6J. Thus,· from (208)•(209) the _subs·equent equation has to follow,- ' 

f 0 
I 

for the whole surface F • ' · (210) 

In case · of orthonorma1 base !unotions,• w1 ( i.p , A ) , :the completeness 
oondi tions have a shape ·1%imilar as ( 208) ( 209) (21.0): The system of the 
orthonormal funotions W1 ( l{) • Ä ) is oomplete in the space of the 
regular fuootions f if 

f [ f,w1•d P = 0 (211.) 

\ 

r 

• 

I 

= 

F 
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1 = 1 , 2, 3, •'•. (212) 

leads to 

f 0 
,, 

- for the whoie surfaoe F. (21)) 

These relations for a system of orthono:rmal functions, (211) (212) 
(21)), are more conunon.in use in the textbooks than those relations 

' 

( 208) (209) ( 210) for a system of linear independent functions.

A look on: the relations (27) shows that the fulfillment of (208) 
(209) (21,0) is a consequence of the conditions (211·) (212) (21.3), and
vice versa. The two systems of condition: equations, described by the
relations ( 208) to ( 21,0) on- the one hand and ( 211i) to ( 213) on the
other hand, are equivalent.

In order to investigate into whether the condition rela-ttlons,{208) 
to (21!0),1tU'e observed by the functions v

:t 
( 'f , .:l ), (11:) (195), the

potential of a surface distribution is introduced,/now. It covers the 
surfac� of the Earth D, [12}. 

T (214) 

D 

m represents the surface distribution, dD is the surfaoe element, 
' I • -

e is the straight. distance between the surface element and tpe spatial 
test-point for which the potential T,on the left himd side of (2t4) 
is taken. 

The relation (214) is valid for test points situated in the 
interior space being enclosed by D� as well as for test ·points in the 
complementary space i. e. th� space exterior of the body of the 
Earth. The relation (214) is valid also for test points situated on 
the .surface D. Thu�, the expression (214) for the potential of a

,stirface distribution is valid . for test points situated anywhere in 
the three-dimensional space. • 

The expression for 1/e in the relatio.n (21,4) is developed in a 
uniform convergent series in t.erms of spherioal hannonios, (see Fig •. 2), 
[9] [12],

::::: 
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¾
= I: (r')n+1 P

n 
(cos V' ) , r < r' (215) 

n = 0 

or, 

r' < r • 
1 

(216) 
, l 

n = O 

P
n 

are the Legendre functions. 

-The series developmerit (215) is valid for test.points P situated in
the spherical volume which is enclosed by the interior Brillouin 
sph.ere having the. radius RB.i' r < RB.i; i. e. the greatest;' 
geo,centric sphere being enclosed completely by the Earth' s surface D. 
T4e v�lidity of (215} is given also for r = 'RB.i' Fig. 2. r' is equal 
to the geocentric-radius of the Earth, Fig. 1 and Fig. 2, 

t 
, 

Hence, (215) and (217) are co.mbined to 

00 rn 

1 
L - = 

tn + 1 Pn (cos y ), re
,· 

n = 0 

· (214) and (218) give

ff �o 

rn 

T = 

1 
P

n 
(c·os 'f )

tn 

+ 

D 

, Or, ·

(217) 

� RB�i • (218) 

• m , d D; r � RB .- • 
ol. 

(219)

T = L
n = O 

,!' ff, ,n'+ 1 •n (cos 'f ) • m , d D; r<s",,.i • (220)

D

00 

oO 

.1_ \ 
e - Li 

r' 

CC. 

• 

-- . . 
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208_ 

r Fig1 2: The interior �rillouin sphere of the Earth with the radius 
RB.i; the interior and th: exterior space, 11 an,d I

a
, of

the -body of the Earth; the surface of the Earth, D;, the 
aurfaoe point PD; the surface normal vector-� 'directed 
into the_ exte_rior spaoe I

e. 
• 

The addi_tion theorem for the normalized spherical harmonics is, 
[B] [9],

with 

1 

Pn (cos 'II ) = ---
2n + 1 [[ �.m

m=O 

( i.p ! A- ) - �.m ( -'f', A') + 

(221-) 

1 ' 

