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Summaxry

A test 1s stated for the oase that the Marussi oondition in regard of
a gravitation (gravity) potential is not fulfilled; this means that the
Marussi tensor is singular., It relates the main ourvatures of the
equipotential. surface to the oomponents of the curvature of the plumbline
in the directions of the main curvaturee. A generally valid necessary
condition follows. The equipotential surface in the test point must be
hyperbolioally curved, i. e, a saddle point must exist, In the geodetio
practice, the Marussi-condition will be fulfilled,'

Zugsemmenfassung

Es wird ein Kriterium fiir die Erfiillung der Marussi-Bedingung in bezug
auf ein Gravitationspotential (Schwerepotential) angegeben. Es wird eine
Beziehung zwischen den Hauptkriimmungsradien der Niveaufldche und den
Komponenten der Krilmmung der Lotlinie in den Hauptkrimmungsrichtungen
aufgestellt filr den Fall, da der Marussi-Tensor singulédr 1st, Der Tensoi.
ist singulér, wenn die Aquipotentialfléche im Aurpuﬁkt hyperbolisch ge-
kriimmt ist, so daB ein Sattelpunkt vorliegt, Dieser Fall tritt sehr sel-.
ten ein, Die Marussi-Bedingung dilrfte daher praktisch immer erfiillt sein,

AxgoTanus

YKasHBaeTCs KpHTepnii BHIOOJHEHWI YCJIOBMA MapyccM OTHOCUTEJNBHO TIpa-
BUTAIMOHHOTO NoTeHImaNa (MOTERIMaN CWH TARECTH).

. YcTaHABNMBAETCA COOTHOMEHWE MERNY OCHOBHHMM DPAIEyCeMA MCKDEBJIECH-
HOJ TNOBEPXHOCTH W KOMIOHEHTaMM MCRPHRJIEHMA K JMEMM JOTa B Ha-
NpaBJeRVH OCHOBHOTO HMCKDHBJIEHWA A TOTO ciaydad, ecom Mapyccm-
TEH30D CHHIyJAreH. TeH30p CHHIYJIApeH B TOM CJIyIae, €CJH SKBHIO-
TeHIMATbHAA NOBEPXHOCTH THIEPGOJIIECKE M30THYTa B TOUKE BOCXOR-—
LeHUA, Tak YTO MMEETCHA CeTJIOBasg TOYKa. STOT cydaft HadimomaeTcs
O9eHE pefmro. I[losToMy, ycJoBES MapyccH NOJXHH NpaKTAYECKA IOCTOSH-
HO BHIIOJHATHCH. '
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1, The Marussi condition,

The Maruesi tensoxr hés the following form

S i,
L B e

zZX wzy L

X, ¥, z are reotangular Cartesian co-ordinates in space and W is
the gravitation potential of the non-rotating Earth, /17 /27 /3/.
The x, y, z-system is non-rotating and fixed in the space; the
Barth is fixed in the x, y, z system,in the considerations of
section 1 and 2, In equation (1), the.following abbreviations
were set for the second derivatives of the potential function,

92y i ;
T~ T - %

similar relations hold for the other elements of the Marussi-tensor,
The x, y-plane is the plane of the equator of the Earth; the z-axis
is directed to the north,and perpendicular to the x, y-plane, The
well-known relations of the differential calculus yield

¥y = W s _ (3)
Ve = Wux o ) (4)
Voo = Wag (5)

The Marussi tensor (1) is symmetric, as follows fram the equations
(3)s (4)y (5)

Wex wiy X2z
¥ = | ST SO T . (6)
W

X2z wyz wzz
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Wo= 2 ]{;ﬂdr’ ’ (6a)

£ is the gravitational constant, dm the element of the mass of the
Earth, F is the volume of the Earth, and e is the mutual straight
distance between the test point and the running point of the
integration procedure covering the volume F,

During the recent years, the Marussi tensor has gained a special
actuality in certain problems of the physical geodesy, /2/ /3/. In
the investigations on the uniqueness of the boundary value problem,
the presupposition is introduced that the inverse matrix g’1 is
non-singular, Thus, the determinant derived from the Marussi
tensor M, (6), has not to be equal to zero,

DR S T ST
= Vi O‘
det N s e = (7)
Vg wyz Va2

The equation (7) is the so-called Marussi condition which is to be
investigated now,

The equation (6) shows the Marussi tensor with regard to the
rectangular x, y, z-system which ig in relation to the equator plane.

For the following investigations, it is of advantage to transform
the M matrix into the local horizontal Cartesian u, v, w-co-ordinate
system,

The w-axis shows into the exterior space, and it has the opposite
direction of the gravitation force of the Earth, The u-axis is the
intersection line of the horizontal plane and the plane of the z- and
w-axis, The u-axis shows to the south, Fig. 1. The v-axis is directed
to the east, The u, v-plane is the horizontal plane of the test point,
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Fig. 1: The geocentric equatorial x, y, z-system and the local horizontal
u, v, w-system, The base vectors u and ¥ determine the horizontal
plane.

In the u, v, w-system, the M matrix has the following shape,

wuu wuv qu

i Vo Tov Vow ¢ - (8)
Wuw va WWW

The u, v, w system is fixed in the space,

The M matrix can be derived from the potential W by the scalar
multiplication of the nabla operator with the gradient,

V-w . (9)

This form is free of the introduction of a special coordinate
system,

The gravitation potential W fulfills the Laplace differential
equation in the exterior space of the Earth,

Avw = o0 , (10)
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or, in the x, y, z2- co-ordinates ,

LRI RS S e S (11)

and, in the u, v, w~ co-ordinates ,

=W e T L et St SO, S (12)
The equations (11) (12) show that the trace of the M matrix is equal to
zero, The trace of a tensor is one of its invariants,

The elements of the Marussi tensor of the form (8) can be expressed by
the entirety of all the five curvature parameters of both the plumbline and
the level surface W = const. « The concerned mathematical deductions shall
not be given here in detail, /1/ /2] [3/ [4/s The following expression for
the Marussi tensor is the result,

3

1

3 . (13)

=R

& 4

¥ = -g| €

9

2

%,
1 '32 "Gf1 & ag)

The equation (13) is in keeping with the equation (10), g is the amount of
the vector of the gravitation intensity. 2, is the normal curvature of the
level surface W = const, in the direction of the u-axis, 1. e, in the

north - south direction, ae2 is the corresponding value in the direction of
the v-axis, i. e, in the east - west direction. A positive amount of 361

or &¢ , means convexity., ?° is the amount of the torsion of the geodesic

line which is traced on the level surface W = const, in the direction of

the parallel, /3/ /4/. The plumbline through the test point has the curvature
component 1 in the u, w-plane, 2 is the analogous value ig the v, w-
plane, The curvature of the plumbline itself 19‘74%12 + 4322' .
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2, The criterion equation in case of a gravitational potential,

In case that the Marussi tensor is singular, the following equation is
found from the formulas (7) and (13), accounting for the fact that g is
never equal to zero,

7 4 -

1
0 = v ae 3 % (14)

2
-(a¢ + oe
I 4;1 {;2 (, 1 2)
Now, the u, v, w-system is rotated around the w-axis till the u-axis

and the v-axis show in the directions of the main curvature lines, Thus,
(14) tekes the following form, [/ (2] [3] [4/,

Bl 1
ot e 0 k, 1, 7 (15)
1 2 -(k1+k2)

This matrix transformation - executed by a rotation - does not change the
amount of det M, The reason is the fact that a rotation can be expressed
by the multiplication with certain rotation. matrices. These matrices have
the character of orthonormal matrices, The determinants of such matrices
are equal to the unity. And, the multiplication of a determinant with the
unity does not change the value of it. %

In the equation (15), k1 and k2 are the main curvetures, l1 and 12 are
the components of the curvature of the plumbline, i. e, the projection of
the curvature of the plumbline on the vertical planes of the main curvatures
k1 and k2. The geodesic torsion in the direction of the main curvature lines
is well-known to be equal to zero, /3/ [4/.

Hence, from (15),1if k, Kk, are the main curvatures of the level surface W=const. ,

2 S0 (16)

2
- k1 k2 (k1 + k2) - k1 12 = k2 11
(16) leads to

2 2 2 2 -
k, (k2 + 1, ) + k, (k1 £ 0 ) = 0, (17)
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1C

or, finally,

2 2
k1 k1 + 11

L e R e
2 Kk, + 1,

o (18)

This equation (18) is the necessary and sufficient condition for the
fulfillment of (14) and (15). In case, the formula (18) is right, the M
matrix is singular and the Marussi condition is not fulfilled., The four
curvature parameters kyy Ky, 11, 1, observe the relation (18), if the
Marussi condition-is violated.

The equation (18) leads to the following sufficient condition for the
determinant det M being zero,

k
s T (19)

ko

This inequation describes the fact that k1 mugt have the inverse sign of
k. Thus, the geometrical shape of the level surface W = const, at the test

point is a saddle point. The Gauss curvature
" k2 (20)
follows by (19) to-be negative,

e Nt 0 % (21)

The level surface of the test point has a hyperbolic curvature, Fig. 2.
The curvature center of the main curvature k1 is situated on the one side
of the level surface, and the curvature center of the other main curvature
k2 is situated on the other side of this level surface,

Further on, the relation (18) is valid if
ky, = 1, = O. (22)

The relation (22) demands that one main curvature, k1, has to be equal to
zero, This is the condition for the existence of a point in which the level
surface has parabolic curvature, Furthermbre, the relation (22) demands that
the curvature component of the plumbline in the direction of this main
curvature, 11, has to be equal to zero, too,
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If g is the gravitation. foroe, and if dp is the element of length in
the direction of the main curvature line of k1, in this oase, 11 has the
following formula, /3/ /4/,

1. - —Oing . (23)
1 ’a-p

In case of (22) and because of (23). the horizontal gradient of the
gravitation force in the direction of the main curvature line attributed
to k1 has to be equal to zero, The horizontal gradient of the gravitation
force g follows to be perpendicular to the direction of that main curvature
line which is attributed to k1. This gradient. has the direction of the main
curvature line which is attributed to k2.~

In the above derivations and in the formulation of the shape of the
criterion determinant, (15), the whole amount of the gravitational potential
W was involved, Sure, W can be replaced by the sum of the perturbation
potential T and the standard potentials The sum of both these potentials is
identical with W,

Fig. 2: In the point S, the level surfaoe has hyperbolio curvature,
(saddle point).
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3. The criterion equations in case of a gravity potential,

If a rotating and gravitating Earth is considered, the gravitational
potential must be supplemented by the potential of the centrifugal
force Z. Instead of the Laplace differential equation, the Poisson
differentdial equation is valid now, /1/, in the exterior space,

VAT T A k- " | (24)

1

2 = } w2 2+yd)

@ is the angular wvelocity of the rotation of the Earth,
W = Te3 o 10~ /rad s'{/. ¢) is considered constant. The Marussi
tensor of the field of the V potential is denominated by N,

Vex _ ny\ Vs
I;I o vyx vyy vyz L dar (27)

<

Vax vzy Zz

~

In the new horizontal u, v, w-system which relates to the potential V,
the criterion equation,

det N = 0 , (28) -

has the following shape, in analogy to (14), /1/,

3€1 ’{:/ ‘%1

0 = ~ (29
t %, ’9’2 2 :
S (g a o R o) R oy

The tensor X.in the new horizontal u, v, w-system, is transformed by a
rotation around the vertical w-axis, till the horizontal u~ and v-axis
coincide with the tangential vectors of the main curvature lines,

(1] [2] (3] [4/. This are the main curvature lines which run along the
level surface V = const. of the gravity potential V , (25).
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Thus, in case of a gravity potential, the criterion for the existence
of a singularity of the Marussi tensor has the following shape,

k1 0 11
(o 11 0 k, 1y e (30)
5 W
11 l2 -(k,] + k2) -2 8—

k1, k2, 11, 12 are again the curvature parameters, applying to the
system of the main curvature lines, The determinant (30) leads to

2
D 2 2
k1k2(k1+k2+2g)+k112 +k, 1,5 = 0, (31)

2

In the relation (31), the values W and g are always positive,

g% e, g > 0. (32)

Thus, both the main curvatures ky and k2 cannot be positive simultaneously,
Therefore, the level surface V = const, can not be convex,

Furthermore, k1 = 0 necessitates either k2 = 0 or 11 = 0,

For the investigation of a type of special interest, the formula (31)
is transformed to

2 2 2 e e _
k‘l 11 + k1 ('1 + 3 (23] F.:) : (33)
R ey 2 2
k2 | l2 + k2

Obviously, this relation (33) leads to the following inequations,

A SO e kL Ol (34)

-

Therefore, (34), if one of the main curvatures is positive, e. g

k1 > 0, the other main Qurvature has to observe the inequation ka‘( 0.
Hence, the curvature of the level surface V = const, has 3 hyperbolic
character, in case of (34).

The following curvature type, (35), remains to-be ‘considered,

kK, < o0, k, < 0. (35)
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The relations (35) describé a level surface type with concave curvature,
Thus, (31) and (35) lead to tvhe fact that the term in the braces of (31)
has to have a positive value, '

2

(k1+k2+2%) >0,if k, < 0 and k, <O, (36)
‘Thus, from (36),

2

[y 4k | K2 S )

(35) and (37) lead to
g2 s Atady '
lk1|<2 B = 10T oty (38)

A gimilar inequation is valid for k2.

The inequation (38) is equivalent to the following relation,
1 -

|—|>160R. (39)
Ky

R is the radius of the globe, The curvature k2 has a similar formula as
(39) for k.

In case of (37) (38) (39), the two components of the plumbline
deflections C) alter along a horizontal distance of one kilometer by
about -32", This fact is evidenced in the following way. If,in the
surroundings of the test point, the level surface approximates a plane,
in this case, the plumbline deflections alter by g - -32."38 along
the distance of one kilometer, it is on the strength of the curvature
of the reference surface which is here the globe. Now, if the level
surface in the near surroundings of the test point undergoes a
downbuckling according to (35) (37) (38) (39), the eamounts of both the
main curvatures of the level surface have the possibility to diminish
from zero to - Tgé_ﬁ «S0,the curvature type of the level surface becomes
concave, This downbuckling of the level surface alters the plumbline
deflections supplementary by the amount of - 0."20 within a kilometer.

Thus, the equatione (31) and (35) lead to the following relation,

- 32,"58 < J 6 < - 32,"38; k; <0, k, L O. (40)
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In (40), J@ is the alteration of the plumbline deflection along the
distance of one kilometer,

Summarizing, in case of a gravity potential, (24) (25), the Marussi
tensor (27) is possible to be singular only if the relation (34) is
fulfilled, i. e. the curvature of the level surface is hyperbolic, or,
if (35) (37) or (40) is valid, i. e. the level surface has a slight
concavity, ;

4, References,

/17 Arnold, K.: Die Elemente des Marussi-Tensors als Punktionen von
geodédtischen Messungen, Verdff, d. Geod. Inst., Potsdam, Nr. 17,
Potsdam (1961).

/2/ Hormander, L.: The boundary problems of physical geodesy. The
Royal Inst. of Techn,, Div, of Geod., Stockholm (1975).

/3] Hotine, M,: Mathematical geodesy. U. S. Department of Commerce,
Washington D, C., ESSA-Monograph 2, Washington (1969).

/4] Kreyszig, E.: Differentialgeometrie. Leipzig (1957).

DOl:https://doi.org/10.2312/zipe.1987.089



16

B, On the evaluation of the numerical amount‘of the residual term
of the solution of the geodetic boundary value problem,

Coatents Page
Summary _ 17
Zusamuenfassung 47
Pesiome 17

1. The evaluation of the potential expression /E]". 18

JB Jn
2, The evaluation.of the radial derivative ar [ .° 33
i, The evaluation of the horizontal derivatives -j%¥§Z:§ 9 47
1]

4, The residual terms for the fixed and for the free
boundary value problem. - 59

Se References._ 63

DOl:https://doi.org/10.2312/zipe.1987.089



Summery s

The solution of the geodetic boundary value problem, for the surface
of the Earth as boundary surface, consists in the'addition of the plane
topographic correction to the free-air anomaly in the Stokes solution,
Under certain circumstances, a small term which is expressed by the
height gradient of the Bouguer anomalies has to be added, Further, a
residual term of very small amount generally to 'be néglected is to be
considered, It has a closed mathematical expression in terms of the
difference of two certain potentials: The potential of the spatial
visible mountain masses (but having the standard density) minus the
potential of these masses condensed at the globe in form of a spherical
surface distribution of masses.In order to find the residuum by this difference -
potential, three explicit rormulas are developed here, They allow the
computation of this difference potential /B/" and of its vertical and
horizontal derivatives,

Zusammenfassung

Die Iiosung des geoddtischen Randwertproblems fiir die Erdoberfléche
besteht in der Addition ‘der ebenen Geldndereduktion der Schwere zu den
Freiluftanomalien im Integral von Stokes, In bestimmten Fdllen sollte
ein kleiner Ausdruck hinzugenommen werden, der von dem vertikalen
Gradienten der Bougueranomalien abhéngt, Zu diesem Integral muss ein
Restglied addiert werden, Dieses hat einen geschlossenen mathematischen
Ausdruck, und es kann meistens vernachldssigt werden, Es ist sehr klein,
Das Restglied wird ausgedriickt durch ein Differenzpotential, Dieses ist
die Differenz zwischen dem Potential der sichtbaren Massen mit Standard-
dichte und dem Potential dieser Massen nach Kondensation an der Erdkugel,
Fir die Abschédtzung der Grisse des Restgliedes werden ausfilhrliche

Rechenformeln entwickelt, und zwar fiir dieses Potential selbst und fiir
seine vertikalen und horizontalen Ableitungen,

AnnoTaima

Pemenme reomesmdeckoit KpaeBoii 3alaYM IJIL NOBEPXHOOTH 3E€MIA COCTOUT
B CYMMMpDOBAHWN NpAMOji TomorpafmIecKkoit NMONpaBKM I'PABATAUMHA C aHOMA-
Jreit Bo3myxa Ha OTKPHTO# MecTHOCTH B mATerpalte [lToxa. B ompemesneH-
AHX CJIyd9asxX MOJIRHO HCHOJL30BaThCA BHpAXEHNe, 3aBHCAMee OT BEPTH-
RAIBHHX TPAJAEHTOB aHoManmit Eyrypa. B 3ToM mHTerpaje cyMvupyeTcA
OTCTaTOYHN{ WIeH. OH npelcTamNAeT COCOd 3aKOHUEHHOE MaTeMaTHIecKoe
- BHDAREHVWE W MM MOXHO B GOJIBIMHCTBE CJYy3aeB NpeHeSpedYs M3-3a ero
HE3HAUNTENBHOR BeJMITHH. OCTATOUHHiI WIEH BHpaxaeTcs , Ixbhe peHIAAb—
HHEN TIOTeHIWaJIOM, KOTODHil ARIAETCA pasHuleil MeRmy NOTEHIMANIOM BHIM-
MHX MacC CO CTaHNApTHOi IVIOTHOCTBI M HNOTEHIMANIOM DTHX MacCc IOCJE
KOHHeHcarmy Ha 3eMie. JUIA OlleHKE BeJNIMHH OCTATOYHOTO WIeHa paspa-
daTHBanTCA WCUeprHBamme GOpMyJH paciéTa, a MMEHHO KaK IJII 0aMOTO
TNOTEeHIMANIA, TaK B LIA eT0 BEpPTUMKAABRHHX W T'OPH3OHTANBHHX IIPOM3BOI-
HHX.
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1. The evaluation of the potential expression /hZﬂ,

The following 3 terms are considered in this chapter C,

~—

:41 = [B " = B 7t Bcond. ] : (1)
5 = '2] L ' : (2)
2 Or dr or

() 0 /B

o P Jé'z.? ¢ ' (2a)

At first, the potential expression is in the fore, (1).

According to the purposes of the following derivations, the
— o
expressions for [, and /[ ,, /] [2] [3], ere to be modified
in order to bring them into a shape convenient for routine numerical
computations,

At first, the 221 term is considered, The potential of the wvisible
mountain masses above the sea level, (with the standard density ? .
e = 2.65 /g em™37), is -

T =ioff

B = ;f ] o' K.
v « =

P specifies the test point at the surface of the Earth, Fig., 1.
The integration over the geocentric radius r is divided into two steps,
The first step has the interval: R r < (R + hP). The second step
is: (R + hp)ree r oo (R + hQ). hp is the height of the test point P
above the spherical reference sphere, hP is a fixed value within the
course of the integration. hQ is the height of the running point Q at
the surface of the Earth, The point Q moves over the Earth in the course
of the integration, Fig. 1. Alcng these lines, the integral (3) changes
tn

R+h

Q
(é) r? siny dr dyde , (3)
R P

"m"'

0 r

(3 2 R+hp R+hy
B=f + l) 2 a1 dr Ay dw .
g ](& Pr sn}u r Y‘ (4)
h

V=0 d:ocr;R R + P
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i
=D

P\ " -
. hp %5
_ e

/ae

,Fig. 1: The test point P and the running point Q on the surface of the Earth ¢ }

their mutual distance and their height differenoce. The spheres > p
and 2e .
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The potential-of the mountain masses (of the standard density g )
is now ocondensed at the surface of the globe 3¢ with the radius R. In
the test points Pae‘ of the globe 8¢ , the potential of the condensed
masses has the subsequent formula, Fig. 1,

Boona, = 4W2@Rh, + :gaa (ag - Bp)(Ye,) 4w . (5)
L
J is the' unit sphere,
dW = cos@p -« d¢ o LAA- , (6)

?and A are the geocentrio latitude and longitude,

e°=-».2Rsin’% . / (1)

e, is the length of the chord defined by the foots of the perpendiculars
of the two points P and Q, Fig., 1 ,it are the piercing points Paa and QE.

The oblique distance & between the test point P and the running -
point Q of the perpendicular of Q is developed by the cosine theorem,
Fig. 1,

g2 ='(R+hP)2+ (R+hP+ z)? -
-2 (R+hp) (R+hp+2z)cosy . (8)

z is the height of Q above the geocentric sphere through P, The following
rearrangements of (8) are self-explanatory,

2, a2
£® -w i

+2Rhp +h,2 +R2 4 24 22,

+2RhP+2Rz+2th--

-2 (R% + Rhy + Rz + hoR + h 2 +
pt P P

+ hpz) cos YV, (9)
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€2 = 282+ 4 Bnp 4 2Rz + 2 1,0 + 22 + 2 hpz -

-2 (R%2 + 2 Rhy + Rz + hp? + hpz) cos Yy . (10)

Obviously, it is recommended to replace the cosine function of v
by the sine function, using :

cos\[/ =1-2sin2—g-

(11)
(10) and (11) reveal,
32 = 2%+ 4 R? Esin2 -‘2‘,—+ /
+ 4 (2 RhP + Rz + hP2 + th) si.n2 -‘ZL X (12)

Hence,

2.2 =4R251n2-2£+z;2+
2 o3
h, 2z h hy * 2
2 .2 VY [ P P P ]
+ 4 R® sin 2 == 4 —+ + . (13)
2 R R Re __RE
(7) and (13) give,

£2 = e02+22+ )
- 2 -
h z. h hoz
2 19 . P P
+e 2= +'= % + (14)
A e
or,
2 hy + 2 h,” + hpz
£2 = e°2+z2+e°2[ E + o 2P ] . (15)
R R
Further on,
1 hy'
2 2 2 2 B
£ = e +2°+ e z[—+ +
' o £ 121 ;5]
2 h h
2 P P
+ e + —5— 5 (16)
9 [ R R ]
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Hence,

2
2 2 . 2 o [1 hP]
Bl m 8. " +2° + (6,7 + 25) | =Sgreiemy. | = . =% | &
' < ; Q {e°§+z R R2
2 2
e 2 h h 5
——cn i ALl ]
+ + . 17
e02+27[ R R2

The main term on the right hand side of (17) 1s

e + z° ., (18)

L + 2 R R
2 2 .
e 2 h h
(] P P
+ + T ° (19)
eo2 + zf[ R R ]
With the abbreviations
2
e A h
D, = —x2 c—f14+ 2 (20)
y el +22 R [ R ] i
and
2 0 -
e 2 h h :
D, = —g>—sx P[1+P J ‘ (21)
e + 2z R 2 R
follows,
52 = (e°2+zz)[1+D1 +,D2] ¥ : (22)

Neglecting a relative error of about 1072 to 10_4, the brackets of (20)
and (21) can be omitted,

D, ¥ e°2 3 (23)
e eo'2'+.,2' R :
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y e 2h
b, ¥ 0 . E (24)
g eo2 + z2 R
Because of |
!D1 l <« 1, !Dg | €, (25)

it is allowed to apply certain binomial series developments for the
powers of the term in. the brackets of (22), Thus,

1 1 1 1 :
-— = O 1 = =D, <« =D ’ : 26
3 ;7e°§+?~'[ e 2] ‘ &

with D, and D, according to (23) (24).

Later on, this formula for % shall be introduced in the integrand

of (4). But, before doing so, the integration covering the interval
R Kr & (R4 hy) (27)

should be discussed separately. It will conduct in the vicinity of

(5).

This relevant part of the integration according to (4) has the

following form,

_ M = ff
\

-
M=

)rz siny drdy de¢ . (28)
P g -

V/= 0 =0 TR=FR

The meaning of the potential M allows a simple interpretation, Since
R and hP are constant values for the integration according to (28),
Mis tpe potential of a homogeneous shell of the standard density ©
and- of the thickness hP’ the inner radius is R and the exterior is
R + hP’ The test point P lies on the exterior margin of this shell,
Further on, M can be interpreted also as the difference of two

spherical potentials,
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M1 is the potential of a homogene\ous sphere of the radius R + hP‘ The
test point is situated on the surface of this sphere. Thus,

M, = £p 470 s (30)

M2 is the potential of a homogeneous sphere of the radius R. The test
point has now the distance R + hP from the center, as in case of M1,

R> ‘
M, = £f T o—, (31)
2 ?% et

(29) (30) (31) reveal,

7 (R + hy)> i rR3 1 '
M o= 2¢ 2 4 -% = %7 ze (R+hP)3—R3J=
R+h R+hP_ ’ R+hP ‘ .
3 2 L hI2 3 3
=§ﬁ’fyR+h[R Gl hP+3RhP+hP_3]=
P

4 fg = h [RZ hP+RhP2+%hP3]=
n .

2
1 h h
i Z[hp+%+%hP(R—P-)J .G

'The denominator of (32) allows a development into a binomial series,

-1 ' 2
h h h
R+ np)™ = 1+ =§5[1-R—P+[R—P] -+ ] (33)

The enmbination of (32) and (33) leads to

2 2
h h h h
=47 2oRrRb, [1+E+11 2 [1-2 —P) ;
47 £ ¢ P[ +R+3[R R+R (34)

or,
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=

a2
M=4F2eRh [1 1[—P] ] (35)
2 o WS :

Therefore, the first part of the integral (4) can bé replaced by (35),

In case, the reciprocal distance % is replaced by a development in
Legéndre functions, (28), the relation (35) for M is corroborated.
Because of the orthogonality relations of the Leéendre functions, the
Legendre function of the degree n = O only has to be taken into account

in this problem,

Finally, the expression for M is introduced into (4), (see (28)
(35))s The resulting expression for B is taken as the first term on the
right hand side of (1).

The formula (5) replaces the sec_c_o'nd term on the right hand side of
(1). Along these lines, the term L':'_r1 proves to have this form,

2 2
o " 3. \. 1 [Bp
0-—‘1 = . [B ] =" B » Bccnd. = 4 ] £ g’ R hP [1 + j(-}-{-— +

T fé ( g ; (;—l r° sin Yar ay do¢ —

. 1//=0 o= 0 1‘=R+hP

~ 2 £y S
_4//f§'RhP—f§?R (hQ-hP) e—od@. (36)
(D]
The first term on the right hand side of (36) has the expression
T2

h

TRl (37)
3 R

in ﬂ'n,.e brackets, It gives rise to an impact on the potential velue of
v_".':1 by the tern

: h,\2
N=§-ﬁ’f§RhP(E§) ) (38)

[}
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With

hp = 3km (39)
follows

N = Ge* o,3mm, (40)

G is the global mean value of the gravity. Thus, the relation (40)
shows that the reflection of N on the height anomaly is not more than
0.3 mm, a value ‘that can be neglected. ’

The impact of N on the gravity is equal to

gN = 0.1 peel (41)
This term is negligible, too,

Hence, (36) turns to

BT 4 R + hg :
= - 10 (%L r? sin ¥ drdy d 4
1 ' :
Y= 0- =0 I‘=R+hP
-9 B2 | ( (ng - hp) h e 15 (42)
eO
w

Now, (42) undérgoes further rearrangements. The reciprocal distance
is‘replaced by (26). In the first integral on the right hand side of
(42), the integration over the radius r gives, accounting for

hy =hp + 2 , (43)
R + hP + 2
1 2
Y = - b ad ad =
{E)P 2
r=R+ hP
R + hP + 2
z (%JP (R+ny+22az. (44)
r=R+ hP
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R+hP+Z
‘ 1 2 z 2
Y = g (R + hp) [1+_ ] dz, (45)
P R + hyp
r=R+hP
and with
2
2 z .
[1 +—] N N A2 ; (46)
R+hP R-&»hP
follows,
Z v A -
1 2 2 1 2 z
NE i E (R + hP) dz + 2 (—) (R + hP) — Az, (47)
; P EP .R+hP
z =0 z =0
or,
A Z
2 1 - 1
Y' = (R + hp) =] dz + 2 R =) z dz . (48)
EP- [
P
z =0 z =0

In (48), all the terms are neglected which are equivalent to a relative

error of the order
!

hp 2 z \2 ¥

2 or - (49)

R \R
in the main term of (48)., It is in keeping with the precision of the
empirical determination of the-location of the geodetic control points.

(48) takes the following shape, introducing (26) as the substitute
for the reciprocal distance,
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N

1
Y = (R+h1‘,)2 —F—————dz -
2 2
y[eo + 2

2z =0

2
(R f hp)
2R

dz -

Z
302 2 .
(eg2 + 22) 72
| Ees 0

Z
e~2

= (Rbhe)e = 9 dz ' +
P R (802 + 22) 3/2

Some simple modifications of (5‘0) glve

Z .
§ 2 1 ’
v = (R+hP) ——. 2z -

l/ A
eo + 2

N

z =0
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with
A h,=h
e B! S ’ - (52)
€o €
and
7 ’ "
1 2
u, = —_— dz =1ln|w+ [1+ W =
¢ . e2+z2 =
y o
z =0
= arginh w , . (53)
Z
z 1 1 1 o
U, = : A2 = = == —prm—+ — , (54
2 ) ]
. (e°2+22) 3/2 € 71+w2 €
z =0
Z
i ) a l b (55)
L s z = ———
2 R TR e
z =0
Z
’ . 7
U = sz—zzdz=eo}/1+w2 Sves o (56)
8, W2
z =0
and
i Y= (R% DojBuy (57)
k, = -%Re? , (58)
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k3=-RhPe2 A (59)
k, = 2R ’ (60)

follows for Y, (51),
i=1

The above expression for Y is equal to the Y value of (44), It is
introduced into the equation (42),

E1=fsy g ‘ ( Y siny d*,bdd.-

'\1/30 o=0

1
-2¢ Rzg (hg - Bp) —dw . (62)
0

“w

And with (61), (6),

iy E
;_“::1 = f¢ jg 15 _ ky Uy dw -
w

e |
-t a2 g{ (hQ -hp) — dw % : (63)
e
S .

f?

