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The perturbation potential of the gravity field of the Earth is superposed with the 
potential of the gravitation foree of the standard density mountain masses. This super
position leads to a smoothed potential. The associated model free-air anomalies are 
also smoothed; they are subsided from the surface of the Earth down to the Bjerhammar 
sphere of the test point, along the lines of the harmonic downward continuation. The 
terms that arise by the downward continuation are negligible in most cases since the 
considered model free-ai.r anomalies are smoothed. Further, this superposition leads to 
the fact that the plane topographical reduction of the gravity must be added to the 
usual free-air anomalies of the real perturbation potential. The other supplements to 
the .Stokes theory are not of importance since they are within the noise of the dates 
of the gravity field in most cases. There is an insight of clear transparency into 
these ,supplementary te:rms. 

Zusammenfassw;ig 

Das Störpotential des Schwerefeldes der Erde wird superponiert mit dem Gravitations
potential der Gebirgsmassen, denen hier die Standarddichte zugeordnet wird. Das so er
haltene Potentia'l. ist geglättet, die zugehörigen Freiluftanomalien sind ebenfalls ge
glättet. Diese Freiluftanomalien werden mittels der harmonischen Fortsetzung von der 
Erdoberfläche zur Bjerhammar-Kugel des Aufpunktes nach unten herabgesenkt. Die Glät
tung läßt die durch die harmonische Fortsetzung entstehenden Glieder sehr klein werden.

Durch die Superposition tritt die ebene Geländereduktion der Schwere als additives 
Glied zu den üblic4en Freiluftanomalien des realen Störpotentials hinzu. Weitere Er
gänzungen zur Stokes-sehen Theorie brauchen nicht berücksichtigt-zu werden, weil sie
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meistens innerhalb der Genauigkeit der Schwerenetze liegen. Diese ergänzenden Glieder 
haben einen mathematischen Ausdruck, der·einen klaren Einblick in ihre Größe gestattet. 

Pe3IOMe 
ITOT8HUHaJI B03MYUiemm HaKJIB,�BaeTca Ha il0T8HUliaJI B�!{HMWC ropHl:lX MaCCHB0B. 8TOT 

il0T8HUHaJI criaJKeH� o6pa3YJOl.llH8CH C00TB8TCTBYJOmHe aH0MaJIHH CHJ.l.bl TIDK8CTH 0ITYCKQIOTCH 
rryTeM rapM0HHti8CIWro rrp0!{0JDlt8HHH BHH3 C il0BepxH0CTH 3eMJm Ha cqiepy BI,epxaMMapa B 

38,!{aHHOH T0'1Ke. CrJia>KHBaHH8 ,!{0ilYCKaeT 0'1!8Hb CHJ[bH0e YM8HbWEli!H8 Il0Jiy-qarommcc.fi B 
pe3JJihTaTe rapM0HHll8CK0ro np0!{0JDK8HIDI '1JI8H0B H BB0�HT T0norpaq>H'II8CKJI(l nonpaBKY CWIH 
TH)[(8CTH B Ka'l!8CTB8 8,l(l(liTHBH0ro �rJieHa rrpH aH0MaJIHHX Il0T8HUH8Jla B03MYJn8Hliff. 

1. Introduction

At first, some considerations about the train of ideas conneoted with the Bjerhammar 
sphere seem to be advisable. Tbe sphere of the Earth ae which is situated in the level 
of the oceans can be introduced as a Bjerha.mmar sphere with the radius R, e.g •• 
Further, arry geocentric sphere ü' which does contain aey test point P at the surface 
G of the Earth can. be introduced as a Bjerhammar sphere also. This sphere has the 

radius R+ �
P

, if �
P

is the height of the surface point P above the sphere ae. (cf. /6},

[?]). 

The sentence of Keld;ysch-Lavrentiev or Runge-Krarup contains the existence theorem 
for the Bjerhammar sphere : Arry function A ,  harmonic outside the .llarth's surface and 
continuous outside and on i.t , may be uniformly approximated by harmonic functions B 
regular outside an arbitrarily given sphere inside the Earth , in the sense that for 
aey given 6 '7 0 , the relation I A - B 1 < e: holds everywhere outside and on the 
Earth's surface. But, this is an e:lti.stence theorem only. lt does not contain arry de
tailed information about the structure of the functions B and the oonstant parameters 
of them. Beyond it, over and above this existence the�rem, a complete and satisfactory 
expression for the function B is represented by the series development in spherical 
harmonics for the concerned potential; see also chapter D. 

On the principles connected with the Bjerhammar spheres at and ae', a certain 
harmonic potential fiel.d V is introduced in the exterior space of the sphere ·at. • In 
this context, this space exterior of ee is presupposed tobe free of masses. V has 
the following convergent series development in spherical harmonics, valid in the ex
terior space of � • 

00 

V = C V cS)n+1 en('f,-l), r ::!- R.
n=2 n r (1) 

V fulfi 11s the Laplace differential equation, 

4V = 
o�V J2v lv 

0 r::. R. 
ox2 + o? + cS z

2 = ' (2) 

Vn are the Stokes consta.nts. r, 'f , 2 are the spatial polarcoordinates, the origin of
this system is the gravity center of the Earth. en(1,2) symbolizes all the spherical 
harmonics o� the degree n and of the order m, 0 � m � n. The representation (1) of the 
potential V is valid in the space situated between the surface of the Earthd and the 
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sphere �, i.e. J
1

• In the space �i' the potential.V is not related to the real geopo
tential w. v·has only a theoretical significance in the space �i. However, the poten
tial V and the representation (1) is valid also in the exterior space Ja of the sur
face � of the Earth. In the space �a' the potential V is a  sufficient approximation
for the geopotential w. This fact is fundamental for the definition of V. 

The geopotential field W has in �a a convergent series development in spherical
harmonics, similar as V, 

w = !"; w
n

(�) n+1 e
n

(lf,il),

AW = 0 ,

in ;r.. 'fa 

in ia • 

(3) 

(4) 

Several independent mathematical proofs about the convergence of (3) in �a are
published in the literature (cf. [17, /'2.J, /1:J) , see also chapter D. The objections 
against the convergence of (3) turned out to be not. convincing and not valid (cf. L?/, 
.(15.l). The convergence is secured also in the whole ex.terior space of an oblate rota
tion ellipsoid. For, as is well-known, the gravitation potential has a convergent 
series development in terms of Lama functions which is valid in the exterior spac�✓ 

of a rotation ellipsoid (cf. [117, /12J). The associated 3 independent variable para
meters can be expressed into the geocentric radius r, the geocentric latitude f.! and 
the longitude Ä, i.e. the geocentric pola�coordinates, by means of absolute conver
gent series developments (cf. 817, /1'2;?, 83/). In this context, the sentence has to 
be taken into account that the product of two absolute convergent series developments 
is again an absolute convergent series (cf. 8V). Thus, a convergent series develop
ment in terms of r, <f , ;l. is necessarily obtained for the exterior potential o� the 
ellipsoid. This series must necessarily be a development in spherical harmonics as 
the expression (3), because otherwise the Laplace differential equation (4) cannot be 
fulfilled (cf. [1V). Indeed, if a function of r, 1f ,;i. does satisfy the Laplace dif
ferential equation and if this function does go tq zero for r-+ oo , in this case, 
this function has necessarily the structure of the righ'l; hancl. · side of ( 3). Thus, the 
consideration.s of /15J are not cor,foborated. 

The convergent series development (3) can be replaced by a sum, 

w in �a . (5) 

oc. is a fixed positive integer. 
lt can be taken for granted that l�I is sufficient small and smaller than a certain 
�pper bound Jrl 

Jel .-: Jrl , (6) 

if ot. = ol(S) be�om�s �uf:ficient great. Therefore, the term e can be neglected in our 
applications, (5), without lose of precision. Thus, 

w (7)

= ~ w (B)n+1 e c~ A) 
n r n 1

' 
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2. The analytical representation of the perturbation potential

After these considerations, the perturbation potential T can be represented in the 
exterior space �a of the surface <5 of the Earth by an expression of the following
shape, 

= (8) 

T = 5? ' (9) 

The developments (8) and (9) describe the perturbation potential T in the form of a sum 
which is valid in the exterior space 1. The error of the expression (8) is arbitrary 
small. ff is a harmonic function in �a'

,1)l = 0 ' in ia • (10) 

The expression (8) of fl can be computed also for test points which are situated in 
the space �. between the surface r;, and the sphere ae 1 

l. 

= (11) 

= 0 in �i ( 12) 

The expression (11) can not be identif.ied with the perturbation potential T in �i••It
has not a direct relation to the real geopotential in fi. 5r is in �i a harmonic, com
putable and continuous function which is of theoretlcal importance only. 

The deductions from (8) to (12) can be summarized by the following relations, 
O(.* 

= L T (B)n+1 
en('f,.:l.) r � R, (13} n=2 n r 

4Sr = 0 1 r „ R, (14) 

T = ]C , in �a• ( 15) 

3. The boundar;y value problem for the Bjerhammar sphere

Thus, in view of this 5? field in the exterior of the \lt sphere, the Bjerhammar sphere
,J with the radius R + �

P 
can be introduced as the boundary surface for the Stokes

boundary value problem with the surface point Pas the test point, 

(52) = p 
R+ 71 (( = 4;- p )) ( d g� )

a,,
, S(y,-) dw •

w 
( 16) 

w is the unit sphere, S(y) the Stokes function, Y" the spherical dfstance and 4 g
i> 

is 
the free-air anomaly, 

(17)

a 

in ~i 
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4. The superposition with the potential of the mountain masses

The functionc·.Sz' and ..:t g 12 are not smoothed. Therefore, i t is of fundamental importance
now to replace these f'unctions ·by smoothed expressions. For this purpose, the gravita
tional potential B of the mountain masses above the sea level is introduced (cf. /3.J,
f4J, Fig. 1). The standard density of J = 2.65 g cm-3 is attributed to these masses.
The potential B is a ha.rmonic function in the exterior space �a' 

AB= 0 

Continenf 

in� •a 

"/' /,/, - - ---�--------
' I 

'-, Ocean / 
' , 

' / 
' ,, , __ ,,, 

c5 

Figure 1: The visible mountain masses. The crosshatched area above the sea level 
is the area of the vislble mountain masses, 

The difference of the two potentials T and B is the potential M, 
M = T - B. 

The relat�ons (13) - (15) lead to 

= 

,Af = 

M = 

oc.** 

� M (�)n+1

n n r 

0 ' 

"17' 

en
(<f,).) ' 

the following equations, 

r � R 

r :l,, R

in �a 

(18) 

(19) 

(20) 

(21 ) 

(22) 

The free-air anomalies in the harmonic potential field? have the following relation 

for the points on the Bjerhammar sphere -ae' which has the radius R + �P
, (cf. f6J,[7]),

(,dg�)
et/ -

u 2 71},) 
( a r + R+ '7p r ie' ' on -llt! • (23)

The potential field 'f is introduced in the exterior space of the sphere -ae, (cf. (20)). 
Further-, whole the surface of the Earth � is considered to be covered with the 
air anomalies of this potential field �, i. e. ( '1 g :t )tr 

Q is a poiµt moving over this surface <S , it has the variating height '>2Q 
above

sphere et • Thus, the free-air anomalies on <5 depend from P by 

free-

the 
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(4g� )15 = - c..U:. + -2- 'f )tfr) r R+ lQ 

8 

Oll u • (24) 

The boundary value problem of Stokes is applied to ee• as the boundary sphere. The 
solution has the following rigorous equation, (16), 

R+ � 
= � JJ (.:1 g )7}) 1 

"" 
:r ae 

S( 'j/') dW • (25) 

Now, the correpondence between the (dg?r")
G' 

-values, (cf. (24)), and the ('1grf')
at

, 
-values, (cf, (23)), is to be considered. In this context, the frae-air anomalies on 
� are mapped on ee.' by a shift along the geocentric radius r. The free-air anomalies

change their value by the amount of sM when this shift through the potential field.f 
is oarried out. The corresponding anomalies have the relation 

(22) and (26) give

(22), (25) and (27) lead to 

R+ "IZp
r,/J = 4'u 

(26) 

(27) 

(28) 

(28) is valid for test points at the surface of the Earth �. The relation (19) is in
troduced into the Stokes equation (28) in order to replace the potential M by the two
potentials T and B,

(29) 

5, The potential of the mountain masses and the condensation method 

Now, it is necessa.cy to express the potential B and its radial derivative � � in 
(29) as functions of the heights �. The terms linear.in the height are separated
(cf, /3], f4]), and the following relations are abtained,

( B)e-- = 111 + A.2 + f'B]" '

= ,1
3 + A.4 + l � � J"

= - A3 - A
4 

- �( ,1
1 

+ A.2) - [ � � ]" - � [Bj"

(32) is transformed to

= - /l - A - g( A. + A ) ,- ll B 2 J 2B � •3 4 R 1 . 2 - �r + R B " + 
R

2 

(30) 

(31) 

(32) 

03)

R+ 12p 
T. - B = ~ 
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The expressions for the linear A terms bave the following 

with 

A = 

A2 = 

A3 = 

A4 
= 

4'ir fJ R -rzp '

f J R
2 ff ("ZQ --7lp) j_ 

eo dw
<i 

,
"' 

-4rrifJ 7l 

-f JR2 Jj 
"' ( ) 1 \P' 

"l y-92 Q � sin � dwyeo 

e
0 

= 2 R sin r .

sbape, 

04) 

05) 

06) 

07) 

08) 

(34) and (35) refer to the test point P. (36) and (37) are in relation to the point Q.

The Helmert condensation method proves the validity of the equation (39)(cf.f17,L1/), 

(30) - (39) change (29) into

T -!li - A
2 

- [Bj" = 
R

::p .g { (-4 gT)
G' 

+ A
J 

+ A4 + i< A 1 + A2
) +

+ f' .9 B + �B]" -2B � + sM} S(t) d "' •
- :) r R R2 

Some rearrangements of (40) by 09) give the desired relation for T, 

R+ 12p (( 
T = 4,.- j} { A gT + C) S(y,-) de.., +E'

E = f'B]" + !'if fj ( -2B � + 5M) S(y,)
..., R 

'>7.p 
de., -

R 
B • 

09) 

(40) 

(41) 

(42) 

Cis the 'plane topographical reduction of the gravity (cf. /37, f'+J). lt has the re
:iation 

The amount of the first term on the right hand side of (42)1 LV", is negligible, 
(cf.['+}). The term 

(43) 

(44) 

in the expression for E can be omitted also, it is very small, (cf. [3], fJJJ). In
most cases, the value of 

'>lp 
RB 

can be negle�ted also (cf. ['3.7, /4J). 

(45)

1 

111 + 112 = -!1r ff f"A3 +A4 + i<A.1 +A2)] s(r) d,., • 
t..) 

C ~ r DB _ 2 B'" ::i. 0 
t or + n ~ . 

R (( 2B ~ 2 S (y,) de., 
~ dJ R 
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Hence, 

(46) 

Thus, ·the problem of the evaluation of the amount of 6M is left over as a remaining 
task now to be solved, sM can be interpreted as a term that is to be added to the free
air anomalies ,1gT in (41), similar as C,

6. The vertical shift of the smoothed free-air anomalies

As to the determination of sM, the potential M, (19), comes into being by the
gravitation force of the rock density anomalies, i,e, the deviations of the rock 
density from the standard density Ü= 2,65 g cm ·-3, Further, the gravitation force of
the isostatic mountain roots is also one of the sources that bring the· potential M 
into existence, As it is well-known, these gravitation forces that give rise to the 
potential M are also the main sources of the Bouguer anomalies of the gravity. 

Consequently, the free-air anoinalie s LI gMof the potential fie ld M will have amounts 
and structures along the surface of the �arth which are in the vicinity of these 
values in the field of the Bouguer anomalies, see chapter B, Both these systems of 
anomalies will have about the same amplitudes and about the same wave lengthes. Above 
all, it is sure that the cross correlation of the d gM values and the topographical 
he1ghts is much more small than the cross correlation abtaind from the ägT values and
the heights._Thus, it can be taken for granted that the superposition of the potential 
T with the potential B leads to a smoothing of the free-air anomalies. A more de
tailed description and analytical representation of the 4g

M 
values is intended to be 

given in the future at another place, see chapter B, Hera, a rough first estimation 
of the s,. value, (26), shall suffice to demontrate the principle ideas. 

• 

sM has the relation

= (.d g p-)15 (47) 

The Bouguer anomaly map of the area of the Swiss Alps offers an excellent oppor
tunity for an estimation of the sM values (cf, /10]).

A north-south profile across the Swiss Alps shows that the Bouguer anomalies can 
be approximated there in the mean by a wave of about 200 km length and an amplitude 
of about b = 60 mgal, 
The curvature of the globe at can be neglected within an area of about 200 km dia
meter before the background of the here introduced approximation. Thus, a potential 
U of the shape of (48) can be considered as ·a regional representation of the poten
tial M, (cf. LBJ), 

u = U cosv-3 x),e -f!>z ,
0 

- 100 km + 100km. (48)
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U is the constant amplitude of the potential U, ß is the constant wave length. The x 
0 

coordinate 1s horizontal in the north-south direction, z 1s the height above the sphere 
-.ie.'. U is not variable in the east-west direction. 

Now, it is presupposed that the test point Pis situated at sea level for the eva
·1uation of sM. Thus, the Bjerhammar sphere -ae' changes over to the sphere ae. Hence,

= (A g!f) '/Jt. 
- (A g 'JP' )r5 

(48) fulfills the Laplace differential equation

_ ffu .., lu+iu _ 
- ax2 ay2 � - 0 -. 

(49) 

(50) 

The free-air anomaly in the field of the potential U can be brought into the following 
form, 

�u 2
- c}z - � u •

The here discussed example has the following constants,

ß = ii = 0.016 km-1 

X = 400 km << R • 

(51) 

(52) 

(53) 

The derivations (48) 
the U potential field, 

(53) give the following expression for the free-air anomaly in

4gu � au = b COSV3 x)•e- /J z - c')z

with 

b = uo /3 � 60 mgal . 

The vertical change of .dg
u 

is here of special interest,

= b cos ß x - b cos� x)•e -f.lzc;

The heights of the mountains z<, do not surpass a value of about 4 km. Thus, 

0 � Z
r5 

� H = 4 km. 

(52) and (57) lead to

(56) and (58) show that

e-u
= E(-u) = 

transforms the relation 

(ß gU)
ae 

- (4 gU)
<, 

the 

1 

(56) 

� 

exponential 

u u2 

- -+ --11 2! 

into 

s.eries 

+ •••

bß z
<, 

cosß x . 

(54) 

(55) 

(�6) 

(57) 

(58) 

(59) 

(60)

AU 

O ~ ß z~ !: O • 064 « 1 
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(59) is convergent for evecy value of u (cf. {13]). The topographical heights z of the
considered north-south profile across the Swiss Alps can be approximated by thq follo
wing function (cf. [10]),

zc1 = H cos (.l :ic , -100 km � x � +100 km. (61) 

(49), (60) and (61) give 

= = 4 cos2/J X /fügalj' • (62) 

The average value of sM in the range of the considered profile follows to be 

+ 1 X4 

SM = � b/3 H (63) 

x=- 4 X 

Hence, 

SIii 
= 1

� b
1
3H (64) 

(52), (55), (57) and (6l�) give 

2 mgal . SM 
= (65) 

2• The solution of the geodetic boundacy value problem 

Thus, the amount of s
M 

seems to be within the �oise of the dates of the gravity net 
of the Alps. Probably, sM will be negligible in most cases. lt follows tbat also 2 , 
(46), can generally be omitted. 
Thus, the equation (41) changes to 

T 

R+ �p jj= 47 t ß i?;T + C } S(y,) dw • 
w 

(66) 

Consequently, the extension of the geodetic boundacy value problem of the Stokes type 
to the Molodenskii type bappens by the addition of the plane topographical reduction 
value C to the usual free-air anomalies. The residual term 8, (41), (42), bas a 
closed expression. lt bas a mathematical representation that gives an insight of clear 
transparency into the. amount of S . (66) corroborates the results abtained in ['j/. 
In the low mountain ranges and in the high mountains, the C values surpass the measure
ment errors considerably, The C values can reach more than 1_0 mgal and at the summit 
of the Fuji-san mountain an the Japanese islands the value of C is even equal to 
135.8 mgal. Thus, the C term cannot be neglected generally. 

SM b /3H cos2 (.J x 

J 2 
COS /J X dx • 

'1 
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8. The vertical shift of the non-smoothed free-air anomalies

If the Bjerhammar sphere boundary value problem does not take advantage of the smoo
thing effect of the superposition with the mountain masses, in this case, the real per
turbation p,:,tential T is to be treated, instead of the potential M, (19).

In this original sb.ape of the problem, just the values T and JgT must undergo the b.ar
monic downward continuation, as can be found in the literature (cf. /$], [6], /7.J) • 
..igT is not smoothed, it is rugged� as against to .dgM.

The following easily understandabie relations are obtained (cf. (8), (9), (47)),

4 gT = - �� - � T
"r r 

= 

(67) 

(68) 

Now, the amounts and the struc_tures of the terms C, sT and sM are to be compaired with
each other. 

The b.armonic vertical continuation of AgT from the aurface � of the Earth through 
the mass-free space �i down to the Bjerb.amma.r aphere w.' is gover::..ed by the following
inhomogeneous integral equation of the first kind (cf. ff:J, bJ, 111/), 

v(Q) = Jf K�Q, Y) w(Y) dw'y 

with the kernel 

K(Q.,Y) 

�/ 

function 
2 2 

= 
(R+ "lQ

) - (R+ 'lp)
4'ü (R+ -rzQ) · 

w(Y) = ( A g� (Y)) et., 

1 

The function v is known, the function w is Ullknown. 

(69) 

(70) 

(71) 

(72) 

(�y) ae, is the position vector of the poiJ}.t Y on the sphere ae•. Y is the moving point 
of the integration. (�)� is the placement vector of the points Q at the surface� of 
the Earth. The determination of w(Y) in t�rms of v(Q) by means of (69) involves an 
iteration proced'ure (cf. L6], [i4]). The expreasion for sT obtained by (13) - (17),
(67) - (72), is in close neighborhood to the corresponding expression f�r aT derived _by
means of the height gradient of the 4gT values. The latter way was followed in f5J and
it did lead to the KG( .d gT) valuea.

The cl.&äm that the sT value of (68) b.as an amount and structure similar as KG ( 4 gT)
is evidenced by the subsequent considerations;. The · term KG( d gT) has the following
ralation (cf. [5]), 

(73)

DOI: https://doi.org/10.2312/zipe.1986.084



' 

14 

The detailed formula is 

(74) 

e0is the horizontal distance between the two points Y and Q. The kernel functions of 
(69) and (74) have closely related structures, a property that is reflected also in sT
and KG ( ,1 gT). Further, KG ( .d gT) approximates the value of sT.

This fact is evidenced by a modification of (69) and (70) wich consists in a passing 
to the limit of '>2Q - ,z P --• o.
If the heights 72 are small, in this case both the terms sT, (68), and KG( d gT), (74), 
are in the main identical. 

Hence, in a first approximation and if the mountains are not too high, the term sT 
can be replaced by KG(A gT), (cf. f5J, 84]). 

The numerical values of KG( .:1 gT) in the area of the Harz mountain are discussed in
[$]. The figures 4 - 7 of the publication L5] show the amounts of 

,.. KG( d gT). (, = "l 
Q -1l p 

(75) 

To visualize the values of C and sT, here to be discussed, a profile was drawn in
the east-west direction through the Harz mountain across the Brocken suwmit which has 
a height of 1140 m. The figures 2 - 5 show the course of some interesting functions 
within the range of this profile. In the figure 2, the � values represent the sT 
values for a Bjerhammar sphere situated at the sea level, i.e. �p = 0 m,

mgal 

1/0 

20 

-20 -15 -10

(76) 

(77) 

-5 0 5 km 

·Figura 2: The � values of the Harz mountain profile (cf. (76),(77)). �
1 

approximates
the term sT, (68), in case of a continuation down to the sea level. The zero
point on the axis of abscissas refers to the Brocken summit. 

d aty • 

10 15 
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The figure 3 shows the ,J--2 values,

�2 = ( 72 Q - ?Zp( Brocken))

15 

(78) 

These -8i2 values have tobe applied in case the test point is the Brocken summit of the
Harz mountain and if consequently the Bjerhammar sphere has the height of this summit. 

?.9>2 
mqa/ 

20 

-20 -ZO -15 -10 -5 0 5 10 

Figura J: The ..J12 values of the Harz mountain profile (cf. (78)).
They approximate the term sT, (68), in case of a vertical harmonic
continuation to the level of the Brocken summit. 

15 km 

9. The structure of the amounts of the plane topographical reduction of the gravity

The figure 4 shows the C values, i.e. the plane topographical reduction of the gra
vity. According to (66), the C values are tobe applied instead of the downward conti
nuation terms sT.

C 

mgal 

* 

2 

-zo -15 -10 -5 0 5 15 km 

Figura 4: The C values of the Harz mountain profile, (�lane topographical reduction). 
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-zo -15

16 

-10 -5 0 5 

Figura 5: The topographical heights aloDg the Harz ruountain profile. 

10. Instabilitles

1D 15 km 

The mean square vaiues for i,,1 , � and C are computed within the range of the Harz
mountain profile. The following amounts are found, 

= 

= 

\J C = 

20 mgal 

6 mgal, 

1.6 mgal 

(?9) 

(80) 

(81) 

A mutual comparison of the '!9>1 , � and C curves of the figures 2� 3 and 4 visualizes
impressively the smoothing, damping and stabilizing effect caused by the superposition 
with the potential B, a procedure which 1s accompani.ed by the .transition from the 
rugged sT valuee (or �1 and �

2
values) to the smoothed C values. 

lt is important to stress that the above derivatio.ns a:re free of series developments 
with bad or dubious convergence. An integral equation of the shape of (69) solves also 
the downward continuation of the dg� values, (20) - (2)).
In doing this, the relations (?1) and (?2) must be replaced by 

p(Q) = (dg,-(Q))<r = (�gM(Q))c; 
(82) 

and 

q(Y) = (dgll"(Y))
at

, (83)

800 
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p(Q) :: ff K(Q,Y) q(Y) d ae'y
ec.' 

17 

(84) 

Therefore, the downward continuation procedures in the potential fields S? and '!l are 
both governed by the same kernel function K(Q,Y), (69), (84). Thus, the instabilities 
inherent in these downward contintiations have the same typical feature since they are 
caused by the same source. The downward continuatations of the d gM values have insta
bilities irrespective of the smoothed shape of these values. However, these instabili
ties are clearly without any importance for the M field if the component parts which 
have wave lengthes of 200 km and more are to be continued, as it is evident by (48) -

(67). The instabilities are more in the fore in case that the short waves of only some 
kilometer length of the model anomalies ,tgMare to be continued downward. However,
on the strength of the smoothing effect, the amplitudes of these short waves of the 
( d gM)

G' 
values will be very small. In very many cases, these short wave amplitudes

will be within the noise of the dates of the gravity field. Probably, this fact will 
allow to ignore these short waves in the downward continuation procedu.re. 

Finally, it should be stated that the closed solution for the boundary value problem 
of Molodenskii derived by the author earlier at other places from the identity of 
Green is free of harmonic downward continuations as against to the here discussed 
Bjerhammar sphere boundary value problem. Thus, that earlier obtained closed solution 
is also free of instabilities (cf, D], L1/), see also chapter B, In those earlier 
publications, the perturbation potential,T and its radial derivative are considered 
as surface values which do not undergo any spatial shift represented by any series 
development. However, in the here discussed Bjerhammar sphere boundary value problem, 
the mathematical derivations are by far not so laborious as in /j/ and .f4J,
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The iteration procedure term in the geodetic boundary value problem can be eliminated 

by a superposition of the pertubation potential with the potential of the mountain 

masses of standard.density. The final solution is the Stokes relation in terms of the 

free-air anomalies supplemented by the plane topographical reduction of the gravity. 
Furthermore, 6 very small terms have to be added. They will never amount to more than 

about 5 cm in t�eir impact on the height anomalies. Thus, for the first time and un

precedentedly, a closed solution is obtained finally. These 6 additional expressions 

are evaluated here precisely. The amount of them can be neglected, as the computations 

prove. 

Zusammenfassung 

Die Lösung des Randwertproblems der Geodäsie enthält einen.iterativ zu bestimmenden 

Ausdruck. Dieser kann durch Überlagerung des Störpotentials mit dem Potential der Ge

birgsmassen eliminiert werden. Als Lösung ergibt sich das Stokes-sehe Integral, bei 

dem die Freiluftanomalien um die ebene Geländereduktion zu ergänzen sind. Es tritt fer

ner eine restliche Größe hinzu, die aus 6 sehr kleinen Gliedern besteht, deren Summe 

niemals mehr als etwa 5 cm erreicht. Die numerischen Beträge dieser 6 Glieder werden 

hier genau abgeschätzt. Sie sind verµachlässigbar klein� 

PesIOMe 

PeweI-rne KpaeBoi1 sa,n:a,rn reo,n:e s1u1 co,n:e piKHT -i.rJieH, onpe,n:eJIH8Mblv1 

I1Tepaw,iOHHh!M M8TO,ll;OM. TIOCJI8,ll;Hl'!tl: l'ICKJIIO"l!88TCH nyTeM cynepTI03M

w,rn IlOT8HU:!1aJia ropHhlX Macc. B K8"l!8CTB8 peweHl'!H noJiy-i.raeTCH 

HHTerpaJI eToKca, B KOTOpOM aHOMaJIMM CBOOO,n:Horo B03,ll;YXa Heoo

XO,ll;MMO ,n:onoJIHl'ITI> Tonorpagm-i.rec1wiii: nonpaBKotl:. KpoMe Toro, ,n:o

OaBJIHeTcH OCT8TOK, COCTOHUU1H 1'13 6 O"l!8HI, M8Jlb!X "l.{Jl8HOB. ql1CJI8H

Hhl8 a0COJIIOTHhl8 3H8"l!8Hl'IH 3-x l'IX HMX TO"l!HO OU:8Hl'!B8IOTCH. ÜHMirnpe

HeOpeiKMMO MaJibl. 
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1. Intoduction

The mathematical relation between the geopotential and the gravity is one of the most 
important problems of geodesy, as so as the inversion of this relation. The first rela� 
tion gives the gravity in terms of the potential in a rather uncomplicated way, also for 
test points at the surface <5 of the Earth. It is the theorem of Bruns, (cf. /13), /19]), 

:lT 2 d g = ( - - - .::11') •
T Dr r s 

( 1) 

.1 gT is the free-air anomaly at the surface r5 of the Earth. T is the perturbation poten
tial, r is the geocentric radius of the surface of the Earth 6" • 

In case of a spherical boundary surface �, the inversion of (1) leads to the Stokes 
integral, (cf. [13], L19]), 

Tat = 4: ff ,:tgT S (y,-) d"-' • (2) 

R is the radius of the globe of the Earth cll1 "'is the unit sphere. S (y-) is the Stokes 
function. y is the spherical distance between the test point and the point variable in 
the integration. 

However, in case the surface of the Earth r5 is the boundary surface, the inversion of 
(1) is rather complicated since the irregular topographical heights are involved.

2 •. -Critigue of the present state of the solution of the geodetic bou:adacy value problem 

Barlier,· 4 ·principally different methods were developed in order to find the solution 
of this problem, (Molodenskij, Moritz, Bjerhammar, Arnold), cf. j18J, [19J, [BJ, [7].

The main term of all of these 4 solutions is the Stokes integral, (2). However, these 4 
methods are distinctly different if the supplementary expressions are considered in 
order to compute the surface height anomalies ; , 

(3) 

r�enotes the standard gravity �t �. These deviations from the Stokes integral reach 
p!:'esµmably the amount o:t' up to 1 or 2 m in the ; value, (cf. /19], f21]). The components 
of: the deflection of the vertical, -i?-

1 
and -i?-2 , are presumed to have supplementary

. terms o·f about up to 1'; (cf. [2.0]),

,,J, 
JT • 1 

1 = - �X i 1 
fJ>. __ dT • 1

2. - �Y r 
(4) 

dx and dy are the horizontal differentials of arc in the south-north and west-east di
.·: .. ·,-rection.

The individual authors bave reached the following solutions for the inversion of (1). 

·- 'koiodenskij bas obtained his well-known series development for the perturbation po
tential T� at the surface of the Earth d by the intermediary introduction of the poten
tial of a surface distribution,t'.'18)', 

w 

= 
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T15 = Tae + (5) 

The Ti functions, (i='l 12 9 ••• ) , are expressed in terms of .!I gF by the formulas of Molo-
denskij. 

According to .Mori tz, the T � value a t the left hand side of ( 2) has to be replaced 
by Tc1 and, further, the <'lgT values on the right hand side of (2) by ( 4gT)P, [19]

,
with 

= D L1 g - Ll g +L D1. ,1 gTT - T i=O (6) 

JgT is in (6) the surface value of the free-air anomalies, (1). Dis the operator for
the downwards continuation of the JgT values. This operator is represented by a series
development, (6), which can be found explicitely in /19]. U is the operator for the 
upwards continuation. ( AgT)P is the free-air anomaly at the Bjerhammar sphere �p with

the radius �•Pis the test point for which T is to be computed. The point Pis situa
ted on the line of intersection of the surface G and of the Bjerhammar sphere, Fig. 1 
and J. 

The solution according to Bjerhammar is situated within a certain vicinity to that 
of Moritz. However, Bjerhammar does compute the spherical (4 gT)P values from the JgT 
values at the surface d by means of an integral equation, instead of the Moritz series 
development, (cf. /BJ, L'2J, /3], /5], /1?]), 

Jj 
�p 

tig (lc/. ) K C--i,'1:,ac ) 
T � p 

(7) 

K is the kernel function of the integral equation (7), � is a point at the surface of 
the Earth r5. Q -ae is the running point on the Bjerhammar sphere �p which has the radiusp 

Rp = R + � .  hp is the height of the point for which T� is to be computed. The point 

Q is variable within the course of the integration according to (7). 
�p 

Further, in the formerly published Solution of the author, (cf. rv, LV, /7], /8./), 
the value of T ae has also to be replaced by T 6 on the left hand side of (2) and .:1 gT
must be substituted by 

on the right hand side of (2), with 

;) ?1>1
KG= c1(T) = G (hQ - hp)(vx

(8) 

(9) 

The mathematical deductions to reach the KG term are free of downwards and upwards con
tinuations. Gis here the global average values of the gravity, h is the height of the 
surface points above the globe of the Earth at. Pis the certain already mentioned test 
point on <'f for which TG is to be computed in tenns of ag

T
• Q is the variable integra

tion point. -ßl1 and 1'12 are the components of the plumb-line deflection at the surface 6,

(4). Thus, zJ>
1 

and ?J>2 are considered here as surface values which depend from two 

CO 
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parameters only, e. g. the geographical latitude and longitude 'fand ;l. , .a fact that 
is tobe stressed here. 

1" = (j> <r ,.i); {j,2 = {},2 
(
'f ,,l). <10) 

1 1 

di and � are the downwards projections of dx and dy, Fig. 1, 

dx = Rd <f (11) 

dy = R cos 'f d ,l ( 12) 

The expression (9) depends on T. That is the function even tobe determined. Thus, the 
solution of the author derived from the identity of Green along the lines of (8) and (9) 
does not lead to an equation which has the unknown T function explicitly only on the 
left hand side. The expression (9) has tobe computed by repeated iterations. Conse
quently, the extension of the geodetic boundary value problem from the Stokes type to 
the Molodenskij type gives rise to the appearance of an iteration procedure term, (9).

In a first approxima tion 
J 
in the lowlands, the i?i1 and i,>2 value s of ( 9) .can be de-

ri ved from the spherical Stokes or Vening - Meinesz theory for the computation of KG 
according to (9), 

\. d% (P) 

---· �--::;�==-----------

dx (eo) 
·-·------'--:a.._-------

---P
;ie. 

(P
ar,

) 

Fig. 1 s The straight distance e connects the test point P and the variable point Q on 
the surface of the Earth. The differentiation of e happens along the horizontal 
element of length dx, plotted at the point P, As opposed to thia, if a surface 
function ia shifted on e-- from P to ((P)) along an infinitesimal length, in 
this caae, the element of length dx is introduced as the denominator in the 
concerned differential quotient. 

-

hp \J. ((P)) 
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Basing on a spherical theory, the term KG, (9) 1 has the followi.1g 
approximative expression as function of Ll gT , ( cf. /" 19 J

z is 

1V" is 

the 

R
2 

KG � ( h.. - b_) -
---i.q, , � 211 

moving point in the 

eo 
= 2 R sin 1:

2 

ff 

integration of 

here the spherical distance between 

(13). 

the two 

dw 

e0 has the

z 

following 

points Z and Q.

relation, 

(13) 

( 14) 

The pros and cons of the 4 above cited methods developed to find a solution for the 
boundary value problem of Molodenskij are well studied and well-known; Molodenskij 
(cf, [5]), Moritz (cf, [�l), Bjerhammar (cf. /7.J), Arnold (cf, fW)(cf, [9]). In this 
context, it is suitable to give a short critical comparison of these 4 methods: 

The individual terms of the series development (5) contain instabilities, the con
vergence of (5) is an open question. Supposed, the convergence of (5) should really 
exist, in any case, this convergence will not be good and the, series (5) will not have 
a rapid speed of convergence. During the last 20 or 30 years, there is not even one 
successful attempt to determine the residual term 

i=N Ti (15) 

of the series development (5), N is a sufficient great integer. Thus, it is a matter 
of fact that the series development (5) cannot be governed·. There is no mean to com
pute (5), In view of the determination of the decimeter geoid, it is indispensable to 
have a mathematical expression for the height anomalies 5 that has a guaranteed theo
retical residual error of not more than some centimeters.Therefore, (5) is not a 
satisfactory solution of the boundary value problem. 

The judgement about the solution according to the series (6) comes to the same re
sult as that of the solution (5), since Pellinen has proved that the series develop
ments (5) and (6) are equivalent, (cf. 89]). In the past, there was not even one 
successful step to evaluate the amount of the .residual term of the series development 
(6), 

(16) 

Nevertheless, the series (5) and (6) have led to some useful scientific findings. 
Indeed, theoretioal investigations have shown that the first terms of these series de
velopments, i. e. T1 and D0 AgT' are situated in a relative close vicinity of the
plane topographical reduction of the gravity C, L13], 

) 1 
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2ü Z 

f 
z=O 

0 (17) 

C can reach considerable amounts, (cf. [17], L21J). f is the gravitati9nal constant, 
� is the standard density ( 9 = 2,65 Lg cm-3.J). In the eq_uation (17),y is the spheri
cal distance between two points. The first point is moving in· the course of the 
integration of (17) and the second p():i.nt (t, is the point for which C is to be deter
mined. Z is the height difference bet;ween these two points, (cf. Fig. 3), 

('18) 

As to the solution according to (7), this form has the handicap that the inversion 
of the integral eq_ua'bion (7) j_s rather laborious. In the hilly countrysides and in 
the mountains, the differences Ll gT - ( iJ gT)P variate in the form of relative short

waves and relative great ampli'tudes. For the computation of the solution of (7), the 
numerical evaluations need a computation grid of relative small meshes. 

The solution established by the relations (8) to (13) has about the same difficul
ties as that represented by (7). Here, in (8) •- (13), an additional difficulty is in
volved since the relation ('13) allows satisfaytory results only for areas not too 
hilly. In the mountains, the relat:Lon (13) tolerates a lot of approximations which 
are not yet investigated. 

3. The basic relations of the closed solution of the geodetic boundar.y value problem

The most recent investigations of the author show that the solution according to 
(8) and (9) has the advantage to be considerably devel-0pable by the superposition with
the potential of the mountain masses B, (cf. l7J, [9_7). The same advantage can be
brought to bear also in th� sOlution along the lines of the Bjerhammar sphere, (cf.
[äj). However, as to the series solutions according to (5) and (6), the superposition
with the potential of the mountain masses does not bring considerable advantages there.
The results of the most recent developments of the author about (8) and (9) can be
summarized in the fol�owing way.

The amount of T at the surface � is TG' • It has the following eq_uation, [7J, 

T G' = 4 ! ff ( 4 gT + C) S ( yr ) d w + t 
l.=1 

(19) 

The 6 terms X. can be neglected, they have an influence of lass than some centimeters 
l. 

on the height anomalies t; , (cf. (3)). They have certain mathematical expressions 
that give an insight of clear transparency into the amount of them, (cf. l?.7, [9]). In 
the here discussed geodetic applications, the relation (19) has the character of a 
closed solution; it has not the form of a series development. The relation (19) is of 
importance also for the solutiön of the mixed boundary value problem of geodesy, 
(cf. ffJ, /9];see also chapter C). lt is not possible to find the mixed boundary value 
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problem without Stokes and Molodenskij. 

The here preferred starting point for the derivation of the solution of the boundary 
value problem is the identity of Green for test points subsided down to the surface of 
the Earth (cf. [7], 115], 86]), 

1, = 2'ii ff 
1 c)T dG' __ 1_ 
e c)n 2'ii (20) 

The direction of n is normal to the surface r5, positive into the interior of the Earth. 
Consequently, the perturbation potential T has a closed expression just from the begin
ning. The mathematical rearrangements which transform (20) into (19) are laboridus. 
They can be found in /1],/.7/. Here, some of the main ideas are to be sketched only • 

. �T t>T The transition from � to �r happens by the multiplication with a 3 x 3 rotatioL
matrix; a series development is not needed. Two orthogonal tripods of unit vectors are 
introduced. The first tripod �, g. 2 , g. _1 refers �o the surface <S , g.. 1 and

. 
g. 2 are

tangential vectors of �, and � 3 is botn perpendicular to � and positive into the
exterior space. The second tripod x, y, z refers to the horizontal plane of the test 
point P, Fig. 1. The x, y plane is the horizontal plane and z is �he vertical component, 
the positive direction of the z axis points upwards. Thus, 

cl 'l' c) T
c) X

·1

�T 
� 

�T 
Ty 9 n2

uT �T 
a'ii:3 az 

'l' 
= A A = .b; 

= 

Eis the unit matrix, the superscript T denotes the transposition. With 
= 

cl T c> T
- an = c>n3

and 

follows from (21) 

uT 
"15n = 

3 

L 
i=1 

a 2...1'. + 
1- c) X 

3 
a t> T tl T 

L k! 2 tJ y + 
a

3 c) z = a 
Dx. 

i=1 i 

(21) 

(22) 

(23) 

(24) 

(25) 

(25 a) 

-1 
A A 

G 

= 

= = 

• 

i 
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dxi stands for dx, ccy, dz, (i = 1,2
1 3). In the relation (20), e and d� depend from

_the shape of (5 , Fig. 1. Thus, (20) transforms into 

(25) is introduced into (26),

3 

T
c,

= ff G<<r) L
i=1 

d-at. 

(26) 

(27) 

Till the equation (40), the h values are the heights of the surface � above the sphere 
et. • If h -+ O, the transitions � ( Vf) _. � ( -ae.) and /z ( 6') __. T;_ (-ae)

follow. The division of (27) i�to a spherical part and a supplementary height dependent 
term leads to two simultaneous equations, 

T� = ff G ( ?(,) ( � ; ) d � - ff � ( ae ) T ae d ae , 
� � oc 

= - ff r; c�) 

3 

JT dat + ff {L -/ ' 
ae i=1 3.i 

G_ (cf) = G_ (-ae) - r: (h) 

(28) 

(29 a) 

(30) 

(28) is equivalent to the Stokes solution, (2). The second term on the right hand side
of (29) has a structure that gives rise to the iteration procedure term, since it does
include the a priori unknown T� values and the derivatives of T in the x, y, z system.
The first term on the right hand side of (29) can be neglected. This fact will be
shown later on in the section 7.5 of this chapter of this publication. The first term
on the right hand sid_e (29) is denominated also by .X. 2 ,at other places; see section 
7.5 and the publication flJ. Some rearrangements of (28) and (29) lead to (19), f1] 
f?J. 

The principal ideas developed by the relations (21) - (30) can be represented also 
in another shape. The identity of Green, (20), can be written in the following form, 

( uT F 1 rs , T, ., n) = o •

(31) is linear in T and �� With

er = ae + JIS' 

01) 

(32)

( ; ~) <5 d ~ - jf 7-;_ ( 6' ) 'r G' d ~ • 

8t 

ff r;_ (G') TG" dae. • 
-ae 

(h) ( ! ;J,. + T: (h) T5 1 dae, (29) 
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follows 

F1 (-ae + J(!-

(25) and (33) give

or 

F2 (� + Jrs, T ,

' T, �'l' ) Tn 

DT aT 
Jx ' TI' 

27 

= 0 

�T 
) 0Tz 

J c.l T 
cx,Y c rs) 

a Y , ex.
z 

03) 

04) 

(c>G") �!) 
= O • 05) 

(3�) is divided into a spherical part and the residual expression which goes to zero if 
h ---+ O or if Je, - O. Hence, two silmultaneous equations are again obtained for 
the solution, 

06) 

and 

07) 

(30), (36) and (37) lead to (19), (cf. ["1], [7]). If J� = 0, the equations �i (J5)�0

and F
6 

= o, JT = 0 follow. (36) represents the Stokes solution, (2). 

