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ABSTRACT

Determining saturation and pore pressure is relevant for hy-
drocarbon production as well as natural gas and CO2 storage.
In this context, seismic methods provide spatially distributed
data used to determine gas and fluid migration. A method is
developed that allows the determination of saturation and res-
ervoir pressure from seismic data, more accurately from the
rock-physics attributes of velocity, attenuation, and density.
Two rock-physics models based on Hertz-Mindlin-Gassmann
and Biot-Gassmann are developed. Both generate poroelastic
attributes from pore pressure, gas saturation, and other rock-
physics parameters. The rock-physics models are inverted
with deep neural networks to derive saturation, pore pressure,
and porosity from rock-physics attributes. The method is dem-
onstrated with a 65 m deep unconsolidated high-porosity res-
ervoir at the Svelvik ridge, Norway. Tests for the most suitable
structure of the neural network are carried out. Saturation and
pressure can be meaningfully determined under the condition
of a gas-free baseline with known pressure and data from an
accurate seismic campaign, preferably cross-well seismic. In-
cluding seismic attenuation increases the accuracy. Although
training requires hours, predictions can be made in only a few
seconds, allowing for rapid interpretation of seismic results.

INTRODUCTION

The determination of gas saturation is a frequent task in hydrocar-
bon production (Grude et al., 2013; Calvert et al., 2016) and natural
gas storage (Priolo et al., 2015) and is also highly important for CO2

storage applications (Chadwick et al., 2010; Ivandic et al., 2012). The

underlying equations are identical for all applications because the
change in the elastic attributes is physically induced by the higher
compressibility and lower density of gas compared to liquid, resulting
in a reduced impedance. Typically, the data are acquired based on
surface seismic acquisition, inverted to obtain elastic attributes, and
then soft elastic attributes are correlated to the presence of gas. Be-
cause the uncertainty of the rock velocity is already high, the corre-
lation is not very sensitive in directly obtaining the gas saturation.
Nevertheless, time-lapse campaigns detect changes in the velocity,
which allows us to subtract out the rock velocity. The velocity differ-
ence then can be attributed to dynamic effects, such as saturation and
also to pressure (Landrø, 2001). However, seismic attributes show a
much lower sensitivity to pressure compared to saturation, whereas
pressure is more difficult to determine.
There is a high demand in gas storage applications to derive pres-

sure and saturation from seismic data. For gas storage, the initial
formation saturation is typically zero, which is an advantage for the
method compared to hydrocarbon production, where the initial sat-
uration is subject to significant uncertainties. However, avoiding
overpressure and thereby induced potential fracturing has a high
priority for gas storage applications (Castelletto et al., 2013).
Traditionally, saturation-driven changes are inverted based on the

amplitude variation with offset (AVO) response in the seismic im-
age (Landrø, 2001) or by quantifying 4D velocity changes based on
multiple vintages of seismic surveys (Aarre, 2006), which can also
be done with machine-learning methods (Dramsch et al., 2019).
However, the AVO approach has conceptual disadvantages. Most
approximations are only valid within certain offset and angle ranges
and also within a certain depth interval, called the AVO window
(Avseth et al., 2010). Further, the attenuation of sufficiently high
frequencies limits the application in larger depths.
Data from cross-well seismic allow for higher frequencies and

provide a simpler geometry that may allow a more accurate detec-
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tion of the shear-wave (S-wave) velocity. The nonlinear dependen-
cies between saturation, pressure, and seismic attributes require the
application of rock-physics models, providing the means for a
discrimination between the different driving forces.
The use of rock-physics models also allows us to consider site-

specific data as prior knowledge by choosing an appropriate repre-
sentation for the geologic conditions. The prior knowledge allows
us to shift the focus to the most relevant parameters in CO2 storage:
pressure, saturation, and porosity.
A decrease in processing time, ideally in real time, increases the

operational value of the acquired data (Bertrand et al., 2014). By the
application of machine-learning methods, the computational effort
can be reduced and a step toward faster evaluation can be made.
The presented methodology aims to support a planned near-sur-

face CO2 injection campaign, in which the seismic imaging is car-
ried out with a cross-well setup. The data sets in this study are
generated synthetically, with models and parameters adapted to a
65 m deep unconsolidated glacial formation, located at the Svelvik
ridge, Norway (Sørensen et al., 1990).
Many potentially relevant rock-physics model formulations

exist, but only some are applicable to the unconsolidated glacial
deposits, with grain sizes from gravel to clay, that are present at the
field site under investigation.
The first soft-sand model was developed by Mindlin (1949). Biot

(1956) then develops a theory including frequency-dependent con-
tributions for determining the poroelastic parameters. Raymer et al.
(1980) propose a mixing approach to calculate poroelastic param-
eters for matrix and fluid phases that comprise more than one com-
ponent. In this model, the poroelastic attributes compressional wave
(P-wave) velocity VP, S-wave velocity VS, and density ρ are func-
tions of the porosity ϕ, clay volume Vcl, and water saturation Sw.
Krief et al. (1990) further alter the relationships of Raymer et al.

(1980) to obtain a better fit for highly unconsolidated sediments
using a porosity-dependent Biot’s coefficient.
Pride et al. (1992) present explicit equations of motion as well

as stress/strain relations in a dynamic two-phase porous medium
consisting of a fluid and matrix. Extending the work from Landrø
(2001), Lang and Grana (2019) present a Bayesian rock-physics
inversion discriminating pore pressure and fluid effects. The two-
phase fluid distribution is frequently described by the Gassmann
(1951) equation.
Currently, there is a fast-growing application of deep neural net-

works to support interpretation and derive elastic properties from seis-
mic data (Grana et al., 2017; Araya-Polo et al., 2018; Wu and Lin,
2018; Biswas et al., 2019; Das et al., 2019; Zheng et al., 2019;
Das and Mukerji, 2020). Applications of machine learning have
long been constrained by limiting computational capacities. Now,
sufficiently large training data sets can be generated with forwardmod-
eling to represent multiparameter moderate complex systems, which
increases effort in the development of machine-learning approaches.
Gradient methods require numerically accurate forward models and
have problems in resolving discrete input data (Wiese et al., 2018).
Deep neural networks do not show these disadvantages, and they
are well suited to resolve the nonlinear dependencies between the pet-
rophysical parameters and the corresponding elastic response (Raissi,
2018). Several recent studies have focused on full-waveform inversion
(FWI) in the context of deep convolutional neural networks (Mosser
et al., 2018; Zhang and Stewart, 2019). Compared to traditional inver-
sion, neural networks can provide a significant improvement in turn-
around time. Xue et al. (2019) apply different machine-learning
techniques (e.g., neural networks and random forests) for mapping sat-
uration changes by analyzing normalized root-mean square amplitude
changes and normalized differences of the reflection coefficient.
In the present paper, deep neural networks are used as an inver-

