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Summary 

For the computation of the perturbation potential and the height 

anomalies at the Earth's surface in terms of the isostatic gravity 

anomalies, a new and refined expression is developed, (97) (68). 

The theoretical error of the final solution for the height ano­

malies will not be greater than about 1 cm. Looking back to the 

traditional isostatic theory, the main progress is the fact that 

two amendment terms have to �e added to the traditional solution; 

they can be computed easily. 

Zusammenfassung 

Für die Berechnung des Störpotentials und der Höhenanomalien an 

der Erdoberfläche aus isostatischen Schwereanomalien wird eine 

neue und genaue Formel angegeben, (97) (68). Der theoretische 

Fehler bei der Finallösung für die Berechnung der Höhenanomalien 

ist nicht grösser als etwa! 1 cm. Der wesentliche Fortschritt 

im Vergleich mit der traditionellen isostatischen Theorie besteht 

darin, dass zu der traditionellen Lösung 2 Zusatzglieder hinzu­

addiert werden müssen. Diese sind leicht zu berechnen . 

.lT,JIR Bbl'll'ICJISHIDI B03MYmaJOI118ro IIOTSHIUl:BJia :.I BHCOTHHX a.HOMa.Jil!H 

Ha llOBepXHOCTH 3eMID'! K3 .0'.30CTaTH'I8CKIDC rpaBHTaIUiOHHHX a.HOMa­

mrn: rrpKBo,nKTCR HOBM K TO'IHM q>OPMYJia, (97) (68). TeopeTH­

'l8CKM norpeIIIHOCTl:, 3aKJIJO'IHTeJibHOro perneHHR npH Bhl"'IliCJieHKH 

BHCOTHHX 8.HOMaJIHH COCTa:BJI.HeT He 6oJiee ± 1 CM. CymeCTB8HHHH 

rrporpecc rro cpaBHSH.0'.IO C TPa.r{filLHOHHOH H30CTaTKtJ:8CKOH Teop:,rei1 

38.RJI!OtJ:aeTCR B TOM, 'ITO K Tpa,I{llll;ROHHOMY pernemno ,noJIJKHH 61-lTb 

rrp116aBJieHI-1 2 ,nOIIOJIHHT8JibHHX 'l.Jl8Ha, KOTOpHe JierKO BH'IßCJI}ITb. 

AHHOT8TTI!fl' 
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1. Introduction

1. 1. The general solution

8 

For the general solution of the geodetic boundary problem, con­
venient also for high mountain test points, the following formula 

was found, [5] ·eq. (267), 

(1)
4 � R JJ. [.:for +C+Cl (M)] S(p) dv+ { )l (M)}

V 

Here, T is the perturbation potential at the surface of the Earth 

u; the parentheses l J describe the fact that the sha.re of the 
surface spherical harmonics of the degree n=O and n=l has to be 

split off. R is the radius of the mean globe v in ocean level, 

F ig. 1. J gT is the free-a i r anomaly of the perturbation poten­
tial T computed for the points at the surface of the Earth u, 

oll Dr - (2/r) T 

r is here the geocentric radius of u. C is the plane topo­
graphic reduction of the gravity. c

1
(M) is about the vertical 

gradient of the Bouguer-anomalies, [5] eq. (291) and (292), 
(see also chapter C of this publication), 

(3) Cl(I-I) = - z ;H (LlgBouguer)

or 

(4) 

1 

dl. 

Further, in (1), S(p) is the Stokes function depending on the 

spherical distance P from the moving surface point Q to the fixed 

test point P, Fig. 1. 2 (M) has the following expression, [5] 
eq. (268), 

-Z -!¼- )j (Ll nao ugu ei:- )\- (JgBougu ei:-)Q 
eoo 
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(5) )? (M)

V 

As to the first term of the right hand side of (5), the formula 
for 2 1(M) is given by the equation (224) of [5 J. Concerning the 
development for Sc 1 (M), please, confer to the equations (87) 

through (96) of the publication in hand, also. In the second term 
on the right hand side of (5), Fig. 1, HP is the height of the 

test point P above the sphere v with the radius R, and, further, 

M can be approximated here in this term by, (see [5] eq. (271)), 

(6) M "" T-f � ff Ho•+a•dv.

V 

In (5), the third term is [e]" . lt is defined by eq. (248a) of 

[5] , being the difference of the potential of the visible

mountai� masses 8 at the test point P, on the one hand, and the 

potential of these masses condensed at the globe v and computed 
for the point P* perpendicular below P, on the other hand, Fig. 1. 
lt can be computed precisely by the formulae of eq. (82)through 
(BB) of the chapter B of [3 J , and by the equation (68) of the 
chapter B of [ 4 1 , too. The quanti ty of [ B J II turned out to 

be very small, [3J page 36. 
In the last term on the right 
is described by eq. (266) of 

[5 J ) . 

hand side of (5), the expression c
2

[5] , (accounting for eq. (240) of 

The formula (1) for {rJ refers to the T values along the surface 
of the Earth u. Thus, i� (1)

1it is essential that the parentheses

l 1 demand that the surface spherical harmonics of degree n=O

and n=l (contained in the T values distributed along the surface 

of the Earth u) are eliminated. After these terms are eliminated, 

we are confronted with the fact that many geodetic applications 

need not the elimination of these above terms, but, instead of 

them, the elimination of the spatial spherical harmonics of degree 

n=O and n=l in the spatial three-dimensional spherical harmonics 

representaticn □f the T values in the exterior of the body of the 

DOI: https://doi.org/10.2312/zipe.1990.114
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Earth is requiced. 
If we have freed the {1} values of (1) from the surface spherical 

harmonics of n=O and n=l, it is afterwards a little work only modi­

fying these {11 values in order to reach the situation where even 
the spatial spherical harmonics of n=O and n=l are eliminated, 

finally. lhe concerned mathematical transformations can be found 
in (5] chapter 6, eq. (115a) through (141v). The numerical 
quantities effecting this transition procedure will be rather small ,  
probably, since in good approximation, the surface of the Earth is 

equal to a sphere. 

1.2. The lowland solution 

The above relation (1) solves the problem for all cases, also for 
test points situated in high mountains. By far in most cases, the 
test point P is situated in the lowland, in low mountain ranges, 
or on the oceans. Considering this lowland constraint, (7), the 
formula (1) simplifies enormously. lhe lowland condition is, 
Fig. 1, 

x
2 

(J„ 1 

[5] , eq. (225i). HQ - Hp is the height difference with regard
to the test point P, e

0 
is the distance from P. As to the meaning 

of the various symbols here applied, this meaning can be taken 
from Fig.l. Hence, the lowland variant of (1) has the following 

shape, (see [5] , eq. (272); [6] ), 

V 

the formula for )2*(M) is with [5] , eq. (273), 

(9) 

V 

-
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Fig. 1. 
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As to the first term on the right hand side of (9), the detailed 
formula for the computati.on of S?; (M) was described by [5] 
eq. (226) through (227c). See also eq. (98) through (103) of the 
publication in hand. 
ThP. relation (1) constructs a universal, complete and closed 

solution for our boundary value problem, it is convenient for 

numerical routine computations. Introducing in (1) the restric­
tions formulated by the inequality (7), the solution (1) turns to 

the shape of (8) for the lowland solution. The theoretical error 
of (1) and (8) is smaller than about 1 cm considering the effect 

on the height anomalies which can be obtained by deviding the 
error quantity of lT� through the standard �ravity at the sur­

face test point P. 

Now, after this short repetition of the results of the investiga-
tions published in [5] and [6J , returning back to the in-

vestigations here in view, a special question of importance for 
the numerical calculations is now put into the fore: This is the 
question of the representativeness of the free-air anomalies 4g

T 

which appear in both the integrands of (1) and (8). 

1.3. The representativeness of the free-air anomalies 

In the formulas (1) and (8), the integral 

(10) X (l/(4'i1'R)) ff ,1gT·S(p)·dv

V 

does appear. The more smoothed the free-air anomalies Jg
T 

the 
easier the computation of the integral (10) for X, this matter is 

obvious. Dr, speaking with other words, the better the represen­

tativeness of the free-air anomalies dgT the easier the numerical
evaluation of the integral (10) in order to find the X value. 
Along the oceans and in the lowlands, the free-air anomalies have 
a rather good representativeness, it is well-known. But, in hilly 
and mountainous areas, this good representativeness of the free-air 

anomalies is lost. In the mountains, these anomalies show a clear 
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linear correlation with the topographical·heights, H. Thus, the 

first impression may come up that the hilly and mountainous areas 

demand a relative dense net of gravity stations, counteracting the 

bad representativity of these anomalies in these areas, a very 
expensive affair. 

But, a remedy against this handicap is found easily. The scource 

of this remedy comes even from the clear linear correlation of the 

free-air anomalies with the heights, H, already discussed above. 

This is a well-known correlation, and this is a well-known remedy. 

1
0 

1
0 

Fig. 2. 

In this context, a square grid is laid over the mountainous area 

considered. The grid cells may have a side length of 1
° 

x 1
°

, 

perhaps, (see Fig. 2). For the interior of such a cell, we have 

the well-known relation 

(ll) a( 'f , ?- ) + b • H 
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Vithin a cell of 1° x 1° size, b is taken as a constant; in most 
cases, we have b � 0.1. The free-air anomalies dgT and the func­
tion a( �. A) depending on the latitude and longitude are mea­
sured in 10-J cm sec-2, (mgal). The heights H are taken in meters. 
The essence of the relation (11) lies in the fact that a( 'f, .l) 
is a rather smoothed function within an individual cell, a('f, ,l.) 

can be computed from the free-air anomalies and the heights by 

for the individual gravity points. 
Since a( 'f, .l) is a smoothed function within an individual cell, 

some few stations with given 4 gT and H values will suffice for
finding a reliable mean value of the function a( </, l) averaged 

over the considered cell. Along these lines, we can find the mean 
value äi being the mean value of the function a( Lf, l) for the 
considered cell, having the running number i. For the same cell, 
Ri is the corresponding mean height taken from the topographical

maps or from a digitized height system. Even in the mountains, 

this net of height data is very dense, a fact which allows fin­
ding reliable values of Ri for the averaged heights. Hence, (11), 
for the cell of the running number i, the mean value of the 
gravity anomaly can be computed from äi and from Ri by the for­
mula (13), 

(13) 

The value of bi for the cell of the running number i is deter­
mined in such a way that the amounts of a( �, ). ) wi thin this cell 
have no more any correlation with the heights H. 
The relation (13) can be inserted into (10). The integration of 
(10) can be transformed into a summation. Along these lines, the

relation (10) turns to 

(14) X

-

(1/(4 'lt R))·Llv L
i 

+ (1/(4 'ttR)) · LI v � bi• i\ . (S(p))i

(l 2) a ( 'f , ~) = .:1 g 1 - b • H , 

• 
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ai comes from an averaging over the smoothed values a( 4' , .l-), the
amount of Hi is precisely computed from the topographical maps.
Thus, finally, in (14) there is no more any trouble with an 
averaging over too few free-air anomalies of bad representativity 
in the mountains. 
But now, in the subsequent investigations, we follow another way 
which leads to a second remedy against the bad representativeness 
of the free-air anomalies in hilly and mountainous areas: This is 
the way which uses isostatic anomalies of the gravity. 

2. The model potential M

2.1. The universal solution for the model potential M 

The model potential M was introduced by the relation 

(15) M T - B 

[5] eq. (145). T is the usual perturbation potential and B is
the potential of the mountain masses situated above sea level 
(the mass density being 1'> = 2670 kg m-3,some authors prefer
2650 kg m-3).
In the exterior of the body of the Earth, the spatial function for 
M fulfills the Laplace differential relation, as the function for 
T and B do . 

( 15a) 

x, Y, z: Spatial Cartesian 
eo - ordinates. 

We have, ( 5 J eq. from (148) through (152), 

(16) - o M/ d r - ( 2/r )M

DOI: https://doi.org/10.2312/zipe.1990.114



16 

(17) .1 gM

( 1!3) A gT oT/ ör - (2/r)•T 

(19) A 9g rJ B/ cJ r (2/r)B 

(20� ,1 gM iJT/ cJr + c)ß/ c)C - (2/r)·(T-B). 

The above 5 lines are self-explanatory. In (18), (g)Q is the ob­
served gravity at the surface point Q, and (q') Qe 

is the standard

gravity at the telluroid point Qt perpendicular below Q, Fig. 1. 

The distance between Q and Qt is the height anomaly C

Dur model potential M fulfills the following relation, [5] 
eq. (223), 

R
1 

is the geocentric radius or the test point P, 

(22) 
I 

R 

\•J is the 
by (16)' 
reader is 

= R + H
P 

ball of the radius 
and C1(M) is given 

asked to refer to 

R 1 , (see Fig. 1). LI gM is described

by (3) and (4). As to S'2 1 (M), the
eq. (87) and (88) of the publication 

in hand and to [5] eq. from (224) through (225h). 

2.2. The lowland solution for the model potential M 

By the lowland condition (7), the formula (21) turns to its low­
land variant, [5] eq. (231), 

w 

-

w 
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As to the meaning of 2 ;(M), the reader is asked to refer to eq. 
(98) and (99) of the publication in hand, and to [5] , eq. (230)
and (226) through (227c). The formula for 2 ;(M) is much more
short and much more easy to compute than that for Sc 

1 
(M).

3. The perturbation potential T

3.1. The universal solution for the perturbation potential T 

In the formula (21), the model potential M can be substituted by 
the perturbation potential T, because both of them obey the 
Laplace differential equation, and because both of them have 
about the same structure and amounts of about the same order. 

Hence, T has the universal formula 

(24) {r} = 4 JR , JJ[L1g1 + c
1

cn].scp),dw + fS?
1

cn}
w 

In (24), M was replaced by T. Ll g
1 

comes from ( 18). c1 (T) is 
explained by (3) (4) of the publication in hand, or, better, by 

[5] eq. from (278) through (284), and by [5] eq. (290). 
There, in [5] , we found in good approximation, replacing M 

by T, (Z=Hq - HP
),

(24a) C (T) � Z • .1_:__r_ 1 cJ 2 2 

neglecting Cl.b(T), [ 5] eq. (290); see also eq. (69)(84) of the

publication in hand. In (24), 2 1(T) is found by (87) (88) of 
the publication in hand, or by [ 5] eq. (224) and (225). 

3.2. The lowland solution for the perturbation potential T 

In that way that transfonns from (21) to (24), the lo\':land solution 
for T follows from (23). We have 
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(25) 4 'li R'
w 

2*(T) is found by [5] eq. (230) (227), substituting M by T. 
1 

4. The potential Biso of the Airy-Heiskanen isostatic system

4.1. The potential Biso in terms of the masses 

Now, we have to think back to the traditional isostatic system of 

Airy-Heiskanen. In this context, first of all, it seems to be 
advisable to recapitulate the main ideas inherent in this system. 

In the center of our retrospect lies the isostatic reduction of 
the gravity values transporting them from the surface of the Earth 
u, down to the geoid. 

This topographic - isostatic reduction removes the gravitational 
effect exerted on the surface gravity value g by the mountain 
masses and by their roots, and by the oceans, and by their anti­
roots. Further, this topographic - isostatic reduction involves 

also the free-air reduction of the gravity which accompanies 
a vertical shift of the point Q from the surface u down to the 
point Q1 on the geoid, Fig. 3, Fig. 1, 
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Globe, tr 

D= 30 km 

Fig. 3. 

DOI: https://doi.org/10.2312/zipe.1990.114



20 

The running point Q an the surface of the Earth u has the observed 
gravity g = (g)0; Fig. 1,3.
The usual isostatic reduction of g describes the transition to an 
Earth the crust of which has everywhere the widst D = 30 km

1
being 

free of mountains and oceans and free of the corresponding roots 
and antiroots, [2] [7] [8] [9] • As taken from Fig. 3, the 
cross-hatched visible mountains of standard density Ji = 2670 kg m-3

exert a certain gravitational effect 6gt an the gravity in the
sui:face point Q. This effect c5 gt is computed, at first, Than,

Jgt is subtracted from the g value observed in the surface point
Q. ogt comprises the Bouguer reduction and the terrain correction
of the gravity. Since Jgt has reference to the surface point Q,
the following denotation with a special suffix Q makes this matter

more clear, 

(26) 

Further, the hatched mountain roots below the compensation depth 
of D = 30 km exert a second gravi tational effect O gc an the
gravity in the surface point Q, Fig. 3. This second effect is 
taken from the isostatic reduction tables or it is computed by the 
mass-line method, [ 8]. For the mountain roots, a density deficit 
of - 600 kg m-3 is applied, in the Airy-Heiskanen system. The
fact that d gc refers to the surface point Q can be stressed by
the suffix Q, 

(27) 

cf gc is subtracted from the surface gravi ty g, too, - as J gt.

Finally, as the third step, the point Q is subsided downwards in 
vertical direction, down to the point Q 1 an the geoid, Fig. 3. 
The accompanying gravity change is approximated by the standard 
value of the free-air reduction, according to the instructions 
which can be found in the text books an isostasy, [ 8 J • Hence, 

-
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the amount of (as to (28),more precise considerations require 
the addition of the term quadratic in the height h

0
) 

(28) 2·( p /R)·h0

has to the added. 4 is the standard gravity. h0 is the orthometric 
height, i.e. the height the point Q has above the geoid, Fig. 3. 
Consequently, the topographically and isostatically reduced gravity 
at the geoid point Q 1 is as follows, 

(29) 

Or, to be more precise in the writing style, 

(JO) 

[ 
giso] is the gravity, being reduced topographically and isosta­

tically in the traditional way. 
In the mountains, ü9t is positive and c5°gc is negative. For 
oceanic areas, the signs of the corresponding effects are reversed. 

The following matter should be stressed: The amounts of (26) and 
(27) refer to the surface point Q. However, it has to be observed
that some isostatic tables give the cl gc value for sea level. Thus, 
these tables yield ( o gc)Q 1 • Supplementary , a modification of 
( c5 gc ) Q I has to be added, accounting for the transi tion from Q' 

to Q, [ B] 
After this excursion into the field of the traditional isostatic 
considerations, now, we return back to our boundary value problem, 
(see eq. (24) (25)). 
As a main feature of the coming investigations, the harmonic poten­
tial Biso is considered in the exterior of the Earth and on the 
surface of the Earth u. lt is the gravitational potential generated 
by the following 4 scources, Fig. 4, [ e] : 
1. The mass surplus of the visible mountains, having the density

surplus J .Ji1 1and filling the volume v
1
.

2. The mass defect of the oceans, having the densi ty defect d Ji 2 ,
and filling the volume v

2
_
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3. The ■ass defect of the continental ■ountain roots, having the
density defect cf ,,.3 and filling the volu11e v,-

4. The ■ass surplus of the oceanic antiroots, having the density
surplus of J & 4 and covering the volume V 4•

These densities here implied have the subsequent values:

01) J ,,.,1 + 2670 kg m-3 

02) J "' 2 
- (2670 - 1027) kg .-3

(33) cf 1"3 0270 - 2670) kg .. -3

(34) <f.8•. (3270 - 2670) kg m-3

The volume v1 has the running point J1 in its interior. The ana­

logous property is valid for v
2 

and J2, v
3 

and J3, and v
4 

and J
4

;
Fig • •• 

In the coming derivations, the volu■e ele■ent is expressed by 

05) dV r2• sin p • dr· dp ·dA. 