The recent investigations of the author show that the solution of the boundary value 
problem can be written in the subsequent form,(cf. f7-1 equation (66)), 

•r = 4� ff f J gT + c1 (T) .J I (h) s C -y,) dw + X 6 (T) 08) 

with 

( cos f ) . 

sin2 f + 2 d � 
d
e..:> ' 09) 

I (h) = 1+; ( 3 � - ) ) (40) 

DD

'l/f 
means the derivation in the radial and horizontal direction. 

c1 ('1') is explained by (9), it is the iteration procedure term of the relation (38). lt
is advantageous to take measures to avoid this term since it does involve laborious and 
repeated iterations. 

= 

w 
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As it was shown in [7],/9], the iteration procedure term can be eliminated in that 
the perturbation potential T is superposed with the potential B of the mountain masses. 
Or, to be more precise, this superposition transforms c1

(T) into C
1

(T-B). The amount
of c

1(T-B) is smalle_r than the upper bound of the noise of the method, i. e. the random 
errors and the biases of the 4 gT field. Thus, along these lines, the solution of 
Bjerhammar and of the author according to (7) and (8) are developable, a preference 
that does not hold for the solution by (5) and (6).

4. The superposition with the potential of the mountain masses

Within the scope of this superposition, T is replaced by 

M = T - B (41) 

in (38) - (40). Some rearrangements follow, they lead to (42), (cf. equation (77) of 
17], [9.J), 

T = 4 i ff [� gT + C ] S ( J/1" ) dw +

C4' i=4,ß, 7,8 

C has the expression (17)� Further, 

\ = [B]"

t:6 = - � ff �; (¾ - hp) S * ( y) d w

(f"
c9B 2 B J"-C)S c) r + l't (yr) dw ,

X 
i 

dW 

X 8 = .Jl_ J]T G C �µ.! + 9JA-2 - u � < 4 'u w c, x J Y r ·  1 R ) ¾, - 1\,) s ( y) dw •

µ,1 

(42) 

(43) 

(44) 

(45) 

(46) 

(47) 

(48) 

Fig. 2 shows the course of S * and of sin t S * • The expressions ( 42) to ( 46) consist of 
parts which are linear in the height h and of parts which are non - linear in h. The 
symbol [" J" denominates the regulation.that the non - linear parts of the term within 
the bracket·s are considered only, (cf. /7]), their values are discussed later on. 

) 

w 

cl M 1 /k ----2- cJY r 
j/1' 

1 cos 2 dS 
s*(r)=2~ +o:y 
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10 

---

__ a� _ Jil) 100 120 140 160 

s*(-y,) sin v 

-10

- 20 

-JO

-40

Fig. 2: The course of the func tions S :#: ( l"') ( solid line) and S * ( y ) sin 1f' (broken 
line), (cf. (44), (48)). 

Within the course of the mathematical deductions that reveal the validity of (42) 
to (46), the standard density mountain masses above the sea level are condensed at the 
surface ae of the globe following the ideas of the Helmert condensation procedure 
(cf. /14J). The thus obtained spherical surface distribution fh gives rise to the po
tential B in the exterior space of ae. , 

C 

(Bc)P � f�f!-e (P� Q
ae

) h d�
ae 

(49) 

(50) 

s> is the standard densi ty. e is the straight distance between the points P and Q 'cl(.. 

P is here a point in the exterior space of -ae. or a point situated on -ae •. Q at is the
point moving over � in the integration1Fig. 1. (Be)� denotes the potential of the
condensation masses if the test point Pis subsided down to the sphere ae. lt has the
following rigorous Stokes equation, (2), 

(51) 

with 

100° Y 

2 
d~ :a: R dw • 
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c> B

Be and [ v/ ]
-ae 

depend on the surface distribution � h, (cf. L7J, [1�7),

with 

Ä2 = ff R2 ff (h
Q 

-h
p) .L dw

eo 

A3 = -4Tf�h

A4
= - � f� R JJ C¾ - �) .L dweo w 

The relations (52) to (58) transform (51) into 

with 

(52) 

(54) 

(55) 

(56) 

(5•?) 

(58) 

(59) 

(60) 

In order to avoid certain misunderstandings, some peculiarities connected with the 
potential B are to · be discussed. The value of 9 = 2,65 f g cm-� is the rigorous 
amount of the standard density. Therefore, the potential B can be computed precisely. 
It is a precisely defined modal potential. rhe introduction of the potential B into 
(41) and (38) is not accompanied by a loss of precision in the result, by no means.

• The argumentation that the standard density 9 should here better be replaced by the
real geological density of th� mountain masses, - in order to have a better approxi
mation of the reality - , this argumentation is absolutely misleading. It does not
meet the problem. Geological corrections of the standard density are not required.
They cannot better the result.There is no need to introduce them. Needless to say
that the introduction of geological corrections of the s, value would mean to carry

B = 
C (53) 
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out a lot of unnecessary work. 

The potential B and the first derivatives of it at the point P on the surface � ean 

c>B f>B 0B 
C C C 

be expressed by the arnounts of B
0, 7fr , -_- , � at the point Pae on the sphere 

c) X a y 
;; B II [ .) B;

11 [- D B1
11 

� and by the addi tion of the supplementary terms f B J11 , [ 
f) r] , c> x , . fJ y 

(cf. Fig. 1). Accounting for (53) and (54), the following relations are obtained. 

The equations (1) and (60) reveal 

v B 2 
11 

h J gB = J g _ [- + - B} + 2 :::2 B • 
B

0 
eJ r r R 

(61) 

(62) 

(63) 

The above relations (53) to (63) are needed to transform the equation (38) into (42). 
Indeed1 T can be substituted by Min all the terms of (38), (cf. (41)), and then, there
after, along the reverse procedure, on the other hand, M can be decomposed into T and 
B. Furthermore, B and t! can be substituted by (61) and (62). Finally, (42) is obtained
and, by means of these deductions, the iteration term c1(T) is eliminated or, to be more 
precise, it is lowered down to the negligible amount c1(T - B) = c1(M), (cf. (9), (JB),

(46)). 

5, The relation between the iteration procedure term and the plane topographical 
reduction of the gravity 

Before the detailed numerical evaluation of the small terms (43), (44), (45), (46) is 
executed, the relation between C and c1(T) is to be derived now explicitely, (cf, (17), 
(9)). To follow up this problem, T is in (38) replaced by B. Further on, the relations 
(53) - (63) are introduced and, after that, some rearrangements are undertaken, Finally, 
the relation wanted to have is found, 

4� ff [C - c
1

(T) J S ('f,") dw = x; (B) - X
4 

(B) + X
6 

(B) - X
8 

(M) •

The second, third and fourth term on the right hand side of (64) have the formulas 
(43), (44) and (�6), The first term has the expression 

x;(B)=4!ff[½ 

(64) 

(65)

A1 + A2 + r B J" , (B)p = 

w 

( 3 ~ - ~ ) .d g + 2 ~ B] S ( Y, ) d~ • 
R R B R2 
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The amount of the closed expression on the right hand side of (64) is vecy small. lt 
can be neglected in most cases, as it will be seen by means of the extensive develop
ments from (72) to (133) later on. 

6. The closed solution for the geodetic boundar;y value problem

The relation (42) gives the surface value of the �otential T and the height anomaly 
; , (3), as a solution of the boundary value problem of Molodenskij. In a similar way, 

the components of the plumb - line deflection '!9>1 and 1 have the expressions, (4),

oc is here the clockwise counted azimuth. 

-
1· 

r 
> -L x

l.
. 

i=4,6,7,8 f)x,y (66) 

The local south�north and west-east components of the slope of the topography vx 

and �
Y 

at the test point P do not appear in (66), see Fig. 1. These values have no 
effect on the deflections i?; and �2• These local values of v

x 
and Vy prove as the 

multiplication factors of some certain expressions of the following i;;tructure, 
211 

s COSC(. dO(. = 0 • (67) 
0(, =Ü 

Therfore, the local amounts of v and v at the test point P have no effect on the 
X y 

computed values of T and � and 7"2 for.the point P. 

Now, the essential problem, the evaluation of the numerical amounts of Xi and 
cl 

&x,y X
1

, (i = 4,6,7,8), will be in the fore. lt is to be proved that these values 

can be neglected in all the geodetic routine applications, (cf. (42) - (46), (66)), 

2 xi 
,V 

1=4,6,7,8 
(68) 

a 

z xi 
,V 

0 rJ x,y (69) 

1=4,6,7,8 

Thus, the following formulas suffice for all the geodetic· routine applications, 

T = 4� ff [d gT + C .J S ( JI') d�, (70)

= 0 t 

= 

w 
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'!J,1} 
1),2 

{ 

c

s

o

in

s 

ot.0(, } 
= 4; 1 Jf [ d gT + C .J fr 

4' 

d c., • (71) 

z. The numerical evaluation of the residual term of the closed solution

The prove of the validity of the relations (68) and (69) is governed by the, evalua
tion of the following amounts, (cf, (43 ),(45),(46),(9)), 

3 
= 

1 

.... 

� = 2 

� 
,!::!., = 

3 

� = 

4 

[B]" = 

r�t f) r 
= 

- dB II 

l Tx;yl

C (M) = 

1 

(B)
G' 

- (B )
C a! 

(72) 

( ;� )0' -

f) B ) 
( a/ ae (73) 

(' � B ) 
dB 

= 

l} x,y 11 ( �x,;)ee

(74) 

G (hQ _ ll:e) 
�f'-1 �f-2 + �

fA-1) ( d x 
+ R

;; y 
(75) 

Later on, the amount of 8 5 = t
6 

is evaluated also, (cf. (4-4)). The knowledge of 
,......, the amounts of c.!:!Ji , (i = 1,2,3,4), allows the computation of the amounts of X 4,

X
7

, ::t8 and that of

� x
4
, x7 ' xa c/ x,y (75 a) 

Consequently, the essential problem is now to find convenient mathemathical expres
sions for these 31. values in terms of the topographical heights h. 

1 

.).) 
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7.1. The amount of the potential supplementary to the potential ot the 

condensation method 

�/Q

R 

Fig. 3 

Fig.3: The geocentric spheres ae. and -aep• The surface of the .i!.arth G' and the height h

of G above ae. • The height difference Z between the surface points Q and �, and the in

clined straight distance from P to Q, e. The straight distance e0 
between the points

P
'cle-

and Q -ae on .ie • The inclined straight distance E. which is variable with the 

height difference z above the point P. The two orthogonal unit vectors �1 and �2 • The

unit vector � of the normal of the surface 6 , positive into the interior. 

! 
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A 
r, t f.irst;, th':' ._i::.

1 value is i;o be computed, (cf. (72),(61),(53)).

'ii' 2u R+�+Z 

f J f ( t )p 
2 4'ttfgRhp-r.!:!, = f� r sin 1f dr dlf d«: -

'1 

1/' =Ü ol. :;.(j r=-B 

Fig. J visualizes the followiog relatioLJ , 

€. 2 _ (R + hp / + (R + hp + zl - ? (H + hp) (R + hp + z) cos 1//

Some rearrangements of (77) lead to 

The 

and 

2 2 2 2 
e = e + z + 9

0 
0 

2 h + z h2 + z h 

( / - + p 
P)

R2 

abbreviations (7;l) and (80) 

92 

n„ ';t 0 z �< 1 2 
2

2 R eo+ 

2. 

� D2 
'V 

e
o . 

2 <<. 1 
2 2eo + z R 

transform (78) into 

(76) and (81) and some additional mathematical considerations lead to

,!!..J =1 i=1 

(76) 

(77) 

l78) 

(79) 

(80) 

(81) 

(8.::) 

=---

1 = 1 

l ,(e~ + z2 

fj G\ dw 
w 
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with, (cf. Lhl),

19 (R + �) 2 arsinh = i, 
1 (83) 

0
2 

1R eo ( 
11

1 - 1)= 
2 

+t 2 
(84) 

03 = - R � 
7: 

11+ i- 2 
(85) 

04 = 2 R e0 ( ✓i/1 + i- 2 - 1) (86) 

85 
= - R2 'i: (87) 

z
¾ - hp 

= eo eo 
(88) 

The amount of 8
1 

was computed for two simple models.

·11he f�rst modal has a test point P at the summit of a circular cone with the
height hp = 2 km and with a circular base of the radius c = 2 km. (88) gives the re
lation '/; = -1. The integration over the area of this cone, 0 !: O'- !: 2 'iT and 
0 !: e

0 
� c, reveals Äi ii; = 3 cm, � j = 10 �gal. These amounts have not to be 

taken into account. 

The second modal has the following parameters: hp = 0 1 

R2AC.O= (600 km)2 • For this example the above formulas give

2
1 

j = 1 /"'gal. These amounts are negligible. 

e0 = 2 000 km, Z = J km, 
r:-:t 1 
i.':!,1 11 = 0.4, om, 

7.2. The plane topographical reduction of the gravity and the free-air anomaly 
caused by the supplement potential of the condensation method 

The expression 

[ : � + j B f - C :: JC (89) 

is the next function the amount of which is to be computed, (cf. (17),(45),(72),(73)).

The first step to reach this aim is the evaluation of the amount of 82 , (cf. (73),

(49), Fig. 1 and 3),

= 
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• 211' R+hp+Z 

}11':::0 01,=0 r'=R 

J7 

( D 1/e ) 2 
ar p r' sin y, d.r' d y, dOC, -

(90) 

In the derivation of (90), the limit relations are observed that are valid for the 
potential of a surface distribution or for the potential of' a single layer, (cf .f16]). 
For the expressions in the parentheses of the two integrands of (90), some special 
developments are needed in order to find them in terms of the heights differences z, 
(cf. Fig. 3). The following relations (91) and (92) can be deduced easily, as a view 
on Fig. 3 does show, aooounting for ,; 2 = g2 , = 

[' (R + �+ z) cos r - (R + hp) J �1 + (R + hp + z) sin r �2 •

Some rearrangements of (91) and (92) change (91) into 

with 

and 

z - 2(R + hp + z) sin2 :[
(e� + z 2) 372 

e; = 2(R + hp) sin -f-

e 2
-,J p D3 ------

2 2 8p + Z 

. z << 1 

(93) is introduced in the first integrand of (90). For the second integrand, the
following substitution is recommended,

(91) 

(92) 

(93) 

(94) 

(95) 

(96) 

e 
= 

f) 1 -
f>r r -

= 

f ! 
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The relations ( 17) , (82), (90) - (96) lead to the following representation of 

60 = 

c510 =

d
2

o =

6f 
=

��o =

with 

tß1 

R 
p = R + hp,

1
2 

=

L J. 
·l 

i=1 

'it'" 

0 = 

2Ü 

[-� + g 
fJ r R 

z 

f� f df f d«- ) i>1 dz

"f=Ü o<..=0 Z=Ü 

� f9 R ff 1 
{)2 dweo 

5 

ff 2 f s> � L e. dw
1 i=1 w 

4-'ii f9 � �

Bj 

z (1 - � DJJ 

II 

- 0

sin y., C1),+zl - y�
2 2 3/ 2

(ep + z )

and 

z 

(� + z)J 
e 

[1 - . 
0 

R."3 2 J/2 2 

Z=Ü (ep + r.: ) 

z 

(
R

2 2 2 312

p 1Jf + z ) 

(1 - .1 D ) 
2 3 ] dz 

The numerical amou.nts of ö10 and 6
2
0 are computed for 3 simple models.

(89), 

(97) 

(98) 

(99) 

(100) 

(101) 

(102) 

(103) 

The first modal has the following parameters: hp = o, Rf = 5 km, Z = 2 km,
R2.6c.,., = (4 km)2 • The integrals (98) and (99) are computed for this modal according to 
the mean value theorem of the integral calculus. The results are J

1
c = 0.5 pgal,

v
2
o = 0.5f'-gal. These amounts are insignificant.

The second modal is described as followe : hp = 0 , R !f= 4 000 km, Z = 3 km, 
R2Ato =(1 000 km)2 • 

. \ 

4 

= 

3 

J 
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The following results are obtained, 61c = - 0.02 µ,gal, J
2
c = - 0.4 p-gal. These amounts

can be neglected. 

Now, the computation of ef3c follows, according (100). A comparison with (82) show�

2 

= R �1 

This term has proved to be within the noise of the gravity measurements, (82). 
3 

Thus, i t is guaranteed tha t the sum L cf. C mu·st not be talcen into account,,
(cf. (97)). i=1 i 

(104) 

As to J4c; the rather simple formula (101) leads to 64c = 0.1 mgal for hp = 2 km . 
Therefore, also the term cf4 C seems to be wi thin the noise of the method in all the 
routine applications. 

7.3. The deflections of the vertical caused by the supplement pot�ntial of the 
potential of the condensation method 

Tha next stap consists in the computation of the amount of 23 , (cf. (74)). g3 is
of importance for the determination of the deflection of the vertical, (cf. (66)). 
(74) and (76) give, (cf. Fig. 1 and 3),

,, 

,!:!..J =
3 

� 211 R+hp+Z

f � J 5
'lf=O 0(, =0 

- f� R2 JJ .h
w 

f 
r=R 

( f)
1

;g )
ex, Y P 

( c>_ 
1

;�0 
) c) x, y p 

du.?.

ae 

r2 sin 71' dr d 1f doc.-

( 105) 

The question, as to whether a spacific mathematical problem requires the introduc
tion of dx, dy or dx, dy instead1as the independent variables, this question was al
ready discussed earlier in context with Fig.1. 

The horizontal derivation of E along the sphere ee.P and of e0 along the sphere ae,

leads to the following developments, (cf. Fig. 1 and 3). The relation (78), 

6
2 = z2 + e2 

· o  
(1 + D4) (106) 

with 

2 

hp2 � + z hp + z 2 hp + z
D4 

"'
<< 1=

R 
+ 

R2 
=

R (107)

• 
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gives 

Hence, 

The eq_uation (1'09) and 

_&. - 1 
d X - - """R_+.....,..

hp
- cos 0G

reveal 

c>t .1 
� = - COS 2 COS«. 

40 

On the sphere � , the following relationei are valid, 

...!.E. = - Jr cos 0(, 

8 x 
.n 

v e yr __ o = - cos -- cos ot, • 

@ x 
t:. 

(108) 

(109) 

• 

(110) 

(111) 

( 112) 

(113) 

(114) 

(114 a)· 

The above relations (111) and (114 a) lead to the following expressions for the two 
terms that are put in parentheses in the integrands of (105) 

( 
� 1 /& ) v x, y p 

= cos L
2 

� 
cos 01. l

l sin c1. 

(115)
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( = cos L2 

41 

{ 

cos o(.1 

sino1., ) e2
( 116) 

The relations (115) and (116) are inserted into (105), the terms of the order (h/R)2 

in D4 are neglected and the following formulas for the computation of :E
3 

are obtained,

l!!l3 

with 

p-1 

p2 

P3 

'ii4 

'il5 

= 

= 

= 

= 

7 211" 

ff R j sin2p dV, f C"l 'j/'=0 

(R + �)3
•

R 

3 R [-1- -
eo 

o(,:0 

z 
2 2 

e (e +
O 0 

1 

Sl.not. 

2 1/2
z ) 

J 
2(eo

2 1/2
+ z )

- 3 R hp (Z + � z3
) 1 

d«. • 

e2 
0 2 (e

o 

2 3/2
+ z )

1 2= 2 R eo ( 
1 

2 

1 
2 3/2 --

) 
e3 

= R2 Z -
Teo

(e
o 

+ z ) 0 

5 

L �-
i=1 

The numerical amounts of 2
3 

are computed for the two different Earth models.

The parameters of the first modal treated above for the computation of J1c and
o2C, (cf. (98), (99)), resulted here the following amount:

r;-:-, _j>_" 
n 0 &

3 G = o. 3 ; (o<. = 0 ). Consequently, in extreme cases in the midst of the high

(117) 

(118) 

(119) 

(120) 

( 121) 

(122) 

_f_" mou.ntains, it is possible that �he amou.nt of Z3 G effects the computed deflections
of the vertical by more than o. 1. 

' 
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Theparametersof anL,ther moclel Earth, (h = o, R1f= 100 km, Z = J km, R2tic.c., = 
" 

r.:t� 
P4 

(4.0 l<mY), learl tc- t�e a�o 1rnt ..!:JJ G = J 11 •10- Thus, it can be concluded that

effeot c:. t',e d\stant :nountains on :E:
3 
t' is ins1gnifi,)ant, 

7,4. The theoretical error of the method for the elimination of the iteration 
procedure term 

the 

The next problem is the computation of the amount of E4 , (cf, (75)), To reach this 
aim, it is not intended here to compute the expressions for c!t,'

4 
in terms of the heights 

h of the mountain masses and in terms of the potential T, For the here following inten
tions, it is a great benefit that the amounts of the topographically reduced deflectior 
components µ,1 and f'-2 can be taken directly from an austrian publication which con
tains the representation of a dense field of the µ.1 , µ,2 values for the area of the
austrian Alps, This source brings in an excellent material for the here followed pur
poses, (cf. [loJ). To be sure, 'the deflection values published in 8Q7 enclose also the 
effects of tLe isostatic compensation masses, i, e. the mountain roots, However, there 
is no doubt, these mountain roots are situated in a depth of more than 30 km and, thus, 
they will have only a small and smoothed effect on the horizontal derivations of the 
deflections of the vertical at tb:e surface G" .  

For instance, mountain mass of a base of 40 km square and of 2 km height has a 
well-defined isostatic mountain root, This root has a spatial extent of a bloc of 
40 x 40 x 8,8 km3 , a density of 0.6 g cm-3 and a center of gravity in a depth of 

'

34,4 km below the sea level. The effect of this bloc shape mountain root alters the 
II 

surface plumb-line deflections by not more than 3 if moving away from the epicenter 
of the mountain roo.t as far as a distance of 40 km, as a short calculation does show. 
This source has a share in 24 that is not more than 0,4 mgal, for 11n - llp = 1 km,
(cf, (75)), Consequently, for a rough estimation of the 24 values, �t is admissable
to introduce the topographically-isostatically reduced deflections of' [1o] instead 
of the topo'graphically reduced µ,1 , f',-2 deflections.

� µ, 
In order to evaluate the amount of- the differential quotient --1 which appears in

( 
,...., .;li the formula 75) of, i!!J4 , the µ.1 values situated within a narrow stripe along the

meridian /4 = 14°
30 1 are selected from the list in the austrian publioation, (cf, 

{i Oj), These µ.1 valt:..es within the area 14°28' 6 ,l � 14°
32 1 , 46°

30 1 f 'f � 48°
30 1 are

shown in Fig, 4, 
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Fig. 4. The meridional components of the topographically - isostat1cally reduced 
plumb-line deflections along the meridian t = 14°)0' in the area of the 
austrian Alps. 

Fig. 4 visualizes that the µ,1 values variate over distances of about 200 km by an
amount of about 4" for the extremely rugged topography of this sample area. Accord.ing 
to (75), this fact influences the S4 term by not more than 0.1 mgal if ¾-hp = 1 km.
0ver d.istances of 20 km, the µ1 values variate in the mean by about 2", (cf. Fig. 4).
Hence, an effect of the amplitude of 0.5 mgal and of the wave length of 20 km foliows 
for (ffJ4, if ¾ - hp = 1 km.

In a similar way, the µ2 values are selected for a narrow stripe along the parallel
of latitude of � = 47°00' • For the area 46°58 1 f y � 47°02 1

, 12° 0' � � � 16° 0' ,
these topographically - isostatically reduced µ

2 
values are shown by Fig. 5. 
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Fig. 5. The west-east components of the topographically - isostatically reduced plumb-line 

deflections along the parallel of latitude of y = 47°00 1 in the area of the austrian 

Alps 
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As can be taken from Fig. 5, the µ
2 

values variate over distances of 300 km by about 
6". As a result of this fact, a shift of about 0.1 mgal follows for g4 if ¾-hp= 1 km. 
As to the shorter waves, the µ,

2 
values variate over a distance of 40 km likewise by 

about 611 
, (cf. Fig. 5) •. This fact influences the 84 amount by a wave of the amplitude 

of o.a mgal, in case ¾_ - hp = 1 km. 

Finally, the last term in the expression for :;.;4 , (75), which has the shape

( E..!e..- G ¾_ - hp) R (123) 

is to be considered. For tgl{' = 1, fJ,-
1 

= 1o", h
ie/, 

- hp = 1 km, this term reaches about 
10µ.gal. Therefore, the expression (123) has an unimportant amount. 

The numerical evaluation of the amou.nt of :E5 = X
6 

or tt X6 and of the amount of 
the horizontal derivatives tt ��

,Y X
6 

turns out to be rather uncomplicated, (cf. (44),
(68), (69)). For the circular area 0 � Ry;- � 1 000 km around the test point P, the 
following 
1 }) M 
GR.>v,- =

According 

numerical values can be introduced in 
0.05 km_ 5 10-5

h,, _ h _  1 ,. 
1 000 km - • ' � -p = Lcm ,

to (44), these values reveal 

the integrand of (44), 

IS:l:(r) siny,-1 = 3, (cf. Fig. 2). 

for the integration over this inner circle. Now, the exterior area Ry � 1 000 km is 
considered, This part of the surface of the Earth is divided into about 5·.104 com
partments of the size 1° x 1 °. The long periodic part of the horizontal derivative of 

tl M is governed by the effect of the isostatic mountain roots. According to Pratt, in 
the Himalaya and Tien Shan area, the deflectiohs caused by the B potential amou.nt to 
about 15". For this area, the T potential leads to deflections of about 5", (cf .[22.]).

Thus, the mou.ntain roots have there an impact on the deflections of about 10". Here, 
the following parameters are introduced into (44),for the integra.tion over R1�1 ooo km, 

1 c) M __ 2011 -4
G � = 1 • 10 

These values are u.nderstood as parameters that change as random variates in case of a 
transition from anyone compartment to another compartment. In the integrand of (44), 
the global mean value of IS * ( V,) 1 will be smaller than about 15, (cf. Fig, 2). Thus, 
an uncomplicated evaluation of the integral (44) reveals that the integration over 
the exterior area, R-y,- � 1 000 km, will contribute to the value of i X

6 
an amount 

that is smaller than 0,7 cm, 

The influence of the term ;t"6 on the deflections of the vertical is 

1 _L X 
1 �x6 

G �x,y 6 = 'IT 4X1 AY 

substituting the differential quotient by the corresponding difference quotient. For 
the evaluation of the amount of 

a difference quotient of the amount of 
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is in keeping with the above evaluation of the amount of x
6

• Therefore, the impact 
of X6 

on the deflection of vertical will not surmount the value of about

Summarizing, the term X
6 

is negligible in any case as so as the horizontal deri
vatives of x

6
• 

7,5, The low degree harmonics of a height - dependent part of the closed solution 

Furthermore, the evaluation of f
2

(M) and of JliM) = X2(M) should not be for
gotten, (cf. equations (33), (54-), (56), (89 a) of /7]). /2(M) has the expression

12CM) ( 123 a) 

Compairing the expression for §2(M), (123 a), with the Stokes integral, (2) (3), for
the·near surroundings of the test point P, the impact of i2(M) on the height anomaly
; can be interpreted as a shift of the average value of the free-air anomaly. lt is a 

shift by the amount of 

(123 b) 

In order to evaluate the amount of the expression of X
2
(M), the spherical harmonics 

of the function i2(M) are of special interest, (cf, (123 a)), (cf. equation (54-) of 
[7.7), The low degree harmonics of 1

2
(M) are in the fore, n � 10, Thus, a division of 

the surface of the Earth into compartments of 20° x 20° size is to be considered, The 
average value of (123 b) for the area of the inner circle, 0 � R J/1' !: 1 000 km, is 
computed by 

µ = 0,05 km
1 000 km 

h
Q 

- hp = 1 km '

eo = 500 km,

These parameter values reveal an average amount of 0,1 mgal for the supplements to the 
free-air anomalies, (123 b), In computing the low degree Stokes constants in the sphe
rical harmonics development for X

2
(M) according to the equation (54) of [7], this 

supplementary gravity amount of 0,1 mgal contributes not by.its full amount, on no 
account, to the integrations over the central circle of O � R t � 1 000 km ooming up

0 11 1 ~ X 
~ G c1 x, y 6 = 

2" • 10-2. 
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in this context. On the contrary, the reduced amount of 

J. 1 0.1 2 n _ 1 mgal

is effective in the determination of the Stokes constants only. n is again the degree 
of the spherical harmonics. With n = 5 or n = 10, the supplementary effect caused by 
X/M) follows to_ be of the order.of 0.04 mgal or 0.02 mgal respectively. lt can be

neglected. The evaluation of ,l'
2 

by the integration over the exterior area, Rp:?! 1000 km, 
happens along similar ways as in case of X6 • The integration of ( 123 a) over the area
Rf � 1000 km amounts to a value not mors than about 1 cm, it is easily found. 

The function liM) takes an impact on )'./M) by the spherical harmonics of low 
degree, (n � 10), the coefficients of which are for X

2
(M) by the factor 

J._1_ 
2 n - 1 

smaller than the corresponding coefficients of the harmonics development for /2(M).
Thus, X

2
(M) is smaller than 1 cm. 

8. The difference between the refined Bou�uer anomalies and the free-air anomalies
of the model Earth

At last, at the end of the numerical calculations elaborated above, the free-air 
anomalies ..s gM of the potential field M at the p�ints on the surface of the Earth rs
are in the fore now. These anomalies are discussed in some receht publications of the 
author, (cf. [7] [8J). At the cited places, it was claimed that the .d gM values are in 
the vicinity of the usual Bouguer anomalies, 4gB , as far as the continental areasou. 
are considered. A short derivation was given there. lt shows this fact to be plausible. 
Here, a detailed formula for the dif'ference .igM - ßgBou. is to be derived now. The
relations (1) and (41) lead to 

.:f gM 
- - ( a M + _g tli)-

E>r r <5 

The equation (41) gives 

with 

(124) 

(125) 

(126) 

The relation (126) is rearranged expressing 4gB in terms of the height h. In order to
persue this aim, the equations (61) and (62) for Bp and ( ;�) are introduced, as so 

p as 

• hp
R

Further, the following relation is taken into account, 

(127)
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tfc = o (128) 

it derives from (97) and from the attaohed computations about (98) - (103). The re
arranged equation (125) has the following form, 

(129) 

Some simple transformations of (129) lead to 

(130) 

In the course of the derivation of (130), and in view of the here discussed appHca
tions, it makes no .difference whether hp is understood as the height above the ellip
soid or above the geoid, since this effect e�erts an impact on ( d gM - d gBou.) that is
obviously negligible. The Bouguer anomalies have the following well-known relation, 
(cf. f13.l), 

( 131) 

Since ·c is added in (13·1), AgBou. is the so-called refined Bouguer anomaly, (cf.'19/).
Thus, the dif'ference between the two considered systems of anomalies has the subsequent 
mathematical relation, 

with 

d g,,. - A gB = ß
.iil OUe 

(132) 

( 133) 

The course of the function ß is considered and computed for a simple Earth model 
which consists of a mountain mass of 2 km height and of a base of 50 km square. The 
value of ß, (133), depends from the distance. of the mountain

1
as it is shown in 

Fig. 6. 

• 1 ß = ~ f g R ff ¾_ ~O dc.i, 
w 
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Fig. 6. The difference between the refined Bouguer anomalies and the modal anomalies 
�gM. lt is caused by a mountain bloc of a height of 2 km and of a base of

50 km square.

The /J values are small and smoothed, the �aximal amount is 'l .6 mgal. lt can be ta
ken from Fig. 6. In the geodetic applications, the ß values are not of direct interest, 
but just that effect is in the fore that the ß values exert on the height gradient of 
the gravi ty anomalie s .d gM , (cf. /7] [W L19.]) •

Furthermore, the ß values have an impact on the computed,horizontal variations of 
the plumb-line deflections, (cf. (75) and /7J). This impact.is of direct interest also. 
Indeed , the effect of the /3 values will shift the E4 term by not more than about
o.1 mgal, as a short computation shows by (13). Thus, this source has an impact that
can be neglected, (cf. (75)).

9. Conclusion

Summarizing, the formulas (70) and (71) fulfill all the requirements of the geo
detic routine applications. 

Perhaps, in certain special applications, it is intended to have the formulas for 
Tand �1 , 1"2 even more precise than the formulas (70) and (71) are. In this case,
the addition of c1(M) to the free-air anomalies will be the next step to better the
formulas (70) and (71). c1(M) consists of several constituents. In order to give a
rough characterization of these constituents, the long wave part and the short wave 
part should be in the fore here. c1(M) has a long wave component caused by the iso
static mountain roots. This component can reach an amplitude of about 1 mgal. 
Further, C/M) has a short wave p·art. lt has a wave length that is not langer than 
about 40 km, and it has an amplitude of about 1 mgal. The existence of these short 
wave lengthes is connected with areas of high mountains. In the lowlands, c1(M) is
connected with areas that have Bouguer anomalies of relative great amplitudes. 

DOI: https://doi.org/10.2312/zipe.1986.084



50 

Obviously, c
1

(M) is within the noise of the observed gravity field, in most cases.

Thus, as a result of all the above developments, it is possible to get control of 

the solution of the. geodetic boundary value problem. There is an insight of clear trans

parency into the theoretical �esidual error. This residual is very small. �he solution 

does meet all requirements of the present and of the future. The solution is free of 

arry hypothesis about the density of the geological masses, and it is in keeping with 

the proved uniqueness of the problem, (cf. /4]). 
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The second mixed boundary value problem has different types of boundary values on 
the oceans and on the continents. On the oceans, the gravity anomalies derived by 
terrestrial gravity measurements and the heights of the ocean above the ellipsoid de
rived by the satellite altimetry are introduced as given values. On the continents, 
only the free-air anomalies are the given boundary values. They are obtained by terre
strial gravity measurements. By the combination of these two types of boundary values, 
the second mixed boundary value problem is established in order to determine the geo
potential in the exterior space of the Earth and aloDg the surface of the Earth. The 
second mixed boundary value problem is governed by a linear inhomogeneous integral 
equation of the s&cond kind. For a solution•in the sub-space of the spherical harmo
nics of the degrees n � 2, the uniqueness of the solution is proved and the compati
bility conditions for the boundary values are derived. Further, a way to compute the 
solution is formulated. For a solution in the space of the spherical harmonics of the 
,degrees n �O, a condition equation for a determinant is found, it must be fulfilled 
to secure the uniqueness of the solution. 

Supplemontary considerations show that the first mixed boundary value problem of 
the geodesy is governed by a linear inhomogeneous integral equation of the first kind. 
Here, on the oceans, the heights of the oceans above the ell!psoid are introduced as 
boundary values. They are derived by the metbods of tbe satellite altimetry. Along the 
continents, the terrestrially derived free-air anomalies are the given boundary values. 
The uniqueness, the solution and tbe compatibility conditions are investigated, simi
lar as for tbe second mixed boundary value problem. A criterion for a determinant is 
computed. The structure of this determinant proves tbe uniqueness of the solution in 
the space of tbe spberical harmonics of the degrees n � 0 for the geograpbically given 
distribution of tbe oceans and the continents. In tbe sub-space of the spherical har
monics of the degrees n � 2, tbe uniqueness is proved for an arbitrary distribution of 
the oceans and of the continents. 

All the investigations refer to a spberical Earth. However, as to tbe first mixed 
boundary value problem, a solution of the problem is derived also for a non-spherical 
Eartb sbaped by the topograpby. 

Zusammenfassung 

Das zweite gemischte Randwertproblem bat auf den Ozeanen und auf den Kontinenten 
·unterschiedliche Typen von Randwerten. Auf den Ozeanen bat man die Freiluftanomalien
aus den ozeanischen ScbweremessUDgen, ferner die Höben des Ozeans über dem Erdellip-
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soid mit den Me�hoden der Satellitenaltimetrie. Auf den Kontinenten kennt �an nur die 

Freiluftanomalien als Randwerte. Die Gesamtheit dieser beiden Typen von Randwerten be
deckt die gesamte Erdoberfläche. Sie führt zum zweiten gemischten Randwertproblem der 

Geodäsie. Aus ihm wird das Potentialfeld der Erde _im Außenraum bestimmt. Die Lösung 

einer linearen inhomogenen Integralgleichung der zweiten Art ist beim zweiten gemisch� 

ten Randwertproblem von zentraler Bedeutung. Die Eindeutigkeit der Lösung wird im Un
terraum der Kugelfunktionen vorn Grade n � 2 bewiesen. Ferner werden Kompatibilitätsbe
dingungen für die Randwerte aufgestellt. Es wird auch eine Methode zum Auffinden der 
Lösung angegeben. In ähnlicher Weise wird im Raum der Kugelfunktionen n � 0 ein Lösungs

weg entwickelt. Dort wird auch eine Determinantenbedingung abgeleitet, aus der die 
Eindeutigkeit der Lösung folgt. 

Eine kurze Betrachtung des gemischten Randwertproblems der ersten Art schließt sich 

an, indem die Eindeutigkeit, die Lösung und uie Kompatibilitätsbedingungen betrachtet 
werden. Hier hat man die Höhen des Geoids über dem Ellipsoid als ozeanische Randwerte. 
Sie werden.mittels der Satellitenaltimetrie erhalten. Auf den Kontinenten hat man wie
der die Freiluftanomalien. Das erste gemischte Randwertproblem führt zu einer linearen 
inhomogenen Integralgleichung der ersten Art. Für die Eindeutigkeit des ersten gemisch
ten Randwertproblems gilt im Raum der regulären Funktionen auch hier eine Determinaten
gleichung. Sie wird. für die gegebene geographische Verteilung der Kontinente und Ozeane 
ausführlich numerisch behandelt. Das Kriterium zeigt,· daß .die betreffende Lösung ein
deutig ist. Im Unterraum der Kugelfunktionen-vom Grade n� 2 ist die Eindeutigkeit 

sogar für jede Verteilung der Ozeane und Kontinente gesichert. 

All"e Untersuchungen set�en eine sphärische i:rdfigur voraus. Die Lösung für das erste 

Randwertprobelem wird sogar für eine durch die topographischen Höhen ausgeformte Erde 

abgeleitet. 

Pe3Ki'\/10 

CMernaHHa.ff K,PaeBa.ff rrpo6�eMa BToporo po�a HMeeT Ha oKeanax n KOH
THHeHTax pa3Jrn1IHI:l0 THIIU K,PaeBIDC 3Ha'l!eHHfi. Ha' OKeaaax B03,IzylliHbie 
aHOM8JJIDI HC'filCJlfil)TCR rrpn IlOMOll\H OKeaHH'l!8CKMX rpaBHTaD;liOHHRX liI3-
MepeH.IDi, a BbICOTbI OKeaHa Ha� a�JIHilCOH,D;OM 3eMJIH - M8T0�8MliI H3Me
peHH.ff BbICOT rrocpe�CTBOM cnyTHliIKa. Ha KOHTHH0HTaX B Ka'l!0C'rBe 

rtpaeBbIX sHatie.Hliiil c1JHrypRpy10T J.llill1I, B03.ICflIIHUe aI-IOMamm. 8T.H Ma 
'l'HTia KpaeBbIX 3H8tI0HHH B HX COBOicyIIHOCTH IIOK,PHB8IOT BCIO 30MHYIO 
TIOBepXHOCTI,. ÜHH no�O,TIJIT IW BTOpOH CM0lil8HHOH K,P80BOH rrpo6�eMe 
reo�e3M. Ha ee OCHOBe orrpe�eJI.ff0TC.ff IlOT0HIJ;If8JII>H00 ITOJie 3eMJm: 

BO BH0lliH0M IlpOCTpaHCTB0. UeHTpaJII>H00 3H8'l!0HH0 B CMernaHHOH K,Pae
BOH rrpo6JieMe MM08T perneHHe JIHH0liHOro H00�0pO,JJ,HOro liIHTerpaJII>HO
ro ypaBHeHlffi BToporo po�a. O�osaa'l!HOCTI> perueHIDi �OKa3J:IBaeTcR 

B rro�pOCTpaHCTBe cqiepH'l!0CKH.X q>yHKI.J;liI.H CT0ll0Hl>IO n = 2. 
JjpJiee paspa6aThIBaIOTC.ff ycJIOBH.ff coBMeCTMMOCTH � K,PaeBbIX sHa'l!eHHH. 
YK831:lB80TC.ff T8KJ!te M0TO� HaXOlK,U0HH.ff perneHJiIR. Ilo�o6HlilM iK0 o6pa30M 
cnoco6 perneHHH paspa6aThIBaeTC.ff B rrpocTpaHcTBe cif?epnqecKliIX qiyHK
w,rn n �o. TaM iK0 BHBO,IUITCR �eTepMliIHaHTHOe ycJIOBHe, ß3 KOToporo 

CJie,eyeT 0�03Ha'l!HOCTI, perneHHR. K CKa3aHHOMY npID.1lllia0T KP8TKOe 
OITliIC8HH0 CM0lli8HHOH K_PaeBOH rrpo6�eMH nepBoro po�. B KOTOpOM pac-

, 
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CMaTpllBaIOTCH O,IUi03Ha'l!HOCTn, peweHHe H yCROBWI COBM0CTHMOCTH. B 
KEP1ecTBe OKeaHHi:iecKHX eyaeBHX attai:iemrn a.n;ecn qmrypnpym Mopcmrn 
Bh!COThl Ha)]; SRJIHilCOH;a;OM 3eMJill, 3TH 3Ha'10Hllfl IlOJfY"llaIOT M0TO,D;aMH . 
H3MepeHIDI Bh!COT rrpn IIOMOllU<i cnyTliPIRa, Ha IWHTHH0HTaX MH 11M00M 
.n;eno CHOBa C B03,D;YlliHHMH aHOMa�. IlepBaH CMemaHHaH KpaeBaH 
rrpo6ReMa IlO.n;BO;rr.HT K JillH0HHOMY H00.n;HOPO.IUiOMY HHTerpaRnHOMY ypaB
H0HHIO nepBoro po.n;a. MH 0,11,H03Ha1IHOCTH nepBOH CMemaHHOH Iq)aeBOH 
npo6neMH H B STOM cnyi:iae rrpHMeHHeTCH .n;eTepMHHaHTHOe ypaBH0HH0 
/ypaBHeHHe onpe.n;ennTenH/. ,lJ.7.UI .n;aHHoro reorpacIJHi:iecKoro pacrrpe.n;e
neHIDI KOHTHH0HTOB H OKeaHOB OHO rronyi:iaeT rro;a;po6HyIO 1:lHCROBYIO 
o6pa60Ticy. KpHTeproi IIOKa3h!Ba0T, 'lTO .n;aHHOe peweHHe 0,11,H03H81:!HO. 
B no.n;rrpocTpaHCTB0 C(Q0pHt:I0CKHX qiyiiKIJ;lfil CTeneHH n�2 0,I(H03Ha1:!HOCTn 
mo6oro pacnpe.n;eneHHH Olt0aHOB H KOHTHH0HTOB rapaHTHpOBaHa. Bce 
HCCR0,D;OB8HHH npe.n;nonararoT cqiepHt:I0CKYIO qJOPMY 3eMJm. 

1. Introduction

The uniqueness and the compatibility condÜions of the first mixed boundarey value 
problem of geodesy was investigated in an earlier publication, /5]. The boundary values 
of that problem consist in the values of the gravity potential of the Earth on the 
oceans, whereas on the continents the free-air anomalies of the gravity serve as boun
dary values, /3Jf4][25.J[2fJ. In that former publication /5/, a condition for the uni- • 
queness of the first mixed boundary val�e problem was formulated which can be applied 
to an arbitrary course of the coastline. Therewith, all the degrees of the spherical 
harmonics were included, ( n= 0,1,2, ••• ). Meanwhile, certain numerical computations 
yielded that the uniqueness of the Solution of tp.:is first mixed boundary value problem 
of n = 0,1,2, ••• is secured in the case of the real geographical distribution of the 
continents and of the oceans, [BJ. A thorough description of these computations about 
the concerned matrix criterion is given at the end of t.his report, chapter 5,3, 
Further, it was proved formerly that the uniqueness of the first mixed boundary value 
problem for solutions in the subspace of the harmonics• of the second and higher degree 
is valid for every distribution of the continents and oceans. 

However, the boundary values cannot be chosen arbi trarily in this special Cf.i.se of 
the first mixed boundary value problem which includes only the harmonics of the 2nd 
and higher degree. But, they must fulfill certain compatibility conditions which are 
in relation to the harmonics of the 0th and 1st degree, f5] [6./. 0therwise, the a 
priori given boundary values cannot be fulfilled by any solution of this problem a 
posteriori. 