sion tool to determine rock-physics properties
based on elastic attributes. Figure 1 shows the
flow scheme of the modeling approach. The
rock-physics parameters are the input to the
rock-physics forward model that is used to obtain
the poroelastic attributes. The training data set
comprising the rock-physics parameters and
resultant poroelastic attributes is then fed through
a sequence of increasingly deep neural networks.
Although the initial workload may be similar to a
conventional inversion, the human workload for
evaluating repeat surveys can be significantly re-
duced, as well as the time required for inversion.
This allows for near-real-time results and there-
fore improves the operational value of seismic
data (Moseley et al., 2018).
The poroelastic attributesVP,VS, ρ,QP, andQS

are taken as predetermined, either by inversion or
direct measurements from cross-well experiments,
serving as observation data on which rock-physics
parameters will be calibrated in a similar way as
Xue et al. (2019). In the present paper, porosity
and pressure prior to injection are defined as addi-
tional poroelastic attributes affecting the rock
physics. Saturation and pressure need to be explic-
itly part of the rock-physics models to allow for
their calibration. Because the consequences of

Figure 1. Scheme of a three-layer neural network in prediction mode and the application
cases in this paper. The poroelastic attributes are at the left side, and the rock-physics
parameters are at the right side. Note that, depending on the rock-physics model, only a
subset of 3–5 poroelastic attributes is used. The VP, VS, and ρ are always input attrib-
utes, and the dashed attributes are case dependent. The initial pressure P0 and depth z are
not exactly rock-physics attributes, but they are on the input side because they are known
and affect the physics. Cases 1–3 comprise different rock-physics parameter sets as the
inversion target. These sets are simulated by different rock-physics models (indicated by
the colored boxes). The structure of the paper follows the three steps of network selec-
tion, feasibility, and reservoir application, in which the state of the art is consecutively
enhanced by our developments.
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pressure variation effects on the poroelastic attributes are typically not
included in the rock-physics models, they are introduced into the ap-
propriate formulations (Avseth et al., 2010; Lang and Grana, 2019).
For field applications, the sensitivity of pressure dependence on

the poroelastic attributes may be approximated from the attributes
themselves but should ideally be carried out using direct measure-
ments from core plugs or well tests.
The current paper aims at methodological progress on two fields:

first, the application of appropriate deep neural networks for seismic
inversion; and second, the formulation and application of appropri-
ate rock-physics models to distinguish pressure- and saturation-in-
duced changes in seismic attributes.

METHODS

Rock physics

Two independent rock-physics models are used for forward mod-
eling the poroelastic attributes from rock-physics parameters. The first
rock-physics model is called Hertz-Mindlin-Gassmann (HMG).
It is based on the Hertz-Mindlin model in a soft-sand description (Min-
dlin, 1949). Although this model is strictly only valid for a single min-
eral component, Hossain et al. (2011) show that this limitation can be
overcome and demonstrate its applicability for two or more mineral
components. In the current study, the matrix is a mixture of quartz
and clay and a perfectly patchy fluid distribution of the gas and water
phase. The matrix and fluid phases are each described by a single ef-
fective modulus (Domenico, 1977). The dry rock-physics parameters
Kd, Gd, and ρd are obtained by mixing the matrix components using
the Hashin and Shtrikman (1963) bounds (also see Appendix A and
Appendix B for variables not closely defined in the text).
The rock-physics input parameters for HMG are the porosity ϕ,

gas saturation Sg, pressure P, sand/clay mixing ratio (Vcl), bulk/
shear modulus (K/G), and densities (ρ) of the frame and fluid phase.
The second rock-physics model is called Biot-Gassmann (BG), and
it is principally based on the poroelastic description introduced by
Biot (1956). The rock-physics input parameters are similar to the
HMG model. The dry moduli in the BG model are a function of
the consolidation parameter cs. A higher consolidation factor in-
creases the matrix moduli in relation to the dry bulk moduli (equa-
tions A-8 and A-9; Pride, 2005).
The fluid substitution in both models is described by the Gass-

mann equation (Gassmann, 1951):

Ksat

Kma − Ksat

¼ Kd

Kma − Kd

þ Kfl

ϕðKma − KflÞ
; (1)

where K is the bulk modulus and the subscripts sat, ma, d, and fl

denote saturated, matrix, dry, and fluid, respectively. For this paper,
the rock-physics models are assumed to be calibrated. Although the
Svelvik ridge consists of unconsolidated rock, the rock-physics
model BG describes consolidated rocks. Although this is not straight-
forward and therefore prevents a direct application of the method to
the Svelvik field site, this abstraction was carried out to demonstrate
the applicability of the developed approach to real CO2 storage for-
mations, which are typically located in consolidated environments.
Due to their complexity, the equations are not presented here. The

current implementation can be found in Appendix A; for a general
overview, refer to Mavko et al. (2009).

Pressure dependence

Neither rock-physics model (HMG and BG) includes a pressure
dependence of the poroelastic attributes by definition. Therefore,
two independent pressure dependencies are introduced to both
rock-physics models. According to Mavko and Mukerji (1998),
the effective pressure Peff is the overburden pressure Pover minus
the pore pressure Pp:

Peff ¼ Pover − Pp: (2)

The pore pressure is further referred to as the baseline pressure P0

before (time T0) and the monitor pressure P1 after (time T1) injec-
tion. An increase in the pore pressure results in a decrease of the
compressional forces acting at the grain contacts. As a consequence,
the velocity is decreased on the increased pore pressure, also called
softening.
The first velocity-pressure dependence follows Avseth et al.