The mass ele■ent around the running point Jj, (j 
the following expression, Fig. 4, 

06) dmj = J�j · dV, (j 1, 2, 3, 4).

1, 2, 3, 4), has 

In sequence, the suffix j of Vj and Jj' (j = 1, 2, 3, 4), is also

assigned to the corresponding expressions cf1'>j of (31) (32)
(33) (34), one after the other.
Hence, in the exterior point 0, the potential Biso' now in the
fore, is co■puted in the subsequent way, (37), Fig. 4, 
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(37) ( 8iso ) Q rI:
j=l 

23 

J� 
j 

1 dV. 

e (Q, Jj) is the distance between the exterior point Q and the 
running point Jj with the ■ass ele■ent dmj situated in the volume 
Vj, (36); Fig. •· Vj is the volume havlng the density 

J,J,
j

.
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Fig. 4. 
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Now, the exterior point Q subsides down to the surface of the Earth 
u reaching the point Q, Fig. 4. In this procedure, the distance
e (Q, Jj) turns to the distance e (Q, Jj), (j= 1, 2, 3, 4); (see
Fig. 4). Consequently, (37) changes to (38), 

OB) ( 81s0 l Q
4 

f·:L 
j=l 

1
· dV. 

For our investigations, we need the potential Biso' just as the
radial derivative of it 

09) cJ eiso / cJ r

and
1
just as the gravity anomaly, (19), 

(40) 
.1 99_ 

190 
(2/r)·Biso·

All these 3 values have to be computed for points an the surface 
of the Earth u having the radius r, Fig. 1, 

(41) r = R + HQ

(37) and (38) give

(42) f · 1=
j=l 

or, abbreviating, 

" 8 / cl r -0 iso 

4 e ca~ J.) }-dv, 
or 

11=0 
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1 

c) 
4 

cS1'tj ·JH 
a e(Q,:l.} 

(42a) 81so f 'L. ·dV
c) r fJ r 

j=l 
V. 

J 

Further, 

1 
4 

J 1),j · JJJ 
c) e(Q, J.} 

(43) L19e. - f ·L: ·dV -
lSO j=l a r 

vj

- f-� 
4 ·JH 1 
C J�j • dV.r e(Q, Jj} 
j=l 

V. 

Here, in (42) (42a) (43), the derivative

(44) 
a 

[lle(Q, Jj)] 
c) r

is reached by the radial derivation of 

and by the subsequent transition froM the exterior point Q to the 

point Q situated on the surface of the Earth u, (42).

Co■paring (26) end (42a), the relation (46) is obtained, 

J 
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{) 
1 

2 e(Q, j_) 
(46) ogt - f ·[ J ,,._ . JH c) r

j=l 

vj

A look on (27) and (42a) shows that (47) is right, 

4 

Hf (47) 09c
f • L J�j 

. 

j=J 
vj

Hence, from (42a) (46) (47), 

(48) ( ! r 
8iso ) 

Q 
- ( J 9t ) Q 

-

1 

a e(Q, 
Jj)

c) r

, dV 

•dV

The values on the right and left hand side of (48) refer to the 
surface points. 

4.2. The universal solution for the potential 
B180

Same properties of the potential B
150 can be confronted with some

properties of the perturbation potential T of (24) and (25): In the 
exterior of the body of the Earth, Biso is harmonic as T. Biso and 
T are continuous functions. Further, in the exterior and on the 
surface u of the Earth, B150 has about the same order as the per­
turbation potential T. 

J 
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Hence, in (24), Biso can be used as a substitute for T. In doing 
so, (24) changes to (49), 

w 

A 98. is explained by ( 40), and even these values of ( 40) are
l.SO 

understood that they are distribu ed on the Earth's surface u, 
Fi9. 1. 

c1(B150) of (49) neeos no separa e detailed discussion, since, 
la er on, th s term d1.sappears. lt is merged in the term 

c1(T-B150) = c1(I), (see eq. (52)). c1(Bi50) and c1(T) are combined 
into t e one term c1(I). Cer ain, this term C

1
(I) and the numerical 

calculation of it is thorou9hly discussed by the equations from 
(51) througn (86), later on.

521(Biso) comes from the equation (224) of the former publication 
[5), replac1.ng M by Biso 

4.3. The lowland so u ion for the potential Biso 

The low and � uation for the poten ial Biso is derived from (25), 
in a si■ilar �ay as (49) was obtained from (24). Consequently, 
we have 

(50) { eiso l [&98 +c1(Bis ) ]· S(p)•dw+ ! 2•1ce. )l .
1.so a l 1.so l 

w 

S2 ;ce
150) der1.ves fro� the e 

by Biso· In (50), t e low1and 
q estlon how to find A 98_ \SO
in connection with eq. (49). 

oat1.on (230) of r5], replacing M 
cond1t1.on (7) 1s effective. The 

and c1(Bi50) was already discussed

q 

II 
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5. The superposition of the two potentials T and B150

5.1. The superposition of the universal solutions for T and Biso

Considering the fact that the free-air anomalies have not very 
smoothed values in the mountains and in the Mittelgebirge, we 
leave now the free-air anomalies in order to reach a system of 
anomalies which has s�oothed values. But now, we do not prefer the
s�oothing procedure connected with the equations from (10) through 
(14). Instead of it, now, we change over to the isostatic anoma­
lies of the gravity. Within this procedure, the relation (49) is 
subtracted from the relation (24). Thus, the equation (51) is 
found, [1 ] , 

(51) ,dg8_ + C1 (0} S(p) •dw + 
150 

In (51), the subsequent relation (52) is inserted, 

(52) I

With (3) (4), and considering the relations (269) (278) (279) (280) 
of [5] (replacing M by T ,c

1 
(I) is found to be linear in I. 

Thus, 

(53) 

Further, accounting for ( 224) and ( 225) of [ 5 ] , 21 ( I) is linear
in I, too. 

T - 8 . • 
150 
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Hence, 

(54) Q 1 (I) 

The relations (53) and (54) were respected in the derivation of 
(51). 

The essential of the equation (51) is the fact that the AgT values, 
being rugged in the mountains, are now replaced by the values of 

(55) 

These values of (55) are very smoothed, also in the mountains. By 
the superposition, (52), we came away from rugged gravity anomalies. 
The anomalies of (55) are in close vicinity to the isostatic ano­
malies of the gravity, this matter is discussed in chapter 6, 
later. 
Thus, 

(56) 

[ A giso] are the tradi tional isostatic anomalies of the gravi ty.
The relation (56) and the precise shape of it are also discussed 
later, in paragraph 6, from page 31 through page ;ss. 

5.2. The superposition of the lowland solution for T and Biso

Fro11 (25) and (50) , 
solution tollows,

the relation (57) for the lowland 

A g 8 „ 
iso 
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(57) 

w 

2; (I) derives fro11 the equations (230) (227) of [ 5) . These 
relation of [ 5] are linear in I. See also the equations (98) (99) 

of the publication in hand. Thus, (52) (53) (54), 

2 ;eo 

The relation (57) has the essential property that the smoothed ano­
malies .'1 gT - A 98

. appear, instead of the .d gT ano11alies 

150 

which are rugged in the mountains. 

6. The isostatic gravity ano■alies

Now, the relations (55) and (56) are in the fore. The free-air ano­
maly 4gT, appearing in these formulas, can be computed by the 
observed gravity at the surface point Q, g = (g)Q, and by the stan­
dard gravity (7)Q at the telluroid point Qt perpendicular below
of Q, (18). t 

(59) is an often used elementary formula, (18); it can be brought
into the following shape,

(5B) S2. 1*cn - n 1•ca. ) = 2 •1n-a. ) = 
150 150 

DOI: https://doi.org/10.2312/zipe.1990.114



32 

(60) 

To 
is the standard gravity at the level ellipsoid, and hn is the

normal height of the point Qt above the level ellipsoid (mean
Earth ellipsoid). (40) and (48) yield (at the surface point Q) 

(61) 

The relation (61) is understood that it refers to the points Q 
situated on the surface of the Earth u, Fig. 1. 
In this elaboration in hand, we define the isostatic anomaly in 
the following way, in view of (68), 

The tenn quadratic in hn can be added to 2(;:r- /r) hn , in (62). 
However, the traditional isostatic anomaly is as given by (63); 
(see (29) (30)), (see also [ 8] ). 

<63) [ .dgisoJ= [ gisoJ - To 

The term quadratic in h
0 

can be added to 2(0/r) h0 , in (63). 
The difference between (62) and (63) comes from the difference 
between the normal and the orthometric heights,(30) (62).With (60) 

and (61), the crucial anomaly (given by (64) ) 

(64) 

of (51), (55) and (57) has the following expression 

A 9y - A g8 iso 

cf 9 - <21r> e. C 150 
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Co■paring (62) with (65), the subsequent i■portant relation 
follows, in view of (51) (57), 

(66) .d 99_ 150 d 9iso + (7/r)·B1so

As to the second ter• on the right hand side of (66), the expression 
- B150 is the change the potential at the surface point Q under­
goes by the re■oval of the mountain masses and their ■ountain roots 
(and the mass defect of the oceans and their antiroots). 

In the traditional theory of the isostatic gravity anomalies, there 
appears also the indirect or Bowie effect exerted on the gravity 
ano■aly by the potential change of - Biso' 
refers to the geoid level, it has the shape, 

(67) (2/R),e150

[ B] • This effect

[ e] 

The second ter■ on the right hand side of (66) is in very close 
neighborhood to this Bowie effect, (67), obviously. 

Finally, it seems to be useful to stress again the fact that the 
isostatic anomalies A giso of (62) are ■uch more smoothed and much
■ore representative than the free-air anomalies �gT of the
gravity.

In this context, we present Table 1. For certain stations in the 
area of the Alps, Table 1 represents the position ( 'f, .l ) , the 
height h, the free-air anomaly, and the isostatic anomaly of the 
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Airy-Heiskanen system (of 30 km compensation depth), [ 8] • 

Obviously, the isostatic anomalies are much more smoothed and 
representative than the free-air anomalies. This is a well-known 
fact which the publication in hand makes use of wi th advantage. 
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Table 1 

Gravity ano■alies iPI the Ales 

Ano■alies 
Station H, Free-air, Isostatic 

Airy-Heiskanen 
Syste■, 
0=30 k11, 

• l0-3c■ s-2 l0-3c■ s-2

Ca111piglio 46 ° 13!, 10 °51.4 1530 + 58 + 16
0ber-0rauburg 1 46 44.9 12 58 618 - 38 + 33
Greifenburg 2 46 45.1 13 11 632 - 36 + 21
Sandbüchel 46 45.3 11 01.8 2967 +116 - 44

S. Leonardo 46 48.7 11 16.4 655 -107 - 4

Lienz 1 46 50.0 12 46 674 - 51 + 16
Möllbrücken 4' 50.J 13 22 556 - 42 + 28
Hochstradenkogl 46 50.8 15 56 607 + 69 + 38
Iselsberg 46 51.4 12 52 1198 + 19 + 22
Sterzing 46 53.9 11 26 950 - 75 - 17
Weissenbachscharte 47 01.4 10 2196 ♦ 71 - 30
Sonnblick 47 03.4 12 58 3099 +143 - 24

Steinach 47 05.4 11 28.4 1050 - 76 - 31

Bucheben 47 09.5 12 58 1062 - 68 - 33

Innsbruck 1 47 15.7 11 24.3 584 -127 - 44 

Mixnitz 47 19.8 15 22 445 - 46 - 8

Bruck an der Mur 47 24.6 15 15 487 - 19 + B

Wörgl 47 29.5 12 03.9 508 -108 45
Se■1Rering 47 38.0 15 50 986 + 70 + 26
8enediktbeuern 47 42.5 11 24.1 618 - 37 - 20
Hohenpeissenberg 47 48.1 11 00.9 996 + 4 - 18
Wiener Neustadt l 47 48.5 16 15 270 - 13 + 1
Kaufbeuren 47 52.1 10 38 680 - 16 - 17

'f 
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7.1. The universal final solution 

The co■bination of (51) and (66) yields the final solution of our 
boundary value problem developed in terms of the isostatic anoma­
lies Llgi , (62). This formula is universally valid, also inso 
high ■ountains and in the Mittelgebirge, [� • 

(li8) 1 
4 TI' R' 

w 

+ 1..e.
r 1so 

+ C 
1 

( I) } 5 ( p) • dw +

For the introduction in (68), Biso can be computed by (38) inser­
ting the densities of (31) (32) (33) (34). The T value on the left 
hand side of (68) refers to the surface u. 
The potential I was described by (52). 
The terms c1(I) and o1(I) - produced by our here developed precise
theory - construct in detail the refinements of the traditional 
computation of the T values in terms of the isostatic anomalies. 
8y these refinements, the theoretical error of the resulting height 
anomaly T / o' gets smaller than about 1 cm. 
As to the calculation of c1(I) by [5] eq. (269), c1(I) derives
from the deflections of the vertical in the potential field I, 
substituting M by I. These deflections in the potential field I 
are denominated by 0( 1 and cL2• The potential I comes from ( 52)
of the publication in hand. 
Thus, [5] eq. (269), substituting M, fi• /:2 by I, c.l, 1, oc2,

(69) 
tan .p 
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Gis the global mean gravity, and Z = HQ - H
P 

is the height diffe­
rence wi th regard to the test point P. ex 1 and °'-2 have the
following equations, [5] eq. (153) (154) (156), 

(70) C>c: 1
1 .-1 c)I -

R 1
+ Z g" Bf 

(71) �2 
1 • .-1 • _1_ c) I

R 1
+ Z g" cos 'f �A 

with 

(72) g* = 1 'v (U+I) 1 1 grad(U+I) l

U is the standard potential. The values of T, U, I, l:l<.1, a.::2,
R 1 

+ Z, g*, 'c> I/ � 'f' , and c) I/ 'c) A refer to the surface of the
Earth u. 

In order to express the amount of c1(I) in terms of the isostatic
anoaalies (62), principally, the ideas applied in [5] , eq. from
(274) through (292), can be used also here,(see also chapter C ).
Thus, we have in a self-explanatory way,

(73) 

(74) GZ r 'c)Qtl + ��2 ]
l 'c)x 0y 

x and y are horizontal coordinates. 

(75) - z [ 'c) 2 I/ "c) x2 + c) 2 I/ � y2 J . 
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Introducing the Laplace differential equation, we have 

(76) 

z is the vertical coordinate. 

(77) 

the detailed developments for the two terms on the right hand side 
of (77) yield 

(78) Cl.b

(78a) dz
dx 

�2 I - Z·[ 
c) x ,h

tan v x , dz
dy 

tan v x
d 21 tan v y ]+--

dYclZ 

tan v y

vx and vy is the slope of the terrain in the north-south and in the
east-west direction. (62) and (66) give (79), anticipating (85) 
and (86), (see also [5] , eq. (2H)), 

(79) LJ • - 9iso - L19iso - (2/r) •T

The new sy■bol of (79) is L'.'.lg;
50

• lt denotes the ■odified iso­
static ano■alies, ■odified according to (79), ■odified by the 
addition of (2/r) T. 
The details of (79) will be derived later, below, by (85) (86). 
The first ter■ on the right hand side of (78) gives with (79), 
for a north-south profile, 
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(80) 

The suffix ( )0 and ( )u refer to the end points of the considered 
north-south profile of the length L'.1 x. 

Here is 
(80a) 

(80b) 

cl.b.2. follows in a similar way as cl.b.l.' exchanging x for y. 

For the amount of cl.b.l and cl.b.2 expressed by Bouguer anomalies,
we found in [5] , eq. (290), for the extreme condi tions in the 
Swiss Alps 

(81) cl.b.l ';;' 0.02 · 10-3 cm s-2,;;: o

cl.b.2 in terms of the Bouguer anomalies will have a similar
amount, in the area of the Swiss Alps. 

On the oceans, in the lowlands, and in the Mittelgebirge, the 
amounts of cl.b.l and cl.b.2 in terms of the Bouguer ano■alies
will be much more small than (81), sure. 

But now, the amounts of cl.b.l and cl.b.2 expressed by the isosta­
tic anomalies ,dg•iso are in the fore, (BO). These amounts are 
evaluated by a small test computation carried out in the profile 
of E. Holopainen, ( [8] , page 194, Fig. 7-1). This profile 
crosses the Alps from Trieste to Salzburg, about. Hence, we have 
an extreme mountainous area. By a short computation of cl.b.l 
according to (80), in terms of isostatic gravity anomalies, for
c1 b 1 an absolute amount which is by far smaller than 

. • 
-3 -2 0.02 • 10 cm s , i.e. 0.02 mgal, was found. This amount is 

negligible. 

(81a) 1 cl.b.l ( L'.Jg* iso) l<o.02 • 10-3 c■ s-2

For this Holopainen-profile, the amount of cl.b.l in terms of the
Bouguer anomalies was computed also, by the formula of [5] , eq. 

(289). cl.b.l in terms of Bouguer anomalies proved to be a little

.ö" )- Ll" ( 9 iso o ( 9 iso)u z . ---==.....:=------==--=-
Ll X 

L1x = (x) - (x) > o, 
0 U 
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greater than cl.b.l expressed by isostatic anomalies, (81a).

For lowland areas, for the oceans, and for the Mittelgebirge, the 
absolute amount of cl.b.l and cl.b.2 in ter■s of isostatic anoma­
lies will be ■uch ■ore small than 0.02 • 10-3 cm s-2 which is the
quantity found in the Alps, (81a). Thus, summarizing these test 
co■putations in the Holopainen-profile, the isostatic anomalies 
yield negligible a■ounts for cl.b.l and c1.b_2•
See also chapter C of this publication. 
After this excursion into the Alps, we look back to the equations 
(73) through (80) of the publication in hand. Now, we continue
to consider the investigations about c1(I), by analogy with [5],
eq. (274) through (272). In the course of the deductions connected 
with (73) (77) (81a), c1(I) can be expressed by the following
relation approxi■atively valid, 

end further (see [5] eq. (284)), 

And, regarding (79), 

(83a) 

Thus, finally, the 
the shape given by 
(285) (291) (292);

for■ula for routine co■putations of c1(I) has
(84); (see Fig. 1). (see [5], eq. (274) (284) 

�] eq. (37)). 
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\) 
-c_LJ

---'

g=
=-=
·s

:.:;
o_>y

;::__
-_c_L'.1_9

-=;=so"-)-"-Q • dv.
eoo

v is the sphere wi th the radius R, being the ball (1n sea level). 

Now, we turn towards the equation (79), especially. Belated, we 
supple•ent the verification of this equation, now. In this context, 
the relations (52) and (66) yield (85), considering the following 
differential relation for L:I 9r , 

(84a) LJg1 = - ';;) I/'cJr - (2/r)·I. 

�I/'&r + (2/r)•I + (2/r)B150 = 

= 'zy(l-8150)/'cil r + (2/r)·T

= 1d I//c)r + (2/r)-T 

(85) turns to (86), (see (79)),

(86) - Llg150 - (2/r)•T

The last term of (86) with the star index has the meaning of an 
abbreviating symbol. 