J ' 

n -

n 
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��m ( 'f , A l = Pn.m ( s,in _ '<f ) cos m A

\\ 
F 

ff 
F 

�.m d F 

'S'2 d F
n.m 

= f;y ' 

= 4 11 

' (222) 

' (223) 

(224) 

(225) 

'l5'n.m are the normalized ass,ociated spherical harmonics •

. The addition theorem (221i) is introduced into (220). The primed 
·-1atitude and longitude-refer· to,the surface element d D which is 

moving during the execution of the integration process,

D 

n 

I I 

1 �.m ( cp , il ) m • d D +

+ [ r
n 

-2
n

_
1 

__ 
+
...,...

1 
[ ll'

n
,m ( 'f' • ,\ ) ) I 

tn : 1 'll'n,m ( <p'j> m • d D,

n = 0 , m = O_ 
D 

(226) 

Comparing _ (10) �d (11:) with (226), and considering that the funct:l,on 

"zi + 1 is a substitute for �.m and Sn.m' the fo�lowing �r8Jlsition 

relations are valid, 

( n = o, 1, 2, ••• ) 

, _(227) 

(227a) 

(227b) 

(227c) 

/ 

f 

.s~.m ( <p , A ) =- Pn.m (sin c.p ) ain mA 

• 

(1/tn+1 ) R- (u>,AJ ~ vn+1 (1P,A) J -C1/tn+1') un+
1

(CL),A) 
n.m . 1 1 r 
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and 1� a similar way for and too, 

Thus, for instance ( see (227) (227a) (227b) (227c) 

"n + 1 � tn + 1 3n.m. ( ':f ' ' A'), (228) 

In yiew of the intentions· here followed up, a combinat�on of (227) 
and · ( 228) �i th ( 226) le

1

ads to. the subsequent symboÜc �epresentation 
of T, ( the zonal harmonics only ar'e written down, aa subati tut es for ,th<: 
zonal, tesaeral ·and sectorial harmonic�/ transforming in the same way).

'00 

1 
. [ n T= · r ---u 

2n + 11 n + 1
n = 0

(229) is an abbreviating yersion· of (226).

1 ( tp', ,1,') m ,  d D,

(2'29) 

The element d D of the surface of the Earth Dis now expressed by 
the surface eleme.nt d F of the unit sphere F,

.. 

d D • cos � = d F • (R + h)
2 

• (230) 

The angle � is the· slope of the terrain, R 'is . the radius of the 
globe, and h is the topographical height above the globe. In case of 

. 
,/ 

a star-shaped Earth, . the t9llowing relations are valid, · 

1 � COB � > 0 , 

R + h > 0 • 

Thus, 

+ h)2.
1 

d D = (R. d F •

cos 0(. 

A function f is introduced by 

(R + �)2 
1 

f =m • 

·60s °"

(231) 

(232) 

(233) 

(234)

• 

D 
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f is an. arbi trarily chosen regular function . ( 233) and { 234') are com­
' bined with (229), 

or, 

00 1 
T=[_rn ___ ¾+ 

n =· 0 

2n + 1 1 

' 

d F, 

F 

(235) 

A 1) • f d F, 

F · 

I 

(236) 

Compa:ing (208) with (236), it is· obvious that the conditions (2.0�) 
have the consequence, Fig. 2, 

T - o, for r � RB.i (237) 

or, 

T = o, within 1i.1 • (238.) 

Because of the'relation (237,) a.nd because T

enclosed by D� �214), the harmonio potential T 
is harmonic in the sp�ce 
ie equal to zero not 

only _in Ii.1! but also in whole the interior of the spaoe enclosed by
the surface D, beyond the subspace Ii.1• This faot is evidenced by the

'prooedure of�the harmonic·upwards continuation of the·harmonic 
potential T. -from the spatlal area Ii. 'T upward� into the area· �1•2,

• , I 

•

, 
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(eee Pig. 2). I1 is the epaoe enclosed by the eurfaoe of the Earth D.
11•1 ie the spatial domain encloeed by the interior Brillouin ephere
with the radiue RB�!• Hence.