(2010), and it is referred to as PA:

VP;SðPeff;1Þ ¼ VP;SðPeff;0Þ
1 − aP;S · e−Peff;1∕ ~Peff;0

1 − aP;S · e−Peff;0∕ ~Peff;0
; (3)

where VP;S refers to the P- and S-wave velocity and Peff;0;1 refers to
the effective baseline and monitor pressures. The scaling factors aP;S
are identical for both wave velocities and are kept constant at −0.2.
This value is within a realistic range for shallow unconsolidated sedi-
ments, and the negative sign implies softening at the decreasing
effective pressure. An accurate pressure dependence is crucial,
wherefore the scaling factors should ideally be determined for field
conditions, for example, by core experiments or pumping tests. The
term ~Peff;0 is a reference pressure, typically the maximal pressure.
The second velocity-pressure dependency is based on the work of

Lang and Grana (2019), further referred to as pressure dependence
PL. Within this description, after defining ΔP ¼ P1 − P0 and for
the gas saturation ΔSg ¼ Sg1 − Sg0 , VP and VS are dependent on
ΔSg and ΔP showing a quadratic dependence on ϕ, whereas ρ
is only dependent on ϕ and ΔSg,

ln

2
4VP;1∕VP;0

VS;1∕VS;0

ρ1∕ρ0

3
5

¼
2
4kαðϕ;SgÞΔS2gþlαðϕ;SgÞΔSgþmαðϕ;PÞΔP2þnαðϕ;PÞΔP
kβðϕ;SgÞΔS2gþlβðϕ;SgÞΔSgþmβðϕ;PÞΔP2þnβðϕ;PÞΔP

kρðϕ;SgÞΔS2gþlρðϕ;SgÞΔSg

3
5;
(4)

with
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2
66664
kαðϕ; SgÞ
lαðϕ; SgÞ
mαðϕ; PÞ
nαðϕ; PÞ

3
77775

¼

2
66664
a2ðSgÞϕ2 þ a1ðSgÞϕþ a0; ai ¼ ai;1Sg þ ai;0

b2ðSgÞϕ2 þ b1ðSgÞϕþ b0; bi ¼ bi;1Sg þ bi;0

c2ðPÞϕ2 þ c1ðPÞϕþ c0; ci ¼ ci;1Pþ ci;0

d2ðPÞϕ2 þ d1ðPÞϕþ d0; di ¼ di;1Pþ di;0

3
77775:

(5)

The relative acoustic impedance (AI) change between a monitor
and baseline survey is determined according to Landro et al. (1999):

ΔAI
AI

¼ VP;1 · ρ1 − VP;0 · ρ0
VP;0 · ρ0

: (6)

Figure 2 shows the relative acoustic impedance change ΔAI∕AI for
different porosities caused by a pore pressure and saturation increase
with respect to the baseline conditions with P0 ¼ 6.5 bar and
Sg;0 ¼ 0. Calculations are based on the HMG model with PA (Fig-
ure 2, the left column) and PL (Figure 2, the right column). The over-
all range of ΔAI∕AI is similar for both (Figure 2a and 2b). The

pressure-induced impedance change is strongly dependent on poros-
ity in PA but only slightly in PL. Further, PA shows a higher sensi-
tivity to small pressure changes, which is less pronounced for PL.
For low porosities, the overall change in AI is similar, but for high
porosities, PL shows approximately 40% higher impedance changes.
Because both pressure models rely on the Gassmann equation, the
impedance change due to saturation changes ΔS is identical for
both (Figure 2c and 2d). The velocity changes are highest for
small gas saturations and become almost linear for saturations
>0.1. The lower row (Figure 2e and 2f) shows the ΔAI∕AI isolines
for pressure and saturation. In both pressure models, the isolines
are roughly parallel, with the saturation effect far exceeding the pres-
sure effect on the impedance. For the given ranges, a saturation
change has approximately a 10 times higher effect on the impedance
than the pressure change with a higher pressure effect for PL
than for PA.

Machine learning

A deep neural network acts as an inversion tool that derives rock-
physics parameters plus pressure and saturation from poroelastic
attributes. This is the reversed computation direction of the
above-described rock-physics models. The neural network is
trained with an ensemble. The training is performed with the po-
roelastic attributes as the network input and the rock-physics param-
eters as the expected network response.

Ensemble generation

For each learning case, one training ensemble
of size NT is generated. Such an ensemble con-
tains rock-physics parameters and the corre-
sponding forward-calculated poroelastic
attributes. The possible combinations of param-
eters and attributes are defined by the different
rock-physics model formulations, and the differ-
ent combinations used in the present work are
defined by the three cases (Figure 1). The
rock-physics parameters are generated with a
Monte Carlo approach; they are uniformly dis-
tributed within the parameter range and stochas-
tically independent. Depending on the rock-
physics inversion parameters, the remaining
parameters of the rock-physics forward model
are defaulted. This reduces the nonuniqueness
in the inversion and allows us to focus a priori
on the most unknown information. After rock-
physics simulation, inputs as well as the outputs
are scaled. The median is subtracted from the data,
which are then divided by the range between the
25 and 75 percentiles, such that the 25 and 75 per-
centiles are −1 and 1, respectively. For some
generated rock-physics parameter sets, the corre-
sponding rock-physics model does not generate
a solution. These sets are discarded and not in-
cluded in NT . Training is carried out with the en-
semble attributes as the input to the network and
the rock-physics parameters as the output to the
network.

Figure 2. Acoustic impedance as a function of pressure and saturation. The left column
corresponds to the pressure dependence in equation 3 (PA) and the right in Lang and
Grana (2019) (PL). (a and b) The pressure dependence for 0.1 ≤ ϕ ≤ 0.5. The quadratic
ϕ dependence in PL and the parameterization chosen for the unconsolidated environ-
ment results in a crossover in the pressure curves for low porosities. Although it would
be possible to separate the pressure effect on the fluid and matrix phase, they are com-
bined in this site-specific description. The saturation component (c and d) is identical for
PA and PL. The total acoustic impedance change (e and f) is computed for ϕ ¼ 0.4.
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Network settings

A suitable learning rate and weight decay are determined by grid
search and the AdamWoptimizer (Kingma and Ba, 2014; Loshchilov
and Hutter, 2017). The values of 8 · 10−4 and 1.25 · 10−4 are used in
all following neural networks. The loss function can be interpreted as
an analog to an objective function in other inversion schemes. The L1
smooth loss function is used as Girshick (2015) shows that the con-
vergence rate is increased by a factor of 3 to 10 compared to the
standard L1 (see equation 7). The L1 value has the form

L1¼
XNT

i

zi with zi ¼
�
0.5ðxi−yiÞ2; if jxi−yij< 1
jxi−yij−0.5; otherwise

; (7)

with x as the training data and y as the predicted data. Activation is
achieved by a rectified linear unit (ReLU) on the nodes (Nair and
Hinton, 2010). Dropout was applied to prevent overfitting (Srivastava
et al., 2014). A dropout decrease strategy was applied, with 30%
dropout on the first layer, decreasing by 10% for each successive
layer. The results are very similar to constant dropout of 30% for each

layer. Because there is no clear advantage in either of the approaches,
we continued computations with dropout decrease.