J 

V 

(a5 ) - .L)giso - L1or + <2/r)Biso 

'c>I/'clr 
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After the preceding developments from (69) through (86), we can 
finish now the description of the details of the computation of 
the amending term c1(I) of our basing expression (68) for the 
perturbation potential T. 
(68) expresses T by the isostatic anomalies Lfg1 80 

in the form of
a universally valid formula, valid also in the high mountains.

Now, the details of the computation of the amending term Q
1

(I) 
of (68) are in the fore. 

The relation (224) of [5] gives, substituting M by I, 

(87) Q 1 (I) --3� (( F(I),S(p)•dw
(4 'il"R 1 )2 

))
+ 

1 + --
211' 

w 

w 

w 

(( L1o1 � • [ 2 - ,.> J .: · •• • 
w 

• dw +

I vl - • - • dw +
R R 

1 (cos p/2) 2 
z -·----•b 

R sin p 7 -2 �2
dS(p) ]•dw +

dp 

+ ~ ~r .! . I. [J --4-]. ~ 
2 ,, ) j R R y+y e 
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2 I LJ -x 
91 y+y2 . de dA + 

I 
[ 

- 2x 2 

] 
I • --

2 + v J · de • dA 
R 

y+y 

'c) I (v 
'c) e' 2 bll) • de · dA 

+ 

+ 

1 
+-

2'ir ff (-GZ)• • • I i(x �l' x 1:>G2)•de · dA 

The radius of the sphere w is R + HP
, (see Fig. 1). In (87), we 

have fro11 [ 5 J , ( 225) through ( 225h), 

8 

(88) F{I) r 
i=l 

(89) fl {I) )) 
w 

(90) f2{1) ff 
w 

(91) fJ{I) II 
w 

fi (1) 

Z [ 1 ] 1 L'.Jgl - · 2 - � · - · dw
R 

y+y 
e

1 

!L[,-�
J
1,,. 

R R 
y+y 

e
1 

I vl --. dw 
R R 
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(93) 

(94) f6(I)

(95) f7(I)

(96) f9CO
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\\ � ! ...,(�co __ s___,_p-'-/_2�) • b7 • dw
R • c)p R sin p 

w 

x2 ·,
,1g1 �·de · dA

y+y 

� � 
I 

[ 
- 2x2 

] 
f 

R. y+y2 
+ v3 • de · dA

ll �-

(v
I 

cle' 2 
- b11)-de • dA

• 

- ff GZ • c»(x��l' X ot2) ·de · dA

8y the relation from (68) through (96), the precise and universal 
for■ula for the perturbation potential T in terms of isostatic 
gravity ano■alies along the Earth's surface is developed in good 
detail. The theoretical error for the height anomalies T/o' will

not be greater than about 1 cm, basing on (68). 

As to further details, the precise and complete expressions for 
b7, b11, v1, v2, v3, x, x, y , which appear fro■ (87) through
(96), can be found in [5], eq. (75) (76) (78), (80) to (84), 

and also in the appendix of [ 5] • 
The for■ula (68) is of use especially if the height anomalies 

S = T/0 
have to be co■puted up to a precision of ! 1 c■ in

the mountains. This case is very rare. In most applications, the 
relative si■ple lowland version of this solution will suffice. 
This case is discussed subsequently, it will suit the purposes 

2 

• 
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for test points P situated on the oceans, in the lowlands, and in 

the Mittelgebirge, as long as the slopes of the terrain are not too 

great. 

7.2. The lowland version of the final solution 

The co■bination of the relation (57) with (66) yields the lowland 

version of the final solution in ter■s of isostatic ano■alies, 

(97) :_1_
4 'ii' R'

w 

In (97), the potential 8
iso 

on the surface of the Earth u can be 

co■puted by (38) with the densities of (31) (32) (33) (34). The 

T value on the left hand side of (97) refers to the surface u, 

too. 

The ter■ c
1

(I) constructs one of the amendment terms, being 

a■end■ents which correct the traditional theory. 

lt can be computed along the lines of (69) through (86) • 
.. 

The ter■ Q
1

(I) of (97) is the second amending term of this 

lowland solution. lt is a simplification of (87), this simplifica­

tion is induced by the lowland constraint (7). The lowland relation 

(230) of [ 5 J leads to (98), if M is replaced by I.

(98) F ( I) ·S(p)· dw + 

w 

w 

• 

+ - 1 ~\ .dg1 1. l -1. • dw + 
27r R 2 e 

0 
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! I L. dw
R R e0

- 8: •' \ \ R �; z · [ �:;:�;2 ) 2 
+ 2 dS(p) ] · dw

dp 

In (98), we have the subsequent formula (99) representing F•(I), 
obtained from the relations (227) through (228) of [5],

3 
(99) F*(I) L

• 

(1)fi 
i=l 

with 

(100) r;cn )\ L1 Z 3 1 gl 
- - - · dw
R 2 e0

w 

(101) 
• 

\� ! I _!. • dwf2(1)
R R eo 

w 

• 

)f � z CDS p/2 (102) f3(1)
•R2 p/2)2 

. dw 
R c)p (sin 

w 

w 

w 
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{lOJ) 2 R sin p/2 

As to the computation of e150, (JB), see also [2] [1] [e] [9).

As to the impact c1(I) exerts on T by the formula (97), we

recom■end warmly to read the section 12.2. of [5] , especially 

its equations from (29J) through (J05); further, the section 5 of

[6] is reco■mended likewise war■ly, as so as the chapter C of the
publication in hand. 

B. Conclusions

The isostatic anomalies of the gravity are defined in a new way

for points at the surface of the Earth considering the transition 
fro• the orthometric heights to the nor■al heights, effecting s■all 
changes. 

In ter■s of these ano■alies, it is shown that a precise for■ula 
for routine calculations of the height ano■alies can be developed, 
having a theoretical error of not ■ore than about � 1 ca, (97) (68). 
This ■ethod profits fro• the fact that the isostatic ano■alies 
have s■oothed values. 
The routine application of the final for■ulas for the height ano­

malies expressed by the isostatic gravity ano■alies 1s facilitated 
enormously by the ■odern technical progress. For instance, the 
nu■erical application of the obtained for■ulas can profit fro■ the 
use of electronic co■puters in the co■putation of the isostatic 
ano■alies. 
Recent progresses bring the required datain a new light, now: 

Now, we have ■ore co■plete terrestrial gravity ■aterial, and, last 
not least, we have global sets of 1• x 1• ■ean heights, supple■en­
ted by dense grids of digitized heights of regional extension, 

[9]

e = 
0 
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Summary 

For the area of the mantle of the Earth, it is investigated how

far the real density values deviate from the standard values of 

an Earth being in hydrostatic equilibrium. The order of the r, 

m,s, value of these deviations is estimated. This r.m.s. value 

is found to cover the range of � 6 to � 14 kg m-3 for a distance

of 3470 km to 5970 km from the gravity center, i.e. a depth range 

of 400 km to 2900 km (the core). The global density anomalies are 

modelled in terms of low-degree spherical harmonics. They com­

prise both the effect of the chemical composition variation and 

an eventual effect of elastic compression or extension. These 

density anomalies are determined from an observational material 

that consists of both the global variation of the gravity poten­

tial and the lateral variation of the seismic velocity in the 

upper layers of the mantle. The here treated model Earth is made 

up by a superposition of 4 phenomenons: 1. The Earth in hydro­

static equilibrium; 2. The Airy-Heiskanen isostatic system of the 

mountains, the oceans, their roots and their antiroots; 3. The 

density anoma�ies in the upper layers down to a depth of 400 km. 

4. The density anomalies deeper than 400 km, down to the core­

mantle boundary.

lt are the latter density anomalies which are to be determined 

here. The working hypothesis is the demand to find the minimum 

of the r.m.s. value of these anomalies situated in the depth 

range of 400 km to 2900 km depth. Finally, for the area of the 

deep mantle, a comparison of the density anomalies here computed 

and of the anomalies of the seismic velocities obtained by other 

authors is carried out. 

Zusammenfassung 

Für den Bereich des Erdmantels wird untersucht wie sehr die wirk­

lichen Oichtewerte von ihren Standardwerten abweichen, wobei die 

letzteren Werte sich aus einer Erde im hydrostatischen Gleichge­

wicht ableiten. Die Größenordnung des mittleren quadratischen 
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Wertes m2 dieser Abweichungen wird ermittelt. Der Wert von m

liegt zwischen� 6 und� 14 kg m-3 für eine Entfernung von 3470 km

bis 5970 km vom Mittelpunkt der Erde, d.i. eine Tiefe von 400 km 

bis 2900 km (Kern-Mantel-Grenze). Die globalen Dichteanomalien und 

die anderen Daten werden dargestellt durch eine Kugelfunktionsent­

wicklung, die nur die Glieder geringeren Grades umfaßt. Diese 

Dichteanomalien reflektieren nicht nur den Effekt der Änderung 

der chemischen Zusammensetzung, sondern auch einen eventuellen 

Effekt der elastischen Deformation. Diese Dichteanomalien leiten 

sich ab aus einem Beobachtungsmaterial, das das globale Schwere­

potential umfaßt und darüberhinaus auch die horizontale Verände­

rung der seismischen Geschwindigkeiten in den oberen Schichten 

des Mantels. 

Die hier eingeführte Modellerde besteht aus der Suo8rµosition 

von 4 Teilen: 1. Die Erde in hydrostatischem Gleichgewicht; 

2. Die Gebirge, die Ozeane, die Gebirgswurzeln und die ozeani­

schen Gegenwurzeln im Sinne des isostatischen Systems von Airy­

Heiskanen; 3. Die Dichteanomalien in den oberen Schichten bis

zu einer Tiefe von 40� km; 4. Die Dichteanomalien zwischen einer

Tiefe von 400 km und der Kern-Mantel-Grenze. Die zuletzt genann­

ten Dichteanomalien sind die Werte, die hier zu bestimmen sind.

Das Minimum des mittleren quadratischen Wertes dieser Anomalien

im Bereich zwischen 400 km und 2900 km Tiefe zu finden, das ist

die hier eingeführte Arbeitshypothese.

Schließlich werden die so bestimmten Oichteanomalien mit den von 

anderen Autoren für �en Bereich des tiefen Erdmantels empirisch 

gefundenen Anomalien der seismischen Geschwindigkeiten verglichen. 
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AHHOTauIDI 

.Il;JIB 30Hhl Ma.HTlm 3eMIIH HCCJI9.I(,YIOTCR OT.KJIOH9H.WI �9HCTBHT9Jll>HhlX 
3Ha'l'.eHIDi IIJIOTHOCTR OT .IDC CTa.H,IJ;apTHhlX 3Ha'l'.eHRtt, npneM noc­

Jie�H.1{9 3Ha'l'.eHHR BHBO�RTCR lI,JIB 3e.MJUI B I'H,I(I)OCTaT�9CKOM PBB­

HOBemm:. Onpe�eJI.H.ercR nop,moK BeJIRtODI cpe�Hero KBa,npaT�ec­

Koro 3Ha'l'.9lf.M m 2 3THX OT.KJIOH9HHli. 3Ha-itemre m HaxO,nKTCH
B npe�eJiax ± 6 H 14 Kr M-3 np:e: y�aJieHHOCTH OT 3470 �o 5970

KM OT U9HTpa 3e.MJUI, '1'.TO RBJUI9TCR r.n:y6:KHOH OT 400 �o 2900 KM 

( rpamrn:a M9JK.UY MaHTR9li H �OM ) • I'Jio6a.m,Hble aHOMaJIIDI'. IlJIOT­

HOCTH lI �yrHe �aHHhle npe�OCTa.BJI.RIOTCR Ha OCHOBe pa3JIOllt9HIDI 
mapOBOH @JHKUIDI, KOTOpoe B.KJIIO'l'.aeT B ce6R TOJibKO 't!JI9Hhl M91U,­
mett CT9II9lfli. 3TH aHOMaJIHl! IlJIOTHOCTRI OTPruita.IOT He TOJibKO 3<}­
�KT l!3M9H9HIDI �ecKoro COCTaBa, HO TaIOite B03MOllHHli 3(lr­

(1)9KT yrrpyroH �eqiopMaURIRI. 3Tl! aHOMaJIIDI IIJIOTHOCTl'I BHBO�TCH 
MS MaTepRaJia Ha6JII0�9Hl{H, KOTOPHH BKJIIO'l'.aeT B ce6R rJio6a.m,­
HhlH rpaBHTalUl'.OHHHH IlOT9HUß'.aJI :e:, KPOMe Toro, rop:e:SOHTaJibHOe 
H3M9H9HRe CeHc�ec.lO'IX CKOPOCTeli B BepXHl'IX CJIOJIX MaHTl'IH. 

Ilpl!Be�eHHM 3�9Cb MO�eJib 3eMIIH COCTOHT l'I3 cynepll03lrn:'HH 4 
-qacTei,l;: 

I. 3eMJIR, B rlOij)OCTaTH1IeCKOM paBHOB9CmI ;
2. ropH, OKeaHH, KOPH.l! rop R npOTRIBOKOPJm OK9aHOB B CMHCJie
l'I30CTaTR'I9CKOH Cl!CT9Mbl Airy - Heiskanea

3. AHOMarrl'Il'I IIJIOTHOCTH B BepXH:KX CJIORX �o r.n:y6mra 400 KM;

4. AHOMamrn: IIJIOTHOCT}! M9JK.UY rJiy6:iraOH 400 KM H rpa.HHUeH Mellt­
� MaHTH9li H �OM.
Ha3BaHHble IlOCJie�lfHMH aHOMaJil'IH IIJIOTHOCTl! RBJI.f.OOTCR 3Ha'l'.9Hl!f.lMH, 

KoTopHe HaMe-qaeTcR onpe�eJil!Tb. Onpe�9Jil!Tb MHHHMyM cpe.IUiero 

KBa,n;paTH1IeCKOro 3Ha'l'.9lfl'IR 3THX aHOMamd!: B 30H9 M9JK.UY 400 l'I 
2900 KM rJiy6IDil:l RBJI.ff9TCR IlpHBe�eHHOH 3�9Cb pa6o'l'.ett rKIIOTe-

30H. 

B 3aKJIIO'l'.9HIDI 3TH onepe�eJieHHHe TaKl!M o6pa30M aHOMaJIHH IIJIOT­
HOCTH cpaBHKBaIOTCR C aHOMa.JIKJiMR! ceiCMK'!9CKHX CKOpOCTett, 
3Milepwi:ecK:K Ha�eHHhlMl! �Yrl!Ml! BBTOPaMl! lI,JIB 30Hhl r.n:y60KO! 
MaHTl!H 3eMJlli. 
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1. Introduction 

In this article, we model density anomalies in the interior of 

the Earth down to the depth of the core. These density anomalies 

depend on the latitude, the longitude and the radius. The obser­

vation material comes from seismology and from gravimetry. Thus, 

geophysical and geodetical ideas meet in this elaboration. 

Oensity variations in the Earth are deviations of the real densi­

ty (or better: The model of the real den�ity obtained within the 

potentialities of the here applied methods) from the standard 

density of an Earth model of a density law with pure radial 

variations of the density. 

The velocity of the �eismological waves depend an the density of 

the masses crossed. The gravity along the surface of the Earth 

depends an the density values in whole the body of the Earth. 

Thus, the inversion of these relations leads to a non-unique 

estimation of the density anomalies in the interior of the Earth, 

using seismological and gravimetrical data which play here the 

role of the underlying observation material. 

Here, all the values are given in terms of low-degree spherical 

harmonics. The density anomalies are determined in relation to 

the global variation of the gravity potential and to the lateral 

variation of the seismic velocity in the upper layers of the 
mantle. 

We f!rst discuss the basic observational evidence that bears 

upon density distribution in the Earth. We next present mathe­

matical models for computing density from measurements of gra­

vity potential and seismic wave velocity. Finally, we discuss 

the results of a model computation for the distribution of den­

si ty anomalies in the mantle, [6/ [7J. In comparison wi th [6] [7], 

the publication in hand is a more detailed description, which I 

was asked for. 
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2. A surface Bouguer layer

The gravity anomalies on the surface of the Earth are caused by 
density anomalies within whole the body of the Earth. For a 
moment, in a very simple version, the density anomalies can be 
taken to be distributed in a small depth, only. Thus, they can 
be represented by a Bouguer plate. For a plate of the density 
�O = 2650 kg m-3, we have the well-known formula

(l) (�g)mgal = 0.l·(T)meter '

if T is the widst of the plate. Considering the relation (1), 

its coefficient 0.1 is proportional to the density, 

(2) 0.1 = k1- fo ,

k1 is a constant value. Thus, for a homogeneous Bouguer plate 
of the arbi trary densi ty anomaly öf , we have the gravity of (J), 

(3) ('1g)mgal = 
O.l(Of/�o)(T)meter ·

T is the width of the plate, Fig. 1. For a Bouguer anomaly of 
L'.lg = 20 mgal, (0.02 cm s-2), and for T = 400 km, (upper mantle),
we have by (3) 

(4) 6� � 1 kg m-3 , (i.e. 1/1000 g cm-3).

Fig. 1. A modelling of the gravity anomalies by a Bouguer 
plate of 400 km width. 

ei 9 Surtace , G rnJ400km 
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3. The potential of a shell

In the deep interior of the Earth, for great values of the depth 
t, we can introduce a gravitating spherical shell being the 
source of the gravity anomalies. The widst of ttiis shell may be 
equal to T, whereat T is much more small than the radius R, 
T << R (R: radius of the Earth). Wi thin this shell or wi thin this 
layer, we have a density distribution of lateral variation only. 
This layer of density anomalies cf� in the mantle can be replaced 
by a surface distribution (0 = 0(f,A)) in the mean depth of this 
layer. ( � i� the geocentric latitude and A the longitude). 

A spherical shell of the density d� , of the width T, and of the 
mean depth t may play the role of the underlying gravitating 
body. This shell causes the potential Y. Thus, we have the follo­
wing potential Y for test points P situated at the surface of 
the Earth, 

(5) Y = Y(P)

Gis the gravitational constant, V is the volume of the gravi­
tating shell, the meaning of e(P,Q) comes from Fig. 2. In (5), 
within the shell of the width T (see Fig. 2),öS1 or df(Q) does 
not depend on the radius. For T << R, the relation (5) can be 
approximated by the potential of a surface distribution in the 
mean depth t of the shell 

(6) Y = Y(P) � G \� �-J�(Q)•T•d�Q
oe 

The radius of ae is (R-t). Thus 

(7) Y = Y(P) � G �� �-0·d�Q

wi th 3e 

(8) 8 = 0('f',A) = d� • T = d� (<p,A) ·T 

8 is the gravitating surface distribution, see Fig. 2. 
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Fig. 2. A modelling of the gravity anomalies by a spherical 
shell. 