(239) 

(240) 

The tollowing well-known theorem about the harmonic continuation ie 
proved, for contin�ous gravitational potentials 

lt T ie harmonio in a domain r1, and 1t T vaniehee at all the pointe
of a domdn· 11• 1 in Ip then T vaniehee at all the pointe of Ii, [i�J.

The spatial repreeentation of T, (214), fultille the Laplace 
• 1 ' 

differential equation in whole the infinite three-dimeneional epace, 

- 0

Therefore, (242) ie right, 

On ihe 

T· a O, within I1 •

etrength of the equatione (242) and 
cited theorem about the harmonic continuation 
(-238), 

T = 0 ' within 11.2 ·,

and, further, 

T =

<? within Ii • 

(241) 

'(242) 

(238), (239), the above 
leade to the relation, 

(243) 

(244) 

Thie relation (244) hae a coneequenoe wh1ch ie important for the 
aime here followed up. 

In the theory of the potential of a eurfaoe dietribution, it is 
ehown that this potential ie a continuoue function within whole the 

• 

11 

+ 

. 
' 
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three-dimensional space, even, in ,oase, the surfac'e wi th ·the 
gravitating distribuUon m·,, (214), is crossed. 

The testpoint of the pote�tial funct.ion T, (214), may approach the 
point PD on the eurface D from the interior dome;in and, in a eecond 
caee, also from the exterior domain ( %hat is to say from the s:i.de of 
r1 resp. Ia).;By these appoaches of the testpoint to the'surface D,
the values (T1)n and (Ta)D are reac�ed for the potential T. Because 
of the continuity of �he potential T, .(even if the· surface D is. 
crossed), the following equation is, right, [12], 

(T1)n • 
= , (Ta )n (245) 

(244) leade to

(T1)n .. 0 • (246) 

(245) and' (2'46) give

(Ta)n - 0 . (247) 

(247) is an expreesion for the boundary values of the exterior
Dirichlet boundary value problem for the potential T. The aoiution of 
this problem is unique, [12]. Thus, by (247) and (241),

T 0 within 1
8 

(248) 

1
8 

is the domain exterior of the surface n •. 

For th� derivatives of T.in th� direction of the exterior normal 
veptor �• Fig. 2, the values 

f �!Ji.D resp. (249) 

follow, approaching the surface point D from the side �f the interior 
domain r1, resp.' from the side of the e:xte�ior domain Ia� The jump 
relation, [12], for 

• 
I 

( ~: J. 
, a .... 
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(250) 

at the aurfaoe D givea, (214), 

• 4 // m • (251) 

I Sinoe the T values are equal to zero. everywhere in r
1 

and Ia• (244) and
(248), the normal derivatives of' T are equal to zero, too � , 
Thua, the two terms on the · lef't luu!.d side of'· l'.251) are both equal to 
:z;Aro aleo. 

Henoe, wi-th (251), 

m "' 0 on D .  (252) 

'.l'he relation1:,1 (231) (232) (234) (252) reveal 

t „ 0 on D (253) 

Summarizing the_ above deliberatione from (214) to (25'3), the 
conditi,one (208) (209) lead .not only to the relatione (237) (238), but 
also to the consequenoee ehown by (253) (210). 

Therewith, the oompleteneae of' the ayeteme of' · the f'uno·. :i.one v 1 and
· w1 ie proved, (10) (11) (27) (28).

/, 

, . 

0 

. ' 

I 
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6.10. The convergenoe property .derived by the oo mpletene ee of the 
syetem, 

of 

and 

A regular funotion f hae the follow ing repreeentation 
the functione w

n 
(lf>,A ), ·(78) ( 170). 

00 

f ( lf ' A ) .. L Sn w
n ( f ). )

n "' 1 

1n the eystem of the ·funotions vn ( y> ' il ) ' (191)

f ( <p ' � ) .. 

00 

[ 
n • 1, 

w�v n n < '
P
' ;t )

in the ayetem 

(2,54) 

( 195), (2o7,a), 

(255) 

As 1t ie ehowr_i -in the textbooke, the oonvergenoe of (254) arid (255) 
ie demonetrated on the foundation of the oompletenese of the eyetems 
�f tlie wn ( lf ' il. ) resp. vn ( 'P ' A ) ' a oharacteristio ,�roved 1n the
preoeeding paragraph 6. 9· •• The oompl�tenees ie equivalen·f with the 

/fulfillment of the Pareeval relatio�, (79), -[6J /:IOJ [14], , ' . . 