Validation

Accuracy (acc) is computed based on a validation ensemble,
whose members are independent from the training ensemble:

accðx; yÞ ¼ R2 ¼ 1 −
PNV

i ðyi −mðxiÞÞ2PNV
i ðyi − yÞ2

with y ¼ 1

NV

XNV

i

yi; (8)

with NV as the size of the validation ensemble.
Based on the accuracy metric, early stopping is applied as an ad-

ditional measure to counteract overfitting (Prechelt, 1998). Similar
to a truncation criteria in traditional solver settings, further iteration
stops. In the present approach, early stopping is applied after NS ¼
100 epochs after which no improvement of accuracy is achieved.

EXPERIMENTAL STRATEGY

The experiments are carried out in three steps that build on one
another. The network size and structure with appropriate learning
rate are determined for an exemplary rock-physics model in the net-
work selection step. The inversion feasibility is assessed for differ-
ent rock physical parameterizations under error-free conditions with
a 0D model during the feasibility step. The approach is then applied
on a scenario-based simulation for a near-surface CO2 migration
test in the reservoir application step.

Network selection — Setup

This step should find a suitable network configuration that shows
fast learning and sufficient accuracy while avoiding overfitting. It is
not our aim to find the optimal network, which would require too

Table 1. Network configurations tested during the network-
selection step. The layer depth is between one and three, and
the number of neurons is between 100 and 2000 per layer.

Network no. No. of layers Configuration

1 1 1000

2 2 500 × 100

3 2 1000 × 500

4 3 1000 × 500 × 100

5 3 1000 × 1000 × 500

6 3 1000 × 1000 × 1000

7 3 2000 × 2000 × 2000

Table 2. Setup for the feasibility tests.

Case # Case 1 Case 2 Case 3

rock-physics model BG BG HMG

Pressure dependence — — PL

Range ½1 − A; 1 − B; 1 − C� ½2 − A; 2 − B; 2 − C� ½3 − A; 3 − B; 3 − C�
ϕ [0.01, 0.99] [0.2, 0.3, 0.4] [0.2, 0.3, 0.4] [0.2, 0.3, 0.4]

Kd ½GPa� [1.0, 20.0] [7.0, 8.0, 9.0] 8.0 NA

Gd ½GPa� [1.0, 20.0] [1.5, 2.0, 2.5] 2.0 NA

Sg [0.0, 1.0] 0.0 [0.2, 0.3, 0.4] [0.2, 0.3, 0.4]

P1 ½bar� [6.5, 20.0] 6.5 6.5 [9.5, 8.5, 7.5]

cs [1.0, 10.0] 5.0 [4.0, 5.0, 6.0] NA

Vcl [0.1, 0.7] NA NA [0.2, 0.3, 0.4]

Note: The range denotes rock-physics parameters for the ensemble generation. The values in brackets are the target values for inversion, and the other values are constant default
values. For each rock-physics reference value set, the poroelastic attributes are calculated. For example, case 1-B with ϕ 0.3, Kd 8.0, Gd 2.0, Sg 0.0, P1 6.5, and cs 5.0. The Vcl is not
included in feasibility.
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much resources and, as conditions slightly change, would probably
not be optimal in the next steps.
Seven network configurations with one to three layers and 600–

6000 neurons are tested (Table 1). The training ensemble is gener-
ated with the BG rock-physics model for 0D and error-free condi-
tions. The rock-physics parameters are ϕ, Kd, and Gd, and the
poroelastic attributes are VP, VS, and ρ. The training ensemble has
50,000 members, and the validation ensemble has 10,000 members.
The rock-physics parameters are generated in wide ranges to cover
all of the physically reasonable solution space (see the range in
Table 2).

Network selection — Results and discussion

All networks show considerable learning. The loss functions are
reduced by at least an order of magnitude, and the accuracy in-
creases by approximately two orders of magnitude (Figure 3).
Deeper networks show a considerably faster loss reduction. Networks
#2 and #4, with the fewest number of neurons in the last layer, show
the least loss reduction, which can be partly attributed to the decrease
of the dropout, which has a higher effect on lower layers. The final
accuracy ranges between 99.96% and 99.98%, which can be consid-
ered very good in terms of fit. However small, a factor of two in
the misfit remains. The dropout only affects the learning phase
and therefore the loss function, but during prediction all neurons
are used. The accuracy is therefore calculated including the dropout
neurons, wherefore smaller shallower networks show good accuracy
values. Network #6 is chosen for further calculations because it
shows the highest accuracy. Because dropout is affected by random-
ness, the ranking is a snapshot because the loss and the accuracy in-
clude a statistical component. An accurate interpretation would
require us to determine the statistical components characteristics.
However, as described above, this is not the aim of the network se-
lection step.