(43), (52) and (63) reveal

4
e
:41\ - 20 E k) Uy dw - £@ R\| w aw . (64)
1a=1
W w

The second term on the right hand side of (64) is Joined with the ki Uy
expressions of the first term on the right hand side of (64),
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ks = - RS ., (65)

U5 = W . : (66)

Thus, (64) turns to
e : :
E-'; =£§> ' Z = e U (67)
i="1
73]

The equations (53) to (60), (65), (66), (67) can be combined,

5
&1 = fg , E v, dw , (68)
i=1
w
V, = (R + hP)2 arsinh w, (69)
T iR ey ;
2’5 eo ] = ’ (70)
'7[1 + w2
w
V3 ==-Rhy — - (71)
1+ w
—
V4=2Re°[]/1+w2 -1]- (72)
¥ 2 _
5:— w . (73)

The above formulas (68) to (73) are a representation of (1), immediately
suitable for numerical computations, They are applied to the model
computations in Chapter B of /3/.

Purther, in this context, a certain special property of the sum of
vV, o+ Vg (74)

should be pointed out , since it is important in the numerical
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applications. In ﬁany cases, in especial if the distance e is
sufficient great, the quotient w, (52), fulfills the following inequation,

Iw] <. 17, - (75)
(53) allows a.convergent series development of (69),
V1 = (R + hP)z [W - %’WB + %WB - 4+ s06 J (76) i

(76) is convergent  if

Iw , CNI S ‘ (77)
With
; " 2
RS (R+np)? SR (4 D) (78)
and with : 2
h
£ L g - (79)
R
follows
V1 Q’Rzlw-%WB+- XX} ] . : (80)

Hence, in case the constraint (75) is observed,

¢ .
v+ Vs T-LREW (81)

Thus, in the sum

> W | (82)

of (68), the terms V, and Vs cancel each other more or less,
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A

This phenomenon reflects in the subsequent inequations:
In case, (75) is valid, the inequations

lv1 v | K }le - (83)
|vi+¥s | & lvs | | (84)

are fulfilled,

LU

B].

)

- 2o The evaluation of the radial derivative[

)

~
The second term which is to be developed here is ‘:jZ’ (2). Here,

the radial derivative of the- potential B, (3),

o)
'35 ’ (85)

and the radial derivative of the potential of the condensed masses,

(5),

_ cond, , (86)
Or

are of importance, They have the followiné integral expressions,

T 2% R+h

Q
D1
22 - 19 ( %é)P =% atn g 1 aypor , (87)

'yf'=0 =0 r =R

and, (see Fig, 2),

3B PRV
cond 2 , e
{TJ ) =f¢R hg == deww . (88)
FaP&, 3
@ P—-rp
4.0,
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-

r is in (87) and (88) the geocentric radius of the test point P resp. 5, r'
is the geocentric radius of the running volume element of the integra-
tion (87). Pae is the foot of the perpendicular of the gurface test

point P taken in the level of the globe with the. radius R, Fig. 1.

T is a test point in the exterior of this globe, Fig. 2. In (88), e’

is the straight distance between the point P and the running point on

the globe, The relation for the exterior normal derivative of the
potential ‘of a surface distribution transforms (88) into the following
expression which is valid for surface test points, /4/ [%/,

2B : 0 1/e
de 2
{ Orcon ==l 7}’ £ f hP o f R hQ "D_ro dw. ’ (89)
P
o0 W
with
i) 1/90 D 1/e*J 90
ey i 8 (90)

P —>P
a2

The term 2572 is the difference of.(87) and (89), (see (2)),

(e 23] 0B OBeong
P R e R
32

o

At first, the integral (87) undergoes a certain transformation. The
integration over the radius r' from the lower bound R to the upper
bound R + hQ ig subdivided into two steps, (3) (4). The first step is
again the interval R < r' £ (R + hP), and the second is
(R + h?) eeexr’ece (R + hQ)n The first step contributes to (87) by

@ 2F R hy
D1J¢ 2
Ao ——_— skl % ko0 T o (92)
f (~ Dr . -

}V =0 =0 r' =R

The expression A has a simple interpretation. If a homogeneous shell
of the density ? and of the boundary spheres with the radius r' = R
and r' = R + hP is considered, the expression of -A is the gravitation

intensity that this shell exerts on the puints of the upper boundary

sphere, (r' = R + hP). Thus, -A 18 equivalent to the gravitation
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intensity that two balls exert on a test point of the radius R + hp,
the one oall has the radius R + hP and the density ? , the other has
the radius R and the density - g « Consequently,

o~ 8% Tl
& el  (R+h -
9 % (R + hp) TFEW +

~o 3 1
f / R — e =
rE§ % : (R + I_P)2 ok

The following rearrangements of (93) are self-explanatory,

P 1 3 3
A= - 0 ff—?[(R+hP) -RJ s (94)
% (R+hP)
1 &9 1 -
(REtBp)E B
R
2
1 hP (hP) ]
= 1"2— S—. L) eoo ?
F[ = + 3 . + . (95)

(R+np) - =R+ 3R ny+3Rm2+ 0’ -8, (96)

Sy 2 3
h h h
(R+hP)3-R3=R3[3—P+3(—P) +(-2) }, (97)
R R R
hp p) 2
A=-% 7T 2¢ R| 1-2-= .
§7epa[1-2200(3) ] f
2
h n h
'3—2[1+—2+%(—2)- J . (98)
R R R
2
h h
Aot ) Rrtop e |1 5l (—P) ' :
% fp[ R+§R (99)
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The oombination of (87) and (92) gives,

o2t R+ h

Q
=3 A+ 2 L 12 4r' dw. (100)
PDI. —_ + s’ ,D o o e r e

P

L
yr; 0 o=20 r =R % hP

Further on, (100) and (89) are introduced into (91). Thus, the subsequent
relation is obtained, (43),

2
h h
2 A
" 27 R+ hy+ 2
; T
+ fp ( ( 't dr' qw +
. D
P
. .
1,({:0 =0 b of =R+hP 0
D) 1/e
~ 2 [o)
+2I/.f§)hP-.f9R hQ";)r’ dw . (101)
W
In the last term, E, on the right hand side of (101), hQ is to be
replaoed by hy and Z, (43). Hence, '
° ’2)1/e°
E=F-£pR % — ey , (102)
dDr
W
5 D /e,
F==-fgRh —_—dw o, (103)
9 P ((, Dr
; W

The computation of the integral of (103) includes the computation of
the oblique distanoe e* » (90). The one of the two end points of this
straight line eﬁp - the lower - is situated in the level of the globe
with the radius R, (Fig. 2, (7) (8) (11) (90)), and the other end point
-~ the upper - is the point B, lying in a certain height above the globe,
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Fig. 2: Geometrical relations about the oblidue distance e*

The subsequent deductions are self-explanatory, Fig. 2,

e’('2 -.—1-2+R2 - 2 rR cosy » ; (104)

2 e® de® =2 rdr - 2 R cos ¥ . dr, (105)

r —>R v - (106)

e, de, =R (1 - cos ¥y ) dr, (107)
1

ﬁe°=—R(1 —-cosy/) ’ (108)

QAr ey

_ae_°_—.1__2st,n2i = (109)

or e, : 2
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‘Deo 1 ( )
P 110
Dr 2r °'
A=
0 e 1 De, 1 1 s
Dr _-? Qr 2 Re, 4 B® sin -5~

1 - 1 -~
="_§'2”{2008-%-dy=-4—}12'2” . 4 > (112)

e
(112) is introduced into (103), giving

277r_g hy . (113)

=
1

Hence, the last term E on the right hand side of (101)turns to

. (114)

(101), (111) and (114) are combined to

" 2 R+h + Z

Ez=f§’ § f ( f 1/£ r'2 drrdew +
P

V—OdOr

1 1 ~ hP
+§f§>R 2 - d +4//f.§ hP-R—. (115)

o)
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In (115), the quadratic term in the brackets of the first expression on

the right hand side of (101),
2

h
~ P
-4::19111,.%(5—) ’ _ \(116)
is omitted, For hP = 3000 m, (116) contributes by not more than
0.2 {cgal.

The next step 1s the development of the term

M a/e (117)
Vr - T
P

appearing in the first integrand of (115).

The vector &, points from the test point P to the running point Q
‘which has the ﬁéight z above the sphere aeP of the test point P, The
amount of € 1s & , The vector £ can be expressed by the orthogonal
base vectors e, and ey, Fig. 1, Fig. 3.

21

b
dr v\

g6 -
P - iiiz

Fig. 3: The differentiation of &
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The differential quotient (117) leads to

o

1 DE
t £2 r

m |=

dr

A look on Fig, 3 shows that

) £ ¢
€ = oon Yireis 22Xl .
QT £
'Thus,
D £ &
Vr & 53 )

(118)

(119)

(120)

According to Fig. 1 and 3, the vector £ has the following expression,

no

B [(R+hP+z)cosy-(R+hP)]_ |+

+ (R + hp + z) siny -

no

2 *

(121)

The length ¢ of the vector g is already represented by (19). D,
and D, come from (23) and (24). But in this context, the chord e,
situated in the sea level is replaced now by the chord e' situated

in the level of the test point P

e' = 2 (R + hp) ainﬂvr .

The equations (7) and (122) relate e, and e',
2
R 1
e02 = e s er? T et (12

The .relation (22) and (123) lead to
2 2 hp 2 .
E€S=]et“ (1 -2=)+232 (1 +Dy + D2) s
R

=(e'?+ 22 -2 o)
)

h
i E)
OE—)(1+D1+D
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% [0'2 + 22 - :T?:ff;? ('2 + 22) 2 Eg](1 +Dy 4Dy =
= (24 2% (1-2 'T?:fi;? %3 +Dy + D)) . (124)
With the D, and D, terms of (23) and (24), the development (124) reveals,
£2=(2+2% 140Dy (125)
902 z
Dy = :'E”:';? P 6 (126)

Within the neglections. connected with (23) - i, e. as long as
relative errors of about 10'7 in the distances between the control points
are neglected - the amount of D; is equal to that of D,, (23) (126).
Because of the inequation

D PC I (127

3

it is admitted to have binomial series developments for the powers of

1+ D3 . (128)

Returning back to the relation (120), the denominator on the right
hand side of (120) can be substituted by

€3 aite2 s ad)" 2 12 30y (129)

The nominator of the right hand ‘side of (120) is obtained by the scalar
multiplication of (121) with g,,

o

¢ = (R+hp+2)cosy - (R+ hp) . - (130)

(130) and (129) are substitutes for the nominator and denominator of
(120), '

0] 1 (R+ hp + %) cos iy = (R + hp)

QdDr €& (o' + g°)F/¢

(1-4Dy) . (131
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The nominator of (131) is subjected to a certain rearrangment, (11),
(R+hP+z)cos\y-(R+hP)a .

(R+hP) (1-2sin2—y§/—)-(R+hP)+z(1-281n2—\§)-

=2 -2 (R+hp + 2) sinz—zz- . | (132)
With

K=R+hp |, ' | (133)

r'=K+z , (134)

and regarding (131) (132), the expression (115) gets the following
shape,

Z

r— z2 -2 (K + 2) sin® % :
-:'-:2 =1 dw (K+z)2 2)3/2 Z 1 —%D3) dz +

(e'2+z
w z =0

+ . (135)

-

1 r h?
fng(Z:;dw + 4 f§7 hPR—

W

D3 is characterized by (126) and (127).

For the further deductions, the term & 2 is compared with the plane
topographic reduction of the gravity, C; /17 /3/ /4/. C can be expressed
by the following formula,

L 2

Z
. 2 zdz
¥=0 =0 z =

It iswell-known about the computation of the plane fopographic reduction,

the integration over the 7 parameter must not be extented up to }//= T,

The term ﬁ in (136) is understood as a sufficient great upper bound for
the YW parameter., Beyond of /3 , the integration by (136) has no perceptible
impact on C. The plane surface element which is introduced in
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(136) has the shape, (133),
K2y dx ay , (137)
it is the surface element of a plane polar coordinate system,

. The firsb integral on the right hand side of (135) has an integrand
that can be divided into two parts. The first part is

y. 2% z
32.1 = £p | ay ( aw sin’klf((K +2)2 o +z22)3/2 (1 - 2 D) dz, (138)
V=0 =0 z =0
with
dw =s8in ¥y dy da . (139)

In (136), the /5 value will not be greater than about 125 Therefore, a
ocomparison of (136) and (138) shows that these two expressions have
corresponding terms of similar amounts. The analogy is,

Y —> sin Y S 7 (140)

(2 it WK l)E g (141)
(% + K2 w232 5 (224 e2)¥2 (142)
1 — (1-2Dy . (143)

Obviously, the difference between the integrands of (138) and of (136)
is muchmore small than the amounts of the individual integrands of (138)
or (156), An impressive compensation effect: does work if the difference

)

Zpq - C (144)

[S—

is treated. With
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L =gsin vy (K+ 2)2

Z.
s e 20,) -

2 z
- K . (145)
¥ Ny oy eyare :
follows
.2
--"-'12.1 -C = 1§=§ dy( do{( L dz . (146)
_ )

W=0q=0 z =0

The first and the seoond term on the right hand side of (145) paralyze
each other nearly.

The combination £ (135) (136) €138) (146) leads to

= = =
-—:2 - C = l-—4)2.1 -C+ — 2,2 . (147)
332.2 has the following expression,
g 2 v
— 2 (K + 2) gin 7
— 2 T
Sp,0= - fy gg dw( (K + 2) (3'2 e 22)3/2::- (1 - f D3) dz +
«Q z =0
*ZI¢ R ((2—aqw+ 40 Lo by = , (148)
e, R
w

The first and the seoond term om the right hand side of (148) paralyse
each other oonsiderably, too,

In this context, the integrand of the first term of (148) undergoes
a rearrangement, The subsequent deduotions are self-explanatory, (7),

2
2(x+z)sm2%—=2(x+z)?’?--

Ll o3 (g o
E R -] + z °
dL g EE

(149)
o
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Thus, (149) transforms the first integrand of (148) into the following
form,

1 (K + z03 e 3

1 o
ST NT » T (1 - #D,) dw dz. .€150)

gty e R (e2429)° 20,

The abbreviation
Z
(K + z)3 eo3 :

2 §[1 5 > (e'? & 22)3/27(1 > % 2ol 2l

z =0

reveals, (148),

= -"rgR 1-s dw + 47V 2L hh—P. (152)
2:2 =2 e SRR

W
Finally, (146) (147) (152) lead to

w/
o~/
— 2% 2

:52-'C=f§>§d\y_§dot L dz +
Y=0u=012=0

e

1 1 ~ hP
+§f§aR{-—de +4”f?hPR_‘ (153)
o

w

Finally, in the construction of the residual term of the solution of
the geodetic boundary value problem according to /17 /2/ /3], the term

"

E,-c- [ 22} £ -‘ (154)

has to be supplemented by the expression for

27" (155,

Thus, the expression in the relevant residual tterm has the followlng
accomplished form, (156) , This relevant residual term is obtained in the
chapter B of [3] , equation {"S), by the integrand of the Xy term, and it
is treated also by the equations (89) (:7) nf the same chapver of [3] .
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,a " /o W
EV NV ENS
5
=-:-:2—C+-ﬁ' B"=:2-C+2f§>1R-f§ Vid&).(156)
=1
7]

The term
=,<0 © (157)
comes from (153),and the V; terms from (68) to (73).
In /3/, the numerical emounts of (157) and of
[B/" end & [B/v | (158)

are computed for some mountain models., They proved to be negligible;
(see /3/, chapter B, section 7.1, and 7.2.).
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L
3., The evaluation of the horizontal derivatives —%;5345 .

In the formula for the determination of the height anomalies &
the residual term contains the value of [i/", (1); (see also /1/ /é/
/5/ and the equations (1) (2) of the chapter D of this publication).
In a similar way, the residual term in the formula for he surface
plumb-line deflections £ and % involves the amount of, /1/ /2/ /2/,(2&),

2/B/" 2 B DB, ona.
I S N
C 2e

M

DX, ¥ ox, ¥ 9%, ¥ -

At the surface test point P, dx and dy are the horizontal arc
elements which are introduced for the differentiation in the
south - north and in the west - east direction. The differentiation
with regard to dx or dy necessitates that the concerned function
which is to be differentiated has to be defined not only along the
oblique surface of the Earth, but, further on, even along the parts of the
horizontal plane lying near by the point P,The function B has to be
known for the horizontal plane area of the vicinity of P; Fig. 4.

However, the differentiation with regard to dx and dy happens
along the surface of the globe a¢ , (159); Fig. 4.

Thus, .E;B has the following expression, (4) (5), /1/ /2] /3/,

~

" 2 R+hp R+ hp+ 2
— ’31/8 .
= > ]——— r? siny drdy de
e 10 [ g(gx’y)P Y. gedy
=0 «X=0 r =R r=R-v-hP
Il
2 ’01/30
-fpo R — (hp + 2) dw (160)
S VX, 5
P
2
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r is the radius of the running integration point.

In the first integral on the right hand side of (160), the
integration over the radius r within the interval

R <r < (R+hp), ' - (161)

leads to the expression for the horizontal components of the
gravitation force of a homogeneous spherical shell with the width
hP' These components are well-known to be equél to zero, it is
obvious,

An analogous property is found for the horizontal derivatives of

the pofential of a homogeneous spherical surface distribution.
Therefore, /@/, and with hp = const.,

2 27 'R+ hy

0 =% § g ( [?1/8 ' 2.1 drdv d (162)
V= 0O «¥=0 r=R
and
0=£pR°h [ O ] dw (163)
s S = ANE, 5 ¥

E
w

For the computation of .the horizontal derivations of a spherical
surface distribution, (163), any special jump relation - which show
up in case of the normal derivations - have not to be taken into
account,

(162) and (163) transform (160) into the subsequent Ebrm,

v ooew R+‘hP+z

wv.=0 «&=0 r=R+hP

'/

D /e, -y
-te R? (Tef_] 2.0 WA (164)
P
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The differential quotient with regard to the arc element dx or dy
is found as the limit value of the concerned difference quotient,

QE ( (€)-¢ >
= lim —_— a9 (165)
P

PAGD). e

The value ¢ which figures in (165) has the following expression,
(16),

2 h :
52 = eo2 + z2 + eo2 z % + 602 _E_g . (166)

In (166), a relative error of the order of 10T in the distances e
is neglected, it is in keeping with the noise of the coordinates of

the control points. In (166), e 2 is factored out,

o
2 h i
RS | 2 z P
£ =2+ e, [1+§+ 2 ]. (167)
An analogous formula is valid for ( & )2, see Fig, 1 and Fig. 4.
z + 2h
'(8)2=22+(e°)2[1+——2J . (168)
R
The passage to the limit of (165) reveals,
JdE
("= ax ; (169)
x
and, in a similar way, Fig. 4,
e, ) 9% o5 (170)
e ) =e_ + . 170
(o] o /a;
The difference of (167) and (168) gives,
2+ 2h
(€12 £2=[(e2 -0 |[1+ 2], (171)
R

The difference on the left hand side of (171) is expressed by the
differential quotient of g- , using (169).
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The difference on the right hand side of (171) is in relation to the
differential quotient of e,» see (170). The following lines are self-
explanatory,

()2 - g2 [(£)+e] [(é)-E:I= [(e)+e] dx =
x
¥ 2¢ PR ax (172)
« X
De
2 2 0 = ™
(eo) -6, = [(eo) +eo] ~; dx =
0 e
¥ 2e -2 dx |, (173)
°© D3
and, by combination with (171),
. . e z2+2h
2 ¢ e<1x=2e _°d§[1+—-——P] : (174)
ox S Ry | R
and with Fig, 4,
h
ax? = @2 (1+2-E (175)
hence, (174) (175),
) 2z + h;
BiE ioeo [1* P]dx ’ (176)
DX VI ¢ R
1
Bir 1 D
e 5 . (177)
D x £ Vx
D) +h
D1/ e io e°_3 [1 & .z___.I.’_] , (178)
0x ox £ R
) a B
S ke T ' (179)
X dy PF:
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The infinitesimal spherical triangle of Fig. 5 and the relation (7)

show that
de L s
—2 . R cos % fald U _ (180)
dy
R Oy :
= = - C08B & M (181)
X

o is the azimuth, counted clockwise from the north,

]

-

Nord

Fig. 5: The south-north derivative of the spheriocal distanoce ¥ .
The infinitesimal spherical triangle is plotted on the globe
with the radius R,
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Thus, from (179) (180) (181),

.De
'D-o = = cos % co8 « 3 (182)
X
and with (178),
DL -
! £ 2 e zZ + 5
T T cos%}/—-coso{. --2’7[1+ - P] 7 (183)
X
Further on,
#2004 - ,
9 e, : 1 ’Deo 1 y (cos & r )
— RISy e o e 008 o (184,
DX 1Y P . e, Dby Y e, 2 gin o
®

(183) and (184) are introduced into (164),

»
[

2% R+hP+Z

— éos ) e z2 + h
5w § { ( cos -—V—} : z O |1 + Pl v25iny dr dy dxx =
=0 ¢ 2 Jsin & ‘76 = ydr dy

v=0 o= 0 :1:'=R+h:P

i KD gy : ’ o &
- o R® ( (7003 - Z- L‘in%}dw g (185)
fv/=0 ol=0 '

The fifst integrand on the right hand side of (185) contains the
product -

cos% ' e * gin ¥ = cos wl/’r éR‘siz_x%p— -251n%c0§—%—=
=4Rsin2—;0052—?=Rsin2y/ 5 - (186)
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The formulas (22) up to (26) give,

e =
(—E-) =(e,2+28) 2 (1-30) (187)
e 2 zZ+2h
D = [0 3 P - . 88
: eo2 + zg R Hbe
g | A . (189)

~With (133) (134), - if the prime at r is no more taken along -, follows,

2
2 2
r? = (K + 2)? = K (14 = k2 (”2?:1(2(1”)6)’ (190)

e (191)

72 [1 2 e’ 2 hy + 2
= - . 0 +
(e cy z2)3/72 e°2 + z° R
2 hP + 2
+ 2 ;{' + E s ©(192)
(185) (186) and (192) give,
8 2
= co8o
c'_"'JB=£§ R {sinzy vy 5 doe o X -
' sin«
’\’/z 0 oL=0
” el 1 y/ co8s o
'fsz( ( —p co8 —5— *%. AW . (193)
%o 8in o '
v= 0 =0
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R+hp+2, 4,3 z2+hp| ,
X = <— 14 ———= |2° dr . (194)

(192) is considered as a substitute for the integrand in (194)., With

dr = dz (195)
follows,
Z
K2 e2 2hP+z
: B g7y |V - g &
(e © + z°) e~ + 2 R
z =0
2 2 hP+z
4 —— + —=—— | dz, (196)
R R

Since it is intended to carry out the integrations on the right hand
side of (196) along the lines of the analytical integrations, the
integrand is developed into four terms which are identical with
standard integrands which can be found in the integration tables,

4
X = Z X . (197)
j=1
Z
h 1
2 P
X, =K° (1 + =) dz . (198)
1 R g (eo2 s Z2)3/2
ZI=00

K
A (199)
R

3 Z
K 1 4 ( y
X, = = z ‘ 200
1 R g (e 2 ¥ z2)3/2
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X 5 5 f : d (201)
= — 2 . 1
2 R z:a 0 (zz + e 2)3/2
A |
h dg
2 2y =P,
X, =-3K¢ = o (202)
3 i) S (22 + 802)57? .
z2 =0
Z
g.L 2 3
X, = = E° e = - dz (203)
4 g‘ o R g (zf+ eo2)‘5/?
z =0

The second integral on the right hand side of (193) undergoes some
self-explanatory rearrangements. It is,

: 14 . y
e—fOOSTBm‘/’=3e°0°BTEiD‘}’=
o o

1 1 :
: v 2
= 2 R sin g = R al . 204
- ;5 8 %cosTsn‘y/ 'e?sn 1/’ ( )

With (204), the second integral of (193) turms to

v 2r
\ 5 cosy 21
:gn sin®y dyx{%m dy |- R ;—3-2 3 (205)
sinu i o .
1,;:0 : % =0

A comparison of (193) (197) and (205) reveals that'a further
function Xs can be' defined,

1

2 .
15=-R Q—B-Z . (206)

o]

Hence, €193)-

w 2%
et 5 co8 &
33 =‘t§ R gainaz‘a d]fl Z' 133 } dex (207)
; J =1 sinu« i
1}; =0 o= 0

DOl:https://doi.org/10.2312/zipe.1987.089



57

Is has a satisfactory expression, (206). For Xj. GusBinE2siase ANk
a look on the integration tables indicates, within the here
"introduced approximations, '

K> Z i
X, = == & ’ 208
1 R 902 (802+Z2)1/2 :
% 3R : L ‘ (209)
2 © [ e, (eo2 + ZE.)1/2 J ¥
X 3Rh, |2+ & ? : (210)
= - o+ ' 10
R e
T kie s ! 1 | (211)
RO e B ‘

It is important that a comparison of X1 and Xs, (208) and (206),
revea.s that these verms compensate and paralyze each other, more
or less, as long as e, is much more great'than the absolute amount
of 2. :
\
The . formulas (207), (208) to (211), (206) represent a solution
for

oLy

(212)
9z, y :
(see (159 ), which is convenient for an application in. the numerical
computations,. ' ’

The publication /3] contains a numerical estimation of the
amounts of X9 Xo X3, X4, Xs, and, thus, ulso an evaluation of the
. amount of (212), the above equation; (see /3/, chapter B, equation

(118) to (122)), The first model mountain has the following
parameters: hP = 0, Z = 2 km, the base surface of the mountain is
"equal to R? Aw = (4 km)z, the distance between the test point
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and the center of the mountain is Ry = e, = 5 km. The computations
resulted

¢"  ars)"
G Ox- " G

= 0."3 . (212a)

The direction from the test point to the center of the model mountain
has the azimuth o¢ = 0°, Consequently, in extreme situations in the
midst of the high mountains, it is possible that the amount of

"
= . L (212b)
L—JB G

effects the amounts of the plumb-line deflectiona computed from the

free-air anomalies by more than O."1, In such a situation, the term

(212b) has to be included into the expression for the deflections, in
order to complete the theory; (see /3/, chapter B, equation (66)):

6 1 : ds (cos
7 3 40’3“ [Agm k c]ﬁ sina ¥ )
@ .
Z' ——,D—'f (212¢)
‘D D ¥ I:Xi ] c

with

L4 'D e" g"
' X, = =, 2 (2124)
ox, Ay b g = G ; .

being equal to, (212),

-EM . L _ (212e)

Dx,oy G

The second model mountain has the parameters: hP =0, Z =3 kn,

R° Aw = (40 km)a, Ry = e, = 100 km, These values lead to an
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amount of not more than

o D /R y L"=3"

. 1074 , (212¢)
9~ " g Dx G

(1

for « = 0°, Thus, it can be taken for granted that the effect
exerted on (212) (212b) by distant mountains is insignifioant.

4, The residual terms for the fixed and for the free boundary
value problem,

As to the basing theoretical conception that is behind the here
discussed boundary value problem, it must be stated that the
heights hP and hQ are the heightis above the sphere; or, cons;dering
the flattening of the Earth, they are the heights above the
ellipsoid, (see Fig. 1). Thus, if the here introduced h values are
considered to be a priori given values, the basing conception has
the character of a boundary wvalue problem for the real surface of
the Earth, In case, the h values ure definitely known, the problem
has the charaoter of a fixed boundary value problem,

But in reality, the h values - the heights above the sphere -
are not known, a priori. The reason is that the height anomalies £
are the unknown values of the problem. The heights above the sphere,
h, consist of the sum of the known normal heights, h', and the a
priori unknown height anomalies (G

h=h'#+ (£ . ~ (213)

The value of £ is unknown)a priorij it is the wvalue to be
determined. . Therefore, the shape of the surface of the Earth,
being the boundary surfaoe, is also unknown a priori - at least
within the limits of the amounts of 5 -+ Consequently, the
problem presents 1tself in our applioations by the character
of a free boundary value problem,
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However, this free boundary value problem -~ for the free-air
anomalies zsgm as boundary values along the unknown surface of
the Earth - is placed in the very near vicinity of the fixed
boundary value problem for the telluroid as given boundary
surface,~for the free-air anomalies as boundary values, too.
This close vicinity is founded on the fact that the surface of
the Earth and of the telluroid differ by relative small and
smoothed vertical point shifts, being the height anomalies £ .

Thus, the transition from the free boundary value problem
(for the surface of the Earth) to the fixed boundary value
problem (for the telluroid as boundary surfaoe) happens by the
introduction of h' instead of h in the above derivations
presented by the above equations, from (1) to (212).

The effect this transition takes on the final result is to
be discussed now., The closed solution for the boundary value
problem has the following shape, [1/ [2/ [3/, (see also
chapter D, equation (1), of this publication),

r

T = (“AgT+c+c1]s(¢)dw + = ‘ (214)
4:77 1 ;

\
w

The free-air anomalies 43gT do not change if the boundary
surface changes from the surface of the Earth to the telluroid,
i, e. if h changes to h'., In the mathematical developments of
[ [2] [3/, the surface of the Earth was introduced as the
boundary surface shaped by the heights h above the sphere,
Hence, the supplementary terms C, Cys 231 of (214) are
understood to be expressed by these h values, Consequently,
these supplepentary terms C, 01, 531 will be effected by the
transition from the h values to the h' values,

In this context, in the computation of the plane topographic
reduction of the gravity C, (being a term which has to be added
to the free-air anomalies. in the Stokes integral (214)), h' has
to be introduced instead of h, But, there is no doubt, the
interchange of h.with h' by 3

h £ n ' '(215)
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takes no perceptible impact on the C values, Of course, the precise
version of (215) is (213). Since the C value depends on the differences
of the heights in the surroundings of about 100 km radius around the -
test point, (136), therefore, the disregard of the differences of the
5 values lethgse surroundings will effect the error in the C value.
This error is caused by the interchange of h with h', in (136). The
{ valued are smoothed. In the mountains, the differences between
neighboring / values of a mutual distance of not more than 100 km
are witnin about 10 m.And this value is often within the noise. of the
plotted heights in the maps. Thus, the interchange of the h values’
with the h' values has no perceptible effect on the oomputations of
C according to (136) and (153), since even the height differences
and the differences of the / values are effective here, only. The
transition from the h values to the h' values changes the C values
by not more than some /ugal,_as an uncomplicated computation does
show. This .value can be neglected.