II t 11
2 

„
n a .1 

-2
Sn (256) 

rhie relation (256) lead'e to the uniform 09nvergenoe of the eeriee 
(254), it w�e proved by tbe detailed developmente oonneoted with the 

·,1·elatione (79) to ( 136b), - atter an exchange of en ( c.p, ;\ ) an.d
wn {. 'f , · )._ · · ) • · ( 119) and ( 120) ; ( 17-0) , gi ve 

1 

Q 

t: (�,).)_ • I: Sn wn ( lf' ' A )· + e: 11 (257) 

n =- 1

with 

e: 11 � 0 ' i! Q � 06 • (258) 

,,, 

' ' 

1 ' 

00 

Lr 
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According to the Cauohy convergence criterion, the relations from (125)

to (136b) allow the f'ollowing modification·of the statement about the 
uniform convergence of ( 257), usi�g the completeness of the w

1 
,( 25.3) ( 256).

Theorem 13: 

The �eries (254) is convergent, beoause, after the ohoioe of a 
positive number, • 

e: 15.0 > 0 (259) 

an integer Q0 „ Q0 ( e: 15•0) oan be found such that for the integer Q,·

Q > (260) 

and for all the integere Q * ,

), 1 ' (261) 

the eubeequezit'inequation f<;>llowe, 

1 gQ<- 1 WQ<- 1 ( 'f' • A ) + gQ<- 2 WQ+2 ( 'f' • A ) + ••• +

tp,,.l) < e: 15.0 • (262) 

The relation (262) meets the fact that the property of the linear 
:tndependence of the functions "'n · ( 'f , A ) is explained only for a
limited number of functions of. the vn eyetem. The functione wn ( t.p , ). )
are derived from the f'unctions vn ( l.{J , --1 ) , (262), (23) (24) (25) (27').

As to the uniform convergence of (255), the orthonormalized functions 
of (257),

(n = 1 , 2, ••• , Q) (263) 

can be e;i(pressed by the linear independent functions 

(n ia 1, 2, ••• , Q) (264)
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This e:xchange of the baee functions happene by me_ans of the eyetem 
(27). Alo�g theee linee, (27) (257)� the equations (257) and (258) 
turn into the following ehape, 

1 

Q 

f (tp,A)a r.; wn V . n (<.p,A)+ e: 11 ; (265) 

n „ 1 

here, the ine qua t ione 

l ·e: 11 I 
< 1€11.0 1 € 11,. 0 > 0 (266) 

dete�mine the sufficient great integer Q , • ( eee · (182) (183) ).

The two relatione (265)' (266) given above pro:ve the uniform 
convergence of �he ser1:es development ( 1_96) which is here to be 
inveatigated. Thie proof given in the above paragraph� 6.9. and 
6.1 Q.. is free of any consideration ab out the amount of a determi

n

an.t 
of _infinite dime·nsion. 

6.11. The theorem of Picone, 

In the e:xtern�l space of a body, a eystem of harmonic functione 

un ( x, y, z)

n = 1, 2, 3, . . . ' 

(267) 

(268) 

may be definad. These funotione have the character of base functions. 
x,· y, z are rectangular Cartesian co-ordinates. The individual 
functions Un (x; y, z) fulfill the Laplace differential equation, 

· 6 u (:x, y, z) • � un (1,) • o •. n (269)

.. U (x,) 
n • 

,, 
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Let the etar-.ehaped eurtaoe D of the body be deecribed by a r�gular 
tunoti.on, 

.In • in <P, q) (270) 

it depende uniquely ori the radius vector. p and q,denote Gaueeian 
p,arametere on the eurface D. li'or te_stpointE! situated eepeciaily on 
the eurface D the_ harmonic tun9tione Un <1), (267), change to the
two-parameter funotione �n•

✓ 

. (271) 

Now, an irnportant prope�ty ie introduced about.the fll?loti-0ns fn,
They have to conetruct a complete syetem of baee funotione 

�n (p, q) (272) 

- n • 1, 2, .3, • ••• (27.3) 

in the epaoe of the regular funct:f.one. 