Feasibility tests — Setup

Feasibility tests are carried out to assess the inversion power for
different rock-physics models and parameterizations. The selected
network #6 is applied to a training ensemble with 50,000 and a val-
idation ensemble with 10,000 members.
Three formulations of the rock-physics models are tested in three

0D cases. This allows us to evaluate the applicability of the developed
approach on different rock-physics problems for standard seismic
parameters (cases 1 and 2) and as well for one example of the devel-
oped rock-physics saturation and pressure discriminations (case 3). In
a fully brine saturated medium, case 1 inverts for porosity ϕ and the
dry frame moduli Kd; Gd. Case 2 inverts in a partially saturated
medium for porosity ϕ, gas saturation Sg, and the consolidation param-
eter cs. Cases 1 and 2 are trained on the BG model (Table 2), analo-
gous to conventionally inverted examples by Dupuy et al. (2016). Case
3 is trained on the HMG model with pressure dependence PL.
Each case is computed with two subcases: the first comprises

P- and S-wave velocity and density (VP, VS, and ρ), and the second
comprises the latter plus attenuation attributes (QP and QS). This
should determine the impact of the two attenuation attributes on
inversion quality. Each of the six subcases is trained with an indi-
vidual ensemble.
For each case, three reference states are defined, named by letters

A, B, and C, for example, case 1-B. For these reference states, the
corresponding poroelastic attributes are inverted. The network is
trained with an error-free ensemble. The statistical errors during de-
termination of the poroelastic attributes are addressed by Monte
Carlo simulations during the inversion step. For each ensemble
member, an error realization is added to the reference set of poroe-
lastic attributes prior to inversion. Three error levels (σ1;2;3) are de-
fined. They represent the accuracy for determining the poroelastic
attributes with different seismic acquisition methods and sub-
sequent inversion (see Table 3). Error 1 corresponds to a typical
high-resolution surface seismic setup with errors in the range of
�100 m∕s for velocities (Table 4). Error 2 is realistic for an accurate
vertical seismic profile (VSP) because the errors are reduced by a
factor of two as a result of the increasing bandwidth in the range of
8–400 Hz (Charles et al., 2019). Error 3 corresponds to cross-well
acquisition, as planned for the Svelvik campaign. With a pick ac-
curacy of two samples at a sampling rate of 0.03 ms, an accuracy of
0.06 ms can be expected. This translates to an error band in veloc-
ities of approximately �6 m∕s for a velocity of roughly 1700 m∕s.

Figure 3. Loss (solid, the left axis) and accuracy (dashed, the right
axis) of the feasibility test from the seven networks (Table 1), using
early stopping with a stop set to 100 epochs.

Table 3. Error levels for seismic acquisition.

Var σ1 σ2 σ3

VP [km/s] 0.1 0.05 0.01

VS [km/s] 0.1 0.05 0.01

ρ [g∕cm3] 0.1 0.05 0.01

Q−1
P 0.001 0.0005 0.0001

Q−1
S 0.001 0.0005 0.0001

Note: σ1 corresponds to standard surface seismic, σ2 corresponds to an accurate VSP
setup, and σ3 corresponds to an accurate cross-well setup. The errors are multiplied
with realizations from a �1 − σ windowed standard normal distribution and then
added to the respective forward calculated poroelastic attribute.
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Feasibility tests — Results and discussion

Table 4 summarizes the results of feasibility test cases 1–3, cal-
culated with error σ2, corresponding to a VSP acquisition. For case
1, the mean of ϕ and Kd is determined accurately (less than 5%
deviation), whereas Gd has errors of approximately 10%–15%.
Adding QP and QS as inputs shows moderate improvements for the
deviation of the mean and also a reduction of the error bound, with
the exception of Gd for reference parameters A, where the deviation
of the mean increases from approximately 10% to 15%. For ϕ and

Gd, the inversion induces a systematic bias (or epistemic error) that
is larger than the aleatoric error that is induced by the seismic ac-
quisition method. For case 2, ϕ and cs are determined very well
(0%–5% deviation from the true value), with Sg showing an error
of 0%–20%.With adding the attenuation parametersQP andQS, the
accuracy mostly increases and, most important, the largest error,
which is the error of Sg from case 2-A, is halved to 10%, which
we consider acceptable. The error bounds, that represent the meas-
urement error only, always decrease when attenuation parameters
are included. The deviation of the mean tends to improve with

the attenuation parameters included. However,
some deviation increases because the networks
with and without attenuation parameters are
trained with two different ensembles, respec-
tively. Further, the dropout is a stochastic effect
for each network, wherefore the models are not
perfect; that is, they have an epistemic uncer-
tainty and the results have a model-dependent
stochastic component. As an intermediate con-
clusion, the neural network shows a generally
good inversion capability for established rock-
physics models.
Therefore, the analyses continue with case 3 to

evaluate the applicability to invert for pressure
and saturation, which is the aim of this study.
The underlying rock-physics model for case 3
is HMG with the pressure dependence PL. Re-
sults are listed in Table 4c and are additionally
visualized in Figure 4. The mean of the inverted
rock-physics parameters deviates less than 5%
from the true values, which we consider very ac-
curate. Adding attenuation parameters has a de-
creasing effect on the pressure, causing a slight
increase of the misfit for case 3-A and 3-B, but a
slight decrease for case 3-C. Analogous to cases
1 and 2, including the attenuation parameters
decreases the error bounds. The calibration qual-
ity for all three cases is generally very good.
The error characteristics of the determined

rock-physics parameters are shown in Figure 4.
Crossplots of P1 show the largest error clouds,
especially in relation to the saturation and the clay
content. The inversion for pressure would not be
meaningful with a surface seismic (corresponding
to error σ1), but the area of the error cloud reduces
by approximately one order of magnitude with a

VSP and two orders of magnitude for a cross-well seismic such that
the inversion appears to be quite reliable with these methods.
The feasibility test shows that the neural network can determine

the rock-physics parameters generally with sufficient accuracy.

RESERVOIR APPLICATION

Because the neural network has a demonstrated ability for dis-
crimination of pressure and saturation in a 0D approach, it is evalu-
ated how it can be used for a field application. This is carried out
exemplarily at the Svelvik field site for CO2 storage, Norway (Wein-
zierl et al., 2018). Using both models (HMG and BG) each combined
with both pressure dependencies (PA and PL), four networks are
trained.

Figure 4. Crossplot for case 3 of the feasibility test using attenuation as additional attrib-
utes. The terms σ1, σ2, and σ3 refer to the errors of different seismic methods defined in
Table 3. Feasibility test on a separation of saturation and pressure in the HMGmodel and
pressure dependence PAwith prediction results of the preferred network for case 3 using
VP; VS; and ρ for times T0 and T1. The true values are visualized as a dashed crosshair
below the diagonal and as a vertical line in the histograms along the diagonal. For de-
creasing errors σ1, σ2, and σ3, contours are drawn off-diagonal.

Table 5. Parameter settings for the three reservoir model
scenarios.