In the Stokes boundary value problem, such a compatibility condition for the 
boundary values does not appear because a shift of the globally distributed free-air 
anomalies by anyone of the spherical harmonics of the 0th or 1st degree is effective 
all over the Earth's surface. Thus, it is eliminated automatically since only the ha� 
monics of the 2nd and higher degrees are envolved in the Stokes function,which is the 
kernel function which has to transform the boundary value function into the solution 
function. 
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However, this situation turns out to be very different in case the first mixed boun
dary value problem 1s considered. Here, in this problem, a constant shift of the free
air anomalies is effective only on the contiDBnts. Therefore, such a shift is not ele

minated automatically by the integral transformation established by the kernel function. 
Such a shift influences all the harmonics of the 2nd and higher degree which appe�r in 
the solution of the first mixed boundary value problem. In order to avoid the biases 
in the solution which come from this source, the bounAary values must be reduced a 
priori to free them from the shares caused by the spherical harmonics of the 0th and 
1st degree. The investigation into whether the compatibility conditions for these re
duced boundary values are fulfilled or not must be executed, it gives a measur& to find 
whether these reductions of the boundary values of the mixed t;ype were choosen success
fully or not, [6.l /8..7, i. e. whether the heterogeneous boundary values are in keeping 
with the problem or not. 

2. The boundar;y values of the mixed boundar;y value problems of geodesy

2.1. The representation of the boundar.y values in terms of the empirically given data 

2.1.1. The empirical determination of the boundary values of the second mixed 
boundar.y value problem 

• Now, the second mixed boundary value problem is to be considered. The boundary values
of the oceanic, area, w 

8 
, are the radial derivatives of the perturbation potential T, 

i. e. the gravity deviations J'g ,

d'g (1) 

on u.?
8

• °'-1 is a regular function on "'s , r and l are the geographical latitude and
longitude. Since the flattening of the Earth is neglected here, the � and � values are 
here also equal to the .geocentric latitude and longitude. r is in (1) the distance from 
the gravity center of the Earth. g = g� = (g)Q is the observed vertical intensity of 
the gravity at the running point Q on the surface of the Earth i _which is here the sut'
face of the ocean, since the w

8 
area is considered, (1). (r-)Q is the standard.gra

vity at this point. 

In the computa_tion of the d'� values, the ( r )Q values must be computed from the
standard gravity r-e at the level ellipsoide and from the heights of the ocean surface 
above this ellipsoide; these heights are equal to the N* values obtained by the 
methods of the satellite altimetry, f23J [24], 

on c..,
8

• (2)

ol T = cc,., ( <f ' il) = - :.> r = (g - r) Q 
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Tbe second term on tbe rigbt band side of (2) is derived from tbe free-air gradient of 
tbe standard gravity. Gis the global mean value of tbe gravity and R is the mean radius 
of the globe. 

Thus, the equations (1) and (2) give the following relation for the gravity devia
tion, 

Jg = (g)Q - r-e 
. 
+ �G N * , on "'s . (3) 

The transition from the satellite altimetry data N*to the sea surface topography 
N ** is a small step only. The geoidundulation N and the perturbation potential T have 
the well-known relation 

T = G N • (4) 

The sea surface topography N** derives from N* and N by 

N** = N* - N • (5) 

A shift of the geoid undulations N by the amount of N** has an impact on the pertur
bation potential T by 

T ** = G N ** (6) 

N ** has the amount of about .± 0.5 m in the mean; [20].

The boundary values of the continental area, w
0 

, are the free-air anomalies dgF. 
They can be expressed in terms of the perturbation potential T by the fundamental 
differential equation of the physical geodesy, 

, on "'c. (7) 

0(.2 is a regular function of the geocentric longitude i and latitude V for the area
c.,. Q is the point which is situated perpendicular below the point <t and on the sur-

face of the telluroid. The difference of the heights of the points Q and Q is the 
height anomaly. The height of the telluroid above the level ellipsoid, i. e. the mean 
Earth ellipsoid, is equal to the normal height. The last term on the right band side 
of (7) does show the way to find A gF from the empirically given data. (g)Q is the
measured value of the vertical intensity of the gravity. (r)

Q 
is obtaind from the 

formula for the standard gravity if the measured normal height of the point Q above 

C 
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the geoid is introduced for the height of Q above the ellipsoid€ .

2.1.2. The empirical determination of the boundary values of the first mixe� 
boundary value problem 

As to the first mixed boundary value problem, the boundary values of the oceanic area, 
""s , are here the amounts of the perturbation potential T. The T values along the
oceans are not directly obtained by empirical methods. But the heights of the ocean 
surface above the level ellipsoid l, (i. e. N* ), that are the values derived empiri
callyJby the methods of satellite altimetry. In a rigorous consideration, the N* values
must be transformed into the N values, i. e. the geoid undulations, The relations (4) 
and (5) give 

T = G (N * - N ** ) . (7a) 

Thus, tne sea surface topography N** raust be known to find 'i' from N * • However, 
within the scope of the here discussed problems, the Ntt values are considered to be 
known or to be of negligible amounts. The N** values can be determined empirically by 
a combination of the N* values with satellite - to - satellite tracking; (see: Arnold, 
K, and D. Schoeps; Cosmic Interpolation of Terrestrial Potential Values, Gerlands Beitr. 
Geophysik 93 (1984), 409 - 422). Under these presuppositions, the T values are intro
duced as empirically given oceanic boundary values. 

The continental boundary values of the first mixed boundary value problem are again 
the free-air anomalies AgF , as in case of the second mixed boundary value problem,
(7). In context with the equation (7), the empirical way to reach the d gF values was 
described already. 

2.2. The boundary values in terms of the perturbation potential 

2.2.1. The boundary values of the second mixed boundary value problem in terms of 
the perturbation potential 

According to the above explanatory lines about the 2nd mixed boundary value prob
lem, the functions for the two different types of boundary values can be expressed in 
terms of the perturbation potential T by means of the following forms, (1), (4]15-7125.7 
/26-l/2FVDoJ, 

Jg= ""1.s ('f,A-) = 

and, (7),

�gF = 0(,2.c ('{,it) =

,9 T 
Oll - {) r ' 

J T 2 - - - - Tr> r r 

WS ' (8) 

"' 
' on 

C 
(9)
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w is the area covered by the oceans, w is that covered by the continents. The gra-
s C 

vity deviation Jg derives by (3) empirically from both the system of the g values and 
the system of the N * values. The free-air anomaly of the gravity .a gF comes empirical
ly from the g values and from t;he normal heights according to (7). 

2.2.2, The boundary values of the first mixed boundary value problem in tenas of 
the perturbation potential 

On the oceans, the first mixed boundary value problem has the T values as boundary 
values. On the continents, the d gF values serve for this purpose. These two different 
types of boundary values can be expressed as fun.cticins of the T values by means of the 
following relations, 

on w
8 

, (9a) 

and 

on "'c• (9b) 

3. The oceanic chief minor of the Stokes matrix

In this context, it is suitable to remember of some investigations about the solution 
of the first mixed boundary value problem since they are in close neighbourhood to the 
here intended developm�nts about the second mixed boundary value problem. For a sphe
rical Earth, the first mixed boundary value problem was found by a consideration of 
the Stokes integral, [12][15], 

T R 

ff tfgF S ( y) d"'= (10) 

00 

s ( y,) L 2 n + 1 Pn (cos 1/J')= n - 1 n=2 
(11) 

w is the unit sphere, P0 are the Legendre functions, y is the spherical distance. 

In a more rigorous formulation of the boundary value problem, a non-spherical �arth 
is introduced. This refinement leads to supplementary terms of the amount of about up 
to 1 meter or 2 meter to be added to the height anomalies t obtained from the Stokes 
equation (10), f�l/8.J. In case, that the surface of the �arth � is introduced as the 
boundary surface, instead of a spherical Earth, in this case, the boundary value prob
lem of Molodenskij comes to the fore. lt has the following solution, [6.JLW, for T at 
the surface <1 , 

oc..3.s Ce, ,;i) = T 

w 
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T = 4 
� ff ( A gF + C) S ( 1/' ) d (A) , 

,., 

(12) 

Cis the plane topographical reduction of the gravity. The theoretical error of the so
lution for the Molodenskij problem is not greater than about some centimeters, (12), 
f6J/8.J. To be perfect, additional to c, a very small completing term comes from the 
Bouguer anomalies, it derives from the vertical gradient of the Bouguer anomalies in 
the free air. 

On the strength of the equation (10), the T values can be computed from the free
air anomalies for test points d.istributed over whole the surface of the Earth, w. 
Further, the use of the equation (10) can be restricted to test points whl.ch are 
situated in the oceanic area w

6 
only. 

80°

- 40°

-80 °

-180°
-90°

oo 180 °

Fig.1. The modal of the geographical distribution of the different types of the mixed 
boundary values on a map representation of the globe. The hatched areas 
are the oceans, w 8 , the residual white areas are the continents, w>

0 
• 

For oceanic test points, the relation (10) changes into 
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fJ i;1 gF S ( 'V' ) d "' , on "'s ..
c., 

(13) 

Or, dividing into the oceanic part. _and into the continental part of the integration, 

, on (0 s • (14) 

T
6 

symbolizes the T values on ""s• T on w
6 

and d gF on "'c are the empirically
given values in the equation (14). dgF on ""s is the function to be determined by
the evaluation 'of (14). Thus, the solution of (14) leads to an inversion. (14) is a 
linear integral equation of the first kind for the determination of the free-air ano
malies on the oceans which appear in the integrand of the first term on the right hand 
side of (14). S ('J&') is the kernel function valid for the area w

8
• In case, the test

points and the running integration elements dw are restricted to variate over the 
oceanic area only, in this case, the function,s (JI"') 1s denominatcd by ss.s . The 
function S

6 06 is positive definite, symmetric and closed, /5JLä.J.

At first glance, the function S
6 0 6 

seems to be discontinuous because the Stokes
function, 85] er2J, 

S(Y,-) = --1----- - 6 sin � + 1 - 5 cos l"' - 3 cos }P' ln[ sinf + sin2 r] (15)
sin � 

tends to infinity if JI" tends to zero. Indeed, S( JI") can be written into the follo
wing form 

2 S( yr) = ----
s1.n 'I" F(y) (16) 

F(yr) derives by a comparison of (15) and (16). F(y) tends to the unit if yr tends 
to zero, F( yr) --. 1 if J/1' --+ o, as can be found in the table of Lambert and 
Darling; L:19.? page 114. Therefore, S(p) tends to infinity as j if r tends to zero; 
S( }V') - � . if J'I' - 0 •

However, in the first term on the right hand side of (14) 1 S(J"') is multiplicated 
wi th the surface e lement of the uni t sphere I i. e. dw = sin yr d yr d � • Hence, 

S(-V,,) d"" = 2 F(�) dy d� (17)
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0v is the azimuth. Because of F( Y,-) - 1 if y,- � 0 1 it is sure that the disconti
nuity of S( yr) for ?/1' - 0 is removable. Thus, the integrand of the first integral 
on the right hand side of (14) is equal to 

(18) 

it is continuous over whole the globe. 

The relation (10) can be transformed into the shape it has in the matrix calculus. 
A glance on the figure 1 shows that the surface of the Earth can be divided into 148 
compartments, e. g. Such a division can be executed in such a way that all the 148 
compartments have equal size c.. w, The 47 hatched compartments of figure 1 belong 
to the oceanic area w

8 
1 and the 101 white compartments belong to the continental 

area wc . Such a division of the surface of the Earth i., into compartments of con
stant size 6 w turns the Stokes integral ( 10) into the matrix shape 1 

g3 
= s_ .�2 AW ( 19) 

4'ir The vector g3 has the compartment mean values of 7r T as the components, and the vec-
tor g2 has the mean values of the free-air anomalies "gF for the compartments as the
components. � is the matrix shape of the Stokes function, (11)(15). In case of a com
partment division, as in figure 1 1 the two vectors g3 and �2 have 148 components and
S is here a square matrix of the size 148 • 148. In the equation (19), AL<:J is a scalar. 

'l'he following equation (20) is the oceanic part of the matrix equation ('19), as (14) 
is the oceanic part of (13), 

a = c..w S a + Ac.:> S a =3,s =s.s =2,s · =s,c =2,c (20) 

For the explanation of the meaning of the two matrices g
8

,s and �s.c of the equation
(20), a compartment division of the surface of the Earth is introduced, as in figure 1. 

The § matrix is recommended to be written in a certain structure. At first, the com
ponents of the g3 vector of (19) are considered which refer to the 47 oceanic compart
ments, Fig. 1. They are written ahead, they are followed by the 101 lines that refer 
to the continental test points. The relation (21) visualizes this structure of the 
elements of the symmetrical § matrix, DV, 

s = 

1 
-

81.1

-

sp,1 

8p+1.1•• 

sq,1 . . .

81 •P

-

sp.p
-

sp+1,p
. . .

sq,p

81 .p+1 81 .q

- -

sp.p+1 sp.q

8p+1.p+1·· sp+1.q
. . .

sq.p+1 . . . sq.q 

(21)

= 
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The indices of the elements of g which take the values i = 1·, • • • , p, (p= 47), even 
these indices refer to the oceanic compartments. Consequently, the remaining indices 
represent the continental compartments if they run through the values i = p + 1 1 • • •  , 

q, (q = 148). 

The matrix (21) is divided into its oceanic and continental submatrices, i, e, 

[ 
-

61,1 S,1,p
s = . . . . . .

=S.S 
- -

s p.1 s p.p

(22) 

-

61 .p+1 s 1.q
s =s.c = . . . . . . . . . (23) 

sp.p+1 sp.q

gc,s = (24) 

- -

8p+1.p+1 sp+1. q

s 
. . . . . . (25) =c.c 

. . .s s q.p+1 q,q 

the superscript T in the equation (24) denotes here the transpositio� of the matrix. 

As it is well-known, the Stokes matrix g, (21), has the following submatrices, they 
are in the close vicinity of the chief minors of g, i. e. the chief minor determinants 
of g • 

(26) 

= [ 

s,.2 l (27)

... 
= 

~1 = ( ( 51 .1) ) 

5 1 .1 

~2 -
8 2,1 5 2.2 
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- -

61 .1 61 .2 s1 .3

g3 
= 82.1 82,2 82.3 (28) 

63.1 63.2 53.3 

- -

81 .1 81 .2 81 .3 81 .4 

62.1 62.2 82.3 82.4
g4 = (29) 

63,1 83.2 63.3 83.4

- - -

64,1 64,2 64,3 54.4 

the other submatrices g5 ' g6 ' follow similarly.

The Stokes matrix, (21), has the following deterrninant 

81.1 ... 81,p 81.p+1 . . . 1.q

. . . . . . . . . . .. . .. 

det s
- - - -

(30) = sp.1 sp.p sp.p+1 sp,q. . .

.. . . .. . . . . . . . .. 

sq.1 . . . sq.p sq.p+1 .... sq.q 

det § has the following 1st, 2nd, 3rd and 4th chief minors, i.e. the minors in prin
cipal position _and of the indices 

1, ••• , j, (j = 1, 2, 3, 4), 

det g1 = 

. ' (31) 

61 .1 81.2
det �2

= (32) 

62.1 52.2 

s 

= ... 
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81.1 81 .2 81 .3 

det g3
= s2.1 s2.2 s2.3 03) 

53.1 53.2 53.3

s1.1 81.2 s1.3 81 ,4

s2.1 82.2 s2.3 s2.4
det g

4
= 04) 

83,1 83.2 S3.3 s3.4

s4.1 s
4.2 s4,3 s4.4

The other chief minors follow similarly. 

The amounts of all the eigenvalues of the matrix § are positive if the compartments 
4c., are sufficient small, it was proved i� [5J, Thu; the matrix g is positive defi
nite, cf, (457) later on. The quadratic form related to the matrix g

w') T S w'
= = = 

> 0 05) 

has always a positive value. The vector w' is in the subspace of the spherical harmo-
nies of 2nd and higher degree, 

The chief minors of s bave also always positive values, f't7[5Jl31], 

det § � 0 06) 

det g1 .::.. 0 07) 

det g2 :::,. 0 (38) 

det g3
.::,. 0 09) 

det §4
.::,. 0 (40) 

. . .

A view on the relations (19), (20), (21) shows that the oceanic matrix §8•8 
of (20) 

is related to a chief minor of §. Of course, det §s.s is the chief minor of the in
dices 1, ••• , p, (p = 47)1of g. It is the chief minor of the oceanic compartments
or the chief minor of the oceanic elements of §, (21), which are ahead of this ma
trix. Therefore, the matrix §8 08 of (20) is obviously positive definite and symmetric.

( 

" 

= 
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lt is only a small step from the integral relation (14) to the related matrix equa
tion (20). In the equation (14), the test. points are always situated in the oceanic area 
W

s
• In the first integral on the right band side of (14), the integration covers the 

oceanic area "'s• But, in the second integral, the integration happens for the continen
tal area wc• This fact is e:xpressed by the subscripts s and c. Along these lines, the

integral relation (14) changes into the following form, 

(41) 

According to the above considerations, the kernel function S is symmetric, nositive. s.s -
definite and closed, (457). S s goes to infinity if '1/1' - O, but, this disconti-s. 
nuity of ss.s i� removable, cf. (17)(18). In the theoreti�al investigations, ss.s can_ 
be replaced by ss.s which is continuous, cf. (464)(468). ss.s does meet the fact that 
in the numerical computations the function ss.s is replaced by its mean values for the 
compartments Ac., • Therefore,.it is possible to define and to compute the inverse of 
ss.s , (470)(472), and the corresponding matrix §s.s and the inverse of it. From here,
without loss of precisio�� it is possible to turn back to the inverse of the oceanic 
submatrix S , i. e. S , attached to the introduced compartments. =s.s =s.s 

Alo11g these lines, the equation (20) leads to, f4J[5], 

�2.s ( -1- a - S )
ötA!I =3.s =s,c �2.c (42) 

The equation (42) determines the unknown oceanic free-air anomalies �2.s in terms of the 
given boundary values of the first mixed boundary value problem, i. e. the boundary 

4'ii" values �3.s and �2.c , which represent the oceanic 7r T values and the continental
.dl gF values. 

The inversion of (41) has the following shape, 

= 
4

: ff
"'s 

[Ts - 4� ff 8s.c(.d·gF)c dc.o] de..,
c..,c 

(43) 

(dgF)s and (A gF)c are the free-air anomalies on the oceans and on the continents. The
analogies between (42) and (43) are obvious. 

-1 As to the meaning of the function ss.s , a direct relation of the following form is 
introduced, 

s s.s• , on c.:J 
s 

In (44), the test points of �* and the surface elements de.? belong to the oceanic 
a_rea ws only. Because the kernel function S , (41), is proved to be symmetric,s.s 
positive definite and closed for regular funct�ons, it is sure that (44) has an in-
version of the following form, LV/5]{22,]{29],(see also (462) to. (477)), 

(44)?J>* = JJ 
c.,s 
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= JJ s -1 s.s on w
8 

(45) 

s and s-1 -
( 8 )-1 which are symmetric, continuous,

s.s s.s can be replaced by S
8

•8 and s.s 
positive definite and closed. 

A view on the equati.ons (41), (44), (45) shows that the solution of the first mixed 
boundary value problem consists in the solution of the inhomogeneous integral equation 
of the first kind (41). Later on, it will be shown that the second mixed boundary value 
problem leads to an int;egral equation of the second kind, [10] j1i!] /"22] Ö.7]. S�nce a 
division of the globe in.to compartments is introduced, the inversion of (44) is always 
admissable in the here discussed applications and under the here valid conditions,f]OJ. 
T and (ßgF) are not introduced by rigorously given analytical expressions, they are

S C 

empirically given mean values for certain finite elements. 

The problem is: Find a harmonic solution that does meet the mixed boundary values 
witbin the tolerances. Perhaps, tbis is the original idea of the collocation, free of 
covariance s. 

4. The second mixed boundary value problem

4.1. The integral equation of the second kind of the second mixed boundary value 
roblem 

The perturbation potential T can be expressed in terms of .the gravity deviation Jg 
by the Hotine integral transformation which has the Hotine function as kernel function. 
The following relation is valid in the subspace of the harmonics of second and bigher 
degrees 

T' R 
ff H' ( 31') Jg dw = 

411' 
(46) 

and, in case, all the harmonics are included, 

T R 
ff H ( 'jV) Jg dw = 4'.i1" (47) 

The prima ( )' denotes in (46) that the spherical harmonics of the 0th and 1st degree 
are not taken into account. The Hotine function H depends on the spherical distance v, 
by a closed expression, 

H = _1____,,,.,,.... 
sin L 2

H' derives from H by 

- ln ( 1 + 1 
sin r.. 2 

H' = H - 1 - � cos yr 

) (48) 

( 49)

w 
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H has also a series development in terms of the Legendre functions Pn (cos 1P), similar
as the function H', ['11Jt:1?.1/1rJ[!15.l[17.J. 

� 2n + 1 ( ) H = t__ n + 1 P n cos ?/i 
n=O 

H' = o;;:-- 2n + 1 P (cos "")L- n + 1 n r 
n=2 

(50) 

(51) 

The fundamental differential equation of the pbysical geodesy gives rise to the 
possibility to represent the perturbation potential T on the left hand side of (47) by 
the free-air anomalies AgF and 'by the gravity deviations cfg, (?),

or without the harmonics of the 0th and 1st degree, 

T' = � R(( cfg)' - ( .dgF)')

Hence, by a combination of (46) and (53) 1 

0 = (Jg)' - 21r fj H' J'g d"' - (.:Jg
F

)' 
"' 

(52) 

(53) 

(54) 

Now, in the application of the relation (54), the computations for the test points 
situated on the oceans are kept separate from the computations for the test points on 
the continents. Further, because of the different types of the oceanic and continental 
boundary values, a clear distinction is made between the integrations over the oceans 
and over the continents. Along these lines, the relations (8), (9), (54) lead to the 
following two equations, 

0 = ' 1 JJH' 04i.s-'2lf" s,s oc.' dw - 1
2'ir JJ H�.c 

' dt.J - �.s 
, on "' (55) 

°'1.c s 

and 

0 = °'' 1.c

1,s 
u.,$ 

1 
ff H' ' - � C • S °"1 , S 
"'s 

1 d"" -
2'ir

"'c 

ff H' ol� o
c.c • 

"'c. 

' 

dw - °"2. o , on w
8 

• '(56)

ot.1
1 and 0(,2

1 are the boundary values which are known from the very beginning, i. e •
• s .c 

1 

oO 
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tc� gravity deviations on the oceans and the free-air anomalies on the continents. The 
prime denotes again the regulation that the spherical harmonics of the 0th and 1st de
gree are not involved. The subscripts at the kernel functions H�.s , H�.s , H�.c , H�.s
refer to the position of the endpoints of the spherical distance y which is the inde
pendent variable of these kernel functions, (48)(50)(51). If the first subscript is s 
resp. c, in this case, one of the endpoints of y,- is situated on the oceans resp. on 
the continents. An analogous :r.egulation is valid for the second subscript of the kernel 
functions. 

The unknown functions which are to be determined in the course of the investigations 
about the second mixed boundary value problem of t�e geodesy, that are the gravity de
viations Jg on the continents, i. e. the CL1.c function. Afterwards, because the gra
vity deviations �1 or ( Jg)' are known all over the globe, it is possible to compute 
the T' values all over the globe by (46). This is the solution of the second mixed 
bo;undary value problem. Therefore, the equation (56) is in the fore, in case, the un
known function 0v1

1 is to be determined. As it will be found later on, the kernel
.c 

function H�.c of the relation (56) is symmetric, positive definite and closed for re-
gular functions on w • These properties are already found for the function S 

C s.s
which derives from the Stokes function and which is in the vicinity of the oceanic 
chief minor of the Stokes matrix. 

After these considerations, the equation (56) can be brought into the following 
form, 

O = �1. c + 0(.1 . c - 2 i J) H�. c 0(.1 . c d w ' on "'c
"-'c 

the inhomogeneity � 1• of (57) has the following function in terms of the boundary.c 
values oc.1.s and 0(..200 

, as it can be found by a comparison of (56) and (57), 

1 = - 2 r,
H' c.s 01-1. s d w - CL 2 • c , on 

(57) 

(58) 

The relation (57) is an inhomogeneous linear integral equation of the second kind, f10J 
fll\] L18J [22] l27J [29]. 

At this stage of the developments, it seems to be convenient to give some supplemen
tary remarks about the fact that all the functions in the equations (57) and (58) refer 
to the subspace of the harmonics of 2nd and higher degree, e. g. the kernel functions, 
the unknown function 0(.1• and the other known functions. In (46), H' has the super-.c 
script ( )' by definition. It follows that T' and not T must appear on the left hand 
side of (46) necessarily, irrespective whether Jg or ( ag)' is under the integral. 
Thus, it is well-understood that all the expressions of (55) and (56) have the super
script ( )', as so as the relations (57) and (58). However, the crucial problem is that 
the given functions of (58) are introduced as regular functions on the oceans only, as 

o1.
1

1 

1 or as regular functions on the continents only, as o<.2 c . But the property 
. •  s • 

which is behind the superscript ( )' has a meaning for a globally given function only, 
since the spherical harmonics of 0th and 1 st degree are defined by a global relation. 
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The following equations are valid, 

1 cl,1 = Zi7F 

1 
=w 

4

i=1 

4 

i=1 

y i ( <f ' :t ) fj oe.1 y i ( 'f, il ) d"' + ex.-,
w 

y i ( :j', il ) d "' + oL2

(59) 

(60) 

Y. , (i = 1, 2, 3, 4), is a running denomination of all the four spherical har
i 

monics of the 0th and 1st degree and order. The harmonics are normalized, 

Y� dw 
l. 

= 4Tr (61) 

The separation of the share of the harmonics of 0th and 1st degree is pos
sible for a globally given function only, this separation is not possible for 
the empirically given boundary values �1.s since they are given-on the oceans
only. Further, the separation is not possible for the empirically given boundary 
values 

0(,2.c which are distributed on the continents only. Therefore, in a more 
exact con�ideration, it has no meaning to fit the functions c:,(..1• 0, oe..1.s , 
�2•

0
, ß1.c in the relations (57) and (58) with the superscript ( ) 1 • Such a 

procedure has no real scientific foundation. 

Hence, the boundary values are now introduced as arbitrary regular functions 
for the concerned part of the surface of the Earth. All these complications 
which are brought to bear by pUtting the superscript ( )' or not, it is dis
cussed later on thoroughly. These specialities will lead to the formulation of 
four compatibility conditions. 

In any case, the· inhomogeneous linear integral equation of the second kind, 
(57), is fundamental for the solution of the second mixed boundary value prob
lem of the geodesy, and it is fundamental for the following discussions. The 
form free of the superscripts ( )' at the concerned functions is 

with 

O = /31 .c + ""1.c - 2';,. }}H�.c 0(.1.c dw ' on "'c
""c 

1 = - 2'iT C(.1.s dw - °"2.c , on c., 0 

(62) 

(63)

L 

- ff ' H c . s 
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The 
0(,1.c function b.as to be determined as a solution:ot the integral equation of the

second kind (62). Afterwards, aG-1.c is united with the �1.s function which is 
known from the begin.ning since it is one type of the boundary values. Along 
these lines, the ol1 function is obtained for whole the globe of the Earth, i.e. 
the gravity deviations Jg, 

Jg = "'-1 = 0(,1. s ' · on "'s

Jg -- ~ - A, 
-1 - -1.c , on

(64-) 

(65) 

Besides of the peculiarities about the treatment of the spherical b.armonics 
of the 0th and 1st degree and order, (59) (60), another special problem is to 
be considered, the question is the .()(,1 function obtained at the end of the con
siderations as the solution of the second mixed boundary value problem. The 
matter is as follows. The o1,1 function is presupposed to be a regular function
on w • Thus, the amounts of o<,1 must be continuous there. ""1 consists of the
uni ted value s of oc..

1 • s and oc.
1

• c • oc.
1

• 
8 

·is known by empirical me+:hods from 
the beginning. Q(.1.c is known as the solution of the integral equation (62) and 
as the final result of the computations. Crossing the coasts, a jump of the oSi 
values is not allowed to exist there. This fact leads to a constraint for the 
�.s and �1.c values. If K is a point on the coastline, and if ( 0(.1.s)K is

the value which 0(.1.s does take approaching the point K from the seaside, and
if ( ot.1.c)K is the value which 04-1.c does reach approaching the same point K 
from the landside, in this case, the following continuity constraint must be 
fulfilled, 

= (66) 

The condition (66) must be observed �or all the points K along the coastline. 

One of the main questions which arise in context with the integral equation 
(62) tb.at is the problem whether (62) has a unique solution for the 

c:,e, 1 .c 
function or not. The investigation about the uniqueness of (62) is governed by
the homogeneous form of it, 

O = cx,1.c - 2:U fJ
Wc 

H c.c 0(,1.c dw , on (67) 

According to the derivations from (46) to (67), the inhomogeneous integral 
equation of the second kind tb.at does govern the second mixed boundary value 
problem of the geodesy can be written in the following form, 
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O = ß 1 ,c + °"1,c - � ff H�.c oc.1 ,c dw ' on ""c 
c.,c:. 

wi th the inhomogene i ty ß 1 • c , 

The relation 

2i JJ H�.s · c(..1.s dw - o<.2,c ' on wc. 

l,()s 

(67a) 

(67b) 

(67c) 

does lead to the homogeneous shape of (67a), The equations (67a) to (67c) are 
valid for considerations in the subspace of the spherical harmonics if the 2nd 
and higher degree. 

In case, the validity of the developments is extended to a validity in the 
space of the spherical harmonics of all degrees, (n = 0,1,2, ••• ), the kernel 

' 1 

functions H0 0 and H must be replaced by the corresponding functions deri-
• C, S 1 

ved from H, i.e. the functions Hc.c and Hc.s• After the replacement of H by 
H, the kernel function includes the harmonics of the 0th and first degree. 
Along ·these lines, the expressions (67a) to (67c) transform into the following 
form which is again an inhomogeneous integral equation of the second kind, 

Ü = ('.\ 1 • C + 01,1 • C - 2 � ff 
Wc 

0(..1.c d!P, on w
0 c.c

with the inhomogeneity 

01,1 dw .s - �.c , on 

The homogeneous shape of (67d) has a 13
1 

value that is equal to zero • • c 

(67d) 

(67e) 

4.2. The uniqueness of the solution of the second mixed boundary value problem 
of geodesy in the subspace of the spherical harmonics of 2nd and higher 
de ree 

The uniqueness of the solution of the second mixed boundary value problem 
of the geodesy can be investigated also independently by the homogeneous form 
of the fundamental integral equation, (67). In any case, the treatment of the
uniqueness of this boundary value problem is governed by the constraint that 

H 
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and 

mixed boundary values have 

""'1 ( Cf ' ;L) .s 

°'2.c ( Cf ' ;l )

= 

= 

- c> T
f) r

f> T
- Tr -

7J 

to be zero, (8)(9), 

= o, on Ws 
(68) 

_gT 0 <,)• = ' on r C (69) 

Thus, the integration of the product of the two functions rf g and � gF over the 
unit sphere leads to the f'ollowing equation, 

JJ Jg d gF d w = � "'-1 cx.2 d w = 0
tl!I 

(70) 

These above integrals are equal to zero because, with respect to (68) and (69), 
the subsequent expression is equal to zero, 

jj 01,.1 • s oc.2 • s
d w 

'-"s 
dw = 0 (71) 

Now, the developments in spherical harmonics are introduced for Jg and dgF in
the equation (70). 

The perturbation potential T has the following series development, [21],

(72) 

tn are the Stokes constants. R. is tha radius of the globe and r is the distance
from the centar of gravity. X

n 
(Cf, J.) is a symoolism, it represants all the. 

surface spherical harmonics of the degree n and of the order m = O, ••• , n; 
i.e. the functions Pn m (v) cos m ..:t and Ii • ( Cf ) sin m ;t , (, m = O, ••• , n),

_ • . n.m 
whereat the tei'II!s Pn.m (�) stand for the normalized associated spherical har-

monics, f15J. The series (72) is valid and uniformly convergent at the surface 
of the globe and in the axterior space, r � R, if T is a regular functions for 
r = R .  On the surface of the globe of the Earth,. the series development (72) 
and the relations (1) a:rid (7) for the global functions d'g = °'-1 and ßgF= °'-2
lead to the following developments, 

= -R
1 L (n+1) t X ( 1 , ;l)

n n 

n=O 

·. 00 

= L a:1 .n (73) 

n=O 

00 

T =L 
n=O 

oO 

+ ff at.1 • C 0(,2 • C 

Wc; 

t [ -1Lj n+1 
n r 
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The equations (73) and (74) yield 

ä = 1 (n+1) tn1.n R 

74 

(75) 

(76) 

(77) 

(78) 

(79) 

'rhe Xn ( 'f , ;\..) expressions are considered as normalized orthogona,J. base func
tions, 

JJ X n ( y' .l )X n ( 'f ' tl) d c.J =

jo, if n ,! ii _n} 

4'tt , if n = 

(80) 

The terms o<..1 and 0(,
2 

in (70) are substituted by the developments (73) and (74). 
Accounting for (80), (70)(73) and (74) lead to 

(81) 

In case, the kernel function H is introduced, (51), the .Summation in (72) 
has to begin w• th the degree n=2. T_hus, in the subspace of the harmonics of 2nd 
and higher degree, the following condition is valid for the proof of the uni-
queness, 

0 I: (n 2 - 1) t2= 
n=2 n (82) 

or 

0 3 -2 8 t2 -2 tz + 3 + 15 t4 +
(83)

0(.,2 ( Cf ' ;L) 

a2.n = i (n-1) tn 

= R a n-1 2.n 

n-1. -
= Mi a1.n 

00 

= 

(74) 
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From (82), the constraints reveal necessarily, 

(n = 2, 3, 4, ... ) 

The potential T has the development, (46)(72), 

T 1 = t. t ( 
_g) n+1 

n=2 
n r 

(84) 

(85) 

Thus, the condition for the uniqueness of the mixed boundary value problem of 
the second kind, i.e. the problem with the boundary values of the shape (68) and 
(69), leads necessarily to the equation, (84)(85), 

T = 0 (86) 

The above derivations· show that (68) and (69) are followed by (84). Accounting 
for (84) and (85), it is proved that (86) is a necessary consequence of (68) and 
(69). 

Thus, it can be concluded that the solution of the second mixed boundary 
value problem is unique in the subspace of the spherical harmonics of 2nd and 
higher degree. 

The equation (81) does not allow a statement about the uniqueness of the. so
lution of the second mixed boundary value problem in the space of the regular 
functions, i.e. the space of the harmonics of all the degrees n = o,·1,2,3, ... 
and of all the orders m = 0,1,2,3, ••• , n. The reason is that in this case the 
right hand side of (81) has the following form 

(87) 

This is again a quadratic �orm without mixed terms, as (83). But, (83) is posi
tive definite and (87) is not positive definite. In order to fulfill (87), all 
the amounts of tn , (n = 0,1,2, ••• ), must not necessarily be equal to zero,
(87) does not lead to an extension of the validity of the equation (86) over
the space of all the spherical harmonics.

Now, the uniqueness of the second mixed boundary value problem of geodesy 
is to be proved by the consideration of the homogeneous form of the fundamen
tal integral equation of the second kind (67). It has the following shape, 

0 = 
""c. 

c.c «.1.c de.., ' on (88)
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lt is necessary to investigate into wether (88) has only the trivial solution, 
i. e. whether °'-1·• 0 has to be e�ual to zero over w0• In this case, a look on
(68) and (46) does show that T is zero on wand in the exterior space of ,� •
Thus, if (88) allows only the trivial solution for oc.1 •0,

Ql..1 = 
0

.c 
(89) 

it can be taken for granted that the solution of the second mixed boundary value 
problem of the geodesy will be unique in the subspace of the spherical harmonics 
of 2nd and h.igher degree. 

The test points of the relation (88) are situated on <A?0 only and the inte
gration in (88) covers also ·w

0 
only. Now, to have the preferences of a global 

coverage and of global functions, a generalization of (88) is convenient. The 
area over which the test points move is extended from w

0 
to w, i.e. from the 

continents to whole the globe. And the integration area is extended in the same 
way from U)c to "-' • 

Within the frame of this generalization, a function '12 is introduced on G!-J , 
it has the following properties, 

� = � ( lf , ;l.) = '>Zs = 0 , on '-"s , (90) 

'?. = '?_(lf,il) = -izc = oc..1.c' on "-'c (91) 

0bviously, if "'l is equal to zero all over the globe � then the cri terion for 
the uniqueness, (89), is also valid on w

0
• 

Further, a second global function '2 * is defined on w in the following 
way, 

12* ->i*C'f,il) * 
"'s (92) = = 'l'Z s 0� 

-rt* = 1*<1, ;t) 
= �� = o, Oll I.& C (93) 

The combination of the relations (51), (88i and (90) to (93) gives rise to 
the following equation which defines r/t, 

"l * (P) = 1 (P) - 2if" ff H
1 

(P,P) -i (P) d w , on w • (94)
w 
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In (94)1the points P and P move over whole the spherical surface w. If the 
equation (94) is fulfilled, in thia oaee, also the crucial equation (88) follows 
to be valid. Indeed, the test points on "'s give

,Z 8 
d tv - 2 i,- jJ H:. c "l c d w , on 

�c 
(95) 

separating the integration over the oceans from that over the continents. In a 
similar way, the test points on "'c lead to

(95) and (96) can be combined to (94).

The relations (90) to (93) are introduced into (96) and the following equa
tion is obtained, 

O = °'1.c - 2'!,r ff H:.c c(.1.c di.o ' on "'c •
"'e 

This is the crucial relati�n (88).

Along the same way, the oceanio relation (95) transforms ·into 

* 1 (( ' "l s = - IT )) Hs. c 
"-'e 

, on �s

(97) 

(98) 

The amounts of �= are not of direct interest, they derive by (98).

* 
The expressions (90) to (93) show that the product of ,z and ,z over the 

sphere r..J is equal to zero, 

jf -,Z �* dw = 0
,.., 

Now, the function "l* in (99) is substituted by the expression on the right 
hand side of (94), 

(99)
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0 = ff "'l 2 d"' - 21,- ff '>Z(P) dw ff H
1

(P,P) '>z (P) dw , on w •
"' c., w 

(100) 

According to (90) and (91), l is a bounded and regular function. Along the 
coastline, the � values have a discontinuity: Under these presuppositions, the 
function � on the globe w can be represented by a development in the surface 
spherical harmonics Xn (Cf ,,t) ,  (?2), of all degrees and orders, (n = 0,1,

2
1 

••• ). This representation has to fulfill the two constraints (90) and (91).

Along the coastline, it takes the value � °'1• 0; i.e. the mean of the two
values that are reached approaching the coast from the seaside and from the 
landside. 

In this context, a theorem of E. w. Hobson is fundamental, /16.J page 344; 
(see also the Dirichlet - Jordan criterion for Fourier series). lt has the fol
lowing expression word for word - in the terminology and symbolism of E. w.

Hobson - : "The La.place's series 

Gd 
'jj „U 

\ 2n + 1 J ( fL 4f L 
n=O O •U 

1 1 

, 1.' ) 
, , d ,.,(0 ,,., Pn(cosr-) sin8 de 'i' 

in which f ( 8 , 1 ) has an absolutely convergent integral (Lebesgue) over the 
spherical surface, will converge at ( 8, J) to the value f ( 8, 4}) if ( 8, f) 
is a point of continuity of the function with respect to ( a, f ), or to the 
value 

if the point is such that th.ere passes through it a line of discontinuity such 
tha t f 1 ( 8 , � ) , f 2 ( 8 , f ) are the limi ts of the func tion a t the point ta.ken
from the two side s of the line, p1.'0vided tha t the function i ( r-) , which is 
the mean value of the- function f ( 8, f), for each fixed va.lue of f' over the 
small circle for 'whic.h 1' has_ that value, has bounded variatio:n in the whole 
interval (O, 'ir ) of · r . " In the here discussed e.pplications p the function 
f ( 8, 1) is always bounded, 1.e. the perturbation :P<)tontial T� the gr-a.vity 
deviations Jg a.nd the :f'ree-a!r anomalies ä gF • The1.-ef'ore� tha use o:f the 
above theorem-is admltted. 

. * A bounded erro:t• or a bounded deviation in the fw:l.ct:lons l and/or "l along
the coastline cannot dimin.ish t�e validity of.(99), since the length of the 
coastline is bounded. The amount of the area of the surfac� of the coastline 1 

i.e. the sha:re of it on the surface of the wtlt sphere1is equal to zero.
This is trivial, the coastline ha.s the dimension of a length and not of a
surfe.ca. 
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Hence, it is allowed to introduce for l and '>'/.� series developments in nor
malized surface spherical harmonics X

0
(y, il), (90) to (100). The concerned 

development for '2 is 

(101) 

(102) 

The fn values are the Sto�es constants. The ->z function in the equation (100)
is substituted by (101). H is expressed in the equation (100) by the Legendre 
functions, (51}. These Legendre functions Pn(cos y) can be developed by the
decomposition formula, f15J. For normalized harmonics, it has the following 
shape, 

The relations (100) (101) (103) lead to the following equation, 

n 

(104)·ca.n be brought into the following form

with 

.,, -rA-::.;1-2
� Ln + 1 ln 

�2 

n - 'I 
n"+"1' 

> O , (n = 2,3,,._, ••• ) •

(-103) 

(104) 

(105) 

(106) 

The right band side of (105) in a quadratic form without mixed tems. All the 
coefficients of (105) e.re positiveo Thus, (105) is a positive definite quad.ra
tic fom� The relations 

(107) 

result from (105) and (106). 

1 
= 2n + 1 

L 2 :;; 
n=2 
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In case, the equation (105) would give no evidence about the value of f
1 

, 
for instance, it is possible to carry out the following experiment of thoughts. 
In this context, the relation (90) turns out to be useful for the evaluation 
of the amount of -�1• Indeed, (101) gives

(108) 

all the other values '>Zn , (n = 0,2,3,4, ••• ), are supposed to be equal to
zero, for this experiment of thoughts. ,i

1 
represents the three Stokes constants 

of the degree n = 1 and of the order m = 0, 1 . x
1 
( 'f , ,t ) symbolize s the three 

corresponding surface spherical harmonics. If y
i
, (i = 2,3,4), is a running 

denomination of·these spherical harmonics, as in (59) (60) (61), (108) can be 
put into the following form, 

- I: �i ' Yi(C,,�)
i=2

(90) and (109), (273) to (277), give

4 
0= '>2s = L �i• Yi

(y,;t) ,  on '-1-1
6

• 

i=2 

(109) 

(110) 

= 

lt follows obviously that the three Stokes constants �i' (i = 2,3,4), must
necessarilY. be equal to zero, (see also ß], page )ll-4), 

= 
,zi = 0 ,  (i = 2,3,4). (111) 

The area w has more than 3 points. (110) can be specialized for all the pointss 
of ev wi th the concerned parameter couple ( V' , ;l ) ; This abundance of homoge-

s . 
a 

neous determining equations for '>li, (i = 2
1

3
1

4) 1 gives ( 111).
Thus, 

"21 = 0 • ( 112) 

A point in the midst of w can be chosen as the pole of the ( 1f , 2) - system,s 
since a rotatio� of the coordinate system does not influence the degree of the 
spherical - harmonic representation of a function, as �s• The multiplication
of (110) by the factors sin � 1 cos /4, sin � 1 (see (273) to (277)), - one 
after another - and a succeeding integra tion over il along a cirle · wi thin w 

8 

around the pole does lead to (111). 

Returning back to (107), the following relation is obtained, 

� = 0 • (113) 

('113) is valid for whole the globe w> • The equation (91) gives 

0(.1 =0 •• c (114)
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(114) corroborates that the crucial homogeneous integral equation of the second
kind (88) has the trivial solution only.

Thus, the inhomogene·ous integral equation of the second kind, (57) (62), has 
a unique solution only. The second mixed boundary value problem for the sphere 
has a unique solution in the subspace of the spherical harmonics of second and 
higher degree. 

The above investigations about the uniqueness are valid in the subspace 6f 
the spherical harmonics of 2nd and higher degree only. The concerned criterion 
equations (82), (87), and (104) can be generalized by the supplementary in
clusion of the harmonics of 0th and 1st degree, However, in this case, a form 
is reached which does not allow the investigation of the uniqueness of the so
lution for this generalized problem. lndeed, the inclusion of the spherical 
harmonics of 0th and 1st degree necessitates in (100) the shift from H to H, 
(50) (51), lt follows that (104) must be replaced by

00 2 00 2 
0 L..7in L 2 

fn= 
n+1 n=0 n=0 

( 115) 

or 2 2 2 2 
0 = - fo 

1 
'12 

1 
=ii3 + .2. f4 ++ 

3 
+ 2 5 . . . ( 116) 

The right hand side of (116) is not positive definite, Therefore, the relation 
(116) does not allow the consequence that (113) must necessarily be fulfilled
also in the space of the spherical harmonics of all degrees, (n = 0,1,2, •• ,).
Along the lines of (116), the prove of the uniqueness of the solution of the
second mixed boundary value problem for n = 0,1 1 2 1 • • • is not possible. 