Furtheruiore, let the tollowing harmonic gravitational potential U 
be given in the·extern�l epace of the body, 

· U • U <i> • U (x, y, z) ; (274) 

wlth 

AU • 0 (275) 

in the epace exterior of the eurface D. The boundary values of the / 
-

' 
. 

potential U on the eurtace D are deecribed by the regular function 

giving, 

� - '? (p, q) 

� (p, q) • 

1 .

(276) 

(277)

- • • 

.' 
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Then, aog_ording to Pioone 's theoreiD, . /2], the uniform oonvergence .of 
, the following eeries expaneion is seouz-°ed\ 1b the external spac•, / 

·oo

u • u <i> • L � un (�) • (278) 

.n • 1 

L1:n are the oonetant ooeffioiente. Moreover, 1f the teetpoint appr·oaohea 
the b.oundary eurfaoe D from th� side of. the exterior epace, this aeries 
e:xpaneion tenda to· the fimotion · 

� n (p, q) • (279) 

n • 1 

Changing over to our applioations, the following eubetitutions have. 
to take place, (5) (6) (10) (11) {81) (196) (205) (207), 

Un <1) • ( �) n '1n ( lf , A )

-P •

q - A. 

�n (p, q) • vn ( 'P, A ) ,

U�( �) • W Cr, 'f , A ) 

u - w 
-"D . n 

• 

(280) 

(281) 

(282) 

(283) 

(284) 

(285) 

. (286) 

J 

do 

~ (p, q) - 2 ~ 

. U (In) • ~ ( <fJ , A ) • WD ( '() ., _,l ) 

, 
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The proof of the completenese of the syste� 

(287) 

was demonstrated by the relations (208) to (253) of the paragraph 6.9 •• 

Therefore, the proof of the convergenoe.of the series development
(278) � brought about by means 9t the theorem ot Picone and the
oomplete�ess of the' � n funotion system - is also a proof of the c�n­
vergence of the spatial spherical harmonios development (6). The 
oonvergenoe of the surface series'development (279) oorroborates· the 
convergence of the seriea developments (191) (265) valid for the 
teetpoints at the surtaoe of the Earth D and for testpoints 1n ihe 
exierior of the body of the Earth, , ' ( 2o5) (_2o7a) • 

. 1 

~n<~,A> 

' 
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7. The unigueneas of the Molodenekij boundary value problem,

Finally, a by-produot ot t�e above derivatione ehould be mentioned. 
By meane ot (205), the oroot ot the uniqueneee ot the eolution of the 
Molodenekij boundary value problem ie wioomplioated: 

Thie problem hae the following detinitiona Ale>ng th!f, real surfaoe 
of the Earth shaped by the topographical heigh'ts: the free-air 
anomaliee are given as boundary valuee. They de�end on the perturbation 
potential T by the fundamental differential equation of the physical 
geodesy, 

. - -- -
2 · 
-T
r 

(288) 

The solution of the Moloaenskij bound�y value proble_m, - in ite 
original shaP,e -, coneiets in the inv�rsion ot (288): The perturbation 
potential T along the real surface of the Earth, - accounting for the 
topography -, ie to be determined in terms ot the free�air anomalies 

-6:gT ot the gravity. Th& uniquenese of this solution ie the que�tion
here to be investigated. 

Since (205) 1s valid,- the pert urbation potential T has the following 
formula 1n the three-dimensional p,pace nescribed by the co-ordinates r, 'P• ,\ 

1 • 2 

t. (l „ r 

)1 +1

(289) 

\ 

* 

(289) is tree of the �egr�ee J • 0, l .. �. The above e:xpression 11
1 

( cp ,A.)
specifies the spherical harmonica: of degree ·1. The constant

coefficients t1 are the Stokes constants. The meaning of the suffi:x 1 of
(289) i� not the same as the wdaning of the suffi:x n of (205), ·�t 1s
obvioulil- The suf;f'i:x ;n ot (205) begins with the integer 1, s�ce _ it is
the cusiom to begin the numeration of the rows and columne of a matri:x 
•ith the number 1, (47).