Cap rock Aquifer

Scenario Low Base High Low Base High

Mϕ 1.2 1 0.8 0.8 1 1.2

Mκ 1.7 1 0.3 0.3 1 1.7

Pew½bar� 1 5 10 0.1

Peg½bar� 15 20 25 0.1

Note: Mϕ and Mκ are porosity and permeability multipliers, and Pew and Peg are
Brooks-Corey parameters for the two-phase flow behavior.
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Reservoir application — Setup

The Svelvik site is located on a glacial ridge with the subsurface
consisting of glaciofluvial sand and gravel (Sørensen et al., 1990). A
glacial clay layer is present between 50 and 60 m that acts as cap
rock to the reservoir (Hagby, 2018). The main properties affecting
the sensitivity of the simulated injection plume extent are porosity
and permeability. Formation velocities are known from the injection
well. Porosities are calculated on a Greenberg-
Castagna relation (Greenberg and Castagna,
1992). Permeabilities are derived from the poros-
ities using theKozeny-Carman equation (Carman,
1961). To evaluate the applicability of the current
approach to different reservoir conditions and to
detect leakage, three scenarios are analyzed.
The base scenario represents the best prior

knowledge of the field site. For the low-contain-
ment scenario, the cap rock can be more easily
penetrated by CO2, by increasing porosity and
permeability, reducing the capillary entry pres-
sure. Additionally, a lower permeability of the
aquifer favors leakage. For the high scenario,
the reverse is done, with Brooks-Corey parame-
ters chosen such that no leakage occurs into
the cap rock. The scenarios are derived
with a multiplicator for the porosity (Mϕ) and
permeability (Mκ) (Table 5). For geologic consis-
tency, Vcl is adjusted to the new porosities and
permeabilities for the high and low cases.
The capillary pressure Pc is defined by

Pc ¼ Pe

�
Sw − Swr
1 − Swr

�
−1∕λ

; (9)

with the capillary entry pressure Pe (Table 5), the
water saturation Sw, the residual water saturation
Swr ¼ 0.28, and the saturation exponent λ ¼ 3

constant for all scenarios. In total, 23 tons of
CO2 are injected with a rate of 370 kg/d. The
outer boundary conditions are no-flow with a
pore volume multiplier on the outer cells. The
effective reservoir volume is 9.3 million cubic
meters (9.3 Mm3).
The reservoirmodel results are shown in Figure 5.

In all scenarios, the pressure buildup was slightly
higher than 2 bars, with the reservoir pressure in-
creasing by approximately 2.1 bars and an addi-
tional dynamic pressure increases of 0.15 bars in
the vicinity of the injection well (Figure 5a).
The CO2 saturation reaches values of 70%

close to the injection well, with lower values at
a larger distance. For the high scenario, no CO2

enters the cap rock, whereas for the low and base
scenarios, considerable concentrations of up to
27% are reached (Figure 5b).
The changes of the acoustic impedance are dis-

played separately for the impact of the pressure
and saturation changes (Figure 5). Because most
of the pressure buildup is static, the impedance
ratio shows a rather flat profile (Figure 5c, 5e,

and 5g). The differences for the low, base, and high case are small.
The total change of pressure-induced impedance is approximately
1.5% after 23 tons of injected CO2. At the end of the injection,
the saturation-induced acoustic impedance ratio is approximately
40% lower compared to the baseline. The saturation-induced imped-
ance ratio differs increasingly for the scenarios with increasing sim-
ulation time, mainly because of different amounts of CO2 migrating
into the cap rock.

Figure 5. Results of the reservoir model. (a and b) The pressure and saturation along a
north–south profile after the injection of 23 tons of CO2 for the base scenario. The im-
pact of pressure and saturation on the acoustic impedance is visualized in (c-h) for in-
creasing injection volumes in the highest reservoir layer, indicated by the white arrows in
(a and b). The low, base, and high scenarios are shown in colors green, red, and blue
lines, respectively. The black vertical line indicates the injection well.

Figure 6. From left to right: Four rock-physics input parameters and five forward-com-
puted poroelastic attributes calculated with the HMG model and pressure dependence
PL along the injection well after 23 tons of injected CO2. If a dashed line is present, it
refers to the situation before CO2 injection.
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Four individual networks for both rock-physics models (HMG and
BG) each combined with both pressure dependencies (PA and PL) are
trained with the hydrostatic initial pressure as P0. The networks are
trained with an ensemble of 200,000 members. The reservoir model
training phase (as the largest model) was finished in approximately 1 h
on a GeForce GTX 1070. The prediction for 100 K configurations can
be performed in less than 2 s.

Reservoir application — Results and discussion

The inversion capability is demonstrated at the injection well lo-
cation because the saturation and pressure contrasts are the highest
here. In the case of real-world application, the local poroelastic
attributes at the Svelvik#2 injection well can be determined by
2D seismic inversion due to the cross-well setup.
The output from the reservoir model, geologic model, and the

poroelastic attributes forward modeled with the HMG-PL model is
shown in Figure 6. The rock-physics parameters from the reservoir
simulation are ΔSg, ΔP, and the geologically derived parameters ϕ
and Vcl. The attribute Vp is strongly affected by saturation, whereas
Vs is more affected by the porosity and the pressure. Similarly, Qp

is more affected by saturation andQs more by pressure. The density
ρ is mainly affected by the clay content, but also by the saturation.
The inversion results of saturation, porosity, and clay content are

quite close to the reference truth for most scenarios and rock-phys-
ics models. Therefore, the misfit is 10 times exaggerated for ϕ, Sg,
and Vcl to allow for a better interpretation, but ΔP predictions are
not exaggerated because they have a higher deviation (Figure 7).
Porosity is inverted quite accurately, with slight advantages for

the HMG model. Saturation is also generally inverted quite accu-
rately. The highest deviations occur for regions without CO2 satu-
ration with differences of three saturation percentage points for the
BG model in combination with the Avseth pressure dependency.
The deviation is highest above the reservoir, apparently correlated
to the lower reference porosity.
The pressure changes are very accurate for PL, whereas PA