Considering (70), the concerned generalized criterion equation is (81), in
stead of (82), (81) leads to 

2 

o = - t
0

+ ••• (117) 

This is not a positive definite quadratic form, similarly as (116), The con
sequences 

and 

tn = 0 , (n = 0 1 1 1 2, ... ) 

T = 0 

(117a) 

( 117b) 

are not allowed, However, by no means, (116) and (117) allow not the dispro
val of the UIU;_queness of this problem in the space of the harmonics of all 
degrees, (n= 0,1 1

2
1 ••• ). lt is an open question till now. Later on, by the 

equations from (297) to 054), a criterion about the uniqueness of the second 
mixed boundary value problem in the space of all the harmonics of the degrees 
n = 0,1,2 1 • • •  will be derived. lt allows to obtain a clear st�ndpoint about 
this question for an arbitrary course of the coast-line. 

2 2 2 
+ 3 t2 + 8 t3 + 15 t4 
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4.J. The kernel /unction of the integral equation of the second kind and the
Hotine function and their property of being positive definite and closed 

lror the further deductions and• for the numerical computation overati�ns, it
is of interest to investigate into whether the kernel functions H

0 0
(P,P) and 

1 - • 
H (P,P) are positive definite or not. H (P,P) and H

0 0
(P,P) are identicalc.c 1 _ _ c.c • · _ 

with the functions H (P,P)and H (P,P) in case that both the points P and P are 
situated onty in the continental area w

0
, (50) (51) (5?) (62). The kernel 

functions Hc.c and Hc.c of the integral equation (62) are acknowledged as
positive definite kernels if the following inequation formulas are fulfilled, 
["1] ['2J 1297, 

1 ff at (P) ff 
1 

8 (9t,�) = d0p H c.c (P,P) et (P) dtt>p > 0 ' (118)
W

c. �� 

and, as to Hc.c ,

8 (,ae ,-ae) = Jf ai (P) d'-'p ff H000(P,P) ae (P) dwp > 0 • (119)
Wc. 

l()c 

at is an arbitrarily chosen regular function on the continents WC ' 

at ' 0 ( 120) 

The area of validity of the inequation formulas (118) and (119) can be en
larged, it can be expanded from the continents t.o0 to whole the globe tA • 
In the course of the realization of this conception, the function it is now 
understood as a global function. It takes the following values on the globe 
w, 

= ee
8 

= o Oll Ws 

and 

on wc • 

These considerations and the presuppositions connected with the formulas 
(121) (122) transform ('118) into a global relation,

9
1

(�,�) = ff ae(P) dt0p ff H
1

(P,P) ae.(P) du,p > 0 • 

w "' 

Similarly, (119) leads to (124), 

(121) 

('122) 

(123)

-ae -· 2t-c 

, 
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9(-at, at.) = ff 3e (P) d Wp
"' 

BJ 

Jj H (P,P)

'" 

ae (P) d '-'p > o. (124) 

In the transition from (118) to (123) and from (119) to (124), it is permissible 
' ' 

to replace H by H and He c by H. In the equat-i.ons(123) and (124), the points
- c.c • 

P and P move över whole the globe '-<' • According to the formerly cited theorein 
of E. W. Ho bson, f°16J page 344, the func tion at can be repre sented by a global 
surface spherical harmonic development in the inequation formulas (123) and 
(124). The introduction of the series development for � , (101), into the re
lation (100) was a similar procedure. Thus, the -at function in (123) and ('124) 
is substituted. by the series development, (121) (122), 

-ae = L (125) 
n=O 

This substitution will not modify the valiq.ity of (123) and (124), as the in
troduction of (101) into (100) 1id not modify the validity of (100). The func-

' 
tions H and H in (123) and (124) are replaced by the developments (50) and 
(51), 

00 
' 

=L 
2n + 1 Pn(cos 11"')H n + 1 (126) 

n=2 

00 2n + 'IH = L 1 P
0

(cos lt") n. + (127) 
n=O 

The decomposi"tion fbrmula (103) substitutes the Legendre functions P
0

(cos 1f,") 
in ( 126) .( 127) by the normaUzad surface spherical harmonics Xn ( 'f , il),

(128) 

The relations (125) (126) (128) change (123) into the following shape, 

(129)

00 

• X ('·' ,t_) ~ et' xk(t# p-, ~-p) d wD} > O • j • pt ·-p L k T • 

k=O 
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The orthogonality relations (80) are introduced into (129) and the following 
relation is obtained, 

e' C" •") f Eo ;;-1 x, c I" P' ,tp) • °'P

w 

Hence, 

• J X j 
2 ( C/ P' A-p) d "'p > 0

t. j 11
j=2 

1 

e (� ,ae) = 
2 

äei ff x/c Cf p, lp) d �P > o 

i=2 

This relation·leads to 

00 2
1 

(4'ii)
i:::'. 

L 
1 0 (-ae ';ie) = n + 1 �n > 0 

n=2 

and, in-case the harmonics of 0th and 1st degree are included, 

(411) 2 
00 1 

e(-ae, ae) C � > 0= n + 1 n . 

n=0 

1 

i . • 
J 

(130) 

( 131) 

( 132) 

(133) 

The inequations (132) and (133) show that Hc.c and Hc.c are positive de-
finite kernel functions for the area "'c' (118) (119).

At last, a special situation for (132) and (133) is to be touched. If the 
following relations about the function -ae are valid, 

and 

äe
0 

-1- o , äi1 -/. o

ae. = o, Ci = 2,3,4, ••• ) 
l.-

1 

(133a) 

(133b) 

in this case, the operator 8 (se ,ae) is equal to zero, (120) (132). The 
relation (132) is not fulfilled, that seems to be the consequence of (133a) 
and (1JJb). But, the relations (1JJa) and (133b) are in contradiction to 
(121). Before the background of (133a) and (133b), the equation (121) cannot 
be fulfilled obviously unless the area of w

8 
is zero, 14

8 
= 0; see also 

(108) to (112). The relations (119) (120) (121) (122) lead
therefore necessarily to the fact that 

• 

2 
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0(�,-ae) > 0 ('l33c) 

e( � , ae) > o • ( 133d) 

Thus, H and H are positive definite kernel functions within wc, in anyc.c c.c 
case and if w8 /. O; see also the developments about (139a) to (139d).

As regards the inequations (132) and (133), the function ae that appears in 
these formulas and that is defined by (121) (122), this function cannot be 
chosen absolutely arbitrary all over the globe. On the oceans, it is equal to 
zero. However, on the continents, the values of it are arbitrary. 

Now, the argument domain is &xtended over whole the globe w in order to 
' 

prove that both the kernel functions H and H are positive definite for the 
area (A). In this context, whole the globe w is covered by a function 
t = ! ( <p, Ä..). It is an arbitrarily chosen regular function on the globe W, 

� = t ( <.p , il ) $ 0 , on c....? • (134) 

0'* and e* 'C The operators are applied on the function s, and the following 
inequations are obtained, 

e'*<t ,!) = JJ ! (P) dc..,p 
c., 

and 

0*< t , s ) = § f (P) d '°'p
c., 

Y has a series development 

-

JJ 
w 

JJ 
4' 

H
1 

(P,P) 5 (P) dWP

H (P,P) t (P) dwp

in spherical harmonics, 

t = [ fn xn(<f, il ) on w. 
n=O 

> 0 (135) 

> 0 (136) 

(137) 

Along the way which did lead from (123) and (124) to (132) and (133), it is 
possible to transform (135) and (136) into the following shape, 

e'*<t, �) = (4'in
2 I: > 0 (138) 

n=2 

-
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1 

n+1 > 0 (139) 

' 
The relations (135) and (136) are the conditions for the Hotine function H and 
H that must be fulfilled in case they have the property of being positive de
finite for whole the area w .  A glance on (138) and (139) shows that (135) and 
(136) are right.

lt 1s unnecessary to mention that - for a global coverage - H 1s positive 
definite in the subspace of the harmonics of the 2nd and higher degree only, 
since it 1s defined only there, similarly as the Stokes function. Indeed, if 

fo -1-
o'

f i = 0 , (i = 2,3,4, ••• )

(139a) 

(139b) 

1:/t 

in this case, the operator 0 (t, �) 1s equal to zero, (138). Thus, (134) 
(135) do not lead to

0 '* ( � , �) > 0 (139c) 

How�ver, the presupposition about the subspace - per definitionem -

(139d) 

leads to the right situation. 

Hence, the Hotine function H 1s positive definite for tb.e oubspace of tha 
harmonics of 2nd and higher degree and for a global argument domain. 

The Hotine function H has the property of being positive definite for the 
space of all the harmonics of the degree n � 0,1,2, ••• , i�e. for all tha 
regular functions and for a global argument d.omain. 

This fact is also evidenced by tha trea·tment of the operators 8 ( 21!, at..) 
end 8('<!1!, -ae) which lead from (123) a.nd (124) to (·132) and (133). Indeed, in 
case that the amount of the oceanic area w

8
, (·121), does undergo the passage 

to the llmit w - o, in this case, the conside:t'ation abou.t the ope:t"s.tors 
' s 

0 (ee, -ae) and 8( �, -2e) con•oborate tha con.1:1iderations about the operato:r.-a 
0

1

*(� , ! ) and e*(' , t ). But, with (121), t;he paasage ·to th.e limit w
8
.....,,,. 0 

is not compatible with the procedure to conclude the.t the maintenance of 

�1 = 0 ' (i = 2,3,4, ••• ) 9 

does necessarily lead to 

ar0 = ai1 = o 

(139e) 

(139:t?) 

• 
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see (110) to (113), and (133a) to (133d). Therefore, the operator 9*(�, �) 
has the property of being positive definite in the subspace of the spherical 
harmonics of 2nd and higher degree only. 

The kernel functions H and He c of the integral equations of the secondc.c • 
kind, (62) (67d), have not only the property of being positive definite. As to 
the properties of a kernel function, it is important to know whether it is a 
closed function or not. This is of interest for -t;he problem of the uniqueness 
and of the inversion. Concerning the definition of this property of a function, 

' -

the function Hc.c(P,P) is a closed one, if it fulfills the following condition. 
The two functions 11*(P) and /"(P) are introduc?d as regular functions for 
the area of the continents. The kernel function Hc.c(P,P) transforms the func
tion 14(P) into ;u,*(P) by the following integral relation, 

fl'*(P) = JJ H�.c (P,F) ;u(F) d w p
Wc 

(140) 

The points P and p move over the area of the continents L� only. In case, the.c 
combination of the equation (141), 

tf (P) = 0 , on ,., c , (141) 

with the equation (140) leads necessarily to the fact tba.t 

,tf-P) = 0 , Oll '-"c , (142) 

in this case, the kernel function H�.c(P,'.P) is said to be a closed function 
for t\ie area ""c and for regular functions, f29.J. Thus, the following relation
for Hc.c t 

0 = .ff H�.c(P,°P) /J1-"F) dc.?p 
• 

,
tt)e 

(143) 

must give the equation ('1lf.2) :f'or /1. , in case the kerne! function Hc.c is
closed. 

For the p:roof that the kernel function i.s closed, the relation (140) is 
tr-clllsfoi-ined into a global sbape, in close neighbourhood to the ideas connected 
with tha transtion from (118) to (124). Along· these linesv the generalized 
fUl'.l(:t:l.on p hais the following relations, 

on t�
8 

on w C

As raga.rds 11'-* ß it bas the fol.1.owing constraints, 

( 14-Ll•) 

(145)
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.,, 
:::: fU's on (.J 's 

* 

!"'� :::: 0 on �cI"" :::: ' • 

The global product ,of /"' and �* is equal to zero,

:::: 0 

The equation (140) changes over into the global shape, 

ff H
1 

(P,P) ;u,(P) d ,_., p 
ll) 

as a look on the equations (144) to (147) does show. (148) and (149) give 

([ :::: 0 

(146) 

(147) 

(148) 

(149) 

(150) 

In (150), H is substituted by (126). The decomposition formula (128) and (123) 
are taken into account aud the subsequent relation is obtain�d, (132), 

n::::2 

2 
/J'n :::: 0 (151) 

The global function /l' has the following series development in spherical harmo
nics, according to the sentence of Hobson L16J,

• 
:::: L;ün (152) 

n=O 

If the function -ae is replaced by /1. , in (123), ;hen the left hand side of
(150) is obtained. lt is equal to the operator 8 yu,f'A')•

The computations from (129) to (132) demonstrate that, because of (150), the

operator e'cfl',�) does fulfill the condition (151). Hence, the following 
Stokes constants �n must obviously be equal to zero, 

. /n:::: o, (n:::: 2,3,4, ••• ) •. (153) 

The supplementary relations 

("-o = o , :::: 0 (154)

_J_. 
n + 1 

00 
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can be confirmed easily. (152) and (153) give 

However, because of (144) and because w
8 

bas an area of finite amount, 

(155) 

{156) 

it oonoludes obvioul!ly tbat (154) is rigbt. See also (108) to (113). Tbus, 

/l'n = 0 ' (n = 0,1,2, ••• ) • (157) 

(157) gives
= 0 on CA!} (158) 

.and 
/'1c 0 on �c • (159) = 

These_developments above show that the 9ondition (142) must be fulfilled 
necessarily if (143) is presupposed. 

Thus, the function R c.c is a closed function.

Now, the question is tobe investigated whether the kernel function H
0 00 has

also the property ot being a closed function including the hannonics of Qth and 
first degree. This problem can be investigated by the methods already applied 

' 

in the iaversion of the function H , (140) to (159). In this context, the 
1 c.c 

function H bas tobe replaced by H in the relations (140), (143), (149),c.c c.c 
(150). Thereby, the left hand side of (150) turns to the operator 9(

/;1"
,f"-) of

the relation (124). Thus, the investigation into whetherthe kernel function 
Hc.c 1s a closed function in the space of the regular functions along w

0 
is

governed by the criterion relation, (133),

·-
1 2

e<�, L"-) = (4 'q ) 2 L ii+1 f'n = o • 
n=O 

(160) 

A comparison w1 th the defini tion of f1' and ii-n , ( 144) ( 152), doe s demonstra te
that the condition for the property,of H

0 0 0 
tobe a closed kernel function,

(see the corresponding relation (143)),

(161) 

can never be fulfilled unless the function t'- does vanish, 

f-(P) = 0 , on "'
0

• (162)

' ' 

0 = jf H000 (P,'F)_ {'1-(P) d ,_,, p 
"'e· 
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(160), (161), (162) prove the fact that the kernel function H has the proper-
c.c

ty of being a closed function. 

' 

Therefore, the kernel functions H c.c and H
0 0 0 

are symmetrical, positive de-

finite and closed.within their domain of definition. The singularity for �= O 

is removable, it is evidenced by developments similar to those deduotions for 

the Stokes function, (16) (17) (18).' 

Extending the domain of definition from '""c to "' , from a surface part to

whole the surface, these properties, (symmetrical, positive definite and closed), 

are valid for the kernel function H also. And these properties are valid in the 
' 

same way for the kernel function H in the subspace of the harmonics of the 2nd 

and higher degrees. 

As to the singularity for 'IV __,. O, in this oontext, see also the deriva

tions from (461) to (477) about the Stokes functions. Similar considerations can 

be carried out for the Hotine function, in order to avoid the singularity of H, 
1 1 

H , H , H 
O 

for J{I" ---+ o1without any loss of precision.c.c .c 

4.4. The continental chief minor of the Hotine matrlx 

The above developments about the second mixed boundary value problem of geo

desy allow a representation in the matrix caloulua also. The matrix calculus is 

more oonvenient for the further numeri.cal calculations. In this oontext, the 

global unit sphere c., is divided into certain slll".face compartments of the uni

form size Aw , Fig. 'l. The 47 hatched compart01ents of figure 1 belong to the 

oceanic area c., and the 101 wh:l. te compartments represent the continental a:1.-ea 

t.?
o

• For theae compartments, the mean values of the functions

•1· 'ii TT 

are understood as the components of the vectors 

�1 ' 

f½2 p 

(163)

s 

~3 . 
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�2 
= ( ( -�;.i,)

... 

(164) 

- li ( (;i,) �3 - R 
••• 

(165) 

i = 1, 2, 3, • • • , k , k + 1, • • • , q • (166) 

The indices 
i = 1, 2, • • • , k , (k = 101) , (167) 

belong to the continental part, and 

i = 102, 103, ••• , q, (q = 148) , (168) 

refer to the oceanic compartm8llts. 

The expression (136) about the Hotine function H can be transformed into the 
ma.trix shapeo '11he quadratic fo:rm '1(i ,;if ) is reached, 

�( 1, j) :: X
T 

H x > 0 0 "' = = (169) 

His the following matrix, 
= 

h.1 .1 . . . h1.k h 
1.k+1 . .. 

h1.
q

. . . • 0 • • • 0 .. . . . . . .. 

hit.1 •• 0 hit.k § hic.k+1 ... l\.q 

• (170)
bit+1.1 1¾c+·l .k 1 h:k+1.k+1 hit+1.q . . . " .. 

. . . ... • • 0 . . . . .. ... 

hq.1 .. . hq.k t hq.k+1 . .. hq.q 

The vector � 

(171) 

i = 1 9 2, 3, • • • , k , lc -1- 1, • • • , · q (172)

• 

H = 
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is an arbitrary vector which represents a regular function covering whole the 
globe w • The components xi refer to the individual oompartmente.The �nequation
formulas (136) (139) show that f:P(J,�) is a positive definite quadratic form.
Thus, according to a theorem of the matrix calculus, and because the kernel func
tion His closed, (160), 

det !J > 0 • (173) 

As it is well-known, (173) leads to the fact that all the eigenvalues of the 
matrix � are positive, L)t7. Furthermore, because of (173), all the chief minors 
of the ;atrix � have aiso positive amounts, l4JfjtJ. 

det M1 > 0 (174) 

det M
2 >'O (175) 

det Ib > 0 (1?6) 

det !h = (1?7) 

det �
2 

= (178) 

h1 .1 h1.2 h1 .3
det �3 = h2.1 h2.2 h2.3 (179) 

h3.1 h 3.2 h3.3

Particularly, the continental chief m�nor of the matrix � ia positive, i.e.

the determinant of the matrix 

. .. (180) 

Thus, the continental chief mi.nor is 

h 1.1 ... h1.k
det H =c.c

= 
. . . . . . ••• > 0 (181) 

1\:.1 ... 11t.k 

[ ~::' 
... ~::·] H = ff = . =k =c.c 

11:k.1 ... hit.k 
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The matrix relations (173) and (181) are in keeping with (136) and (119). 

In case, !!! is an arbitrarily choosen vector of the dimension q = 148, repre
senting a global function, the relation 

�* = H � (182) 

has the inversion 
= -1

M ('183) 

�-1 is the well•defined inverse matrix of M• (170). 

In the same way, if �c is an arbitrarily choosen vector of the dimension
k = 101, representing a continental function, in this case, the relation 

* 

�c.c (184) !!!c = !!!c 

has the inversion 
-1 m* (185) !!!c = H =c.c =C 

H-1 is the well-defined inverse matrix of H , (180). The corresponding ker-=c.c =c.c . 
nel function H was proved to be closed, see (161) (162). Concerning the inverc.c 
sion of � c , the study of the corresponding considerations about the inversion 

-Co 

of the Stokes matrices S and S is recommended, cf. (462) to (477). = =s.s 

The developments about the continental chief minor of the matrix M,�arried 
out by the relations (169) to (185i,can be transferred to the matrix � which 
derives from the Hotine function H ,  (49) (51). lt refers to the subspace of the 

1 

spherical harmonics of the 2nd and higher degree. The matrix g has a shape simi-
lar to that of M, (170). 

1 1 1 

h1.1 . . . h1.k , h1 .k+1 . . . h1.q 
. . . . . . . . . . . � . . . . . .

1 1 1 1 

bir.1 . . . �.k ' �.k+1 �.q 
== 1 1 1 

�+1.1 . . . �+1,k ' �+1.k+1 . . . �+1.q 
. . . . . . . . . . . . . . .

1 1 1 

hq,1 . .. hq.k ' hq.k+1 hq.q

i = 1, 2, 3, ,k ,k + 1 ,  ••• ,g_ 

k = 101 q = 148 

·I 1 1 

(186) 

(187) 

(188) 

The elements h j.l of the matrix � are computed from the function H with the

= 

1 
H 

... 

. . . 
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argument V,-- , it is the spherical distance between the center points of the two 
compartments which have the indices i = j and i = 1 as attributes. In a similar 
way, the elements hj.l of the matrix �, (170), have to be computed from the func
tion H, (48) (50).

' ' 
Now, a vector � is introduced. I represents an arbitrary regular function 

described in the subspace of the spherical harmonics of 2nd and higher order. ' 
Whole the Earth is covered by the components of �. 

' 

[ �- l � = 

... 

i = 1, 2, J' .••• , k , k + 1 ' ... ' q 

k = 101 , q = 148

(189) 

(190) 

(191) 

The expression .(135) about the Hotine function H 1s transformed into the matrix 
' ' ' 

calculus. Thus, the quadratic form i;k (�, �) is obtained, cf. (169),

, , , , T , , 
l <� ,� ) = <f ) !! � > 0 • (192) 

Tlie inequation formula ( 135) shows tha·t SP '(�' ,�') is ':- positive definite qua
dratic form. Since the corresponding kern0l funotion H was proved to be cloeed, 
positive 'definite a.nd sym111etrlcal, a·well-Jmow:n theorem of the matrix calculua 
shows that (192) does lead to the inequation 

det f; > 0 ('19)) 

V1�3) has the consequence that all the eiganval.ue13 of the mat:rix � ue J.)Qaitive� 
1 

This i'act has the infe1.-ence that all the chief m.inors of the matru !f l:tan �, .• 
siti·ve amounts also, fJ.9] [31]. 

det �1 > 0 (194) 

det � > 0 ('195) 

det �J > 0

... � 

t 

det M--1 :: h.1.1
> 0 u (19?) 

' V 

' h.1.1 �;2 
det � ::: ), (198) 

h2.1 �-2 

(·196) 

0 
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1 1 1 

· h1 .1 h1.2 h1 .3
1 1 1 ' 

> det 1i = �-1 h2.2 h2.3 0 (199) 
-3 

1 1 1 

h3.1 h 3.2 h.3.3

In the here discussed applications, the continental chief minor of the matrix 
1 

� is in the fore. The concerned matrix 1s, 

[ 
1 1 

)
h1.1 ... h1.k 

!½c.c = ... . .. ... 

1 1 

h k.1 ... hk.k 

(200) 

The rang defect of H 1s equal to zero. The matrix (200) leads to the conti=c.c 
nental chief minor1 

1 1 

h1 .1 ... h1.k
>odet H = . . . . . . ... . (201) =c.c 

1 1 

�-1 ... hit.k 

The mati'ix relations from (192) to (201) harmonize with the developments 
(118), (123), (126), (132), (1J3c), (135)� (138). 

Because of (201)
1 

it is possibte to compute the inverse matrix of �c.c ,
(200)� i.e. (��.c)- • In case, i is an arbitra.rll;r choosen vector of the di
manaion q = 1�� which represents a regular function in the subspace of the har
l'lon.i.ca o! 2nd and high.er ö.egree, the relation 

1 cu_·. �\-1 ( ')� 
m : M J t �

(202) 

(203) 

0 -1 
-·

(j ) i.a the in.v1�:i:ati of ("186). (202) a.nd (203) �onduct to a.nalogous develop-
lU�r.ttßl :e":i..� R

1 

„ m: ia an a1.•b;U,11.'a1•il,y choosen vecto:r of the dime:aaion k = 101 1 �c.c -� , 
�s ftc iis q a.rbi tra1".'i.ly choosen Ngular tunction in the area w O, ( 145). �c 
:r.€1:pl."c!Se.-x;;t;s a ragular ft'UlOtion 111 the lll'Sa wc • Ht:1nse, the relation 

' (204) 

(205) 

(20l:•) and (205) e.:re in keepiug with the d.eveloprnents f:rom (140) to (159). 

i a ir~ve:rted by 
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As concerns the inversion of H , the correspondiDg considerations about= c.c 
the inversion of the Stokes matrices § and §s.s are recommended, cf. (462) to 
(477). 

lt is unnecessary to mention that the here discussed modal of 101 continental 
and 47 oceanic compartments for the compartment division of the surface of the 
Earth w is an example only. This example was treated here as a base for the 
fixation of the train of the ideas. The smaller the compartments A� , the more 
precise the solution. The greater the numbers of k and q, the more detailed the 
result, this fact is self-explanatory. 

4.5. The solution of the second mixed boundary value problem of the geodesy and 
its formulation in the matrix calculus 

In the functional analysis, several different methods are well developed for 
the solution of an inhomogeneous integral equation of the second kind such as 
(67a) and (67d). The solution method that works with the eigenfunctions of 
(67a) does not seem to be convenient for the here treated applications. lt will 
be difficult to find the eigenfunction that refer to the kernel function Hc.c 
or H • In case working with eigenfunctions, a continuous analytical functionc.c 
for the course of the coastline seems to be indispensable, this is a problem 
extremely difficult to solve, [10.lL1'!:/. 

The iteration procedure or the method of the iterated kernel has probably 
a greater chance to be of use in the numerical solution of (67a), /:loJ/:l'tlf?iel 
[2'?][27.J[29l. As it is well-known, the iteration procedure for (67a) works in 
the following way. The first step has the approximation 

(206) 

the second step is 

dw, on (207) 

Thus, the general frame of the iteration procedure is 

( 0(, ) = ß + .,..1.... (( H 
1 

( °" ) d w 1.c i+1 - 1.c 2'11 JJ c.c 1.c i ' on w
0 

• (208)

We 

In the relation (208), the term (°'-1.c\ can be expressed by (°'-1.c)1_1 , the
concerned expression is obtained subst:i..tuting (°"1.c\+1 in (208) by (cx.1.c)i
and (ot 1.c)i by (0G 1.c)i_1 • A repeated application of this inethod leads to 
the fact that (Ol.1.c)i+1 can be expressed in terms of ß1.c only. Thus, 
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(H, ) 
(i) /.11 d<..:1 , on w •

CoC f" oC C 
(209) 

(H:.c)
(i) is the i-th iteration kernel of H:.c . Along these lines, the following

solution of the integral equations (67a) and (67d) can be obtained, 

0(.1.c = - n. - _j_ (( T' • f.J dt·• on --� ,., 1 • c 2 1, J) 1 • c v ' ..., c
"-'e 

r is the resolvent kernel. However, the very problem is open whether 

for i ---+ o0 

(210) 

(211) 

In the here discussed applications, the convergence problem implicated in the 
iteration procedure, (208), has still to be investigated. 

Concerning further details about the eigenfunction method and Pbout the ite
rated kernel and the reciprocal kernel fµnction, the stud;y of one of the nume
rous textbooka about the theory of integral equations is recommended here, 80] 
[2.V-/.29}. 

Now, the integral equations (67a) and (67d) are to be transferred into the 
matrix cal�ulus. Along this way, a method will be developed which seems to be 
conduci�e to a numefical solution of the problem. The vectors �1 and �2 and
the Hotine matrix � transform the relation (54) or (62) into the matrix shape, 
(19)(163)(164)(165), 

0 = �1 - �• 4'-1'* �1 - �2 , on w

aw* = iJr- AW' 

(212) 

(213) 

.The impact of the spherical harmonics of 0th and 1st degree on the vectors �1 
and �2 and on the equation (212) will be discussed later, cf. (287)(288). 

The components of the three vectors �1 , �2 , �3 are divided into two parts
accounting for the fact that they refer either to the area ""c or w

8 
respec

tively, _(163)(164)(165). 

= 

[ :'·· } =1.s 

(214)

(OG1.c>1+1 = - ß1.c - 2\. fJ 
et>c 

~1 
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[
�2.c 

l�2 = (215) 

�2.s 

[
�3.c 

l�3 =
. (216) 

�3.s 

The relations (214)(215) are introduced into the matrix shape of the integral 
equation, (212), 

0 = �1.c

0 = �1.s

H' AW* -

=c.c
' 

* - �s.c A 14

�1.c 

�1.c 

' 

AW
>I< - H .:::c.s

' 

- H Aw* =s.s

�1.s - g2.c (217) 

g1.s - �2.s . (218) 

In the equations(217) and (218), the vectors �1•
8 

and g2.c represent the given
boundary values, i.e. the gravity ,deviations &g on the oceans and the free-air 
anomalies AgF on the continents. Whereas, the vectors �1.c and �2•8 have com
ponents that are unknown in the beginning, i.e. the gravity deviations Jg on 
the continents and the free-air anomalies on the oceans. 

The matrix relation (217) can be brought into the fo�lowing form, separa
ting the known terms and the Ullknown terms, 

' 
* 

' 
* ) 

�2.c➔·�c.s t.w �1.s = (�-lfc.c .o.w g1.c
' 

(219) 

J is the unit matrix of the same dimensi.on as �c.c . The left band side of
(219) is known by the boundary values i it is denominated by �c,

1 
,;, 

= �2 + H A "' -�1. s 8 - .c =c.s (220) 

' 

The matrix in the braces on the right ha.ud side of (219) is symbolized by K �=c.c 

' ' 
K = E - H 4w* =r.,c = =c.c 

Wlth (220) and (221), the matrix relation (219) turns into 

gc = �c.c 11.c 

(221) 

(222) 

The relation (222) is the matrix version of the inhomogeneous integ:ra.l equa.
tion of the second kind, (G?a). 

The homogeneous shape of (222) is 
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0 = K . a __ 1.c=c.c 
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The solution of (222) 1s unique if (22.3) leads to 

a = 0=1.c 
' 

The determinant of ic.c 1s positive definite if, (169)(182)(202)(204).

m > o
=C 

(22.3) 

(224) 

(225) 

as it is proved in the matrix calculus. The superscript T denominates the 
transposition. mc represents an arbitrary function on ""'c . Returning back to
(100) and accounting for (90), it reveals that the right hand side of (100) is
equal to

A' = ff '?,
2 dw - 2't- ff '? (P) d� ff H

1 

(P,P) "l (P)d w
'-"e We "'c. 

(226) 

In case, .the left hand side of (225) is multiplied by Ac., , (21.3), the tbus 
obtained quadratic form shows to be tbe matrix version of the A expression, 
(226). Further, the derivations from (100) to (105) prove that A. is equal to 

2 2 00 2 ,,..[- - , n-1 - J
= 411 ,o + '1/1 + L n+1 ?n 

n=:2 

> 0 • (227) 

1 

Since 1l 1s positive definite, (227), it follows tbat (225) 1s right. Tbus, 
the detei"l!linant of the matrix lc.c is positive definite,

det �c.c ) 0

' 

(228) 

Further, the rang ö.efect o:f Ic.cis to be considered. Regarding the watrix
equat:!.o� (223), a look on (221) and (67) sbows that (223) is the matrix version 
of (67). Earlier 1nvest1gations did show that (67) is necessarily followed by 
the eondi tion ( 11'�), If this ai tue.ti.on is transferred into the ma trix ahape, 
the val:l.d.lty of (224) as a consaquence of (223) 1s corroborated. 

' 

Thus, tha r8.Ilg d6fect of the matrlx lcoC 1s equal to zero. Therefore,
becauae of (223)(224)(228), the matrix relation (222) oan be inverted. 

' ··1
a = (K ) g •:1.c =c.c -c 

' 

is tha well-founded inve1•se of Ic.c •

(229)

' K =c.c 

• 
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(220) and (229 ) yield

' -1a = <�c.c)=1.c 

100 

(�2.c + ;c.s 4 w* 1!1.s ) (230) 

(230) is important. It is the matrix version of the solution of the second mixed

bounda.ry value problem of the geodesy in the aubapace of the apherical harmonics
of 2nd and higher degree. §2 repreaents the known free-air anomaliea on the- .c 
continents and �1.s symbolizes the given bounda.ry values on the oceans, i.e. the
gravity deviations og. (230) computes the og values on the c0ntillents, i.e. 
the components of �1•0 • 

The generalization of the matrix shape solution of the second mixed bounda.ry 
value problem by the inclusion of the spherical harmonics of the 0th and 1st 
degree should not escape the notice here. To follow up this aim, His tobe re-

' 1 1 1 = 
placed by � in (212) . �c.c , �c.s , Ms.c and_�s.s in (217)(218)(219) (220 )(221)
change over into the corresponding matrices without the prima. The important 
relations (221) and (222) get the following shape, 

gc = K �1.c=c.c (231) 

with 
K =c.c = g:

- l}c.c Aw* (232) 

and 

l?c = �2.c + �c.s d w* 1!1. s • (233) 

Thus, the solution of the second mixed bounda.ry value problem of the geodesy in 
the space of the spherical harmonics of all degrees, (n = 0,1,2, ••• ) , is ob-· 
tained by a transformation of (230) into (234), 

- (K -1 * )�1.c - =c.c) (�2.c + �c.s .Aw �1.s (234) 

However, some discussions about the inverse (K )-1 in the relation (234)=c.c 
are indispensable •. At first, the question arises whether the quadratic form 

(235) 

is positive definite or not, (225) . The inclusion of the harmonics of 0th and ' 
1 st degree transfers 11.. , ( 227), to ;L , 

or 
n=0 

r-[ 2
A • 4 ,, _ 70

n::;:0 

1 _2
+ 

1 _2 1 2
+ 3 '>22 2 '>Z3 + 5 ?Z4

(236) 

+ ••• l (237) 

see (104) (105)(115)(116). 11. is not positive or negative definite, as against 

/L = 4'k 
2 _ 2 J 

n+1 "Zn 
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to A • Therefore, the matrix shape of 11. is also not positive or negative defi-
nite, tt is the quadratic form (235). lt follows that the determinant of the 
matrix � is not necessarily positive definite or negative definite. However, 

-c.c

to avoid misunderstandings, this fact does not meen that the determinant of 
� 

0 
is always equ.al to zero, by no means. 

-Co 

Despite of (237),it is possible that 

det �c.c # 0 • (238) 

)-1 (238) is the decisive condition whether the inverse (�c.c is well-founded'or
not, (234). But, along the lines of (235) and (237), a prove·of (238) is not
possible. 

Later on, a criterion about the uniqueness of the solution of this problem 
will be derived by the relations from (297) to (362). 

4.6. The compatibility conditions of the second mixed boundary vaiue Problem 
of the geodesy 

In this context, the defect of the kernel function of an integral equation is 
in the fore. It is the number of the linear independent solutions of the homo
geneous integral equation of the first kind, 

b 

f K* (s,t) r.p* (s) ds = 0 
CII 

(238a) 

In the here discussed applications, the general relation (238a) turns to four 
special types of integral equations. 

I. (239) 

(239) allows that oL # o. Obviously, this fact is derived by (148) and (149), if
µ,*(P) = o. Along these lines, and with (135) and (138), a condition of the

following sbape is obtained, 

�-1-
- n + 1
n.=2

Thus, it is allowed to bave 

fn = 0 • 

f0 � o. 
and f1 # o •

The defect of the kernel function H 'for the area w is equal to 4. The 4 in-
dependent solutions for the 0(,. function are 

,. 

1 ff H oC. dw = 0 
w 

2 
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, (j = 1,2,3,4) 

Yj symbolizes·the well-known four surface spherical harmonics of the 0th and
1st degree and order, the detailed sbape of them 1s given by (273) to (276). ' 
The real reason why (239) allows o<, � 0 is found in the fact that H does not 
include the Y. functions, (j = 1,2,3,4). �j are arbitrary constants here. The

J 
matter is eyidenced easily by the introduction of the harmonics series develop-
ments for H and � in (239). 

The second type is as follows. 

II. ff H 0(.. dW = 0
4.:J 

• (240) 

(240) requires ol = o. The · defect of the kernel function H 1s equal to zero
for the area w , it is proved easily by global series developments in terms of
surface spherical harmonics for the functions H and ex. , see also (47) and (76).
As it is easily found, the relation (240) gives by (136) and (139) an expres-
sion of the form .:;: o0 1 2 

6)(�,�)=0=[: ii"+1 fn
n=O 

Thus, also fo and f1 have to be equal to zero.

The third type has the following shape, 

..

III. • (241) 

(241) leads necessarily to the relation OG.0 = o. Thus, the defeot of Hc.o is
equal to ze:ro for the part c.,c of the globe w _. This matter is thoroughly 
disoussed in context wi·t;h the relatione (142)(143),

The last type is 

oc, dtc., = 0 
C 

(242) 

lt gives no other choioe than ClC. = o. The defect of the kernel Il� c is equal
C , •• 

to zero for tp.e partial area w
0 

of the globe c,;, cf. (161)(162). 

The :fact that the type I ha.s the defect 4 whereas the types II, III, IV have 
the defect zero, this cireU01stance is of cardinal importanoe. Il'urther, it is 
evidenced that a continuous enlargement o:f c.,c to reach "' , � c --+ w , :l.s
accompanied by a discontinuous jump of the defect from zero to four. T.bis si•e 
tuation leads to four compatib:Uity cond.itions for. the mixed bounda.r-J values, 
to be discussed now. 

. . 

Sui•e, it is indispensable to check whether the potential obtained as the 

o<. d~ = 0 
C 
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lt is convenient, to remember on some developments in spherical harmonics, (72) 
to (79),

Jg = o(.1 = f:. 
n.::O 

(251) 

(251) is the spherical - harmonic development for the united bounda.ry values

and 

on the globe w,

.:1g
F 

= °'"2 = L a2.n Xn (252) 
n=O 

t 

= L tn x
n 

(253) 
n=2 

Considering the equations (1) and (7), the constraints that must'be fulfilled 
t 

by the final solution potential· E , (250), these constraints have the fol-
lowing shape, (1)(7), 

�· c9 .:!, 
"8 on 

�8 (2.54) - -rr 
= ' 

t) .... "I t 
,....., i!J., 2 

(255) - ,x: - lt i.!iJ = 
J.Jc ' Oll "'c •

(254) and (255) are the conditions aspired and endeavoured to be fulfilled a
posteriori.

But 1 the really obta:l.ned solution has another figure. The spatial Hotine 
9 

funatio:u H (r, �) is, (·l26),L117, 

H'(r, V'°) .: f: 2! : 1 ( � f
+1 

Pn (cos Y,,-) (256) 

The relations (128), (251) and (256) are introduced in.to (249), the spatial so-

lution poten.tial 2 (r, 'f , ;l ) is obta:l.ned, 

or 

,-,, R ((c.:!1 (r� 'f, ,l ) = 41r9 )) (257)

00 

T 
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solution of the 2nd mixed boundary value problem does fulfill the a priori given 
boundary conditions in reality and a posteriori. At first. the solution in the 
subspace of the harmonics of the 2nd and higher degree is to be considered. On 
the oceans t the gravity deviations og are the a priori prescribed boundary con
ditions. they have the given functional expression v

s
• 

Vs = ( ,5 g) s = cx.1 • s • on w s

or. in vector form. 

(243) 

Along the continents, the free-air anomalies dgF serve as the boundary values.
Here, the a priori prescribed f'Ullctional expression is �c , 

or. as a vectcrial representation • 

v
s and �c are arbitrarily choosen regular functions on '-i?s 

gravity deviation on the continents is 

°'1.c or �1.c
it is computed in terms of �s and vc by (230)• 

or 

or 

or 

( c.r g) 
C 

o(.1. C 

°"1.c 

= 

= 

a =
=1.c 

= 0(..1.c =

f { 01: 1. s ' 0{.2.c J 

f { vs ' vc 1-

f*{ �1. s ' �2.c J . 

i•esp. on 

In the geodetic reality. v and � are empirically given functions. 
S C 

Now, the Hotine integral is applied in order to find·the potential 
is the solution of the mixed boundary value problem, 

R
=w ff 

' 
H cfg dw • 

(244) 

w • The 
C 

(245) 

(246) 

(247) 

(248) 

�' .!!. which 

(249) 

Regarding (249), on the oceans, Jg has to be substituted by �8 , and, on the 
continents.- cJ g has to be replaced by the values computed according to (247). 
Thus, 

(250)

~1.a • 

w 

rt I R 
~ =w Jf H' • f [ ).1 s ' V c J dw + 4\ ff 1 

H >'s dWI • 

u!>c; r., s 
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,........, 
� (r,(f,il..) 

00 

·l L
n=0 

_1_ 
n+'I 

�+2
a --
1.n �+1 

105 

dtJ (258) 

(259) 

�· In order to find the boundary values of 6 (r, 'f , Ä.) o:µ. the surface of the Earth, 
the operators 

(260) 
ar 

and 
f) 2

- 15r -n
(261) 

r:-:t' must be applied to .!:J (r, 'f , /4). Then, the transition to the limit r - R 
must be executed. (259) and (260) give on w5 

- ( :>2') 
00 

= (L a1.n X ). a r 8 n 
n=2

, on (262) 

" is the oceanic value of (251), 
s 

00 

)) s 
= (L a1 .n � )s 

, on s
n=O 

(263) 

Thus, 

(264) 

(259) and (261) lead to the following relation on the continents,

<>O O<) 

= ('L a1.n xn)c - (L n!1 ä1.n xnt. (265)
n=2 · n=2 

Hence, because of (79),

) 
c·

(266)

• 

s 
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V is the continental value of (252), 
C 

thus, 

(267) 

(268) 

Or, in terms of the Stokes constants of the harmonics development for Jg, 
(251), 

- (
2 

+ -
R r.;,• ) c!:!.i 

C 
(269) 

Summarizing the considerations connected with the relations from (243) to 
(269), the second mixed boundary value problem in the subspace of the spheri
cal harmonics of 2nd and higher degree has a certain special feature. lt 
aspires to reach the empirically given boundary values �s and �

0
, (254) and

(255). But in reality, this aim cB.Ililot be attained. The really reached'boun
dary values are described by (264) and (269). There is a well-founded discre-

-� 

pancy between the desired and the really attained mixed boundary values, un
le ss the a posteriori found global Jg vaiue s do not include the 4 ·terms of
the spherical harmonics of the 0th and 1st degree. The global üg values are
a unification of tbe given boundary vaJ.ues on the oceans,

( Jg) = . °"1 = ,,
S • S 8 

and of the a posteriori computed values on the continents, (247), 

(270) 

(2'71) 

The vector version of the boundar,r values (2?0) and (271) ia /Ei.s and �1• 0,, 
Tbe union of (270) and ( 271) leads to the J' g value s on the glo be of the Ea.:t'th 
w, er to the vector �1 • lu order to achleve tb.at the results are in keeping
with the intentlons, the following con.st:raiuts must be satisfied, (264)(269), 

(272) 

(272) represents the conditions for the four Stokes constants of 0th and 1st
degree and o.rder in the development for Jg, (251).

The individual foux no:rmalized spherical ha�11tonics of theee degraes 
denominated by Y j, (j = 1,2,3,i�). The;y have the following

_ 
expressions

terms of the geocen·t;ric la.titv.de and longitu,de p ( '! ,.,'.t) v [15-1. 

ara :aow 
in 

r.:i' ) ~ 
C 

X 
n 

0 

• 
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Y1 = Ro.o = Po.o = 1

y2 = R1 .o = P1.ö = l3 . sincr 

y 3 = R1 .1 = P1 .1 • 0019 
1 -,c, l /\ • / J • oos p • 0019 /\ , 

Y 4 = s1 •1 = I>1 •1 sinA = fj coscr sin).

The relation (273) to (276) use the well-known abbreviations, /:15-7, 

�.m ( lf , ;t) = Pn.m ( Cf ) cos m tl

sn.m< 'f '.:t) = Pn.m< 'f) sin m il.

2 
Jf Rzi.m dw = fJ dw = 4'ii 

(273) 

(274) 

(275) 

(276) 

(277) 

(278) 

(279) 

(280) 

Pn.m (�) represents the normalized associated spherical harmonics of degree n
and order m. 

Considering (251) and (273) to {276), the conditions (272) change into the 
:following shape, 

ff o/.1 y j 
w 

(281)

The diviaion of the intagration (281) into the oceanic and the contioental parts 
leada to 

�j = 0 Jf oc.1.c dW (282) 

'4c; 

The functions ot.1 and ot.1 
can be replaced in (282) by the empirically given• s .c r 1 expression i> 8 and by the 0xpraasion f t J18 , y O ! which is computed in te1'l!ls

of tha ampirically given functions µ8 and >'
0 , (2?0)(271). Hence,

lj d� + JJ f{>'s, J.?0 � Yj dw
"-'e 

(283) 

(284)

2 

w .., 

j = 'l ,2,.3,'~ • 
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Now, it is conveDient to transform the four compatibility conditions �' 
(283), into the shape they have in the matrfx calculus. The functions Yj , vs, 

Y
0 

transform into the concerned vectors a.nd the kernel functions cbange over 
to certain matrices. The vector representation of Y j is, 

l 
. .. 

l 
-:z. = ( y j)i-J 

. . .