We have the harmonics development for 1/e in terms of the 
Legendre functions Pn , [11],

CO 

(9) �
n=o

72 = (R-t) < R 

Now, the surface spherical harmonics Sn(�,J) are introduced,
(9a); integrating over the unit sphere, we have 

C,a) II [ s,Cf, ) )f "'f df .,l • ';r •

This are fully normalized harmonics. The symool S0(�,A) represents
all the surface spherical harmonic functions of degree n, what­
ever the order of them may be. Dr, with other words, only the 
zonal harmonics of degree n are written down, since the tesseral 
and sectorial harmonics of the degree n have similar relations 
as the zonal harmonics. This is an often used abbreviating style. 
By the decomposition formula of the harmonics, Pn can be express­
sed by the surface spherical harmonics of degree n (being 
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Sn(lf,,)J ). Thus, the relation (9) tur ns to 

oo) l
e 

for 

00 

L 
n=o 

(R-t )
n 

__ 1 __ 5 (u> A.)• S ({1)' -1') 
Rn +l 2n+l n 1' n T ' 

(10a ) '17. = (R-t ) < R 

'f' and A are the co-ordin ates of P; IP' and A' are those of Q. 
Thus, we find the following form for Y(P) which is the potential 
of a shell, (5)(6)(7), 

De> 

(11) Y(P) = L 
n =o 

with the subsequen t expression (12) for the Stokes constants Yn , 
and with k2 = G , (8)(9a), (R-t: Radius of the sphere �

Q
, Fig.2), 

(12 ) yn = k
2

\( T-��:i )
n

.Jf.s
n 

Cif',A' ) •
2
�+1·d�Q. 

ae 
Dr, inserting 

02a) dr=f
0 

cJ� )n•S
n

(1f',�') ,

(13 ) y =H'k·T•CR-t )
n

_(R-t )
2

.(dp). n 2 Rn + 1 2n+ 1 l n 

The surface distribution B along the sphere ae has the harmonics 
development, (8 )(1 2a), 

00 
c::.o 

(14) 0 = L -& • 5 (CP,A) 
n=o n n 1 

rE 

Hence, 

(15) Yn 

n =o 

(R-t)n (R-t )
2 _n 4 11 k2 

;n:;r 2n➔T
° 'V> n 

·1 
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The potential Y(P), described by (11)(13)(15), is valid for test 
points P on the Earth's surface of radius R. The value 

(16) 

appearing in (13) and (15) is the smaller the greater the para­
meter n, because of (10a). For 

(17) R-t 1 

2 R 

and for 

(18) n = 20 ,

we fi nd 

(19) 

But, the smaller /(R-t)/�n, the greater ,8,
n 

, if yn is under­
stood that it is fixed, (15). 

Since, in (13) and (15), always the product of (16) with the 
Stokes constants --& resp. (dD) appear, the effect of a change 

n 'i n 
of the t value can be compensated by the effect of a correspon-
ding change of the -fh or ( J D) value. 

n 'S n 

Thus, basing on Y(P) as a given function, it is not possible 
to compute the precise value of the depth of the density ano­
malies in terms of the surface potential values, or, what is 
equivalent, in terms of the surface gravity anomalies. 

What is possible by these methods without the introduction of 
any hypothesis, that is the computation of the whole mass dM 
of the density anomalies. The concerned formula (20) follows 
from the Gauss theorem,[11}. We have, integrating over the sur­
face 6"' of the Earth, 
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k3is a constant quantity, Jg is the gravity perturbation along
6"(being the radial derivative of the perturbation potential). 

The derivation of (20) can be found in the text books an poten­
tial theory. 

4. On the potential of the surface distribution

The density anomalies, (B), 

within a certain layer of the width T have the surface spherical 
harmonics development, (12a)(l4), 

n=o 

In order to be clear, the right hand side of (22) is the abbre­
viated shape of the detailed form (23), 

c23) 
Jf = � f;,0 

i\.mcr)[ctr\.n.nicos mA +cJf )2_n_nisin mA J. 
i'\. m (�) · cos m�

and 
P (<0). sin m� n.m T 

are the fully normalized surface spherical harmonics, (9a). 

(df \.n.m
and 

are the Stokes constants. 

(20) JM = k3 1( dg,d6"' . 

6' 

<21) !~ = J~ <r,.l.) = +•s<f,A) 

<:x:) 

(22) 'lf (-p,A) " L ((j~)n•Sn('f',A), 
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Sure,(22) can be understood in such a manner that only the zonal 
harmonics of the degree n are written down, the sectorial and 
tesseral harmonics of the degree n will transform in the same 
way, in the course of the subsequent deliberations. 

The r.m.s. value of Öf within the volume V of the considered 
layer, (5), is (elf )a . For this r.m.s. value, we have

As to (24), within the shell of the volume V,the densityano'.llaly 
J� does not depend on the radius, (1 2a). Thus, the volume inte­
gral (24) can be substituted by the subsequent surface integral 
covering the sphere ae

Q 
,(see Fig. 2), (22),

c 2 5) c J � ) � = r. ½ (( c J �) 2• d a,
0 

• 

ae
Q. 

Now, in the integrand of (25), J'q is replaced by the expression 
(22). Considering the relation (26) 

with 

(27) � = R - t ,

and accounting for (9a), the relation (25) turns to 
00 

(27a) (d�); = 411·T·t/•½ · L (d�)�.
n=o 

The volume of the shell can be approximated by 

(27b) V r; 4'u•T-� 2 

Hence, (27a)(27b), 

(26) daeQ 
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00 

(27c) 
n=o 

5. The gravity potential

The gravity potential W of the Earth can·be approximated by the 
following spatial spherical harmonics series expression valid 
in the exterior of the body of the Earth, [3}[4}[5]. This series 
is of common use, 

(28) W

(28a) Z 

G
r

M [1+ � (�)n.w •S (f,A)]+ z ,
n=2 r n n 

M is the mass of the Earth, wn are the concerned Stokes constants, 
and Z is the potential of the centrifugal force.W is the angular 
velocity of the Earth's rotation. ae is the equatorial radius of 
the mean Earth ellipsoid. 

We took the wn values of GEM-10. Meanwhile, refined values are 
available. Table 1 gives the wn values, (see the appendix), [1} 

/11}. 

6. The convergence of the spatial spherical harmonics series
development of the potential down to the surface of the Earth

Here, in our investigations, the spatial harmonic potentials are 
represented by spatial spherical harmonics series developments. 
This series is uniform convergent in whole the mass-free exterior 

[3][4][5]. 

During the last years, some authors published "retorts".These 
"counter-proofs'' have no foundation: A counter-proof is possible 
only in case the problem is unique. But, even this case is the 
crux: The harmonic downwards continuation of a potential function 

1 2 2 2 :. Cz)•w •r •COS 'f' 
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is unique only if the potential function is continuous, [3][4] 

[5][11]. If the downwards continuation is divergent, it is 

simultaneously discontinuous, too. Thus, there is no uniqueness. 

Consequently, the counter-proof examples are paralysed because 

they forget the continuity contraint. 

In case the harmonic potential in the exterior of the Brillouin 

sphere undergoes a harmonic downwards continuation, we have.two 

branches. 

The first branch leads to discontinuous harmonic functions, 

divergent series, and it leads to a field being of no use for 

natural science; it cannot lead to the potential of a gravi�a­

ting body. 

The second branch leads to continuous harmonic functions, con­

verg�nt series, and it is, thus, the branch which cultivates 

natural science. lt is the branch of our choice. In the down­

wards continuations, the constraint of continuity is indispen­

sable, [3] [4] [5]. 

discontinuous, 

divergent, 

no natural 

science 

Brillouin sphere 

conlinuous, 

convergent 

unique, 

natural science 

Surface of the E.odh' 6

Fig. 3. The continuous and the discontinuous branch in the 
downwards continuation of a harmonic function. 
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7. The potential of the isostatic masses

The potential of the isostatic masses consists of the potential 
of the mountain masses above sea level, of the potential of the 
compensating mountain roots, of the potential of the oceanic 
mass defects, and of the potential of the oceanic antiroots, 
(see chapter A of the publication in hand, especially the equa­
tions (37) and (31)(32)(33)(34) of chapter A). The isostatic 
system according to Airy-Heiskanen having a compensating depth 
of T = 30 km is well-proved even by recent computations, [14] 
[17], Fig. 9. 

The isostatic potential w
1 

comes from the isostatic masses m
1 

by 

(29) 

We have a development for w
1 

in terms of the height of the 
mountains H and in terms of the �epth b of the mountain roots. 
lt is represented by the form (30). 

p 

Sea level 

/ r 

r' 

Fig. 4. The mountains, the mountain roots, and the compen­
sation depth. 

l dm 
e I 

0-- H 

1 r 

b 
/ 
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-T*
H 

] • )r¼•dh·dW,(30) WI = G [ d f h=(b
0 (

+ f h=o 

(r')2 -eosf• d'f• d,1 
<pA 

(31) dw

Ola) d� - 600 kg m -3

Olb) � o 2650 kg m-3

(see eq. (31)(33) of ehapter A). 

Respeeting the oeeans and their antiroots also, (30), an equi­
valent roek topography was introdueed, [Bj. Thus, in (30), the 
H values for both the mountains and the oeeans are represented 
by one single globally valid mathematieal development, (38), 
being eonvenient for the isostatie eomputations. 

The inverse value of the distanee e is developed by the relation 
02); (see also (l0)(l0a), [llJ, Fig. 4). 

02) 1 

e 

00 

E (�•)n
·2� +1•Sn('fJ)•Sn

('f',)')

r', �•• A' are the polar eo-ordinates of the volume element 
dh·dw of the isostatie masses; r' = R + h . 

The amount of r' does not deviate enormously from the mean 
radius R of the globe. 
r, f ,A are the polar eo-ordinates of the test point P, Fig. 4. 

Following up these developments about (30)(31)(32), we find de­
finite mathematieal formulas whieh imply integrals of the follo-
wing shape 

* * 
-T -T

(33) ( r' n (� )n 

( (�)n. dh• dw(r) •dh•dW r ' 

h=-b h=-b 

l 
r r' < r . 
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and 

(34) \ (Rt)n . dh-d W • 
h=o 

With 

the integrands of (33) and (34) can be developed in terms of 
H powers of R, 

they are convergent since 

(36a) h << R . 

Athoroughinvestigatio n about these questions is found in [1]

[17]. Inconnectionwith our investigations, it suffices to take 
into account the linear term � ,  only. For the H values, spheri­
cal harmonics developments are given. Sophistications should in­
volve the powers (�)2 , and further1 an eventually existing over­
compensation along the Moho-discontinuity, and further on 1the 
possibly variating depth-range of the lower border of the litho­
sphere(about 70 km depth in the oceanic areas and about 140 km 
depth in the continental areas, probably), [7][17]. 

Along these lines, we find an expression of the following shape 
for the potential w

1 
, valid for the mass-free exterior of the

body of the Earth, (see chapter 6), 

GM � ae n 
WI = r L., (r) •Wr.n' 5n< 'fJ) 

n=o 
(37) 

ae is the equatorial radius of the ellipsoid of the Earth. 

(36) 
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Table 2 shows the Stokes constants of the spatial spherical har­
monics development for the isostatic potential wI.n according
to Lachapelle [14], and further on, for the heights H accord­
ing to [8], (equivalent rock topography). 

The heights have the development 

(38) H
n=o 

8. The reference potential U of the hydrostatic eguilibrium figure

The level ellipsoid is not a convenient reference figure in our 
context. It cannot be generated by an equilibrium figure, or by 
a stratification which is physically plausible. It is a pure 
mathematical fiction. Here, a reference potential is introduced1 
Jhe underlying masses of which have the stratification of hydro­
static equilibrium. The density anomalies treated later on de­
scribe deviations from this state of equilibrium. 

The hydrostatic Earth of G. Darwin is recommended here [6][7J[l3]

[15]. The parameters of this reference potential. (40) derive as 
follows: 

The coeffi€ient J of (40) is obtained from J2 by J = - i·J2
Here, the coefficient J2 of the zonal spherical harmonic of 2. 
degree comes empirically from satellite observations, [16].

As to J and J2 , it may be stressed that J is here not computed
from the dynamic flattening H*, [l3J,

(39) H C-A
-r

J.l 
q 

3 C-A 1 + I·�·­
Ma q 

C and A are in (39) the main moments of inertia. The meaning of 
the q value is found in [13J, page 12. 

The K value cf (40) comes from the theory of the hydrostatic 
equilibrium in the interior of the Earth, it is the value com­
puted by Bullard [l"JJ. 

H · S ( tp,A) · n n 

• 
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We have for a rotating model, (28a), [1][13],

GM I a 2 2 ( . ) 4 ( a) 4 P ( . )J (40) U = rll-(r) ·1•J·P2 sin 'f' + Ts" r ·K• 4 sin 'f + Z .

In (40), the term a is the equatorial radius of the surface of 
the hydrostatically stratified masses; this surface is simulta­
neously a level surface. Z is the zentrifugal potential (28a), 
and Pi(sin f) are Legendre functions. From the literature, [1]

[13], we take 

(41) J 162 395·10-B

(42) K = 1. 127 •10-5

As to details about the theory of equilibrium figures, please, 
consult the chapter contributed by H. Moritz to the Hungarian 
Winter School 1989 in Sopran. 

The relation (40) was extended up to the harmonic P6(sin f) by
Lanzano, recently, [15}. 

9. The law of Birch

The gravitation law of Newton expresses the gravitational force 
in terms of the density of the graviteting masses. The law of 
Birch relates the density of the masses in the upper 400 km of 
the Earth with the velocity of the seismic P-waves. This velocity 
Vp of the P-waves in the upper 400 km of the Earth depends on the 
density � of these upper layers by a linear expression, in good 
approximation, [9J. We have, 

(43) vP = - o.665 + 0.002 64-f, 0 � t � 400 km,

or, abbreviating, 

(44) vp = a + b-�
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VP in km/s, f in kg/m3. t is the depth.

Now, we da the following consideration: The layers in the upper 
400 km are crossed in vertical direction by a seismic P-wave; 
and in the area of these layers, the density � deviates from 
the standard density by d�, ö� being constant along this part 
of the way of the P-wave, being the way through the upper 400 km. 
Such a change of the q value by 6� leads to a change of the Vp 
value in the depth-range O � t � 400 km, as it is evidenced by 
(43), 

(45) Jvp = 0.002 64· rf<?

Further, such a change of the Vp-value □ver a distance of about 
400 km range leads to a time delay u of the travel time of the P 
waves crossing the layers of the upper 400 km. 

If, the seismic P-waves run □ver a distance s within the time 1, 
the VP value is defined by 

(46) 

For the variation of the velocity VP in tenns of the travel time
variation(Jvp, öl), we find in a self-explanatory way, 

( 4 7) 6 V p = - ;- •Öl = - ( V p) 2• i l
1 

From (44), we find (48), 

(48) öVp = b • d� •
With (47) and (48J,5he relation (49) yields,

(49) b· cfo = - (V )2,_l 

Thus, 

(50) J 1

) p s 

_b_,s,d�
(V ) 2 p 

The quantity of s can be identified with T 400 km. 
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öl can be identified with the above introduced travel time delay 
u. Consequently,

(51) J�

Inserting the values of 

( 52) C � 1 3 

15·10 · u

(T 400 km). 

and T 

J� is measured in kg/m3 and u in time seconds. 

, (51) yields 

A value of u + 0. 5 s leeEls to ab out 6� = - 33 kg/m3 

u is the deviation of the observed travel time from its standard
value found by the Travel Time Tables. 6 {? is the deviation from
the density of a standard Earth which is described later in the
section 11 about the mathematical model.

10. The seismological data

The seismologically obtained data to be introduced in our com­
putations should be described more thoroughly, now; [1][2][10]

[12] [18] [19] [20].

At one selected place on the surface of the Earth, we have a 
seismological station which records the arrival times of the 
seismic waves radiated from the different earthquakes which happ2n 
at the different foci all over the world( taking over epicentral d:i,­
stances of the range 20° to 105° ). The geographical posi tions of 
these different earthquake foci can be considered to be known, 
as so as the time at which the earthquakes did happen. The time 
the seismic wave needs to reach our seismological station, this 
is the travel time of the wave considered. If the recording seis­
mological station is labelled by Pi ,if the considered earthquake
focus has the notation Qk' so, the travel time observed (which the
seismic wave needs to travel from Qk to Pi)is denoted by
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On the other hand, for a standard Earth, having a density which 
depends an the radius only, ( f = �(r)), the standard value of 
the travel time can be interpolated in the seismological Travel 
Time Tables. Along these lines, the standard value 

is obtained. This computed travel time of (54) is compared with 
the really observed travel time of (53). The difference between 
these two kinds of travel times is the travel time residual, which 
is denoted by 

(55) t'i.k

Thus,

(li.k)comp. implies corrections for the flattening of the Earth.

From the foci of the different earthquakes distributed all over 
the globe, all the seismic waves arrive at our recording station

1 

Pi. The average value of t' i. k covering all the earthquakes re­
corded at our one single Pi station is obtained by

(57) 'ti

F. l 

f-:·L 't'i.k l k=l 

Fi is the number of the earthquakes recorded at the Pi station.

Fig. 5 shows clearly that the P-waves recorded at a certain sta­
tion have paths which diverge in a fan-shaped form, according 
to the geographical positions of the different foci. 

Only the P-waves are considered in thiscontext. Within the layers 
of the depth O � t � 400 km below the seismological station Pi 
at the Earth's surface, there is a kind of a narrow pass for all 

(56) 'l:'i.k 
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Station 

p 
p 

Fig. 5. The fan-shape form of the paths of the seismic waves 
reaching one seismological station. 

the P-waves which are running to this one single seismological 

station P
i 

. This speciality is clearly recognized looking an 

Fig. 5. 

The �
i 

values of (57) here introduced are determined for many 

continental stations (sorne hundreds). But, the 'Y
i 

values are 

rare an the oceans; only at some island stations in the midst 

of the oceans, the 'l:"
i values are recorded, see Fig. 6, 7.

Seisrnological recording instrumentations at the ocean botton 

will be a help. 

Especially, the addition of some rnore seisrnological stations 

situated an the islands in the midst of the oceans will improve 
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the precision of the finally computed density anomalies in the 
mantle. 

As to the value Ti obtained by (57), it is generally assumed 
that certain density anomalies situated below the seismological 
station Pi are the underlying cause for the existence of signi­
ficant quantities of the values 'l:'i . It is generally accepted 
that the value '?"i is in the main depending on the density anoma­
lies in the upper layers of the depth range O � t :!f. 400 km, 
situated vertically below the seismological station Pi , Fig. 5. 
Thus, the value �i gets the denomination to be the travel time 
residual or to be the station anomaly. The relation between the 
mean density anomalies [cJ�)B]i in the upper 400 km (vertically 
below the station Pi) and the station anomaly Ti is found with 
(52). Thus, 

(58) [cJ�)8t
1 10 3 • '"t'. 

- TT l 

lt is supposed that the density anomalies in the upper 400 km 
do not vary in vertical direction. 