shows very good values only in the reservoir. Above the pressure
is underestimated and below overestimated by up to 0.8 bars, ap-
parently mainly affected by the depth and therefore by the hydro-
static pore pressure. The lowest pressures of the training ensembles
are 5 bar, wherefore greater than 50 m the pressure model is unde-
fined. Nevertheless, this hardly affects the models. PL does not
show an extra error here because the pressure difference is consid-
ered, whereas PA is implemented based on the difference of the
absolute values. Although PL is based on absolute pressures, the
additional deviation outside the training interval is marginal. For the
clay content, the training range has a more pronounced effect. For
the clay content approaching the training boundary of 0.1, as be-
tween 50 and 60 m for the low-containment scenario, the error ap-
pears to be slightly higher compared to other depths. The effect is
stronger and results in an overestimation when the clay content is
slightly lower than the training range as between 60 and 70 m for
the high-containment scenario. All inversion results are satisfying,
with the best results obtained for the HMG-PL model.
The HMG model shows very good prediction quality because it

refers to unconsolidated rocks. However, although the BG model is
developed for consolidated environments, it shows satisfying re-

sults. Therefore, this approach is also applicable
to CO2 storage formations, which are located in
deep consolidated formations. A comparison
under CO2 conditions probably would show ad-
vantages for the BG model.
All simulations are calculated with individual

ensembles and individual seeds for dropout,
wherefore the analysis includes epistemic errors
(errors that refer to the inversion method). Never-
theless, these errors are apparently smaller than
the systematic deviations of the methods.
The effect of the measurement error (also re-

ferred as aleatoric error) on the inversion quality
is exemplarily analyzed with the HMG-PL model
for the base case. The measurement error of an
accurate cross-well seismic is applied (σ3, Ta-
ble 3). The inversion for saturation is most reli-
able. In the reservoir and other regions where
CO2 is present, there is a variation width of typ-
ically approximately �2%−3% in saturation,
with a maximum of almost �5% in the reservoir,
where the highest saturations are present (Fig-
ure 8). However, the simulated saturations of
greater than 50%, at which the highest bandwidth
occurs, might be higher than found in the field.
The error band of the pressure is approxi-

mately �0.7 bar for regions where CO2 is
present, which is a mediocre accuracy compared
to traditional pressure measurements. Never-
theless, it is considerably lower than the pressure
variation itself and therefore might provide valu-

Figure 7. Error-free predictions for different rock-physics formulations. HMG and BG
are each combined with pressure dependence PA (Avseth et al., 2010) and PL (Lang and
Grana, 2019). The rows from top to bottom show the low-, base-, and high-containment
scenarios after injection of 23 tons of CO2. The black line is the synthetic truth, and it is
referred to by the x-axis. The colored lines show the misfit of the predictions in 10 fold
exaggeration, and only for the pressure difference the misfit is not exaggerated. The
shaded areas in the pressure and clay content columns are outside the parameter range
of the ensembles.
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able information for regions with low pressure gauge coverage.
Above the reservoir, however, the error bound grows to �1 bar.
Further, the values are more equally distributed and have a smaller
centric tendency. It is remarkable to distinguish the pressure with
such accuracy because the seismic impedance varies by 40% for
saturations and only by 1.5% for pressure. With the deep neural
network, it is possible to take advantage of the nonlinear effects
on the different poroelastic attributes. The error bounds of the
porosity are approximately �2%, with a pronounced central ten-
dency, which is considered quite accurate. The clay content has
larger error bounds of �5%.
However, it has to be considered that the current analysis is re-

stricted to a subset of possible parameters. Under real-world con-
ditions, a null space of different inversion results with equal quality
of fit to the data would occur. A promising development is the recent
advance in FWI techniques. They are also based on deep convolu-
tional networks, use the full-wavefield information; therefore, they
allow us to invert for high-resolution velocities. We think that their
combination with our approach has the potential for providing suf-
ficiently accurate poroelastic attributes that allow discrimination of
pressure and saturation.
In this paper, the synthetic truth itself is generated by a rock-

physics model. In the real world, the rock may show differences
from the rock-physics model formulation. This is particularly im-
portant because for the current study the favorable assumption of an
intermediate patchy gas distribution in the subsurface is made. The
variation to more homogeneous gas distribution would increase the
nonlinearity and, therefore, the error of the current method (Eid
et al., 2015). Even more important is the difficulty in correctly
defining an effective patchiness.

CONCLUSION

Two rock-physics models are developed that allow us to discrimi-
nate pressure and saturation. The first is a soft-sand formulation

based on the HMG equations, and the second
is a hard rock formulation based on the BG equa-
tions. Although the HMG and BG equations con-
sider different physical processes, their forward
and also inverse behavior is similar for the cur-
rent parameterization, with the HMG model
showing a slightly better behavior for the ana-
lyzed field example of the shallow Svelvik aqui-
fer. The BG model is more promising for the
intended real-world CO2 storage application in
deeper and consolidated formations.
It is recommended to include as many poroe-

lastic attributes as possible; including P- and S-
wave attenuation, the accuracy tends to increase.
Pressure inversion provides meaningful results.
However, the accuracy of determining the pres-
sure is still lower compared with the other rock-
physics parameters. Differential analysis, includ-
ing baseline data acquired without subsurface gas
saturation, is a prerequisite for pressure and sat-
uration discrimination. The method appears
promising for gas storage and other applications,
as long as the gas content of the baseline is zero
such that many of the unknown errors cancel out.

Compared to the traditional AVO-based methods, the rock-physics
approach is a significant advance in the determination of pressure
from poroelastic attributes.
Many assumptions have to be made in developing a site-specific

rock-physics description of the subsurface. For the current study, the
favorable assumption of an intermediate patchy gas distribution in the
subsurface is made. Under the conditions of a known intermediate-
patchy gas distribution, the epistemic error, that is, the error of the
inversion algorithm itself, is smaller than the conceptual error of the
rock physics. The latter is smaller than the aleatoric error, that is, the
measurement error for an accurate cross-well seismic. For real-world
applications, a sufficiently patchy gas distribution is a prerequisite.
The developed neural network was found applicable for inverting

the rock-physics equations. Although the quality of neural network
results may vary under different conditions, we see great potential to
replace traditional inversion tools, especially if the bandwidth of the
expected results is known, as is the case in gas storage applications.
For industry application, the rapid results after the monitoring cam-
paigns are a significant advantage to traditional inversion, allowing
a faster reaction to unforeseen events.
An accurate determination of the poroelastic attributes is the cur-

rent bottleneck of the method. Recent FWI techniques, also based
on deep convolutional networks, use the full-wavefield information
and therefore allow us to invert for high-resolution velocities. We
think that their combination with our approach has the potential for
a much better discrimination of pressure and saturation. The devel-
oped methodology may then be used to derive high-resolution
petrophysical properties.
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APPENDIX A