(285) 

i = 1,2,3, • • • t q • (286) 

For the fixation of the ideas, here again a division of the globe into equ.al 
size compartments of the number q is introduced, as formerly by the figure 1, 
see also (21). The extension of q to a very great number is·permitted. The re
lations (214) and (285) lead to the vector sbape of (281), it is the following 
scalar produe-t, 

-y:. -J (287) 

j = 1,2,3,4 

Hence, the vector shape of (282) is, 

(288) 

(-:z.) is the part of Y.· tbat refers to the ocea.nic compartments, and <iJ·)c is-J s -J 
the continental part, 

Y.. -J 
=

= 
[ �1.c ] 

�1.s 

(289) 

(290) 

As to (288), �1.s is the expirically given vector of the gravity deviations 
on the ocea.ns. �1.c is computed in term.s of �1•5 a.nd �2•0, the latter 1s·the 
vector of the free-air anomalies o '· e continents, (230). 

The union of (230) and (288) leads finally to the following rel.iations in 
terms of the empirically given boundary values �1.s and �2• 0 , 

1f. = 0 = IJ:1 ·J -

l 
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'ffr = = ( ) T ( ) T (K' )-1 [ a + tt' 
j O �j s �1.s + Y=j c =c.c =2.c =c.s 

j = 1,2,3,4. 

The superscript ( )T denots the transposition • 
• 

�1.s Aw�] i (291)

(292) 

The relation (291) describes the 4 compatibility conditions that must be ful-
filled by the boundary values �1•

8 
and �2.c of the second mixed boundary value

problem of the geodesy to be solved in the subspace of the spherical harmonics 
of the 2nd and higher degree. Otherwise, it is not possible to find a solution 
of this problem that satisfies the mixed boundary conditions which are given 
from the beginning. 

The derivations from (249) to (291) refer to certain mathematical relations 
in the subspace of the harmonics of the 2nd and higher degree. lt will not be 
without interest to look for the modifications that happen if the harmonics of 
0th and 1st degree are included. Following up this aim, the relation (249) 
changes over to 

s = 4 � Jf H Jg d w • . 
w 

His defined by (50), and (294) must be substituted for (256), 

(262) changes

(266) must be

H(r, y,) = L 2n + 1
n + 1

n=O 

to 

00 

-(�E) 
I} r s

= ([ a1 .n

replaced by the 

( ;)� - Tr 
2+R 

n=O 

relation 

E) 

xn )s 

, on IA7 s

n-1 a X ) n+1 1.n n c

(293) 

(294) 

(295) 

(296) 

In (295) and (296), the harmonics of the 0th and 1st degree are not filtered off 
by the integral transformation (293). Obviously, this fact paralyzes here the 
reason that oauses the compatibility conditions in case of the integral trans
formation of- the type (249). 

QO 

= ( f - · 
C n=O 
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4.7. A matrix criterion for the uniqueness of the second mixed boundary value 
problem in the space of the harmonics of 0th and higher degree

The uniqueness of the second mixed boundary value problem was proved by the 
relations (86) and ,(114) for the subspace of the harmonics of the 2nd and higher

degree. The uniqueness of this problem is valid for an arbitrary run of the 
coast line. Now, these invest�gations come ·to be continued and expanded by the 
inclusion of the harmonics of the 0th and 1st degree also. 

' ' -1 
In this context, the mappings (222) and (229) by ic.c and <ic.c) are in 

the fore. The mappings by the kernel matrices lc.c and (
�c.c)-

1 cannot be the
base for the following deductions since it was not possible to state whether 
lc.c represents a closed kernel function or whether its rang defect is zero, 
cf. (115) to (117b), (235) and (238). 

The inclusion of the ,harmonics of the 0th and 1 st degree and order changes 
' 

the potential T into T, (46)(47). 

1 n 

( �r
+1

T I: I: Pn.m (Cf) [ z* cos ml + ** sin ml} + T
1

• = z n.m n.m 
�o m=0 (297) 

* and z lt# the Stokes constants.zn.m n.m are 

A glance on the 
sentation of (297) 

4 

relations (273) to (280) shows tllat the following rapre
is allowed, 

T = L (298) 
j=1 

z
:i 

are the Stokes cons
.
tants, Y j are the surface sphel.'ical h&.rmonics of · 0th

afl.d 1st degree a.ud order. The functions fj(r) depend on the geocentriß 
distance r, 

(299) 

• (JOO) 

The relations (46), (4?), (59), (64) and (298) lead to a fomula for the poten
tial T in the space of the spho:ncal harmonics of all the degrees and 01'<lers, 
(n = 0,1,2, ••• ), expressed in terms of the Stokes conatants zj of 0th OOld 
1st degree and order, and expressed further in terms of the gravity devia-

t 
tions ot.1 , which are free of the harmonics of the 0th end 1st degree a.n.d
o.rder, oince these oonetituents are considered tobe filtered otf, 

4 (/ t ·, 
T = L zj fj(r) Y j('f, Ä.) + 4\. J) H ot.1 dt.c1 • 

j=1 

(.301) 

DOI: https://doi.org/10.2312/zipe.1986.084



111 

As it was stated above, the uniqueness of the second mixed boundary value 
problem of the geodesy in the space of the harmonics of all the degrees �0,1,2, ••• 
is to be investigated here. This problem is governed by the constraint that the 
concerned boundary vaiues have to be equal to zero, as it is well-known. This 
homogeneous form of the boundary conditions is , (8) (9),

The 

bT 
- Tr = O , on w

8 

iT 2 
- ;, r - R T = o , on c.c,c •

operators of (302) and (303) are applied on (301), 
4 

IT L - iJr
= -

j=1 

�T _ _g_T = 
- ar R · 

�zj dr 

4 

-L zjj:1 

'

yj
(ff, l ) + °"1

� Y/'f, Jt ) 
dr 

' 

�1 d c.o • 

'

+ a(,1

... 

-i L
j=1 

(302) 

.(303) 

(304) 

(305) 

The four equations (302) to (305) lead to the subsequent simultaneous relations, 

4 
o = - [: 

j=1 

lj. 

o = -· L
j:::1 

The abb:reviatious 
4 

a � L 
j=1 

4 
/J'� =L 

j=1 

cbatlge (305) and 007) into 

, on "' s 

yj - 2 \:- ff H
1 

°"� dti, + °"� , on WC • 
"' 

(306)

(J0?) 

(308) 

(309)
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0 = 0(,, 
-

1.s
4 

s

' 

112 

on w s

on w • 
C 

(310) 

(311) 

In (311), the exprersion °'"
1 • s is replaced by � 8 using (310); thus, an in-

tegral equation for °'
1 .c is obtained. Hence, by (310) and (311), 

' 

0(.1. s 
= on 

1 1 1 

w 
s 

df.4!1, on i., c

(312) 

(313) 

oc
1 

is the global union of oG
1 • s and ac.1.c • The prima denotes that the harmo-

nics of 0th and 1st degree are not included. 

' 

Here, in the investigation of the uniqueness, 0(..1.s and oG
1.c are not con-

sidered as empirically given functions. They are mathematical expressions of 
the described properties. 

S? = 0 = ff Ol.� 
w 

dw , 

j = 1,2,3,4 

The division of (314) into the oceanic and the continental area gives, 

= 0 = $ ol� • s Y 
j

"'s 

1 

oC. 

1.c dw 

(314) 

(315) 

(316) 

' ' 

In the next step, 0c:. 1•8 (from (312)) and «-1.c (from (313)) are introduced
into the equations (316) i� order to find 4 relations in terms of the 4 Stokes 
constants z., (j = 1,2,3,4). For the following deductions, it is convenient to

J 
write the mathematical expressions in the style usual in the vectar and matrix 
calculus, cf. (163) to (205), (214) to (216). The vector shape of the global 

' 

function 0(..

1 
is 

•••

1 

�1 
= (317) 

.. . 

ol ~ • c dW = .1: + 2 * ff H: • s i1 s 

"'s 

j 

Y. 
J 
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i = 1,2,3, ••• , q (318) 

q is the number of the equal size compartments which divide the surface w of 
the glohe. As in (214), the continental and the oceanic compartments are listed 
separately, 

[ 
' 

]
�1.c 

1 
(319) 

�1 = 

�1.s 

The functions 
way, (308)(309), 

d and � � are transferred to the vector form in a similar 

= [ ·4� l 
... 

[
�c 

= 

g.s 

. * 

� = 

[ -�i l ... 

= [ :: l =S 

1= 1,2,3, ••• , q 

The vector shape of (312) is 

t 

0 = a
1 = .s 

- d
=S

The integral equation (313) changes over to, (�13), 

Hence, 

1 1 1 :j( * 1 )je. 
0 = a - H a A.WI - d - H d Ai.:> =1.c =c.c =1.c =c =c.s =s 

1 • 1 >fr 1 
0 = ( E= - H 4,ft'J/1) a - d - H =c.c w =1.c =c =c.s d At.J*=s 

(320) 

(321) 

(322) 

(323) 

(324) 

(325) 

(326) 

(327)
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This matrix in the braces is well-investigated above, (221). 

' .... 1 1 - d"' - H d 11i.,*0 = ��.c �1.c =c =c.s =s 028) 

' 
The inverse of K is well-founded, (229). Thus, (325) and (328) give a repre-=c.c , , <+ 
sentation of the vector �1•6 and �1.c in terms of the vectors g

8 
and �o, 

a
1 

= (K' )-1 (d* + H
1 

d AW*)=1.c =c.c =c =c.s =s 

a = d • =1 • S :S 

029) 

030) 

The vector form of (316) is obtained by {285) (289) (329) (330), it consists 
of the following two scalar products, 

' 1 

J?J. = 0 = a1 (J_J.)c + a1 (J.) = .c = .s -J s 

j = 1,2,3,4 

' ' 
�1.c and �1.s are substituted for (329) and (33o)

031) 

032) 

033) 

In order to express the vectors d a.nd d * in te1'11'ls of the 4 Stokes constants 
=S =O 

�j' (j= 1,2,3,4), (320) is daveloped by (308), and (322) by (309). The compo-
nent s 41 are 

� 
.1i 

= ( I: zj Yj)i •

.1=1 

The parameter i , 

i = 1,2,3, . .. ' q ' 035)

variea with y, and Ä over th globe, :i'rom oompartment to oompartment. But, s3 b 
e. conetant and 4 f;, / dr d.epends on tb'9 h�re constant ra.dius only. 'rherafo1•0,
sj and 4fj / dr do not vaey with the parameter 1. Thuo,

4 

'-'1 = L 
j=1

• 

( Y j)i is tha value of. the :f'unction y j. for the compartment of the 1'Ull.Qi.ng
numoer 1. (320) and ()36) give 

df z __ il,
j dr 

(JJG)_ 

(337)

4 

034) 

• 
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or, (285), 

038) 

The combination of (289), (321) and (338) leads to the following equations, 

4 

�c = L
j=1 

4 

�s = l:
j=1 

039) 

04;0) 

In the equations (339) and (340), the subscript j can be replaced by u, 

u = 1,2,3,4 •

4
d = L=C 

u=1

4 
d = L:::s 

U=:1

z � 
u 

d �u z --
u dr 

041) 

<Iu) c 042) 

<;xu)s • 043) 

. � * 
The corresponding relations for �c and g

8 
, (323) , are easily obtained

by a comparison of (308) and (309), 

4 

d* =C =L
U;::1 

4 
d* = 
=e L

u=1 

[� 2 ] zu d.r + - 9u, 

z ( 
d fu

u dr

R 

+ i !u]

(ifu)c (344) 

<iu>s (345) 

• The expresaions (343) and (344) for �s and �c are introduced into 033),

Qj " Q "' 

4 

2..� 
Um1 

4 

+E
u,,,1 

z
u 

•u

4 �u
<iule .,..,_.. 

dr 

[ � 
2 

- + -
dr 

R 

<ij>a 

f u] 

su �..!! [ (K' ,-1 
dir 1110.c a' ·•o.s

+ 

[ (K' )-1
„o.o <1u>c J <1j>o +

046)

dr 

• 
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The equation (346) can be considered to have the shape of the product of a 
matrix and a vector. This matrix has the followiDg form, 

'!J
T = l w u. j �

u, j = 1,2,3,4 . 

w1.1 w1.2 w1,
3 w1.4

'flT 
w2.1 w2.2 w2.3 w2.4

w3.1 w3.2 W3.3 w3.4 
w4.1 w4.2 W4.3 W4.4 

The superscript T denotes again the transposition of the matrix. 

w u.J
(d � 2 ( )T+ d/ + R � u J i!j C 

+
d 

�u .o.�* (;y .) T (K' )-
1 

H _ _ c' • s (;y_u)s •dr -J c =c.c 

1 -1 ( ) (�c.c) �u c + 

The concerned vector has the Stokes constants zu as the elements, 

z1 

z = 
.
z2 
Z3 

Z4 

The abbreviations (350) and (351 ) transform the 4 equation, (346) , into the 
following form, 

or 
0 = � 

. 

52 
j 

= 0 = L w u.j u
U=1· 

In case of the fact that the follow�ng inequation is fulfilled,. 

T r l det '!l = det � = det l wu.j J 
t O ,

047) 

048) 

(349 ) 

050) 

051) 

054) 

in that case1the Stokes constants zu are all-equal to zero, as a glance on (352) 
and on the inversion of it does show. Thus, (352) and the criterion (354) (237) 

give 
� = 0 • 055) 

The fulfillment of (354) does mean that the rang defect of '!land �
T is equal to 

zero. 

= 

= 

z 
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(355), (351)1 (308) and (309) lead to 

= .ll* = 0 

Hence, with (320) and (322), 

g = �* = 0 

057) and (329) have the following conseg_uences,

' 

�1.c 
= 0 

' 

1h.s 
= 0 

Finally, (358) (359) (317) (355) and (301) lead to the fact that 

Hence, with (301), 

' 

ot1 
= 0 

zj = o ,  (j = 1,2,J,4)

T = 0 

(356) 

057) 

058). 

059) 

(360) 

(361) 

(362) 

This relation proves tbe unig_ueness. Therefore, the following theorem is 
right: The second mixed boundary value problem of the geodesy has a unig_ue so
lution in tbe space of all the spherical harmonics of the degree n = 0,1,2, ••• 
if the cri terion 054) .is fulfilled. 

As regards the numerical computation of the relation (354), a detailed nume
rical evaluation is not intended to be given here. In case of the first mixed 
boundary value problem of the geodesy, a criterion similar· to (354) was derived 
earlier, {"';J. Later on, in this publication, this criterion for the first mixed 
boundary �alue problem and for its unig_ueness in the space of all the harmonics 
of the degree n = 0,1,2, ••• will undergo a detailed numerical evaluation. It 
will be proved that the first mixed boundary value problem has a unig_ue solu
tion in tbe space of the harmonics of all degrees and for the real geographi
cal distribution of the continents and of the oceans. 

However, returning back to the second mixed boundary value problem and to 
the matrix Wand the elements w . of it, (350), a short consideration about= u.J do,, the structure of (350) seems to be convenient. The functions �u and �, 
(299) (300), are constant over the globe. The vectors ?j represent certain glo
bal functions that are constant or that vary over the globe as cos f, sin�,
cos �, sin;l. ., cf. (273) to (276). Thus, these functions contain constant terms 
and long wave length terms only. Therefore, in the computation of the matrices' 1 ' 
(t )- , g in (350), it is not necessary to compute a detailed representa--c.c -c.s 
tion of theae matrices, e.g. up to the order or dimension of some thousends. 
If theae matrices (K

1 

)-
1 and H

1 

are computed basing on compartments of
o o 

=c.c =c.s 
1 x 1 sg_uare, in this case these matrices will show a very detailed �truc-
ture which is not in keeping with the structu�e of the functions fu• ixu and

• 
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the vectors -:t which appear in 050�. A general division of the globe ·into com-
-u 0 0 0 0 partments of about 10 x 10 square pr 15 x 15 square will suffice to do the 

work of computing the elements w ., (350), of the matrix W in order to testu.J = 
whether (354) is valid or not. This fact will be a relief to the computations 
about the criterion equation (354). 

But, if going other ways by starting from the criterion (238) in order to 
investigate into whether the second mixed boundary value problem is unique in 
the space of all the harmonics, in this case, a lot of computation work does 
follow. Now, not a matrix of the dimension 4 x 4 is in the fore, as (347), but 
the matrix K has tobe investigated in all details to find whether the rang=c.c 
defect of it is indeed equal to zero. The dimension of this square matrix has 
tobe extended extremely great, a lot of work would be the consequence. 

4.8. The difference method 

Soma remarks about the numerical computation of the solution of the 2nd mixed 
boundary value problem seem tobe advisable. The equation (230) determines the 
continental gravity deviations in terms of the continental free-air anomalies 
and in terms of the oceanic gravity deviations. Thus, (230) repres8l:lts already 
a s�lution of this boundary value problem. However, it is convenient to trans
form (230) into a difference method since it will bring relief to the numerical 
computatio�s about the inversion of the matrix of great order �c.c . This dif-
ference method will also lead to a higher flexibility in the applicationa, it 
seems to be convenient for routine computations. In this contex·t, the full com
ponents of the vector �1 are not intended to be dete:rx1ined, but the differen-

- .c 

ces of these values relative to a reference component are obtained. Along these
Hnes, the relation (230) changes into, /!?]La]� 

' )-1 f ' ,i: 10�1.c = J(�c.c �2.c + Mc.s 4"' �·1.s J 063) 

' -1 
cf�,l.c and cf(�c.c) d.enom:tnate the concerned difference vector an.d. the con-

cerned difference matrix. 

Some explanatory.and supplementary remarks about the.differance ralation 
(363) seem to be recommended. The Bubstitutions

J
= i-1.c

l
= t·2.c + .4W

l!e 

� = (K' )-1
=c,c

change (230) into 

1 

H =c.s �1.s

(364) 

065) 

(366) 

(36?) 
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The row vector of � is �T where the superscript T denominates the transposition, 

Similarly, the row vector of � has the following shape, 

Thus, the components of the vectors � and � are 

and 

X , (a = 1,2,3, 
a , D, • • • , N) ,

yb , ( b = 1, 2, 3, • • • , D, • • • , N) •

The matrix � has the elements ma.b

The matrix relation (367) can be written in the following form, 
N 

xa = L m a.b Yb
b=1 

a,b = 1,2,3, ••• , D, ••• , N . 

Jeu is the comparison coruponent or the reference component, (a = D) • 
N 

XD = L �.b Yb •
b=1 .. 

068) 

069) 

0,70) 

071) 

072) 

073) 

(374) 

075) 

The following relations bring to bear the advantages connected with the intro
dur;t:ion of the compariaon com_ponent xD, they are self-explanatory,

X - X.. = a J.J 
Jx a

me. . b - mD. b = J ma. b ' 
Xi 

xa - ½ = L (ma.b - mD.b) Yb
= 

b::1 

t 

T 
J � = ( • • • , J xa • • • • )

dx= = Ja =1.o

o(K' ) -1
:;:CoC 

b=1 

076) 

077) 

078) 

079) 

080) 

(381) 

(382) 

083) 

• 

DOI: https://doi.org/10.2312/zipe.1986.084



120 

The substitutions (382) and (383) lead back to (363), after the meaning of it 
was explained by the derivations from (364) to (381). 

The very ad�antage connected with the difference method, (363), consists in 
the following fact. The subscript ( )D may refer to the mean x value of the sur
face element 1J.t.J* of Potscia.m, e.g., and the subscript ( )a may refer to .the 
mean x value of the surface element .i,w,* which does contain Budapest, e.g., [7] 
[]3.J. If it is intended, after these preliminaries, ·l;o compute xa - ½ = öxa ,
that is 

- X 

Potsdam, 

in this case, the boundary values a . and a for areas distant from .f!..'urope =2.c =1.s 
will have an effect on Jx that is much more small than the effect of the a2 a = .c 

and �1.s values of Bulgaria and the Baltic Sea, e.g •• Obviously, the greater the
distance from the boundary v?,lues,, the ��aller their impact on cl'xa• This fact 
is caused by the structure of d'(Kc c) .which will be very dissimilar to the 

1 -1 - • 

structure of (!}c ) • Thus, the greater the distance from the two test points
- .c 

with the components xa and xD the greater the admi·tted size of the compartments
d w lf-'. And, furthermore, the greater the compartments AW* , the smaller is 

' 
1 1 

the order of the matrices �c.c and (�c.c)-1• And, consequently, the smaller the
order of these matrices, the greater the relief to ·the computations. Thus, the 
transition from (230) to (363) will allow to save much work. 

By the previous lines, the abandonment of the condition that the surface 
elements are constant, 

=� 
= constant (383a) 

was discussed. Therefore, for the application of the difference method, the
concerned relations (230) and (363) have to be modified. Deriving the matrix 
shape of (57) and (�8) for a surface division into compartments of different 
size, a certain diagonal matrix has to be introduced, For the fixation of the 
ideas, a model of 101 continental compartments and of 47 oceanic compartments 
is introduced, cf. (167)(168). They give rise to the following diagonal matrix, 

v1.1
0 

X = . . . 

0 
. . . 

0 

V = fv.-:-� = l.. l. 

i,i = 1, 2, . . . k 

v. -:- =
l.. l. 

0 i 

0 

v2.2 . . . 
. . . . . . 

0 . . .

. . . . . . 

0 

' . . .  ' 

� I 

0 . . .

0 . . .

. . . 

vk.k 

0 .. . 

q . 

0 

0 
... 

0 

vq.q

(383b) 

(383c) 

(383d) 

(383e) 
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Tbe 

and 

V -·
i.i -

1 
2'ir 

separation of 

VC= 

A <t>. 
l. 

tbe 

= 

121 

>K = A c..,. 
l. 

continental part of X from tbe oceanic

V1 .1 0 . .. 0 

0 v2.2 . . . 0 

. . . . . . . . .

0 0 . . . vk.k 

vk+1.k+1 0 . . . 0 

0 vk+2.k+2 . . .  0vs =
= 

. . . . . . . . . 

0 0 . .. vq.q 

Tbus, for a division into compartments .AW. of non-constant 
shape of (56) turns to, cf. (217), 

1 

�c.c 
V �1.c - H Xs �1.·s 

-
�2.c 0 = �1.c 

- =C · =c. s

Tbe modified form of (219) (220) (221) (222) is 

b* = K'*

�1.c =C =C.C 

with 
'* 1 

�c.c = f;
- H =c.c =C

b* g-2.c + �c.s V 
�1. s =C =s 

part 

size, 

(383f) 

gives 

(383g) 

(383h) 

tbe matrix 

(383i) 

(383j) 

(383k) 

(3831) 

Now, tbe transition from (383j) to tbe difference metbod is discussed. The 
developments are self-explanatory. 

Tbus, 

Or, witb 

follows 

a ==1.c 

J g-1. C 
=

� = 

� 
-

� 
= 

'* -1
(!}c.c)

J (K'* )
-1

=c.c 

�1.c 

b*=C 

(K'* )
-1

=c.c 

� = L �

b*=c (383m) 

b*=C . (383n) 

(3830) 

' (383p) 

(383q) 

(383r) 

l. 

V 

= 

= 
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cf! 
= 0�.? 

� 
= 

{ 1a. b J

½ 
- X = [ 

n b 

cf. (364) to (383). 

122 

(ll) -1n ).b .b 

(383s) 

(383t) 

Yb (383u) 

The mutual distance between the couple of the two points PD' lt is choosen to be 
not more than about some hundred kilometers. Therefore, evaluating the impact 
exerted by the continental compartments on xD - x

i5 
, it is very probable that 

this impact will be the smaller, the greater the distance is between such a oom
partment and the couple of points PD, lt. It follows that the area 
v .. = Ai.,�, (383f), can be choosen the greater, the greater its distance from 

l.. l. l. 

tf; couple of points PD ,�. The greater v
i.i 

, the smaller the dimension of
K • Experimental computations about the difference method seem to be recom=c.c 
mended. 

Furthermore,. it is possible to do an additional step which does base on the 
difference method, (363) . This equation, (363), allows the determination of the 
continental cSg values relative to the a. priori given offshore og values of 
the boundary conditions. It is possible to devel.op an interpolati--on procedure 
fqr the determination of the continentaJ. Jg values 1 by an interpolation between

the offshore given boundary values of og. The matrix relation (379) ia a con
venient s.tarting point for a descripti.on of tbis method. Figura 2 shows the 5 

compartments which the inclices a = 'l,2,3,4,5 are attributed to. The compart
ment of the index a = 1 is situated at the coaat of the Baltic Sea, e.g •• Tha 
index a::: 5 refe:r.s to a co01part01ent a.t the coast of the Black Seq., e.g. The 
index of the compariso:n compartment is choosen tobe D = 3. The num.erical 
computation of t.b.e matrix ralation 079) leads to· the following rasults f 

ß xa , (a
Or, 

cl x1 = X1 

c
t

x
2 

:: 
x2 

cl'X3 
= 0 

rJ XJ+ - x4

Jx5
- X

e.
� 

::,, 

= 

� 

-

-

-

1,i::'.,3, 1+,5) 

X-.i_ 

X� 
,. 

x3
x3 f 

(384) 

(385) 
(386) 

087) 

(388) 

(389) 

090) 

The equat:i.nn (390) bri:og.s the u priori emp:i.1'j_cally given va.lues x1 , x5 
(bounda.ry values) s.nd th1o a _postariox·i compu'ced values Jx

1 
, ,fx

5 
(computed 

•rne differe:nce of tha computed valuas r5 ~1 and. Jx,:; , (385) and 089), is . / 

Jx, - c5x1 "'x5 - x1 ~ (J'g)5 ~- (,Jg)1 „ 
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12J 

Ocean 

I® a = 1 

X a-=2 

Continent 

X O= 3 

X 0=4 

® a=5

Ocean 

Fig. 2. A model polygon, (a = 1, ••• , 5), for the application of the dif

ference method. It is ancho:red in the known offshore dates using the 

benefits of an interpolation mothod. 

by 063) 0?9)) into a uru.tual rel..ation. For the terms J':x:1 and lx;, this

equation, (390), i.s a con.straint wbich has to undergo an adjustment according 
to the �ethod o! least squaros, ao usual. Thie adjustMent will strengthen the 
obtained and computed values for rJ'� and '

X, 
since· the adjustment gets these

valuoa tobe a:nchored in the offshore gravity deviations, x1 and x5, which be
loPS to the empirically given boundary values. 
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4.9. The transition from the gravity deviations to the perturbation potential. 
and the accompanyinp; smoothinp; effect 

The gravity deviations cfg and the gravity anomalies 4g
F 

vary by relative 
great amounts along the continents and the oceans from place to place. Therefore, 
the components of the vectors !!1 and o �1 have also the property that the

- .c - .c 

amounts of them vacy from place to place rather considerably. Thus, the compu-
tation of the solution of the linear inhomogeneous integral equation of the 
second kind deals with tbe amounts of the gravity deviations which are to be 
determined and which vary by relative great amounts from place to place, (62) 
(67a) (230) (363). It is well-known that the determination of a smoothed system 
is easier to reach than the determination of a system of values vacying heavily 
with the independent argument, it is sel.f-explanatocy. 

In this context, it is interesting to see that the values of the perturba
tion potential T are rather smoothed. Therefore, it will be advantageous to re
place the system of the �g values by the system of the T values. The T values 

1 

can be introduc·ed along the following lines. As to the T values, the Hotine 
integral (46) is transformed. The fundamental differential equation of the phy
sical geodesy 

leads to _a relation tb.at expresses the gravity deviations, 

,) T Jg = - 7r = 0(.1 

in terms of the free-air anomalies 4gF and the perturbation potential T, 

2
Ol1 = Jg = � gF + R T

(393) is valid for a spherical surface, r = R.

091) 

(392) 

093) 

At first, the considerations happen in the subspace of the spherical harmo
nics of the 2nd and higher degree. Later, the harmonics of 0th and 1st degree 
are included al�o. The Hotine integral (46) gets here the following shape, 

1 R ((
H
I 

T = 1ilf" JJ ('f) (Jg)
1 

dW (394) 

It is provided that in (394) the compatibility conditions are fulfilled, 
(283), 

= 0 (395) 

j = 1,2,3,4 096)

w 
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It is a cond.ition for the boundary values vc and v
8
, i.e. the empirically

given free-air anomalies 4'gF on the continents, "'c , and the gravity devia
tions dg on the oceans, c.c,

8
• (395) represents the four cond.itions which must 

be fulfilled necessarily if the boundary conditions are to be observed a poste-
riori by the solution. (395) prescribes the fact that the global distribution 
of og is free of the harmonics of 0th and 1st degree. Because of (76) and (79), 
it follows that T and Jg

F 
are also free of the b,armonics of these degrees, 

097) 

Therefore, (393) turns to 

098) 

For test points on the con,tinents, wc' the integral 094) can be brought into
the following form, 

099) 

The first term on the right hand side of (399) is transformed by the introduc
tion of 098), 

1 1 

rr 
1 1 R 

JJ 
1 1 

(T )c = 

2T 
H T dw + IT H ( 4 gF) dw + c.c c.c 

�e Cc1c 

R f[ 
1 1 

+ 4'8"
H ( cf g) dw , Oll W

C 
• (400) c.s

<A's 

1 1 

( 4 gF) on w and ( t:1 g) on w are the empirically given boundary values J/
C S C 

and v . They did undergo a reduction or an adjustment adapting them to thes 
4 compatibility cond.itions (395) prescribed to be fulfilled by Vc and V

8 
be-

fore the beginning of the boundary value problem computations. 

Thus, (400) gets the following shape which is easy to understand, 

1 1 

0 = E
c 

+ T 
1 

-rr

1 

H 
c .• c 

d·w , on w · 
C 

'1 c dW - 4� ff
1 

H c.s l1 s dcJ •

ec,s 

(401) 

(402) 

The equation (401) is again a linear inhomogeneous integral equation of the 

a· 
1.0 

' 0(.1 = cfg 

' H c .c 
1 

Jg 
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second kind, as (56) and (57). The integral equation (401) has the same kernel 
function as (56) and (57). The theory of an integral equation is foverned by the
structure of tbe kernel function of it, it is here the function H • The solu-. c.c 
tion of (401) is unique as it was proved by the developments from (67a) to (86) 
for an analogous situation. The kernel H�.c for the area wc has the property
of being positive definite, it can be taken from the derivations (118) to (133c). 
, 

H of (401) is also a closed kernel function, the defect of it is equal toc.c ' 
zero, cf. (143) to (159). Furthermore, Hc.c can be considered as a continuous
function in the area Ce) , as it is evidenced by the later developed relations 

C t 

(463, to (477) applying them to the function H instead of s. The discontinuity 
of H and H1 for -y, __,.. 0 is removable. 

c.c 

lt is possible to transform (401) into the matrix shape along the lines 
developed previously by (212) to (230). Conferring with the relations (163)(164) 
(165)(214)(215)(216)(230) and (401), the following developments are obtained, 

' 4 'ii 
�3.c = T

i = 1,2,3, ••• , k • 

Here, i refers to the continental compartments only. 

�c 
= 

(401) 1s transformed into

Hence, 

and with 

0 ' R ' - Aw* R H' = !c + W �3.c 'ff =c.c

4'r ' ' Jilt ' ' o = - e + a - AW H a R �c =3.c =c.c =J.c 

4i" ' 

A '-"
� 

0 
= 

T 
8 + <! - H ) a-, ::c =c.c :;, .c 

(221), 

4'1 ' ' 

= T 
e + K =c :fJ.oC =J.c

= lc •

'· 

�J.c 

(403) 

(404) 

(405) 

(406) 

(407) 

(408) 

(409) 

(4'10) 

' -1 t ' 

(K ) 1s the well-fouudod inverse of ;
0.� � (229)t The defect of �c.c was

=c.c ... 

0 

0 
1 

8. 
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proved to be equal to zero. 

The relation (410) is the matrix sbape of the solution of the integral equa
' 

tion (401). It allows the computation of the T values for the continents in terms 
of the empirically given boundary values �c and �

8
• The structure of the T

values is rather smoothed, it is much more smoothed than the structure of the 
..:lgF 

and dg values. E.� depends on vc and "s by certain· integral transfor
mations only, (402), which have a smoothing effect. 

' ) 1 
The combination of these continental T values1

with the boundary values (A gF 
on the continents, w , by (398),leads to the Jg values on the continents. 
These computed conti�ental ög 1 values are united with the a priori given boun
dat7 values &g 1 for the oceans. Thus, the global distribution of the functi?n 
Jg • is known finally. By (394), Jg

1 
gives the global distribution of the T

values. This is the solution of the investigated boundary value problem, (401), 
which incolves the smoothed Ullknowns T 1 on the continents. A relief to the nume
rical computations is obviously the consequenoe since the rugged Jg' values on 
the continents are replaced by the smoothed T' values. 

Furthermore, it is also possible to develop a difference method for the so
lution of (401) and for the relation (410), similaras it was carried out by 

' 

(363) to 090) in case the (Jg) values on the continents are the u.uknown
values wlrl.ch are to be determined. For the applicationaf the difference method,
the relation (�10) chaDges into

1 4.,a-cfa3 = - -;;--::: .C ..L1 

(411) 

nf. 063). For tha f'iy_.ati<>n of the ideas, the d.iffe:rencet method according to 
( iv, 'l) ia applied to tb.e �ode 1 polygen of' Fig. 2. By the equa tion ( 411), the 
difforence betwaen the T values of.' the compartments with.the index a = 1 and 
a. ::: J is computed. Tha same is do:ne for the com:partments wi'i:;h the index a = 5
aud a: 3. T.he conß· derations connocted with tha developments (384) to (390)
g:i.ve again riae to au equation of the following fo:i:·m,

(412) 

ff x
.5 

�nd d' x
1 

refrosent hara tha coxicar�ad differ1nca values of tb.e perturba
t.i.<ui potontfal T 1..,omrJuted by (41·1). (T )

.5 
and (T )

1 
on the right haud side of

(4'12) 1.·<,:p1·saent tha a priori empirically given offahore dates of the satelllte 
al ,lmet:cy w ich can be takon from the raaps o:f Rapp, f.2'J.l [2't]. Thus, the con
d.1.-tio� eg_ua:t;io:u (1Vi2) anchol'/3 the resul'ts of (4·1·1) :i.n the o:ffsbora dates o:f 
tlrn s�tellite alti1!letry. see also 090). Hence, the adjustment procedu.ra con
n"><:ted. with (lt-12) is a help to strengthen the continantal difference values 
-of. ir

1
,obtabi.e<l by (4·11). ('+·12) ha.s the cbaractar of a:a. interpola.tion procedure. 

l!3 o:t'<l.a:r. to compl.ete the con.siderations abo\1t t e integral equation (401), 
the oxtansion to the harmonics of 0th and 1st degNe should hava a short d.ts
cuasion. Following tbis pr1'i>lem, the iutegi.•al 094) changes into, (47), 

' - 1 ' er (~c.c) gc 

l 
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T = 4� JJ H ( y,) Jg dc.c> (413) 

The compatibility conditions are not valid in this problem, (395). The integral 
equation (401) takes the shape 

0 = ec + T -* ff
We 

with 

Ec 
R fJ Hc.c vc= - 4 'ii 

C<?t, 

H T dw , onc.c 

d _ _JL Jf H W 411 c.e
WS 

WC 
(414) 

V 
8 

dw (415) 

The relation .(414) is again a linear inhomogeneous integral equation of the 
second kind. lt leads to the determination of the continental T function and 
to the global solution of the second mixed boundary value problem in the· space 
of the spherical harmonics of all degrees, (n = 0,1,2� ••• ), i.e. in the space 
of t;he global regular functions. The kernel function is Hc.c • 

A short commemorative outline of the pec_uliarities of this kernel function 
and of the integral equaUon (414) seem to be convenient. Hc.c comes from
(48), it a�pears also as kernel function of (67d). The kernel function Hc.c is
symmetrical, positive definite and closed, (119)(133d)(161)(162). The matrix 
shape of H is H , (180). The concerned continental chief minor is det li ,

c.c =c.c ... 1 =c,c 
it is positive definite. The inverse H of H is well-defined, (185). In 
the matix calculus, the solut1on of (4�4} is f��d by way of (231) to (234), 
it is similar as the deductions described by (406) to (410). 

Therefore, with 

and, (415), 

follows, (410), 

4Gi 
�3.c = T

i = 1, 2, 3, • , • , k

= 

411 
=

-,r 

(416) 

(417) 

(418) 

(419)(IC ) - 1 
=c. c gc 
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(K )-1 is the inverse of =c.c 

K = E - Aw* H 
=CoC =CoC 

(420) 

(•�19) is the matrix form of the solution of (ll-14). 

The question whether the solution of (414) is unique or not, this problem 
was already treated in context with another integral equation, cf. (231) to 
(234). Hera, the question is in the fore whether the rang defect of K is 

=C.C 

equal to zero or not. The investigations into whether the solution of an in-
tegral equation of the structure of (4-14) is unique did show ·that a certain 
criterion must be fulfilled, 05LJ-). In case, the criterion 054) is fulfilled, 
it is possible to lw.ve a unique solution of (414), and to have a well-defined 
inverse in (419). 

At last, there is no doubt, the principles connected with the difference 
method, (363) to (390), (L�11) to (412), �an be transferred also to the solu
tion of (414) and (419). 

5. The first mixed boundar:y value problem

5.1. The definition of the first mixed boundar:y value problem 

The first mixed boundary value problem of the geodeey was touched already 
at the beginning of thls publication, (7)(9a)(9b)(13)(14)(19)(20). Further, 
the publications["Lf:7f"57 are devoted to thls problem. On the oceans, the amounts 

-
' 

of the perturbation potential T or T serve as the boundacy values. They are 
determined by the methods of the satellite altimetry. The sea surface topogra
phy is neglected within the frame of the present publication, (4)(5)(6). In 
the following discussions about the first mixed boundary value problem, the 
numerical computation of a matrix criterion will be carried out as one of the 
main points. Even this matrix does governe the investigations into whether 
the first mixed boundary value problem is unique in the space of the harmo
nics of 0th and hlgher degree. Thls matrix criterion which is to be discussed 
here will be derived in close analogy to the deduction whlch did lead to the 
criterion (354) in the investigations about the second mixed boundary value 
problem. 

The empirically determined boundary values on the oceans are here, in the 
first mixed boundary value problem, denominated by 'i:' , and those on the 

. s 

continents by 'i:"0• Therefore, in regard of (9a) and (9b), the two different 
types of ·the boundary val.ues of the first mixed boundary value problem bave 
the following shape, 

°"3.s 
' 

= T , on w 
s 

(421)

= 

i: = t ('f , :l) = s s 
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and 
7;' =C 

1JO 

' ~ �T 2 ' 
'-c (c,,il) = °'2.c = .fgF = - lJr - r 

T , on (422) 

In order to give a self-contained representation of the ideas,it seems to be
convenient to put an introduction into the theory of the first mixed boundary 
value problem at the beginning of the developments. 

In inhomogeneous linear integral equation of the first kind for the solution 
of the first mixed boundary value problem of�the geodesy has the following 
form, (14)(41),

(423) 

S is the kernel function valid for the oceanic couples of points only. Thes.s 
inversion of (423) gives ot

2 .s in terms of the empirically obtained values Z
8 

and t' • Consequently, along these lines, the values et
2 

and C<.
2 c are 

C .s • 
finally reached. · They are combined and the free-air anomalies .4gF = ot.

2 
are

determined successfully for whole the gl�be c.,. This global function °"
2 

leads
to the computation of the solution for T for test points in the exterior 
space and on the whole globe by 

T
1 

= T
1 

(r,'f ,;t.) = 4�c JJ 0{.2 S (r, yr) dtJ
w 

s (r, yt') = f_ 
n;::2 

2n + 1 
11 - 1 ( !!r) 

n+1 
pn (cos r>

S (r, r) 1s the generali�ed Stokes function, [12J /.15.1. Thus, in case 

r = R 

' ' R (( T = T (R, 'f, it) = ff JJ «2 S ( p) dw •

(424) 

(425) 

(426) 

(427) 

S ( r) is given by ( 15). 'fäe above relations f.rom (423) to (427) ara self-e:x:
planatory, cf. (10)(11)(14). Tha inhomogeneit;y of tha integral equation (423)
is now denominated by ,a , it is defined for oceanic test points only,

S' s 
= -

""e 

,;c S d w 8 s.c 

Thus, the integral equatlon (423) changes to 

(428)

t 

JJ 
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R 
O = fs + 41' ff

"'s 
oc.2. s 

1J1 

s.s dw, on � s (429) 

(429) is fundamental for the solution of the first mixed boundary value problem.

In case, the refinements along the lines of the Molodenskij boundary value
problem are to be included, the deductions have to begin. from (12) instead of 
(10). For the Molodenskij type of the problem1tha observed boundary values are 
distributed along the real surface of the Earth d , and not along the spheri� 
cal globe w. (421) and (422) change into 

and 

~ 
1 

t. = «3 =Ts .s 

t' = 
0 

ex. = JgF 2.c 
on G' • 

C 

(14) gets the following modified form, fq]ff{l,

1 R ff AgF S ( y) R 
ff TB = 4'i" d«' + IT 4 gF S (tp-) dw + 

ec,s 
W

c, 

R 
ff C • S ( y) d<.i1

P 
on tc7 

◄· 4 'i( s • 

w 

The relation (432) transforms (423) into 

(430) 

(431) 

(4-32) 

0 = � ts + 4�c::- ff i: c ss.c dec, + 41},. ff 0(.2.s ss.s df4 + c:, on ws' (433)

with 
* 

C 
8 

tAc: "'s 

::. 4�. ff C•S ( fr) dw , on w
5 

t1' 

Tbß modifiad inhomogeneity is, (428), 

• (434) 

(435) 

Thus, the integrt\l equation of the first kind which solves the first mixed boun
dacy va1ue problem changes into the following form which 1s in keeping with the 

* S's. = .-,;,- ff 

s • 

on '5
5 

* 7: S dW + 0
8 C SoC 
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Molodenskij variant of the Stokes problem, (429), 

0 -· ff , on '<?s (436) 

The range of validity of (436) is again the oceanic area only. 

As concerns the computation of C� by (434), it is well-known that the planes 
topographical correction of the gravity, C, is equal to zero on the oceans. 
Therefore, computing c* by (434), the share of the continental int;egrations 
will dominate considerably the share of the oceanic in-t;egration, 

c* s 

C•S s.c

+ 4t J{ dw , (4-37) 

(438) 

In the computation of C, the integration over the topographical surroundings 
of the test point has to be extended to a distance of about 100 km only, i.t is 
well-lmown·, /1'?] fi'i]. Hence, in the first integrand on the right hand side of 
(437), the C values will have non-vanishing amounts only withtn a belt of 
about 100 km width offshore the coasts and accompanying the coe.stline. 

5.2. The first mixed boundary value problem of the geodesy in the subspace of 
the spherical harmonics of 2nd and higher degree 

As to the investigation into whether the solution of the first mixed boun
dary value problem is unique, this problem is governed by the homogeneous shape 
of the linear integral equation of the first kind, (429), it is 

R 

o =w

In case, the relation 

°" S dW 2.s s.s

a(.2.s = 0 , Oll Ws

follows necessarily from (439) ,. it is sure that the solution is unique. 

(439) 

(440)

* R 
- 9s + 4-'u 

C•S dw s.s 

> l ff C•Ss.s dw l 
""s 

ß 
1.175 
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In the scope of the proof of the uniqueness, it is well-known that the boun
dary values have tobe equal to zero, (68)(69), (421)(422), 

~ 

= Ol3 = T = 0 on WS s .s (441) 

and 

1 

� T 2 1 

0 c.c.,c = °'2.c = - rr - r T = 
1 on (442) 

The relations (429)(441)(442) give (439). 

The subsequent derivations follow from the corresponding developments for 
the second mixed boundary value problem. The relation (443) and (444) serve for 
the same purpose in the first mixed boundary value problem as the relations 
(90)(91)(92)(93) do in case of the second mixed boundary value problem. 

The relation (439) does lead to the definition of a global function X�, 

(443) 

(444) 

Further, a global function "J, is introduced also, under the influence of (443) 
(444)' 

on 

= 0 on wc

Thus, (439) leads necessarily to 

x
,k 

== � ff x . s c y,) du, •

(445) 

(446) 

(447) 

This is an equation of global shape. The boundary values (443) to (446) give 
rise to 

JJ X"'/' dw = R 0=« ff i• dw ff X•S ( J/1') dC4!> •
w w 

(448) 

Along the same way which did lead from (100) to (104) in the Hotine prob
lem, the equation (448) has here the consequence 

Jt 
0 R 

JJ S · dW, xs = = 4'ä °"2.s s.s 
"'s 

x* = R ff °'2. s s de.., 
C 'r 'ii c.s 

"', 
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with, ( 101), 

Hence, 

1J4 

"O 1 2 
= r_: ii""=1 Xn 

n=2 

= L Xn xn ( ff f A-)
n=O 

Xn = O , (n = 2,3,4, ••• ) 

(449) 

(450) 

(451) 

Before the background of (446) and (451), and accounting for the considerations 
which did lead to (112), it can be stated that the equations 

(452) 

reveal themselves as a consequence of (446) and (451). lndeed, if w0 is an 
area of non-vanishing extent, e.g. the continents, in this case, (446) and 
(451) demand to find a regular function of the form

X 1 X
1 

= O ' on w c • ('�53) 

(453) is not fulfilled unless (452) is valid, cf. [5][16] p. 344. The followlng
relations·are a self-explanatory consequence,

Xn = 0 , (n = 0,1,2, ••• )

X = 0 , on t4J 

Xs = Cl(.2.s = O 

Thus, (440) is valid and the solution of ('1·29) is unique. 