The label [CJ� )8L of (58) signifies that we have here a discrete
value of the global function ( ö<J )8 , this discrete value refers 
to the seismological station Pi . This global function (df )B
depends on � and A by (59), 

Along the surface of the Earth, also the station anomalies ?;' do 
vary only in dependence on <pand A, obviously. Hence, 

(60) T: T C<f,A)

The station anomalies ?;'(labelled also by Ti , being the 't'value 
at the point Pi) depend in the main on the (d�)B value in the 
upper 400 km, situated below the station Pi . This dependence 
is arranged by the law of Birch, (43)(52). As lang as the depth 
below the point Pi does not surpass the value of t: 400 km, 
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all the seismic waves which reach the station Pi are affected by
the one density anomaly [cd�)B]i , crossing the layers of the
depth range O � t � 400 km. 

But, for depths ranges greater than about 400 km, the P-wave 
paths diverge in a fan-shape form according to the geographical 
positions of the different foci. This pattern is shown by Fig. 5. 
For t> 400 km, the seismic waves which reach the station Pi will
run through different parts of the interior of the Earth. 
Eventually, in these different parts, velocity anomalies of the 
P-waves can exist, below a depth of about 400 km, (see for example:
Oziewonski, A. M.; Hager, B. H., and R. J. O'Connell, Large-scale
heterogeneities in the lower mantle. J. geophys. Res . .!!l (1977),
239-255). These velocity anomalies will (as anticipated) not
have the same sign, always. The sign of the velocity anomalies
below t = 400 km will vary, it will be positive and negative.
Thus, all the eventually existing velocity anomalies below of
the depth of about 400 km will affect the one single station
anomaly 'r(or Ti) of the point Pi as a kind of random variances
which are (at least more or less) averaged out - this fact is 
essential - in the mean value obtained by (57). 

The average value which the station anomalies -i'i have on the
surface of the Earth within a 5° x 5° grid cell, this value can 
be computed. Fig. 6 shows the global pattern of such mean grid 
cell values of 'l:'. Fig. 6 comes from Toksöz, Arkani-Hamed, and 
Knight, [19].

Fig. 7 was taken from Toksöz, Arkani-Hamed, [1B]. Fig. 7 shows 
the geographic distribution of data of seismic station anomalies 

'1:(travel-time residuals) which are obtained by an averaging 
within the cells of a 5° x 5° grid. Solid circles indicate posi­
tive residuals, open circles negative residuals, Fig. 7. 

Fig. 8 was published by Arkani-Hamed and Toksöz, [2]. lt shows 
the contours of the seismic travel-time residuals 't'(in seconds) 
based on spherical harmonics up to the 3rd degree. The coeffi­
cients of this development are tabulated in Table 3. 
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E. Herrin and J. Taggert, [10], have determined azimuthally de­

pendent station corrections for 32 1 seismological stations. The

records of 400 large earthquakes and 30 explosions were considered
in these evaluations, [10]. In the estimation procedure, data for
epicentral distances in the range 20 ° to 105° were used, only.
Herrin and Taggert assumed a dependence an azimuth (Zij

) of the
form 

(61) cij

Cij is the travel-time residual (the correction to be added to
the tabled time) for the pair of the following two points:Qj,Pi -
focus and station. Ai is the mean station correction, equivalent
to our �i , (57). Bi is the amplitude and Ei the phase of the
second term of (61). For some selected european stations, Table 
4 shows the amounts of the A, 8, E-values of the relation (61). 

In Table 4, N gives the number of the observations,and J 2 is a 
measure for the variance of the random errors of the travel-
time residuals. 

120 150 240 L.:..::!JO 3\)0_ 330 

sin 
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11. The mathematical model

A certain model for the density distribution in the interior of 

the Earth is now introduced. For this purpose, the interior of 

the Earth from the surface down to the core is divided into 4 

sp�erical shells. By Fig. 9, these 4 shells in the earth's inte­

rior are pictured for the reader. 

surface 

D=200km T=400km 

0
1
=816,7km • (6s \_

1
i;=833,3km 

0
2
-1650,0km (os)A .2 T

z=
B33.3km 

Fig. 9. The 4 shells in the Earth's interior. 
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The densi ty anomalies (ö {' )8 in the crust and upper mantle (in 
the depth range O � t � 400 km) are considered to be not depen­
dent an the radius r, but an f and A only. They can be expres­
sed by spherical harmonics in the following form, (59), 

( 6 2 ) C cf f ) 8 = 0l ( 'f, A) 
3 

E Cdf )s.n·Sn('f').) 

(d� )8 can be computed from the travel-time residuals 
'i Clf,;!), (60), according to the law of Birch, (58). 

These computations of ( cf f)
8 

can be executed before the ad­
justment calculations which follow later an. From (58) and (59) 
(60)(62), the relation (63) follows, 

1 3 "l - 15-10 · 7: C'f,/I)

( J'? ) 8 is here in kg/m3, and 7:' in seconds. If 7: is equal to 
+ 0.5 s ,  a value for (df)8 of - 33 kg m-3 is reached for 
T 400 km, Fig. 9. 

But, the relation (63) is only a primitive picture of the 
function which gives (df? )8. The Airy-Heiskanen isostatic system 
has to be includad into the layer of the upper 400 km. The in­
clusion of the mountain roots of this isostatic system, having a 
density jump of CLlf)B transforms the relation (63) into the 
following amended shape, ((Ll

r
)

8 
= - 600 kg/m3), 

(64) 7/ = k5[T·Cdf )B + 

Here is, ( 52), [7], Fig. 

(65) k5°T 15 ·10-3, 

(L.) f)s· (b-T*)] 

4 and 9, 

(b-T*) > 0

The inversion of (64) gives the relation which computes the de­
si ty anomalies in the lay1Hs of the upper 400 km, (Öf )8, in 
terms of the given seismological station anomalies � and the 
given isostatic mountain roots, 
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or, [7], 

l 3 l 
- TI 10 ,z;- + 1 . �o H 

The Airy- Heiskanen system is governed by the relations, (see 
(3la)(3lb)), 

(68) (L1 f)B· (b-T*) + r
o
· H 0 ,

(69) (,1�)8 = - 600 kg/m3 

With the harmonics developments, 
3 

(70) "'t'= I:: ('r) n' Sn <r, A)
n=o 

and 
3 

( 71) H B Hn· Sn C<p1A)
n=o 

(60)( 38), 

the coefficients of which are tabulated in Table 2 and 3 , we 
have, (62)(67), 

(72a) n = 0,1,2, .... 

These coefficients (d� )8.n are shown in Table 5, third column.

In the interi□r of the Earth below of the uppermost layer wi th the 
density anomalies (cf� )8 computed by insertihg the law of Birch,
(67)(72), we have the 3 layers of the width T1 = T2 = T3 =

833, 3 km. The corresponding densi ty anomalies are (d(? ) A. l ,

<6f)A.2, and (d�)A.3
, see Fig. 9.

The surface spherical harmonics development for (d f')A.i ,
( i = 1 , 2 , 3) , i s w i t h ( 21 )( 2 2) , [6] [7] , 

(74) ( i 1, 2, 3) 

_r 1 3 1 
( 7 2) ( o o ) : - ......,.- 1 D , ( ,r) + T' o · H 

T ß.n L> n 10 n 
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lt can be taken from (73), the density anomalies in the 3 in­
dividual layers of the width 833,3 km da not vary in radial 
direction. 

The coefficients of the 3 harmonics developments of (73), that 
are the unknowns of our problem which we have to determine. They 
represent the beforehand unknown density anomalies in the deep 
mantle,i.e.the depth range between t = 400 km and the core­
mantle boundary. 

Now, we come to the detailed definition of our mathematical 
model. 

The model of the gravity potential W has the following expression 
in terms of the different gravitating scources, 

This equation is fundamental for our investigations. 

The gravity potential W is explained by (28), the reference poten­
tial U has the representation (40), both of these expressions are 
given in spatial spherical harmonics. The isostatic potential w

1

has the mass integral (29) and the spatial harmonics development 
(37). The potential w

8 
is the potential of the beforehand known 

density anomalies in the crust and upper mantle, (d�)8 , (0 � 

t !f 400 km); see (62)(72). w8 has the following shape of a mass
integral 

G q ( ¼•dmB .

VB 

Here,VB is the volume of the shell situated between the depths
0 � t � 400 km. With the volume element dV, we have for the mass 
element of (76), 

The potential WB of (76) can be brought into the shape of the

(77) dm8 • dV · ( d ~ )B . 
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potential of a surface distribution in the depth of D = 200 km, 
Fig. 9. Considering (5)(6)(11)(14)(15)(72), the mass integral 
(76) turns to (78) for test points Pan the surface of the Earth,

[6][7], 

(78a) k2 = G 

In (75), the potential WA comes from the a priori unknown densi­
ty anomalies; thus, it is given in terms of (d�)A.l, Cdf)A.2 
and Cd�)A.

3 
which are the density anomalies in the 3 different 

layers of the lower mantle. All these three layers have the same 
width of 833,3 km, (see Fig. 9). If VA is the volume between the 
depth of t= 400 km and the core-mantle boundary, WA has the 
mass integral (integrating over these 3 shells) 

ff { ½ dmA ,
VA 

(79) 

with - for the 1st shell -

with - for the 2nd shell -

and with - for the 3rd shell -

Hence, (80)(81)(82) show how to divide the integral (79), 
accounting for the densities of the different 3 layers filling 
the volume VA described above. 

If □
1 

, D2 , □
3 

are the mean depths of these 3 layers, Fig. 9, 
and if T1 , T2 , T

3 
are the width values of these 3 layers, we 

find according to (73)(78), [6][7],

n )2 
417' '\;' k T iB..:.!D_ (R-D (df) · S (<f,A ) 1 ~ 2 Rn+l ~ B. n n 
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(83) WA WA(P) 4'i7� k
2

T l
(R-Ol)n (R-01)2 

(df)1.n· Sn('f', Ä)+ 
Rn+l 2n+l 

n 

+4• x; k
2T2 

(R-0
2)

n (R-0
2
)2 

CJ°f)2. n 'Sn ( f, A)+ 
Rn+l 2n+1 n 

+4ii :z k2 T 3
(R-D3)n (R-03)2 

Cdf )3. n · Sn C<pJ) 
Rn+l 2n+l 

n 

Herewith, considering (28)(40)(37)(78)(83), the expressions an 
the right and left hand side of (75) are explained; they can be 
represen ted by harmonics developments, [6][7].

In (75), the potentials W, U, w
1 

, and w
8 

have beforehand 
known functions. Thus, the unknown function WA has the following 
constraint which is also a constraint for the a priori unknown 
caefficients af it, cd� \. n 

, o = 1, 2, 3), 

(84) 

For the above constraint (84), we can introduce the symbol B. 

B can be decomposed into surface spherical harmonics, 

(86) El = 
,E 8n·Sn(-f,A) 
n 

Consequently, Bn is the symbol for the following constraints,

(88) n = O', 1, 2, 

On the right hand side of (87), the shares of the harmonics of 
degree n of the individual 5 potentials can be found. 
For instance for n = 2 , we find for test points in the ex­
terior space, 

.!. dm 
e A 

--- - - -

O', 
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2 (R-D) 1 2 
-417' k2T ) ,(R-0) (d�)B.2 -

r 

� stands for the transition from the Legendre function of 2. 
degree (P2) to the harmonic 52(�,)) in the course of the full
normalization, P

2 = t-s2 
• (89) can be written in the following 

abbreviating form, 

Dbviously, (90) allows symbolically the following generalization 
for all degrees n, 

(91) 
j=l,2,3 

(92) n = 0, 1, 2, ... .

k. cJ f). J.n J.n

kj.n are given constants, the formulas of these constants can
be obtained by a comparison with (B7)(89). The comprehension 
and the clear understanding of the essentials of our coming 
deliberations will not be impaired considerably by the fact that 
not the detailed formulas for all the coefficients 
given here, (see [1]).

k. can beJ.n 
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12. The determination of the density anomalies in the deep
mantle

The relations C91) have the character of condition equations for 
the CöS,). values Cj = 1, 2, 3; n = O, 1, 2, ... ), which can 

J.n 
be found in the last terms an the right hand side of C91). 
Each individual equation of the type C91) assigned to the index 
n has the character of one relation for the 3 unknown values 
Cd� )l.n , Co� )2.n , Cd�)3.n . Thus, the relations C91) do not 
suffice to determine the coefficients 

C93) C J(;l ) . ;J.n 

C94) j 1, 2, 3; 

C95) n = 0, 1, 2, ... . 

in a unique way. The reason lies in the fact that we have only 
n equations for 3n unknown values. 

Furthermore, in connection with the equations (16)(17)ClB)Cl9), 
it was already discussed that the surface values of a potential 
do not allow to find precise and unique values for the amount 
and the spatial place Cdepth) of the gravitating masses in the 
interior of the Earth: The integrals of the type C5), giving the 
potential in terms of the gravi tating scources d�, have not a 
unique inversion. This is a fact well-known from exploration 
gravimetry. 

Further an, it is not necessary to decompose our density anoma­
lies distributed in the interior of the Earth, Ci.e. C df )8 ,
cJ9)A.l ' cdl?)A.2 ' Cdf)A.3 ), into the part of them which 
is caused by elastic compression and, an the other hand, into 
the part of them which is caused by a spatial variation of the 
chemical composition. The reason is, that our fundamental rela­
tions, as the law of Birch (43) and the integral relations of 
the type (5), relate the density with the velocity of the P-waves 
and, further, the density with the gravity potential values in 
the exterior of the body of the Earth, irrespective to the deeper 
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reasons which cause the density anomalies, may they be generated 
by elastic compression or may they be generated by distinctions 
in the chemical composition. This fact is a relief for our com­
putations. 

In order to find a reliable and plausible solution for the un­
knowns marked by (93), a reasonable working hypothesis is in­
troduced. lt makes the integrals over the squares of the unknown 
density anomalies (6� )A.l , (O�)A.2 , (ö�)A.3 (given by (73)
(74)) to a minimum value accounting simultaneously for the con­
straints of (91). 

T, 
We define the following fundamental/ operator as given by (96), 
(79)(80)(81)(82)(89)(91), [7},

(96) F'= L 
i=l,2,3 

3 
( d �{ i dV + [; 

n=O
X • 8 n n 

VA.i is the volume of the one single shell of the number i 
situated in the deeper mantle, Fig. 9; it has the meaa depth Di' 
the density anomaly (6o)A. , and the width T. , (i=l,2,3). 

� . l l 

The symbols Xn mean Lagrange multipliers, they are a priori 
unknown. 

Dur working hypothesis is, [6][7],

(97) /' --- Minimum,

or, more detailed, in terms of the Stokes constants ( J�). ,1.n 
(73)' 

(98)r [< Jq \.nf-Minimum;

(98a) i = 1, 2, 3; n = D, 1, 2, 3, ... 

For the subsequent mathematical derivations, considering the 
relation (96), it is recommended to change over from the (df) A. 1 
values to the unknown coefficients of the series developments 
of them, (73)(93). With regard to (24)(25)(26)(27)(27a), the re­
lations DOI: https://doi.org/10.2312/zipe.1990.114



relations 

(99) r =

86 

(96)(98) turn over to 
3 3 3 

4'i, I::; ,Z�·T. ·L (d� )� n+ }:; 
i=l 1 1 n=O 1. n=0

with, (27b), 

(99a) vA.i � 4'iYTi • "?i •

X · B 
n n 

In the depth range between t = 400 km and the core-mantle boun­
dary, �i is the mean radius of the spherical shell of the num­
ber i and the mean depth Di , (i = 1,2,3), Fig. 2, 9.

The minimum principle (98) demands the fulfillment of the follo­
wing relations, observing (91): 

(100) 

c)/ (101) II.) ---­
�(o� )2.n 

0, (102) III.) '
c)

(
o 

)
f 3. n 

(103) IV.)

= O' ' 

O' ' 

O"' ; 

(104) n = 0, 1, 2, .... 

The relation (103) comes from (91), it has to be observed simul­
taneously with the derivatives (100)(1ol)(lo2). The equations 
from (100) to (103) construct the system which allows the deter­
mination of the unknown values of (93) and the unknown Xn values. 

After the Stokes constants of (93) will be found by the inversion 
of the determining system I, II, III, and IV, we will find the 
series development (73). The reader will be well-acquainted with 
inversion calculations of this kind. Therefore, the author can 
dispense himself from the task to give a comprehensive descrip-

d/' 
I.) ~ (6~ >1.n 

" ()" j 

DOI: https://doi.org/10.2312/zipe.1990.114



87 

tion of these calculations at great length; (Gaussian algorithm). 

The last 3 columns ofTableS give the detailed amounts of the 
Stokes constants of (93) obtained by (100) to (104), specified 
for the three shells in the individual depth ranges of 400 km� 
t � 1233 km, 1233 km� t � 2067 km, and 2067 km � t � 2900 km; 
this are the three layers in the deep mantle of the Earth, Fig. 9. 

Table 5 shows the results of all our investigations. As can be 
taken from Table 5, the masses of the density ( df)8 are rather
well compensated by the masses of the density [<Jf)A.l+ (d'f)A.2]·
Consequently, the density anomalies in the depth range � � t � 
400 km are rather well compensated by the density anomalies in 
the depth range 400 km� t -f 2067 km. We have, (62)(72)(73), 

or, summing-up over the harmonics of all the degrees and orders 
here considered, 

Finally, it is useful to execute the step from the Stokes con­
stants of (93) to the full density anomalies covering all the 
hs.nnonice here involved, 

Along the deliberations connected with (24)(25)(26)(27)(27c), 
the r.m.s. values for the 4 functions of (106) are computed. 
With (24)(27c), these r.m.s. values are denominated by the terms 
of (107), ( see [6] [7}),
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The individual amounts of the 4 r.m.s. values of (107) are figured 

in the graph of Fig. 10, in dependence on the distance from the 

center of the Earth. In the crust and upper mantle, the r.m.s. 

value of the density anomalies is about 25 kg/m
3
, for 0 � t �

400 km. In the 3 shells in the deep mantle, we have the r.m.s. 

values of 14, 10, and 6 kg/m3 , respectively.

The pure gravimetric evaluation type without seismological data 

gave the amount of 1 kg/m 3 only, (4). This value - being free of

seismology - is by far too small, consequently. (See also the 

discussion about the work of Kaula and that of Tscherning/Sünkel 

presented in the final remarks1chapter 13. These authors found

quantities one order too small.) 

25 

14 

10 

6 

6370 5970 

Fig. 10. 

5137 4303 3470 km 
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13. Final remarks

Further amendments of the investigations above can possibly hap­

pen along the following lines: 

1. Constraints for the inertial moments of the Earth can be

introduced. 

* 

2. A constraint for the dynamical flattening H , (39), can be

of help. 

3. Further condition equations, already applied in [7/, can 

come from a consideration of the gravity potential field in the 

interior of the Earth's core. In this context, it is of interest 

that the mass in the exterior core is commonly regarded as a 

fluid. Therefore, in this area, the gravity potential has to be 

represented by the zonal harmonics of the 0th and 2nd degree of 

the potential U, only, (40). Following up this concept, along 

the core-mantle boundary, a condition for the isostatic potential 

and for the potential caused by the density anomalies (situated 

between the surface of the Earth and the core) follows.This 

condition prohibits in the exterior core that tesseral and sec­

torial harmonics of 2nd degree come into existence, as so as all 

the harmonics of degree 3, 4, ... . In /7], this speciality was 

considered by computing a special version of our mathematical 

model. 