DESCRIPTION OF ROCK-PHYSICS MODELS

Dry moduli

The first rock-physics model is the Hertz-Mindlin soft-sand
model (HMG), in which the Gassmann equation (see equation 1)
determines the bulk and shear moduli of the saturated and dry rock
based on the porosity ϕ and fluid modulus:

½HMG�∶Kd¼
�

ϕ∕ϕC

KHMþ4GHM∕3
þ 1−ϕ∕ϕC

KHMþ4GHM∕3

�
−1
−
4

3
GHM;

(A-1)

½HMG�∶Gd ¼
�

ϕ∕ϕC

GHM þ z
þ 1 − ϕ∕ϕC

GHM þ z

�
−1

− z (A-2)

with

z ¼ GHM

6

�
9KHM þ 8GHM

KHM þ 2GHM

�
: (A-3)

For the critical porosity and coordination number, the standard val-
ues of ϕc ¼ 0.4 and n ¼ 8.6 are used. The coordination number n is
obtained from the Murphy (1982) empirical relation with ϕ ¼ ϕc,

n ¼ 20 − 34ϕþ 14ϕ2; (A-4)

as outlined in Avseth et al. (2010). The bulk and shear modulus
(KHM andGHM) of the Hertz-Mindlin moduli are defined as

KHM ¼
�
n2ð1 − ϕcÞ2G2

18π2ð1 − νÞ P

�
1∕3

; (A-5)

GHM ¼ 5 − 4ν

5ð2 − νÞ
�
3n2ð1 − ϕcÞ2G2

2π2ð1 − νÞ P

�
1∕3

(A-6)

with the shear Poisson’s ratio ν as

ν ¼ 3Kma − 2Gma

2ð3Kma þ GmaÞ
: (A-7)

As a simplified approach, the dry moduli are calibrated with pressure
P equal to the injection location at 65 m depth at 6.5 bar. It would be
more accurate to calibrate each zone or formation at its depth.
The second rock-physics model is the BG model, outlined in de-

tail in Pride et al. (2004). The dry bulk and shear moduli of the rock-
physics model are dependent on a consolidation parameter (cs) and
are defined by

½BG�∶Kd ¼ Kma

1 − ϕ

1þ csϕ
; (A-8)

½BG�∶Gd ¼ Gma

1 − ϕ

1þ 3
2
csϕ

: (A-9)

Solid and fluid mixing

The density of the subsurface is calculated as the matrix density
and fluid density filling the pore space:

ρ ¼ ϕρfl þ ð1 − ϕÞρma: (A-10)

We consider a mixture of quartz (K1; G1) and clay (K2; G2) with the
corresponding volume fractions (f1 ¼ ð1 − VclÞ; f2 ¼ Vcl). For
averaging, we choose the Hashin-Shtrikman method with the upper
and lower bounds obtained by interchanging subscripts 1 and 2,
respectively:

KHS� ¼ K1 þ
f2

ðK2 − K1Þ−1 þ f1ðK1 þ 4G1∕3Þ−1
(A-11)

GHS�¼G1

þ f2
ðG2−G1Þ−1þ2f1ðK1þ2G1Þ∕½5G1ðK1þ4G1∕3Þ�

:

(A-12)

In our case, matrix constituents are mixed with Sm ¼ 0.5 yielding the
arithmetic average of the lower and upper Hashin-Shtrikman bounds:

Kma ¼ SmKHSþ þ ð1 − SmÞKHS−: (A-13)

For both models, fluid mixing is achieved according to (Brie et al.,
1995):

½BG∕HMG�∶Kfl ¼ ðKw − KgÞð1 − SgÞe þ Kg; (A-14)

with the exponent set fixed to e ¼ 5.

Viscoelasticity

The velocity and attenuation are calculated based on the bulk modu-
lus Kfl, density ρfl, and viscosity η. The complex permeability κðωÞ
is dependent on the permeability κ0 and the angular frequency ω:

κðωÞ ¼ κ0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 1

2
i ω
ωc

q
− i ω

ωc

; (A-15)

with κ0 ¼ 10−12½m2� being fixed. The angular frequency ωc is de-
fined as
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ωc ¼
η

ρflκ0ϕ
−m ; (A-16)

with the cementation exponent m ¼ 1 being fixed. The effective
viscosity is defined by

η ¼ ηg

�
ηw
ηg

�ð1−SgÞ
: (A-17)

The frequency-dependent flow resistance density is defined by

~ρðωÞ ¼ iη
ωκðωÞ : (A-18)

With substitutions analogous to Pride et al. (2004),

Δ ¼ 1 − ϕ

ϕ

Kfl

Kma

�
1 −

Kd

ð1 − ϕÞKma

�
; (A-19)

Kun ¼
ϕKd þ ð1 − ð1þ ϕÞKd∕KmaÞKfl

ϕð1þ ΔÞ ; (A-20)

M ¼ Kfl

ϕð1þ ΔÞ ; (A-21)

C ¼ ð1 − Kd∕KmaÞKfl

ϕð1þ ΔÞ ; (A-22)

H ¼ Kun þ
4

3
G; (A-23)

γðωÞ ¼ ρM þ ~ρðωÞH − 2ρflC
HM − C2

; (A-24)

and the slowness s of the S- and P-waves is defined as

s2SðωÞ ¼
ρ − ρ2fl∕~ρðωÞ

G
; (A-25)

s2PðωÞ ¼
γðωÞ
2

þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2ðωÞ − 4ðρ~ρðωÞ − ρ2flÞ

HM − C2

s
; (A-26)

from which the poroelastic attributes are obtained:

VP;S ¼ 1

ReðsP;SðωÞÞ
; (A-27)

QP;S ¼ ReðsP;SðωÞÞ
ImðsP;SðωÞÞ

: (A-28)

The above viscoelastic formulation is described in detail in Dupuy
et al. (2016) with original reference to Pride et al. (1992).
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