Further on, in the constituent 521 of the residual term of the
solution of the geodetic boundary value problem, (214), a certain
term appears that exerts a change of the resulting perturbation
potential T by an amount of the form of

B ; . (216)

.‘-Ul::"
d

(see /1/ /2/ [3/, and the equation (2) of the chapter D of this
publication). Consequently, if h' is taken as a substitute for h,
the final T value undergoes a change by an error of

% B, . (217)

The corresponding error effect in the final Zf value is obtained
by a division of (217) through the mean global gravity value.
Thus, the resulting error in the f value will not surpass a
centimeter. It can be neglected inmost cases (e.g. £=100 m,Bc/G=6OO m).

The exchange of ‘h with h' influences also the Tp value which

appears before the integral af (214). Also this fact will effect
the final T value by a negligible error which is of the order of
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the amount of the term (217). Here, the term (217) is -replaced by
1R 1T, Y

Obviously, the here discussed transition from h %o h' changes also
the term C,, (214), (see also the equation (11) of the chapter D of
this publication). Since the amount of C1 is not greater than about
1 mgal, the difference

OF.Y: : DAgy:
A Bouguer = ¢ Bouguer (p+1  _ pt
s (hq - hp) e (' - h'p) (218)

which yilelds to be effective here will always be by far a negligible
term. It is obvious.

Principally, the three values relating to the real surface of the Earth
Tps hP’ hQ ‘ (219)

which appear in the supplementary terms on the right hand side of

(214) can be computed by a further iteration step. This approach is
equivalent to the procedure to compute the & value on the right hand
side of the equation for h, (213), by an iteration process. For a

first step, the & values in the formula (213) can be taken from the
global maps of the & values already obtained by cosmic and terrestrial
methods. This first step of this procedure will lead to an approximation
of the h values that is better than the replacement of h by h',

Thus, in the geodetic applications, it makes no difference whether
the real surface of the Earth or the telluroid is introduced as the
boundary surface. There is no essential difference between the fixed
and the free boundary value problem. The free boundary value problem
can be replaced by the fixed one and vice versa, in our applications
at all events.
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. Summar

Within the course of the computation of the solution of the
altimetry - gravimetry problém, it is possible to account for
the altimetry data on the oceans by a two-step-method: At first,
the oceanic gravity anomalies are computed from the observed
altimeter data by the inverse Stokes equation. Then, the height
anomalies are obtained from the free-air anomalies; integrating
the Stokes integral qver whole the globe,

On the other hand, 6onsidering the equations that determine
the solution of the first mixed boundary value problem; it is
possible to express the height anomalies directly in terms of
the oceanic altimeter data and of the continental free-air
anomalies., This is the direct way.

The results of the direct way are more precise than those
obtained by the indirect method, as numerical computations show, .

The biases caused by the sea surface -topography can be

eliminated by an adaptation of the resulting height anomalies
to some Doppler-derived ﬁeight anomalies,

Zusammenf assung

Die ozeanischen Altimeterdaten konnen hei der Bestimmung des
globalen Potentialfeldes in verschiaedener Weise herangezogen.
werden, Mit der inversen Stokes-schen Gleichung kann man zunédchst
die ozeanischen Freiluftanomalien der Schwere errechnen, Aus
dem damit bekannten globalen Feld dieser Anomalien erhédlt man
mit dem Stokes-schen Integral das globale Potentialfeld.,

Die Lsung des ersten gemischten Randwertiproblems filhrt dagegen
direkt von den Altimeterdaten zu dem globalen Potentialfeld., Es
zeigt sich, dass dieser direkte Weg genauere Ergebnisse bringt
als der indirekte. '

Die Topographie des Meeres ruft kleine systematische Fehler
in dem erhaltenen Potentialfeld hervor. Diese Fehler kinnen durch
Anfelderung an solche Hohenanomalien bestimmt werden,. die aus
Dopplerbedbachtungen von Satelliten gewonnen wurden,
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Peaue

OKegHNUECKHE NAHAHE ATHTEMETDER MOTYT HCIOJB30BATHCA B PAVIMIHHX
BADHAHTAX NpHR ONPENEeNEeHME IMIOGATBHOTO NOTEHIMAIHHOIO HOJA. C mo-
MOIBY) HHBEPCHOT'O paBeHCTBa [ITOKA MORHO CHAUANA pACCINTATE OKEaHH-
YeCKHe aHOMAJHM TPABMTAIMM BO3IyXa Ha OTKPHTOR MecTHOCTR. U3 mosa
9THX QHOMAJmii, A3BECTHOT'O TakmM odpa3oM vepe3 maTerpan llroxa mo-
Jy9anT IIoajbHOe MOTeHIMAJNBbHOE MHOJE.

Pemerme xe mepBoit cMemarHO# reome3miecKoit KpaeBo#t 3amadm Bemer,
HampOTMB, HENOCPENCTBEHHO OT NaHHHX ATBTEMETDHEE K 3HAYEHMD TJIO-
GaJBbHOTO NOTERImANbHOTO NoJA. Oxasalock, ITO STOT OpaMof myTH ma-
eT dojiee TOYHHE pe3yJIbTATH, UYeM KOCBEHHMit.

Tonorpafma MOpA BW3HBAET CHCTEMATHYECKHE ONMHCKH B MOJYIECHHOM IIO-
TEHIMATEHOM MO, OTH OIMGKE MOTYT ONPEHENATHCA MyTeM HAJORSHHA

TAKIX AHOMAUMH BHCOT, KOTOPHe MOJydamr 3 dfibexra Jomrepa Radmmmae-
MOTO CO CIyTHHKOB.
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1. Introduction,

The here disocussed problem does base on an observational material
of the mixed type. The boundary values on the oceans are the
altimeter data. Along the continents, the free-~air anomalies of the
gravity serve as the empirically given data,

At the beginning of the considerations, the sea surface topography
is neglected. The impact the sea surface topography takes on the
result is latier discussed, at the end of the investigations,

Starting from the above described observational data, the problem
consists in the construction of a global representation of the
gravity field or of the potential field. These final field data have
to be determined as precise as possible, ./1/ /27 /3] [6] [97 [10]

2] N3] N4
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2. The indirect solution by the inverse Stokes eguation,

The inversion of the fundemental differential equation of the
physical geodesy, [/6/ [9/,

ot 2 A
- ar-;T= gF " - (1)

leads to an expression that gives the height anomalies & in terms
of the free-air anomalies zﬁgF of the gravity, (see also chapter B,
equation (214), of this publication),

t e I [AgF-s-C:I S(¢) dw '+ & (2)
AT 5

22

T is the surface perturbation potential, r is the geocenﬁfic.radius,

@ is the unit sphere, g(¢) the Stokes function, W is the
spherical distance between the test point and the point moving
within the integration procedure, C is the plane terrain correction
of the gravity, R is the mean radius of the Earth. 7 is the standard
gravity at the surface test point P, The interdependence of T, & , »
is expressed by -

T (T), -
L === akaibr =8
T Jp :

The residual term & will rare reach more than about some
centimeters, it can be neglected in view of the present standard of
the gravity nets, /5/ /6/. € is in the vicinity of the height,
gradient of the Bouguer anomalies, (see chapter D of this

publication).
- R VAg -
A (b - hp) ———DOURUEL o4y go , (4)
427*T f Q 5 Qh ’ ), ;

©
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hQ is the height of the point moving within the integration, and
hp is the height of thé test point, /5] [6/.

. PFor the fixation of the subsequent ideas, it is recommended to
transform the relation (2) into the matrix shape, In this context,
the whole surface of the Earth is divided'into a number X of
finite surface elements of the constant size A& , Thus, the
relation (2) turns to . -

go=ig

(5)

Hog

The mean valueg of £ for the finite surface elements are the
components of the vector z,

3. o ’ (6)

In an analogous way, the vector g refers to the ( L)gF + C)
. =
values,

[ ¢ Agp + C)1
( Aegp + C)y
§ = ese 9 (7)
3 (A3F+C)u
\ (‘A gp + C)y !
u = 1, 2, XXX X - v (8)
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In the relation (5), the meaning of the matrix § derives from
(2), it stands for the kernel function

- sW) - Aw . (9)
4 np f

in a self-explanatory way. The £ term of (2) is neglected in
(5). '

The two vectors z and g consist of continental and oceanic
components. Thus, they can bhe devided into a continental part

and into an oceanic one, /3/ /6/, (5), .
Zc
g = 9 (10)
g
&
é = . (11)
§s
The matrix § can be devided in a similar way, (5),
=g,c Y §c 8
§ n ’ ’ , (12)
§s,c A =8,8
or
=c ;
g§ = (13),
Ss

g, in (10) and g In (11) are the given data. z, and & are the
unknown data, they can be determined along the subsequent

developments.
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In the sub-space of the spherical hermonics of the 2nd and higher
degree, the inversion of (5) is well-defined, /3/ /9/ /11,

g = s g . ! (14)

The matrix relation (14) represents the following integral relation,

Ag 10, g[fq - fp'] S"1(¢) dw

W

(15)

The function ™1 depends on y , it is the well-known inverse Stokes
function., In the relation (15), CQ is the (£ value for the running
point Q, and Z,’P is the &£ value for the test point P which is fixed
within the course of this integration. The explicit expression of
(15) 1s, /97,

Ag.q.c:-_L CP _LA?((_(Q_- fP dw’ (16)
R 27
w

1=2nem% 1 | (A7

In the here discussed problem, the vector part &c is known. ‘But,
-9 is an unknown vector. 'I‘herefore, the matrix relation (14) is
applied to the oceanic test points only. With the symbolism

a1

2o

s~!

= - 1 ] = (18)
Ss

and

-1 -1
sC.C > §c.s

L : : (19)
§g,c | 4 §B.B

follows symbolically, (13) (14) (18),

g = 55 & . © (20)
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Along the lines of (16), it is possible to compute, point for
point, the local values of the components of &g? 14 e} the local
values of ( &g + C) along the oceans. Averaging over these local
values situated within a certain compariment, these local values
lead to the mean values of ( &g + C) for the introduced
compartments, The relations (15) (16) are well-known to be
instable, since the amount of the kernel function of (16) increases
enormously if the distance 1 to the test point diminishes.

The relations (16) and (20) permit to determine the mean oceanic values
of ( Ag + C) of the compartments A w , They have a standard error
of about + 2 to + 5 mgal, if the compartments of 200 km x 200 km
size are introduced, /7/ /11/, (See also: Rapp, R. H,; Detailed
gravity anomalies and sea surface heights derived from GEOS - 3/_
SEASAT altimeter data, Ohio State Univ,, Dept, geod., Sci., Rep.
365 (1985)). Thus, for the subsequent model computations, it is
allowed to introduce a standard error of S

/‘r= £ 4 mgal (21)

for the here discussed averaée of the gravity anomalies of
the, 1% x"4° compartments; these gravity anomalies are viewed as computed
by the inverse Stokes relation, (15) (16).

Now, the computation models are to be described. The oéean is
represented by a square of 7° x 7° side length, The center of
this ocean square has the geographical position: ¢ = O°,

A= OO. This square is subdivided into a grid of 49 compart-
ments of 1° x 1° size. In the subsequent considerations, this
7° x 7° oceanic square is the integration area. The integration
consists in a summing up over the 49 elements of 1° x 1° size
which the ocean does consist of, The points P, (k = 1, 2, ...,
49), are the center points of the individual grid meshes.

Furthermore, the five test points P, [l %5 PR P08 9)h

are introduced, This are the points for which the height =
anomalies are to be computed, These points have the following
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positions, Fig, 1,

ARl Pa il T (22)
P =0 FaareMOs LIRSS SOR R 5 - (23)
Py ( Py = 0% 13 =90% 5 (24)
Py ( Py =0% A, =40 (25%
Py ( pg =0% Ag =70 . (26)

The effect that the integration over this model ocean of
7° x 7° size does exert on the continental height anomalies at
these 5 test points, (22) to (26), even this is the problem to be
investigated here, ; . i
The computation model, the model ocean, the 49 oceanic compart-
ments and the 5 test points are plotted in the figure 1.

A=0°)}
o ) o o o
N wfer o alns s 40
i ] " ] X
=] — o~ ™ ~ N
1k < ~< < = <

1182] 3| 4| 5| 6] 7

8| 9] 10[ 11]12[13[14

15/16| 17| 18] 19| 20| 21 P;i.1

P‘.ﬂ' P‘.= P;. P“:
220231 225/ 26 27 28— =2 " 1=3. =k Ti=5

29(30( 31/32[33[ 3435 p=0°

36/37] 38/39] 40[ 41[42] }1°

L3) 44| 45| 4L6) 47| L8| 49

) )
Fig, 1, The computation model,consisting of an ocean of 7" x 7
square and of the 5 test points Pi'
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" The figure 2 is a graph of the boundary values of the indirect
way., Here, a circle serves as a substitute for the surface of the
Earth, The letter s symbolizes the oceanic part of the Earth's
surface, the letter c stands for the continental part. Along the
oceanic part s, the values of the perturbation potential T are
empirically given; on the continents ¢, the same is valid for the
free-air anomalies,

The equations (14), (16) allow to compute the oceanic A gp
values from the oceanic T values,

Thus, the model of the figure 2 changes over to the model of
the figure 3, The transition from the figure 2 over to the figure »
is the first step of the indirect method.

Fig. 2. The boundary values before the first step of the indirect
method. '
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Fig. 3. The boundary values before the second step of the
indirect method.

The second step of the indirect solution is nothing more than
the integration over the globally given free-air anomalies,
(see Fig. 3), It happens by the Stokes integral, (2). For the
continental test points, the relations (5) (10} (11) (12) give

gc 5 §coc éc + §O.B _§_S v (27)
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In the here discussed problem, only the integration over the model
ocean of 7° x 7o square is in the fore, (see Fig. 1). Therefore,

only the second term on the right hand side of (27) is here
considered, to investigate the precision obtained along the second way,

gl =49 . . (28)

=C Ce8S §B
This relation is applied to the five test points Pi’ (18=" 25 3,
4, 5), and to the 49 oceanic compartments of the here introduced
model ocean, Fig, 1.

Thus, the relations (2) and (6) and (28) lead to

R

CRh e Ty A= fo 8hp ) & (29)

comes from (21), the index i stands for one of the 5 test
points, (1 = 1, 2,- 3, 4, 5). ( ag")P , P is the shift of the
height anomaly at the test point Pi g e
caused by a shift of the free-air anomaly of the 1° x 1° oceanic
compartment of the number k, (k = 1, 2, ¢.s, 49)s The amount. of
the gravity anomaly shift, (i, e. the independent shift), 'is
equal to 4 (21).

The four figures 4, 5, 6, and 7 show the values ( &' )PipPk
with regard to the four test points P1, P2’ P3, P4, respec?ively,
(i=1, 2, 3, 4), The numbers plotted in the meshes of this grid
represent the effect in mm that a 4 mgal shift of the free-air
anomaly of such a 1Rt - 1°‘compartment takes on the height anomaly
at the considered test point, Thus,

¢ sz )P1’ Pl 17 om | 9r - (30)
(r=ket 1o P25 = 9m ; (31)-
(% s PR 3 mm ) (32)
(st DP4' Bps = " 0,1 mm (33)
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7

( 8" )p = = 1,4 mm . (34)

The nonplotted values of the white meshes of the four figures 4,5,
6,7 can be interpolated between the neighbouring data. The
relations (30) to (34) refer to the central compartment ot the
model ocean, (k = 25),

The figures 4 to 7 give the impacts that the compartment values
of AgF =/u = 4 mgal exert on the ¢ values at the test points,
(29). '

10 15 23 6 8 11

29 12

36 12

1112 14[17(21]| 28|40 6(7(8/9(10 | 11| 12

: 36 12

| 29 . 12

10 15 23 6 8| 1
Fig, 4. Fige 5,
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: 4 -04 -0.1 0.2
1 4 : 0.2
b . 0.2
3|3 L| &4 -04/-03|-0.2|-0.1] ‘0| 0.1]| 0.2
& 0.2
4 0.2
4 - 04 | -0l 0.2
Fig, 6, Fig, T,
Fige 4, 5, 6, Z& The results of the model computations for the

indirect or two-step-method; - the altimeter
data —>=the gravity anomalies — the
continental height anomalies. The numbers in
the individual compartments of these 4 grids
give respectively the amounts in mm that a

4 mgal shift of the gravity anomaly of the
concerned compartment does exert on the
height anomaly Z: at the 4 test points P1,
Py P3, P4, respectively, Fig., 4 refers to
the test point P1, Fig., 5 to the test point

Pyy Fige 6 to Py and Fig. 7 to By-
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3. The direct solution by the first mixed bojindary value problem,

Now, the direct method is to be studied. It works even by that
solution of the altimetry - gravimetry problem which is also
denominated as the first mixed boundary value problem of the .
geodesy, The mathematical aspects of this solution method was
discussed in /37 (6] [12] [13] [14]. Fig. 8 represents the two
different computation methodsi: The indirect or two-step-method
on the one hand, 1- 2= 3, and the direct or one-step-method on
the other hand, This latter procedure is represented by the step
1 - 3 of Fig. 8,

1 - r 3 : -3
Zs first mixed boundary value problem Zc

Fig, 8, The indireot way, running from the oceanic altimeter data
Zg via the oceanic gravity enomalies &g to the continental
height anomalies 2.t 1= 2= 3, Purther, the direct way,
brought about by means of the first mixed boundary value
problem: 1 - 3,
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A computation procedure for the solution of this first mixed
problem was derived in /3/ [/6/, it is especially recommended for
numerical applications. For the considerations which are here in
the fore, the basic ideas of this computation procedure are to
be sketched now by some short lines,

First of All, the global equation (5) is divided into the
oceanic and into the continental part, (10) (11) (12),

Too® Saier e - taBois By ’ i y (35)
25 = S5.c & * %58 He t (36)
In our applications, §a - is a positive definite, symmetrical
and closed matrix; the elements of it are regular functions

which cover the oceans, Thus, the rang defect of §s.s is equal

to zero. In our applications, the elements of this matrix can be
considered to have limited amounts, since the Stokes function must
be averaged over the compartments, /3/ /6/. The inverse of

§B.B follows to be well~defined.

The elements of the matrices S .y S, o» S, g0 S5, (35)(36),
are proportional to the mean values of the Stokes function for
the running integration compartments.lOr, with other words,

the spherical harmonics are, in imagination, not summed up over
the degrees 2 <n < ©© , (36b), as in case of S, but over the
degrees 2 <n <N, N is a limited integer, N is in keeping with
the size of the compartments A <« and with the empirically given
details of the ABgF and T boundary values. The summation over
the interval 2 <n ( N leads to the function, VEVR

= L) 2n + 1
Bty S _

n a2

B, (cos vy ) ’ (36a)
n -1 L

whereas the extension or the summation to the infinity

o

# 2n + 1

8 o ———— P (cos ) i (36b)

P e oo
e

=2

DOl:https://doi.org/10.2312/zipe.1987.089



81

gives the original Stokes function. P are the Legendre
polynomials,. /9/. S is a regular and finite function, for all
values of v . S fulfills all the theoretical prerequisites
for the inversion of the kernel function (symmetricel, positive
definite, ‘continuous, finite, closed, the defect is equal to
zero in the subspace of the functions of the degrees

2 <n KL N). However, there is no doubt, in sufficient
approximation, the averaging of S over a compartment Aw
yields approximatively the same amount as an averaging of S
in such a way. In the S function, the degrees which are
greater than N are averaged out in this way. Thus,

'_\_/ o~
Sq,8 = §§.s v B = §§.c ’
(36¢)
o =
§c.s =2 Eﬁ.s ’ §s.c - Es.cC )

Hence, swmmarizing finally, there comes no trouble from
the fact that S(¢) —9~ ©©, if Yy —> 0, This singularity
is removable.

Before the background of the above lines, 1t is allowed
to inverse the matrix §s gj8nd to formulate’ the following
‘matrix relation, (36),

g = 55c [aa " Gso B0 (37)

The relation (37) is introduced into (35),-and the final form
for the solution of the firsit mixed boundary value problem is
opbtained, It has the following shape,

_ -1 & -1 5 \
Zo = Sc,5 Z5,5 Zs * {gc.c Sc.s Es.s §s.cJ & - (38)

In the following calculations, only the oceanic part on the
right hand side of (38) is considered, it is the first term on
the right side of (38). This scientific approach is in keeping
with the way along which the indirect method was followed up,
(28) (29), Hence, from (38), '

cgi'='8 gal e . (39)

=C =Ce8S =8,8 =8
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(39) represents the impact which the oceanic altimeter data take
on the continental height anomalies, It is the impact to be
investigated,

In the subsequent computations about the 5 models, sketched
by Fig. 1, a standard error of

is introduced now for the mean 1° x 1° compartment values of the
surface function / , (see Fig., 1). This V value is compatible
with the empirically obtained results of the satellite altimetry,
/10/; (see also the yournal "Marine Geodesy", Vol. 8, 1 - 4,
(1984)),

For the ensulng ilecsailed computations, it is convenient to
introduce now the abbreviation

é = §c.s =8,8 . (41)

A is free of instabilities, since §, ; has in (41) the efficiency
of a stabilizer. (39) and (41) lead to

ic = 4§

Zc a ° (42)

The explicit shape of (42) is as follows, (see (29)), (40),

e 1 ; = o
( 5C )Pi’ Pk ai.k Yy 9 (43)
with

#.1 .2 00 P49
851 89,20 eee’ 8ouyg

A = {ai.k} » »  (44)
85,1 G552 =, 2oL “S5tae

is= 19 2, 3’ 4’ 5; ' (45)

DOl:https://doi.org/10.2312/zipe.1987.089



83

k = 1, 23 eeey 49 (46)

The sequence of the i subindices refers to the test points, and that
of the k subindices to the rumning 19 z519 compartments of the
ocean model, Fig., 1, 8y x is a twofold tablee. The first suffix

i, (44), specifies the row, the msecond suffix k specifies the
column, '

Before the results of the computations are described by the
concerned elements 85 x of the matrix A, it seems to be
convenient to give an insight into the structure of the matrix

§s 3 eand of §;1s' The multiplication with the stabilizing matrix

8.,g leads from §;]5 %o the matrix A, (41). 8, . is a square
matrix, :
faus = { “k.k'} ’ : (47)
k, k' = 1. 2, scey 49 ° (48)
u u, . SO0 i \
101 1.2 1049
u2.1 u2’2 XX u2.49
{.uk.kl} = eece eece eee eee . (49)

“49.1  M49.2 °c U49,49
The first row of this matrix; (49), relates to the upper left
mesh of the 1° x 1° net that does cover the 7° b4 7° square of

the model ocean, Fig, 1, (k = 1), The sequence of the elements
of this row

R ARG LU T S

consists of the following amounts, disregarding a common
multipiyier,

‘DOl:https://doi.org/10.2312/zipe.1987.089



84

406, 125, 65, 45, 34, 28, 23,
125, 90, 59, 43, 33, 27, 23,
65, 59, 47, 38, 31, 26, 22,
45, 43, 38, 33, 28, 24, 21, (51)
My w3350 A0 28, 25y 22, ~204
28, 27, 26, 24, 22, 20, 18,
23, 23; 22, 21y 20, 18, -17.

The row of the number 25 of the matrix described by (49}
refers to the center compartment- of the model ocean, (x = 25),
It has the following sequenoe,

Uz5,17 25,20 *+s 25,49 | e

The amounts of (52) are as follows, disregarding again the same
multiplier as in case of (51),

83598, 133,45, 18 ;- 3851335

38,47, 5% 65y~ 595 47, 38,

43, 59, 90, 125, 90, 59, 43,

45, 65, 125, 406, 125, 65, 45, (53)
43, 59, 90, 125, 90, 59, 43,

38, 47, 59, 65, 59, 47, 38,

33, 38, 43, 45, 43, 38, 33.

The amounts of the elements of the two sets (51) and (53) are
directly oomputed as the values of the Stokes funotion S(¢) ,
(36b), Thus, they are precisely equal to the amounts of this
function S(¢) for the arguments Ykt ¢ whereat the suffixes
k and k' specify the concerned compartment oenter points which
are -the endpoints of thié spherical arc, Vi § (47) (48),
(97 e 80 S(0 = 10) = 125, Therefore, the amounts of (51)
and (53) can be taken, immediately and unchanged from the table
of W, D, Lambert and F. W. Darling; (see: Tables for determining
the form of the geoid and its indireot effeot on gravity,

U. S. Coast and Geodetic Survey, Special Publ. No. 199,
Washington 1936). In the expression Y.+ end in (47), the
first suffix k specifies -the row, the second the column, k'.
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As to the inverse, this is the matrix

§;:s % { vk.k')[ ’ (54)
k, k! = 1, 2, ceey 49 ° 3 (55)
L] bl 7 R LA 7
y V2.1 V2.2 vee V2.49
{vk.k'} = L] (56)

V49,1 V49,2 " V49,49

The first row of (56) has the following amounts, (k ="1),
disregarding a common multiplier,

+ 2956’ i 626’ = 74’ = 43’ = 26’ -\19, . 19’
- 626, - 164, - 33, - 18, - 11, = 8, - 11,

- 74, o~ 33, = 20’ = 12’ -3 89 4 69 - 9’
= 43, - 18’ - 12, - 9’ = 6v y | 5’ - 81 (57)
) 26, -1, - 8, - 6’ - 5 - 4, - T,

- 19, = 8’ - 6’ - 5"- 4’ . 4’ o 6,
= 19, = 11, = 9, = 8, = Ty = 6, - 8.

The 25th row of (56) is as follows,disregarding again the same
common multiplier =s”in (57), (k = 25), '
St P . Bty 20 L 125 S ASERE, F R 9y
= 3’—-10,— 18, ~ 15, - 18,'10"' 8,

=11, 5185 ¥kl = 9085 =iat =8, L T
- 12, - 15, = 508, + 3270, - 508, - 15, = 12, (58)
=i, — 18, = 141, = 508, — 141, - 18, - 11,
- g, =10, = 18, = 13, = 18, .- 10, - 8,

- 9,= 8, = 1,7 12 = 11, = g8, « 9,

Now, the equation (43) is applied to the 5 models of the figure
which are already treated in the discussion of the indirect
method, These 5 models differ by the position of the test points
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P, only, (i =1, 2, 3, 4, 5), Fig. 1. In (43), the index k assumes
all the elements of the sequence: k = 1, 2, .ee, 49. Thus, all
the compartments of the oceanic grid are considered.

Fig. 9 shows the amounts of 8k "V for the V value
according to (40), and for i = 1, and for the index k running
through all the numbers 1, ¢e.y 49, In Fig. 9, these amounts
are written in all the concerned 1° x 1° compartments of the grid.
They show the impacts that the shifts of the oceanic 1° x 1° mean
altimeter data exert on the height anomaly at the test point P1,

(i = 1), fOI‘ V = 003 m, Figo 90

Fig. 10 gives the corresponding values of 8y ° Yy for the
test point P2, (i = 2). Fig. 11 and Fig. 12 show these amounts
for i = 3 and i = 4, All these amounts which are represented by
the figures 9, 10, 11, 12 are measured in mm, They base on a
shift by V= 0.3 m,for the mean 1° x 1° compartment value of

the /# function.

1.5 19126(3.7(92 15 16(20|27|56
120 Lk
180 L4
09/06/08|11(19(36(230] |[09(06(06(0.7|10|1.5|45
180 L4
120| - L4
15| 19(26(3.7| 92| [1.5 16 120|2.7| 56
Fig. 9. Fig. 1o0.
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0.7 07 2:+] |=03 0 0.2
1.5 0.2
1.4 0.2
lfozl02l03/03(04(05[1.4] [-02[-01] o] o] 0] 0[0.2
1.4 _ 0.2
1.5 0.2
07 0.7 21] |-03 0 0.2
Fig, 11. Fig. 12,

Fig., 9, 10, 11, 12, The results of the model computations for the
; direct method according to ihe first .uixed

boundary value problem, The numbers in the
individual compartments of these 4 grids give
the amounts (in mm) of the impact that a
shift of the regarded 1° x 1° mean altimeter
data (by v = 0.3 m) does exert on the
height anomaly & at the 4 test points P
P2, P3, P4,respect1vely.

1’

As to the 5th test point P5, the effect of VvV on the { value
at Pg is ag , © v , (43), (k =1, 2, ..., 49). In dependence upon
the parameter k, this effect ranges between - 0,6 mm and - 0,1 mm
within the 7° x 7° model ocean, Fig. 1. For the center compartment
of the ocean, k = 25, this impact is equal to - 0,13 mm.

Now, the central 1% x 1° compartment, (k = 25), is brought
into the fore. A data shift of /' ,within this cdmpaftment,haa
a certain impact on the / values at the 5 test points. '
- The concerned values obtained formerly by the indirect or
two-step-method are tabulated by the equations (30) to (34) -.
The analogous amounts found along the lines of the direct or
one-step-method of thé first mixed boundary value problem are as
follows, (43), Fig. 9, 10, 11, 12; ( Y = 0.3 m).
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4, The direct way in comparison with the indirect procedure,

A comparison of the relations (30) to (34),on the one hand,with
the relations (59) to (63),on the other hand, shows that the latter
amounts are much more small than the values of (30) to (34). Thus,
obviously, the resulting continental height anomalies & at the
five test points are much more precise if the direct method of the
first mixed boundary value problem was preferred,instead of the
indirect method proceeding along the roundabout way via the gravity
anomalies as an intermediary system(approximating zl to gg (28)(39) ).

