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1  | INTRODUC TION

Low-temperature thermochronological data coupled to struc-
tural data can provide constraints on the structural evolution 
and long-term exhumation history of relatively shallow (2–5 km 
deep) crustal levels. Therefore, previous thermochronological 
and magnetostratigraphic studies of the Subhimalaya have used 
Neogene foreland strata to examine the Cenozoic deformational 
history (e.g. Burbank et al., 1996; Gavillot et al., 2018; van der 
Beek et al., 2006). However, limited or non-existent exposure of 
Palaeozoic–Mesozoic bedrock strata in the Indian and Nepalese 
Subhimalaya has precluded robust constraints on the regional 
pre-collisional history and possible influence of structural inherit-
ance on the Cenozoic history. The Palaeozoic to Mesozoic strata 
exposed in the Salt Range (SR; Figure 1) has the potential to record 
pre-Cenozoic thermal and cooling events from low-temperature 

thermochronometers because of limited (~2–5 km) burial beneath 
Cenozoic foreland sediment.

We present here the first low-temperature thermochronological 
dataset from samples collected along the strike of the SR. Structural, 
stratigraphic and bedrock detrital cooling data from each sample were 
combined within a single thermal model to extract quantitative ther-
mal history constraints. The thermal model and structural reconstruc-
tions are used to document the Palaeozoic deformational event and 
long-term thermotectonic evolution of the Salt Range thrust (SRT).

2  | TEC TONIC FR AME WORK AND 
STR ATIGR APHY

The Pakistan Subhimalaya is defined by the Kohat and Potwar 
(Figure 1). These are bounded to the north by the Main Boundary 
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Abstract
The Salt Range in Pakistan exposes Precambrian to Pleistocene strata outcropping 
along the Salt Range Thrust (SRT). To better understand the in-situ Cambrian and 
Pliocene tectonic evolution of the Pakistan Subhimalaya, we have conducted low-
temperature thermochronological analysis using apatite (U-Th-Sm)/He and fission 
track dating. We combine cooling ages from different samples located along the 
thrust front of the SRT into a thermal model that shows two major cooling events 
associated with rifting and regional erosion in the Late Palaeozoic and SRT activity 
since the Pliocene. Our results suggest that the SRT maintained a long-term average 
shortening rate of ~5–6 mm/yr and a high exhumation rate above the SRT ramp since 
~4 Ma.
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Thrust (MBT), which formed at around ~10 Ma (Brozovic & 
Burbank, 2000; Meigs et al., 1995; Turab et al., 2017). At the south-
ern border of the Potwar, the SRT lifts up Precambrian to Pliocene 
strata above the SRT ramp and exposes them in a fault bend fold 
above Quaternary sediments of the Punjab Plain (Figure 1; Baker 
et al., 1988; Ghani et al., 2018). The stratigraphy in the SR is sub-
divided into three major units: (a) Late Neoproterozoic to Lower 
Cambrian evaporites, (b) Cambrian to Eocene siliciclastic and carbon-
ate sequences, and (c) Miocene to Pliocene foreland strata derived 
from erosion of the Himalayan orogen (Gee & Gee, 1989; Figure 2, 
Supplementary material section 1).