The convergent series development (289) is valid in the whole exterior 
space of the Earth; s_ sur�aoe. D • 

\ 

• 
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\ The formulas (288)' and (289) give (for testpoinh along 'the sur.tace 
of the Earth, D ) 

� (1 - 1) tl (rl)l + 2 * 
Li gT • LJ nl ( q> , A ) � r =- t • rD. (290)

1 ;. 2 

The uniquenees of the solution demands that the constraint 

r • t „ rD . , (291)' 

�for the free�air gravity �omalies,along the surface of the Earth has 
necessarily ·the oonsequence 

T .• 0 (292) 

f'.or teetpoints· on the _surfaoe o� the Earth and in the e:xterior epaoe.· 

In the. investigation into whether this Molodenskij probl&m has a
unique eolution, the relation (290) and the oonstraint (291) lead to 

oo. 

0 = , r „ t -• rD.

1 = 2 

'The multiplioation with the non�vani�hing value t- leads to 

0 • 

With 

oO 

L (l - 1) 
"1 (¾l 

1 "" 2 

[ (¼)' 
+ 1

(294) turne to

0 „ 
< 

1 = 2 

(29.3) 

(294) 

(295) 

·(296)

, 

.) 

• 

• 

j 
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/ The relaUone_ from C293)tc;,(296) are valid along the eurface of the Earth, 
D • 

. The equat�on (294) can be coneidered ae the repreeentation of the
Dirichlet type boundary value s; in this cae·e, the boundary valuee have 
the peculiarity to be equal to zero along the eurface of the Earth. If 
a potential ie equal to zero along a cloeed boundary eurface, thie 

. 
' 

.potential followe to be equal to zero also in whole the exterior epace 
of thie boundary eurface. Thie fact ie proved in the potential thepry, 
and it ie gener�lly accepted, /12]. 

• 1 \ ' 

'· 

Therefore, the boundary valuee (294) lead to the fact/ that the 
. 

' , 

epatial harmonic potential functioni I which fulfils the Laplace eq�tion 

00 1 + 1 
I .. [ (1 - 1) t1 (½) · ut ( <-p , .( )

l • 2

(297) 

ie equal to zero on the eurface of the Earth, D, and in t-he ex"terior 
epace of it •. �I • o.. Along the exterior ßrillouin ephere with the 
radiue t; the eq�ation {298) ie vali4, 

00 (w�)l + 

I • I (r • R, 'f' , A ) • 0 • '2 � (1-1). t � 
.n 

1 *
u1 (tf,A. )·. (298).

l = 2

The orthogonality relatione (59) are also valid for the epherical . 
* harmon:Lcs u1 ( 'P , A ) , they reeult by (298)

t 1 • O, (1 = 2, .3, ••• ) •

j 

(299) 

All the Stokes conetants· t1 a.r,e equal to ,zero1 �ccordirig to (299), if
the oondition; .for the uniqueneee of th� aolution of the Molodenekij 
boundary value. prob�em ie fulfilled, (291 >, (29.3). The potential valuee
of T follow',heceeearilYI, to he also equal to zero, (289). Thue, (291) 
leada to (292). 

Coneequently, .the eolutfon of the coneidered type of the boundary 
value problem ot Molodenskij ie tmique.

ObviQ_uely, thls above conside·red boundary value problem is identical 
' \ ' 

with even that version of the boundary value problem which maps the 
telluroid points into their image po\nt• on the Earth 1 s surface by a shift 
along the geocentr�c radius vector. 

. ' 

·'

/ 

' 

/ 

' 
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8. A short proof of the converge�oe of the epherioal harmon1oe seriee
development of the gravitational notential in the exterior domain
of the Earth'e body.

The above.ohapter E oontains ratner long and extensive inveetigatione 
about the convergenoe of the spherioal harmonioe series development for 
the gravitational potential of the· Earth. Finally, a rather ahort proof 
of thie matter ia to be added, [4] [5/. 

In ['1], page 84-85, andin [4], page 177, a yet more short and instruc­
tive proof of the converge·nce can be found. · 

• • 
\ / 't• /

\ 'P 
·-- . / ·-. q

\. 
---. / --- -✓ z

,,/ 

Doaain B 

Doaain A 

Surfaoe of 

the Earth 

Fig, 3: The oonoentrio apheree Fp and F
q with the common center z. Fp

ie in the exteri�r domain of-,the Brillouin sphere. Fq 
touche�

the'surface of tlie Earth in the point P. 