Preferring the direct method instead of the indirect
method, the amounts of the standard deviations of the resulting
height anomalies are lowered down by the multiplier X 4
(1 =1, 2y 3, 5). For the different test points P;, (i =1, 2, 3,
5)y 24 has the following amounts:

(30) and (59) give,

1.1 :
G i 006" 33 (64)

(31) and (60) ledd to

0.7

&, = 0,08 (65)

(32) and (61) have the consequence,

0.3
SRty

=. 0,1 ; ' (66)

(34) and (63) yield a diminution coefficient of

@ = —— = 0.09 . : (67)
1.4 ;
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0f course, a glance on (64) (65) (66) and (67) does it show
impressively, the precision of the results is greatly improved
by the transition fraom the indirect method to the direct one,

The coefficient =e¢, is not considered here because
the Stokes function:is equal to zero if W is in the vicinity
ct 40°. Indeed, the spherical distances between the test point
P4 and the 1% x 1° meshes of the model ocean are in the
vicinity of 40°, Pig, 1., *

A look at the 4 figures 9, 10, 11, 12 demonstrates the fact
that. there is not a trace of an instabilityﬂ(but;(15) has instabili-
ties).The guessed instabilities are not corroborateq,asfor(39L[14L

Sure, it is one of the mein tasks of the theoretical geodesy
to find out such ewaluation methods which give the most precise
and optimal results from the geodetic observations, A geodetic
proéedure consists, among others, of the observations and of
the subsequent mathematical evaluations. On principle, this
procedure can be compared with a chain, This chain cannot be
stronger than the.weakest link of it. The evaluation method should
not be the weak point of the procedure. ;
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5 The difference method,

As to the practical applications of the relation (38), it
seems to be convenient to introduce a difference method
determining not the full amounts of the continental height
anomalies £ but the differences of these height anomalies
relative to the height anomaly at a reference point situated
in the considered continent. The transition from the absolute

é values to the relative amounts of them is a procedure that
will bring about a clear relief to the numerical computations,

In this case, now, the differences of certain vectors and
matrices (attached to the test points) are to be considered,

ic (=2 __Z_c — ch, gc.s — ch.s’ gc.o — J‘gc.c, (38).
Hence,
i =i _ o1 .
ch 5% ’ch.s §s.s Zg ® [ Jéc.c ch.s §s,s §s,cJ_§c‘ (68)

ch will contain the differences by which the continental ¢
values differ from the one C value at the selected reference test

point, /37 [6/.

In order to have a fixation of the ideas connected with this
difference method, a short example is sketched now. Along these
lines, the differences

S (68a)

Z",A - fS

and

Z'v = fs “ [VS (eov)

can be computed by the solution of the first mixed boundary value
problem,introducing the relation (68). Here, the suffix A
symbolizes Cape Arcona on the Riigen island in the Baltic Sea,

S stands for Sopron and V denotes Varna at the Black Sea, The
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C?AS and Z.VS values on the right ﬂand side of (68a) and (68b)
are computed by (68),integrating over the continental free-air
anomalies and over the oceanic altimeter data, Even these values
G s -and EVS can be improved by an adjustment p;'ocedure, in the
course of a further treatment, Indeed, these computed ‘?AS and

{ yg velues can be anchored on the discrete altimeter data

_offshore the coasts of the GDR and of Bulgaria, i. e, ZTA and

e v+ /10/. This possibility leads to the following condition

equation,

{AS' sz = ZA el Z’v . (69)

The two terms on the left hand side of (69) come by computation
from the first mixed boundary value problem integrating over the
observed boundary values on the continents and oceans by (68). The
reflection of the boundary values of the areas very distant from
Europe on the left hand side of (69) will be very small, This is
the essential advantage of the difference method., It allows to
simplify the integrations over the distant areas by formula (68)[§Z

The right hand side of (69) comes directly from the maps of
the altimeter data, by a simple interpolation, [ﬁQ].

Thus, finally, (69) leads to an adjustment procedure according
to the method of least squares.
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6. The influence of the sea surface topography on the solution of
the first mixed boundary value problem, F

The sea surface topography is the height of the ocean surface
above the geoid., It is denominated by. q. Thus, the q values do
exist along the oceans only. The satellite altimetry data are
termed by ‘éaAltimetry' The height anomalies are denoted by Z' i
the zf values derive from the surface perturbation potential by
the relation (3). Consequently, these 3 terms have the subsequent
equation,

: + q = Z’Mtimetry 3 (70)

The equation (70) is valid along the oceans only. (70) gives an
expression for g,

e <~"Altime‘cry F J b B

The q values can be determined empirically by a low-low mission
of satellite - to - satellite tracking, for instance; (see /4/,
p. 420, 421), .Under the supposition that these q values are known
by these independent methods, (discussed in /4], or along another
way ), in this case, it is possible to free the altimeter data from
the impact of the sea surface topography by

Strictly speaking, the thus obtained £ values are the data which

are understood to be introduced as the components of the Zg vector

in the earlier discussed two-step and one-step method for the
determination of the contineptal height anomalies, 24 (5) (6)

(10) (14) (15) (16) (35) (36) (37) (38) (39) (42)., Thus, if the

sea surface topography q is known, this effect can be subtracted

from the altimeter data in order to obtain the needed ¢f values at sea,
(72). In this case, there is no further trouble about any influence
which the q values possibly would take on the continental /° values,
computed by (38) or (68). i
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~ However, the q values are not yet determined in a reliable way.
Thus, it is recommended to sketch another method for the elimination
of the biases in the continental £ values computed by (38) or
(68). These biases are understood as a reflection of the q values,
It is the Zg vector of (38) and (68) which is directly influenced
by the q values., The propagations of this influence on the gc'valuea
are these biases, caused by the neglection of the g values at sea.

From different sources which must not be discussed here, it is
possible to have a certain idea of the order of the amplitudes and
wave lengthes in the field of the oceanic q values. Several publications
are devoted to this question, /8/. The knowledge of the main stiuctures
in the q value field is an aid for the evaluation of their infiuence
on the continental & values which are. computed along the lines of the
first mixed boundary value problem,

The publication /8/ does contain the results of such an estimation,
The influence of the sea surface topography on the results of the
first mixed boundary value problem, (according to (38) or (68)), -

i. e, the £ values on the continents, - is now denominated by

tat (e, A) (73)

it is a function of the latitude and longitude., In the European area,
the lines of constant values of f run in the east - west direction
about, they are equidistant about; in the north - south direction,
the gradient of the f field describes a change of the f values by
about 0.1 m over 1000 km, /8/.

Therefore, in the European area, the f field can be approximated
by an analytical expression which is linear in the differences of
the latitude and longitude, ¢ and A ,

fsf(y,A)¥c°+c1-Acp +c2-A/1 . (74)

The three constant coefficients ¢, 04, €, in (74) can be
determined by the evaluation of three Doppler-determined Zf values,

It happens along the following lines,
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In case of boundary values which are free of the q value ‘impact,
the solution vector is obtained by (38). In case, the altimeter data
are falsified by the q values, the equation (38) leads to the
following computation procedure,

-5 g
S ¥ ‘4§c (q) = §c.s §s.s [25 Y g] i

- i 1
] [-é-c.c ~ Ems §s,s és,o] ¢ U (75)

g is the vector representation of the q values. Az, (q) is the
vector representation of the continental £ function, (74). The
right hand side of (75) is determined empirically by the altimeter
data

Z, + g : (76)

and by the continental free-air anomalies

8 )

This right hand side of (75) is denoted by

[S]

X -1 -1
oy’ §c.s Ss.8 {gs i g] i [gc.c = §c.s §s.s gs.é]éc' (78)

it is a known vector, in this context, The relations (75) and (78)
give

3

c

+ 4

(o]

(79)

[
[

o (1) =

3]
.

Some discrete values of the field represented by Zz, can be
determined by Doppler observations of satellites, Z:Do pler® (and
precise levellings). The expression Adgc (q) in (79) is the vector
representation of the field of the f values, (74). In (79), g:eis
the vector representation. of the field of certain values which are
now denominated by éf*a they are obtained by the computation along
the lines of the first mixed boundary value problem, (78). Thus,
by the transitions

g, —> £ (79a)

Doppler ¥
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Az, () — 2 (¢, it (79b)
* ' .
ZaNT [ ’ (‘79¢)

the vector relation (79) turns to the following equation for the

components, _ _
ZDoppler+ £, ) = C* . (80)
(74) and (80) lead to
{Doppler ':*F ~cp = c Ap-cye AL (81)

The right hand side of (81) contains the three unknown
coefficients Cos Cqs Coe If the z-Doppler values are measured at
3 different and’ adequately spaced points of the considered
continental area, and if - further on - the Zf*values are computed
for even these 3 points, in this case,it is possible to find the
values of Cor Cqs Cp by an evaluation of (81),

Thus, the function £ ( ¢ ,‘A ) comes to be known. Consequently,
also the vector representation 4150 (q) of the function £ (Y , A )
follows to be known by the inversion of (79b). Even this fact
leads to the poésibility of computing the unbiased height anomalies,
Z,y 88 8 two-dimensional function which covers whole the considered
continent, The concerned computation formula is - a continuous vector -

2, = %, - Az, (@) = (82)

see (79). The first term on the right hand side of (82) is computed

by (78). And the second term is reached by an adjustment of (81),

a procedure that gives at first the coefficients Cos Cqs Cp and

then, consequently, the continuous function £ ( ¢ , it o)) by means

of (74); the inversion of (79b) leads to the wanted vector , éjgc(q) &

Further on, to be more oomplete, and to avoid misunderstandings, the

relation (82) has the vectors =z z* ’ 4ﬂgc(q) which can represent

=0’=c
the vector shape of certain continuous funotions, well-defined even over
whole the area of all the continents , - inoreasing the range of ideas

in this way - § but, in this case, the function f has to be defined in
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a new way, introducing several continents instead of one,

It is, (6) (10), extending the scope to several continents,

s
0

S

€4
L
“&:p

L

K

3

(83)

K is the number of the continental compartments, K <X, (p = 1, 2,
eeesy K)o Further, in (82), the continental vector gé:must be
identified with the right hand side of (75), (78). It is computed
by the mixed boundary.-values, i. e, the values Zg + g and -9

(75) (78) 5 ( ty = C*i e

(

h

(84)

The second vector cjgc (@) on the right hand side of (82) refers
to the continuous function £ ( Py A ), the argument domain oi 1t

is now the area of all the continents, as it is +“e case for gz
>
and z, also, (82) (74),
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From now, it is self-explanatory, the one single linear
expression for £ (@ , A ) of the shape of (74) cannot be valid
for whole the area of all the continents, Naturally! Its validity is
restricted to properly choosen partial areas of the continents,
e, g+ OFf 10% x 10° or 20° x 20° squares, /8/,(For a continuous enumeration,
the meaning of the functions £ ( ¢ , A )p is explained by (85)).

In case, whole the continental area of the globe is considered,
(85), in this case, the continents should be divided into a certain number of
properly chosen partial areas,n total number IL,which have the
following mean values for the individual compartments, -

2 {aom A )y en . (86)

The index 1 denotes the regarded partial system and v the running
compartment within of it,

1= 1, 2. ecey L 9 (87)
v = 1. 2, eeey Kl ') : (88)
Ky + Ky + o0 + K = K (89)

Kl dendminates the total number of all the compartments which
divide up the regarded partial area, - i. e. the partial area
distinguished by the suffix 1 -, (88).

Within each individual partial area, a linear expression for

the function £ ( ¢ , A ) is supposed to be valid, (74) (86). The
shape of such a function is

f(P ,A. )1=cl'°+cl.1 ° Ay +°l.2 . AA ° (90)
The relation (90) is valid within the partial area of the number
1., Thus, the discrete values of the function f for all the

- compartments, (v = 1, 2, ¢ee, Kl)’ which divide up ‘a certain
partial area (of the number 1), are

ECpaddg=og ooy (APl g+og,e (D) (o)

v = 1, 2, XXX} Kl H (92)
1=1'.2' oon,Lo (93)
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The terms (A, , and (zﬁl)l y @re the differences of latitude
and longitude with regard to a certain central compartment, for this

compartment the value of f(p,A), is equal to cy , .

The discrete values £ ( p, A )l.v can be determined for each
partial system (distinguished by the index 1) separately and by them-
selves alone, For the partial area which is distinguished by the
suffix 1, or for a fixed certain value of 1,

1l = const., , (94)
and for
v=1, 2, seey Kl ’ (95)

the coefficients
®1.,0? %1,1* %1,2 (96)

can be detrermined - separated from the coefficients of the other
partial areas - by empirical means from the Doppler determined £
values, ZhDoppler' The procedure connected with the evaluation
of (81) has to be applied here,

A combination of all the functions £ ( ¢, A-)l, (see (90)),
leads to a global representation of the function £ =£ ( p , A )y
covering the continents. This combination: procedure can happen by
a unification along the principles of the anblocking method, for
instanee, There is no need to add another word about the details
of this anblocking, since it is well-known and self-explanatory.
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T« Conoclusions,

The preceding development§ demonstrate that the solution of the
altimetry - gravimetry problem should happen at a profit along the
rules of the first -mixed boundary value problem, since this way is
of significant advantage for the precision of the resulting height
anomalies on the continents,

As tp the procedure of the two-step-method which computes the
oceanic free-air anomelies as an intermediary system, this two-step-
method leads to a solution of a clear inferiority in precision, im
comparison witlh the solution of the first mixed boundary value
problem, .

If the one-step-method of the first mixed boundary value problem
is preferred instead of the indirect two-step-method, in this case,
this exchange of the methods will be accompanied by a diminution of
the standard deviation of the resulting continental height
anomalies, A reducing multiplier of about 0.1 does work here, .

Further on, a method is sketched which allows the elimination of
the impact the sea surface topography takes on the resulting height
anomalies, The introduction of some Doppler - determined height
anomalies is essential for this method,

I am indebted to Eng. Helga Jurczyk for her essential co=-operation
in the electronic computer calculations,

Korrigendum 7

In the below oited publication (ARNOLD 1984), page 350, line 7,8 and 9, is an
erratum. The symbol T has to be replaced by &T, and simiiérly AgF by JAgF,
in order to be right.dT and 6AgF are the residuals before the adjustment:

Observed values minus the computed ones. The precise shape of &T and JAgF
can be found in the brackets of the equation (4) of the publioation (ARNOLD
1981). But, for the computation of ¢T and JAgF and their r.m.s. values y
and g’ the Stokes oonstantf Tn appearing in these brackets are taken from

a beforehand given approximate harmoniocs development. The right procedure how
to compute the residuals dT and cngF and their r.m.s. valﬁea T and is
desoribed by the passage appearing between the equations (6) and (7) of the
publication (ARNOLD 1981). !

ABNOLD, K., 1981: Complex evaluation of gravity anomalies and of data
obtained from satellite altimetry.
Gerlands Beitr. Geophysik, Leipzig 90, pp. 38-42,

ARNOLD, K., 1984t The compatibility conditions, the uniqueness and the
solution of the ‘mixed boundary value problem of geodesy.
Gerlands Beitr. Geophysik, Leipzig 93, pp. 339=355.
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Summary

The vertical derivatives of the perturbation potential at the surface
of the Earth serve as boundary values. They are identical with the gra-
vity disturbances. The perturbation potential is superposed by the model
potential of the mountain masses. The solution of this boundary value
problem turns out to have the shape of an integral representation for
the perturbation potential at the surface of the Earth. The Hotine
function is the kernel function. Two supplements must be added to the
gravity disturbances. The first term is the plane topographical
reduction of the gravity which depends in the main on the square of
the height differences. The second term is rather small and often
negligible, it is proportional to the height gradient of the Bouguer
anomalies, Thus, this term depends chiefly from the geological density
anomalies and the isostatic mountain roots, The final solution has the
character of a closed expression, free of series developments of bad or
dubious convergence, it is free of uninvestigated residual terms of
certain series developments,

Zusammenfassung

Die vertikalen Ableitungen des Storpotentials an der Erdoberfléche
werden als Randwerte eingefiihrt. Man nennt diese Werte auch die Schwere-
storungen. Das Storpotential wird mit dem Modellpotential der Gebirgs-
massen superponiert. Es ergibt sich eine Integraldarstellung fiir das
Stérpotential an der Erdoberflédche, Die Funktion von Hotine dient als
Kernfunktion. Zu den Schwerestsrungen im Integranden treten zwei additive
Grossen, Die erste ist die vor allem von den Quadraten der Hshenunter-
schiede abhédngige ebene Gelédndereduktion der Schwere. Die zweite Grosse
ist sehr klein und kann meistens vernachldssigt werden. Sie ist propor-
tional dem Vertikalgradienten der Bougueranomalien, sie héngt damit von
den geologischen Dichteanomalien und den isostatischen Gebirgswurzeln
ab, Das Finalergebnis ist ein geschlossener mathematischer Ausdruck,
Reihenentwicklungen mit schlechter oder unbewiesener Konvergenz erschei-
nen nicht,
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Peane

BepTUKaNbHHE NPOUSBOMHHE Melamillero NOTEeHIMala Ha NOBEPXHOCTH 3eM-
J¥ BBOJATCA B KaUeCTBEe KpaeBHX 3HAUeHWi. OTHM 3HAUEHNWA Taxke HA3H-
BapT I'paBUTAlMOHAHMA HapymeRWsIMY., Memamuwmii NOTEHINANl COBMEmMAETCH
C MOMEJBAHM IOTEHIMAJIOM MACCH TOPHHX IIOpOT. B pesyuabTaTe 3TOTO
TIOABNIAETCHS HATETPANBHOE BHPAKEHNE A Memammefo NOTEeHNmaja Ha Io-
BepxHoCcTH 3ewnd. Tymiama XoTmMHE CJIYXUT B KAUECTBE OCHOBHOH HiyHK-
mm. K MemapmeMy NOTERTUANY NOSBIARTCA IBEe CYMMADYEMHE BEJIIYIHH .
[leppas Be/maMHA, 34BHCAMAS, NpPEXNEe BCETO, OT KBAJPATOB DABHIIH
' BHCOT, NpeICTaBIAeT coGoi MPAMYR peXyXIyo fpaBnTannn Ha nepeceveH-
HOlt MecTHOCTH. BTOpas BesmMIEHa, B GOJBUMHCTEE ciyqaeB OYeHb maja
Z eft MmoxHo npeHedpeds., OHA IPONOPIMOHAJNBHA BEPTEKANLHHM TDayeH-
TaM anomaymit Byrypa, OEa 3aBECUT TEM CaMHM OT I'€OJIOTMIECKMX aHOMa-
Jonk HHOTHbCTn 7 M30CTATHMYECKEX KOpHejt TropHHX nopox. KoxneuHHwii pe-
ByJBTAT NMpENOTABIAET COGOf BaKOHIEHHOE MATEMATHIECKOe BHDaREHME,
TIe He NOABJADTCA PA3JIOXEHMA B PAJH C IUIOXO#t Mim HemOKa3aHHOi
CXOIMMOCTER.
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1. Introduction,

In an earlier publication, the boundary value problem of Molodenskij
was treated as a smoothed boundary value problem for a Bjerhammar sphere
as boundary surface. The following closed solution was found, /17 /37,

[1]

T = 2— [dgT +C + 01] S(¢) dw +

(1)
47 LSS,

with

h
= = n ____ . _2.
= {[@ % gf 2 B, —g s(¢) dw {R B} )]

The braces { }denote the fact that the shares of the spherical
harmonics of the Oth and 1st degree should be subtracted in the
expression (2) representing -51. T is the harmonic perturbation
potential at the surface of the Earth 6 , it fulfills the Laplace
differential equation,

AT =0 ,;n-@a. (3)

-@a is the exterior space of the Eerth, Tp is the geocentric radius .
of the test point P for which the amount of the perturbation potential T
is to be computed. w is the unit sphere,

dw = cosp - dyp - aA " (4)

where Y and A are the geocentric latitude and longitude. AgT
represents the free-air anomalies,

2T 2 X2
- - T = Ag =g - i (5)
Qdr r = T

g€ 1s the vertical intensit'y of the gravity at the running point Q on the
surface of the Earth, a«%is the;ﬁandard gravity at the telluroid, T’é
belongs to the telluroid point Q° which is situated vertical below the
point Q, Fig. 1. The vertical distance from the point Q to the point
Q* 1s equal to the height anomaly '
T .
== . (6)
7
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The amount of C in (1) is the plane topographical reduction of the
gravity,

b 27 : Z ,
: a ¢ da

5 (7
(as % er v 2)3/2

c=tfglay| da . xrpy
v=0 o= 0 a =0

f is the gravitational constant, ¢ is the standard density of the
Earth, ¢ = 2,65 [g cm'3_] « ¥ 1s the spherical distance. /3 is a
sufficient great value of y ; if v >/3 , the integration with
regard to Yy can be finished, since an eventual extension beyond of
/3 will have no effect-on C, o is the azimuth. rp has the equation,
(Fig. 1),

rp =R+ hp . (8)

hP is the height which the point P has above the globe. The flattening
is neglected here. It is necessary to stress the fact that the hp P
value is not the height above the geoid,and not the normal height h 5
The geocentric radius of any surface point has the relation, Fig. 1,

r=R+h=R+h* + £ . (9)
The r values of the test point P and of the running point Q differ by

> *
Z=rQ-rP=hQ-hP=hQ -hP+¢’Q-ZfP - (10)
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Globe 2¢

P % ¥ Q® %=

Figure 1: The test point P and the moving point Q, the height
anomalies & , the normal heights h’, and the heights h
above the globe, The point Q**— is the point where the
plumb-line of Q meets the sphere 2€pe This plumb-line
meets the telluroid at the point Q*.
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The term 01 in the integrand of (1) dgrivec - on the continents -
from the Bouguer anomalies, "ngouguer' Along the oceans, C1 derives
from the free-air anomalies. 01‘15 proportional to the amount of the
height gradient of the refined Bouguer anomalies - on the continentis -,
i.e. the familiar Bouguer anomalies supplemented by the C values, The
amount of thelC1 term represents the change the refined Bouguer
anomalies undergo if they are transported from the surface of the
Earth 6 in the vertical direction to the level of the test point P,

[y,

D) Ag
e Houguer (no - mp) (1)
= ] :

The relation (11) is a good ;eprqsentation of the C1 term,as long
as the following inequation is valid,(/ﬁﬂchapter A),

h, - h
lqg 7f{’£D_E B A M L *(18)

The length D is the horizontal extension of the area of the positive
or negative Bouguer anomaly , see (100). The relation (12) is valid
nearly at all places of the globe,

But, if the length D is understood to be the horizontal extension
of the areas - on the continents - where the free-air anomalies have
positive or negative amounts; in this case, the inequation (12) will
be valid for lowland areas )only. The reason is found in the fact that
the free-air anomalies show a strong correlation with the heights.,

In case, the criterion (12) is fulfilled by the Bouguer anomalies,
it is allowed to expregs the 01 term by an integral which covers the
Bouguer anomalies in the surroundings of the test.point P,

1, (4 Vo= )
¢, ¥ - (g = hp) ZBouguer’ ¥ L SBouguer’q dsey (13)
. 2w e,
C2

As to (13), the following relations are valid,
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e =2 R sin — o (14)

dse = R®

dw = R° cos @ dgp dA . 1 CLs™
Within the process of the integration according to (13), the point Y
is the moving point ,( see Fig. 1 ).

In the relation (1), S(¢) represents the well-known Stokes function,
The amount of 531 can be neglected in many cases, B is the model
potential of the mountain masses which are situated above the ocean
level, The standard density (e 2.65[? cm-BJ is applied heref Bc is the
potential of these mountain masses condensed at the globe 3¢ , Fig. 1,
(see the equation-(44), later on), In the relations (1) and (2), the term
[B/" appears also. It is the difference between the Potential B at the
surface point P and the potential Bc at the point P*‘*’f Fig. 1, /17

- [2] (3.

The interpretation of the terms ‘ng’ c, 01 which appear in the
Stokes integral is interesting.

As to 4dgT, this term depends on the global gravimetric measurements
only, (5). It depends on the gravity measurements g at the surface of
the Earth, Further on, the normal height h® is involved, since the
standard gravity @f* at the telluroid point Q*'has to be computed by
11*-, Fig. 1. And, h is determined by the real potential values at the
surface of the Earth which are obtained by a combination of the levellings
with the gravity measurements.

As to the plane topographic reduction of the gravity C, (7), this
term has the character of a gravity value,

Here, for the computation of C by (7), the differences of the rough
data of the heights are of importance, with the precision of about some
meters only. The height differences enter into the C term quadratic,

As to the C, term of (1), it depends on the isostatic mountain roots
and on the density anomalies in the interior of the Earth, i, e. the
amount by which the density - of the geological masses deviates from the
standard density P - The 01 term is proportional to the second vertical
derivative of the potential of these density anomalies, (11) (13),
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With other yords, 01 is proportional to the first vertical derivative
of the Bouguer anomalies - along the continental areas -, It has to be
replaced by the first vertical derivative of the free-air anomalies,
in case of oceanic areas.,

Thus, the three terms ‘ng’ C and C1 have different sources and
they have different characters, too,

As.developed at other places, /3/, the relation (1) is the solution
of the boundary value problem of Molodenskij., This solution is of
interest for the first mixed boundary value problem also, /2] [37. - The other
kind of solution (Green theorem),[ﬁ], does not involve any series
development of bad or dubious convergence., In [ﬁ], the gravimetric
or physical values do not move from the surface of the Earth to the
globe, or t¢ the sphere € py by series developments; but the geometric
values, as the straight lines for instance, move from the sphere € p
to the surface of the Earth by closed mathematical transformations,

- e, g. the square of the chord has to be supplemented by the addition
of the amquare of the height difference (Pythagoras), and by other
terms , too =~ .

Now, a variant of the boundary value problem of Molodenskij is to
be discussed, This variant is of importance also for the second mixed
boundary value problem of the geodesy. This modified Molodenskij problem
has not the free-air anomalies zﬂgT, (5), as boundary values, but the
gravity disturbances Jg serve now as boundary values at the surface
of the Earth,

TR

Or=(s-?)q=s-r. (16)

Here, in (16), the g value is again the measured gravity at the running
point Q at the surface of the Earth 6° ., The standard gravity r refers
in (16) to even the same point Q, For the computation of the standard
gravity at the point Q, the data of the heights hQ must be known
empirically, Fig. 1. The point Q* is here not introduced, Qafentern into
the computation of the free-air anomalies, (5).

The problem now intended to be solved consists in the determination
of the perturbation potential T at the Earth's surface by means of *he
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boundary values of (16),. measured at the surface of the Earth., This are
the gravity disturbances d g. Further on, the thus obtained global T
values at the surface of the Earth will lead to the T values in the
exterior space of the Earth, following the way given by the Dirichlet
boundary value problem.

Introducing the cfg boundary values on the surface of the Earth,
the investigation of the thus obtained boundary value problem will
conduct to a solution by a kernel function, at least for .the main term
of the solution.pAdditionally,some small supplementary terms have to
be added.

2. The Bjerhammar sphere.

It is allowed to introduce the globe s¢ with the radius R as a
Bjerhammar sphere. The following ldeas are connected with this procedure:
In the ex'terior of the globe ¢ , that is in the space @ = §a+ @{ ,
it is allowed to introduce a potential V, V is a harmonic function,
regular in the space ¢ , Fig. 1. Q;i is the space between the two
surfaces & and oe . @a is the space exterior of & , The amounts
of the potential V at the surface of the Earth € ,and in the exterior
space jsajare e&hal to the amounts of the perturbation potential T, at
least within certain discrepancies the amounts of which are arbitrary
small,

It iﬁ possible to apply the theorem of Keldysh-Lavrentiev on the
potentials V and T:

There is given a function T which is harmonic in the exterior space
of the surface of the Earth © , Thus, it is harmonic in .fga. This
function T is regular in the exterior space i;a and on the surface &6 ,
After this presuppositidn is fulfilled, it is allowed to introduce a
harmonic function V which is harmonic and regular in the exterior
space §5 of the globe e (a regular function is unique and continuous).

AF = O : (16a)

The globe ¢ lies completely within the mass of the Earth. According to
the theorem of Keldysh-Lavrentiev, this spatial function V approximates
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the spatial function T in éa and on 6 in the following way, /4/:
It is possible to find an arbitrary small and positive number 51,
thus, that

lT=-v ] < &, in @aandona‘ . 17)
with

B ' (18)

Thus, in the here discussed applications, it is admitted to equalize
T and V in 9 and on. & . The geophysical meaning of the potential V in
the space éi must not be interpreted in fthis context, it is of no use
for the subsequent developments.,

This theorem of Keldysh-Lavrentiev is easily derived, e. g. by a
procedure that employs the fact that the spherical harmonics series
development for T is uniform convergent in §5a and along 6 , [3]. The
truncation of this series at a term of sufficient high degree and order
leads to the neglection of an arbitrary small residual term. The trunca-
ted series is a sum, the validity of it can be extended downwards into
the space §i' The truncated series represents the potential V,

Thus, the considerations about the theorem of Keldysh-Lavrentiev show
that the area of validity of the harmonic potential T is allowed to be
extended. The perturbation potential T can be considered as a function
that is harmonic and regular in. the exterior @ of 3¢ . In @a and
along ¢ , T is the gravimetrically well-defined perturbation potential,
In this context, the space éi is considered as being free of masses,
Hence, obviously,

AT =20, in @ . - (19)

T = W-U, in g andone . . (20)

W is the real gravity potential and U is the standard potential of the
level ellipsoid. The meaning of T in fi must not ,be discussed in this

context,

These ideas connected with the Bjerhammar sphere conduct to the
following considerations,
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The test point P is situated on the sphere % p which has the
radius Tp, Fig. 1. The surface of %€p is placed completely in the space
@ which is the area of validity of the perturbation potential T,
according to (19) and (20). dep serves now as the spherical boundary
surface along which the gravity disturbances

dg = ( Jg)aeP =l Ag)Qm (20a)

are distributed as boundary values., The following rigorous solution is
easily found, /6/,

r
Tp = NP ﬁ dg « m(y) -aw ’ (21)
47
c‘) -

with, (16),

or
dg = ( Jg)Q**s-[.—J i forr =rp . (22)

Jdr
Q*X'

The values of (22) are understood as valid for the points placed on the
sphere aeP. The geophysical interpretation of the boundary values of
(22) is not necessary. H(¢) is the Hotine function, /57 /6/,

oo
2n + 1
IR sl AL L S
n=0
= cosec % - 1ln (1 + cosec -%-). (23)

The Hotine function comprises the spherical harmonics of all degrees, the
degrees n = 0 and n = 1 included, But, the Stokes function is free of
these degrees of the numbers n = 0 and n = 1, (1),
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3. The model potential of the mountain masses,

The mountain masses which are situated above the ocean level are now
in the fore of the considerations. In the subsequent model computations,
the standard density o = 2.65 [g cm-BJis attributed to these masses.
These model mountain masses are the gravitating sources of the potential
B which is well-defined in the exterior space @a’ Fig. 1,

27 R+ h
1
B = IB. =f§) ( gTrz Sin'\lf dl,V d o dr. (24)

¥=0 «=0 r =R

& is the oblique distance between the test point P and the mass element
which is moving in the course of the integration.