3  | THERMOCHRONOLOGIC AL RESULTS, 
ANALYSIS AND THERMAL HISTORY 
CONSTR AINTS

Samples were collected from Cambrian, Permian, Mesozoic and 
Miocene strata exposed in four transects along the hanging wall of 
the SRT (Figures 1 and 2). The Khewra, Karoli and Pail transects are 
located along the thrust front of the SRT; the Western SR is located 
along the lateral ramp of the SRT. Apatite (U-Th-Sm)/He (AHe) dat-
ing was performed on 16 samples. A total of 61 single-grain AHe 
cooling ages are dispersed between 0.8 and 136 Ma; the majority 
are <10 Ma (Figure 2). Fifteen samples were used for apatite fission 
track (AFT) dating; 11 yielded confined track lengths (TL; Tables 1 
and 2). Mean TL range from 9 to 12.8μm. The AFT central ages of 
Cambrian and Permian samples from the Khewra, Karoli and Pail 
transects span from 205 ± 9 to 249 ± 13 Ma, except for a gran-
ite clast (sample TgKr) that has the oldest age of 355 ± 15 Ma. In 
the Western SR, AFT central ages of Permian samples span from 
3.7 ± 0.7 to 238 ± 15 Ma. The two Miocene age samples KmPa 
and KmKr are located ~15 km north of the thrust front. Six single-
grain AHe ages from these samples are around ~2 Ma; a single grain 
is ~7 Ma. Only sample KmPa was used for AFT analysis, yielding a 
central age of 28 ± 2 Ma. The AHe and AFT methods are sensitive 
to temperatures of ~40–80°C (the apatite helium partial retention 
zone, AHePRZ) and 60–120°C (the apatite partial annealing zone, 
APAZ) respectively (Farley, 2000, 2002; Gallagher et al., 1998). 
Details about dating methods, AFT age population analysis and the 
calculation of AFT central ages are provided in supplementary mate-
rial section 2.

The Palaeozoic–Cenozoic stratigraphic wedge thickness above 
the Salt Range Formation increases northward from ~2.5 km along 
the SRT range front to ~5 km, where the northernmost sample TbDk 
was collected (Figure 2). The large AFT age dispersion (~4–355 Ma) is 
related to the estimated thickness of the stratigraphic overburden at 
each sample location prior to Late-Cenozoic exhumation (Figure 2; 
Table 3). Approximately 3 km of Cenozoic strata exposed above 

the SRT ramp suggest that the Cambrian and Permian samples in 
the Khewra, Karoli and Pail transects along the thrust front were 
subjected to roughly equal stratigraphic burial before exhumation. 
Assuming a ~20°C surface temperature and a geothermal gradient 
of ~25°C/km (Gavillot et al., 2018; Kadri, 1995; Khan & Raza, 1986), 
the estimated Cenozoic burial temperature for these samples ranges 
between 70 and 95°C, implying that AFT ages are partially reset 
and AHe ages are partially to fully reset (Figure 2). The samples in 
the Western SR have northward-younging AFT ages and decreas-
ing TL from the Ghundi lobe (Figures 1 and 2), implying significant 
post-depositional heating and subsequent exhumation. The north-
ernmost sample TbDk is estimated to have been buried ~5 km be-
neath Mesozoic and Cenozoic sediment prior to exhumation; this 
depth implies palaeotemperatures of 120–145°C, sufficient to fully 
reset AFT and AHe ages. The Miocene samples were estimated to 
have been buried to ~3 km beneath foreland strata, implying a pa-
laeotemperature of ~95°C, sufficient to fully reset AHe ages but not 
AFT ages.

4  | THERMAL MODELLING APPROACH 
AND RESULTS

We used the QTQt program (Gallagher, 2012) for inverse modelling 
of low-temperature thermochronological data to find possible time-
temperature histories of the samples. Four parameters from each 
sample (if available) were used: AFT central (population) age, C-axis 
projected TL, Dpar and single-grain AHe ages (Table 4). Cambrian, 
Permian, Palaeogene and Miocene stratigraphic succession were 
used as geological constraints in the Khewra, Karoli and Pail tran-
sects, assuming that samples were close (0−30°C) to the surface 
temperatures during these periods of sedimentation.

Statement of Significance

This study presents the first thermochronological dataset 
from the Palaeozoic rocks of the Subhimalaya. In order 
to understand the in-situ basin thermal history, we have 
adopted a new thermal modelling approach based on 
joint modelling of different stratigraphic age samples col-
lected from multiple, structurally similar transects in the 
Salt Range. The thermal models show that the Salt Range 
area experienced a major exhumation event in the Late 
Palaeozoic before Cenozoic formation of the Salt Range, 
part of the Himalayan range front. The results of this study 
provide new constraints on rates of shortening and exhu-
mation for the Salt Range Thrust.