(454-) 

(45.5) 

(456) 

The two facts t:u.at the kernel fu.nction S
8• 8 

ia positive definite �]1(1 closed,
these facts follow as by-pI.'Oducts of the above derive.tions about tlle Ullique
ness. S 1s positive definite ifs.s 

1s valid for an arbitrary regular fUllotion. X
s 

on c.c,
8 

• In case of

X = o

, on w
s 

on wc

(457) 

(458) 

(4-59) 

' 
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(457) leads necessarily to

ii ( X s' ;( 5
) = JJ X dw ff 8 ( 'Y") X d '4>

w w 

> 0 (460) 

if (458) and (459) are taken into account. The operator ii( X , ,:t
8

) is equal to 
the right hand side of (448) after the constant factor 4� i� applied, There
fore, the relations (448), (449), (460) prove obviously that the inequation 
(457) is valid and that the kernel function ss.s 1s positive definite.

As to the question whether the kernel function S is closed, (439) ands.s 
(440) represent already the constraints that must be fulfilled in order to have
this property of ,S • The validity of (439) and (440) for an arbitrary regu-s.s 
lar function ot.2 .s was already corroborated within the course of the proof of
the UDiqueness, (456), Thus, the kernel function is also closed, f1]f2Jf'i7[8J
ßQ] [2� /:2.�. 

The question whether the kernel function S (1(1') is c�ntinuous was already 
discussed earlier, (15) to (18). lt was found that the discontinuity for 
y;---+ 0 is removable, S (y) is defined for test points covering whole the 
globe. S

8 08 is identic with S (�) if the two end points of the arc with the
length vr a:r.>e in the interior of the oceanic part of the surface of the Earth. 
Tberefore, S has also a removable discontinuity for y,-+ 0, as it iss.s 
obvious. 

This matter can be viewed from another ate.ndpoint also, it is the stand
point that most of the geodatic evaluation methods consider only the signi
ficantly known frequencies in the spectrum of the empirically determined 
funct;ions. Only the wave lengthes of' eyen these frequencies are filtered out 
and considered, iu order to undergo a further evaluation.·rn this context, 
the Stokes :f'oramla is to be put into the fore, ( 10), for the fixation of the 
ideas, 

T' = * ff .fg
F 

S ( Y,- ) dW (461) 
,0 

•J!.t.e 1.1 gF val.u.es have not; a. gl.obal analytical exp:r.ession which does contain
all the datai1s. These values arta :reached from the gravity maps by an inter
)Olation proced1.u:e. On the strength of tbe compilation procedu.re applied in 
the malr.:l.ng of these maps, they co:ntaiu only details down to a certain limit 
wav-e leX13th r. • The amou.nt of' L dependa on the scale of the map. Details 
w.hic'l.i. have a_ wave length -tt,1.:1.t is smalle:r th.nn L are not contained in the
SAap. Thus, it 1s R.llowad i;o i.ntroduce a truncation of the series development
:fc,r the fNe-a.ir a.noma.lies 4gF' ( 74),

M 

d gF "' l . a2 • n X n ( 'f • Ä. ) •
n:::2 

(462)
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M depends on L , M = M (L ). It is usual to put 

180° 

M = -- =
10 

20 000 km 
L km 

(463) 

The truncation of the series for 4gF' (462), allows a truncation of the Stokes
function also, (11), 

M 
s cy,-) = L

n=2 

2n + 1 
n - 1 P (cos 71'· )n (464) 

because the harmonics of the degree n:,. M are cut off. The truncated series for 
4g; and S ( �), (462)(464), cbange (461) into 

M 
1 R 

ff s 
r-

T = 4'ii"' ( V,-) L a2.n x.n dw (465) 
w n=2 

or, instead of (465), 
Co 

T
R

Jf �(1j'). � a2.n 
X

0 
• dtL>= (466) 

n::ao 

or, which is the same relation, 

T' = 4 � Jf TI ( J!" ) '1.g
F 

d w • (467) 

Thus, in the theory of the mixed boundary value problem, the Stokes integral 
(10) and (461) is allowed tobe replaced by (467), since only a modal of the
real gravity field and of the perturbation potential is intended tobe consi
dered in geodesy. It is a model that is in keeping with the neglects in the
course of the compilation procedure of the gravity maps. As it is seen from
(467), this replacement expells the function s, tbat does approach the infi
nity in case Jt'"--+ o, in favour of another function S that is finite in case
of 'P -+ o. S ( -y-) is a continuous function as it is evidenced by (464).

After these preceding considerations, it is sure tbat a kernel function of 
the type s in the here considered integral equation (429) can be taken ass.s 
symmetrical, positive definite and continuous. Therefore, the presuppositions 
for the validity of the theorem of Mercer are fulfilled, [1r[Jf29]. Thus, 88 0 8 

bas the following convergent series development, 

s = Ls.s 
k=1 

e.k ( lf' ;q c:k ( ;;, X).

�k 

€k are the orthonormalized eigenfunctions and f'-k are the eigenvalues.

(468)

w 

w 
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µ.k > 0 , (k = 1 , 2, • • • ) (469) 

since 1!
8 

is positive. definite. This property of � is obviously valid, see.s s.s 
(448)(449)(45'7)(460)';' the sum of (449) is truncated beyond of .11 = M. The deve-
l�pment (468) Qan. be introduced into (429), it follows 

(470) 

The inversion of (470) is 

(471) 

with 

(472) 
k=1 

Because S is closed - see the concern witb S - , ct2 bas the represen-s.s s.s .s 
tation 

Hence, (470), 

JJ E 
'-"s i=1

since 

§ e1 ek dw =
Ws 

Thus, (470), 

a.nd with (47 1)(4?2),

{
0
1 
, if' i � k l 

if i = k ! 

(473) 

(475) 

(476) 

(477) 

A glanoe on (473) shows tbat (477)(468)(472) lead to a corroboration of (471). 
Thus, it 1s evidenced tbat (472) is the right inversion of (468). Therefore, the 
kernel function S and its inversion (�

8 6)-1 bave well-defined analyticals.s • 
expressio:nso 

°' = - !f- 'n rir 2 . s R )) 
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In th� numerical applications with a certain compartment diTision of ·L km x 
L k squares, it is no matter whether S or 'S is introduced. They canm s.s s.s · 
be exchanged since S

8 
represents here the mean value of S for the indivi-.s s.s 

dual compartments. Further, for such a compartment division, it 1s no matter·

whether S or 'S is intended to be inversed. These functions approximates. s s. s 1 1 their mean values for the compartments. Therefore, (S )-
approximates (S8 8)-s. s • 

for the choosen compartment division also. 

The inverse of the global Stokes function S is the f�tton s-1• Or, by ma--1 -1 -1 trix denominations, g is the inverse of � .s and § are well-known and 
well-defined expressions, they are explained by the Numerov formula used intbe

routine work for the computation of <lgF by T, /12.l /15] •

Returning back to the in�egral equation (429), this relation is transfol.'llled

into the matrix calculus, with respect to the follow:i.ng computations. r.he re
lations (10)(11)(19)(164)(165) reveal 

= s (478) 

The introductioi:J. of (215) and (216) gives the sEiparation ihto the oceanic and 
continental parts, (20), 

a = =J.s 4tv S a + A.W=s.s =2.s (479) 

• (480) 

(479) ie equivalent to the integral equation ('i-29). The matrix sha.pe solution
of (429) is, (42),

(s )-1 ( 1 a s a )�2.s � =s.s EiZ" =J.s - =s.c =2.c 

' 

• (481)

The combination of (480) and (48'1) yields the T valuaa on the contincnta frolll 
the boundary values iJos and �2.c, i.e. the T values on the oceans and. the
.i:I gF values on the continents, 

a = s (S )-1 (a •0 ,A'-" S a ) 4- "''·" S a2 •=J.c =c.s =s.s =J.a =s.c =2.c =c.c = .o 
(482) 

Or, 

(48)) 

The relation (483) and t.he given bound.a:cy ,;alues load to thr'.? ltnowl.edge of f).ia
and ßJ • Hence, �

3 
is known in :i.ts global sha.pe; this means tbat tha T - .c -

values are given on w. Then, the Dtrichlet bounda.rs "18.lue problem leads to 
1 

the T values in the exterior space, and the solution of tha first mixed boW'.1.-
dary value problem has reached the final polnt, it ia computed. 

= 

gs.c ~2.c 

~J.c - Aw ~c.s ~-2.s + 4 "-' ~c.c ~2.c 

• 
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The matrix �s.s is alrea<l.Y k.nown by (22). The determinant of �s.s'

det �s.s > 0 (484)

is the positive definite ooeani·c ohief minor alrea<l.Y disoussed earlier, (36) to 
(40). 

The boundary values �s and 't
0 

of the first· mixed boundary value problem
are not allowed to have arbitrary amounts, similarly as in case of the second 
mixed boundary value problem, (238a) to (296). They have to fulfill 4 well-de
fined compatibility conditions, otherwise, the boundary values computed a 
posteriori by the solution function are not the same as the a priori expirical
ly given boundary values. 

The very deep reason for the appearance of these 4 compatibility conditions 
is founded in the defect of the global Stokes function, cf. (238a). 

Two types of integral equations are of interest in this context. 

I. ff S ( y) • °' • dc.1 = 0 •
"' 

(485) bas the following 4 independent solutions, (239), (273) to (276),

ij yj (Cf, ,'t) , (j = 1,2,3,,�) •

Thus, the defoct of the kernel S for the a:rea w is equal to 4. 

The second type is the au·osequent one. 

II. (f s • oc • dw :.: O •
)) s.s $
w

_. 

The integral equation (486) for crc. d.8111.audB neeesearily that 
6 

(485) 

(486) 

oc. = 0 , (48?) 
:!', 

aince (�39) loada to (lt40). S is a closed kernal function for the area "'s ,s.s 
the defoct of it is equa1 to zero. 

Tbe defect of the number 4 for the type I gives rise to the 4 compatibility 
oonditions whi.oh ho.ve to be fuliilled by thf.l empirioall:, given boundary valuos. 
TM computed !Ne-air e.nomalies &re the elements of the �ctor 12•8, (481),

or, 
� ::g (. t f..  { ..... ~ J 2.s C S 

(488) 

(489)
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(490) 

The continental free-air anomalies are given values, (422), a priori ,

or, in vector shape, 

= f' C 
(491 )' 

(492) 

The two functions oc and 0(..
2

.c or the two vectors �2•
8 

and �
2.c compute the

2.s 
solution potential of the first mixed boündary value problem, (488)(491), (249), 
(10), 

r-r* R 
t!::!., = w

Thus, 

�:f< R 
1...-1 = 4 'ir

ff 
C(J 

JJ g 

WS 

� gF • S ( y) · d w . 

{ 'i:'c, �s )-s ( y) •dt., + R Jf'i:" SW c· 
"'c 

(493) 

(y)•du:>. (494) 

The considerations about the second mixed boundary value problem, from (249) 
to (271), did lead.to the condition that (272) has to be fulfilled. It is aelf
e.xplanatory that similar considerations about the firflt mixed boundary value 
problem will lead to constraints about the free-air anomalies and the Stokes 
constants of the 0th and 1st degree. The following conditions result obviousT 
ly, (74) � 

= = 0 (495) 

(495) represents 4 conditions for the four Stokes constants of 0th and 1st de

gree and order in the spherical harmonics development fcr Ag
F

. -(495) gives,

cf. (281),

(496) 

j = 1,2,3,4 

The division into the oceanic and the continental area ws and ""c leads to„ 

(282), 

and, with (488) and (491), 

pj* = O = ff g [ lc' 'C's 1 . Yj. d w + fJ ,;c . Yj. d w '

ws ""e 
j = 1,2,3,4 .

(497) 

(498) 

(499)

~2.c 
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The vector shape of (496) is, cf. (287), 

� 

lf!'j = O = �2 ij 

141 

and for (497) follows, cf. (288), [5],

K-
,rr

j 
= o = �2 <�.) + �2 <i_J.

)c::t: - .s -J B - oC 

(.501) is an expression i.n scalar products. 

(501) and (481) let find the following conditions,

77?·* T ( )T 1 1 ::t:.J.• = O = <iJ·)c �2.c + �j s (S )-· ( -. a - S a )
=s.s '60 =3.s =s.c =2.c 

j = 1,2,3,4 

(501) 

(502) 

Th . 
T d •--t i (502) th t i H ( )T is ae superscript enom.u.w. es n e ranspos tion. ence, lj c 

row vector, and �2.c is a column vector. 

The relations (502) describe the 4 compatibility conditions thci.t must be 
fulfilled by the boundary values g

2 
and �3 of the first mixed boundary

- .c - • s 

value problem. Otherwise, it is not possible to find a solution of this boun-
dary value problem.

After the matrix shape of the 4 compatibility conditions is found, it 
seems tobe convenient to conclude the developments about this question by a 
represention of these four compatibility conditions applying the means of 
the functional analysis. Here, the relations of the form (497) and (498) are 
the starting points. The function °'

2
• 8 or g {7c, "6

6
/ comes from (471). (428), 

(429) and (471) lead to 

_ 4;;- ff (S )-1 
Ol 2.s = R ) s.s 

[-?:_ +41}, ((-z: S dw} dw,s 1/ )) C s.c (503) 

WS 0
-C' 

since (8808)-1 can be replaced by (S806)-1 in the here discussed applications;
see above. The multiplication with the concerned spherical harmonics Y. ac-

J 
cording to (498) gives the final form of these conditions, /5]. 

+ 7 f( yl [ f••• )-
1 

[•• -� fs••• �. •j •w} •0, (504)

-s "'s "'e 

j = 1, 2, J, 4o (505)

• 
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5.3. The first mixed boundary value problem of the geodesy in the space of the 
spherical ha:rmonics of 0th and higher degree 

An extension of the considerations about the Stokes kernel function ss.s from
the subspace of the hamonics of 2nd and higher degree over\,the space of the 
harmonics of 0th and higher degree is not possible. In any case, such an e:xten
sion 1s not possible along the lines of the derivations from (439) to (.505). It 
stands to reason that the reasoning about the here fundamental equation (449)

cannot be expanded to n = O and n = 1, sinca the following ralation will be ob

tained, 

(.506) 

The quadratic form on the right hand side of (.506) is noG positive definite.

The fact that (449) is positive definite was fundamental for (4)9) to (.505).

This is the reason wby it is not allowed to renew the derivations from (439) to 
(505) in case of .the inclusion of the harmonics of 0th and 1st degree. But, to
avoid misunderstandings, the above considerations about (.506) do not prove that
the 3 relevant properties of theufunction S or of the ■atrix §·s 8 (positives„s - • 
definite, closed, unique inversion) are no more valid in case of t� extension

of the developments to n = 0 and n = 1. This question remains to be open. 

In case, the solution of the first mixed bo,Uldary value problem is to be 
found in tlie space of the harmonics of 0th and higher degree, i.e. in the space 
of the regular functions, the 1nveati.gat1on into whother the solution is unique 
can be carried out along another way. Tbis way is in cloae neighborhood to the 
developments from (29?) to (362) for the second mu.ed boundary value problem. 
The Stokes integral is in the subspace of the haJ:monics of 2nd end higher de
gree, ( 10)., 

1 

=r¼f/• 

' 

T ( f )·Ol2 • dw • (507) 

with "' 

1 
(ßg

'1!
) 1 Ol2 = 

• (508) 

The extension over the space o;t the harfao:ro.os of 0th and higr.er dogree ia, cf. 
(298), 

"d'lrl ·Y; ( f" • ,1) + ,¼ff• Cf). or.; d(f) •

{Q 

(509) 

The introduction of (509) into the fu.nd.wl@ntal di.ffenntial equation of.�the

geodesy, (7), leads to 
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4 dD 4 
'c)T 2 � .:.U Y 2 � '\r • - i5r - 11 T = - ,L./ zj ar j - R � zj f ;J L j -f � • 

j=1 j:1 

(510) 

Binoe the uniqueness of the solution is to be proved, the boundary value condi
tions take the following homogeneous form, 

T = 0 , , on ""'s

, on c., 0 
• 

The above two equations are introduced into (509) and (510). Hence, 

o = i; zj �;j � + ·4� (fs ('f) � d"1 , on
j=1 )J' . 

� [d9 j 2 J 
.i 

0 = -� zj dr + i r j yj + °'2 , on 4'c •
j=1 

c..,' 8 

With, (309), 

L/�Ezj[
d

i� + j f j] Yj
j:1 

and 
N� 4 

d = I.] zäfäYä ' 
j=1 

the rolations (513) allld (514) chaDge into 

1 

°'2 dw , on UJ
8 

, 

,Jf# 

0 = LI - °'2' • c t Oll tJ
0 

• 

Tm aeparati9n into the oontiuntal an.d the ooeanic part; gives 
* 

o = d - cc;.
0 

. , on '-'
0 

+ .. t-fs •.• LI
"' 

du> •· OB ... . 

"e-

(511) 

(512) 

(513) 

(514) 

(515) 

(516) 

(517) 

(518) 

(519) 

(520)

• 
"tl/1 ll rr ' o = LI' + w . 8a. • C(2. • c1r.a 

IJ 
s 
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With regard to (470) and (471), the inversion of (520) bas the following sbape, 

·oc' = _ 411 (((S )-1 [LJ>lt-1: ..lL (( s · LI� d w} d &.<> • (521)2.s R )) ' s.s 4/Y )) 
s.c 

(<Js �c 
)-1 - -1 Here, in (52'1), the form (S8 0 8 

is allowed tobe written instead of (S8 0 8
) •

1 1 

According to (507), (519) and (521), the functions °'2.c and 0c:2.s afe un-
derstood tobe the,continental and the oceanic parts of the function 0( 2 which
is free of the spherical harmonics of the 0th and 1st degree. Thus, cf. (314),
(496), 

2; =O=f;-Yj(f,�)-d4J

j = 1,2,3,4 

1 1 

'l'he division into the functions 0<'. and Ol.2 gives, 2.c .s 

1 

The vector sbape of the function Ol2 is, cf. 017)(500), 

�2 =

i = 1,2,3, ••• t q • 

(522) 

(523) 

(524) 

(525) 

(526) 

The division into the continents and the oceans gives the following vectors, cf. 
019)(501), 

1 

l :�-c l �2 = . 

=2.s 

(527) 

Further, cf. (320) to (-,324), 

�Of [ d;�J % 
= 

. . .  

(528) 

and 
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(529 ) 

The equation (519 ) changes into the following vector equation, cf. (322) (323) , 

0 = 
' H' 

a - d :2.c =C 

The functional equation (520) turns with (213) to 

or, 

' lt' � ,1(- *�

0 = R S a L:)..<,,J + R S d �l(J + 2 d =s.s =2.s =s.c =c =s

The vector shape of the constraint5?.j.i.c' (524)(331 ), is by scalar products 

r-i * ' ' 
jt:;j = O = �2 (J.) + �2 C (JJ.)C- .s �J s - • -

(530) 

(531) 

(532) 

(533) 

' 1 

The relations (530) and (532) for �2.s and �2.c are introduced into (533). The 
following condition equation 1s obtained, 

Pt' = 0 = - <�}; (gs.s )-1 
{ gs.c �: + �:* R iw�} + (�j )� �: • <534) 

Now, the relation (534) is.to be expressed in terms of the four constant 
coefficients 

j = 1,2,3,4 

(535) 

(536 ) 

:t: �* 
Following up this aim, each of the two vectors d and d of (534) have to 

:c :S 

be developed into a BUlll of 4 partial vectors, cf. (344)(516)(529), 

d* = � z [
d

�u + g_" 1
=C L_; U dr R )U 

u=1 
(537 ) 

(538 ) 

The relations (534)(537)(538) are combined. The following expression is the 
result, cf. (346 ), 

• 
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4 

- R �w.j/- 6 zu �u (�}; (�s. s)-1 (�u) s +
U=1 

j = 1,2,3,4 

(539) 

(540) 

Along the lines of the derivations elaborated from (347) to (362) about the 
Hotine function, the four equations (539) give rise to the following deductions 
i� the matrix calculus. 

W �) T = {w ,j,,
<-

• 1• u.J 

u,j = 1,2,3,4 

2 T -1 ) 
- R t:i.w* fu (?j)s (gs.s) (�u s +

(541) 

(542) 

+ [
d 

i_.u + � � u] (;rj)� (;K) c 
(543) 

u, j = 1,2,3,4 (544) 

* * * 
w1.1 W2.1 W3.1 w4.1 

� * lt' 

� w1.2 w2.2 w
J.2 w4.2

w = * * ./1' ,;; w1.3 w2.J 
w3.3 W4.3

(545) 

w1.4 
v'2' 

.4
� 

w3.4 
* w4.4

The vector �, (351 )�• and the matrix �*�re comoined to 
4 

* 

9; 0 = E viu.j zu 
(546) 

U:1 
or, 

z (547)

* Q. = 0 = 
J 

* w . u.J 

= 

::: 

= 
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The following criterion is deruanded to be fulfilled, 

det Yf._ * = det f w ":K } -1- 0 •7, u.j (548) 

Thus, because of C.548�the following relations are self-explanatory, (515)(516) 
(530)(532)(509), 

z. = 0 (549) 

A*= >t� 

= 0 t ('550) 

g� 
tOf 

= d 
= 

= 0 (551) 

§2.c = 0 (552) 

§2.s
:::: 0 (553) 

'
(554) §2

:::: 0 

T = 0 (555) 

The relation (555) proves the uniqueness. Therefore, the first mixed boun
dary value problem of the geodesy has a unique solution .in the space of all 
the spherical harmonics of the degree n = 0,1,2, ••• , if the condition (548) 
is fulfilled. The test by the condition (548) c�n be applied to every course 
of the ooastline , the run of the ooastline underlies no restriction. 

The elements w�. of the matrix w*, (543)(545), can be expressed also byu.J = 

the methods of the functional analysis. The compatibility conditions of the shape 
(524) are the starting point of the concerned deductions. The relation (515),
(516), (519) and (521) are put in the conditional equation (524) and. the fol-
lowing expression for w . is obtained,u.J 

w:. j = - •: [f Yj [ Jf<•.]1 

fu Y. •J d,u 

-ffY;�. Hl(::_.i-, I § s •• cf 4.�u. j fJ � ·�J•}w -r
Ws �s �c 

+i0 f" i u • i � u I X: d"' , ( 556) 

1-v,<f 

u,j = 1,2,3,4 (557) 

The functions �u are described by (299) and (300),

�1 = � (558)

J 
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�2 :;: �3 

d f1
= 

-2r

d f2 �
d �4 2· 

- 2 B...
dr = 

dr = 

"'""äx"" = 
r3 

At the surface of the globe ev, for r = R, the above relations turn to 

o/u == 1 (u = 1,2,3 1 4)

(559) 

(560) 

(561) 

(562) 

(563) 

(564) 

(565) 

(566) 

Soma peculiarities of the function S and its inverse (S )-1 aro dis-s.s s.s 
cussed by the developments explained from (461) to (477). In case, the two 
poiats the kernel function S depends on do approach eaoh other ver,- close ,s.s 
1f/ � O, in this case, the kernel has a singularity. But, this peculiarity 

is removable, (17), Thus, it should not be put into the fore. lt is not of 
dominating importance in the here discussed problem. The values that are here 
required are not the local values of the elements of § and (§

8 s)-1 or of
-1 -s. s - • 

the functions S and (S
3 3

) • The values here required are the mean re-
s.s • 

gional values of these expressions obtained by an integration over the com-
partments Ll cO • If these compartments have a side length of about L , (463), 
in this case, ·just the constituents in the relevant functions which have a 
wavelength of smaller than L �annot be brought to bear. Vice versa, if the · 
considered empirically determined boundary value functions do not enclose some 
constituents with wavelengthes just smaller than L , then the size of the 
compartments must not be smaller than L 

The here considered functions Y., (556), have long wavelengthee only. 
J. 

L Therefore, in the computations according to (556), the side lengthes _of the 
compartments 4tü can be choosen rather great; thus, much work is saved in 
the computations. 

)-1 There is no hope to find an analytical expression f-0r (S since thes.s 
run of the coastline is involved. But, there is no analytical expression 

R 
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for the course of the coast line. The fact that the singularity for 'lf-+ 0 is 
removable, it does paralyse the importance of this singularity, and it is not 
essential for the here discussed problem. 

This singularity of the kernel function is not of importance for the integral 
transformations established by the kernel, (67a)(184)(185)(429)(470)(471). There -
fore, in the here discussed applications, it is of no use considering the singu
la�ity of the kernels for 1(=··0. However, it is very probable that a conside
ration of the structure of kernel S and of 'its inverse, (470)(471), will bes.s 
of use for the investigation of the stability of the solution. 

Now, a numerical computation is to be carried out in order to find out whether 
the criterion (548) for the uniqueness of the first mixed boundary value problem 
in the space of the harmonics of all the degrees, (n= 0,1,2, ••• ), is fulfilled 
before the background of the real geographical distribution of the oceans and 
continents. In this context, the numerical amounts of the matrix elements w:.j 
must be computed, (543)(556). For the execution of the numerical integrations 
according to the formula (556), the surface of the globe is divided into 194 
compartments, 112 oceanic compartments and 82 continental ones. All the 1'12 
oceanic compartments have the same size of Lltü= 0.067 758. The 82 continental 
comp�rtments have different eizee,they vary between .6w = 00032 and

LJlD= 0,068, in adaptation to the gaps remaining after the coverage of the oceans 
by the 112 compartments of equal size • it ie in keeping with the run of the 
coast line. Thus, considering the Stokes matrix (21) and the compartment divi
sion of figure 1, the running index of all the compartments covers 

i = 1,2, ••• , p, p+1, ••• , q; (567) 

but here, (568) 1s now valid: 

p = 112 q = 194 (568) 

Figure 3 visualizes this global compartment division. 

DOI: https://doi.org/10.2312/zipe.1986.084



9 10 

18 19 

31 32 

47 48 

62 63 

78 79 

95 

150 

1 

v
o 

11 �135 136 137
.,
> 12 13 

l"T""""" -, 
14 

20 

33 

49 

64 

80 

95 

34 35 36 ���r'--37 38 --1 \

"50 51 

65 66 

81 

97 

52 165 
---� 

1§§ 167 168 
- -;-

67 

82 

98 

-, 

✓ 

83 ·181 lJ 84 
,,--;-

1A4'- � 99 100 

r

26 ( 148 
- - '

\,' 
39 159 

53 54 

,10 71 

85 86 

101 
- 6 0 ° 1-----_.._,+----'--+---r--'--+-.....__�___.__+-,-----'--+----,,...._----1 

109 110 111 --J" � 185(: 112 

192 

180°
240

°
JQQO oo

Figo J I The äivision of ths globe into 112 oceanic and 82 continental compart

mente for the inveatigation into whether the solution of the first 

mixed boundary value problem of the geodesy 1s unique in the spaoe of 

all the harmonice of all the degrees and ordere, (n q 0,1,2, ••4) o 

, 11 3::P~ - - 114 ~.r«=i - 1--r - CO 

60° 

~ "- ...._ - ~ ~ ~_/ 
~ 

~ 1$ -lli 111 ~ 4i::::::7 3 
,. - 1 

- ~ 0 'f\. 1 

...... ~ M ( -, dri 
4 5 • 124 125 126 , 12J.~ 6 7 ·~ ,. 

1 
1 15 >~ 1 

1 '-~ r \} 

1 l-2:1 146 147_ -- ~22~ N3. 24 25 
'- = 1 

' 
- -

l 
~ 

1 Kg 68 174 175 
1 

l 
1 

l 1 1 1.- 11 1 
1 

i-186"' 
1 _./ 

--.:: -- ~ 

~ 1 l 
t) 

-

DOI: https://doi.org/10.2312/zipe.1986.084



151 

b c,.g.� 
2 

� - - -

� 
� 

---110� 
-� -h119

.........;115 -� 117 118 
/ 1' 

- - -
- ....:! 

,:,v V 
�8v 128- 129 130 131 132 1 33 13-4 

_.,,.., r /l?io 

�;-�3l -
i) 

t4□ \ �141
� 

� ., 
142 14 3 144 c '\.. 16 17 ,. ... \ 

\\ 

� 
, -

149 150 151 153
1 

1
� f\(

55 156' � 27 28 29 30 -
\\ _;;;/ \- i"I

"\:: i,.,- , 
J42 ,s\"-�64" 

fJ 

"' 160 161 162 t740 41 o'4 3 44 45 46 
1 

- �� -;:;-) 
/

5� 
� � - � 

frm55 169 170 56 57 58 171 0172 60� 61  
-. " � r\. r'\ 

-��J 
. V "' \.. 1,

72\ 176 73 74 7 5 76 rf7'8 179 180 77 --
-�""' 

� 
.... .  1) 

94 _t87 88 89 90 91 92 182, �183-
p- /) 

0 
1 u 

102 103 104 10 5 106 107 108
-60°

r- 187· 188, - 189 190 - -� ----- - - - -
--) 

19 3 194 � - -

60 °
120

° 180°

'-, 
------J 1 

1 

J 
1 1 

60° 
_, t--

.... ... 

1 

... 1 

1 

' 1 

1 1 

1 
~ 

1 

-
- - -

- R--- L 
-

' 
1 

1 

1 1 

- L -:- ' 1 

T - -

1 -~ 1 1 1 r 

1 

1 

1 

1 -
1 1 1 -
1 T 

oo '--- . 
' 

1 

) 
1 

-

- J 
-

1 

~ 1 r 
1 

1 

- I 

-
r-. j' 1 

1 1 
1 

1 1 1 

1 

1 

1 1 1 1 1 

1 

1 • 
.... - 1 - - - I _ .... 

1 
1 

-
' -- -

0 0 

DOI: https://doi.org/10.2312/zipe.1986.084



152 

In the int;egration computations for the determination of the matrix elements 
w*. according to (556), all the functibns Yj , S , (S )-1 and S are in-u.J s.s s.s s.c 
troduced as functions of the type of a step function or rectangle function.
Within an individual compartment, these functions are considered to have con
stant values, it is the amount the concerned function takes at the center of 
this compartment. Thus, an integration is replaced by a sum. 

At f'irst, the elements of the 112 x 112 matrix S aro computed by the =s.s 
Stokes function. The argument 1// is the spherical distance between the two con-
cerned compartment centers, The computations are uncomplicated. 

The computations for the elements in the main diagonal are tobe explained 
by a short comment, since S -+ 00 if 1f' � O. The mean value of S within 

such a compartment is 

_1_ rr s ( 'f ), d0 = 8center4 l<? 
(569) 

With, /19], 
,L!.C<'.I 

2 
s Cf)

� 1-' + (570) 

For 
y� 0 (571) 

follows, 

s �-1- (( _g sinr dfd�center ,/J. l,J 
(572) 

4<.ü 

s ,;:_2_
f( dY, d.;zcenter ,LlW 

(573) 

LJ.u} 217 

8center 
,V 2 

r y(&) d =--

ß(J 
;;: = (J' 

(574) 

,2;;-
1 { tc ex.) d 2 7( 0( = t * (575) 

� =O 

The value 'I?'* can be considered as the mean radiue of the compartment of the size .6.c..,, 
Hence, self-explanatory, 

s ';; 4 f( ?!, � 
center A<-v 'f' 

L\u? = 11c-r�l 

= 
f �

w 
1 

II 

s = 4 �center ..1W
7� 
IT 

(576) 

(577) 

(578) 

(579)
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- 48center -

1,J 

(580) 

(580) computes the main diagonal elements of the �s.s matrix or the amount of
the kernel function S attributed to the surface co�partment .4C<J, if the s.s . 
argument 1// does go to zero, y -► 0 ,within this area A.c.., • 

After these explanatory lines, the matrix � >K can be computed by (556). 'l'he 
following result was obtained, c ia a definite ·constant, 

4 • .31 o_.24 0.2, 

,, 
1.14 -<J.31 0.01 

= C 

1.5.) 0.01 -0.60

1_.4.) 0.0.3 -0.06

The inversion gives, 

().14 0.10 Oo06 

o •. 75 -2.17 0.2a 

q{)-1 
= c

0 • .33 0.-25 -1;55

0.49 0.15 0.42

The oruoial deteminant is, (548),

det (w
,,,.

'1) = det f 
= 0 2 

w�. 1 ) = - o.66 UoJ C l

0.24 

0.0.3 

-o.06

-0.4.3

o.os

.0.2.3 

0.41 

2.-12 

Together with (54?), the relations (582)(583) reveal that 

� = 0 • 

(581) 

(582) 

(583) 

(584) 

It proves the uniqueness of the first mixed boundary value problem of the geo
desy in the space of the spherical harmonics of the 0th and higher deg.ree and 
for the real.geographical distribution of the continents and oceans, cf. (549)

to (555). 

• 

1 
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5.4. '.fäe diffarence method and the first mixed bormdary value problem 

For the second mixed bormdary value problem, the derivations from (363) to 
(390) and the figure 2 develope a difference method for the computatji,on of the 
solution. lt allows to interpolate the computed continental gravity deviations 
between the a priori empirically given offshore bormdary values of the gravity 
deviations. By the integl'al equation ( 401)( 402), a modification of the second 

' 
mixed boundary value problem is represented, it determines the T values,which 
are much more smoothed than the J'g values. 

Also this way of solution allowa the application olf a difference method, cf. 
( 411)( 412). lt gives the possibility of computing directly the differences of 

' the T values between two continental test points. If the distance between 

these two points is not too great, the direct oomputation of the difference 
. ' (' ' of the T values 0 , oT , wiU not be so laborious as the direct determination 

of the'individual T values for the two test points. Much work is saved by the 
difference method since those compartments .1. <.v · which are very distant from 
the two test points can be enlarged. lt gives rise to a diminution of the di-' 
mension of the matrix �c.d , ( 409). A more easy computation of its inverse 
will be the consequence, (410). 

The couples of points with the directly determined dT
1 

values are lined 
up and arra.Dged in the broken line of a polygon which begins at one coastal 
point to cross a continent and to end at another coastal point. Thus, obvious
ly, the dT

1 

values can be interpolated between the offshore T
1 

values at the 
twc end points of this polygon. 

In the here discussed problem, (483), the difference method gets the follow

ing sbape, in conformity with (364) to (383). 

d�:,.c = {ts (gs.s)-
1 

�3.s + cJ�c.c -SgCoS(�s.s)-
1 

�s.c) �2.cLllv• 
(585) 

� 
= a =3.c p 

l1 = J. =3.s 

�2 = �2.c '. 

�h = s (S )-1 . ' =c.s =s.s 

�2 = (S - S (S )-1
=c.c =c.s =s.s 

�
= �1 11 + �2 ifa 

.M. =1 = f m1.a.b f

(586) 

( 587) 

(588) 

(589) 

s =s.c ) L:lev ' (590 ) 

' (591) 

' (592) 

.1 
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a, b = 1,2,3, ••• , D t ••• ' N 

= 

+t
b=1

and for a = D, (referen.ce point),

cf. [7,J["Bj. 

N 
m1.D.b Y1.b + L 

b=1 

6. Numerical applications
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' 

(593) 

(594) 

(595) 

(596) 

(597) 

(598) 

(599) 

(600) 

(601) 

At last, some comparative considerations about the 1st and the 2nd mixed 
boundary value problems seem to be appropriate. Here, some aspects of the nu
merical applications are in the fore now.

��The influence of the sea surface topograp}O' N 1s to be considered at first, 
(5)(6). The previously discuased 2nd mixed boundary value problem has the boun
dary values Ag

'H 
and Jg. They are free of a h;ypothesis about N� *• The involved 

dates of (g)Q and N if are obtained by measurements free of any hypothesis.

However, ·1n contradiction to the 2nd mixed boundary value problem, the 1st 
mixed boundary value problem has boundary values on the oceans,being biased by
the N..t * values of the sea surface topography. There, the GN* values are in
troduced instead of T, (4)(7a). 

~2 

. 
• 

(m - m b) yiob i.a.b 1.D. 

J Mi = f mi.a.b - mi.D.b / ' 

dMi = t dmi . a.b J 

J iT = ( • • • • xa - ~ • • • • ) • 

J ~ = cf ~1 l1 + t ~2 l2 
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Tha ooea.nic boundary values have the error T -,tK 
, (6), in the determination 

of the solution of the 1 st mixed boundary value problem. The T .;-* values shift 
the solution vector and the result reveals to be a biased vector. Hence, in 
case of the 1st mixed boundary value problem, the finally obtained T values on 
the continents are biased by the T .t* values which appear on the oceans. 

But, the here trouble effecting , "' * valuee are emall and, in moet oasea, 
they bave 4 rather great distance to the continents, f2oj. Therefore, it is very 
probable, these biases in the computed T values of a .continent or of a subcon
tinent can be approximated by an analytical expression of constant and linear 
tarms of the latitude and longitude differences. The unknown coeffioients of 
this expression can be determined by some well distributed Doppler derived 
values for t; or N or T ciln the continents. 

The numerical co�putations to find the solution of the 1st mixed boundary 
value problem can also bappen along an indirect way. This roundabout way con
sists of two steps. Tb.e first step leads from the oceanic altimeter dates to 
the oceanic free-.air anomalies along the lines of the inverse Stokes integral, 
(2-y fi'+]. The inverse Stokes relation permits to obtain a standard error of 
about ! 2 to ! 5 mgal for the average values of the gravity anomalies of the 
oceanic compartments of 200 km square, f9j'. The second step of the indirect 
method is the computation of the oceanic and global surface pertfurbation po
tential T by means of the Stokes integral· supplemented in the integrand by the 
effect of the plane topographical reduction of the gravity. 

However, this indirec·t; way is not an optimal procedu.re. lt involves a clear 
and significant loss of preeision. The high precision of the altineter derived 
T values is not fully exbausted and it is not brought to bear completely. In
deed, a comparision of the two discussed methoda show impressively that the 
di;ect method is much more effective than the indirect way of the two steps; 
The steiidard errors of the T values reveal to be much more small by the direct 
method of the first mixed boundary value problem than by the indirect two -
step - method following the way via tho intermediary stage of the free-air ano
malies. 

The first mixed boundary value problem diminishes the atandard error of T 
by a factor be1meen 0.5 and 0.1 , as a comparison of the indirect and the di
rect method does reveal, 17}. This enhanced precision is equivalent to a 
standard error of about 0.5 to 1 mgal in the free-air anomalies of the ocea
nic compartments of 200 km square, /§/. 

Furthermore, a comparison between the first and the second mixed boundary 
value probl�m shows:that the gravity deviations Jg of the second mixed boun-
dary value problem have a standard error of about - 15 mgal on the oceans, 
fo/• Thus� their standard error is by an order greater than the comparition 
values of the first mixed boundary value problem, (0.5 to 1 mgal). Therefore, 
it ,is questionable whether the 2nd mixed boundary value problem can gene
rally concur with the 1st mixed boundary value problem. Probably, the 2nd 

+ 
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type will not be able to reach the preciaion of the 1st type of the mixed boun
dary value problem. 

Furthermore, returning back to the pros and cons of the previously diacusaed 
direct method and the two - step - method, the direct way along the linea of 
the first mixed boundai-y value problem has the advantage to cancel the instabi
lities which bring some trouble into the inveraion of the Stokes integral and, 
consequently, into the firat step of the two - step - method also, f?j. Fu:t'
ther, the integrations over the oceanic T values cover a circle of about �00 km 
radiua only. Thus, they cannot bring to bear the long waves in the reaults of 
the satellite altimeti-y. This is a handicap for the two - step - method. 
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D. Downwards continuations and the proof of the convergence of the spherical -

harmonic 'development for a potential in the exterior of a regular surface
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The spherical - harmonic series development for the gravitational potential 

of the Earth is considered. The gravitating masses are presupposed tobe en

closed by a regular surface of the Earth. The Earth is surrounded by a sphere 

exterior of which the Laplace differential equation is valid. The exploration 

of the residual term of this series development is put into the fore. The 

methods of the harmonic downwards continuation from the exterior of this 
Brillouin sphere down to the surface of the Earth show that the spherical -

harmonic series development is uniform convergent in whole the exterior space 

of the surface of the Earth and also along this surface. The microstructure 

in the surface of the real Earth does not paralyse the convergence,of this 
series development in the mass-free exterior space. 
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7.,usammenfassupg 

Die Kugelfu.nktionsentwicklUDg für das Gravitationspotential der �rde wird 
untersucht. Die die Erdmassen umschließende �rdoberfläche soll eine reguläre 
Fläche sein. Es wird eine Kugel eingeführt, die die Erdmassen enthält und in 
deren Außen.raum die Laplace�sche Differentialgleichung gültig ist. Ausgehend 
vom Außenraum dieser BrlllouinTKugel wird das Restglied der betrachteten Rei
henent-wicklu.ng ermittelt durch das Verfahren der harmonischen Fortsetzung bis 
herab zur Erdoberfläche. Es zeigt sich, daß'die fragliche Kugelfunktionsent
wicklung für das Gravitationspotential im gesamten massenfreien Außenraum der 
Erdoberfläche gleichmäßig konvergent ist. Die Konvergenz der Kugelfu:aktions
entwicklung für das Gravitationspotential der wirklichen Erde gilt unbescha
det durch die Existenz einer Mikrostruktur in der Gestalt der 8rdoberfläche. 

PesBJMe 

lloone,u;yeTCH pasno�elf.0:e cwepJ.rqeCKOH cpy.mtUIDf rpaBBTall;ßottaoro 
[IOTe�ana 3eMJllI. IIpe,nrronaraeTCH, tITO 36MHaH IIOBepXHOCTI, 
Beeil: M8CC61 3eMJllI HBJI.fl9TCH peryJI.fll)HOtl: 110B8PXHOCTI,IO. 
EepeTCH COASPMmzfi 38MlfYID Macoy map,. BO BH8IDH8M npocTpaHOTBe 
KOToporo �eftoTByeT .IT,H(W)epemmaH1,aoe ypaBHeITTle ]aIIJiaoa. 
lloxoM ns BHemaero npooTpaHOTBa aToro mapa, onpe�en.HeTcH 
OOT8TOtIHml -qJISH pacoMaTpilllaeMoro pasno�eHBH B p� nocpe�OTBOM 
M8TO�a rapMOimtI80KOro npo�on�emrH BITJ.{OTI, �o IIOB8PXHOOTH 3eMJrn. 
YcTaHoBneao, qTo cnopaoe pasno�ettne cwepmeoKott WYHK�H JJ.JIH 
rpaBBTall;ßOHHOro IlOT8Hl.l;i;Iana 3eMJllI BO BCeM BH9IDH8M npocTpaHOTB8 
8eMJIB HBM8TOH paBHOMepHO KOHBepreHTHblM. 

1. Introduction

The gravitational potential of the Earth W has the following well-k.nown 
integral expression, 8oJ [12jf,'i], 

W=ffrr� ( 1) 

<p 
f is the gravitational constant, f is the density of the masses of the 
Earth, {F. is the volume of the masses of the Earth and dfl the volume ele..
ment of it. 1 is the str�ight distance between the test point P and the 
variable integration point Q which does move through whole the volume of 
the Earth, ffi. , carrying out the integration acc�rding to (1). Therefore, 
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1 P,Q, 
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(2) 

(3) 

In spatial spherical coord.inates, the straight d.istance between the two points 

p 
and 

Q 

is described by 

cr,,fJ,, A)

' ,9,
J.. 

')..' (r , , ) 

1 

i2 2 12 = r + r - 2 r r cos 'Y/ (4) 

r and r' are the d.istances from the gravity center of the Earth. -8 and � / 
1 ') 1 

are the polar distances. 11 and � are the geocentric or the geographical
I 

longitudes. 'lf is the angle between the rad.ius vectors r and r. 

A series expansion of 

1=-;:==::;::::=====1===========--1 J r2 - 2 r r' cos y;- + r'2 (5)

leads to the following well-known d.evelopment in I.egendre' s polyn9,Dlials Pn { cos 'lj/1

' [iQl {iij [i�' 

00 

�r' 2n 
1 - I: (cos 1f) r < r l - n+1 n

n=O r 

(6) 

The inequation 
r <r (7) 

is here of speoial importance. lt is sure that the series development (6) is 
convergent in case the inequation (7) is valid. Further, it is sure;that the 
series development (6) is divergent in case 

J 

r > r (8) 

Thus, the suPstitution oft in the integral (1) by the series development 
(6) leads to a uniform convergent series development for Was far as the in
equation (7) is fulfilled. Or, speaking with other words, the integral trans
formftion (1) for the convergent series development of 1: as kernel function 
, (r < r), leads to a convergent series development for w. However, in case 
of r'- > r, the integral transformation ( 1) for the divergent series develop
ment of 1 leads to a series development for W the convergence properties of 
which are not known from the first. lt is not sure, from the first, whether 
this series development for W does converge or diverge in case the inequa
tion (8) is valid. Thus, further special investigations about this problem 
are necessary in order to find whether the discu_ssed series development for 

= 

l? 