It is now intended to apply the theorem of Keldysh-Lavrentiev to the
potential B. A similar procedure was already considered with regard to
the potential T, (19) (20): The potential B is introduced as a harmonic
~and regular function in the exterior space of the globe a¢ , this is the
space P = @i + @a. By the integral (24), B is a well-defined function
along the surface & and in the exterior space @a. Since the theorem of
Keldysh-Lavrentiev is intended to be applied, the space @i is now
considered to be free of gravitating masses. Therefore, the B potential
is now defined in the following way, (24),

AB =0, in & . (25)

B .= I&' in @ao (26)

The relation (26) describes the geophysical meaning of B in -the space
@a. The geophysical meaning of the function B, (25) and (26), in the
space -@i is not discussed. Such a discussion would be of no use,

The values of the potential B at the surface of the Earth €& can be
obtained from ihe radial derivative of B on the sphere 3¢ P* '‘The foilowing
integral transformation performed by the Hotine kernel does solve this
problem, (21),
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“p e (¢) a (27)
B o e—— e H (7] ° 2
& 47 Or i
(#7]
The radial derivative in the integrand of (27),
DB I ?DB] ' { ’DB] s
5 B A e fr—— 1 28
g dr Or s p Qr O

is understood that it does lie on the' surface of the sphere aeP which
hae the radius Tpe

In the exterior space éa’ the potential B can be represented by a
uniform convergent spherical harmonics series development, [3],

1.n.m 2.n.m .

n+1 -
B .Z Z(%] Pnfm(sinso) lb cos ml + b sin mA y in éa‘ (29)

Since the series of B, (29), is proved to be uniform convergent, it is
possible to bring it into the following abbreviating shape,

B=Bn+BN.1 5.~ in éa 9 (30)

with

N n
BN“Z Z(g)nﬂpn.m(sin(p) b cod' @A + b sin mA| . (30a)

1.n.m 2.n.m
n=0m-=0

The following theorem describes the uniform convergence of (29):
Corresponding to an arbitrary small positive number

l EN ’ SO 55 (31)
it is possible to find an integer N such that the inequation

‘Brml < |ew] (32)
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is valid in the space @a.

The relation (30a) represents the function By by a sum,This sum fulfills
the Laplace differential equation, since the individual terms of it
fulfill this equation. The term \ENl is negligible, if N is sufficient
great. Thus, B can be substituted by BN' in sufficient approximation in
the area of Qa. Consequently, BN can take up the role of B in (25) and
(26), Hence, it is self-explanatory, the validity of the theorem of
Keldysh-Lavrentiev is proved in a rather simple way by the introduction of
the convergent series development (29).

As to the perturbation potential T, it has also such a convergent
series development in _ffa, as the form (29) of B,
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4, The superposition,

The difference of the two potentials T and B leads to the potential
M,

M=T-3B8, (33)

The vertical derivatives of the potentials T and B show a distinct
correlation with the topographic heights. The vertical derivatives of
the two potentials T and B yield certain gravity values which depend
from the heights by a linear function. The concerned correlation
coefficient is well-known by empirical means, the amount of it is
about 0.1,

dg' = 0.1 +h (34)

The gravity variation (fg' is measured in mgal, h in meters. However,
the correlation with the heights does no more exist in the difference
of these two gravity values,

DM oKy DB

= - . (35)
Dr Or dr

Indeed, the two individual terms on the right hand side of (35) show
a distinct correlation with the topographic heights, but the left hand
side of this equation is,on the whole,f ree of a correlation of this
kind. The radial derivative of M is a smonthed function, it is as so
smoothed as the Bouguer anomalies; and a clear correlation with the
heighte is no more existent, (70a).

The theorem of. Keldysh-Lavrentiev is valid also for the potential M,
Therefore, the potential M which is well-defined in the exterior space
-éa. obeys the following relations, (19) (20) (24) (25) (26) (33),

AM =0, in . (36)

M=W-U-1I,in o . (37)

The equation (37) shows the geophysical meaning of M in the exterior

space, ¢a' The geophysical meaning of M in the interior space @i
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must not be discussed in this context.

The X potential can be expressed by the Hotine kernel function and
the radial derivatives of M along the sphere with the radius rp, (27).

M =) e ok H(¢) 4 (38)
=z - —=— W
P 4% Dr »
W
The radial derivatives
OM ["DMJ o
- - 39
@1‘ or Q**

are again understood that they are valid for points placed at the surface
of the sphere % which has the radius Tp; Pig. 1.

The relation (38) is of fundamental importance tor the following
deductions. '

AQ**is the moving point at the sphere aeP » Q is the corresponding
point at the surface of the Earth & , the place of Q is vertical above
Q**: Fig., 1. The height of Q above seP is hQ - hP' Now, the radial
derivatives according to the relation (39) must be expressed by these
derivatives placed at the surface o , instead of the surface %ep !

o - |
% 3 s | (40)
r Q ;
The following relation can be formulated,
M oM
- B = - -B: & 01 0 (41)
g Q
or,
{ 'DM} { oM s
Cqy =~ + ‘. 42
12 dr 'Dr]
gos Q
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The relations (23) (35) (41) turn the expression (38) into

rp [’DT B
T - B = = —= (({ - - C, H(¢) dw . (43)
410 L@r or
@

Q

The integral (24) expresses the potential B at the surface & by the
mountain masses of the standard density, In the furthér developments,
the potential of these mountain masses condensed at the globe & is
introduced also. This potential is denoted by Bc' It has the following
expression valid in test points at the globe z¢ which has the radius R,
(4) (14),

1
2
B, =f¢ R ghq = dw . (44)
o

w
Bc is the potential of a spherical surface distribution., For test points
on 52 , the potential Bc has the following 1imit value for its vertical
derivative, if approaching the sgggre 2€ from the exterior space,(Bc ,’DBc/i)r~
without the suffix P*** regp. G in the equations (45) to (49) ),/3/ ,

©% o h, -t e RO(( ( j o + (45)
——— I 4?’ E - h - h dtd o 45
or I et ¢ Q i "T‘eo Q

Q

The potential B at ¢ is now divided into two parts, (24) (44),
B=B + /B/" . (46)
The radial derivative of B at & 1is divided in a similar way,

. (47)

) r

9B DB OB
€ +
or o2 [

The second terms on the right hand side of (46) and (47) are always much
more small than the corresponding first terms on the right hand sides of
these equations., The two expressions
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B
/B/" and [-—O-J (47a)

r

depend on the squares of the heights, above all, /1] (2] [(3/. Obviously,
the following relation is right, (38), at points situated on the sphere
A

B i 9%, d (48)
B g o w . 48
- C \477 ar (q))
w
The relations (46) and (47) and (43) give,
T -3 - [B/" =

—01} H(Y) dw . (49)

rp dpigd OB, OB
1= 47 ( Or)_ or -[ or
‘3 Q

With
rP = R + hP ') 1% (50)

and with (48) follows,

rp [ O DB
T o - | — + [ — + G4 H(¢) dw +
47 ( or/q Dr

h VB
+ [B]" + 43 ({ £ B dw, . s (51)
V]

Qr
e
An earlier publicat:ll'on shows, [1] /3].

?" Lo od
" 24 2

[oO:J ‘°“f¢( ay | a {?{'d“

y/=0 =0 a=0
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1 h

1 ~ P

+35f¢ Rg;—— \lfz dw + 470 fo hy _R . (52)
°

Z comes from '(10). As it is evidenced by the computations in [3], the

sum of the first and second term on the right hand side of (52) is smaller
than 1 /lga.l for a neighbouring mountain of about 2 or 3 km height. The
rather simple third term of (52) amounts to about 0,15 mgal for a height
hP of 3 km,

The introduction of the relation

OB "
[__'_J ¥ ¢ : (53)
Dr

and of (16) and (48) transforms the equation (51) to,

r =
P (Sg+0+0C HW dw + &, , (54)
44 '
w
with,
e
= P
=y = [ - e (54a)

Now, in -order to be more precise, the braces { f are. introduced in the
expression (54a).

&y = {_[B/"'i_PBc}=

fort - nd

h 1
¢ fifr- {23, g . (54b)

R

- The braces {} are understood to have the meaning that the constituents
contributed by the spherical harmonics of the Oth and 1st degree have to
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be subiracted.
As it is evidenced by an earlier publication, [}], the first term

on the right hand side of (54a) amounts to not more than some millimeter,
after i1t is divided through the globél mean of ‘the gravity G,

3 am . (55)

The second term on the right hand side of (54a) is also very small,
The relation (44) allows the precise evaluation of it. A rough estimation
leads to

6 cm : (55a)

@l=
= |
o
"

if Bc =200m * G, and hP = 2 km, This is the amount by which the final
result, the height anomaly ( , is shifted.

In extreme cases, it seems to be possible that the amount of
B, = 1000 m .  can be reached. This value and an amount of hp = 4 km
lead to the considerable value of 0,7 m'for the expression of (55a);
(see: Drewes, H. et al.: Wirkung der Undulationen der Grenzflidchen der
Lithosphdre auf das Geoid. Verdff. d. Bayerischen Kommission f. d.
Internationale Erdmessung. Astron., - Geod. Arﬁeiten, 48 (Miinchen) 1986).

Before this background, the term Efz on the right hand side of (54)
is not considered,further on,in the following deductions. Therefore,
the evaluation of the amount of the C, term, (42), remains as the task
of the subsequent developments,
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5. The relation between the Bouguer anomalies and the model anomalies,

At firgt, the amount of the term

oM
) (56)
Dr

Q

on the right hand side of (42) is to be considered. The relations (5)
(33) (35) give,

QM - OT VB

= = " 57)
Or r Or !

(45) énd (47) lead to,

DB = 5 . sin —%: ap:LL .
‘ar=-4“f€,hP-f§)R (hQ-hP)—‘ez—dw+-~5; . (58)
' w o i =
and with (14),
gin -%L v il . ' ;
5 = ’ (59)
e 2 R e,

The introduction of (53) and (59) into (58) has the following result,

OB
Dr

\ , 1
-4 tpn, -tz Rgg(hQ—AhP)e—‘dw e (60)
. (o]

W - -
(16), (57) and (60) are combined,

1
=dg-4%fte h,-+feo R\((m, -n,) —a c. (61)
g U PRl & Q Peo P <

ON
Dr

W
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With
2 .

follows for (61),

) g 1 1 (63)
=0g-27f2p hy-=sfo R\|\[h, —dw + C. 3
S _ o BLEe Q o _

w

Now, the relation representing the refined Bouguer anomalies AgBouguer‘
is required, (see: Ledersteger, Astronomische und physikalische Geoddsie:
Jordan/Eggert /Kneissl, Handbuch der Vermessungskunde, Band ‘V, Stuttgart

1969.) , (8) (9) (10) .

» h*

~ P
AgBouguergg"'Q'z”ffhP+2GR_-2"e' (64)

: i X
g is the gravity measured at the surface of the Earth. hP is the normal
height. r is the standard gravity at the level ellipsoid. The gravity
disturbance has the following expression, (6) (16),
1 %
de=g- 7 =¢g- Tot2Gg (p+ &), (65)

(64) and (65) give

5 - % 26
< 8&pouguer = g -2ufo hp+ C'- T C ’ (66)
and with (63)
oM 26
3Bou8uer+—,a;=2”f§)5 _R_f +

1 1
Wl O W el e (67)

°
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The following relations are well-known, they define the attraction of
the Bouguer plate and the free-air gradient of the gravity, /5],

27 fo =0.1119 [mgal m™' ] (68)
and
2 § = 0.3086 | meal i | (69)
Thus,
OM
éngouguer ¥ Dr = 5 ’ (70)
or
oM :
Q
B élgBouguer Vit ' (70a)

with, (67) (68) (69),

’9’ - "9)1 it .‘32 ’ (71)
4%1 = - 0,2 [mgal m'1J & A (72)
1
1
,\9,2 = §f§l Rg{hq'e-— dr . (73)
(o]
w

In the equation (72), 4$1 is measured in mgal and £ in meter.

Now, the amounts of {51 and 4%2 are evaluated for a mountain model.
This model consists of a mountain maseif of 2 km height and a horizontal
extension of 50 km X 50 km. The amount of 4% was, computed up to a
distance of 200 km from this mountain massif. The amount of él as
computed for the same area,and for a course of the £ values which is in’
keeping with a plumb-line deflection of 20",

D 1
_é_ = 20" —; = 10™4 ) (74)
Vies S
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Along these lines, the table 1 was computed.

Table 1
eo C D1 2 2 AN
[ km ] [ m ] [mgal] [mgal] [ mgal ]
0 0 0 0.5 ‘0.5
40 4 - 0.8 0.2 - 0.6
60 6 - 1.2 0.1 - 1.1
80 8 - 1.6 0.1 - 1.5
100 10 - 2.0 0.1 - 1.9
140 14 - 2.8 0.1 - 2.7
160 16 - 3.2 0.0 - 3.2
180 18 - 3.6 ' 0.0 - 3.6
200 20 - 4.0 0.0 _ - 4.0

In order to avoid misunderstandings, it is necessary to stress the
fact that not the ¥ values themselves are of direct interest, they do not
figure in the solution of this boundary value problem as terms to be added
to any gravity value, by no means, It is the vertical derivative of the S
values that is here of direct interest. The effect that is of interest
here that is the influence the. O values take on the 01 term, Of course,
(42)and(70)and(70a) can be combined to

C, =I(‘AgBouguer - &)Q**- ( AgBouguer -9 )Q ’ (75)
or'

Cy =Gy 4+ Cisp L (76)

A (~AgBouguer)Q**- ( 4gBouguer)Q ’ 1)

0, , =- [&QH - 8, i (78)
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The effect that the -» values ‘exert on the C1 2 term that is the matter
of interest,

The amount of the C1 2 term will be computed later, in context with the
evalutation of the C, , term, (125) (130) (133). Already now, it can be
anticipated, the S function of the structure given by the table 1 gives

rise to a C1 o term that amounts to not more than about 0,06 mgal, (130).
This value can be neglected.
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6, The height gradient of the Bouguer anomalies,

In the sucoeeding investigations, the vertical change of the
Bouguer anomalies is in the fore, (77). The model potential M is
divided into two parts, M, and M,, (76), (42),

) M
o2 e (R R
3 ¥ or Q** or |,

25 2
or Q** or Q :

A comparison with the formulas from (75) to (78) shows that the
following substitutions are right,

Adg Sy A (80)
Bouguer dr ’
and
2 | - (8D)
= ) 81
& or

In case, a spherical model Earth is considered,ithe vertical
gradient of the free-air anomalies has a well-known integral

Trepresentation, [17 [E],

2
)] AgF 5 R A8£ .AgF.O e (82)
Dh 2% eo3

(73] : Y

The essential part of the amount on the right hend side of (&82)
is obtained by an extension of the integration only over the
surroundings of about A = 100 km, around the test point. Thus,

a consideration of the vertical gradient which appearsvin (79)
depends essentially on the struoture of the gravity field of the
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near surroundings of the test point, up to a distance of A = 100 km,
In case, the following inequation is wvalid,

A
=i << 1 " (83)
R

the here intended investigations will allow to neglect the curvature
of the surface of the Earth. Therefore, the essential parts of the
succeeding evaluation of’C1.1 and C.].2 will undergo no modification
if the spherical geometry is replaced by the plane geometry. This
fact is corroborated by an investigation whioh: uses spherical
harmonics. '

In this context, a rectangular Cartesian co-ordinate system is
introduced, The x, y = plane is the horizontal plane of the point Q*’e
in the level of the sphere 2 pe The z = axis shows perpendicular
upwards, Fig., 1. In this situation, the potential function M., (79),
which satisfies the Laplace differential equation,

can be represented by an analytical expression of the following shape,
(see chapter A of /3/),

o |

x
M,=m1[cos277—-cos2l7
' P

~ X ~ J
—sin2//—.sin2//—].
P q

4
-exp-272V—1r+11— ),inf. (85)
P q
In case of a global extension, M1 can be developed in spherical
harmonics, instead of the Fourier development according to (85).
Returning back to the relation (85), it is to be stressed that

the representation (85) is valid for all the points above
the x, y = plane and for a horizontal extension of the system of the
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X, ¥ =co-ordinates of some hundred kilometers, - according to the
theorem of Keldysh - Lavrentiev,(19)(20), ~ oy is the amplitude,
p and q are the wave lengthes in the x = and in the y = direotion.
A gsymmetrical distribution is choosen,

P=q=L . (86)

The Bouguer anomalies which: are determined by the mcdel potential
M, , (85), are understood that they have a maximum for x = O,

y = 0; therefore, the sinus functions in the brackets of (85) are
not taken into account,from now, Hence, combining (85) and (86),

M1 gets this shape,

~

X Y
M, =m, co8 27 =cog 21 =
L L
z
; exp(-2'ﬁ'7’?| -) . (87)
L

(87) fulfills the Laplace differential equation,

The radial derivative of (87) is

OM 1
1:-2"7’7/5"‘-M

= - . (88)
r

(80) (87) (88_) result the following Bouguer anomalies,

1 x oty
AgBouguer =21 ﬁ;m-l cos 27 -IT CoOS 2/ = .

L

L

.exp<-zrf?’§"3) ¢ (89)

For x = 0, y = 0, the Bouguer anomalies have a maximum value with
an amplitude of the amount K,

1 2
K=K(z)=2W7FEm1.exp(-ZFﬁI).' (90)
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According to (89), the positive amounts of the Bouguer anomalies
extend around the origin of the x, y = co-ordinate system up to a
distance of i-L. In case that x or -y has this amount, the Bouguer
anomalies are equal to zero, (89)., Hence, the total horizontal
extension of the positive Bouguer anomalies amounts to

n:%n Y ' (91)

The combination of (89) and (91) gives,

1 X N
Ag = 7 V2 =m, cos "=cos IV =
Bouguer D 5 D D
; R _ .
. exp (= ¥ 72 ;) ’ (92)
and, with-(87_), for the potential M,,

M, =.m, cos 77'-]-)- cog i = + exp (— it 7/51 = ).’ (93)

D D

The relations (90), (92) and (93) lead to

L 1 x y
AgBouguer = Y2 ;M.] = K(z) cos /7;cos P (?4)

D

The repeated vertical derivative of the po1:en‘t;:i.&v.1‘M1 has the following
recursion formula, (87) (88),

i 13}
%M.] = = /'/U 7/2_' "I;) M1’ (i = 1\’ 2. 00.) . (95)

or, with (94),

O * -~ 1
'ETM.‘ =-(- " 7f2_';) AgBouguer’ (i =1, 2, ooo)o (96)
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The x, y ='plane was introduced as the horizontal plane of the
point Q*¥, Fig, 1. Therefore, this point Q¥*is defined by the
relation.x = y = 2 = O, The corresponding point Q has the relations,
(17,

x=0,y=0,z=Z_=hQ—h?. (97)

(77) and (94) yield,

: X
Ci,q = [K(O) - K(Z)]Acos T —cos W 2 ' (98)
D D

or, with (90) and (91),

c

1 X y
11='1\77,2_7—m.|cos??'—cosif—1-
- D D D

2
- exp (- ﬁ'ﬁ -I;) :, : (99)

Introducing, the substitution

A Woose
= 77’7/5—']-)-= '/77/?-—0-—5——1’ . (100)

the following series development of the term in the brackets of (99) 1is
a convergent expression for all the amounts of o ,

g T e o on
i 1 D 1 3 A
1 -exp (= xX) =1 =1+ & ==X 4 — x? = + 444, (102)
21 o
or, e
1
1 -exp (~x) = E (B R EE U (102a)
n!
ns=1

Hence, (99),
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oo
» 1 x y 1
C1.1 = //7‘,; -m1 cos n’ — cosﬁl- ("' 1)n e —OCno (103)
D D D n!
n-1

The series development (103) is always convergent., In case, the
amount of|oc|is sufficient small,

o] K1 s ' (103a)

it is allowed to truncate the series (103) behind the term linear in
o 5 (T7) (99) (103),
x

1 ) o
1.1 = 77}2 = m, cos 4 = cosu = -DC,IQC{<<1. (104)
O D D D 4

c

A comparison of (92) and (104) yields (for z =0 in(92)) the following
relation, ‘

G112 (AgBouguer] Q**' Xy lO(,] << 1. (105,)

The equation (105) is a representation of Cqq b¥ the Bouguer
anomalies which are distributed along the Bjerhammar sohere with
the radius rP(with the running point Q**).lThese anomalies are not
directly measured. The directly measured Bouguer anomalies are
placed in the points Q at the surface of the Earth ¢ , Fig. 1.
Thus, in the equation (105), the Bouguer anomalies in the points
Q*’*should be lifted upwards by the height 2, they should be replaced
by the corresponding anomalies in the points Q, - it is a thought
that suggests itself, Following up this aim, the relations (92),
(99), (100) lead to

c [ngouguer]Q [1 - exp (- )] exp (o2 ) (106)

Te1

or,

Sz [ngouguer Q [exp (o) - 1] s Pl

In this closed relation, the development (108) is introduced,
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[» 2]

]
exp ( )-1=§ o 1T | | € oo, (108)
i n! -
n =1

The truncation of this series by taking along 1ts first term only givesgthe
succeeding expression, instead of (105),

Ci.1 = (ngouguerJQ Lasg Ty lc’(" << 1. (109)
Now, the Bouguer anomaly is replaced by the analytidal expression
of it, (94). The equations (94) and (109} are combined to

Cyq = & * K(2) « cos @ = 908 =i || 1% (110)

As the above relation dous show, the amounts of the C1.1 term are
positive and negative ,( for -D <x <+D,-Dgy<+D).

The amount of this C1.1 term, (109), is intended to be
evaluated for two models of Bouguer anomalies, The test points Q
are situated on the z-axis, (3 = 0, y = 0), in these computations,
Consequently, a relative maximum of the C1.1 values is .congidered,
because the Bouguer anomalies spread over the x, y = plane have
a maximum, if x = 0, y = 0, (see (110)), Therefore, the model com-
putations can bappen by the éubsequent relation, with x =y = 0O,

z = 2, (110) (id9),

Cpq = ¢ < K(2) = ( AgBouguer) Q¢ e (110a)

Along the oceans, the Bouguer anomalies have to be replaced by the
free-air anomalies, in (110a).

The first model has the following parameters,

ngBouguer =y OaTEALS

hg=hp=1km , (111)

Q

D=50kmo
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They lead to these values, (100),
oc = 0,09 << 1, o (m2)
and, (110a),
Cy,q = 1.8 mgal ., : (113)
The second model is-charactérized by
éngouguer = 40 mgaly
hy - hy = 1 Im, ; == ACTI)
D = 200 km,
The amounts
& = 0,02 << 1, (115)
and
01.1 = 0,9 mgal (116)
result by the computations. The values of (113) and (116) computed
for ¢, , are the maximal values of this term,for the considered
waves, The mean value for C1 1 will be smaller,

The relations (113) and (116) show that the amounts of C1.1 are
within the precision.of the global gravity net of the present state,
The cosmic missions of the future, as satellite gradiometry and
satellite - to - satellite tracking, are hoped to give a global
gravity field with a standard deviation of about * 2 mgal for the
compartments of 500 x 500 km size. (See: Wichiencharoen, Ces
Recovery of 1° - mean anomalies in a local region from a low - low

> -satellite - to - satellite tracking mission. Ohio State Univ,.,

Dept. geod, Sci., Rep. 363 (1985) ) .

The formula (109) results by a spectral representation of the
field of the Bouguer anomalies. In the practical applications,
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such a spectral analysis of the Bouguer anomalies is not current
in use in the routine computations. But, the continuous two-
dimensional function: of the Bouguer anomalies along the surface of
the Earth is well-known by the concerned maps, Therefore, it is
useful to show a way that leads to the determination of the amount
of 01.1 expressed by the continuous funotion of the Bouguer
anomalies, without any Fourier analysis of these anomalies,

In this oontext, the terms in the equation (92) are differentiated in
the vertioal direotion, the relation (100) is introduced,and the
resulting power series development is truncated behind the term
linear in o ,

)

)
[ ’D_h' AgBouguer]z 3 ZA= (E AgBouguerJz | c()1 - ), (117)

Purther, the relation (92) leads to

(‘ngouguer)z B 5 (‘dslaouguer}z = (1 =), (118)

and

[ a4 gBougue::' ]

Zr=

(— Py -1-‘). (119)
A D

o
25 ],

The relations (109) and (119) are combined., They give the equation
(121), for

loc|<< 1 5 (120)

")
Q== (hQ = hp) [?; AgBouguer] C (121)
z2 =2

A look on (117) and (118) reveals the following situation, The
height dependence of the Bouguer anomalies and that of the vertical
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gradients of them is small, if o is small, (120), If the height
dependence of these values is omitted, a relative error of the
order of C¢ is the consequence,only, Along these lines, the
relation (121) gets the following form

)
01.1 = - (hQ - hP) (E AgBouguer] A ° (122)
Z =

The above vertical gradient of the Bouguer anomalies, (122), can
be computed in terms of the Bouguer anomalies which are distribu-
ted along the sphere with ry as radius. Hence, (13),

2 £ ;
R (AgBOu&ler) Y** (ngouguer) Q**

= p J d w Y** %
27 eo

Ci,q = = (hg = hyp)

w (123)

Regarding (118) and (120), it is allowed to replace the Bouguer
anomalies along the sphere 3ze P by the corresponding values
measured at the surface of the Earth 6 , Fig, 1,(z = Z).Thus, in
(123), the following transitions are allowed

(A 8Bouguer )Q w {AgBouguer] Q ’ (123a)

[ 4 gBouguer) yA* [d &Bouguer ] . ’ (123p)

and, finally,

(AgBouguer) YAl = (AgBougueI‘) Q

27 eo3

c

1,1 = = (hg = hp)

(123¢)

As to the further procedures for the computation of C1 10 the
integral equation for the downwards continuatlion of the
gravity anomalies derived by Bjerhammar from the Poisson integral
is of interest here, [4/. If£' the rugged free-air anomalies are
replaced by the smoothed Bouguer anomalies, and if the kernel
function remains unchanged, this integral equation of [l/ turns
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into a shape suitable for the here discussed problem, i, e, for the
determination of C, ., (see (136)).

Thanks to the advantage t?at 01.1 is small and that tne Bouguer
anomalies are smoothed, the numerical computation of 01.1 in terms
of the Bouguer anomalies is & rather uncomplicated and stable
procedure, relative easy to handle,

Finally, the evaluation of the amount of the 01.2 term is a
problem needful to be discussed, (78) (79), (70) to (73). The

deduciions follow the way that did lead to the amount of 01 10 The
substitution, (81),
Q)
J = " (124)

Qr
is introduced, (81) (70a) (78) (79); and a look on (109) gives
Crp=-(])g -0 (125)

Considering the shape of the S function represented by the table
1, the horizontal extension of the gravity anomaly has about the
value

D = 400 km, (126)

and the amount of the amplitude of the 5%-wave is about
i (5%)Q I = 5 mgal, (127)

With

hQ =hp =1 kn (128)

and with the formula (100), the following equation yields,

o =0s0 111 [ (129)
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the relations (125) (127) and (129) lead to
I, 01.2 l = 0006 mgal ® (130)

As is evidenced by (130), the amount of Cy,p can be neglected
without any hesitation. In order to avoid misunderstandings: The
3, values are not of interest here directly, but the vertical
8radients of these values are in the fore, since the vertical

gradients determine the 01.2 term,

Consequently, in the here discussed geodetic applications, the
following relations can be taken to be right, (70) (76),

oM
A8pouguer 2 Do . (131)_
Cy.1 s c ’ (132)
Cq,2° :_ o . (133)
And, with (77),
c, = [AgBouguerJ Q¥* = (-AgBouguer) Q  * (134)

Consequently, (103a) (123) (123c) and Fig. 1,

R2

(‘ngougger)Y ; {‘ngoggger)Q dwy -

5 Tt
D
21 e,

01 = - (hQ —h‘P)

(135).

Further on, certain other procedures exist for the computation
of 01, being defined according to (134)., These procedures are free
of spherical approximations for the surface of the Earth, and they
are free of the condition (103a) for o . The formula of Poisson
gives rise to a regional development of the form (136), (see /4/.
equation (2)),
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2
a4
(AgBouguer)Q ~ r]2? Q ( 8309&9'1:')—— dwyx* (136)

47 rQ ea y**
w
with, Fig. 1,
rQ=R_+hQ ° (138)

eq. Y** is the oblique distance between the point Q on the one hand
and the point ¥ on the other hand, Q is fixed at the surface of
the Earth within the course of the integration according to (136),
Y**is variable over the sphere &¢ P within the course of the
integration, Thus,

eg;y** = r% + rg ~2rpryco8y . (139)

The angle W is here the spherical distance between the two points
Q and Y™**, :

The inversion of the integral equation of the first kind,
(136), determines the Bouguer anomalies ( 5Bouguer)Y** along
the sphere with the radius Tp in terms of the measured Bouguer
anomalies ( AgBOuguer)‘ on the surface of the Earth ¢’ , Thus,
the inversion of (136) leads to the difference amounts :
(g gBouguer)Q** minus ( A 8Bouguer)Q‘ Thereafter, it is an easy
step to reach C,, (134);since this anomaly difference is equal to C,.

The integral equatiom (136) can be brought into the form of an
operator equation

( /‘,gBouguer)Q = /L ( AgBouguer)Y** ° (140)
It has the following inversion,

: =7
(4 ,gBouguer)Y*’\‘ = /L wsd gBouguer)Q C (141)
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The left. hand side of (141) includes also ( ‘ngouguer)Q*" T
The corresponding anomaly for the point Q is known from the
measurements, Thus, the 01 value can be determined as the
difference of these two values, (134).

The introduction of a set of gravitating point masses m,
situated in the interior of the globe =2 constructs another
procedure for the computation of 01, [i/l Along these lines,
the potential M is expressed by a regional development of the
form

1

1]
(2

my (142)
eQ.i
i L]
for the test points Q at the surface 6 . The point masses
my (L= 1y 2y s0ay I) (143)

have a 1limited number J, They are understood as a set of point masses,
a set of bounded regional extension, For instance, they cover an
area of 100 km or 200 km square. In the central part of this area,
the potential M will be approximated especially good by (142).