F I G U R E  1   (a) Structural map of the Salt Range and its surrounding regions (modified after Gee & Gee, 1989; Ghani et al., 2018). The inset 
shows Pakistan and its neighbouring countries. (b) Generalised stratigraphy of the Salt Range and stratigraphic location of the samples. (c) 
Geographic location of the samples [Colour figure can be viewed at wileyonlinelibrary.com]
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We used three different modelling approaches (M1, M2, M3). In 
M1, we model data from individual samples from different transects, 
assuming that samples have experienced different burial depths, and 
therefore do not share a similar thermal history (Figure 3). Because 
KhKg and the Karoli and Pail transects have similar palaeotem-
perature constraints, we modelled KhKg using M1 to compare the 
M1 and M2 results. In M2, we combined data from Cambrian and 
Permian depositional-age samples from the same stratigraphic tran-
sect into a single thermal model for the Karoli and Pail transects and 
from two Western SR Permian samples (TbSw and WrSw; Figure 3). 
Our second approach is based on the assumption that, although the 
samples have different stratigraphic ages, they experienced a similar 
post-depositional thermal history.

In M3, we combined all Cambrian and Permian deposition-
al-age sample data from the Khewra, Karoli and Pail transects into 
one single pseudo-stratigraphic transect for thermal modelling 
(Figure 4). The sampled locations can be combined because they 
share similar structural positions along the strike of the SRT and 
stratigraphic overburden (~3 km) beneath foreland strata, and as 
shown by the models obtained in the first two approaches, experi-
enced similar thermal histories (Figures 2 and 3). Samples from the 
Western SR were not included in this joint model because they are 
located on the lateral ramp of the SRT and were buried to differ-
ent depths (Figure 2). Similarly, samples KmPa and KmKr were not 
included in the model because they are located ~20 km north of 
modelled samples on the SRT ramp and have experienced different 
burial depths.

The thermal model results for M3 (Figure 4) suggest that 
Cambrian samples were heated up to ~75 to ~100°C between ~500 

and ~370 Ma, partially resetting the AFT ages. Cooling commenced 
in Late Devonian time and persisted to Permian time. The samples 
remained colder than ~70°C from Permian to Miocene time. The 
final heating, up to ~80 to ~105°C, occurred in the Middle to Late 
Miocene, totally resetting the majority of the AHe ages, partially 
resetting all AFT ages, and moderately annealing track lengths. 
Final rapid cooling occurred from ~4 to ~3 Ma; afterwards, samples 
cooled very slowly to surface temperature.

Modelling results in Figure 4 show the single paths (maximum 
likelihood) for each sample that best fit the observed data and the 
average paths (expected) of all acceptable paths of the thermal 
model. The maximum likelihood path is ~10°C hotter in Middle-to-
Late Devonian time than the expected path and stays up to ~30°C 
colder from the Permian to the Miocene. The maximum likelihood 
path fits almost all AFT and TL data compared to the poorer fit of 
the expected model; however, both models only fit young (<5 Ma) 
AHe ages (Figure 4b).

5  | THERMAL MODEL GEOLOGIC AL 
INTERPRETATION AND DISCUSSION

5.1 | Cambrian to Permian basin history

Shallow-marine Cambrian clastic sediments were deposited on top 
of Late Neo-Proterozoic-Lower Cambrian Salt (Hughes et al., 2019, 
and references therein). The thermal models of all Cambrian samples 
suggest that the AFT system in SR Cambrian strata must have been 
heated and partially reset during the early Palaeozoic (Figures 3 

F I G U R E  2   (a) Geological block diagram 
showing the geometry of the stratigraphic 
wedge, surficial geology, sample locations 
and their respective AHe and AFT ages in 
the Salt Range. Thicknesses of different 
stratigraphic units in the block diagram 
beneath the map are estimated from map 
relationships and cross-sections (Gee & 
Gee, 1989; Ghani et al., 2018). Note that 
the scale on the age axis is not linear; 
but selected to better show the spatial 
distribution of AFT and AHe ages [Colour 
figure can be viewed at wileyonlinelibrary.
com]