4. The fact can be put into the fore that Europe and North

America have a relative dense coverage by the � values of the 

travel time residuals, Fig. 6, 7. Thus, for these areas, it will 

be of interest to find out what will come out if the density 

anomalies are represented by finite elements, instead of the 

usually used spherical harmonic development. These finite elements 

have to have the shape of bodies of three-dimensional extension. 

Along these lines, it is possible to check how far our finally 

obtained density anomalies are biassed by the fact that spherical 

harmonics were favoured in this publication in hand, in the mathe­

matical representation of the data ma terial. 
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5. Further, the isostatic potential w
1 

can be extended and
refined by the inclusion of the terms quadratic in the heights,
(H/R)2, [11], (see also: Arnold, K., The isostatic potential in­
cluding the 2nd - order terms. Gerlands Beiträge z. Geophysik
.!!2_(1980), 287-293).

Finally, in this context, it should be mentioned that significant 
values for spherical harmonics developments of the velocity ano­
malies of the seismic waves have been determined by Dziewonski 
et al., see [7]. In [1], we computed the r.m.s. values of these 
velocity anomalies, and we compared them with the r.m.s. values 
of the density anomalies in the deep mantle, (107), Fig. 10, 
Table 5; ((d�)A_i)a , (i = 1,2,3). The quotient of these two r.m.
s. values (thus, this quotient js determined by the definition:
The r.m.s. value of the seismic velocity anomaly has to be divided
through the r.m.s. value of the density anomaly) was in the mean
about x = 0.0022 . For the upper 400 km, the corresponding co­
efficient x obtained by the law of Birch was x = 0.00264 , (43).
80th these values are in good neighbourhood.

At an earliertime,Kaula evaluated the density ariomalies in the 
deep mantle, (Elastic models of the mantle corresponding to 
variations in the external gravity field. J. Geophys. Res. g
(1963), 4967-4978). Data from seismology were not introduced. 
Kaula found a r.m.s. value for the density anomalies in the deep 
mantle of about + 1 kg m-3. This value is too small by one order
(factor 0.1). Thus, this value is not a realistic one. The real 
value will be about lÜ time greater, because otherwise the con­
straints from the seismological data cannot be fulfilled. The 
same statement is valid for a more recent paper by Tscherning 
and Sünkel, (A method for the construction of spheroidal mass 
distributions ... . Veröff. Zentralinst. Physik d. Erde, Pots­
dam il (1981)11, 481-500). 

The here considered mathematical model is relative simple, since 
the here unnecessary elastic deformation considerations are not 
involved. Indeed, the density anomalies here obtained will cause 
gravitational forces which are relative small and lang-time 
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effective. Thus, regarding the rigidity of the material in the 

interior, and regarding these above disscussed small gravi tatio­

nal forces, it will be questionable whether we are over the 

concerned threshold value which opens the door to enter the 

area where the common elasticity theory is valid. This Earth 

model here discussed is in good harmony with both the geophysi­

cal and geodetic conceptions. 
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Table 1 

Coefficients of the gravity potential 
�G�E�M_l�0��w

n 
values. 

n 
m w •106 

n 

1 0 0 
1 1 C 0 
1 1 s 0 
2 0 -484.165
2 1 C 0
2 1 s 0 
2 2 C 2.43 
2 2 5 -1. 40
J 0 0.9 6 

J 1 C 2.03 
J l s 0.25 
J 2 C 0.89 
J 2 5 -0.62
J J C o. 70
J J 5 1.41

15. ~ 
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Table 2 

The Stokes constants of the isostatic eotential 

and of the heights, w 1 .n and Hn

n m w -106 

I.n Hn/meter]

1 0 0.109 447 

1 1 C 0.106 385 
1 1 s 0.086 273 
2 0 0.134 288 
2 1 C 0.054 200 
2 1 s 0.081 227 
2 2 C -0.090 -274
2 2 s -0.005 - 33
3 0 -0.095 - 99
3 1 C -0.039 - 99
3 1 s 0.048 78
3 2 C -0.124 -313
3 2 s 0 .108 299
3 3 C 0.021 71 

3 3 s 0.111 344 
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Table 3. 

Spherical Harmonics Oevelopment for the 

Station Anomalies 'l:'. 

n m '2", 

s 

1 0 0 .159 

lc - 0.014

1 ls 0.086

2 0 - 0.149

2 lc 0.002

2 ls - 0.159

2 2c - 0.062

2 2s 0.100

3 0 - 0.040

3 lc - 0.089

3 ls 0.080

3 2c 0.113

3 2s - 0.053

3 Je - 0.015

3 Js - 0.013

1 
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Table 4 

Stations Corrections 

Code Station N A B E c52

ABE Aberdeen, Scotland 12 l.B6 1. 75 156 4.04 

ATH Athens, Greece 59 .05 1.00 222 1. 35 

BOB Bagnerres de Bigorre, France 39 - .45 .51 138 2.21 

BNS Bensberg, Germany 45 .14 .32 322 .43 

BEO Beograd (Belgrade), Yugoslavia 59 .88 .47 156 1.40 

BES Besancon, France 46 - .40 .53 113 .B2 

BRA Bratislava,Czechoslovakia 57 - .01 .56 121 .eo 

BUC Bucharest, Romania 20 2.49 2.91 267 3.57 

BUO Budapest, Hungary 35 - .44 l. 75 85 1. 79

CRT Cartuja (Granada), Spain 39 .B5 .76 175 3.49 

CHE Cheb, Czechoslovakia 25 .25 1.06 126 J.27 

CFF Clermont Ferrand, France 43 .45 .B7 112 .94 

CLL Collmberg, Germany 108 .00 .25 191 .51 

COP Copenhagen, Oenmark 9B .85 .51 177 .76 

OBN Debil t, Holland 28 1.90 • 71 289 2.01 

DUR Ourham, England 39 .86 .23 67 1.50 

FIR Firence, Italy 25 2.14 3.91 188 7.57 

FLN Foliniere, France 63 - .18 .37 131 1.11 

GOT Goteborg, Sweden 60 - .05 .84 185 .94 

HEL Helsinki, Finland 47 - .03 .62 90 .n 

JEN Jena, Germany llO - .28 .28 115 .88 

KRL Karlsruhe, Germany 18 - .07 1.83 66 3. 72
KHC Kasperske Hory, Czechoslovakia 62 - .60 .52 75 .eo

KRA Krakow, Poland 99 .02 .36 72 .76
LIS Lisbon, Portugal :n .68 .47 151 1.68

LJU Ljubljana, Yugoslavia 54 .12 .49 157 .87 
MOS Moskow, USSR 156 .04 .17 181 .86 

MWG Münster-Westfalen, Germany 11 .47 .56 119 .67 
PAR Paris, France 27 .06 1.16 80 .98 

PRA Prague, Czechoslovakia 38 .56 .76 161 1.47 
PUL Poulkovo, USSR 140 - .14 .29 36 .87 
REY Reykjavik, Iceland 26 2.13 .59 359 1.19 
STR Strasbourg, France 96 .lJ .47 108 .75 
STU Stuttgart, Germany 143 - • 30 .62 74 .75 
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Table 5 

Final Spherical Harmonics Developments for the Density Anomalies 
in the Earth's Mantle. 

t<l�)B (cl�)A. 1 (c5�\. 2 (cl�)A.3 

Depth 0epth Depth 0epth 
n m 0 - 400 km, 400-1233 km, 1233-2067 km, 2067-2900 km,

kg/m3 kg/m3 kg/m3 kg/m3 

1 0 - 7. 7 3.0 2.6 2 .1 
1 lc 3.5 - 1. 4 - 1.2 - 1. 0
1 ls - 3.9 1. 6 1. 3 1.1
2 0 11. 9 - 6.2 - 4.5 - 3 .0 
2 lc 1. 2 - 0.6 - 0.5 - 0.3 
2 ls 12.1 - 6.3 - 4.6 - 3.1 
2 2c 2.3 - 1. 0 - 0.7 - 0.5 
2 2s - 6.9 3.5 2.5 1. 7
3 0 2.0 - 1.1 - 0. 7 - 0.4

3 lc 5.3 - 3 .1 - 1.9 - 1.1 
3 ls - 4.8 3 .1 1. 9 1.1 
3 2c - 9.6 6.2 3.8 2.1 
3 2s 5.5 - 3.6 - 2.2 - 1.2 
3 3c 1. 5 - 0.B - 0.5 - 0.3 
3 3s 3.2 - 1. B - 1.1 - 0.6 
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Summary 

In the solution of the geodetic boundary value problem, the term 
c 1(M) appears in the integrand of the Stokes integral; [2], 
equation (3) on page 10. This term can be represented by the 
smoothed Bouguer anomalies for numerical routine computations; [2J, 
equation (4) on page 10. c 1(M) has positive and negative amounts
which surmount 1 mgal in seldom cases, only. This mathematical 
expression of c 1(M) in terms of the Bouguer anomalies is in the fore.
It is proved that the expression (4) on page 10 of [2] is suffi­
cient precise for our applications, the residua can be neglected. 

Zusammenfassung 

Die LösGng des geodätischen Randwertproblems enthält im Integranden 
des Stokes-sehen Integrals den Ausdruck c 1(M); [2], Gleichung (3),
Seite 10. Dieser Ausdruck kann durch Bougueranomalien ausgedrückt 
werden; man erhält so eine Formel, die flir numerische Routinebe­
rechnungen besonders geeignet ist, weil die Bougueranomalien 
einen glatten Verlauf haben; [2], Gleichung (4), Seite 10. c 1(M)
hat positive und negative Werte, die selten den Betrag von 1 mgal 
übersteigen. Dieser mathematische Ausdruck für c1(M) steht hier
im Vordergruno. Es wird gezeigt, daß der Ausdruck (4) auf Seite 10 
von [2] für unsere Anwendungen genügend genau ist; die dahei ver­
nachlässigten Terme sind bedeutungslos. 
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1. On the definition of the term C1(M)

The term c1(M) here to be considered is defined by the equations
(22q, (219), and (217a) an the pages 60 and 61 of [2], 

(1) 

with 

(J) 

The model potential M is 

(4) M = T - B

.)fl.u 
--- + 

'7>'f' 

where T is the usual perturbation potential, and where Bis the
gravitational potential of the mountain masses situated above 
ocean level (having the standard density fo = 2.67 g cm-3); [2],
pg. 46 and 47. Gis the global mean gravity, Z is the difference 
between the height HO of the running point O and the height H

P 
of

the fixed test point P, 

( 5) Z = HO - Hp

t6)

and 

(7) f2 = f2.u

are the north-south and the east-west components of the plumb-line 
deflection an the surface of the Earth u, thEy are computed for the 
potential M. R 1is the radius of the test point P, 

(B) R 1 = R + Hp 

j
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f:rnd A are the geocentric latitude and longitude. The deflection 
components at the surface of the Earth u are obtained from M by, 
( [2], pg. 48, eq. (153)) 

( 9) 
-[-1 . �] g

"' 
R

' "u'f u

and 

(10) t12
=

f'-2.u -[� 1 

R' CDS f 

with 

(11) g"' 1 [i'(U + M ) 1

U is the standard potential. 
In (9) and (10), it is allowed to introduce some approximations. 
g'" can be replaced by the global mean of the gravi ty G, and R

' 
can be substituted by R; these approximations involve relative 
errors of not more than about 1/300. J;li and p2 are two-parametric 
functions along the surface of the Earth, as evidenced by (9) and 
(10). Thu s, 

(12) 

(13) 

!;11 

f2
=ßCf,A)=- 1 C� )

GR·cos'f' A u 

Here, -'9i is the spatial function for the spatial potential M. In 
spatial polar coordinates r, 'f, A , we have 

(14) M= -Si(r,'f',A)

The potential M,-Si, T, and Bare harmonic functions,

DOI: https://doi.org/10.2312/zipe.1990.114



(15) t:,. M = t:,. � 

According to (15)' 

(16) 0 t:,. ,& 

+ 
1 

r2cos2
1f 

103 

t:,. T 0. 

the Laplace-operator for � is, [3] [5], 

-$irr 
2 + -
r "9, r

1 
+

� ..s, 'f 'P + 

-9,�� 
1 ,$, - � tan 'f

'f 

ll. B 
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2. The development for the term

104 

Considering the third term on the right hand side of (16), we have 
the term 

(17) 

lt does contain the derivatives of -'9, along the line where only 
the � values vary, but where the values r and A are constant. 
The line where only the 'P values vary is horizontal, and i t has 
north-south direction. A similar property is valid for the 
expression --8,J� of (16). 
But, in (12) and (13), the functions et and (!, describe quanti ties 
distributed along the surface of the Earth u. Thus, 'f and A are 
Gauss curvilinear coordinates on the surface u, in case of the 
functions °' and f, . 
In this context, we are confronted with the problem to express the 
derivative 

(18) 

in terms of the second derivatives of the function �-
The derivation {lB) happens along the surface path fro� Q8 to Qb,

Fig. 1. Fig. 1 is a cross-section through the surface of the 
Earth u for the case that A = const. But, if the derivations of 

,-9, are in the fore, Qb can be reached fr·om Qa along another way
by a first step from Qa to A, and by the ensuing second step
from A to Qb, Fig. 1. During the first step, r and � are 
constant. Du ring the second step, 'f' and ,l are constant. 
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Fig. 1: The replacement of the oblique derivation in the 
direction of � by a horizontal and a vertical derivation. 

From Fig. 1, the following self-explanatory lines can be taken, 

(12) (13),

(19) "<) tJi · (R+H) d 'f 
(R+H)'i) 'f 

= VO((,p A ) 
d'I' 

'u'f' 

'<) /J i< 'f „l) 
d'f 

,., 'f 

(pl)Q - (pl)Q b a

(c,(.)Q - (Oc'.)Q = - _!_ [ (-$i ) (� ) ]b a GR 'f' Qb 'f Qa

-
G
� [ (,S)

'f
) O

b 
- (,$,

lf
)A + (�f)A - (�

'f 
)Qa

] 

] 
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(20) 

106 

_ - � d 'f + 'Vl - df 
1 [ a 'ur 

GR 'f'f' cpr U 'f 

Along the surface u, the radius r has the relations 

(21) r R + Hq

(22) 

l 

Hq is the height above the globe of the radius R. (20) and (22) 

can be combined to 

(23) 
�C\( ('f ;l) 

= _ _lj� + 
'.) 'f' GR L 'f 'f 

0bviously, in a similar way, the derivative of ßwith regard to A 

can be found, Fig. 2, (13). Fig. 2 is a cross-section through the 

surface of U,e Earth u for the case that 'f = const. 

Fig. 2: The replacement of the oblique derivation in the direction 
of A by a horizontal and vertical derivation step. 

Vr 'i)H 
~ = _(J. 

'f' 'c) 'f 

vr 
oA dJ-
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The subsequent relation results, <13),

(2 4) 1
GR· cos 'f 

Now, we return back to (2) and (3). Wi th (12 ) (13) (2 3) (2 4), the 
expression (2) turns to 

(2 5) il? <1:11 • P 2
)

- ! [ �2 

= 
- ! [ R � .$, 'f"f' + 1 

R2 cos2 

'f'
'i) H 

.s, q + 
r'f 'v'f 

1 
�d R2cas 2

'f'

A comparison of (16) and (2 5) leads to 

(26) 

with 

(27) <l? 1
l [ �rr

2 

-Bi r ]+ -

R 

(28) <1> 2 

1 

[ 
�2 -Sir,pG 

"JHQ
-+ 

c>-f> 
1 

R2 cos2

'f' 

,Q rA 
c)HQ

]'<),,l 

Hp is fixed. Thus, ( 5) ' 

(2 9) 

The combination of the equations (1) (28) (2 9) 

(30) 

Wi th 

(31) 

GZ <l? = - l [ -1. 
2 

2 R2 -Qr 'f

(1) (26) (27) (28) (30),

c
1

(M)= GZ•<l? = GZ [ 

� 
z 2 1

--+ 

R2cas2
<p 'Z) 'f 

the equation (31) 

<l? 1 + <l? 2 ] 

yields 

�rA
8 z 2 

o) 

follows 

] 

In the solution of the geodetic boundary value problem, the term 
C1 (M) appears in the integrand of the Stokes integral, (68); [ 2J,
page 10, equation (3). Therefore, the following terms have a 

i»1 + ol>z 

G 

'Z)Hq = 'i) Z 'c) Hq v Z 

'u'f 'v<f ' 'uA = '"JA 
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direct impac� on the perturbation potential T obtained by the 
boundary value problem, 

02) 

(JJ) 

04) 

(35) 

"F = _1_ 
4 rr R 

)) C1(M)•S(p),dv 

V 

!' l + 

!' 1 
_1_ 

�( GZ· � l · S(p) • dv 
4 'ii R 

V 

'1 2 4; R �( 
GZ•· �2 · S(p) · dv 

V 

The sphere v has the radius R + HP. 

'f 
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3. The term 11' 1
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v
1 

is defined by (34). In the integrand of this expression, the
term G• 1

1 
�ppears. With (27), it has the following development, 

(36) � + 1 -� 
rr R r

In [2] , page 77, equation (274), it was demonstrated that the 
radial derivative of M can be put equal to the Bouguer anomalies 

.:'.lg80u with the reverse sign. Hence, 

07) 
D-9i 

= � ,., 
'() r r = - L) 9Bou 

Comparing (36) and (37), it seems tobe possible to express G· 1
1 

by the Bouguer anomalies. In this context, it seems tobe con­
venient to introduce the harmonic potential V= V (r, f, A) by 

(38) 0

and by

(39) V= r,-S, r

The vertical derivative of V has the following relation, [4] 
pg. 38, 

(40) - l V 
R Q

� is the unit sphere. 
The radial derivation of (39) gives (for r R),

(41) R• � + �rrr 

G· ~1 

6 V 
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(39) and (41) is inserted into (40).

Hence,

(42) R· S + ,S
rr r 

(42), (36), and (37) give 

(43) ;: V U'.19ao<j - C ,1gBou ) Q

) 
00 

dlll 

Consequently, (34) takes the following final shape 

(44) �l �d([-

d,111 

zL (( (Lfosou\ - (L:fgBou)Q dlll_.l S(p )-dv. 

2.r \\ e00 J 
V II) 
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4. The term 'l' 2 
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The expression for 'l' 2 is given by (35). The formula for the
integrand of (35) is represented by (30); (30) can be written in 
the shape of a scalar product. With the vector 

(45) 

and 

(46) �2
[l fl: ]R 0f 

1 uz2

R·cos '(' LJA

the relation (30) takes the shape 

( 4 7) 1 GZ. i 2 = - 2 � 1 . �2 

According to (45) and (46), the vectors 

as gradients,which are situated in the 

(48) �l

(49) �2

�l and �2 can be written

horizontal plane ,(that is 

the V operator ), 

For the rearrangement of the integrand of (35), we put (see [1]) 

( 50) 2 �l , Z · S(p) 

The multiplication with the nabla operator leads to 
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(51) 'i7 ! = �l · z2 · 'i7S(p) + �l · 'i7Z 2 · S(p) + 'i7�1 · z2 · S(p) .