DOI: https://doi.org/10.2312/zipe.1986.084



16J 

W is convergent or divergent in case the inequation (8) is valid. However, a 
divergent series development fort does not lead inevitably to a divergent 
series development for w, (1). This fact must be mentioned in order to avoid 
an often found misunderstanding. Along the lines above, and in case the inequa
tion (8). is valid, it is not possible to have an evidence .about the convergence 
of the spherical - harmonic development for W.

After all, the relations (1), (6), (7) and the decomposition formula 

n 

P
r:
,_(cos 1.j/) = 2:+1 � [ R 

n.m c-8, A ) R
n.m ( �', )._') +

m=O 

give the well-known 

s C-9i,.11)s c.9.',r)J + n.m n.m 

development 
00 

for W, /19][1?7[1'27, 

W=f�f1+ 
n�1 

� (Br)
n 

p (cos-& ) [ w1 cos m.A. + 
L...J n.m .n.m 
m=O 

+ w2.n.m

(9) 

(10) 

(11) 

M is the mass of the Earth, ¾ is the rad.ius of the Brillouin sphe�, w
1 .n.m 

and w2 are the Stokes constants. R is the radius of the globe. P (cos,-$).n.m n.m 
are the normalized spherical harmonics, 

R 
n.m c-Si,A) = P (cos--9.) n.m cos m 11

s c-0, �) = P (cos� ) sin mA , 

n.m n.m 

[( 
2 1 R d (y = 1 

w n.m

!( 
2 "" 

1 s d 0 = 1 
4t' n.m

GJ symbolizes the surface of the unit sphere, 

d@ = cos 'f d f.f d A 

'f is the geocentric lati'tude. 

(12) 

(13) 

(14) 

(15) 

(16) 

As is the general rule, the :l.nve·stigation into whether the series develop-

sin m lt] f 

0 
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ment (6) is convergent happens by the methods of the functional analysis for a 
function of a complex argument. The relation (5) leads to 

with 

and 

1 = 1 
! r 

' 

r 
Ol -

-

- r

1 

e; 
1 ( i "'' -i ,,,. 

5 
= COS 1/J' = 2 8 r + 8 ,,. ) 

(17) 

(18) 

( 19) 

In (17), 0( is originally a real number, (18)9 But, generalizing the meaning of 
(17) for the consideration of the convergence, the argument domain ofoc can be
extended to whole the Gaussian complox plane. Thus, 1/1 can be considered as a
function of the complex argument ex. • lieD.ce, the following power series deve
lopment of the analytical function 1/1 in terms of :rising powers of the com-
plex argument o<.. turns out tobe poasible,

·1
� Pn ( f) O<..n 

i1 

= 

-20<.f+ O'� 2 n=O 

The singular.ities of (20) are found for 

1 - 2 c<. f + cx 2 
0

The condition (21) is fulfilled mf 

(22) gives

/CX:/= 1 

Therefore, the development (20) is convergent in the Gaussian complex plane 
within the circle 

(18) and (23) lead to
r' 

O<'. = -
r < 

(20) 

(21) 

(22) 

(22a) 

(23) 

(24) 

This inequation is the condition for the convergence of (6) and (20), see (7).

On the other hand,,the potential W has no singularities p (1); especially, 
it has not the singularities of the complex function (20). The gravitational 
potential of the Earth is well-known to be a limited and continuous function. 
This fact is valid for test points in the exterior space of the Earth and even 

for test points in its interior, within the nasses of the Earth, f'tlßJ/1'?/. 

00 
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Since the siogularities of (20) are so very dj_fferent from those of the geopo
tential, it cannot be.taken for granted that (10) will have the same convergence 
properties as (20). 

The series development (10} can be written in the following abbreviation 
form, 

T 
CO 

=� 
(R)n+1 

wn ; aen < <f • A )
n=O 

'I' = w 

(25) 

(26) 

(27) 

¾ is the radius of the Brillouin sphere, i.e. the smallest geocentric sphere 
that encloses whole the mass of the Earth. 

'I'he essential problem to be discussed here is the question whether the series 
development (25) is convergent not only in the exterior of the Brillouin sphere, 
but also beyond of it down to the test points at the surface of tbe Earth. 'I'his 
is an often discussed subject, f'J} /� LV ßJ /6_/ /7] f9} /117 /1:V /19}.

Tbe objections against the validity of tbe convergence down to the surface 
of tbe Earth turned out to be not convincing, [''tfß.f. 

2. 'I'be geodetic aspects of the analytical representation of a potential exte
rior of a regular surface

In the physical geodesy, according to common use, the gravitational and the
gravity potential in the exterior space are represented by certain well-defi
ned analytical standard expressions of different shape. 

Molodenskij has preferred the representation by the potential of a surface 
distribution f" , 

W = f ( ( 4 d '!JI -1f • ( 28) 

.'f, "j!* 
V/ is the surface of the Earth. Molodenskij has derived an integral equation 

for the determination of µ in terms of the free-air anomalies. 

In the d;ynamioal satelllte geodesy, the approximation.of the gravitational 
potential by a truncated spherical - harmonic development is an often used 
method, ,4 

w �L 
n=O 

(29)

if r,> ¾ • 

-wn {-Rr)n+1_ aen cy,,A) • 
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The terms with the indices 

n = A + 1 , A + 2 ,  ••• (30) 

are neglected nere, they are considered to.be more or lass within the noise of 
the method. 

Obviously, the expression (29) is a sum and not a se1.•ies development. Thus, 
any convergence difficulties do not arise. However, the more rapid the conver
gence of (25), the smaller the theoretical residual errors of the modal poten
tial given by (29). The residual term of (29) is, (25), 

00 

Jw=L 
n=A+1 

Wn (-Rr)
n+

1 1 
cen('f,/\.) (31) 

Different autbors have considered certain well-defined models of the poten
tial of' tbe Earth and the concerned series developments of the form_(25). For 
test points at the surface of the Earth, they have computed a great number of 
terms of this series development for tbe favoured modal potential, f1'Jl/19.J, 

n = O, 1,2, ••• , A (32) 

The computed amounts of the limbs of these truncated series devel9pments give 
a valuable insight into the speed of the convergence of (25). However, a ri
gorous proof of the convergence of (25) can never be obtained by a conside
ration of the truncated form. But the residual term (31) is here in the fore, 
it requires the computation of the infinity·of model-coefficients wn' (n = 
A+1, A+2 9 ••• ), an impossible enterprise. 

The convergence of (25) is generally accepted for tbe exterior space of 
the Brillouin sphere, r� ¾• Figure 1 shows the situation. 1 is the space 
filled up by the masses of the Earth. The exterior space of the Earth is 
denominated by 

03)
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The volwpe of the Earth, P , ( solid line), The exterior *sp_ace of 
the Brillouin sphere, J( b. The surfice of the Earth 'f and the 
surface of the Brillouin sphere, Wb • :I( is the space between 

,Tr� 1Tf-ll- a 

!t! and .!. b 
• 

The closed solid line in Fig. 1 is the surface of the Earth, 
taken as a regular surface, it has a continuous radius with continuous first 
and second derivative.s. The sphere with the radils Ri, around the gravity 
center of the Earth is the Brillouin sphere, Wb , (25)(26)(27). Pb is 
the exterior space of the Brillouin sphere. -g( is the space situated bet
ween Pb and the surface of the Earth 'Y!� it

a
is the relevant space where

the converg�nce in question, (25), is tobe investigated by the subsequent 
considerations. Or, with other words, it is tobe investigated whether the 
expression of (25) is identical with the geopotential W for test points 
situated in 'Wa, (1). In the figure 1, Pis a test point in the space 'o/b,
Q is the moving integration point and 1 is the straight distance between 
P and Q, (2)(3). 

\ 

. "--- -- --

• p 
I 

• 
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The ensuing considerations will prove the validity of the convergence of the 
spherical - harmonic development for the geopotential down to the surface of the 
Earth, "lf� (25). This is a problem by itself. Furthermore, the convergence in 
question of (25) in whole the space 1! is of use for several geodetic problems • 

. With a convergence extended to whole the space "f[r, this series d.evelopment (25)

is of use for the investigations about the uniqueness and about the solution 
of the geodetic boundary value problem, to set an example, [3}['5.7. 

The development (25) - also after an extension of the validity of it to 
whole the space f - represents the potential of an Earth with non - time -
dependent masses which are enclosed by a regular surface. This modal does suf
fice for many geodetic applications. 

3. The partition of the potential into two parts

The geopotential W is well-defined by the relation (1). In the exterior space 
'W, the function of W fulfills the Laplace differential equation, 

div grad W = 0 

= 0 

(34) 

05) 

x, y, z are rec tangular Carte sian coordinate s. VI is a continuous function in 
the exterior space 1Jf. 

Furthermore, the first and t;he second and the higher - order derivatives of 
W are also continuous functions in the space 'W , {1'2:] /1�. To set an example, 
the potential W has in V/ the following first derivatives, 

'<)x,y,z (36) 

Obviously, the potentials W and T tend to zero if r tends to infinity, as 
can be ta.k.en from (1) and (25); thus, 

w ----::l" 07a) 

and 
T ---? 07b) 

if 
r--+ 00 

. 07c) 

The spherical - harmonic development (25) for the geopotential W in the 
space '!.Vb has the character of a uniform convergent seri�s development, [1oJ
/12]C15.]. 

11 :" _ ';) 2w 
..u if - 2 

c)x 

;f!f/f;xX~z d{p 

p 

0 

0 
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Now, the series development for T, (25), is split - up into two parts, into 
the truncated part which comprises the spherical harmonics 

� n <r, A ) (n = 0,1,2 1 • • •  , B), (38) 

and into the residual part. The following expression is obtained, it is valid 
along the surface of the Brillouin sphere, 

B 

rnJ
n+1 

T = I: wn d!'n ( 'f•)..) + VB , r = ¾ . 
n=0 

09) 

0r, 
T = UB 

-i-
VB r = ¾ (40) 

with B 
UB =

� 

w (�)n+1
oen<f,A)n 

n=O 
(41) 

The development (25) for the potential T is known to be uniform convergent 
for r = ¾• Therefore, if r is equal to ¾• it is sure that VB tends to zero
if B tends to infinity: 

--,- 0 ' if' (42) 

Thus: 

Corresponding to a.ny given positive n:umber 

(43) 

however small , it shall be possible to find an integer B. such that 

1 VB I r=l\ < (44) 

The considerations connected with the relations which cover (39) to (44) 
must not be restricted to test points situated on the Brillouin sphere, 
r = ¾• The development (25) is also valid for test points above the Brillouin 
sphere. lt is valid for whole the exterior space of the Brillouin sphere, Wb;
see fig. 1. Hence, 

B 

T = I: w 
(!

)

n+1 
o€ n ( 'f , /1. ) + VB , in f b • 

n 

n=0 
(45) 

00 

VB = L w
n 

n=B+1 
(�J

n+1
ae n ( f _A ) ' in 'f b . (45a) 
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(B) n+1 

wn r oe n <r, A ) in �\ • (45b) 

The relations (45) to (45b) lead to 

(46) 

or, 

(47) 

On the Brillouin sphere, /vB / obeys the inequation (44)Jfor a su:t:ficient great
integer B. 

Now, it is of interest to investigate into whether /VB/ fulfills in Wb 
an inequation which is similar to the inequation (44) valid for test points on
the Brillouin sphere only, r =¾•In this context, the maximum and minimum 
properties of a harmonic function are of importance, .[ly /?I� [17.]. Because T 
and UB obey the Laplace differential equation, (45)(45b), 

and 
in fb

in f b

(48) 

(49) 

the relat'ion (47) has the consequence that VB is a harmonic function in Yfb ,

.6 V
B 

= ..6 T - � UB , 

in V\. 

(50) 

By (47), the harmonic function VB is a definitely given expression within the 
space Wb .For a point at infinity, the relation (52) follows, (37a)(37b) 
C37c)(47), 

(52) 

A certain wbll-known theorem of the potential theory states that the maxi
mum and minimum values of a harmonic potential function are always situated 
on the boundary of the space for which the relevant potential is described, 
/12.J/?16./. In the here cliscussed applications, the space ljb is the area for
which the potential VB is described."'° Thus, the maximum value of l VB I is 
situated 0n the Brillouin sphere lJ.ib , r = ¾, see Fig. 1. The following
self-explanatory inequation is valid, 

j V b / '\ff b
< max I VB / 'tf: (53)

in 'Wb 

(51) 
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Because of (44), the inequation (54) follows 

The relations (53) and (54) can be combined to the following inequation, 

The inequation (55) has the following meaning, /W [29} 

Corresponding to any given positive number 

E 2 ) 0
1 

no matter how small, an integer B can be chosen such that 

(54) 

(55) 

(56) 

(57) 

All the above considerations, especially the representations (1), (41) and 
(47), lead to the following properties of the threee functions 11, UB and VB: 

In the space Wb, the subsequent relations are valid:

In Wb, the functions of W, uB·and VB are well-defined harmonic potentials,
they bave well-explained e;xpressions, (25)(27)(45)(45a)(45b). Furthermore, they 
bave continuous expressions and continuous derivations, (36). They fulfill the 
Iaplace differential equation, 

If r tends to the distance to the point at infinity 

r--,... oo 

in this case, the subsequent relations follow, 

In the space 

W � 0 , 

"ff!, the subsequent relations are valid:a 

(58) 

(59) 

(60) 

(61) 

(62) 

Wand UB are well-defined harmonic potential functions, (1)(45b). Further, 
they have continuous e;xpressions and continuous derivatives. They fulfill the 
Iaplace differential equation, 
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(63) 

As to VB in 'yfa, it is true that VB has not in advance such a series deve
lopment in l[i a as it is provided for VB in lf b by (45a) 1 (56) and (57). The 
meaning of' VB in 1/!a is in advance well-explained by the difference of Wand 
UB' defined according to (1) and (45b), 

VB = W - UB in }fa (64) 

The relations (63) and (64) have the consequence 

�VB = 0 in ![la (64a) 

An analytical series devel9pment for VB in f a will be obtained later, it will 
not be an expression in terms of the parameters of' Wand UB, (1)<.45b), This 
series will be fundamental f'or the proof of the convergence. 

On the other hand, it is not sure in advance whether the potential function 
VB can be described in if/a by the expression (45a) extending the argument do
main oi' the coordinates of the test point (r, f,A) in (45a) over lf!

a 
and 

1f\. 

Cr, to be more precise, the main aim of the following deductions is to find 
out whether the expressfon (64) of VB fulfills an inequation of the shape (57) 
also for the area of '!I!a• 

These ensuing investigations make use of the fact that VB ia a harmon.ic 
potential f'unction, (58)(64a). Further, it is important here that the potential 

VB fuHills the relations (56) and. (57) for test points in the space 'iJ! b• 
These start conditions fulfilled by VB, (58)(64a,)

°

(56)(57) 1 will allow to eva
luate the amount of VB in fl/a • 

Thus, the very point of the subsequent investigations is to show even for test 
points in the space "!Pa that the subsequent sentence is right: 

The amount /VB/ )Fa is smaller than a given positive number t
2

2
, no mat

ter how small, if the integer B is ohosen sufficient great. 

qr, with other words, the open question is the fact that it is to find out 
whether 

leads to 

< (6�b) 

Hence, if (64b) should be right, it should be possible to neglect the po
tential VB even for test points situated in 1J!a, in case the integer B is

e 2 
2 
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sufficient great. Tbis circwnstance �- if it will be proved - will allow to 
replace W by UB in W a with arbitrary precision.Therefore, extending the ar
gument domain in the· expression for VB over JFa + !lib, it is to prove that 

w 
+ e 2 , in lJ!a= UB - 2 (65) 

B 

UB =L wn {�} 
n+1

ae n ( 'f ,A) (65a) 
n=O 

Bis in (65)(65a) a sufficient great integer in order to have 
ficient small number, (64b). 

€. 2 
2 as a 'suf-

Tbis relation, (65), is equivalent to the representation of W in Yf by 
means of the following uniform convergent series development, 

w = r; wn rn) 
n+1 

ae n ( <f ,). ) ' in 'f . 

n=O 

The ensuing lines intend to prove the validity of (66), 

4. The downwards continuation procedure and the uniform convergence of the
series development 

(66) 

The theorem about the harmonic continuation of a harmonic potential has the 
following shape, f1'c} [:IGJ /17].

Theorem 1: 

If T-; and � are two domains with common points, and if Y 1 is a harmo
nic potential in r; and Y2 in {;_, these functions coinciding at the 
common points of r1 and G, then they define a single function, harmonic 
in the domain r consisting of all points of � and r;_. Tbis harmonic con
tinuation is a unique procedure. 

This theorem 1 above has the following corollary.

Theorem 2: 

If Y is a harmonic fu.;.ction in a domain r, and if y vanishes at all the 
points of a domain r• in r, then Y vanishes at all the points of r . 

The proof of the last theorem 2 can be derived in the following way, it is 
in close connection to the here discussed applications: 

The potential � is harmonic in the exterior space f = "ffa + f b of the 
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,f 

surface of the Earth 1Jl , Fig. 2
1 

Ll Y = o , in °W

In Wb' 
the potential Y vanishes,

Y = 0 , in "y( b 

(67) 

(68) 

After these start conditions, (67) and (68), the function Y turns out to be 

Fig. 2. 

R
t. 

p 

", 1 '
� 1 '-,p 

1 ., 
1 .... 

'1 
1 

„:tr 1 I> 

f/� 1 

P
"'

The harmonic downwards continuation of a harmonic potential from the 
exterior J\ of' the Brillouin sphere W; down to the surface of 
the .B;arth )Il-1<' and to the point P* on 'f * by means of analytical deve
lopmen t s within the sphere )2� .5?*is the surface of the sphere 
which has the radius q. 

* 
equal to zero also in the space 1f and on the surface of the Earth 1:J! •a 

In order to reach this aim, the point Pin "IJ!b is surrounded by a concen-

! _ _ _ _j_ 

1 
_____ _:;;;;;.z.,,.,.~--s-----
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tric sphere with the radius p, Fig. 2. This sphere is situated completely with
in the space Wb• Furthermore, the point P is surrounded by a seoond sphere with

the radius q, q> p. This second sphere does touch the surface of' the Earth 'W* 
in the point � Because of (67), the potential Y has the following convergent 
series development within the sphere with the radius q, ;:10]["1?7, 

y = f: Yi (!t �il C<p,_A) (69) 
i=O 

0 � t � q (70) 

The expression (69) is well-known and often proved and often applied in routine 
work. yi are the Stokes constants. t is the variable radius with the point Pas 
center, (70), Fig. 2. Some authors prefer the relation 

(70a) 

instead of (70). However, the interval (70) is absolutely right. A discussion 
about the question whether (70) or (70a). is to be applied will have no meaning 
in the here discussed applications because the potential Y is a continuous 
function. For the argument value 

(7'1) 

the expression for Y turns to, (69), 

Anu for 
t = q (73) 

the ensueing relation is obtained, 

(74) 

The condition (68) leads to 

0 (75) 

and furthermore, because tbe spherical harmonics aei are orthonormalized func
tions, 

yi (�) = 0 , (i = 0,1,2, ••• ) (76) 

Because of (77)
1
as it is self-explanatory,

• 

i 

00 

Y P . = ~ Y i (~) i oe i c f ' X) • 
i=O 

y = 
p 

(7<:!) 
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i

(�) * 0 (i = 0,1,2, ••• ) (77) 

(78) follows by (76)

Yi = 0, (i = 0,1,2,3, ••• ) • (78) 

The equations (74) and (78) have the consequence that the potential y is equal 
to zero along the sphere with the radius t = q, 

y = 0q 

and further, as it is self-explanatory, 

y = 0 (0 � t � q) 

(79) 

(80) 

Obviously I the potential Y has the properties described by (67) and (68), 
and it obeys the constraint 

y = 0 in 1Ji' (81) 

Thus, the relation (8'1) corroborates the validity of the theorem 2. 

Suppose, the point P* cannot be reached by the surface of the sphere having 
the radius q and the center P, Fig. 2, in this case, another starting point P

can be chosen as the center of the concerned alternative sphere. P must be 
situated further on within the space f b• Thus, the point p* can be reached
successfully f'rom this new center P and by this new sphere S?. .,r.. Perhaps, this 
procedure does work by one step. Otherwise, a two - step or a multi - step 
procedure will provide the possibili ty to reach the point P * starting from 
the center P. It means, that P and P* can be, connected in any case by a chain 
of' spheres, the center of the first sphere lies in 1/ b and the surface of the
last sphere does tauch the point P*. The proof of the valid.ity 6f this two -
step or multi - step method happens similar as the proof of the one - step 
method along the lines of the deductions which cover (69) to (81). It is self
explanatory, it is in this case a two - step or a multi - step proof. 

Now, returning back to the demonstration of the convergence of the sphe
rical - harmonic series development in the space 'V! a' (66) 1 it is necessary 
to put the properties of the potential VB,into the center of the considera
tions. 

'.l'he equation (58) and (64a) gi:"e 

in 'iJi. (82) 

The relations (45a), (56) and (57) show that 

(83)VB ~ 0 , if B -+ oo , in ~ 
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_The harmonic downwards continuation of the potential VB down into the space 
'J!a shows obviously that the following fundamental properties of VB are also

valid, in 'f! , ( see theorem 2), 
a 

, in � (83a) 

The proµerties described by (83a) derive along the following lines.

'l'he potential y ,
1 

in � is replaced by VB in Y!b, and the potential Y-2 
in T;_ is substituted by VB in Y!a, (see theorem -1). 

Thus, before the background of (82), the theorem 1 proves that the potential 
VB in the "new" space W can be determined in terias of the values which this 
potential VB has in the "�ld" space P'b, lt happens by means of a unique pro
cedure, 

Furthermore, as to the theorem 2, the potential Y can be replaced by VB and 
the domains r and r' by the spaces ljl" and :f/b, The potential VB is the
substitute for Y in the equations (67), (68) and (81), The transient beha
viour of (83 a) is necessarily the consequence. 'l'he relations (83a) are an in
evitable consequence of (82) and (83) and of both the theorem 1 and the theo
re111 2, 

In case, the relations (8�) and (83) would have other consequences than

(83a), then, instead of (83a), a relation of the following type would. be the 
result of the downwards continuation, 

VB= � (x,y,z) , in If!a ; (83b) 

� 2 >o , if B � oo , in 1J!a (83c) 

But, the properties (83b) and (83c) can never be in keeping with (82) ano 
(83) and with the property of VB to be a continuous function in 'P', it is evi
denced by a look on the above formulated theorem 1 and 2 about the harmonic
downwards continuation. These theorems enclose also the uniqueness of the har
monic continuation procedure,

If, (83), 
in if b (83d) 

the rules Qf the harmonic downwards continuation demand no other relation than 

in 1:/!a (83e) 

it is valid on the strength of (82), The transition behaviour (83e) proves the 
validity of �83a). (83e) is in clear contradiction to (83b) and {83c). 

if B ~ CO 
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lt is self-explanatory, the relations (64b) and (83a) show that the series 
development (66) is a uniform convergent series development for the geopotential 
in whole the exterior space 'f of the �arth, fV. 

However, tobe more complete and more convincing, and to avoid misunderstan
dings, it seems tobe convenient to add the detailed and explicit description 
of another proof of' the uniform convergence of (66) in �. 

5. An ineguation for the norm of the residual potential

The potential VB is the second part of _the two parts of the geopotential IV. 
VB is well-defined by (4 5a), (56), (57), (82) and (83). lt is useful to give 
here a sum mary of the 4 most important properties of VB: 

1.) The following equation is valid: 

VB = B 
n=B+1 

2.) The following theorem is valid: 
Corresponding to any given positive number 

however small, it shall be possible to find an integer Bsuch that 

/ VB / '\Jtb
< 

3.) The Laplace equation is valid: 

in ':JI".

VB is a regular function in '\J!.

in� 

4.) The following transition behaviour is valid: 

ifB � C>O , in 'lffb

(84 ) 

(85) 

(86) 

(87) 

(88) 

Furthermore, continuing thG deductions, VB has the subsequent uniform con
vergent series üevelopment valid within the sphere with the center P and the 
radius q, Fig. 2, (69), /1?1 [15.J. 

00 

(Bj n+1 
wn r 

€ 2 > 0 
1 

t 2 
1 
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=6 in Q, (89) 

i=O 

0 !G t.� q (90) 

vB.i 
are the constant coefficient of (8';;l). The expressions oe

i 
( <f, X) syobo

lize the spherical harmonics. They are now understood tobe orthonormalized 
functions according to 

r j -.,q j a(l
k cos ji

k- @*
E) is the surface of the

dx = r 1
, 

l u,

unit sphere. 

j = k
} 

For t = p, p � q, the equation (89) takes the f'ollowing form, 

The relation (86) gives 

. ( 91) 

(92) 

/ VB.p / < t:1 

2 
(93) 

since the sphere with the radius t = p is totally situated within the space "\f/b.
For t = q, (94) foUows from (89), 

(94) 

VB.p and VB.q are bounded, continuous and regular functions of 'f and ).

because Wand UB are bounded, continuous and regular functions, and because VB
depends on ·Wand UB by, (see (1)(45b)), 

,in "'f (95) 

The series developments (92) and (94) are well-known tobe uniform convergent, 
it can be found in the textbooks, /:lOJ f:12] /:i<g.

Besides of (93), the following relations are valid for (92), siP,ce ( 9�) is 
well-known tobe a uniform convergent series developruent. 

Theorem: 

Corresponding to any given positive number 

(96)

00 

(_qt)i 
(5\q i ( f' j) I 

j t- k 

00 

vB.p=L ;B.i(~/ oeiCf,X) • 
i=O 

c,o 

vB.q = ~ vB, i aei ( f' A) 
i=O 

• 
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no ma:;ter ho11 small, i t shall be possi ble to find an integer C such that, ( 92), 

oei < f' �) (97) 

i=0+1 

Further1J1ore, the well-known uniform convergence of (94) leads to the ensuing 
sentence about the residual term of it. 

'fheorem: 

Gorresponding to any positive number 

E.,2 >o L,. '· ( ';18) 

however small, an integer .i) oan be ohosen such that

< c-42 vB.i ;;iei ( f' ;f) e, (99) 

�iow, th,:; nor1J1s oi" the functions VB.
p 

and. VB.g_ are to be derived b;y l!leans of
the series developments ( }2) and. (94) � 'l'he norm oi" the function VB.p is defined 
b;/ the following integral, 

II vB.p 
\I 2 cos 'f (100) 

,t: 
@ symbolizea the surface of the unit sphere which has an amount of �11. The 

expression VB in the integral of ('100) is substituted by the series develop
•P 

L"Jent (92). Thereafter, the orthogonality relations (91) are introduced and the
ensuing series development for the norm of VB is obtained,

.p 

II vB.p \\ 2 L
2 

( �) 
2i

:::; vB.i 
i=0 

'fhe relations (33) and. (100) give 

\\ vB.p II 
2

< 47(, �/ 

with 
= 

the eg_uation ( '102) turns to 

( 10-1) 

(102) 

(103)

00 

L 
i=.0+'1 

-ff v •. / 

e* 
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= \' V . 2 (!!)2 i
L B.i q 
i=0 

< 

Thus, according to (56) antl (�7), the following statement is valid. 

Theorem: 

Corresponding to any given positive number 

2 €5 > 0

however small, it shall be possible to find an integer Bsuch that 

(104) 

( 105) 

(1CJ6) 

For the norm of VB.q' the subsequent relations derive in a similar way , 

=+ 

d)t
-lf-

= g_2 cos r

dS°°
i

:I'= � vB.i 2i=0 

2 
= q 

( 107) 

(107a) 

The above discussed norm of VB , ( 107), is a crucial value f'or the follo.q 
wing considerations. lt is of cardinal importance. 

The open question is whether the norm of VB .q does fulfill an inequation
of the shape ot ('106), a relation which is satisfied by the other already 
discussed norm II VB 11 2 • The norm of VB is already known to f'ulfill the

.p .p 
regulations (105) and (106), But now, even the norm of VB,q undergoes an in-
vestigation into whether it does obey certain constraints analogous to the 
inequations (105) and (106) for VB , In this context, it is convenient to 
denominate the norm of VB.q by the

0

�bbreviation (!,2 , Thus, 

II vB.q 1\ 
2 

=�
i=0 

(105) 

The following question arives: 

Will it be possible and right that ß tends to zero in case the integer B 

tends to infinity? 0r, with other words, will it be possible to corroborate 
the following theorem? 

00 

II V 11 2 < €. 2 
B.p 5 • 

q 
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Theorem : 

Corresponding to any positive number 

i/ > 0 (109) 

however small, it shall be possible to find an integer B such that 

(110) 

In this context, a certain theorem from the theory of infinite series deve
lopments is of importance, /14}. 

Theorem 3: 

A series development with positive terms is uniform convergent if the par
tial sums of it are limited. This is a necessary and sufficient condition. 

In the above considerations, the series (-10-1) is a series development with 
positive terms. Further� this series has a limited value.which is equal to the
limited term II V

.B
.p II • Thus, it is obvious, the partial sums of (101) are

necessarily limited values also, They are situated between zero and II VB.pll 2•
Therefore, the theorem 3 proves that the right hand side of (101) is a uniform 
convergent series development, Hence, 

E 
oo 

II vB.p 11
2 

[; 
2 (12 ti 

r: 
2 

(�t
i

= vB.
i q + vB,i

i=O i=.1!;+1 
(111) 

With the abbreviations 
E 

(�t
i

7 5,1 
2 

L 
2 vB.i 

i=O 
(112) 

and 
00 

(�t
i 

2 
[: J 5.2 

= vB,i 

i=E+1 

(113) 

follows, (104), 

�VB.p 11
2

7 5.1 
2 

7 
2 

< e 
2 = + 5,2 5 (114) 

Similar relations are valid for VB.q and the norm of' it. Because VB.q is a
limited and regular function, the theorem 3 proves that the expression 

i=O 
on the right hand side of (108) is a uniform convergent series development 

= 

2 
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which has positive terms only, 

E 

II vB.q 11
2 = ß2 I: vB.i 

2 

S= + 
i=O i=E+1 

With the abbrevia tions 

E 

't: 6.1 
2 

:S
2 = vB.i 

i=O 

?:6./ = � 
i=E+1 

the following statement is obtained. 

Theorem: 

Corresponding to aey given positive number, 

€ 2 > 0
7 

vB.i 
2

no matter how small, it shall be possible to find an integer E such that 

2
t' 6. 2 < 

f, 2 
7 

( 115) 

(116) 

(117) 

(118) 

(119) 

Returning back to the investigations about the amount of ß 2, the relations 
(71), (112), (113), (114) lead to 

=C 
2i 

( �) .� 

= 
i=O 

= (�) 
2E 

i=O 
(120) 

The davelopments(1 20) make use of the following relations, 

E� i (120a) 

�� 
1 (120b) 

(�) 
2E 

� (�) 
2i 

(120c) 

E 
& 2;:,..17. 2 

5 (5.1 

DOI: https://doi.org/10.2312/zipe.1986.084



184 

Thus, 

< 

i=O 

:l'he relations (-115) and ('12'1) reveal, 

i=O 

2 
(.SLP) 

2E 
z-'6 ,. < 
. ,::'. 

& 2 

5 

(121) 

(122)

Obviously, the inequation ('122) will entail the inequation (123) as conse(,iuence, 

+ (123) 

'rhis is the inequation for the amount of' //, ( 108), which was intended to 
reach. 

The second term 'f:'6
•2

2 on the right band side of (123) obeys the regula
tions (105), (106), (118) aud (-1-19). 

Sure, the harmonic downwards continuations have to meet all standards and 
tue;y hf;ive to be (,iuite up to the mark, a matter that reflects in the amount of 

7:,- c. , (-1·17). 'l'he introduction of any approximation is not allowed in the 
o • .::: ' 

downwards continuations. 'l'he harmonic downwards continuation procedure has to
be carried out by rigorous methods. At least, thase approximations bave to be 
tolerated as the upper bound of the theoretical errors of the downwards conti
nuation procedure. 

' ,,,., 2 d 'rhus, c6 " oes vanish. A rigorous downwards continuätion procedure en-
forces the am��nt of 1:'6_2

2 to tend to zero. i:-6•2
2 is the residual term of 

the uniform convergent series development for ,ß 2
, (115)(117). Thus, it can 

be taken for grauted, the integer E has such a great value that 7:'
6

•2
2 takes

a sufficient small amount, in accordance with (118) and (1-·19). After this con
dition is fulfilled, the awount of Eis considered to be fixed in the further 
deliberations about (123). 

As to the first term on the right hanu side of the inequation (123), the 
inte�er B is understood to have to reach such a great value that the number 

e
5 

is depressed down in order to reach a sufficient small value for it. 
This aim can be reached without any problem, it is in keeping with (101)(104) 
(105)(106). The terms vB.i depend on B, see (42)(101). They tend to zero, 
since VB.p tends to zero if B tends to the infinity, see (156c). The three
parameters p, q, � in the first term on the right band side of the inequation 
(123) have limited values. p, q and � are independent parameters; especially,. . 

2 they do not depend on the amount of B. But, the amount of €5 depends on B, 
(105), (123). Consequently, the expression 
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2.l!l

(�) (124) 

has a limited value also. Therefore, the terw 

(1.25) 

can be considered as an arbitrary small value also, in the same way as e
5

2 . If
B tends to the infinity, in this case, the expression ('124) does not change its 
own value, b�t c

5

2 does tend to zero. Thus, the expression (125) tends t� 'Zero 
if B tends to the infinity. 

2B 
C, 

2 
5 ·o , if B --:,- (-125a)

The product of a bounded value, as (124), and an arbitrary small value, as
2 t5 , is obviously again equivalent to an arbitrary small amount, 

Thus, since B and .l!J are introduced as sufficient great integers in (·123), the 
amount of ß2 can be depressed down to an arbitrary small value by the transi
tion behaviour connected with the procedure: B -+- OC • Therefore, 

\\vB.q 11 2 
= ft} = (F· (B) < t/ ( 126) 

for a sufficient great value of B. 

Theorem: 

Corresponding to any given positive number, 

E-/ > 0 ( 126a) 

no matter how small, it shall be_poss1ble to find an int�ger Bsuch tbat (126) 1s 
valid. 

Furthermore, the following by-product is found. The greater the integer B 
smaller the coefficients vB.i' (84)(88)(101)(�07). Cqnsequently, the smaller
v

B.i yalues, the smaller the amount of z--6,2 , (117). Thus, the amount of' 
will diminish with rising values of B. lt will entail the possibility 

diminish the amount of E, (115). 

Finally, the relations (108) and (126) yield the following inequation 

the 
the 

'Z:' �-,2 

to 

E 28 (127) 

-J,!
The residual term VB of the series (66) along the surface of the sphere Q 

with the radius q is represented by VB.
q

' (94)(64)(65)(65a), Fig. 2. The nonn

(%) 
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* 
of this residual term along the above described sphere Q is arbitrary small
if B tends to the infinity, (126)(126a)(127). 

Theorem: 

Corresponding to any given positive number e8
2 , (126a),

f 2 
> 0

8 

no matter how small, it sball be possible to find an integer Bsuch tbat the 
inequation (127) is right. IVithin the scope of this theorem, the integer E has 
a fixed value which is in keeping with the relations (118)(119). 

6. A first proof of the uniform convergence of the spherical-barmonic series
development of the gravitational potential in the exterior of the Earth

The relation (127) is fundamental for the ensuing considerations. lt shows 
tbat the expression (95),

w = UB + VB , along Q*' ( 128) 

with the sum for UB 
B n+1 

9
-,/f-

, 
UB = C wn (�} oen ( <f' A ) , along (129) 

n=O 

and with the residual term VB according to (89) does converge in the mean along
the surface of the sphere J?� if B � C>C> , Fig. 2. 

The function VB is continuous along the surface of the sphere 9. The func
tion VB bas continuous derivatives of the first and higher order within the
sphere Q . l!;ven these properties are valid primarily for W and UB within the
sphere Q, they are passed on to VB by the regulation (128).

This property ; of VB to be a regular function within W is· now combined
with the inequation (127) for the norm of it. Along these lines, the sentence 
will be obtained that the series development (66) for W is uniform convergent 
along J?lf- . Or, with other words, since W and UB are continuous functions, in
the exterior space, the relat1on (127) envolves the faot that the absolute value

of the continuous function VB at the point P* on the surface of the Earth W
.q 

has the following inequation, Fig. 2 1 which is to be proved later on, 

(130) 

Hence, it is now intended to prove the following theorem. 

Theorem: 

Corresponding to any given positive number 
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E 2 >O
9 

('131) 

no matter how small, it shall be possible to find an integer B such that (130) 
· is valid.

\Yithout greater difficulties, the statement connected with the inequations 
(130) and (131) oan be corroborated by some short lines. The integral (100)1 
which defines the norm1leads to, (see Fig. 2, (107)(107a)),

n v II 2
= 1q ff vB.q

2 
dQ*

11 B.q ). 
c;?* 

r-.* 2 
d .>c = q cos 'f d<f 

(132) 

(133) 

The Dirichlet integral (132) can be approximated by a sum, it is self-explana
tory, 

= ➔ q j=0 
(134) 

* 
Obviously, the parameters G, q and ( .Ll 52 ) j have limited and positive amounts,
all these three parameters have never vanishing values. Principally, in any 
case, it is possible to have a.division into surface elements of equal size, 

* ./('
( A Q ) j = .:1 2 = constant (·135)

� -li' 

( ,:1 S2 )j 
and DQ will never vanish. The three relatiqns ('127), (134) and

( 135) reveal 

€. 
2 

8 

1 A r-i* � 2 
)> 2 � :X [_J (VB.q )j q j=0 

_,_ 

Li. Q = 1 meter x 1 meter). (e.g.: q = 20 km, 

.(136) 

The inequation (136) will entail a relation for the absolute value of the 
potential value VB.q at the point P* on the surface of the .l!:arth lJ!� Fig.2.
lt is self-explanatory, a partial sum of positive terms i� always smaller than 
whole. the sum of all the positive terms. Therefore, (136), 

1 · ri*- .6.:,c 
l j=0

*' 
2 1 '1 2 (VB ) . >-2 .6 jC (VB )p*.q J q .q 

The above written relations (136) and (136a) give 

(·136a)

- - d X = q2 d0~ • 

G 

-z; 
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(137) 

* 
Consequently, and. because .D. Q will never vanish, 

€ 2 
8 (138) 

Principally, the ohoice of the position of the point P at the surface of 
the Barth is not subject to a restriction. The point P* is any arbitrarily 
chosen point on jr* • Therefore, the ifeg_uation (138) can be brought into a 
more general frame. Because g_ and LJ.2 have positive, limitea. and non-vani
shing values, which are inä.ependent of B, and because &8

2 is an arbitrary
small value, which tends to zero. if B tends to the infini ty, for these basio 

conditions, it can be stated that the following inequation is obviously valid, 

2) < c 2
( )(VB yp* c;.10 139 

The symbol cv/) )jl � denotes the value of VB
2 at an arbitrarily choosen point

p* on the surface of the Earth 1J! *, Hence, the absolute amount of VB at the 
surface 'lJI �is arbitrary small if B is sufficient great. Or, with other 
w·ords, the development.s on the right hanä. side of (45b) and of (65a) are of 
full value a representation of the geopotential \V at the surface of the :b:arth 
1 Tr lr' 

� if B is a sufficient great integer. 

Theorem: 

Corresponding to any given positive number 

> 0 (140) 

however small, it shall be possible to find an integer B such that the ine
g_uation (133) is valid., or the ineg_uation 

for 
1 (VB)

jr
* 1 < 1 E10 1 

1 '10 1 >
0

( 140a) 

(140b) 

Summarising, the above relations show that the serie•s development (66) is 
valid as a uniform convergent series for test points situated at the surface 
of the .i!:arth "\If*, (129), (139) to (140b), 

w �n(f,A) , ob (141 ) 

Oo 

=I: 
n=O 
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The function f = f ( 'f, A ) 1s here the height dependent geocentric radius of
the surface of the Earth. The function on the right band side of (141) is an ex
pression. in terms of the arguments 'f , A • 

Now, the extension of the validity of (141) into the exterior space remains 
to be considered. A series theorem of Abel allows the extension of the validi
ty of (141) upwards into the space 'IJ! above the surface of the Earth and be
yond it into the space Wb, where the

a
validity of it is uncontested. This

theorem has the following text, /:14]. 

Theorem 4: 

A uniform convergent series development is permitted to be multiplied limb 
by limb by monotone and limited factors, without any detriment f'or the uniform 
convergence. Or, the eeriee· development 

s ai bi
i=O 

1s uniform convergent if the series 
00 

E a1
i=O 

1s uniform convergent and if the sequence of numbers 

or 

1s monotone decreasing and limited to the left and to the right, 

i = 0,-1,2, ••• 

Ku is the lower bound and K
0 

1s the upper bound.

(142) 

(143) 

(144) 

(145) 

(146) 

( 147) 

(147a) 

In the bere discussed applications, the following substitutes are introdu
ced, (141)(142)(143), 

ai = w. (f) 
i+1

ae 1 c <f ,A )
l. 

(148) 

bi = [ ! ) 
i+1

, (i= 0,1,2, ••• ) ( 149) 

i� 1 (150)

b1+1 < bi 

Ku < bi ~ Ko 
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K = 0u K = 10 
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( 151) 

(152) 

('144) is here a null sequence, ('149)(150). These substitutions, (148) to (152), 
are applied to (142). Without any complication, it follows tbat the series de
velopment 

Oe, 

w =� 
n=O 

(R) n+1 

wn r �n , in W, (153) 

is uniform convergent on the surface o:f tbe Earth and in wbole tbe exterior 
space of it. 

-f-
The step from the convergence at the surface 'P to that in tbe space 111' can 

be achieved also by the convergence theorem of Weierstrass (Harnack's f'irst the
orem of convergence), r,2=7. 'rhis step leads from (141) to (153): 

An infinite sequence t6n f of certain regular and. barmonic functions is given 
in the space A and on the surface of it, 11.* • Tbis sequence takes on 11.* the 
character of a uniform convergent series development which determines the boun-
dary values of a potential L • If these above given conditions are fulfilled, 
this sequence {e-

n
} describes the potential L in the space A. by'a uniform con

vergent series development, 

As to the here discussed example, the development ('141) represents the con
vergent series of the boundar;y values on the surface. And, (153) is the conver
gent spatial series of the pot(mtial, it is a consequence of (-14'1) and of the 
·;ieierstrass theorem. Therefore, the Weierstrass sentence corroborates the va
lio.ity of (-1'.;,3); the limbs of the sequence are eg_ual to

(R) n+1 

G"n = wn r 

7, A seconci. proof of the uniform convergence of the spherical-harmonic series 
development 01· the gravitational potential in the exterior of' the Earth 

After all these derivations in the last chapter, it seews to be convenient to 
have a further independent proof of the series convergence, following another 
way which is shorter and free of the roundabout way via the norms. The essence 
01· this second proof of the validity of (66) can be shown by the following de
liberations. 

2 ·rhe residual term of (92) is smaller than e
3 

, (97), it can be neglected 
for a sufficient great integer C, Thus, the residual term ( 97) of the develop-_ 
ment (92) has an insignificant amount, if Cis sufficient great. The absolute 
value of the expression VB.p can be considered to be smaller than the arbitra-
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2 rs small value E
1 

, (93). Further, the residual term of' VB.p' (92), can be
treated as an arbitrars small value, (see the lines above). The truncated ex
pression 01· (92) is introduced, 

-ae i cf, I) 1 = (154) 

Obviously, it follows that N2 must necessarily be arbitrars small if Bis 
sufficient great. N2 deviates from / VB / by an amount of smaller than :!: e,,2,

2 •P 2 ✓ 

(97). Thus, N deviates from an amount of' smaller than t,
1 

by an amount that 
2 is smaller than ! e3 , (93).

The substitutions, (92) 1 a + b = VB , and, (154), 1 a 1 
2 .p 2 on, (�7), / b /< e

3
, lead to, (93), ja+ bl< s

1 
, and

2 2 2 

j a / < €11 < ( 8 1 + E 3 ) •

2 = N, anci. f'urther

2 
Hence, it is self-explanatory, N is smaller than an arbitrary small value, 

if B is sufficient great,

( '154a) 

Theorem: 

Corresponding to arry positive number 

(1j4b) 

however small, an integer B can be chosen such that the inequation (154a) is
valid. 