Legend

Colored swaths on the age 
axis represent stratigraphic 
age of the Cambrian, 
Permian and Miocene 
strata. Colors of AHe and 
AFT age symbols reflect 
sample stratigraphic age
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and 4), most likely due to stratigraphic burial. About 2 km of Late 
Cambrian to Devonian strata are exposed in the adjacent Peshawar 
and Hazara Basins (Hughes et al., 2019; Pogue et al., 1992b). 
Therefore, we suggest that Ordovician to Devonian strata were pre-
sent in the SR and buried the Cambrian strata before exhumation 
(Figure 5). The unconformity between Cambrian and Permian strata 
in the SR (Figures 1 and 2) was previously considered to be a depo-
sitional hiatus (Gee & Gee, 1989; Pogue et al., 1992b). Our thermal 
model suggests that this unconformity may be related to a significant 
cooling phase during Late Devonian to Permian time (Figures 3 and 
4). This cooling event was likely associated with a period of exhuma-
tion and erosion that coincided with the postulated timing of Late 
Palaeozoic rifting and Carboniferous-Permian regional glacial ero-
sion, which are documented in the stratigraphic successions of both 
the Peshawar Basin in Pakistan and the Kashmir and Zanskar area in 
India (Garzanti et al., 1996; Pogue et al., 1992a). Published seismic 
data and stratigraphic relationships in the SR suggest the presence 
of vertical normal faults in the Indian crystalline basement (Baker 
et al., 1988; Qayyum et al., 2015). In the Eastern and Central SR, 
Permian strata lie on top of Cambrian strata, forming a gently dip-
ping (<2°) angular unconformity (Figure 2); however, in the Western 
SR, Cambrian strata are not preserved and Permian strata lie directly 
on top of the Neoproterozoic Salt Range Formation (Figure 5). We 
propose that normal faulting observed in published seismic data 
formed half graben structures that, in combination with regional 
erosion, could explain the Late Palaeozoic cooling recorded by our 
samples and formation of the unconformity in the SR (Figure 5).

5.2 | Pliocene development of the SRT

Himalayan foreland sedimentation (~18–5 Ma) buried the 
Precambrian-Eocene strata beneath 2–5 km of sediments in the SR 
(Johnson et al., 1985; Najman et al., 2003). Thermal models of the 
Khewra, Karoli and Pail transects show that final cooling was under-
way by 4–7 Ma (Figure 4c), while thermal models of the Western SR, 
located above a lateral ramp of the SRT, show that cooling started 
at 4–9 Ma (Figure 3). We favour our model results for the thrust 
front (Figure 4a), which combine 10 Cambrian to Permian samples 
from the three transects, indicating that most of the cooling associ-
ated with the SRT occurred after ~4 Ma. The most likely reasons 
why some AHe grains have ≥10 Ma cooling ages are either because 
not all grains are completely reset due to variable inherited radiation 
damage or because there was also a small cooling event at 10 Ma 
(Grelaud et al., 2002; Qayyum et al., 2015).

The joint thermal model M3 (Figure 4a), when interpreted along 
with the structural cross-section (Figure 6) shows that significant 
cooling of the Cambrian–Permian samples occurred between ~4 and 
~3 Ma, when samples were exhumed above the SRT ramp due to re-
moval of foreland strata. Since ~3 Ma, the samples have remained es-
sentially above the AHePRZ, consistent with samples translating along 
the hanging wall flat of the SRT. The Miocene AHe samples (KmKr, 
KmPa), located 15–20 km north of the thrust front, are interpreted 
to have cooled through the AHePRZ due to rock uplift above the 
SRT ramp since ~2 Ma. We suggest that clastic foreland strata were 
mostly eroded as the thrust sheet was translated across the SRT ramp, 

Sample
Stratigraphic age
(Ma)

Minimum stratigraphic 
overburden
(m)

Temperature Range
(min–max)

KhKg 500–550 2,500–3,000 82–95

KhKr 500–550 2,500–3,000 82–95

KuKr 500–550 2,500–3,000 82–95

TgKr 300–250 2,500–3,000 82–95

DaKr 300–250 2,500–3,000 82–95

WrKr 300–250 2,500–3,000 82–95

KmKr 16–18 2,500–3,000 82–95

KuPa 500–550 2,500–3,000 82–95

BgPa 500–550 2,500–3,000 82–95

DaPa 300–250 2,500–3,000 82–95

WrPa 300–250 2,500–3,000 82–95

KmPa 16–18 2,500–3,000 82–95

TbSw 300–250 2,500–3,000 82–95

WrSw 300–250 2,500–3,000 82–95

WrNm 300–250 3,000–3,500 95–108

WrZa 300–250 3,500–4,000 108–120

TbDk 300–250 4,000–5,000 120–145

Note.: Stratigraphic thickness is estimated from the structural cross section in Figure 6 and 
published studies (Gee & Gee, 1989; Ghani et al., 2018; Qayyum et al., 2015). Palaeotemperature 
range is estimated using ~ 20 OC surface temperature and the geothermal gradient ~25OC/km.