Now, the introduction of vector and matrix symbols is
recommended, For a set of discrete surface points Q of the total
number J plotted in the considered area of regional extension
in a convenient distribution, the M values are well-defined by
(142). They figure now as the elements of the vector u, this fact
is described by

R { M } . | (144)

In a gimilar way, the gravitating point masses my, (143), figure
as the zlements of the vector ¥,

;r:{mi} . (145)

The equation (142) follows to have this matrix shape,
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(146)

ne
[}

4

<

The matrix X represents the kérnel function of (142), it is here
understood that it is a quadratic and non-singular matrix. Purther
on, it is convenient to introduce the radial derivatives of the M
potential (in the selected surface points Q) by the form of a
vector., It will be demonstrated by the form (147),

3 I[ﬂf } : . (147)

)
UG S !

ns

At the surface & , the radial derivatives of the kernel function
X are as follows,

9 ,
Y = {(— §) % . (148)
Or Q :
"At the sphere & p, the relation (148a) follows similarly,
%% 7
Yint {( s };) s (148a)
Or Q¥ ¥
Consequently,

[IE]

The relations (131) and (134) yield

DM DM
C1=[o}"1ra] . (150)
T r
Q Q ¥
The vector, (147},
M
sl HD J 7 } (151)
PR
gives, (149),
% X ¥ ¥
w = S ot (152)
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Hence, (149) (150) (152),

Hew, (153)

o
-
"
s
1
1]
e
1
e
<

with,

e

g= {o} . ' (154)

The elements of the vector g4 are the here required values,
Cqs (153) (154), Especially, that element of ¢, that is sltuated
in the oentral part of the considered regional area is-of
dominating interest, since it will result in a relative high.
preoision, and aince it will be equal to the C; term to be determined.

A similar development about gravitating mass points my for a
regional representation of the M potential (‘which is in close
relation to the Bouguer anomalies) was discussed earlier in
another publication, /1/. The problem treated in that publication
[1} was in a very close relationship 0 the here investigated
question of the determination of the residual term 01 of the
geodetic boundary value problem,

In that earlier publication [1/, the Green identity adapted
to the surface of the Earth was the fundamental starting point,
This identity was applied to the perturbation potential T, The
thus obtained relation was rearranged for routine geodetio
applications, These rearrangements did not transfer the physical
values from & downwards to a2 pr 88 here in case of' the
Bjerhammar sphere; but, the geometrioal values did undergo &
transfer from oe P upwards to the surface & , replacing the
square of the horizontal distances eo2 by the square of the
oblique distances eo2 + Z2, for instance, The final result of
these rearrangements of the identity of Green was the Stokes
integral supplemented by & olosed residual term = which is in the
main identical with the here obtained residual term représented
by C, C1, = 2 in(54) -, In the publication [i/, one of the
discussed problems was the determination: of the amount of
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N e ?
/"'-1 + /:g ’ (155)
OF 3 Dy

by a regional representation of the M potential in terms of & set
of gravitating mass points, //.1 and /142 are the surface values
of the deflections of the vertical caused by the M potential.
Hence, 1 and o are two - dimensional functions., The derivafions‘
in (155) refer to the [q and s functions along the oblique’
surface of the Earth, PFurther, /1/,

dx =R dp (155a)
&F=Rcosp ar . (155b)

The step from (155) to the C, term is executed by the following
relation, (see equation’ (67) in /1/),
oMy O Mg

. 156
DE - oF e o0)

¢, =6 (hQ = hp) :

The functions /41 and /12 are equal to the topographically
reduced plumb-line deflections. In /1/, the amount of (155) was
expressed by the Bouguer anomalies ,( see equation (103) of [1] ).

A short discussion about the spatial distribution of the point
masses my in the interior of the Eé;th seems to be recommended. In
the here executed developments, from (143) to (154), the places of
the point masses my have to observe the restriction that they have to
be situated only within the globe a2 with the redius R; it is on
the strength of the theorem of'Keldysh-Lavrentiev which postulates
that the space Qi (between =e and 6 ) has to be free of masses.
As opposed to this situatlon, the developments about the identity
of Green have other presuppositions, [1/. In /1/, the theorem of )
Keldysh-Lavrentiev is not used., Thus, the lengthes of the geocentric

. placement vectors of the point masses oy are not restricted to be
smaller than the radius of the globe, R, In the developments
described in the publication [1/, the point masses m, are allowed
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to be situated also in the space @i extended between 6" and
o2 o

Therefore, the methods using the identity of Gxeen, [l], allow
a greater flexibility in the choice of the positions of the point
masses my, as opposed to the methods which are based on the
theorem of Keldysh-Lavrentiev, The theorem of Keldysh-Lavrentiev
has the constraint r <R for the radii of the point masses. The
theorem of Green has the constraint r<<r€ ’ (rol =R + h), for
the geocentric radii of these point masses.

Finally, it is to be stressed again, that the free-air
anomalies give the C1 1 term along the oceans, as the Bouguer
L]
anomalies do along the continents, (134). In 'good approximation,

C can be replaced by C1 .

1.1
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T A comparative survey of the free and of the fixed bouﬁdary
value problem,

The solution of the boundary value problem of Molodenski] is
given by the relation (1) and by the supplementary relations (7)
(11) (13). In these equations, the h values figure as the heights
which the surface points have above the ellipsoid or above the
globe, Fig, 1, The succeeding relation, (157), is self-explanatory,
(9),

*
rp=R+b,=R+b+ L, (157)
The height anomaly ZTP is the unknoWn quantity of the problem
which. can be determined by the boundary values, (5) (6).
Principally, the equation (1) has the character of the solution
of the free boundary value problem, because the boundary values
are distributed along the real surface of the Earth 6 ( they are
not placed on the telluroid),and it must be added that the shape of 6 1is
beforehand unknown, It comes to be known by the computations
according to (1) and (6), which yield /£ . After the height

anomalies / are known by (1) and (6), the shape of the boundary
surface &~ can be determined by the geocentric radius of it,

* ) |
R+ hy + Goka s (158)

But, even the ¢ values that figure in (158) are the unknown
quantities which are to be determined in the course of the
solution of the boundary value problem, Thus, principally, the
relations (1) and (6) are not an explicit solution for & .éf
appears not only on the left hand side of (1), & figures also

on the right hand side of (1), but in a more indirect or implicit
manner, Thus, the shape of the boundary surface Belongs to the
unknowns of the problem, This situation is typical for a free

- boundary value problem,
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On the strength of this fact, and to begin with the comparative
deliberations - comparing the free boundary value problem with the
fixed one -, it is useful to subject the free boundary value problem
to a modification, reducing it and putting it into the class of the
fixed boundary value problem, After this transition to the fixed
problem, the boundary values are placed on the telluroid, instead
of the surface & , Pig, 1, Therefore, the radius is not given by
(158), but, it has now the relation '

> .
Tp = R + hP (159)
]
This modification of the rp values, (158) (159), influences the
coefficient before the integral on the right hand side of the equatiom
(1). The neglection of pr in the rp value, (rp —>—R:+H§ ), leads to a
relative error of the amount of

%

— U q (160)
R

in the T value on the left hand side of (1), The height anomaly derives
with the same relative error, ( Z?/R, (160); 1if rp—> R4-ﬁ§ ); this fact is
evidenced by the equation (6). As an example, the quotient (160) is
computed for the parameters (° -'0.1 km and R = 6 370 km., These

parameters lead to the fact that the transition from.the radius of the
surface of the Earth 6 to the radius of the telluroid, (157) (15%8)(159) ,
has an impact of not more than

— = 0,2 cm (160a)

on the [ value obtained from (1) and (6).
‘This amount 1s absolute unimportant.

The very small amount of (160a) can be included in the solntiom ((1)
(G)ZPaaily,by a succeeding iteration step, it is self-explanatory.
~This iteration procedure 1s always convergent, because the amount of
(160) is by far smaller than the unity, in all cases.

Further on, considering the solutions of the boundary value problemg by

the integrals (1) and (54) which solve the Stokes's problem and
that of Hotine 1in a sufficient approximation, it is
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self-explanatory, the transition from the surface 6° to the telluroid, =
(157) (158) (159),

g3 >
h=h" +f —> n , (161)
) — ] 3
has an impact on the small supplementary terms C, C,, 231, :32; (1) (54).
Obviously, this impact can be neglected in all cases,

Summarizing, the transition from the surface & to the fixed and
well-known telluroid leads to a.well-defined value for the height
anomaly (with a very small relative error), along the lines of the fixed
boundary value problem, (1) (6).

In order to have a more rigorogs mathematical base, it will be
convenient to withdraw from the- intention to substitute along the lines :
Surface & —> telluroid. In this case, it will be necessary to go back
from the telluroid to the real surface of the Earth. It will be possible
to bring this intention to a practical realization (i. e, the introduction
of the .surface 6 as the definite and free boundary surface) by a simple
iteration procedure appended to the solution of the fixed boundary value
problem, This iteration procedure consists in the application of (157)
instead of (159) for the radius of the boundary surface, introducing a
first approximation value of /° . Further iterative approximation steps
may follow. The supplementary numerical amounts which yield from this
iteration procedure are negligible.,

Therefore, the relations (1) and. (6) compute in our problem,preferring
(157) or (159), the solution for the free or for the fixed boundary value

problem of the geodesy. The differences between these two probleme are
unimportant,as far as the impact on the resulting height anomaly is concerned.

‘After this above discussion of the aspects of the free and fixed
boundary value problem of the Stokes type, the corresponding situation in
case of the Hotine type of the boundary value problem is now put into the
fore, (54). Here,the gravity disturbances figure as the boundary values
on the surface 6 , (16). For the computation of the standard gravity at
the surface of the Earth, it is necessary that the shape of the Earth is
known in advance. The radil rp and rq of the surface points P and Q must
be known in advance., Along the oceans, the satellite altimetry offers
convenient methods for the determination of rp and rQ. The knowledge of
the shape of t?e boundary surface is essential for the fixed boundary
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value problem, in our applications. Thus, the Hotine type comes near the
fixed version(not the free version), in any case in our applications.

Coming to a final summation, the equation (1) represents the solution
of the free and of the fixed geodetic boundary value problem .It has
the free-air anomalies as boundary values along the surface of the
Earth. However, in our applications, the equation (54) is connected
with the fixed boundary value problem which has gravity disturbances
as boundary values along the Earth's surface. The corresponding free
version of (54) is not actual in the éeodetic applications,
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8. Conclusion.

The formula (54) is a solution of the here considered boundary value
problem of the Hotine type. (54) meets the requirehents of the theory and
of the numerical reckoning. The gravity disturbances dg serve as the
boundary values placed at the surface of the Earth which is shaped by. the
topography. Along these lines, the amount of the perturbation potential T
at the surface of the Earth is expressed in terms of the gravity
disturbances. The Hotine function appears as the kernel function. In the
integral'of (54), the gravity disturbances must be supplemented by the
plane topographic reduction of the gravity, C, and, further on, by the
C1 term which is rather small and smoothed)and which is often negligible.
In (54), the third supplementary term Efz is also trifling in most cases.
The solution, (54), has no series development of bad or dubious
convergence,

A similar formula is valid for the solution of the boundary value
problem of Molodenskij which uses free-air anomalies as boundary %éluea,
(1) (2); ef. /17 /2] /3/. Also in this case, the supplementary terms C
and C1 must be added to the boundary values, (1), i. e. the free-air
anomalies, But, the Stekes function serves in (1) as the kermel function,
instead of the Hotine function of (54). Further, in = os (54a), the
second term of the expression for 531 does not appear, (2).

Several different ways lead to the computation of the amount of 01.
The relations - (135) or (153)(154) are recommended, if a map
of Bouguer anomalies is at disposal. The formula (156) is useful, if
topographically reduced plumb-line deflections are at hand.

A discussion of the parameters which enter into the three\ terms
cfg, C and 01 is of interest,

The term cfg depends only on the measurements developed in the
physical geodesy and in the satellite geodesy. The graviiy measurements
g€ at the durface are here effective, Further on, the precise height of
the surface above the mean ellipsoid of the Earth is needed, since this
height is required for the computation of the standard gravity 7T at the
surface of the Earth, Fig, 1. ;
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The C-term figures as a gravity value, since it is the plane
topographical reduction of the gravity. But, the parameters that
dominate the computation of C are the rough height differences, a
precision of some meters suffices for them. These height differences
are free of the sophistications the physical geodeéy has in store for
the precise levellings,

On the other hand, the small term C1 depends only on the geological
density anomalies in the upper parts of the Earth : This are the amounts
by which the density of the geological massés differs from the
standard density o = 2.65[ g cn™3 ]; -and, further on, the compensation
masses of the isostatic mountain roots are effective, The 01 term is
proportional to the second vertical derivative of the potential produced
by these density anomalies., These density anomalies are close to the
Bouguer anomalies, if continental areas are considered, - they are close to
the free-air anomalies, if oceanic areas are treated - .

Summarizing, the three terms 6g, C and C1 have different sources and

different characters, 8g can be taken as a physical value, C as a
geometrical and C1 as a geological one,
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E. A proof of the convergence of the ‘spherical-harmonics series

'development of a potential exterior of a regular surface by
the completeness of the system of the base functions at the surface.
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Summary

The values which the regular function of a spatial potential takes
at _the boundary surface being a regular surface can be represented
by a uniform convergent spherical harmonics series development: The
vector 'formed by the spherical harmonics can be multiplied by an
infinite orthonormal matrix., The product is a new vector of an infinite
number of orthonormal functions., The surface values of the potential
are expressed in terms of these new functions. Even these new base functions
are replaced by the linear independent surface functions which the solid
spherical harmonics take along the boundary surface; it happens by the
inverse Schmidt orthogonalization procedure, These linear independent
functions construct a complete system of base functions., Along these
lines, a convergent series development is obtained for the surface
values of the potential. A theorem of Abel leads to the uniform
convergence of the series in whole the exterior space. Picohe's theorem
corroborates the result., A proof of the completeness and a short proof
of the convergence is added,

Zusammenf assung

Die Werte, die die regulédre Funktion eines rdumlichen Potentials an
einer Randflédche annimmt, kénnen Eekanntlich durch eine konvergente
Kugelfunktionsentwicklung dargestellt werden, Der Vektor der Kugelfunk-
tionen wird mit einer unendlichen orthogonalen Matrix multipliziert. Man
erhdlt ein neues unendliches System von orthonormalen Funktionen, Die
Werte des Potentials an der Randflidche werden durch diese Funktionen
“dargestellt, Schliesslich werden die wohldefinierten Oberflédchenfunktionen
eingefiihrt, die die rdumlichen Kugelfunktionen an der Randfldche annehmen,
Man erhdlt ein linear unabhédngiges und vollsténdiges Systém von Basis- .
funktionen, Dabei wird das inverse Schmidt-sche Orthogonalisierungsver-
fahren herangezogen., Es wird.eine konvergente Reihenentwicklung fiir die
Werte des Potentials an der Randflédche erhalten, Ein Lehrsatz von Abel
fithrt zu der Tatsache, dass die rdumliche Kugelfunktionsentwicklung fiir
ein Potential im Aussenraum der Randfldche gleichméssig konvergent ist.
Dieses Ergebnis wird durch den Satz von Picone bestdtigt. Ein Beweis fiir
die Vollstdndigkeit und ein kurzer Beweis fiir die Konvergenz schliessen
sich an.
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Pe3swome

Hak W3BECTHO, 3HAYEeHuss, KOTOPHE IIPOCTPAHCTBEHHHH IIOTeHIIWaJ
[IpUHAMAET Ha I'PAHAYHON MOBEPXHOCTU, MOTYT OHTH IpEJCTaBJIEHH
MOCPENCTBOM CXORANETOCA pa3NoReHAA. cepuaeckoit GyHKIuN.

3exTop cdepiyecKuX QYHKLIUH [IeDPEMHORAETCA C GECKOHEUYHOll 0opTOo-
T'OHalbHOIl maTpulleit. lHoayuawT HOBYW OECKOHEUYHYW CHMCTEMy
OpTOHOpMaXBHEX QYHKIMH., OHavYeHUWA MOTeHLMaJa Ha T'DAHWYHOR
BEDXHOCTH IIpeJCTaB/IAITCA [IOCPENCTBOM STUX (YHKIMi. llakoHelr,
BBOJATCA BIIOJIHE OIpeneJeHHHE II0BEPXHOCTHHE (QYHKIUA, KOTODHE
[IPUHUMAKT IIPOCTPaHCTBEHHHE c@epnqecxue'QyHKuun Ha T'paHuYHOIf mo-
[I0BEPXHOCTHU,. [losyyawT JNMHEIHYI He3aBUCUMYW CHUCTEMY Saamcﬂﬁx
(QyHKouii. Ilpy STOM NIPHUBJIEKAETCA MHBEDPCHHI METOI OpTOIr0HANU3ALEH
liksvnora. Ioxydanr cxomsmeecs pas3ioxeHWE B PAN YIS 3HAYEHWIl
[I0TEHLaJa Ha I'paHUuUHOIl IIOBEpXHOCTH. Teopema ACesd IPUBOIUT

K TOMY (AKTy, UTO IIPOCTPAHCTBEHHOE Da3NOKeHWE C@epuiecKoi
QYHKLYM IS 1I0TeHIMaIa Bo BHENIHEM MPOCTPAHCTBE TpaHMYHOL

IIOB8PXHOCTY ABJIAETCA PaABHOMEDHO CXOIAWUMCH.
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1. Introduction

A regular harmonic funcition W is introduced in the three-dimensional
space of the orthogonal Cartesian co-ordinates x, y, 2,

W= Wk, y, z) ! (1)
D2 D2y Nk’

AW = + + = 0 . (2)
D x? y° D22

The relation (2) is the well-known Laplace differential equation, /9/
H2].

The gravitating sources are situated within a closed, regular and
star-shaped surface D, The relation (2) is valid in the exterior of
the surface D, W is a continuous and regular function in the exterior
of D and on the surface D, In the exterior of D, W has continuous
derivatives of the first and higher order, /Q] VALTAR

Now, the well-known Brillouin sphere is introduced. It is a
geocentric sphere that encloses the surface D and, thus, all the
gravitating sources, It has the radius R, (see Fig., 1), In the exterior
of the Brillouin sphere, the potential W has the following uniform
convergent spatial spherical harmonics series development, it is well-
explained in the literature, /87 /9/.

o'} n

w =:—‘DE 1+ Z(%)ann.m(sinkp ){

n =2 m=0

Wn.m.1cos m A + wn.m.zsin m ).} , =K ., (3)

The center of the spatial polar co-ordinate sxstem r, p , A is
identical with the gravity center of the Earth, r is the geoceniric

radius, ¢ and A are the geocentric latitude and longitude, £ is the
gravitational constant, M is the mass of ,the Earth, Wn and W

ome 1 a.m,2
are the Stokes constants, Pn n 8re the associated spherical harmonics.
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Fig, 1: The Brillouin sphere with the radius- R, The surface of the
Earth D aqd its geocentric radius t.

The series development (3) is generally accepted to be uniform con-
vergent, if r > R, /87 /97 /[12/. Therefore, the following theorem is
valids

Theorem 1:
For any positive number e1, however small,

€4 > o |, (4)
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‘there exists an integer H, snfficient great, such that

) n (

) Z Py (o2 ) f

neH+1-mm0

W, .m, 1608 mA + W, .m, o810 A < 430 2 R. (5)
The problem, to be discussed here, is the question whether the
validity of the convergence of the series (3) can be extended to whole

the exterior space of D and to the surface D, also.,

An abbreviation of the following shape, (6), is recommended for the
development (3) . It is to be applied in the subsequent deductions.

e '
we ) A ECRTIPERER S I (6)
: r

The meaning of Wi and u, is self-explanaiory, as a comparisPn of (3)
and (6) does show

The transition from the manner of writing (3) to the manner of re-
presentation (6) can be understood in the following way : Instead of
writing down a8ll the zonal, tesseral and seotorial spherical harmonics,
only the zonal harmonics are taken along and written down, since the
tesseral and sectorial harmonics of the n-th degree transform in the
same way as the zonal harmonics of the degree n . This abbreviation 3=
agreat relief in the writing down of the mathematical developments,.
It is an often used procedure, & habit usual since a long time,
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2. The Schmidt orthogonalization process,

The expressions
" .
(3) mCeird o, )
which appear in the formula (6), are now of special interest. The

functions (7) are now specialized for the test points situated on the
surface D, Here, they take the following expression,

» n 7 .
i 3 .
[(;)} By = (m, AR L : (8)
L D

The geocentric radius of the -surface D is denominated by t, (see Fig. 1),

$=t (P, A) = omp. - (9)

Thus, the relation (8) turns to

A n it n :
(?) “n(%vi>=(m) G e A =
= v R A (10)

n ‘.1' 2' eee L] (10 a)

Or

"n“‘"“’(ﬁ?,a—)) dheflpwgl 3408

n

- (%) un(‘P,A) - (1)

D
The spherical harmonice uy (v ,A), (n =1, 2, ...), establish an

infinite set‘of orthonormal functions. This set is complete for all the
regular functions on the unit sphere. On the sphere, the development of
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a regular function in terms of the functions is a uniform convergent
series, it is well-known, /9/ /[11/.

The functions u, (cp , A ) are orthonormal,

1, n = m
g (P oA )y (pyhrar=d, , - , (12)
O, n ¥ m
F
n, m=1, 2, ... A (13)
F is the surface of the unit sphere,
dF =cos¢p d¢ dA s (14)

The functions vn( ¢ , A ) are linear independent, (11), /1] /3] [6/
[10] [13] (14]. Thus, the relation :

L
SRR R (15)

n =K

cannot be valid for any limited integer K and L, unless the constant
coefficients Un are equal to zero, ’ ]

Uk = UK + 1 = o000 = UL = 0 H ) . = \ (16)
T e ' (17)
K =1y B L 53 : (18)

The proof of (15) and (16) is uncomplicated. In the exterior of D,
the spatial potential U is introduced by the following sunm,

U-i‘ Un(%] u, (9,4 ) . (19)
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U is represented by a sum and not by an infinite series development.
TherefBre, the convergence problems are not involved. The expression
(19) is harmonic and regular in the exterior of D, On the boundary
surface D, the relation (19) turns to

Linemy n
uy = 2, U (%) w (e, A1), (20)
n =K
or, (11), ¢
L )
Up = ), U v (e, A) . (21)
n =K

If a potential is zero along the boundary surface, it is zero also in
whole the exterior space of this surface. This fact is well-proved by
the Dirichlet boundary value problem, /12/. Hence, the following con=-
dition, (22), ror the boundary values of the potential U, (20) (21),

Up: =013y - (22)

leads necessarily to the fact that
Uu=0, \ (23)

in whole the exterior space of D, Consequently, the relation (23) is
valid also along the surface of the Brillouin sphere with the radius R,

L ] 5
i un(ﬁ) w, (p,A) = 0, (24)

n =K

The multiplication of (24) with u, (¢ 4 A ) and the application of
(12) leads to

IIK=UK+1I‘...UL=O. (25)

(25) corroborates the linear independence of the-v  functions, (15)
(16).
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Since the functions v, are linear independent - but not necessarily
orthogonal -, 1t is possible to find a system of orthonormal functions

wo=w, (p,A) (26)

n

by the functions Vhe This aim is reached by the Schmidt orthonormalization

procedure, /107 [14] [16], a way that is always possible to go, because
of (15) and (16), A linear system of the following shape is obtained,

1.5 P10
w, = b v, +b v
2 218 1 2.2 2 (27)
Wr. = bL.1 vyt bL.2v2 + eee +_bL.L'vL 3
or, in the form of a matrix relation,
7 R v % (28)

The elements of the main diagonal of (27) (28) (33) are positive, /10/,

RS L, Fe a0 2 . (28a)
& 1, n=m
SS W, W dE = dn.m = = ; - (29)
O, n ¥ m ;
¥
n, m = 1, 2, seey L. (30)

The number of the relations of (27) is elual to L, (see (15) and
(16)). But, there is no difficulty in continuing the above process,
(27), for a value of L getting greater and greater.

There is no upper bound for the amount of the integer L, The bi
values of (27) are the constant coefficients s free of ¢ and A.

The column vectors and the matrix of (28) have the following shape,
-

" |
W, = oilt i - (31)

\ le
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V4
)

ZL €3 coe ] x (32)
i
e el - el L
P e T Dtz |

gIl =@ oo ) R oo ={bi'k} . (33)
bL.1 bL.Q eece bL.L

The dimension of v and v, is equal to L, EL is a L x L matrix, In
(33), the first suffix specifies the row, the second suffix k specifies
the coiumn. Since the functions v, are linear independent, the Gram .
determinants which governe the transformation by (27) and (28) are
non-singular, /6] [14] [16]. -

The mapping (27) and (28) 1is uniqué, the same is valid for the inversion
of (27) and (28)., The theory of the Schmidt orthogonalization process
shows that

det By ¥ 0 . (34)
(34) is right, because the v, functions are linear independent, (15) (16) .
Thus, the inversion of (28) is possible,

woeBT e ' | 359

B, is a triangular matrix, (subdiagonal matrix), (see (27)). The
coefficients by k of (27) and (33) have limited amounts, because the
Gram\determinants are non-singular.
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3, The infinite orthonormal matrix,

The theory of the infinite matricés develops in the vicinity of fhe
theory of the finite matrices. But, these two theories have also certain

differences, /[1/ (17/.

For instance, the product of two infinite matrioes is 'well-explained
only 1f certain convergenoe properties are valid. The product of the
infinite matrix

SR o

and the infinite matrix

L= {yi.k} ’ _ - (31
@9 =0, L85y (38)

is constructed by the. infinite matrix

megs e, b (39)

In (36) (37) (39), the first suffix i specifies the rows and the second
suffix k the columns. The elements of the matrix of (39) are explained

by

O

2y = E::' X33 Yk . (40)

J =1
The product of these two matrices which are considered here is well-
defined only if the right hand side of (40) is a convergent series
development.

, In a consideration from a more universal standpoint, the theory of
the finite matrices belongs to the discipline of the algebra, but the
infinite matrices are more in the vicinity of the field of the
functional analysis.
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Now, the infinite orthonormal matrices A are in the fore., These
matrices are well-defined by the following relation /%7/.

aat =44 . (a1)

The superscript T denominates the transposition. E is the infinite
unit matrix, }

det E = 1, (42)

But, in the theory of the infinite matrices, the value of the deter-
minant is lost. The reiations (41) and (42) give

det A =1, (43)

»

(43) follows from

det (A A7) = (det 4) (det A7) = (det 4)% = det E = 1, (44)

A is a twofold table,

4= {ai.k } 3 (45)
1' k = 1, 2’ eeo . (46)
31.1 31.2 81.3 o0 0
82.1 32.2 3 32.3 XX
% (47)
g Pl o NEoe o raatal st
Sex o S84 peg
31.2 32.2 33.2 eee
P {
é L + (48)
31.3 82.3 33.3 o0 0
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& - {a.} : (49)
Sk = 8,1 : ‘ (50)

The basing definition of the infinite orthonormal matrix, (41), leads
to :
oo

: 1, 1 =%
Zai.;] T Iy ‘{ } ’ (51)
0, 1 #k /°
3=
22 1, 1=k ) ;
Zaj'i aj.k = CS i,k ’? . (52)
0, 1%k
j =1

d’i x 18 the Kronecker symbol.
Introducing the infinite set of the spherical harmonics u, (e A)

-into the theory of the infinite orthonormal matrices A, these harmonics
construct the following infinite - dimensional column vector,

li = Xy e (53)

The vector u can be transformed by the multiplication with j., The
elements of u are the’ orthonormal basés u, XP s+ A ). The system of the
u, functions is well-known to be complete and closed in the space of the
regular functions on the sphere, (12).

The multiplication of u and A gives the vector g,
e=4u  , (54)

and, because QT is the inverse of A, (41),
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TR e T AR (55)
A
5

g = .ooo ? (56)
en

o, = o (9, ). ; (57)

The relation (54) leads to

=3
epmen (psd) =) aiiu (p,d) . (58)
1 =1
The equations (12) (51) (52) (58) result in the following orthogonality

relations,

7

o 5
r‘-ﬁ
Sfen en dF = u, o, dF = 2 an.i axad, =

F F i=1

1, n =nm
= Jn.m = { } ° (59)
O, n ¥ m

The relations (54) (55) describe a one - to - one mapping, relating
e and u, '

As to the completeness of the mappings by A and éT, the constraint
u = 0 ~ (60)
has the consequence, (54),

g = 0 ° (61)
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Thus, (54) allows to find the unique vector e by u and A, And, vice
versa, thée constraint

e = 0 (62)
leads to, (55),
g = 0 . (63)

(62) and (63) show that (55) allows to determine the unique vector u
from the vector ¢ and the matrix éT. The mappings of u on g,ﬁnd that

of e on u,are unique procedures.

DOl:https://doi.org/10.2312/zipe.1987.089



171

4. The representation of the boundary values of the potential by
orthonormal base functions,

Now, on the regular surface D, a regular function
f.f(Y’lA) . (64)

is considered. It is well-known that £ has the foiiowing convergent
series development in spherical harmonics,.

;=anun(~f’,/1) . | (65)

fn are the constant coefficients, (Stokes constants). Therefore, the
succeeding sentence is valid, it can be found in the textbooks, /87
3] [2].

Theorem 2:
For any positive number Fios however small,
5

el (66)

there exists an integer M, sufficient great, such that

[0 o]
) taw Cpad) < e, % (67)
n =M=+ 1

The Parseval relation gives for the norm of £, (12) (65), /67 (11],
(completeness relation), .

oo
”f”a-“fadli'az 7% % (68)
F n =1

The equation (65) can .. brought into the form of a scalar product of
two vectors, (53),
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f = ; E 9’ (69)
with
r, )
)
; = csece . (70)
fn

In (69), the vector ¢ is to be introduced as a substitute for the vector
g, (55) (56). Consequently,

£ et qhe T (71)

With (68) and (70), the norm of f takes on .the following form
[l e ! (72)

In a rigorous consideration, (71) has to assume the form

Do T

TEUE () e (73)

Associating QT with e, as it is shown in (73), the right hand side of

(73) is convergent, (69). But, associating the two terms ET and QT in
(73),
=" AN e=¢g" ¢ ) (74)

it remains as an open question whether the right hand side of (74)
continues to be convergent.

s a9y

licw
n
[[a)
x>
[ ]

(75)

£ -' .-%. e . (76)
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g is mn infinite - dimensional column vector,

8¢ )

By ol c . (77)

£ ) ey (9.4, (78)

The individual elementé‘g1, 8oy e of (77) have limited amounts and
convergent developments, if derives from (75). This fact is obviously right,
since the Schwarz inequality can be applied to (75), and especially to
the residual term of (75),

gn=f1 %‘1+f2 an,'2+... = Zfi an.i' l (78&)

The residial term of (78a) has the relation

oo : ‘ = 1 I

2
ij &,y | < Z Z &, 3 g (78b)
J=Ma+ Jio=m 41 Jo= M+ 1

Because of (68), and because of (51) - for i = k -, and because all the
series developments of positive terms and of limited amount are always
uniform convergent, it follows that (68) and (51) are uniform convergent
series development, [31/. Thus, each of the two factors which construct
the product on the right hand side of (78b) tends to zero, if M tends

to infinity. Consequently, the left hand side of (78b) tends to zero also,
if M tends to infinity.