The left hana side of (1;,4) is a S1.llll which is linear in the vB. values • 
• i 

The number of' the terms of' this sum is equal to C + 1. The expressions 

, (i = 0,1 1 2, ••• , C) 

are the coefficients of the spherical-harmonic series development of VB.p
which is valid along the sphere with the radius p, (92). According to the de
finition of VB.p' and because the series of'the form (66) for .V does converge
in the exterior of the Brillouin sphere, it is clear that if B tends to in-
finity, in this case, the 
all points of this sphere 
will have to tend to zero 

VB . � .l. 

i = 0,1,2, 

expression VB follows to have to tend to zero at.p 
with the radius p. Consequently, the vB.i values
also, simultaneously with v

B.p'

O, if B�oe ( 156) 

( 156a) 

( '15!;, ) 

... 
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All the individual terms of (92) bave to go to zero if VB tends to zero.•P 

Of course, the relations (91) and (92) give self-explanatory 

�( vB.p &ei ( Zj, A) cos r ö. r d ,:

e* 

= vB,
i 

m 
i

jf a,/ cos r d r d,j"° =

B� 

= vB.i (�}
i 

( 156b) 

Hence, 

vB.i = (�)
i ff vB.p o€ i ( <f' �1) cos r d <f d X

e
�· 

i = 0,1,2,3, 

(156c) 

(·156d)

The relation (156c) is valid for every integer of the sequence (156d). Thus, 
it is valid also for, (154), 

i = 0,1,2, ' C (156e) 

and, (9�), (1�7), 
i = 0,1,2, ••• , D • (15.6f) 

The amount of VB tends to zero if B tends to infinity. Hence, the equation.p 
(156c) does lead to (156), (see also (42)(44)(55)(56)(57)). 

Now, the expression (94) for VB.p is to be considered, The absolute value
of' the residual term of this expression is smaller than t,.4

2 , a value which
is arbitrary small, (99). The equation (94) takes·the following shape, 

i=O 
VB . 'ae . ( ifl, X),1. l. 1 < f, 2

4 (157) 

The second term on the let't hand side of (157) can be interpreted as a sum 
representing VB .• lt is linear in the vB. values. lt is not an infinite.q • l. 
series development. 

Now, in the equation (·157), the integer B is considered to become greater 
and greater. lt does tend to infinity, (see (156)). I:f B tends to ini"inity, 
the transition behaviour of the absolute value of VB,q will demonstrate that
this value will tend to zero. Or, to be more precise, if B tenö.s to infinity, 
/vB,q I will prove to tend to a value that is smaller than e4

2• &4
2 is an

arbitrary small value, (157). This transition behaviour is described by 

(158)
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The proof of (158) is uncomplicated: A sum of a fixed and limited number of 
terms does vanish if the individual terms of this sum tend to zero. The second 
term on the left hand side of (157) is such a sum if B tends to infinity, (see 
(156)). Further, the left hand side of (1�4) is also such a sum. The above lines 
are self-explanatory. 

Summarizing: 

If B tends to infinity, the second term on the lef't band. side of ( 157) .tenci.s 
to zero, (156). Thus, obviously, the inequation (157) cannot be fulfilled if B 
tends to infinity, unless VB.q tends to zero simultaneously. Therefore, ('158) 
is right. 

The relation (158) has certain consequences, Obviously, the following tran
sition behaviour is valid, 

1 VB.q I p* -+ 0 , if B is tending to the infinity 
* 

and, because P* is any arbi trary point on the surface 'JI , further, 

1 V 1 
� 0 , i:f B is tending to. the infinity.B.q � 

w 

(159) 

(160) 

The relation (1b0) corroborates the uniform convergence of the spherical-
� 

harmonic series development of the potential W along the regular surface V/, 
( 141), 

The relations (15b)(15�)(160) corroborate also the validity of the theorem 
(131)(130), 

The validity of the crucial relation ( 153) is found again by ( 160). ,:;.nd, the' 
combination of it with Abel's test for the convergence, (see theorew 4), or 
with th'3 theorem of Weierstrass, (Harnack's first theorem of convergence), f-1?], 
leads to the conve rgence in W . 

The uniform convergence according to (160) can be obtained also applying the 
Schwarz inequality, 

('16üa) 

to the second term on the le 1't hand side of (157), The following relation is 
found, 

D 

�tta 
2 /� a:'. 2

L vB.i �iC'f,D vB.i cf, X) • (160b) 
l. 

i=O 

The amount of the square of the spherical harmonics of the suffixes 
i = 0,1,2, ••• , D has a limited upper bound, Further, the integer D has a 
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limited amount. The combination of (115)(127)(16Ob) and (157) corroborates the 
uniform c-o?).vergence, (160). 

8. The uniqueness of the result, an ellipsoidal model Earth, particular regio
nal and time dependent supplements

As regards the uniqueness of the representation of the geopotential W in the
exterior space \f/ by the equation (153), this problem was already touched ear
lier in context with the theorem 1 and 2. The development (153) and the uniform 
convergence of it was never in question for the space '\II b exterior of the
Brillouin sphere. The very uniqueness problem here to be "discussed deals with 
the potential W in '/! obtained by the downwards continuations. The question 
is as follows:. Is the potential described by the development ( 153) even the one 
single solution of the problem which consists in the finding of W in�, be
fore the background of the given W values in· '\f'b and before the background oi
the Laplace equation valid in V!? 

Introducing the hypothesis that the potential W in Y! is not unique, the 
ensuing self-explanatory relations derive for a hl-Pothetical harmonic poten
tial X and for the difference Z of the two potentials Wand X � 

�X 

X 

X 

..6 { (�} 
n+1 

�\'{ 

z 

..6 z 

z 

= 0 in 'P' 

= w in VI b 

=I= w in Wa 

ae n crJ)} = 0 

= 0 in V! 

= IV - X, in 1/! 

= ..6W - ,6 X= 0 

= 0 in 
V/ b ; 

iri 'V 

in V/, 

, 

(161) 

( 162) 

(163) 

(164) 

(165) 

(166) 

( 167) 

(168)

the theorem 2 about the harmonic d0wnwards continuation demands by (167) and 
(168) the validity of the following equation

Thus, the validity of 

Z = 0 in Yrr
':t'a 

Z = w - x -:f:.O 

(169) 

( 169a) 

a 
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is not right, (see (163)). The relations (167)(168)(169) demonstrate that (163) 
and ( 169a) conflict with the theorem_ 2 about the harmonic downwards cont·inuation, 
unless 

X = W in 'l' 
a 

(170) 

Therefore, the development (153) represents the unique potential W in the ex
terior space 'JI. Another potential cannot be obtained for w.

At some places in the literature, the convergence of (153) in 'fla is di�
cuesed for an ellipsoid as the model ll:arth, 8W ["19/. At those other places, it 
is argued that in case of (8) the introduction of the series development (6) in 
(1) would lead to a divergence or to a questionable convergence of the series 
(153) in the space between the Brillouin sphere (enclosing the ellipsoid) and 
the surface of the ellipsoid, i�e. the space 'V that does come into existence 

a 

in the special case of this ellipsoid modal Earth. Some furtheranoes from the 
theory of the confocal ellipsoids allow the concession of a shrinking of this 
special Via space. But this shrinking procedure has not the consequence that

W does vanish in this special case. Thus, it is argued that certain areas 
a 

of divergence or of dubious convergence will possibly remain in the exterior of 
the ellipsoid. 

This argumentation is not right, it does not contain a p�oof of the diver-. 
gence. The series (6) is divergent in case of (8), But, if this divergent 
series is introduced for 1/1 in (1), the thus obtained series for W is not 
necessarily divergent also. There is no proof of the divergence, it is a con
jecture only, ["18.l t19]. 

These considerations about the divergence of (153) in'the exterior of an 
ellipsoidal modal Earth are in conflict with the argument�tions expressed by 
the lines between the equations (8) and (9). These considerations about an 
ellipsoidal model Earth are also in contradiction to the above derivations 
which begin with the equation (1 ) and which end with the equation (170). The 
ellipsoid considerations, 88]/19/, are not valid. 

Another question can be brought into the discussion. No doubt, the above 
treated non-time-dependent model Earth with· the potential W is not rigorously 
the real Earth. The next step to better the model Earth will be the addition 
of the tide potential, w

1
• 

Eurther details appearing by certain special structures within a limited 
:3Urface region can be accounted for approximatively by the addition of the 
potential of a manifold of discrete point masses choosen in a convenient way, 
to set an example. This potential caused by,regional sou�ces is denoted by 

w2 . 

Thus, along these lines and in order to do a further step beyond (66) and 
(153), the following refined stable modal Earth potential, (171), can be 
taken as a refined substitute for the gravitational potential of the real 

-1
1 

1 
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�arth, it will fulfill all the geodetic requirements, 

w = w + w1 + w2 (171) 

'l'he above conv3rgence proofs, (130)(131)(158)(159)(160), refer to a model Earth

with a regular surface. The transition to the real �arth leads to the surface 

of the real �arth whicb is not absolute regular in an absolutely rigorous 
consideration, because of the vegetation, cultivation, buildings, etc.; or, 

with other words, because of the micro-structure of the real surface of the 
�arth. 

However, by no ·means, it is not right to argue that this micro-structure in 
the �arth surface will cause that the convergence of the spherical-harmonic 
development for the gravitational potential of the real (not time dependent) 
...!.,arth will break down in whole the exterior space of the .l!Jarth. 

Of cause, it is possible to introduce a regular surface that does envelope all 
tbe gravitating mass particles of the .l!Jarth, the micro-structure included. The 

enveloping b;y this regular mathematical surface is as close as possible. The 
above convergence proofs show that the convergence of the spherical-harmonic 
clevelopment f'or the gravitational potential of the real (not time dependent) 

�arth is notwithstanding valid also further on in the exterior space of this 

enveloping surface, irrespective of the existence of any micro-structures be
low the envelope. The micro-structure does not paralyse the considered.conver
gence in the exterior 01· this enve lope. 

By no means, there is not a general break-down of the convergence property 
if a surface micro-structure does exist. Tbe convergence property is a stable 

one. 

9, Conclusions 

The gravitating sources within a regular surface generate a harmonic po
tential in the exterior of this surface, The spherical-harmonic series de
velopment of this pot�ntial is considered. At first, this series development 

f'or test points exterior of a sphere enclosing all the gravitating masses is 
in the fore, (Brillouin-sphere), The uniform convergence of this series deve

lopment in the exterior space of the Brillouin-sphere is generally accepted. 

Further on, this crucial series development exterior of the Brillouin sphere 
is divided into two parts. The first part comprises the truncated series de

velopment. The whole potential W has the series 
00 

(172) 

The truncated series ('172) is identical with the sum 
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w
o 

= + +wB (173) 

This sum comprises the main part of the series (172). The second part is the 
residual potential of (172), 

� 

= 
wi 

(174) 
i=B+1 

The equations (172)(173)(174) yield, 

w = w
o

+ (175) 

This partition of W according to ('175) is not a fixed one. The parameter B of 
this division is variable. The greater the index B the smaller the residual 
term w00 in the exterior of the Brillouin sphere. 

Now, the two parts of the potential IV undergo the procedure of the harmonic 
downwards continuations, beginning from the exterior of the Brillouin-sphere 
and proceeding down to the regular surface of' the gravitating mass; i.e., in 
the here discussed applications, the .surface of the Earth. The harmonic down
wards continuation of w

0 is uncomplicated, since w0 is a sum of terms which 
are all harmonic in whole the exterior of the �arth. But, the procedure of the 
downwards continuation of the second part has an entirely different character. 
lt necessitates certain special considerations. Starting f'rom different 
standpoints, it is proved that the second part w00 tends to zero at the sur
face of the ßarth if the first part w0 extends wider and wider, B � 0<::> • 
Tbis property of w00 is valid also for whole the exterior of the Earth. 

This result is equivalent with the statement that the spherical-harmonic 
series development for the gravitational potential is uniform convergent at 
the regular surface of the Earth andin whole the· exterior space of the Earth. 

The, micro-structure of the real surface of the .C:arth does not paralyse 
the convergence in the exterior space. 
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E. The global embedding term in the space-time relation between the geodetic

measurements and the geological masses
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Within the frame of the i�vestigation of the recent crustal movements, the 

space-time change of the local values of the gravity and of the height is con

sidered, as so as the radial derivation of the potential of the space-time chan

ges of the geological masses. A relation for the local interdependence of these 

three amounts is derived. This relation is completed by the regard of the glo

bal embedding term, This term is proportional to the global potential of the 

recent crustal movements, it is rather small, and it can be neglected in most 

applications. The global embedding term cannot be determined precisely by the 

geodetic measurements, it shares to the white and coloured noise of the method. 

Zusammenfassung 

Die Kräfte in den oberen Schichten der Erde, die die rezenten Erdkrustenbe

wegungen bewirken, verursachen auch geologische Massenänderungen. Sie sind fer

ner die �uelle von Veränder1:2llgen der Höhen und der Schwere an der Erdoberfläche. 

Ausgehend von der Fundamentalgleichung der physikalischen Geodäsie wird eine ma

thematische Gleichung aufgestellt, die die zeitlichen Veränderungen der folgen

den 3 Oberflächenwerte zueinander in Beziehung setzt: Die radiale Ableitung des 

Gravitationspotentials der geologischen Massen, die Schwere und die Höhe. Fer

ner tritt ein Ausdruck hinzu, der proportional zum globalen Potential der re

zenten Krustenbewegungen ist. Dieser Ausdruck kann aus geodätischen Messungen 
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Dicht bestimmt werden. Eine einfache Abschätzung zeigt, daß .er relativ klein 

ist und in den meis�en Fällen vernachlässigt werden kann. Er trägt zu den zufäl

ligen und sytematischen Fehlern der Methode bei. 

Pea10Me 

CBnH B BepxHIDC cnomc seMJlll, npHBO,n.mIU1e 3eMHyIO-Kopy B HOBOe ABIDKeHne, 

o6ycnaBJI.HB8IOT TaKJKe .II reonorH'lleCKHe ß3M6H8HWI MaCCHo ÜHH TaKJKe RBJlli

lOTCR HCTDqHßKOM H3M8HeHß� BHCDT ß CH»H TIDKeCTH Ha 38MHDB IlOB8pXHOCTH0 

HCXD,Il.R I!3 <l>YH.D.8M8HTan1>HDro ypaBHefüUI reoAe3HH, CTpO.l!TCR MaT8MaTHqec

K06 ypaBHeHHe, CBR3HB8.KJ1188 Bp8M6HHl,18 H8M8H€HHR Tpex cneAYIOOUDC BenH

q11H IlOBepXHOCTH: paAaan1>HYIO npOH3BDAHYIO rpaBHT8IU'lOHHOro DOT6HIU'lana 

reonorRtieCKJ4X MaCC, cany TmK8CTH R BHCOTy. B nocneAYJOOl6M AD68BM8TCH 

BHpa�eHHe, nponopUI,!OH8nl>HD8 rno6an1>HOMY DOT6HW4any COBpeMeHHWC ABH

aem 38MHOÜ Kopu. ÖTO BHpa�eHRe H8B03MO�HD YCTaHOBliTI, reOA83Rl!6CKßMK 

H3MepemrnMH. IlpDCT8H oueHRa IlOK83HBaeT, qTo OHO OTHDCHTen1>HD Mano H 

B 6on1>IIIHHCTBe cnyqaeB MDmeT He yqaTHB8TI,CH. ÜHD B»HH&T Ha cnyqaßaae 

ß CHCT8M8THqecKH8 OIIIH6Kß M6TOA8o 

1. Introduction

In geodesy, the pure geometrical measurements L depend on the spatial po

sition � of the observation stations only, 

L = L (�) ( 1) 

The recent crustal movements will change the spatial position 

� = � (t) (2) 

a change of L in the course of the time t is the consequence, 

(3)
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For instance, the relations (1)(2)(3) are valid for the distances between two 
stations on the surface of the Earth. 

But, in the physical geodesy, the measurements l depend not only on the spa
tial position of the station. They depend also on the gravit;y potential• 

l = l (�,t) (4) 

Thus, with (�) ana. (3), 

dl 'eh � 01 
dt 

= 

dt + /c) t lo� 
(5) 

The physical measurements 1 represent here the intensity of the gravity, for 
instance. 

Further, the results of the geometric levellings depend on the shape of the 
equipotential surfaces of the gravit;y.potential, i.e, the level surfaces, Of 
course, the recent crustal movements give rise to a vertical shift of the level 
surfaces, a corresponding shift of the results of the geometrical levellings is 
the consequence, 

2, The formula of Strang van Hees 

The next step is a consideration of th;; potential of the mass char:ges which 
are caused by the recent crustal movements of the Barth, This approach views 
at the problem f'rom a global standpoint. The gravity measurements g an<.i the 
normal heights h are well-introduced in geodesy, They are understood here as 
the geoüetic measurements which are influenced by the recent crustal movements. 

The here discussed prol:::lem favours the systern of the normal heights, i t 

r:ill be explained later. 

·rhese �eodetic measurements g and h are understood that they are surface
values; they ca:i be taken as certain measurements, attached to the poi:its at 
the surface of the .6arth. 

The full gravi:ty potential is denomii1ated by W, and the standard potential 
by U. The perturbation potential T has the equation (6) , as it is well-known.

T = W - U (6) 

The si tuation before the appearence of the phenomenon of the recent 
crustal movements is 1,,arked by the subscript )1 , i.e. the old si tuation.
So, the new situation with the impact

1
caused by the recent crustal move-
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ments,is marked by the subscript ( )2• Hence, the perturbation potential T of
the old situation is, 

= - u (7) 

or, 

(7a) 

anö. for th.1 now si tua tion, 

(8) 

or, 

- u (�) (8a) 

The dii'i'erence of (7) anci (8) is the impact of thci recent crustal move□ents, 

dT = 

Jw = 

Thus, 
J'T = 

T2 
-

w2 
-

Jw 

T,1

' 

(9) 

( 10) 

(11) 

It is to be stressed that the spatial test point (for which the potenti.:,l values 
T , VI and T2, w2 are valid) is understood to be a fixed-point in the space,
(?a)(Ja). This mathematical fixed-point should not be mistaken for the center 
of a pbysical particle participating at the recent crustal movements. Thus, to 
be more precise, the relations (7) to (1'1) can be writtep. in the following 
shape, 

T1(�) = ·,'-i1 (�) - u (�) ( 12) 

T"(x) 
c:. = 

= W/�) - u (�) (13) 

J T (�) = Ti�) - T1(�) (14) 

Jw (x) = W2(�) 
-

W1(�) ( 15) 

ofT (l) = Jw (�) (16) 

However, in oase, �• is not a fixed•point but a surface particle influenced b;y 
. ' 

the recent crustal movements, the following reasoning is useful. x
1 

is the 
' C: 

position of a surface particle in the old situation, 1
2 

is the position of 
the same surface �article in the new situation. The relation (14) gives for the 

' 

change of T at J
2 

T -2 -

w 
1 
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' ' ' ' ' 
T2(�2 ) - T1(�2 ) = JT (�2 ) = T2(�fa ) - T1 (�1 )

dT
1 ' ' 

(�2
-

?:f1 ) (17) 

The difference vector 

�2 
-

�1 (18) 

represents the spatial movement of the considered surface particle. 

A more thorough discussiin of geodetic deformation problems, as (17), is 
contained in: 
Grafarenu., ß,: Six lectures on geodesy and global geodynamics, in .Mitteilungen 
d, geodät, Institute d, Techn. Univ. Graz, Folge 41 (1982) S. 531-685, eds. 
Moritz, H. and Sünlcel, H., G'raz. 

The fundamental differential equation of the physical geodesy is helpful in 
the evaluation of the vertical component 01· the derivative of T1 appearing in
the last term of· the relations (17), 

'vT 2 - - - - T 
lc)r r 

r is the geocentric radius, ,6gF is the free-air anomaly.

(19) 

The ve�tical component of the last term of (17) takes the following shape by 
the introduction of (19), it is the crucial term of (17), 

- X =1 
'c)T ) - - 1.l h 

2 dh = Ag dh +-T dhF r (20) 

Since vertical movements are considered, only the vertical shift dh does,re
flect in (20). A change o.f the geopotential by the amount of (?O) _can. take its 
riss from a vertical posi tion shift in the field of the geopotential W by the 
following amount, 

1 @T dh __ 1
-z,;15n G 

dh (21) 

G is the globa1
. mean value of the gravi ty, R is the mean radius of the Earth. 

The amounts an the right hand side of (21) can be understood to have the follo-
wing orders, 

G = 103 [cm sec 
-2

J (22a) 

.6gF = 0,1 /cm sec 
-2

J (22b) 

dh = 10 LcmJ (22c) 

R = 6 • 108 
l"cmJ (22d) 

• 
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� T = 104 f cm J . (22e) 

The above listed constants, (22a) to (22e), lead to the following amount for the 
yertical shift of the level surface of the geopotential W caused by the crucial 
term (20) in the relatio� (1 7), 

- � !� dh = 10-3 cm+ 0.3 • 10-3 cm • (23) 

The two terms on the right hand side of (23) have negligible amounts. A vertical 
shift of 10-3 cm cannot be determined by geometric levellings. A vertical shift
by 10-3 cm will entail a negligible gravity change of 0.3 x 10-2 

/"'gal, if the
standard free-air vertical gradient of the gravity is applied, 

� = - � h = - 0. J x h f" mgal J ,

h has in (24) the dimension of the meter. 

(24) 

Thus, the relations (23) and (24) show that the last term of (17) can be neglec
ted, i.e. (20). 

The subsequent equation is obtained, it is valid for the here discussed appli
ca.tions, 

(see also the relations (73) to (77)). 

The perturbation potential T derives from the free-air anomaly AgF by 

T = ��rr �gF + C + c
1

J ST ('lf) dp 1 

F 

(25) 

(26) 

(see chapter A and B). C is the plane topographic reduction of the gravity, c
1 

is 
equal to

(27) 

c
1
can be neglected in view of the present state of the gravity nets. p symbolizes 

the unit sphere, dp is the surface element of it, 

dp = cos 'f d 'f d A (28) 

'{) is the geographical latitude and ,1 the longitude. ST( y,) is the well-known 
Stokes function, (see chapter A, B, C). -Y,is the spherical distance between the 
fixed test point P and the variable point Q.which does run over the globe in the 
course of the integration. hp and ¾ are the topograplµc heights of the concer-
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ned points. 

The differential quotient on the right hand side of (27) is the vertical gra
dient of the Bouguer anomalies of the gravity. The amount of c1 will reach about 
1 mgal only in gravimetrically very disturbed regions with high Bouguer anoma
lies. 

The relation (26) for the epoch 

t = ti , (i = 1,2) (28a) 

is 

(29) 

In (29), the recent crustal movements will influence only the perturbation po
tential T and the free-air anomalies. Perhaps, enormous earthquakes will influ
ence the C and c1 values. Hence, the relation (29) turns to 

T. R

(( 
[ ( L\gF\ + Ci J ST( 1/1) dp

l. =w 00) 

,, 

c. = (C + 01\ l. 
(31) 

The change between the two epochs 

t = t
1 anä. t = t2 (32) 

(i = 1,2), 

results as follows, (12) to (16), (25), 

c§T R 

)f [ cf .6gF + lc] ST('I{/) dp
= 

4«' 
(33) 

l° 

~•i = 4~ ff [ (ÄgF)i + C + C1] ST('J') dp 

1' 

DOI: https://doi.org/10.2312/zipe.1986.084



207 

� 91 

----------·----------t�

Fig. 1 

---·-

-·---

----

--- ----

- - -- . ��•.!!_!_llip•o14
·-.

--

The vertical shifts of the surface of the Earth and of the tellu
roid caused by the recent crustal movements. 

According to the way along which the relation (33) was derived, J'T is the 
change of the T value for a surface particle. However, the relation (25) allows 
to consider cfT = clT (�) as a spatial potential functi.on. Considering the 
function dT from this standpoint, tha relation (33) is replaced now by the 
fundamental differential equation of the physical geodesy, specialized on the 
surface points. The relation (9), (10) and (19) yield, Fig. 1, 

<IAgF 
= ( AgF)2

- (DgF)1 04) 

with 

(� gF)2 g2 
-

02

�T2 - g T2= = 
-� r 05) 

and 

(AgF)1 = g1 
- l11 = 

'r> T1 - g T - 'c>r r 1 • (36) 

g1 is the old gravity at the point P1 at the old surface of the Earth and g2
is the new gravity,.for the same parti�le but on the :aew surface. r 1 is the
old standard gravity at the point on the old telluroid� vertical below P1.P2

1s the new standard gravity at the point on the new telluroid and vertical 
below P2•

·- -

-·-

-
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The relations (25)(34)(35)(36) lead to the subsequent equations 

The expression 
(38) 

is the directly measured gravity difference. It is the impact that the recent 

crustal movements exert on the gravity at the considered surface particle. The 
difference between 1r2 and r

1 
derives by the vertical gradient of the stan

dard gravity, Fig. 1 1 

= 01 - i G w = 01 - i G (h2 - h
1
) = t'

1 
- � G dh • 09) 

w = h2 - h1 is the vertical distance between the two considered telluroid points
with the standard gravity 

62 and 01 • The following result is obtained, 

(40) 

The relations (37)(38)(40) give 

(41) 

This ·is the searched expression for the change of the free-air anomal�es in 
te�ms of the corresponding changes of the gravity and of the normal heights 
obtained by levellings. The relation (41) is introduced into (33), and the fol
lowing integral is obtained, f'!l/5.J, 

JT = 4� f ( [ r}g + � G • J h + J c J ST ( "j') dp •

.,, 

(42) 

This is the expression for the potential of the recent crustal movements 
OT in terms of the measured values Jg and J' h. It is the formula of Strang 

van Rees and ·others, f'!l/.2Jf5.J. 

The height anomalies � can be expressed by the perturbation potential T 
at the surface of the Earth, 

T1 = G �1 (43) 

T2 = G �2 (44) 

Hence, 

J'� = i ·JT . (45) 

For the vertical shift v of the surface of the Earth, the following relations 
are obtained, (see figure 1), 

•

dLlgF = - !!T - ~ J T = (g - i2 - (g - Ö)1 = g2- g1 - ('12 -<?1) • (3?) 

rJg = g2 - g1 
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h1 
+ �1 + V 

= h2 

dh = h2 - h1 = v-(�2- �1)

Jh 

Thus, 

V 

= 

1 
= 'IT

V - "\

This equation (49) and (42) reveal, 

v = 4 � G II [ ,Jlg + i G ' Jb

p 

= 

209 

+ t2 (46) 

V - Jt; (47) 

(48) 

(49) 

(50) 

This is the expression for the recent crustal movements in terms of the mea
sured values Jg· and. dh. 

The formula (50) is mathematically -right, it was corroborated by different 
authors. However, unfortunately, this formula cannot be applied in geodesy and 
geophysics since the integration covers whole the Earth. The knowledge of the 
dg values and of the dh values all over the �arth is an indispensable prere

quisite of (50) 1 and the Jg values must have a precision of about � 1rgal 
globally, and the dh values about ! 1 mm. There is no hope that these values 
can be measured with the needed accuracy oi' ± 1 f'gal or ! 1 mm along the sur
face of the oceans, never. Therefore, a global consideration of the problem 
is never possible by (50).

The following lines will show, that it is possible t"o bring the relation - that 
connects Jg, Öh and <JT - into a regional shape avoiding .. the global version ( 5o). 

To make the situation clear, in this new relation which is to be developed 
now, the potential ÖT will not appear directly. But, the radial cerivative 
of OT, 

will be the expression which introduces the potential JT. 

3. The transformation of the global formula for the potential of the recent
crustal·movements into a regional shape

(51) 

For the deliberations about the transition from the global form to the re
gional shape, the potential of the recent crustal movements is now denominated 
by D instead of J' T, for the sake of abbreviation, 

ÖT � D = D (�) (52)
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The fundamental differential equation of the physical geodesy for the spatial 
potential Dis as follows, (37), /V, 

= (53) 

The considerutions connected with tbe equation (25) manifest tbat the func
tion Dis a spatie.l potentbl that depends on the spatial position � only, in
sufficient approximation.at tbe least. 

A comparison of (41) and (53) sbows tbe validity of the subsec1uent relation, 

f!l, 
2

+ - D 
r 

= - dg _ i G · Öh (54) 

This e�uation (54) is of fundamental importance, lt is already the searched 
relation with a regional or local character connecting the potential D and the 
measured values cf g and Öb. 

At first sight; tbe relation (54) seems to have also a global aspect, since 
D does appear directly in the second term on the left hand side of (54). But, 
the function D can not be determined by the global integration along the lines 
of (42) and (55� �t is an intBgration procedure that can never be possible in 
geodesy an<i geophysics, as discussed above ,. since it happens by 

D=4
� ff (dg+�G- Jh+ J'c)s,carl dp 

f 

(55) 

But, a more thorough examination of (54) will bring the fact to the light 
that the seconci. term on the lef't hand. side of (54) is much more small then the 
first term on the left hand side of' (54) and, further on, much more s�all than 
tbc term on tbe rigbt band Hide of this equation, at least for the most pro
bable phenoiaena of' the recent crustal movements. 

In order to nrove this speciality of tbe relation (54), tbe potential Dis 
represented by a spherical-barmonic development, the convergence of it is se
cured at tbe surface of the Earth and in the whole exterior space of the Earth, 
!:1/, (see cbapter D), tbe convergence is sure for the here introduced spheri
cal model also, 

( 1
) 

n+1
r (56) 

r i s the geocentric radius, Dn are the Stokes constants and Y O ( f, ,,{) stands
for the spherical harmonics of degree n and of the· order m = 0,1,2, ••• , n. 
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The introduction of the potential D, (56), into the fundamental differential 
equation of the geodesy gives 

(
1
) 

n+2 
(n - 1) r D n (57) 

It is very probable that in most cases the individual phenomena of the reeent 
crustal movements will have a horizontal extension of not more than some hundred 
kilometer only. A spatial extension up to the size of much more than 2 000 x 

2 000 km square will be very seldom. 

All the constituents in the recent crustal movements which have a wave length 
of smaller than A = 2 000 km can be represented by certain spherical-harmonic 
expressions of the order 

n > 20 000 km 
Akm

or, if taken in degrees of arc, 

n > 180
0 

Ao

The here chosen value of 

A = 2 000 km 

leads to 
n >10 

A comparison of the spherical-harmonic 
oo 

(n + 1) (-r
1
} 

n+2 

�� = - L
n=O 

and 

reveals, that, in case.of 

and if 

n > 10

r = 

the following inequation is valid 

(n+1) j} 1 
( 

n+2 

.(58) 

(59) 

(60) 

(61) 

developments, (56), 

Dn • y n ( Cf, A ) (62) 

(63) 

(64) 

(65) 

(66)

0 , or A 

D • y ( II)' A ) t n n T 
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'? is here the radius of' the Earth. The inequation (66) is right because of 

(n+1) >> 2 for n > 10 • (67) 

A short discussion of the convergence properties of (62) and (63) seems tobe 
recommended. The series (56) is convergent in the exterior of the Earth, f1.l, 
(see chapter D). Since 

'vD 
r- = -

0r 
r; (n+1) (iJ 
n=Ü

n+-1 

D n 
0 y 

n (67a) 

is harmonic und continuous us D, (56), it follows that (67a) is convergent in 
the exterior of the Earth, as (56). Further on, if the series 

a n
= s (67b) 

is convergent, anu if (67b) is multiplied with the constant c, it is sure that 
the series 

c,O 

� 
Il='l 

C a n
= C S (67c) 

is convergent also. Thus, the multiplication of (67a) with 1/r reveals that 
(62) is convergent in the exterior space of the Earth, Replacing c by 2/r,
(67c) and (56) demonstrate that the relation (63) is convergent in the exterior
of the .tiarth.

ReturniJlG back to (62) and (63), the introduction of (64) gives 

and 

0n 
7jr 

= 

n=10

n+2 

(n+1) (�} D
0 

• Y
0 

( 'f, A)

Thus, (54)(67d)(67e)(66) will entail 

1 �� 1 >) 1 � D 1

dh 1 )) 1 _g D

(67d) 

(67e). 

(68) 

(69)

00 

2 2 ~ (-r1 ) n+2 Dn ' r D = ~ • y n ( 'f, /\ ) • 
n=10 

r 
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The inequations (68) and (69) prove with high probability that the term 

_g D 

in the relation (54) has a relative small value , among the terms of (54). 
The relation (54) seems to be governed by the t�rms 

and 

Jg 

(70) 

(71) 

(72) 

Before the background that the potential J cannot be determined by (55) or 
by another mean, it is advantageous that the term (70) can be neglected pro
bably in most applications of (54). 

This fact will diminish the inportance of the second term on the left hand 
side of (54). 

The global term,(70) 1 seerns to be rather unimportant for t�e applications 
of the equation (54), The tenns of local character, (7'1) an6 (72), are the terms 
of dominating influence in the equation (54), Therefore, it is justified to 
state that (54) is an equation of regional or local character. However, in the 
subsequent developments, the terms (70) will be taken into account completely, 
it is in order to preserve the possibility to evaluate the impact it has on 
the relation (54). 

As a supplementary remark, a certain question appearing in a more rigorous 
consideration of the derivations which lead from (19) to (41) and (53) should 
not be overlooked. 

The expression for cJ LlgF in (41) was obtained by (37). In this fomula,
(g - 1')

2 
refers to the surface ,article in the new position, and(g - r)

1 
is 

attached to the same particle in the old position. The differential relation 
(53) for the potential D has its origin in the equations (35)' and (36), it is
the difference of them. For a rigorous derivation of (53) by (35) and (36), all
these three equations refer to the same spatial point �• Therefore, the ex
pression (g - r)2 in (35) and (g -r)

1 
in (36) must belong exactly to the same

spatial position. But, the measured values of the gravity g2 and g1 refer to
spatial points inevitably separated by the recent crustal movements, - (the 
vertical component of it is here in the fore). (g - r)

2 
and (g - r)1 must

be transfo�med by a spatial shift to recch a system of (g - r) - values which
refer to one and the same surface. 0f course, after this spatial shift, the 
values (g - 0)

2 
and (g - 0)1 are no more generally attached to the same sur

face mass particle. 

For a fixation of the ideas, the relevant expression, (19), 

l.' 
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(73) 

(74) 

(75) 

are now supposed to undergo a vertical shift by 10 cm, e.g., in erd.er to have 
them all at one ancl the same surface. 

Thus, it is to be investigated into whether the impact can be neglected 
which such a vertical shift does exert on the relevant expressions (73)(74)(75). 

'i'lith (23) anö. (24), such a shif't of 10 cm changes T by about G,(10-3 cm) and 
2 -2 the amount of � T, (75), changes by about 0.3 • 10 /l-gal, an absolutly negli-

gible amount if_considering the equation (75).

The impact that such a point shift of 10 cm takes on the te.rm (74) can be 
evaluated utilizing the Laplace differential equation.. The following approxi
mative derivations are self-explanatory, 

◊2T 
'c)z2 

dh = ( 'c) 2T + 'o 2T ) 
';>x2 Vy2 . 

Jh = (1:r.. �21:)
- G

2 + � 0x �y 
Jh = 

= 
G(�+�) 0x 0Y 

dh (75a) 

The relations (75a) are well-known from the cleriva:tions about the solution of 
the geodetic boundary value problem, (see chapter B). x, y, z are orthogonal 
Cartesian ooordinates, the z-axis is vertical, � is the height anomaly, ( 
and "l, are the deflections of the vertical. A representat\ve amount is 

� t 'c) � II 

--+-- = 2
0 X f) y

Hence, with the ab�ve approximations, the impact of the considered vertical 
shift of 10 cm on (74) is equal. to 

= 1 f-gal 

lt is a negligible amount as opposed to the impact by the free-air gradient 
which contributes 30 � gal for !h = 10 cm, (24). 

(76) 

(77) 

As to g - ?/' = ,4gF, (73), a transformation of' the relation ( 19) by a spa
tial shift must necessarily have the same effect on bbth sides of (19). Other
wise, this equation will loose its validity. On the left band side of (53), the 
recent crustal movements 6f 10 cm will have an impact of not more than 1 /"gal, 

/ km - 1 _/ • 
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according to (23)(24)(77). lt is sure that the impact on .Ll.gF on the right hand 
side of (19) wi.11 have the same amount. 

Thus, the relation (53) is right for all the here discussed applications. 

4. The global embedding term 

The potential of the recent crustal movements D that fulfills the equation (54)

consists of two parts. The first partial potential Dg is caused by the time 
changes of the geological masses in the interior of the Earth, i.e. the drift
of the masses. The souces of the second partial_potential Db are the masses 
of the surface layer which are enclosed in the space between the old and the
new surface of the Earth, 

(78) 

Thus, the potential of the time dependent mass changes caused by certain geo
logical phenomena has this equation, 

Dg = D - Db (79) 

The surface layer potential Db has the following form, see figure 1, 

q is the surface of 

Db = f f (( ¾ v • dq 

9-
the Earth, f is the gravitational constant,

sity of the masses of the Earth at the surface of it, 

f = 2.65 ,(g cm.-3 J

(80) 

f is the den-

(81) 

e is the straight distance ;of the test point and the point running over the 
surface of the Earth within the integration procedure of (80). VI is the sphe
rical distance between these two points, (84).

The radial derivative of Dg has the following relation according to (79),

�D 'v r g
(82) 

The jump relations_for the derivatives of the potential of a surface layer lead 
with (80) to 

+ f� f( (83) 

The surface of the Earth approximates a sphere with the radius R. Therefore, 
the straight distance e has the following relations, they are self-explanato
ry, 
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e = 2 R sin --f-

� = 'I 
'vr - .:: R e

The corubination of (83)(48) an� (85) yields 

�r Db = - 2 1Y f f ( J ( + J h) - 1· f 2J ) ( ¾ v dq •

9-

The integral in th� relation (86) can be expressed by Db, (80),

'l'he radial derivative of D derives from (54),

�
r D = - ( Jg + i G • dh) - i D •

The ex�ressions (87) and (85) are introduced into (82), 

Some transformations of (89) give 

2 'I · - R l) + 2R Db

(45) and (52) leads to

J( =t j) 

(84) 

(8'.;>) 

(86) 

(87) 

(88) 

(90) 

(9'1) 

In the formula (90) for the radial derivative of the potential of the geologi
cal mass shii'ts, the change of the height anomalies shall be replaced by the 
full potential of �he recent crustal movements D, (91). 

lt is converu.ent to express the mean gravity G by the mean density of the 
body of the Earth, � m. The concerned developments are self-explanatory,

~D =- ag-(-R2 G-2iifc) dh +27ff,J~ 
t;)r g ) 
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With Ledersteger, fm has the following amount, 

Thus, 

and 

2 'il' ff� 

2G - 8,;:,-fJJ � - j,, , m

. 1
R 

�he equations (92), (95) and (96) combine· to 

The expression 

(93) 

(94) 

(95) 

(96) 

(97) 

( j G - 2 !Yf f) dh = (' 7r f fm + 2frf !') öh = B·dh (98) 

is the �ouguer reduction of the gravity for a plane pl�te with the thickness 
dh. 

B = 0.3086 - 0.1119 = 0.1967 l" mgal / mJ

The introduction of (98) and (99) in (97) gives 

G D 
?'Sr g

With 

and 

follows 

= -

(99) 

(100) 

(101) 

(102) 

(103)

G = f ~ = f IJ . !t. 'ff R3 1 = 4 'ir f l!J R 
Re:: lm 3 ~ J im 

& r Dg = - tJ g - ( ~ rr ·r 9 m - 2 11 f f ) J h + ( ~ :m - 2 ) ~ D + 

1 
+ '21't Db • 

ag - B • d'h + ( ¾ _f_ - 2) i D + ~ D fm b 
• 
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K,1 is a value of local character, since Og comes from locfäl gravity measu
rements and because dh is the local shift of the levelling results. 

But, the expression K2 has a global character since the potential of all the globa�
recent crustal movement ·phenomena is involved. lt was already stated that the 
computation of D by (55) for the formula of K2 is never possible because the
Og and Oh values on the oceans have no chance to become known by geodetic 

measurements. 

Therefore, the potential D must be considered in (102) and (103) as an un
known value which contributes to the white and coloured noise of the following 
equation, (see (103)). Thus, 

2._ D'ur g 
= B•ch (104) 

K2 is the _global embedd.ing term of (103), In (103), the interdependence of 

dh (105) 

-is of local character, the global term K2 is of second order only.

If, .for a moment, the hypothesis 

D � Db
(106) 

is introduced, the term K2 will get the following shape,

1 f 1 DK2 = ( - - 1) 2 �m R (107) 

Thus, the global term K2 is equal to zero for a homogeneous sphere, f = � m

The potential of the geological mass shifts, Dg' can be approximated by
the potentials of a manifold of point masses m. concentrated at the points 

l. 

Qi in a certain depth below the surface of the Earth. Hence, the potential
D at the surface points P has the expression 

g 

Dg (P) = f I
i 

(108) 

Neglecting the white and. coloured noise that comes into being by the K2 
term, the relations (104) and (108) give 

[ (109)

dg -

' d'g 

m. 
i e 

1 
(P, Q) • 
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The inversion of (109) gives the space-time variation of the geological mas
ses mi which are the values to be determined.in terms of the empirioal expres
sion - d'g - B · Oh • 

The following facts can be pointed out: 

In the investigation of the recent crustal movements, considering the deter
mination of the time variations of the geopotential in terms of the space-time 
variations of the gravity and of the levellings, this task is a difficult prob
lem, if it is treated in full universality. Consequently, it is also difficult 
to determine ·Ghe space-time variating geological masses directly from the D 
potential values which are only defective known by (55). The gravity methode 

of the geophysi�al prospecting can be applied for the solution of (109). 

However, if the radial derivative of the D potential is introduced, and if 
even the constituents of this potential which have a wavelength of more than 
2 000 km are considered to be negligible small, in this case, it will be pos
sible in practice to determine the space-time variating geological masses of 
the individual recent crustal movement phenomena. 

A phenomenon fr�e of mass shifts or a phenomenon of mass shifts free of 
density alterations will entail the following e�uation 

= 0 (110) 

In this case, the relations (101) and. (104) lead to the following interdepen
dence of ö g and d'h, 

d'g = 0.1967 d'h ; (-111) 

dg is here measured in mgal and dh in meters. 

With (111), the plane Bouguer reduction is obtained. The relation (1·11) was 
obtained empirically in the mean by the work of Kiviniemi and Groten in Fin
land, t3]L'+l, and Torge and Kanngieser in Northern Iceland, /fJ. These authore

found in the mean 

B = 0. 2 [" mgal / m J ( 112) 

Thus, the empirically investigated recent crustal movements are caused by an 
influx of new masses which have about the same density as the old masses. Any 
deviations from the equation (111) will be the convincing evidence of an in
flux of masses which have another density than the old masses. 

The above described theoretical investigations, (103), show the limits of 
the simple Bouguer plate modal for the interdependence of Jg anci. cfh, (1·11), 

The linear relation (111) is a rough approximation only. lt must be supple
mented by the impact of the space-time variating geological mass shifts and 
by the impact of the K2 term in order to obtain the more rigorous relation
(103). 

DOI: https://doi.org/10.2312/zipe.1986.084



220 

5. 1umerical estimations about the global embedding term

In order to cornplete the above considerations, a short evaluation of the 
amount of the K2 term is to be sketched. The hypothesis (106) and the relation

2 f li �m lead to, ( 107)(80),

K2 = - ¾ i Db = - ¾ i f f � ( ¾ v dq •

'r 

( 113) 

lt is plausible that an enormous volcanic eruption in the vicinity of the 
test points will have a relative great impact on K2• For instance, a height
srüft of o. 3 km may hapyen over a circle of 10 km radius. If the test point 
has a distance of 20 km fr?m the center point of this volcanic eruption, the 
eff'ect on K2 will amount to about 10 ftgal.

Another hypothetic example is u vertical shift of the ocean bottom by 
10 cm over a circle of 1 000 km radius, perhaps during a decennium. Here, the 
K2 term according to (113) undergoes a change of about 0.4 f"gal at a test
point 2 000 km distant from the center of this phenomenon. At first sight, 
the existence of 10 of such phenomena of this kind may possibly give rise to 
a gravity change of about 4 f'gal. Such a value cannot be neglected in (103), 
it does reach the amount of the observed values of d'g, f'JJ ["4:.l. lt would 
disturb the geological interpretations by (103). 

But, a gravity shift by this amount is rather improbable. As Vening
l'11einesz did show for a certain model, an area of upheaval will be surrounded 
b;y a belt of depresuion of the crust, because the law of conservation of 
the ooasses must be observed, /7]. Thus, a regional compensation effect is in
dicated, it will lower down the amount of K2•

10 

s� 

-s 400 

1000 

............___ 1 
1500 

1 
2000 km 

Fig. 2: The upheaval velocity for Fennoscandia according to the Vening
Meinesz model, /7], fannual upheava:I]. 

'I 
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