TA B L E  3   Stratigraphic overburden and 
palaeotemperature estimates of samples 
from the Salt Range, Pakistan
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exposing Eocene carbonate rocks at the surface (Figure 6b). Since the 
Pliocene, the Pakistan Subhimalaya apparently had a semiarid climate 
(e.g. Dennell et al., 2006). In such conditions, the Eocene carbonate 
would be expected to experience limited erosion, thereby providing 
a resistant cap-rock protecting the underlying Cambrian–Palaeocene 
strata. The continued thrust sheet translation along the SRT hanging 
wall flat and exhumation of Cambrian–Eocene strata above the SRT 
ramp (Figure 6) is consistent with fault bend fold exhumation models 
(Baker et al., 1988; Burbank & Beck, 1989; Lock & Willett, 2008).

Based on our thermal model (Figure 4), we calculate a maximum 
exhumation rate of ~2.4–3.2 mm/yr between 3 and 4 Ma and al-
most negligible exhumation of our samples since 3 Ma. A minimum 

exhumation rate of ~0.6–0.8 mm/yr is calculated for the entire time 
span from 4 Ma to present. These calculations are based on the time 
when the Cambrian–Permian samples cooled below ~80–100°C, 
using a 25°C/km geothermal gradient and 20°C surface tempera-
ture. Combining the minimum shortening of 22 ± 2 km based on 
the restored schematic cross-section (Figure 6) and our ~ 4 Ma pre-
ferred onset for the SRT yields a minimum average shortening rate 
of 5–6 mm/yr, similar to the present-day shortening rate of ~5 mm/
yr for the SRT in the Central SR (Jouanne et al., 2014). The timing and 
shortening rates of the SRT coincide with the 4–6 mm/yr shortening 
rate for frontal folds present on the eastern side of the Kashmir syn-
taxis (Gavillot et al., 2016, 2018).

F I G U R E  4   Thermal history modelling 
results performed using modelling 
approach M3. Cambrian and Permian 
samples from the Khewra, Karoli and 
Pail transects were combined in a single 
pseudo-vertical transect for thermal 
modelling. (a) Grey shaded area represents 
elevated path probability and thick lines 
represent average model path (expected 
model) for five Cambrian (brown lines) 
and five Permian samples (blue lines). 
Thick dashed lines represent best fit 
paths (maximum likelihood model) to 
the observed data for the Cambrian 
and Permian samples. The green boxes 
show depositional constraints. Red box 
extract shows thermal model for the last 
20 myr. (b) Plot summarizing observed 
versus model (expected and maximum 
likelihood) predicted AHe, AFT ages and 
track lengths. (c) Comparison of Khewra, 
Karoli, Pail and combined thermal models 
for the last 18 Ma shows the range of 
the onset of exhumation. Further details 
about modelling results are provided in 
the supplementary material section 3. 
AHePRZ = Apatite helium partial 
retention zone, APAZ = Apatite partial 
annealing zone [Colour figure can be 
viewed at wileyonlinelibrary.com]
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6  | CONCLUSIONS

The spatial distribution of cooling ages is controlled by their burial 
beneath foreland strata prior to exhumation. Thermal modelling of 
Cambrian–Permian samples shows that the present-day SR was af-
fected by deformation associated with Late Palaeozoic rifting and 
regional erosion that resulted in the formation of a major unconform-
ity. The SRT has been active since at least ~4 Ma with exhumation 
mainly focused above the SRT ramp. The comparable exhumation 
and shortening rates calculated for the SRT and the frontal fold 
structures of the Kashmir Himalaya highlight the contemporaneous 
evolution of structures on both sides of the Kashmir syntaxis.
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