The convergence of (65) is known to be proved, but the convergence of
(78) is a problem to be discussed in the following paragraph.
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The relations (41) (52) (58) (59) (68) (74) (75) and (78) lead to the
following equations,

=gt yhan ="y -
o Ia
T 2 2
af fa zz: o= LS (79)
n =1
Consequently,
o=} oo
ol po e T A (80)
n =1 n=1

The surface function £ =f (¥ , A ) represents here the amounts of
the potential W for testpoints situated on the surface D, (1). For the
surface of the Barth, it is well-known that the potential is a regular
function along of it,

f =W . (81)

The relations (65) and (78) are the series developments for f in terms
of the base functions u (¥, A ) and e (¢, A ). The uniform conver-
gence of (65) is well-known, /9/ /12/. The uniform convergence of (78)
18 now intended to be proved, /17 /2] (3] (4] [5].

As to the meaning of the essential mathematical property to be a
regular function, such a function is uniqugq and continuous, the first '
derivatives of it are continuous functions. These conditions are obser-
ved by the potential values of the gravitating body of the Earth, (81).
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5. The convergence in the mean and the uniform convergence of a series
development in terms of orthonormal base functions.

The equations (79) and (80) construct the Parseval completeness
relation for the representation of the functioh f in terms of the
orthonormal base functions u, (¢ , A ) and e, (P ,A ), (65) (78).
These relations, (79) (80), include the convergence in the mean of the
series developments (65) and (78) for the boundary values f =f (¢, A)
at the regular surface D, (see (68)).

The convergence in the mean has the following relation: The function
- M
£y (P, A ) = )0 tu (¢, A) (82)
n =1
converges in the mean to the function f, if

2
1im g[x’m(?,l)-f(ﬁo,l)} afF = 0, - (83)
-M-—>o<>F ' /

(cf. (64) (65)). A necessary and sufficient condition for the convergence
in the mean is the following theorem 3.

Theorem 3:

- The development fM~( P, A ), (82), converges in the mean, if, for a
given number 93, there exists an integer :

TR RN Rl ) (83a)
such that for

€ 3 SeE0L, (84)

the inequation (85) is valid,
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2 ;
{( QfM1((p,R,,)-fM2(LP.>\)) @ F < IR (85)
F

for all the integers

M., M

Thus, the very problem which is now to be investigated demands to
ghow that (79) leads to the uniform convergence of (78). The formula
{79) ie by itself already the proof that the series (78) converges in
the mean to the function f ( P A ). The convergence in the mean has
the uniform convergence of (78) as consequence, as far as a regular
function £ 18 considered, it is well-known from the textbooks, /107

(137 1573

A complete'system of orthonormal functions has the same convergence
property as the well-established Fourier series develophent.-For regular
functions, the reoresentation by a Fourier series development is uniform
convergent, Thus, the representation of the regulevr function f by the
orthonormal and complete systems of the u () A ) or e, (P A)
base tunctions leads to a uniform convergent series development, (about
the completeness, see paragraph 6.9.). The constants of this development
are the well-defined Fourier-type coefficients, (see the theorems of
Dirichlet-Jordan and Dini-Lipschitz), /137 [15/.

A detalled description of the process which leads from the convergence
in the mexua to the uniform convergence is now intended to be given,

/ ;

The left and the right hand side of (80) is a series development eof
constant positive terms. The amount of it is equal to the square of the
norm of the function f. This amount is limited, since f has limited
amounts. In the theory of such series developments of constant positive
terms. the following sentence 1s proved to be valid, /13/.

Theorem 4:
The necessary and sufficient condition for the convergence of an
intinite series development that consists of positive terms only is

the fulfillment of the demand that the partial sums of this series have
Jimited values, /13/.

DOl:https://doi.org/10.2312/zipe.1987.089



LA

The partial sums of (80) are, (left hand side of (80)),

2
81 ’
. 2 2
81 + 82 )
2 2 2 ‘
g, + &8)° + 853" (87)
2 2 2 2

EICIET2 o ER SHORL

With regard to- the representation of the norm, (79), all the partial
sums of (87) have'necessarily limited amounts, irrespective of the
number of the terms they consist of. These amounts have to be smaller
than the square-of the norm of £, Since this norm of £ has a limited
amount - the function f is Limited -, the partial sums (87) have limited
amounts. Therefore, the above theorem 4 shows that the left hand side

of (80) is a uniform convergent series development, .

Thus, the following theorem is valid.
Theorem 53
For any positive number ¢ 4 arbitrary small
&, > \ 0, _ | (88)

there exists an integer N, sufficient great, such_that, (79),

% .
Z‘5n2< g e < (89)

n=N+1

The uniform convergence of (78) is a property that derives as a
corollary of the theorem 5, (88) (89). As to the definition of the
uniform convergence of a series development, the subsequent theorem 6
is an application of this definition to %the here discussed series
development, (78). !
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Theorem 6:
For any positive number €5 which can be chosen arbitrary small,

€y 53 0 (90)

there exists an integer Q, sufficient great, such that

oo
) gy ¢y (Pl < eg. (91)
n =Q+ 1
As to the proof of the theorem 6, the formula (54) is the matrix
shape of the development of the functions e (¢,A1)1in terms of the
spherical harmonics. The theory of the spherical harmonics shows that
every regular function given along the sphere can be represented

completely by a spherical harmonics series development, /9/. In the
following derivations, the functions

€1s ©pp €35 eee 5 € (92)
are understood to be in the space of the regular fonctions, Q is a
sufficient great integer, (see (90) (91)). There is no upper bound

for Q.

Thus, the sum

Q
Z g, 0, (@, A) 2 LE5)

n =1

is a regular function, (93) is a truncation of (78)., The constant
coefficients

© &9 52’ 83’ coe gQ . (94)

of (78) and (93) have limited amounts, (see (78a), (78b)). It follows,
- computing them by Fourier type integrals =,
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g, = gfen(xp,A)dF_. (95)
F

as a look on the orthogonality relation (59)-,and on (78),does show,
Because the functions f and e, are introduced as regular and limited
functions, (92), the coefficients g, s+ollow to be limited also, (95),
(78a) (78b),

Therefore, the difference expression PQs (78),

Q
Pg(p,A) =2 (p, )= ) ge (p,A) , -(96)
n =1
is necessarily a regular function. Consequently, the function p, can

be developed in a spherical harmonics series development, the uniform
convergence of it is secured, / 9/ [12/ ,

oo
g (PoA)= D pgnu (e, (o7)

n =1
Since p, is a limited, continuous and regular function, the unizorm

convergence of (97) can be taken for granted, (96)., The development
(97) allows the separation of the érbitrary small residual term F g

PQ = Z pQ.nun(gp,Z)+ €Eg o _ (98)

Theorem T:
For any positive number €k.0 “which is chosen arbitrary small,

IF =0 2
2 et (99)

there exists an integer J, sufficient great, such that
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oo

2[:? pQ.n Un (e, A )

n=4J+1

es.ol (100)

The following lines are in the focus of interest, in this context:
For a given number ¢ 6.0° the integer J has the property that it hasg
a certain upper value which is nov needed to be exceedgd, Jd =J de 6.0)’
as long as the inequation (100) has to be fulfilled, whatever the
amount of Q may be, (96) (98). Therefore, to be more precise, the
theorem 7 can be supplemented by tle following theorem 8, (96) (98)-
(99) (100).

Theorem 8:

For all the regular functions PQ (96) (98), - whatever the amount
of the integer parameter Q may be -, a positive number‘ € 7 lcan be
chosen having an arbitrary small amount - independent of Q -

‘e..{l %0, (101)

in such a way, that there exists a fixed upper bound /J/ for the integer
J, (98), '

J- & /3] D g (102)

fulfilling the relation

(37
PQ = 2[:: PQ.n Un (¢, A)+ € 8 Q) , (103)
n =1 i
with
les@| s [eq| - = (104)

The relations (102) (103) (104) are valid for all the amounts of the
positive integgr parameter Q. The values of /J/ and ¢ 7 can be considered
as being independent of the parameters Q, P , Al
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The inequality of Schwarz leads to a relation for the truncated series
development (97) which is identical with the first term on the right
hend side of (103), -

[3] | {37 (3]
5 Pty (P M) IS YT -l o NE w2 (g, A) |. (105)
n =1 n =1 Nee=x il
The orthonormal spherical harmonics u, (\p s A s
u.], u2, Ll3, eo0o 9 u[J] 9 (106)

are well-known to be continuous and limited functions, /97 /12/. Since
both the functions u, (¢ , A ), (1€ n< /J]), and the integer /J]

have limited amounts, (102) (103) (104), the second term on the right

hand side of (105) has consequently also a limited amount. Thus,

(3]
Z w2 (¢, 1) e g e (107)

n=1
S is a positive and limited amount,.

Further, with (59) (78) (91) (96) (97),

o0 Q

A e e R e

n =1 . n =1

o0 > oo
2 g, ey (9,4 )” = Zgﬁ. (108)

.n=Q+1 n=Q+1

A view-on (88) and (89).Fnd (91) shows that the integer Q im (108) can
be chosen in such a way that the last term of (108),
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oSO
Z SRR R S Sk (109)
n=Q+1
is arbitrary small.
Theorem 9:
For any positive number ¢ 9* arbitrary small,

€g £ 0y , (110)

there exists an integer Q, sufficient great, such that

oo
TR | [P RS (111)

n =1 |
The theorem 9 18 the consequence of the formulas (108) and (109).

The procedure constructed by the relations (105) (107) (110) (111)
reveals the validity of the subsequent theorem,

Theorem 103

Considering the relation (96),

s Q
Pg (P A) =t (o, A= ) gra (o, A) (112)

n =1

which is governed by the integer Q, it is possible %o choose an
arbitrary small positive number €400

€40 > 0; (113)

it represents the right hand side of (105). There exists a sufficient
great integer Q such that the development (97),
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[
P (P+2) = 2 Pqo % (P A, (112

n =1
fulfills - after a truncation - the following inequation,. (105),

[ |
D ' Pqat (Pl )< eyy SEg 3. (115)

n =1

The. relations (90) (91) (98) (103) and (115) prove the validity of the
inequation (116),

pQ|$(i'10+ leﬁl)s (e,‘g © 8+ 'le'3‘> . (116)

Since the terms €400 €. g and ' 3 8| can take on arbitrary small amounts,
the right hand side of (116) can be considered as a term the amount of
which is arbitrary small, if the integer Q is sufficient great. Therefore,
the following inequation is right, (90) (91) (96) (116),

‘pQ| < ey (117)

This above inequation corroborates the validity of the theorem 6,
(90) (91). The theorem 6 is the formulation of the condition for the
uniform convergence of the here discugsed series development, (78),

Thus, the inequation (117) proves the uniform convergence of the
series development (78). The introduction of properly chosen amounts for
the integer N has the consequence that (117) and the theorem 6, (90)
(91), are valid for an arbitrary small positive number ¢ be This fact
includes the uniform convergence of (78).

Before this background and with regard,to (96), it is permitted to
write the equatiuu (118), '
. o
(e, A)= )] gre, (p,A) o (118)
n =1

The series development (118) can be brought into the following
shape,
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Q
t(p,A)= Egnen(?,x)-r €49 (119)

n =1,

5'111 < l

’ehh‘ol is arbitrary smali, 1t computes the limited value Qo,

, 1£Q > Q; . (120)

Later on,in another paragraph, thé functions e, ( P A ) will bve
identified with the functions L ( (V- . A ) which derive from the linear
- independent functions v, (o, A ), (10) (1), (26) (27)

The linear independence i1s a property that is defined for a limited
number of functions, (15). The Jdefinition of Pq (v, A ) according to
(96) does not conflict with the linear independence of the functions

(e, A ), (15), 1f the e, fuuctions are substituted by the funo-
tione L ‘and ,further on, 1f the functions LS (\p A ) are substituted
by the funotione v, (¢, A ), (see (27) (28)), since Q has a limited
amount, (119) (120). The following sentence is derived by (119),and up to
(121).(The completeness of the systems wo(pyA) or vn(&p.)\)LSee pardgraph 6.9).

Theorem 11:

The series development (118) is convergent, because, after the choice
of a positive number, arbitrary small,

]e'n.o: > G- : (122)°

‘an integer Qo = QO ( 811.0) can be found such that for the integer Q,
QR > Qo ’ : : (123) - .

tne following relation is valid, (96),

| Q ,
£ (p,A) - Egnen(go,h) S {811_0 (124)
) n =1
In the second term on the left hand side of (124), the functions
e, (P,A) can be identified with the functions w (¢, A),(26). After 1%,
w (<p,1) can be replaced by v (¢, or introducing (27) and (28). The
modified form of (124) obtained along these lines considers v (30,/1)
only for n=1,2,...,Q. Thus, this modified form is ih
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keeping with (15), because Q represents a limited number. There is no upper bound
for Q. (See also the paragraphs 6.3 and 6.4).

The introduction of the convergence criterion of Cauchy avoids likewise a
confliot with the fact, that (15) refers to a limited number of terms only, (if

e, —> W, —> vn).' In this context, the inequality (91) is replaced by

Q+Q* .
Zgn en (‘f’k < 612 ° = (125)
n=Q+1 :
Theorem 123

After the choice of ;a positive number, arbitrary small,

[4 = o , (126)

12
an integer Q; = 90.0 (5212) can be found such that for tpe integer Q,
G o | (127)
and for the 1n£eger
& s 1, ' (128)
the above inequatién (125) is right.
The validity of the sentence expressed by (425) to (128) is gasily proved,

as follows:
(125) and (96) give

Q+Q*
’2 = ’A an sﬂ & ’2 .
n% 8o @od) = 2B =B g (R = 2 g (90D (129)

is a continuous function also. It has the following uniform convergent series

'Bq (¢y2) and pQ+Q* (y,2) are continuous funoctions, (96). Therefore, pQ Qi (¢,2)

development in terms of spherical harmonics, (97),

-]
p . (92) = P u, (py2) o (130)
s g QQ®n 2 _
(129) and (130) give 3
) Q+Q*. |
o @2 - 2 - 26 (1308)
- Il Q.Q =1 1=Q+1 _

In analogy to (98), the relation (130) is transformed to

:
R L g R i) &% - (2
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8*6 is an arbitrary small residuum, as Egr (98). 6*6 fulfills a theorem
analogous to the Theorem 7 for Ege (103) and (131) lead to
Ve '
Y % (?"1> = E P = u, (‘f’;{) + 5§8 (Q)Qi) . (132)
Q.q n=1

/Uf] is a fixed hpper bound for J!, which derives from the constraint that the
function |€*8 (Q,Q‘)I does not surmount the amount (which is independent of
Q,Q*) of a certain upper bound |6§7[ , for all values of Q 2 1 and QiE 21,
(96)(128)(129), (see Theorem 8). With (105), the inequality of Schwarz gives,
(132),

[T

@l
%;;pq.q*.n Pur AR ok

n=1 Q.Q*.n

. (133)

. (134)

S*?is a positive and limited amount. After the choice of a positive number 612,
Eio >0 , 1257

arbitrary small, an integer Q, , (e 12) can be found such that, considering (109)
(110)(111)(125)(127)(128)(129)(130a)(132),

|PQ QR (‘f’a)' £ (€ 14 T léie (Q)Q;) | ) = 512 ) (136)
with
77 1
> Peo®.g n @R)| = £y, ¢ €458 < €, 8 (136a)
ns1 -Q".n
and with
ey ety
&7 2 0
L ST = £,5 € 4 5 B PRS, » C, (136v)
n=1 Q‘Q on i=Q+1 -

513, 514 are positive amounts, arbitrary small; 613 < 24’ 514 < 64 S’,
(109)(134). After the choicle of €409 s§7 can be chosen such that
1
le®s (@,®)| < |e*,| < 3 €,,, for all values 0£'Q and Q® (136). Q,_, can be
I

chosen such that 614 < % 12s by a sufficient far extension of Q in (96),
Q
Z &y en'(‘f’a) ) (136¢c)
n=1 :

before the background of the convergence in the mean, (79)(80)(88)(89).
Consequently, (125) is right. Thus, the uniform convergence of (118) is corro-
borated. (136) does not conflict with (15), because Q and Q* have certain values,
aocording to (127)(128)3 they do not go to infinity, a property demanded by the
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"definition of the linear independence of the Y funotions. These ¥ funoctions
lead to the . funotions identified later on with the e funotions of (136¢c).

Now, the often discussed counterjpxample about the convergence of the
considered series should be mentioned, (207a)(265): A point mass is introduced,
it has the distance b to the gravity center of a spherical body with the radius
R, b > R. For the computation of the potential T of this point mass, in the
exterior of the surface of a rotation ellipsoid enoclosing all the masses, the
straight distance to the point mass is developed in spherical harmonios oonver-
ging only 'if a > b (a: Radius of the test point). The exterior potential T oan
be expressed by the masses my . There exists an infinity of different systems
of mass distributions my (4 =1,2,3,...), each of them gives the same exterior
potential field T,

T = o(.(mi), Ciia=aAs 20985 e ; (1364)

The expression (136d) for a special parameter i has not a unique inversion. The

mass distribution in the interior can not be determined in a unique way by the
exterior T values — a well-known fact —.One mass distribution of the infinity of

mass distributions m, , generating the one exterior T potential, ocan be in keeping
with the convergenoe. For instance, the system of the mass distribution

within the Bjerhammar sphere gives rise to a oonVergent series, sure. Thus, the
above counterexample is not convincing.

A poftential of masses within an ellipsoidal boundary surface can be developed
in Lamé funotions which give a well-knbwn convergent series development in the
exterior. In case of a rotation ellipsoid, the Lamé functions degenerate to
spherical harmonics and absolute oonvergent series. Also in this oase, the

convergence is never in question.

The exterior poteantial and the gravitating masses have not a one-to-one mapping,
this fact is a clear handicup in the here discussed problem. But the exterior poten-
tial and the boundary values of it have the ‘preference to be connected by a
one-to-one mapping, as it is proved within the scope of the Dirichlet boundary
value problem. Therefore, it is not convenient to consider the convergence of the
here discussed series development in terms of the gravitating masses. But,
certainly, if these considerations are carrisd out in terms of the boundary
values of the potential, the questions about the convergence of this series deve-
lopment find a clear, positive, and satisfactory answer,
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6. The convergence of the spherical harmonics series development of a
potential in the exterior space of a regular surface,

6.1+ The interrelations between the different systems of base
functions,

The Schmidt orthogonalization process conducts from a system of
linear independent functions, as Vy, to a set of orthonormalized
functions, as wy, (see (27) (28)), The functions

W1(\P’A.)'w2(“P’l)I'QWB(W,'A)’ ...,WL(P,I;{)(137)

construct the vector Wi they depend on the linear independent and
regular functions vy (y , A ) by the linear systems (27) and (28).
The vy functions are linear independent, (15) (16). Therefore, the
Gram determinants +that appear in the-course of the orthogonalization
process are necessarily non-singular, it can be ‘taken from .the
textbooks, [E] 10/ [14]. Thus, the constant coefficients bi.k of
(27) and (28) follow to have finite amounts, and the functions Wi,
(1< i £ L), yield as continuous, regular and orthonormal functions,
Consequently, the functions wy have convergent series developments in
terms of the spherical harmonics, /97.

It is easily shown that the function wy, (26) (27) (137), have the
same properties as the functions ey, (56) (119). The functions wy are
orthonormal, as ey The functions w; are regular, as ey

There is a one-to-one mapping between the elements Wy and Vis
(wi - Vi), (see (27)). There is also a one-to-one mapping between
the elements v, and w, (vi - ui), (see (10)). Consequently, there
follows also a one-to-one mapping between the elements wy and LD
(wi A ui). Such a one-to-one mapping exists also between the
elements e; and wy, (e; .~ uy), (see (54) (55)). There is no upper
bound for i, sure,

Hence, there exists a one-to-one mapping also between the elements
wy and e,, (wi - ey)e’
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The functions v, (¥, A ) are linear independent, they have the
representation according to (11)., The functions Wy (y ,~A ) ensue
from the functions vy ( P A ) by means of the Schmidt orthogonali-
zation process, (35). The functions u; (p, A) are the orthonomalized
spherical harmonics. The detailed mutual dependences are expressed by
the following lines, (10),

Vn'(\P./\ )=‘

and, (27),

Wn(lP’A)=

n = 1’ 2’ eee

With the infinite column vector,

oo

n

2

i=1

U--,(‘F’A)
u2(KP’A)'
u3 (P 2)

Phiv (Psd)

p,i Vi Cpa A)

(138)

(139)

(140)

(141)

of the spherical harmonics, and with the representation of YL and s

according to (32) and (31), the subsequent matrix relations are
obtained, (28) (35), (138),

L

here is

DOI:https:/jdoi.or’g/1 0.2312/zipe.1987.089
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QL is a lower triangular matrix which: results from the orthonormali-
zation process, Therefore, it is a non-singular matrix, - eo ipso -, i
Thus, the inversion. of (143) is possible, (35),

Ty Q) el s | (146)

(B,)” 1 is a lower triengular matrix, too. By and (Bp)~ 1 are non-
singular, square,and L - L dimensional matrices, '

det B, + 0 . (147)

But the matrix gi is not square , it has the elements bi.k’
(1 =15 2y 000y L) (k =1, 2, eee) o 1 has a finite sequence, but k
does go to infinity.

( b‘io1 b"|.2 b%o3 e u
bé.1 bé.2 bé.3 oo
Bl -5 . - o ’ (148)
3.4 3.2 3.3
Lo bi.2 1.3 p
Bl = -{bi.k ]— 5 (149)
with (9) (10;, (12),
bi.k'-’(((?) a (p,A)u (@, A)aF, (150)

P

For 1 = k, the relation (150) leads to, (t > 0),

b > 0 . (151)
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6.2, The space of the base functions,

As to the system of the functions v, (  , A ) and that of the
functions w, (v, A ), each of them consists of an infinity of
functions depending on y and A , They cover the sphere, (11),

The first system consists of linear independent functions, the

second system is orthonormal, But, this is not a complete description
of the properties of the two systems. Beyond it, v, derives from w -
and‘only from the one single function w, selected from all the othez
functions uy (1 =1 2, 3, eee)y - by the well-defined and unigue
relation: (11) which multiplies the function;un with (1/t)2. This
relation: (11) has a unique inversion,

B(ip s A e Kbl s A DR 0 oA ) (152)

A single member o) of the system of the Va functions is generated
only by a single member u, of the system of the w, functions. And
inverse, a single member w, of the system of the w, functions is
generated only by a single member Ve of the system of the Va functions,
The interrelation (11) demonstrates that the one-to-one mapping

vn - un v (153)
r : 1, 2, XXX L, (154)
L — ©Oo ’ (155)

is possible, sure, There is no upper bound for the integer L, sure.
The system of the functions G, has - 8o to speak - the same number of
elements as the system of the functions We Further, on the strength
of (11), the regular functions v, are situated in the space of the
regular functions described by the system of the w, functions.
Consequently, it is. obvious that the functions g determine and
generate completely the space of the functions w, which is the gpace
of the regular functions.

By means of (27), the v, functions describe completely -the seme
space as the w functions, Purther, in a similar way, by means of
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(27), the L functions describe completely the same space as the w,
functions,

Thus, obviously, a regular function can be expressed completely
by the v, functions or by the w, functions. On the strength of (11» and
(153)(154)(155), the functions v, cemnot determine only a subspace nf
the space of the functions u,, (n =1, 2, 466y Ly L > 0O ), Later
on, in this chapter (paragraph 6.9.), this fact is corroborated by
the detailed investiéations about the completeness of the system of
the Ve functions, described in the baragraph 6.9,

_ Summarizing, the relation (11) leads from the u, system to the vn‘-
aystem, The orthonormalization is the step from the v system to the
L system, The above deliberations show that the w, system can be
transformed into the whbsystem by the multiplication with' an infinite
orthonormal matrix A which has the property of (41).

6.3, The determinant of the orthonormal matrix,

Now, the matrix Bj of (142) (148) (149) is put into the fore,
Pruncating the rows of (148) behind the element of the suffix k = L,
the following I . L dimensional square matrix is obtained,

b b

-t

1.1 P2 3 eee Pig
b, bPa2 D33 vese D3y
Bl.r = | P P2 Pi3 eee DYy ] (155a)
b4 Pl b3 eee Big
or
Bl - {bi.x}“ J (155b)
19 k= 1' 29 3, seeyp L, (155°)

The elements of the main diagonal of gi 1 are positive, there is no row
and no column of B' _ which consists of zero elements only, (151),
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Further, the truncated column vector u; is introduced, (141) (142),

v

u1 ( P A )
\u2 ( \f? ] A )
L = u»,) ( P oy A) 5 (1554)

ne
|

u, Cp oy )

The 'greater the value of L the better the product

Bl ug (155¢)
approximates the vector Yo (142), The greater the value of L the more
precise the row vectors of gi.L tend to construct a L - dimensional
parallelepiped the volume of which is never equal to zero, This im-
portant fact is right, because these row vectors of Eﬁ L tend to be
linear independent if L becomes greater and greater. The greater the
value of L the better the product (155e) represents the linear

independent functions v, (\P y A), (142),

The following trensition behavior is valid:
If the suffix L tends ta infinity, L —> oo , the consequences are,

Bj, — B' : (156)

det B' # 0 , (157)

and, (143) (147), ‘

By aemm 1 B ' | (157a),

det B ¥ 0 ., (157b)

The relations (145) (147) (155e) (157) and

Br Bl ™

[[lo<)

B' = ¢ 4 for L — o0 ’ (158).
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lead to,

det ¢ = det B : det B' 4 0 , (159)

Because of (159), the inversion of the matrix € is possible, (144),

s = ¢y, (160)

The functions L and w, are orthonormalized.Thus,g is orthonormal, (41).

T-gg'apg. (162)

na
na
"

Purther, as to the diagonal elements of gT C, these values are the

diagonal elements of
b

)T (33 |, (163)

e
I
I

see (158), Because of LA > 0, (151), and bn.n > 0, (28a), and
regarding (27) (28) (28a) (152), it, is easily seen that the column

vectors of the product matrix B B' have at least one component which
does not vanish, Thus, no diagonal element of gT C is equal to zero,

Consequently, the transition L — oo and the equation (162) lead
to. (159),

det. 8 + 0 , (164)

and, more precise,

(det C) (det GT) = (det €)% = det E = 1. (165)-

Hence, more detailed than (159) (164),

det ¢ = 1. (166)

DOl:https://doi.org/10.2312/zipe.1987.089



195

The relation (166) corroborates the fact that the matrix C is non-
singular. C oan be inverted, (160) (161).

The subsequent relations are self-explanatory,

9_1 = ET ’ (167)

T

ggt- ¢

c = B . (168)

(168) gives the definition of an infinite orthonormel matrix, /77,
(see also (41)). Thus, the matrix ¢ according to (145) and (158)
is an infinite orthonormal matrix.

6.4 The convergence property derived by the donsideration of a
determinant. .

Before the background of the above lines, (see the equations from (138)
to (168)), it is possible to identify the funotions LA (1 £1¢Q),
with the functions ey, (56) (119), - (see, in paragraph 6.9, the detailed
completeness proof for the funotions vy and, consequently, for the
funotions. w,, to00) -,

ey (¢, 1), €5 (p,2), e (‘f’ s A )y eeey 9Q (Pyr), (169)

(i=1’ 2, L) Q)o

Here, it is allowed to .replace the integer L in (137) by the integer
Q of (119).

There is no upper limit for the integer Q and for the integer L.
further on, it is allowed to identify the matrix ¢ with the matrix A.

Consequently, the formula (119) can be transformed into (170),

2(p,A) = nﬁ;,snwn (PyA)+ E4q (170)
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The detailed shape of the functions Wpe D > Q, is not required here

in the equation (170); the share exerted by these functions is

represented by the residual term €494 which can be neglected. The

uniform convergence of the development (170) is corroborated later - desisting
from using (119) to (121) - by a consideration of the system of the

wﬁ functions, (gee the paragraphs 6.9, and 6.,10,.). ?

6.5, The sevaration of a limited number of linear independen}

functiong, :
_—

Some explanatory lines about the transitipn from the ey functions
to, the w; functions, (i =1, 2, 3, ..., Q), shtould be added, For
instance, it ip possible that the A matrix of (54) transforms the
u vector into an ¢ vector of which the foremost components = Q in
nunber - are not identical with the orthonormal functions

v, G A Yy Wo (v, Ay eeey W) (¢, AT s (171)

(See the transition from (119) to (170)).In this case, the equation
(54) is multiplied on both sides with 'a second infinite orthonormal
mntrix Aty

(f1:re.)

g
n
Il,’x:
no
n
=
TP
e
°

vy G, )
W, ( P A)

vi' o= vig (ip A) FAO) (173)_
Y 4 (w441
¥l + 2 (pyA) i

oo r

b

As to (173), the following relation is valid,

(«P N A ) = ',T"-’ ( » "l \5 H if ,j = 1, lh, teey Q. (1'{4‘)

I
U

DOl:https://doi.org/10.2312/zipe.1987.089



9T

The product of two infinite orthonormal matrices is again an infinite
orthonormal matrix, it is obvious, Therefore, A' A is again an
infinite orthonormal matrix, (172), Thus, the relation (172) leads to
the fact. that the vector w' represents an infinite system of
orthonormal base functions wj (¥, A ), similar as the systems of
the ey and uy functions. The’Parseval completeness relation is also
valid for the system of the wj functions, (i = 1, 2, ..u), (79) (80)
(172), similar as for the systems of the u; or e; functions. There is
a one-to-one mapping between the elements e, and wj and bei;ween'u:.L

1

and w!, (174). This mapping happens on the basis of (10) and (11)and (27).

1

The gubsequent relations are self-explanatory, (45) (59),

a = ai'-.k} I T B et S (175)

The orthogonality relations for the ey functions and the equations
(172) lead to

ui.k - g( b4 ( ¢ % Af) il ( P A ) L ; (176)
; :
for
(LR el (o) : (177)
for
SR 2 s el o (178),

Because of (174), the foremost components of the vector w' - Q in
number -, are equal to the wy functions with the suifixes 1 = 1, 2, .., Q.
Therefore,the relations (119) ‘and (170) show that the subsequent 3
equations are right,

Q
SGANC S8 S RN AR B IR _(179)

n 1
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Q :

f(‘\PQ l) = S;IWn(‘P"I)'l' 811 ’. (180)
n=1
Q ..

ECp s A) = [T gy (P A+ ey (181)
n=1

It is possible to choose a certain number, arbitrary small,

£ 11,0 | >0 (188

having the property, that

for a sufficient great value of the integer Q.