Here, we have 

(52) �l · v'S(p) � R� -9,rp sp

Further, Beltrami 's differential parameter of the second order 
gives 

(53) 

with, (16), 

Inserting (52) (53) (54) into (51), the relation (55) is ob­
tained, 

(55) 

(35) and (47) gives

(56) 'l' 2 

_l_ 
8 'lt' R 

Thus, 

( 5 7) 'l' 2 8:R ((
V 

_l_ 

rr B 'iT R 
V 

- z2 •(ll .._q )·S(p) - z2 .L-S ·S + 'i7!2 r R2 rp P 

f( �1·�
2 ·S(p)•dv

V 

z2 

z2

·( t. � )·S(p)-dv
2 r 

1 
';)S(p) 

� 
� •---dv rp 'c)p 

( 54 ) 2 1 2 ar~~ - R~ tan'/' . ~r.o 
R · COS 'f 1 

: - - + 

DOI: https://doi.org/10.2312/zipe.1990.114



113 

- _1_ 

B 'r R

y 

The integrands in the first and second integral an the right hand 
side of (57) are well defined, because we consider a starshaped 
Earth which has per definitionem finite values for z 2 • S(p) and 
for z2 �� 
As to the third term an the right hand side of (57), for the in­
vestigation of it, the test point Pis surrounded by a very small 
circle c

0 
of the radius R•p0 .The interior of this circle is v

0 

and the exterior v
00

, 

The unit vector of the normal of this circle is Q0

, it is 
heading into the exterior of the circle c

0
, Fig. 3. 

dv • 
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�o 

Fig. 3: The Gauss divergence theorem is extended over the 

area v
00 

and its boundary c
0

• 
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The divergence of the vector ! is treated by the Gauss diver­
gence theorem, [/1] , [ 2 ] pg. 58. 

(59) 

If p
0 

tends to zero, ! tends to 

(60) ! � q1 
. 't' 

2 . (Rpo) 2 

,. 

with

(61) 

The amo�nt of q1 is finite and continuous, (48). The quantity '?:
is finite because we have a starshaped Earth. Thus, (60) turns 
to 

(62) 1 --- �l . t
' 2 

2 -R�p 
0 

Hence, 

(63) 1 1 1 -?" cr', if Pa � cr'

Further, the length of the circle c0 is equal to 2 'it' Rp0•
Consequently, a look an the right hand side of (59) shows that 
the amount of the integral an this side tends to zero as p! if 

p
0 

tends to zero. Thus, (59), 

(64)

ff (Vt) dv = 0

V 

(37)' (57)' and (64) yield 

\\ (V · t) dv 

voo 

'?' = _z_ 
Rpo 

2 
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(65) 'I! 2

with 

(66) 81

( 6 7) B2 

81 + 82 

1 

ll B Ir R 

V 

z2 . c t:,. 2

116 

,.1gBou)· S(p). dv 

- _l_ \(f¾J' 811' R ·(_g__ LJg )-'c) P 
Bau �-dv. 

'up 

V 

Obviously, the deductions from (45) to (67) involve some 
simplifications. Of course, certain oblique derivations were

substituted by their horizontal derivations. But, these simp­
lifications will have a small effect on the quantity of the 
term '1!2 • These simplifications will not change the order
of the quantity of '1!2 • In the next paragraph 5, the quan­
tity of the term w2 comes out to be negligible, (71) (72)
(76) (77) (78). Thus, these simplifications in the mathe­
matical deductions from (45) through (67) will falsify the
term '1!2 by negligible quantities, only. These simplifica­
tions in the deductions executed in order to reach (66) and 
(67) have the same basing philosophy as a simplification in
the relation (?3) which comes into being by the neglection
of the expression (35).
Consequently, the evaluations executed in the next para­
graph will yield reliable quantities for the crucial
term ,p 2 •
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5. The quanti ty of the term 'i' 2 

At first, the amount of the term 0
1 

is to be evaluated, (66). 
The solution of the boundary value problem was ( [2], pg. 10, 

eq. (3)) 

(68) T 

V 

L)g1 are the free-air anomalies and C is the plane terrain
reduction of the gravi ty. The supplementary term { Q (M) l is 
explained in (2] . 
Comparing (66) and (68), it is evidenced that the expression 

(69) 

has the character of a free-air anomaly. (69) and (54) lead to 

1 2 1 2[ c) 2 
"u 

2 1 �J ,1 (70) - - Z • ( 62 .d9Bou) = - - Z --2 + --2 - - tanipi) �gBou •2 2 '()x c)y R X 

dx and dy is the line element in the north-south and in the 
east-west direction, along the globe. 
For the numerical evaluation of (70), the data of a realist1c 

1 -.> A � l examp e are for instance: Z = 1 km, � (;J9ßou = 100 km ,

t 10 .> 2 A v 2 
A 100 mgal an 'f = ' 

'Qx2 LJ9Bou = "'u/ .LI9ßou 100 km · 100 km

With these data, the expression (70) results tobe equal to 

(71) 1; z 2 

. ( tJ.2 LJgBou)1� 10 !lgal

Thus, 01 can be neglected generally.

Now, the amount of 02 is tobe evaluated, (67). For a surface
element which has a relative great distance to the test point P, 
an example with the following parameters is realistic:_ 

a ,: R \([LJgT • C • C1 (M,]-S(p),d, • / O(M) l . 
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R.p =2000 km, I --

1-
R 6000 

s ';: 
p 

dv = 100 km x 100 km . 

118 

60 mgal 
100 km 

These data lead to the following impact exerted by one compart­
ment 

(72) 
1 1 -5
G 82 = 10 cm

In case, we have a number of N = 10 000 ot sucn compartments 
globally distributed, the total impact will be 0.001 cm. This is 
a negligible quantity. 
But, for a surface element which lies in a close vicinity to the 
test point P, it is convenient to adapt the formula (67) to this 
special situation. For small values of p, the surface element 
takes the form 

(73) dv = e-de•dA

where 

(74) e=R.p,

and where Ais the azimuth. 
Considerung (61), the relation (67) takes the following shape 
adapting it to the case where the p values are small, 

With the following parameters, 

'?' = _l 
20 

40 mgal 
40 km 
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dA = ! , (J' � e < 40 km ,
2 

(75) yields

(76) 1 ½ s
2 

\ = 0.02 cm .

119 

And, in a second example for 02, the data set 

,r'c 1 ' 

dA 
'if 

2 

leads to 

(77) 

� 

L19Bou
!...!!!.9..tl. 

'cl e 

r:f � e <; 4 km 

l e 1 = 0.1 cm
G 2 

4 km 

The relations (72) (76) (77) show that the e2 value can be 
neglected, always. 
Summarizing (71) (72) (76) (77), (65) turns to 

Oe) '1'2-to. 

. ~ 
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Considering (33) and (78), (79) is obtained, 

(79) 'l' ';t 'l'
l 

For the computation of 'l' according to (32), 

( 8 0) 'l' = _l_ (( C 1 ( M) • S ( p) • d v
4 17' R )) 

there exist two possibilities. The theoretical model of each of 
these possibilities has the same precision; this is the main 
result of the above developments, (78). The first possibility 
depends an deflections for the potential M, (1) (2) (3), 

(81) GZ•[ '.> t-'1 + _1_ c)p2 _ tan .p. ] 
R'c>'f R·COS'f'0l R f1 . 

The second way depends an the 8ouguer anomalies. The theory of 
the second way has the same precision as the theory of the 
first way. We have, (44),

(82) - z \( 
( �98ou )

:�:

The term c
1

.b of [2]( pg. 79, eq. (287)) can always be
neglected consequently because of (78). 

V 

IO 
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D. The Hotine version of the boundary value problem
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Summary 

The boundary value problem of geodesy is considered. The surface 

of the Earth is the boundary surface. The gravity disturbances 

serve as the boundary values (Hotine problem). The theory is 

developed for an error in the height anomalies of not more than 

about 1 cm. 

Zusammenfassung 

Das Randwertproblem der Geodäsie wird betrachtet. Die Erdober­

fläche ist die Randfläche. Die Schwerestörungen sind die Rand­

werte (Hotine Problem). 

Die Theorie wird entwickelt für einen Fehler in den Höhenano­

malien von nicht mehr als etwa 1 cm. 
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1. The preferences of the Hotine problem

The refined Stokes solution is well developed by [3J, pg. 10, 
eq. (3)' 

Cll r ,:)) [ ,,,, • c. ,,c•>]-sc,,-•1 • 1 O(Ml \ 

1 

T is the perturbation potential in the test point P at the 
surface of the Earth u, LlgT the free-air anomaly, C the plane
terrain reduction, c 1(M) is in close relation to the vertical
gradient of the refined Bouguer anomalies ( [3], pg. 10, eq. 
(4); see also the previous chapter), the expression S(p) is the 
Stokes function depending on the spherical distance p to the 
test point P, 1 represents the unit sphere, and, finally, 

Q(M) is a relative small supplementary term depending on the 
heights Hand on the model potential M, 

(2) M T - B 

where B is the gravitational potential of the mountain masses 
(with the s�andard density ,Q = 2.67 g cm-3) situated above sea
level ( [3], pg. 46). 
The free-air anomalies are obtained by 

(3) 

where (g)
0 

is the real gravity at the running surface point Q, 
and where (g 1 )

0 
is the standard gravity at the running 

telluroid point Qt perpendicular below Q, ([3], pg. 12, eq. (6));
Fig. 1. 

t 
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Q 

-�

H 

Fig. 1. _The telluroid t, the Earth's surface u, the globe v, 
the normal height h , and the height anomaly � 

, 

Now, the term (g )Q is in the fore. Considering the precision
t 

of this term, we have with 1. order approximation, Fig. 1, 

(4) (g')Q t

Q• is perpendicular below Q at the globe v having the radius
R. Gis the global mean of the gravity, and h 1 is the normal
height, Fig. 1. An error L1h' in the height has the following

I Impact on (g )Q ,
t 

1 2G h' <9 )c• - ;-
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1
- 1Q(5) <'.'.](g )

Q 
Llh 

t R

or 

L)(g' )
Q 

L1h 
I 

(6) - 0.3
t

in (6), the left hand side in mgal, and L1h' on the right hand 

side in meters. As long as the distance to the coast is not too 
great, L)h

1 
will not surmount some centimeters. Hence, the 

left hand side of (6) will be negligible in this case. 
But, in case of a great continent with levelling lines of 1000 km 
length and more, the quantity of L'.1h

1 
can reach one meter. By 

(6) and (4), an error of 0.3 mgal in the free-air anomaly is the
result. In the midst of this continent, we may have a GPS-deter­
mined geocentr ic radius ( r GPS) of the point Q wi th a r.m. a. error of
� 0.1 meter; than, h 1 can be obtained by (see Fig. 1) (for a 
spherical Earth) 

From satellite orbit perturbations and by the combination of 
these satellite methods with terrestrial gravimetric methods, 
the ( values are known within about ! 2 meters, in a global 
scale, [7]. If this error is denominated by .d /; , (7) gi ves 

(8) Lfo
1 

= - ,1( 

and with (6), in this case, 

(9) 1 
,1(g )Q = + 0.3 • LJ(

t

In case, .1 � is equal to + 2 m, the f ree-a ir anoma 1 ies are 
falsified by + 0.6 mgal, (3) (6) (9). These considerations are 
valid in case of the Stokes problem, introducing free-air ano­
malies. 

(7) h / r GPS - R - ( 
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Now, we turn to the Hotine problem, ( [2], pg. 122, eq. (54)). 

Here, the gravity disturbances o g figure instead of the free-air
anomalies. 

(10) dg
I I 

g - g = (g)Q - (g )Q

I 
In (10), both the gravity values g and g refer to the same sur-
face point Q. Computing (g 1 )

0 
instead of (g 1)0 , the normal

t 

height h 1 has to be replaced in (4) by, (Fig. 1),

(11) H = h
1 + /;

This fact has the advantage that H can be determined directly 
from GPS measurements. From (7) and (11), (12) follows 

(12) H = rGPS - R

rGPS is known from GPS within about = 0.1 meter. R is errorless
computed. Thus, H is known within about = 0.1 meter, too. 
From (10) (11) (4) (6), (13) yields in a self-explanatory way 

(13) L'.)( cfg) = 0.3 • L1H

With LIH = 0.1 meter, the gravity disturbances Jg are 
falsified by 0.03 mgal only, whereas for the free-air anoma­
lies, the much more great value of 0.6 mgal was found, above. 
This fact is of cardinal importance, comparing the Hotine 
integral with the Stokes integral. 

Considering a great continent with height determinations by 
spirit levelling over distances of about 1000 km and more, a 
strengthening and an improvement of the height values by rGPS
values is more effective in case of the Hotine method ( ög 

values) than in case of the Stokes method (L1 gT 
values) . 
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2. The identity of Green

The formula (1) leads to the height anomalies � expressed in 
terms of the free-air anomalies, with a theoretical error of not 
more than about 0.01 meter. Now, it is intended to develop the 
corresponding formula which expresses the C values by the gravi ty 
disturbances Cl; wi th a theoretical error of not more than about 
0.01 m, too, (10)).The subsequent derivations will be carried 
out under the influence of (3]. 
Referring to [3], pg. 16, eq. (17), the identity of Green givaes 
for the perturbation potential Tat the test point P situated on 
the surface of the Earth u, Fig. 2, 

(14) T(P)

u 

1 c>r ---·--•du 
e(P ,Q) 'e>n 

l \( [ "c) 1 ] - T, -- --- ,du
2\1" 'cln e(P,Q) 

u 

The meaning of the symbols of (14) is explained further to 
Fig. 2. 
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Surface of the Earth, 

Mean (geocentric) globe in sea level, R is the 

radius, 

Geocentric sphere, R + H
P 

is the radius� 

Fixed test point at the surface of the Earth u, 

A point on u, moving during the integrations whichhave

P as fixed test point, 

A point on u, mov ing du ring the integrations which have 

Q as fixed test point, 

The vertical projections of the points P, Q, Y on 

v, 

The perpendicular projection of the point Q on w, 

A point perpendicular above the test point P, 

Straight distance between P end Q, (P end Q), 

Straight distance between P and Q••, resp. P* and 

p ·-----2_--~/, 
~-- -- __ ::: ~11· Q 

~~- (//~~ "-.. 
p. -------- n ..::•a** y e' = • ;......_-~ 

Ha•H 
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Q*, resp. Q* and Y*, 
Height of P, Q1above the globe v,
The difference of HQ minus HP,

The identity of Green of the shape of (14) refers to the real 
surface of the Earth u. The oblique straight line e, the unit 
normal vector g of the surface u, and the surface element du refer 
to the oblique surface of the Earth u shaped by the topography. 
All the two integrands on the right hand side of (14) are now 
mul tiplied wi th and di vided through the term cos ( g' , n). 
�(g1 , n) is the angle defined by the positive directions of the 
twa vectors g' and Q, taken for points on the surface of the 

I = 
-

Earth u. g is the vector of the standard gravity heading into 
the interior of the Earth. The vector Q is heading into the in­
terior, too, Fig, l. 

u 

R+H 

a. 

Fig. l. The vector of the standard gravity g' and the unit normal 
vector Q of the Earth's surface u. 

... 

Eorfh's surface , 
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Along these lines, (14) turns to 

(15) T(P) ,� f ( ,c,'.oi 
� 1 • du • cos(g1 ,n) -
'c,ln oos(g' ,n) 

u 

2� 
ll T �(�) 1 • du • cos(g 1 ,n)

cos(g' ,n) c>n 
u 

Now, the ter•s in the intagrands of (15) are decomposed into their 
spherical parts and into the residual parts. The relations from 
(16) through (21) come up,

(16) 

(17) 

(18) 

� _____ 1 __ _ 
'c>n cos(g' ,n) 

_l __ l 
e(P,Q) e 

'8 ! 1 
_e ___ _ 

'dn cos(g 1,n) 

'c) T - - + 0(1.1) 
'8 r 

'c) !,- - + 0(1.J) 
'd r

(19) du. cos(g 1,n) = dw + 0(1.4) = K4 + K:

(20) 

(21) 

dw 
2 

( R + H
P

) cos 'f' • d 'f · • d ,l

e
1 = 2 • (R + H ) sin p/2

p 

The relations !rom (16) through (19) are inserted into (15). 
Hence, neglecting negligible terms, 

(22) 2 71' T ';t ff [K2 Kl K4 + K2 Kl K4
+ 

' I 

K / K4 J -
+ 

K2 Kl K4 + K2 Kl K4 + K2 1 

-- - . 

, 
Kl + Kl 

. L I . 
e' 

+ 0(1.2) ,. K2 + K2 

' K3 + K3 

u 
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u 

The equations from (16) through (21) are combined with (22); 
thus, putting 

(23) 0(2.1)

w w 

� L. D(1.4) 
�r e' 

• \f T !!• D(U) - \\ T·D(l.3) • d• •

w w 

+ ff 0(1.1) • 0(1.2) • dw

w

the Green identi ty turns into the following shape 

(24) 2 \, T

= 11 [- dT 
+ 0(1.1)] ....!. • dw + 

'c) r e' 
w 

+ \\ 

c) !, 
T,_e_ • dw + 0( 2 .1)

�r 
w

+ 

From Fig. 4, the subsequent differential relation can be taken, 

(25) 'c) e' ,

/"'\ r
= sin p/2 = -8 -

� 

2R 1 

(25) leads to

• - \\ ~:·O(lc2)·d• - )) 
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e !, 

__ e_ 
c) r

- ---

2e 1 R 1 

• ,ap

134 

o. 

./ 

Fig. 4. The derivation of the distance e· with regard to the 

radius r. 

In order to have denotations which are not too·different fro• 

the corresponding symbols of [JJ, pg. 29, we put 

(27) F(T)H = 0(2.1)

Putting 

(28) oc 

(29) ß

- � ) + Dl 1. 1 , 
'c) r

_l F(T)H
2'i'r' 

1 1 

4R 12 , sin p/2 

d 
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00) T 

-r
=

;; , 

C:H) R' = R + H
P 

, 

02) dw = R'2 cos 'f' • d'f' • dA 

03) dw R'2 sinp dp dA 

04) dl = COS'f ·df • d ,1 ' 

(24) turns to

0 = �� �I 
0/.. 

_L ((, 
1 dl + ß-1 05) · dl 

sin p/2 at sin p/2 R' 
1 

. . 

1 
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3. The Hotine integral

The continuous functions ex, ß, and u describe values which are 
distributed along the surface of the Earth u, (28) (2 9) (30), 

06) oL = Oi.('f,A.) 

07) ß = ß C 'f ,A)

00> o = oc'f,J) 

Consequently, these functions can be developed in surface spheri­
cal harmonics, 

09) "' 

n =0 m =0 

[ Cl(,l.n.m' Rn.m ( 'f'' A) +

oll.n.m and_ OL-
2.n.m are the Stokes constants. Rn.m C<f ,A) and

sn.m ( f,�) are the well-known normalized spherical harmonics
of the degree n and of the order m, [3) pg. 18, 

( '/'•' ,.,, -f 
; nti or m,tk 

l \( 
or both 

(40) R cr, A )•Ri.kn.m 

V 4ii'R2 ; n=i, m=k

for sn.m ( 'f'• A), a similar relation is valid.