-
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Tbe real gravitational potential of the Earth ie W, (1) (2). In the 
exterior domain, B, of the Brillouin ephere the convergent development 
(JOO � ie v1:1lid, 

y 
00 

+ 1 -* 

un ( cp , ). ) , _ (domain B). (300) 

n = 0 

wn are tne Stokes constants and u-:: ( f , A, ') are the epherica1 harmonice.
In the exterior of •the eurface of the Earth, (domain A + B), the 
expreeeion (301) ie valid, Fig. 3, 

W. = u
0 

+ V
q

, (domain A + B), (301) 

(!) 
n + 1 

( ( ,.p , A ) , (domain A + B) , (302) 

n = 0 
.. 

u
0 

ie a �um • 

. V O in th� domain A, that ie the function which ie to be determined. 
(300) and (302) ehow that 

V C � O, if C -+- oo , (domain B) • (303) 

The Laplace differential equation is valid for Wand u
0 

in whole the 
domain A + B, it is well-known, 

L:::. W = O, (domain A + B), 

� u
0 

= O, (domain A + B) • 

(301) 004) and (305) lead to 

•-6.v
0 

= O, (domain A+ B) . 

, 

(304) 

(305) 

(306) 

In the exterior domain B, a point · Z is choeen. lt ie the center o! 
two concentric circlee, FP and _P4

, (see Fig. 3)� ,The ephere Fp· with the_
radiue t' = p ie eituated completely in the domain B� The ·ephere F 

q

. 1 
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with the radius t' = q is eituated in the domains A and B, it touches 
the eurface of the Earth 1

in the point P. 

Because of (306), the potential v0 has the fo·11owing convergent serie's
development along the sphere F

P, [12],,

. ' 
' (307) 

and for the surface of the sphere F
4

, the uniform convergent series 

00 

V c.q
= 

[ vC.i

i = 0 

(J08) 

tp and A refer to the center z,. The convergence prop,erty of (J07) 
reveals, [12J, 

.. [ vC.i (!) 
i * -

;l ) VC
.p

ui ( 'P ' + e:16 (N) ,·

i = 0 
(JO�) 

with 

e: 16 (N) --,-. o, if N �00 (310) 

·Further,

V C.q �[ V C. i
� 

u i ( 

<
f 

' '1 ) + e: 17 (N) ' (311) 

i "' 0 

with 

e: 17• (N) ---.--o, if N -- •(X) • (312) 

The orthogonality re�ation of �he ut funct'ions,(havfag the shape of
(12)) and the.relation (307) giVE> 

* -ui ( . "f ,· A. ) • 

N 

• 

N 
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.YC.1 ·(.9.p 
Ji

. 11. 

+ 2
2n' 

r f 

i � 0, 11 _2, ••• , N. 
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The equatione (303), (313) and (314) have the consequence

for 

0 if C --" 00 'V C •. i __.,. ' . ---,-

i = 0·, 1,,_2, ••• , N. 

(313) 

014) 

015) 

016) 

Hen�e, ooneidering V C.q' the firet term on the right hand side of (,311)
is a sum of N + 1 terms. Sinoe the normalized spherical harmonics 
* 

-

u1 ( <p, A-) have limited amounte� the combinatio� of (315) and (316), ·
and .(311) reeults 017) 

N 

L 
1 • 0 

vc.1 
*· 1 

-

u1 c f , A ) 

Thus, for.a eufficient great 

-+--0,. if 

integer c,

< je 18 (C) J .. ; 

with 

1 e: 18 ( C) 1 > 0

C�oo . 

by means of 011') 012) 

The relatione 018) and (319) are equivalent to the following
eh,tement 1 

V �O-,if.C--+,oo� 
c.q 

(317) 

017) �

· (318).

019) 

-(320) 

/ 
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Thus, for the surface point P, the function·vc tends to zero if
C tends to infinity. Thie fant provee the convergence of (300) in 
the domain A. Hence, 

00 

w = 

n „ 0 
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