The explicit shape of the functions wﬁ, for the suffixes n > Q,
is not necessary to be discussed in this context. These functions are
involved by the effect they take on the residual term e 11 of
(179) (180) (181); e ,, can be considered as an arbitrary small
amount, -

Within the course of the deductions of this above paragraph 6.5.,
the system (27)needs not to be extended to infinity, Therefore, it is
possible to introduce the functions vy with the, characteristic to be
linear independent. Thus, the definition of this characteristic is
not violated, since the above lines avoid an infinite extension .of
the number of the functions Vie
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6.6+ The convergence property at the surface,

The B matrix transforms the vector ¥ into the vector w, (157a),

(see (28) to (35)).

With regard to the equation (170), the integer L

has to be replaced by the integer Q. Hence, the matrix relation (28)
gets the following form,

Q =

s
[[{ev)
i<

Q =Q

. | (184)

‘The formula (170) can be expressed by a scalar product,

£ ( P l )

In (185), gq is the

-

g{
€2
éQ = eoe

&qQ

The right hand side
(185),

f(\fjol)"
The introduction of

L 4o
9 = & B

The coefficients in

g ¥o ¥ €44 ‘ (185)

hos

following column vector: for the constant coefficients,

=

. (186)

.

of (184) is a substitute for the function i) in

§g 1 L A (187)

‘the following abbreviation is advantageous, (188),

v (188)

the LA system have the following column vector,

. (189)
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Hence,

(190)

£0p,2) = gg Yo+ eq

and the corresponding expression by the components of the concerned
vectors is,

Q
£ s Q) P T Tado s € it Dlibin g e (191)

n-=1

The formula (191)(is a uniform convergent series development for the
surface function £ in terms of the linear independent functions

vy Cp oy A), (see (119) (120)).

It is a small step only, the way that leads from the series (191)
for the surface values £ ( ¥, A ) to a spatial spherical harmonics
gseries development specialized for'test points situated on the
boundary surface D. The relations (10) and (191) give

Q 1 n
f(\p./l)=z qn[;m;)%(xp.))+e”.(192_)
1

n =
' The combination of (8) (192) (120) leads to

Q

f(\p./\)=Z'qn[(—;-)nJ R DL A S O
n =1 D |
€ 11 -— 0, 2 Q — oo . ‘ (194)

The relations (193) and (194) are equivalent to the expression (195),

f(\p./l')=§i'qn [(%)H]Dun(&p.ﬂ)‘~ (195)
=1 -

l n

The formula (195) describes the following facte
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If there is given a regular function f on a regular surface D, it is
possible to develop f in a uniform convergent series in terms of the
solid or spatial spherical harmonics being specialized for the points
of the surface D,

6.7. The convergence of a series development in spatial spherical
harmonics,

It is a short way only that leads from the convergence of (195) along
the surface D to the uniform convergence of (3) (5) (6) in the exterior
space of D, The formulas (81) and (195) give,

(%)nJD P T (196)

For the investigation into whether the validity of the convergence of
(196) can be extended into the exterior space, a series criterion of
Abel is in the focus of interest:

A convergent series development

oo

TR . (197)

n=1

is given, Further, a monotone sequence of terms with limited amounts is
defined,

{bn }- = byy oy gy eei e . (198)

The theorem of Abel states that (197) and (198) lead necessarily to the
uniform convergence of the subsequent series development (199), [ﬁ}].

IR _ (199)
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In che here discussed applications, the terms a, of (197) are
replaced by, (196),

n
a, = q, [(%) } WGl A )4 (200)
D
further, instead of bn' the following expressions are introduced,

n

) %
T B

{201)

All the points of the same geocentrical latitudes and longituies,
p and A , are situated on the same geocentrical radius vector; the
radii of all these points have the lower.bound Ty =T ('p 9 A )s The
upper bound of these radii extends to infinity,

i g oo (202)

(202) is valid for a certain parameter couple Py A of fixed values,
Hence, (202),

(203)

o
A
H IUH
N

°

Therefore, the bn>terms construct. here a monotone decreasing sequence,

(n}- 20 (3 |

The introductior of the relations (200) and (201) into She series
(199) leads to the here important statement that

3

{52\ 3 oee ° - (204)
L= ]

Vo= Z a, (%)n unl(\P.A) (205).
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is a uniform convergent series development which is valid in the
exterior space of the Earth's surface D, and on it,

The formula (205) shows that the spatial function W is harmonic,
(2). W fulfills the Laplace differential equation, (2), because the

members of (205) fulfill the equation (2),

"
o
-e

n
L) (;—) w, (pyd) (206)
the solid spherical harmonics are in the brackets of (206),
As a supplementary remark, it is to be stated that the first theorem

of Harnack leads also from (196) to (205) - rrom the convergence on the
surface D to the convergence in the exterior space of D, [32/.

6.8, The uniqueness,

The uniform convergent series (205) valid in the exterior space
of D solves the Dirichlet boundary value problem: If Wp, (196), repre-
sents the boundary values on D, the uniform convergent series develop-
ment (205) determines the attached spatial potential W in the exterior
space of D,

The solution of the Dirichlet boundary value problem is well-knovm
to be unique, [12/. Therefore, the spatial representation (205) is
necessarily a unique one, Phere is no other W potential which is
harmonic in the exterior space of D and which observes the boundary
values WD’

.If W, on the left hand side of (196) is given as a regular, surface
function, this fact lLeads necessarily to a unique system of the Q,
coefficients on the right hand side of (196), because the terms

[(%)n] . w (o e h) ' (206a)

are linear independent surface functions. This unique system of the 9,
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coefficients leads necessarily to a unique spatial representation of
W by (205).

The bounaary values W construct a regular two-dimensional function;
the solution of the Dirichlet boundary value problem is well-kmown to
be a regular function in the exterior space of D, [12/. Hence, it
follows that the expression (205) is a regular function in the three-
dimensional ‘space exterior of the boundary surface D,

The formula (205) - being valid in the exterior space of D - implies an
extension of the validity of (3) and (6), The validity of the latter
. formulas is restricted to test points situated only in the exterior
space of the Brillouin sphere, (r = R), (see Fig, 1), The a,.
coefficients of the series (205) can be identified with the |
coefficients of (6), '

94 = W 5 (207)

If the relation (207) is fulfilled, the developments (6) and (205) are
identical, (for r > R), member by member,

Further, both of these series are convergent for r > R. As to the
harmonic downwards continuation of these functiona from the Brillouin
sphere down to the Earth's surfgce D, the theorem about the harmonic
continuation has the following text: There is given a harmonic function
V in the three-dimensional space G. In a. subspace G1 o? G, the V
function is identical to zero, It follows that the harmonic function V
is necessarily equal to zero in whole the spacde G , too .

In the here discussed applications, the harmonic potential V is the
difference of the two harmonic expressions (1) (6) and (265).
Obviously, tegarding (206), this difference function is harmonic ir any
oase and for any test point, It is harmonic in the exterior of D,
Further on, (207), this difference function is equal to zero ir the
exterior of the Brillouin sphere (r é R). Thus, according to the
theorem about the harmonic continuation, it is equal-to zero also in
whole the exterior of D,

0 Ay follows that the introduction of the Wi, coefficients into (205)
leads necessarily to the uniform convergent spherical harmonics series
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development of the gravitational potential valid in the exterior
space of D,

LECER T (-l,-)n w, (p,A) . (207a)

The identification of the analytical expression (205) with the real
potential in the exterior of the Brillouin sphere includes this
identification for whole the exterior of the surface of the Earth,

6.9, The completeness of the system of the linear independent functions,

The investigation into whether the system of the linear independent
functions v; (¢ , A, (11), (195), {s complete - considering the
space of the regular functions £ - is governed by the following
condition: ’ :

If£ all the integra.is

g(f-vi(‘p./l)dli‘=o 5 (2oé)
P _

= 1, 2, 3, [ X ) 9 (209)

are equal to zero, in this case, the regular function f£ is necessarily
equal to zero over the whole surface of the sphere;, /6/ /10/ 1] 4]
{5/ (16/. Thus,- from (208)¢(209) the subsequent equation has to follow,

£ — 0 y = for the whole surface F . (210)

In case of orthonormal base functions, w; ( P A ), the completeness
conditions have a shapesimilar as (208) (209) (210): The system of the
orthonormal functions wy ( ¢ , A ) is complete in the space of the
regular functions £ if

g f-w;-dF = 0 , | (211)

T
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i-= 1, 2, 3. eoe '] (212)
leads to
t = 0 Jm for the whole surface F. (213)

These relations for a system of orthonormal functions, (211) (212)
(213), are more common in use in the textbooks than those relations
(208) (209) (210) for a system of linear independént functions.

A look on the relations (27) shows that the fulfillment of (208)
(209) (210) is a consequence of the conditions (211) (212) (213), and
vice versa, The two systems of condition. equations, described by the
relations (208) to (210) on the one hand and (211) to (213) on the
other hand, are equivalent.

In order to investigate into whether the condition relations,(208)
to (2ﬂo)ﬁare observed by the functions v, (42 )y (11) (195), the
potential of a surface distribution is introduced,mnow. It covers the
surface of the Earth D, /12/.

T o= g{ ln.a . (214)

D

m represents the surface distribution, dD is the surface element,

e is the straight.diétance between the surface element and the spatial
test point for which the potential T on the left hand side of (214)
is taken,

The relation (214) is valid for test points situated in the
interior space being enclosed by D, as well as for test.points in the
complementary space i. e. the space exterior of the body of the
Earth. The relation (214) is valid also for test points situated on
the surface D. Thus, the expression (214) for the potential of a
surface distribution is valid . .for test points situated anywhere in
the three-dimensional space, e

The expression for 1/e in the relation (214) is developed in a
uniform convergent series in terms of spherical harmonics, (see Fig, 2),

07 027,
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™13

WT' Pn (OOS 1}/ ) 9 r £ r' H (215)
n=20
or,
o0
(r*)
%:Zrn—_'_ﬂr Py(cosy ), r < r, "(216)
n=20

Pn are the Legendre functions,

. The series development (215) is valid for test points P situated in
the spherical volume which is enclosed by the interior Brillouin
sphere having the radius RB.i’ r < RB.i; i. e, the greateéest
geacentric sphere being enclosed completely by the Earth's surface D,
The validity of (215) is given also for r = RB.i' Fig, 2. r' is equal
to the geocentric radius of the Earth, Fig, 1 and Fig. 2,

=y o=t (217)
Heﬁce, (215) and (217) are combined to

©o rn
Z ;-n-_-l-_T Pe (cos v ), » £ Rg 3 (218)

n=20

(214) and (218) give

oo n
T
T = > tn+-1--Pn(cosy/)-m.dD;rgRB.i. (219)
n=20

Or,

o
T = ): P I(’t—n_'l'-f Pn(cos y/).m:dD;rQRB.i.(ZEO)
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Fig, 2: The interior Brillouin sphere of the Earth with the radius
| RB.i; the interior and the exterior space, I; and Ia’ of
the body of the Earth; the surface of the Earth, D; the
surface point PD; the surface normal vector n directed
into the exterior space I_.

The addition theorem for the normalized spherical harmonics is,

87 (97,
n
1 =
Pn (GOS L' ) =;:—1- Z{Rn.m (‘P’A)En.m (IKP'Q /1') +
m=0
+§n.m 6L ’A, ) §n.m( “P" A')} ’ (221)
with
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Rom (P s A)=F,  (sin ¥ ) cos m 2 : (222)
S,m(psA)=F , (sin ¢ ) sinmA ’ (223)
g( R, dF = 47 ; (224)
P

2 = 47 . 225
(g ar = -
F

¥ are the normalized associated spherical harmonics,

n.m

The addition theorem (221) is introduced into (220), The primed
" latitude and longitude .refer  to the surface element 4 D which is
moving during the execution of the integration process,

oo n
T=Zrn : El‘m(w,)l)gf'#—fin.m(gol,ﬁl)m.dD+

D

1 1 e
+E i Zgn.m(‘P'A)grtTﬁgn.m(gD,/\)m-dD,
= 0

D

T . (226)

Comparing (10) and (11) with (226), and considering that the function
w, , q is a substitute for F\n.m and 5, the foilowing transition
relations are wvalid,

1 .
n+ 1 -‘)"';i_+_1' S A AT L (227)
/8 R L ek = v (0 A) = (/) w1 pd) (227a)
z ¥X F) N
Rp.n(pA) == un+,,(tp,)) y Ry p(pA) = w1 (44) ’ (227b)
( n = 0, 1, 2, oo ) | ] (2270)
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. = A .. X
and in a similar way for Sn.m(?’ ) and Sn.m(y%A), , too.
Thus, for instance ( see (227) (227a) (227b) (227c) )

1
oot O PN T'gh.m Co's A (228)

In view of the intentions here followed up, a combination of (227)
and (228) with (226) leads to the subsequent symbolic representation
of Ty (the zonal harmonics only are written down, as substitutes for the
zonal, tesseral and sectorial harmonics/tran,forming in the same way).

2n + 1

0o
1
T=Z"'n—“~n+1 Cor A\ vy 4 q Cp's A m . aD,
=0 '

B ;<RB.1 . (229)

(229) is an abbreviating version of (226),

The element d D of the surface of the Earth D is now expressed by
the surface element d F of the wnit sphere F,

[

d D *cos o =dF-(R+h)2. ' (230)

The angle o¢ is the slope of the terrain, R is the radius of the
globe, and h is the topographical height above the globe, In case of
a star-shaped Earth, the following relations are valid,

1 > cos R R (231)
R+h > 0] . (232)
Thus,
> 1
dD=(R+h)——— aF,. (233)
cos o .

A function f is introduced by

1
£ =m (R + &) ——— 3 (234)
d08
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f is an arbitrarily choseén regular function, (233) and (234) are com-
‘bined with (229),

s 1
T:Z-'rn2n+1m“+1(‘P"{) Yo+ 9 (s A1) £ aT,
n =
)
X sRB.i ° (235)
or,
oo 7
=) ——w (D) vt A 2 a
n=1
P
r & Ry - (236)

Comparing (208) with (236), it is obvious that the conditions (208)
have the consequence, Fig, 2,

W F 0 Lo "Ur i i - SRy NG (237)

or,

T = 0, within I, , . (238)

Because of the relation (237) and because T is harmonic in the space
enclosed by D, (214), the harmonic potential T is equal to zero not
only in Ii.t but also in whole the interior of the space enclosed by
the surface D, beyuvnd the subspace Ii.1‘ This fact is evidenced by the
procedure of the harmonic -upwards continuation of the harmonic
potential T from the spatial area Ii.T upwards into the area 11.2,
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(see Pig, 2). Ii is the space enclosed by the surface of the Earth D,
Ii 1 is the spatial domain enclosed by the interior Brillouin sphere
with the radius RB i Hence,

I

N I g + I A (239)

1.1 . (240)

The following well-known theorem about the harmonic continuation is
proved , for continuous gravitational potentials

If T is harmonic in a domain Ii’ and if T vanishes at all the points

of a domain Ii q in Ii' then T vanishes at all the points of Ii’ [127.

The spatial representation of T, (214), fulfills the Laplace
differential equation in whole the infinite three-dimensional space,

AT = 0 (241)
Therefore, (242) is right,

T = 9, within Ii . : (242)

On the strength of the equations (242) and (238), (239), the above
cited theorem about the harmonic continuation leads to the relation,
(238), '

by = 0, within I, ,, (243)

and, further,

D= F 0y within Iy (244)

This relation (244) has a consequence which is important for the
aims here followed up.

In the theory of the potential of a surface distribution, it is
shown that this potential is a continuous function within whole the
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three-dimensional space, even, in oase, the surface with the
gravitating distribution m, (214), is crossed.

The testpoint of the potential function T, (214), may approach the
point Pp on the surface D from the interior domain and, in a second
case, also from the exterior domain (that is to say from the side of
Ii resp, Ia)jBy these appoaches of the testpoint to the surface D,
the values (Ti)D and (Ta)D are reached for the potential T, Because

of the continuity of the potential T, (even if the surface D is
crossed), the following equation is right, [ﬁa/,

(Ti)D" = (Ta)D 5 (245)
(244) leads to

(T)p = O . (246)

(Ta)p = © - (247)

(247) is an expression for the boundary values of the exterior
Dirichlet boundary value problem for the potential T, The sofution of
this problem is unique, /12/. Thus, by (247) and (241),

T = 0, within I_ , (248)

Ia is the domain exterior of the surface D,

For the derivatives of T in the direction of the exterior normal
vector n, Fig. 2, the values

[_22} resp. [ g’l‘ ] (249)
Ya [y.p i

&

follow, approaching the surface point D from the side of the interior
domain Ii’ resp. from the side of the exterior domain Ia; The Jump
relation, [/12/, for
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i (250)

at the surface D gives, (214),

[.’DT} ’OT} o
; - = 40 m. (251)
On) p onja.p

Since the T values are equal to zero everywhere in I, and I, (244) and
(248), the normal derivatives of T are equal to zero, too.

' Thus, the two terms on the left hand side of (251) are both equal to
zaro also. '

Hence, with (251),
= 0 e S0 D - (252)
yvhe relations (231) (232) (234) (252) reveal
£f = 0 , on D . (253)
Summarizing the above deliberations from (214) to (253), the
conditions (208) (209) lead not only to the relations (237) (238), but

also to the consequences shown by (253) (210),

Therewith, the completeness of the systems of the funci.ons vy and
w, is proved, (10) (11) (27) (28).
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6.10, The convergence property .derived by the completeness of the
system,

A regular function f has the following representation in the system
of the functions w, (¢, A ), (78) (170),

o0
£ (p,A) = E gnwn(«p.).). (254)

n =1

and in the system of the functions v, (¢, A), (191) (195), (207a),

O

£ Cp, ) = ) Wev (e, ) (255)

n=-1%

As it is shown in he textbooks, the convergence of (254) and (255)
is demonstrated on the foundation of the completeness of the systems
of the w_ (¢, A ) resp. v, (p, A ), a characteristic proved in the
preceeding parsgraph 6, 9,. The completeness is equivalent with the
fulfillment of the Parseval relation, (79), [6/ /107 /147,

oo

le)? = 20 & . _ (256)

Phis relation (256) leads to the uniform convergence of the series
(254), it was proved by the detailed developments connected with the
velations (79) to (136b), - after an exchange of e ( ¢, A ) and

w. (¢, X ). (119) and (120), (170), give

Q .
£ (-0 W) | = }__" Ba Wy (Y, A Y+ €44 (257)
n='1
with
€49 == 0, 1 Q—> OO e (258)
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According to the Cauchy convergence criterion, the relations from (125)
to (136b) allow the following modification of the statement about the
uniform convergence of (257), using the completeness of the wy £253)(256).

Theorem 133

The geries (254) is convergent, because, after the choice of a

positive number,

> 0 35 . (259)

€ 15.0

an integer Q, = Q, ( €45 O) can be found such that for the integer Q,

and for all the integers Q* 5

Q* o (261)

the subsequent inequation follows,

3Q+1WQ+1 ("P,A)+SQ+2WQ+2((PDA)+000+

+ gQ,,_Q* wQ-l-Q* ( (10 ’ /1 ) o8 € 15.0 °* (262)

The relation (262) meets the fact that the property of the linear
independence of the functions vn (\P 5 A ) is explained only for a
limited number of functions of the v system. The functions L (o, A)
are derived from the functions v, (y, A), (262), (23) (24) (25) (27).

As to the uniform convergence of (255), the orthonormalized functions
of (257),

w, (@, A) g B Wy B QY (263)

can be expressed by the linear independent functions

vn (‘P ’ A) gi . (=l 208 ooy Q) i (264)
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This exchange of the base functions happens by means of the system
(27). Along these lines, (27) (257)L the equations (257) and (258)
turn into the following shape,

Q
£ (p,A) = Z Wov, (oA )+ eqy (265)
n =1
here, the inequations
€41 < € 11,0 % € 11,0 ’ > 0 , (266)

defenmine the sufficient great integer q y» - ( Bee (182) (183) ).

The two relations (265) (266) given above prove the uniform
convergence of the series development (196) which is here to be
investigated, This proof given in the above paragraphs 6,9, and
6.,10. 1is free of any consideration about the amount of a determinant
of infinite dimension,

6.11, The theorem of Picone,

In the external space of a body, a system of harmonic functions

u (x, y,2) = U () , (267)

n = 1, 2, 3. eoee 9 (268)
may be defined. These functions have the character of base functions.
X, ¥, z are rectangular Cartesian co-ordinates, The individual

functions Un (x; ¥, 2) fulfill the Laplace differential equation,

Av x, 5,2 = AU () = 0 . (269)
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Let the star-shaped surface D of the body be described by a regular
function,

%2 = Zp (b @) , (270)

it depends uniquely on the radius vector, p and q,denote Gaussian
parameters on the surface D, For testpoints situated especially on
the surface D the harmonic functions U, (x), (267), change to the
two-parameter functions Envs

Ug Qp) .= T = 8n (D) e (271)

Now, an important property is introduced about the functions €n’
They have to construct a complete system of base functions

£, (py @) , ' (272)

n=1, 2, 3, eeey ) (273)
in the space of the regular functions.

Furthermore, let the following harmonic gravitational botential U
be given in the external space of the body,

U = U(x) = U,y 2) ; (274)
with
AU = 0 (275)

in the space exterior of the surface D, The boundary values of the
potential U on the surface D are described by the regular function

7= 7 (p q) (276)

giving,

U (zp) = 7 (p, @) . ' (277)
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Then, according to Picone's theorem,rjé], the uniform convergence .of
the following series expansion is secured in the external space,

oo
U=U(x) = ): w, U, () . (278)

n =1

w, are the constant coefficients. Moreover, if the testpoint approaches
the boundary surface D from the side of the exterior space, this series
expansion tends to the function’

do
Uzp) = 20 )= Z:j w, Ex @ @) . (279)

n =1

Changing over to our applications, the following substitutions have
to take place, (5) (6) (10) (11) (81) (196) (205) (207),

G @ - (%)nun(tp./l) : (280
P = ’ ; . (2815
qg = A , _ (282)
U, (zp) = E, (@) = v (yp, ), : (283)
U(x) = W(r.kp.l) . (?84)
Uiy = 2 (@, ) =% (p,r) , % 1< (285)
u, = W, . _ (286)
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The proof of the completeneses of the system
v (p,A) = Ea (@A) (287)

was demonstrated by the relations (208) to (253) of the paragraph 6.9..

Therefore, the proof of the convergence of the series development
(278) - brought about by means of the theorem of Picone and the
oompleteness of the én_function gystem -~ is also a proof of the con-
vergence of the spatial spherical harmonics development (6), The
convergence of the surface series development (279) corroborates the
convergence of the series developments (191) (265) valid for the
testpoints at the surface of the Earth D and for testpoints in the
exterior of the body of the Earth , (205) (207a) .
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7. The uniqueness of the Molodenskij boundary value problem,

Finally, a by-produot of the above derivations should be mentioned.
By means of (205), the oroof of the uniqueness of the solution of the
Molodenskij boundary value problem is unoomplioated;

This problem has the following definition: Aleong the real surfaoce
of the Earth shaped by the topographical heights the free-air
anomalies are given as boundary values. They depend on the perturbation
potential T by the fundamental differential equation of the physical
geodesy,

(288)

or
ZSET " T R

1
Hln
L]

The solution of the Moloaenskij] boundary value problem, - in its
original shape -, consists in the inversion of (288): The perturbation
potential T along the real surface of the Earth, - accounting for the
topography -, is to be determined in terms of the free-air anomalies

ZSagT of the gravity. The uniqueness of this solution is the question
here to be investigated.

Since (205) is valid, the perturbation potential T has the following
formula in the three-dimensional space described by the co-ordinates r,p,l

? - 2:: th (%) uI(¢,A) - (289)

(289) is free of the degrees ) = 0, 1 = 1, The above expression u;(@,x)
specifies the spherical harmonics. of degree 1, The constant
coefficients tl are the Stokes constants. The meaning of the suffix 1 of
(289) is not the same as the meaning of the suffix n of (205), 1t is
obvious: The suffix n of (205) begins with the integer 1, since it is
the custom to begin the numeration of the rows and columns of a matrix

with the number 1, (47).
The convergent series development (289) is valid in the whole exterior

space of the Earth's surface.D ,
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Y

The formulas (288) and (289) give (for testpoints along the surface
of the Earth, D )

A = 1 LN R0 o
&p = Z -1 tl (F) ‘i'l_(q)l A) yrat o= Tpe (290)
1l =2

The uniqueness of the solution demands that the constiraint

AgT-O ¥ r-t=rD, (291)

for the free-air gravity anomalies along the surface of the Earth has
necessarily the consequence

[ JRSTER I (292)
for testpoints on the surface of the Earth and in the exterior space.
In the investigation into whether this Molodenskij problem hases a

unique solution, the relation (290) and the constraint (291) lead to

o o e e
0 = Z 1 -1) tl (:—,) ul((P'A) y r=1%t = Tpe (293)

1l =2

The multiplication with the non-vanishing value t leads to

o0
1+ 31
0 = z::(l - 1) L2 (%)’ Uy @y ) . (294)
l =2 .
With
X 1+1 s - e
Vl (\P » A ) = [(%) ul((p,}\,) ;lD- » (295)

(294) turns to

oo
. * .
l=2
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The relations from 293)t0(296 are valid along the surface of the Earth,
D,

The equation (294) can be considered as the representation of the
Dirichlet type boundary values; in this case, the boundary values have
ths peculiarity to be equal to zero along the surface of the Earth. If
a potential is equal to zero along a closed boundary surface, this
potential follows to be‘equal to zero also in whole the exterior space
of this boundary surface. This fact is proved in the potential theory,
and it is generally accepted, 027,

Therefore, the boundary values (294) lead to the fact that the
spatial harmonic potential function'I which fulfils the Laplace equation

oy 1+ 1 :
I= }:: -1t (%J ) (p, ) (297)

1l =2

is equal to zero on the surface of the Earth, D, and in the exterior
space oflit. AI = 0, Along the exterior Brillouin sphere with the
radius R, the equation (298) is valid,

o0

! = 1 1+1 x
I=I(r=R vy, A)=0= 2-4 (-1 t, (f) u; (p,A ). (298).

l =2

The orthogonality relations (59) are also valid for the spherical
harmonics uf (y »A ), they result by (298}

tl = 0, (l ] 2, 3, ooo) . (299)

All the Stokes constants'tl are equal to zero according to (299), if
the condition’ for the uniqueness of the solution of the Molodenskij
boundary value problem is fulfilled, (291) (293). The potential values
of T follow,hecessarily,to be also equal to zero, (289). Thus, (291)
leads to (292).

Consequently, the solution of the considered type of the boundary
value problem of Molodenskij is unique,

Obviously, this above considered boundary value problem is identical
with even that version of the boundary value problem which maps the
telluroid points into their image po&ntl on the Earth's surface by a shift
along the geocentric radius vector.
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8. A short proof of the convergence of the spherical harmonics series
development of the gravitational potential in the exterior domain
of the Earth's body.

The above chapter E contains rather long and extensive investigations
about the convergence of the spherical harmonics series development for

the gravitational potential of the Zarth. Finally, a rather short proof
of this matter is to be added, [/4/ /[5/.

In /1/, page 84-85, and in /4/, page 177, a yet more short and instruc-
tive proof of the convergence can be found.

Domain B

Brillouin-Sphere r = B

Domain A

Surfaoe of
the Earth

Al

Fig, 3: The concentric spheres Fp and Fq with the common center Z. F
is in the exterior domain of the Brillouin sphere. Fq touches
the surface of the Earth in the point P.
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The real gravitational potential of the Earth is W, (1) (2), In the
exterior domain, B, of the Brillouin sphere the convergent development
(300) is valid,

rIZ + 1 X
W = Z[: o (;) u, (p, A ), (domain B). (300)

'

*
W are the Stokes constants and u, ( ) A ) are the spherical harmonics.
In the exterior of the surface of the Earth, (domain A + B), the
expression (301) is valid, Fig. 3,

W.= Ug+ Vg, (domain A + B), (301)
C n+ 1 2
Ug = Z W [3;-) w (gp., A ), (domain A + B) , (302)
: n =0

Uc is a sum,

Vc in the domain A, that is the function which is to be determined,
(300) and (302) show that

Vg —=0, if C —> 0o, (domain B) . (303)

The Laplace differential equation is valid for W and Ug in whole the
domain A + B, it is well-known,

AW =0, (domain A + B), . (304)

Auc = 0, (domain A + B) . (305)

(301) (304) and (305) lead to

Avc = 0, (domain A + B) , (306)

In the exterior domain B, a point Z is chosen, It is the center of
two concentric circles, Fp and Fq’ (see Fig. 3)..The sphere Fp with the
radius t' = p is 8ituated completely in the domain B, The sphere Fq
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: with the radius t' = q is situated in the domains A and B, it touches
the surface of the Earth in the point P,

Because of (306), the potential VC has the following convergent series
development along the sphere Fp, /127,

oo

Cop ~ >: Yoe (%)i “T('\_ﬁ b A (307)
i=0

v
and for the surface of the sphere Fq, the uniform convergent series

o A
Va.q = vog y Cpyd) . \ (308)

@ and A refer to the center %, The convergence property of (307)
reveals, [12/,

N
i M =
vC.p :2{: Vo.i (%) uy ( P Wi €16 m) (309)
i=0
with
€, (N) —-0, if N —-o00 , (310)
Further,
N .
v w700
Do vor U (LA )+ £ (M), (311)
i=0
with _
517,(N) —>0, if N — oo . “ury (312)

The orthogonality relation of the u?:functions(haviné the shape of
(12)) and the_relation (307) give
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+3
vou -(g]i f Vo, Uy (Frh) cosf 4G al,  (313)
e-f =0
for
1 =0 1 2 «euy N, (314)

The equations (303),(313) and (314) have the consequence

Vg,y —>0, if C —» 00, (315)

for

oo Ot 1Ty 25 wiaay. He ; (316)
Hence, considering Vc q° the first term on the right hand side of (311)
is a sum of N + 1 terms. Since the normalized spherical harmonics

u:(-( ¢ » A ) have limited amounts, the combination of (315) and (316),
and (311) results (317)

N .
¥ vc.iuf(¢,/l)—>-o, 1f C— oo . (317)
1=0

Thus, for a sufficient great integer C, by means of (311) (312) (317),

]Vc.q I < |ew@] (318)
with

€ 4g (O I > 0. (319)

The relations (318) and (319) are equivalent to the following
sbatement:

Vc.q“"' 0, if C—>o00. (320)
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Thus, for the surface point P, the function‘Vc tends to zero 1if
C tends to infinity. This faet proves the convergence of (300) in
the domain A, Hence,

oo
- n+ 1
Vo= }:j W (5) u, (¢, ), (domain A + B). (321)
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