As usual, (39) is now written in the following abbreviating form 

(41) 
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ex::> 

(42) ex L an. y n ( 'f' A)

n=o 

Further, (37) turns to 

CO 

(43) 1.. = \
R' L_,

n=O 

(44) o' d .y ( 'f
,A) 

n n 

n=O 

In (35), the inverse of sin p/2 appears also. Acr.ording to the 
decomposition formula of the spherical harmonics, this inverse 
has the following development, [3] [sJ, Fig. 2, 

CO 

(45) 1 = \ _2 __ yn c'f',) )
p

*,vn C'f ,J )O*
sin p/2 L 2n+l 

n=O 

(42) (43) (44) (45) are inserted into (35). Hence, the equation
(46) is obtained

00 

(46) L, dn·Yn (
'f

,A)p* 1
., 

� a _2 __ y ( ) ) ~ 
L 'f ,1, p*. 4" -

4„ n=O 
n2n+l n 

n=O 

n=O 

d --2-,Y (-o,A )p* • 4'iY +n 2n+l n r 

C • y 
n n 

C-f,A) * p 

The orthogonali ty relations for Y n (-,>, A ) are, ( 40), 

. " 

00 
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(47) 

(46) and (47) give

(48) 

Thus, 

a ,_2 ___ 1_.d n + cn2n+l 2n+l n 

(49) o = 2an + (2n+l)•cn - 2•(n+l)·d
0 

(n z 0, 1, 2, ..• )

' 1f 

' if i=j

In (49), the Stokes constants dn have the character of unknown 
values, whereas the constants an and cn have to be considered 
as given quantities. For the computation of 0(1.1) in(28)and of 
F(T)H in(29�an approximate knowledge of T suffices. This re­
quirement is met since the height anomalies 

(49a) � = (:, J
Q 

are known within some meters, considering their global distri­
bution, [7]. We are now confronted with the problem to find a

closed analytical relation by which the function developed in 
terms of the dn values, (44), is expressed by the functions 
developed in terms of the an and cn values, (42) (43), observing 
(49). For a moment, the relation (50) (hereinat'ter) is supposed 
to be the solution of the system (49). Then, immediately after­

wards, this supposition is verified, 

(50) 
0 

r-

: L (([0(- l .!!_] H(p) , dl 
4ii' )) 2 R 1 

ß 
+-

R' 
1 
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H(p) is the Hotine function, ( [2], pg. 114, eq. (23); 
[6] pg. 311).

00 

(51) H(p) = L 
n=o 

2n+l • P (cos p)
n+l n 

= cosec p/2 - ln (1 + cosec p/2) . 

The Hotine function comprises the spherical harmonics of all 
degrees, the degrees n=0 and n=l included. But, the Stokes 
function is free of these degrees of the numbers n=0 and n=l. 

As to the verification of (50), the Legendre functions 
P0 (cos p) of (51) have the following expression, [3] pg. 35, 
[5] pg. 33,

_1_ n 
[ Rn.m <'f,l) + P n (cos p) = ·= ( 'f,A) :( • Rn. m2n+l m=0 p Q* 

+ 5 5 <,p,A) . (<9,A) ] (52) n.m P* n.m Q* 

(52) is inserted into (51). With the here preferred manner of
writing, the equation (53) is obtained,

H(p) = I. 1 

n+l 
(53) 

n=0 

The equations (42) (43) (44) and (53) are introduced into (50), 
the subsequent equation follows 

00 00 

(54) I dn ·Yn =- L
n=0 n=0

a __ 1_ .y 
n n+l n

00 

-[ !.c __ 1_ .y 2 n n+1 n 
n=O 

CO 

+I cn,yn

n=O 

-- · Yn ('f,A) * · Yn <f,A.) · 
p Q* 
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(54) and (47) lead to

(55) O = 2a
n + (2n+l)•cn 

- 2(n+l)•d
n 

. 

(55) corroborates (49). rhus, (50) is right. (28) (29) (30) are

inserted into (50) and the detailed shape of the solution is 

found, 

(56) r

1 
R 

4'jj ff [-
1 

'c>r 1 F(T)H] F(T)H 
+ Dr(l.l) - - -- H(p)•dl + -- • 

'c)r 

47,
R 1 

2,;; 

Comparing (56) with (28), the reader will realize that in (56) 

the term Dr (1.1) has now the suffix r. rhis suffix is useful

in the further developments, it stresses the fact that Or (1.1)

refers to the pertubation potential r. Later on, in the formula 

for Dr (1.1), r will be replaced by another potential.
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4. The superposition with the visible mountain masses

In (56), the term D
r 

(1.1) is rather rugged, even in low moun­
tains, (see [1] , pg. 14: Fig. 2 and eq. (77); the term KG( ßgT)

is equal to D
r 

(1.1)). This term is smoothed now by the 
superposition with the visible mountain masses. Here, these 
masses have the standard density 
have the following gravitational 

o -3 
"\7') = 2.65 g cm . These masses 
potential B, [3] pg. 46, 

(57) B=f,.Q

V 

f is the gravitational constant,V is the volume element, and e 
represents the straight distance between the running volume 
element dV and the test point P at the surface of the Earth u. 
Thus, (57) turns to 

(58) B

p=O A=O r=R 

l.r 2 - sin p • dp • dA .
e 

The potential M is introduced by 

( 59) M = T - B

In (56), T can be 

(60) M R'

�\ 4t,' 

1 

substituted 

[-�" 'dr 
+ DM

by M, 

F(M)H] F(M)H
(1.1) - --, H(p)·dl + --

41';' R 2'i7' 

The relation (56) is valid for M 
1
just as for T. 

In the mathematical developments in [3] from pg. 5 2 through 61,
or from eq. (176) through (221), it is allowed to substitute the 
function S(p) by H(p), obviously. In consideration of these 
circumstances, the Gaues integral theorem turns the integral 

)ff ½•dV . 

• f ~ ~ '( R•~ -
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appearing in (60), to 

142 

(62) J
1 ff c1 (M) • H(p) • dw

41m' 
w 

1 

)� 
z dH(p),l__'c>M,dw;

- 4li'R'2 dp R' lc)p 

(63) Z = HQ 
- H

P

(64) dw = R'2.dl

dl is the surface element of the unit sphere. 

(65) c 1 
(M) = G z . � <1-11, 1-12)

(65a) �<1-11, 1-12)
'c) 1-11 c) 1-12 � --+ 
R '. '<) 'f' R '·cos 'f • �� I R 

1-11

Gis the global mean gravity, 1-11 and 1-12 are the components of
the deflection of the vertical in the potential field M + U, 
where U is the standard potential. As to details about c1(M),
see the previous chapter C of the publication in hand, and 
further [JJ, from eq. (176) through eq. (221), replacing S(p) 
by H(p) in a self-explanatory way. c1(M) can be expressed in
terms of the Bouguer anomalies. (61)(62) and (65) are inserted 
into (60), the equation (66) is obtained, 

(66) M _1_
4ltR1 

)\[- �: • c 1 (MJJ H(p) • d• • OH.! (M), 

,. __ 

w 

w 
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with 

(67) 
Q H. 1 (M) _1_ 

\\ 
F

(M) 

4fiR1 

4
«'

R
' H .H(p)-dw

F(M)
+ �--H

2 \, 

w 

1 

\\ z.�.L 'elM 

41iR 12 dp R'. 'f)p 
• dw.

w 
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5. The retransformation back to the potential T

Now, the way back to the perturbation potential T has to be gone. 
(59) is inserted into (66), yielding

(68) T - B
1 II [- 'c)T '<YB

] 
-- - - + - + C1(M) H(p)-dw + 

4i1R' 'clr 'c)r 

w 

'2H.l(M)

Bp is the potential B et the test point P, (58), Fig. 2r and 

(.'clB I is the radial derivative of B at the running surface 
l'?>rJ Q

point Q. (L1 + L
2

)P* is the potential of the mountain masses 

condensed at the globe v, it is taken at the point P*, Fig. 2. 
(L3 + L4 )Q* is the corresponding quantity for the radial deri­
vative of B, taken at the point Q*. Thus, [3] pg. 70, 

If we have a spherical boundary surface v with radius R, end 
if we have a harmonic potential X exterior of v, in this case, 
the Hotine integral gives 

(70a) X -- --•H(p)•dv, 1 (( �X 
41l'R "clr 

V 

(see [6], pg. 311; [2], pg. 114). 
Consequently, the Helm�rt condensation method gives rigorously 

(71) - _1_ 

41:'R )) (L3 • L4)0• • H(p),d,

V 
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or 

(72 ) (L1 • L2\• > ,.:, \( (L3 • L4)0.•HC,Hw • B· ":

with 

(73 ) .!. dv: L.dw·( 1 -
H

p) 
R R

1 
R 

Further, 

w 

H 

+ T ..1
R

V 

On the left hand side of (68), we have with (69) 

Considering (74) ·c12) (70), on the right hand side of (68) 
appears the subsequent expression with always tolerable appro­
ximations 

(76) .� I\[- :: }H(p) ,,
HP + T•- +
R 

V 

+ 
4;;�' \\ { (l3 + L4 ) Q* + [�: ]''} ·H(p)·dw +

(74) _1_ 
41l'R 1 

w 

Os) T - (L 1 + Lz\• - [B J" 

w 
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+ _1_ rr Cl(M)·H(p)-dv + Q H.l (M).
4il'R ) 

According to (68), (75) is equal to (76). Thus, accounting for 
(10) (72),

(77) T "_1_ 
47.R 

II [Jg+ C + C1(M) ] H(p)•d• + •• (M)

V 

with the topographical supplement 

(78) OH (M) • OH. l (M) + M :p + [B] "' + t.9, ff r-:0r H(p)· d,

V 

cfg are the gravity disturbances, C is the plane terrain reduction 
of the gravity, (see [1], from pg. 36 through 39), 

(79) C + Je - - [8]"

[ t"c)'c):]" " 
2 

R 

The third term on the right hand side of (79) will not surmount 
10 µgal, ( [1]

1
pg. 36). 

Hence 

(81) - " C + 4'tt f-9, H -['c>8]""' HQ 

'<> r Q R 

V 

(80) 
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6. The topographical supplements for test points in high moun­
tains 

The equation (77) describes the perturbation potential T in terms 
of the gravity disturbances Og; the theoretical error of (77) 
will be smaller than about 1 cm in the height anomalies /;, if 
the computations will be executed carefully. (77) is of uni­
versal applicability, may the test point P be situated in high 
mountains, in the lowlands, or on the oceans. 

As to the terms on the right hand side of (77), after c1(M) was
discussed thoroughly in the last chapter, the description of the 
way how to reach CH(M) is left over for the author. (78) is 
the formula for QH(M). The computation of the second term on 
the right hand side of (78) happens with (58) and (59) by means 
of 

11' 2:r R+H

(82) 
HP

H
P ..9, 

H
P 

\ ( \ ½ r
2 sin p • dp • dA M- - T f -

R R R 
p=O A=O r=R 

[8]" is the third term on the right hand side of (78). The 
formula for.[8]" is developed in [1] pg. 36 and further in 
[2] , from page 25 through page JJ. In nearly all cases, (if Gis 
the global mean gravity), the amount of [8]"/G can be forgotten 
because it is smaller than 1 cm, an exception perhaps in moun­
tains crossable by roped party only. The computation of the 

fourth term on the right hand side of (7B) is simple, lt re­
quires no comment. 8ut, the computation of the first term on 
the right hand side of (78), 1.e. QH.l (M), needs a detailed
description. This term has the formula (67), depending on 
F(M)H. F(M)H is defined by (27), exchanging T by M,

From the developments in [JJ, from eq. (74) through eq. (78),

or from the eq. (225) through (225h), the subsequent expression 
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yields, 
8 

(84) F{M)H f1 (M)' + f2(M)H + .L f1 (M)

1=3 

The individual terms on the right hand side ot (84) are as 
follows, 

(( ,ögM l [2 - �] .L.dw
}) R y+y e 1 

(86) f2 (M) Jf • \(; ¾ [3

2 
] 

- � y+y 
.L.dw

I 
' 

e 

w 

(87) f3(M) ff;• ;l ,qw

w 

(88) f4(M)

w 

(89) f5(M) - (( dgM � • de
1 

· dA
H v•v 

(90) t6(M)

(91) f 7(M)

�r M 
[ 

2x2
] 

I =
R - y+y2 + V3 • de •

ff �

M I 

'c) e' • 
( 

v 2 - b 11) • de •

dA 

dA 

(92) t8(M)
- ) � GZ • �(x••fJ1, x••f-12),de. dA

w 
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A is the azimuth, counted clockwise. In the expressions for f 1,
t2, r3, r4, the integrations cover whole the globe. But, in the
integrals for f 5, f 6, f 7, and f 8, being of interest in case of 
high mountain test points only, the integration has to be exten­
ded over the surroundings of the test point P only, up to a 
distance of not more than about 30 km or 100 km. .dgM is equal
to the Bouguer anomaly, in suffi�ient approximation, [l] pg. 4B. 

<92a) ,19M � ,:1gBouguer

Calculating QH.l(M) by (67) and (B4), the term r4 (M) appearing in 

r; P {M)H by (88) (in the second expression on the right hand side of 
(67)-} should be combined with the third term on the right hand 
side of (67) • lloth these terms should be melted into one another, 
which will bring a great relief to the computations. 
The above equations contain the following abbreviations, [3] 
pg. 30 and 31 , 

(93) X = L
e' 

(94) , = 1 
+ 

x2 + LX 
R' 

(95) y2 = 1 + x2 

(96) x* l x
2 e1 x] 1 +--

(x ')i/2 R' X I + 

(97) v
l

1 (x + arsinh x) 
2 

(98) v
2 

- .?!. + arsinh x + (sin p/ 2) [ 1 - ; + 2y 1 ,y

(- Co <x<+ac:,, I 
< 1000 km), e 
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(100) 

(101) 
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1 .  ¼ y - :, • ¼ ,, [-; •(;) '] •
+ x�(!) � sin p/2 + ! x�(!)

3 

(-oo<x<+oo,e 1 <1oookm), 

b7 = arsinh x

Soma of the above expressions have the following series develop­
ments valid for small values of x, 

(lOla) x 2 << 1 

(3] eq. (A 327a) gives 

(lOlb) v1 = x - ....l x3 
+ - • • •

12 

(3] eq. (A 334) gives 

(10 lc) 

[3 ] eq. 

(lOld) 

[3] eq. 

(lOle) 

[3] eq. 

0D lf) 

v
2 

" l x3 + -

(A 345) gives 

V
3 = 

x
2 + - . . .

(A 320) gives

b7 = X - l x3 + -

(84) 

bll 

gives 

';' 1 3 
- X + - • • •

. . .

• X·X 

6 

7 
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The universal formula (77),(with (78) and the expressions from 

(84) through (101)),should have an exclusive field of application,

only. This sole and exclusive field of application will be the

area of test points situated in high mountains. In all the other

cases (and this are by far the most cases having test points in

low mountains, in the lowlands, and on the oceans),the applica­

tion of (85) through (92) will be eccentric. In these cases,

the computation by (85) through (92) means to be a procedure

that does go too far, because in the lowlands many parts of

(85) through (92) are very very small; they can be cancelled

saving much werk.

Hence, it is convenient to adapt the formulas (77), (78), (84) 

through (101) to the case where the test points are situated

in the lowlands, in the Mittelgebirge, or on the oceans.
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7. The topographical supplements for test points in the lowlands

The transition from the universal formula (77) to this special 
lowland formula is carried out by putting the higher powers of 
x, (93), equal to zero, i.e. x2, x3, ... , .By this transition, 

$ 

the term QH(M) of the relations (77) (78) turns to QH(M).
Consequently, the lowland formula for T has the following shape 
(102), 

(102) T _1_ 
4ll'R ff [ dg + C + c1(M)JH(p)•dv + g�(M)

V 

*In the lowland version (102), in the term QH(M), the expression
[B]" figuring yet in the universal expression (7B) can be ne­

glected, [1] pg. 35 and 36, [2] from pg. 1B through pg. 33. 
Thus, 

(103) QH. l (M) + M + f�* H
p (f(

H

R
a)

2

·H(p)•dv
R 

V 

With (67), Q�_1(M) has the subsequent expression

(104) - _1_ 
4frR 1 �)

F*(M)H 1 ---,H(p),dw + - F*(M) -
411R1 21i' H 

w 

41.(R') 2
z.�.L. 'c)M•dw

dp R1 'c)p
w 

The expression for F*(M)H of (104) is obtained modifying the
formulas from (84) through (92) by putting the terms x2, x3, 

equal to zero. Thus, the terms from (89) through (92) can be 
cancelled. In (85), we have the transition 

(105) 2 -� 
y+y 

l 
2 

1 
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(106) z 

[ 

J 

-
R 

(87)' inserting 

2 l 1 1 
� ,+ vl -y+y e R

153 

(lOlb), 

3 •. LL
R e' 

A similar modification happens with (88) accounting for (lOle). 
Thus, the equations from (84) to (92) turn to the following 
lowland version 

(107) 

(108) 

(109) 

(110) 

(111) 

i=l 

\� ,1
9 l l L. ctw 

M R 2 e 
0 

w 
• 

w 

)\ R�: � · c:�� P��)
2 · 

dw

e
0 

= 2·R·sin p/2 

Wi th (92a), and wi th [l] pg. 48, the term .ö gM can be replaced 
by the 8ouguer anomalies of the definition of [SJ from pg. 130 
through lJJ, plane terrain correction of the gravity is applied 
calculating the 8ouguer anomalies. 

Inserting the equations from (107) through (110) into (104)1the
following lowland version of Q�_1(M) is obtained; [JJ eq.

-

... 

DOI: https://doi.org/10.2312/zipe.1990.114



154 

(230) and (272) and (273); and [4], eq. (29) through (33), and 
eq. (37). 

(113)
* 

12H.l(M) 1 
(4\'1" R)2 ff 

F*(M)H • H(p)•dw + 

w 

1 

\( +-

2 li' 
Z 3 1 

,:Ög - - - • dw 
M R 2 e 0 

+ 

w 

1 

(( +-

2 „ 
w 

- 8 1, R2 

!i]. l...dw 
R R e0 

(( ..EJ:L,z.[ cos p/2
2 

+ 2 !!!il..Pl ]· dw. 
)\ R,op (sin p/2) dp 
w 

_1_ 
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8. The application of the gravimetrically obtained height ano­
malies for the interpolation between the GPS derived height
anomalies

Hence, by (102) (103) and (113), the explicit formulas of the 
lowland version is obtained. lt is the lowland version for the 
computation of the T values, or for the calculation of the 
height anomalies t , 

(114) t = ( :, ) 
p

in terms of the gravity disturbances dg. 

As to the practical application of (102), (or the high mountain 
version (77)), in many cases, this formula is used for the 
interpolation of the t:; values between the ( GPS values ob­
tained from the GPS derived geocentric radii, rGPS' (7), 

(115) ( GPS = 
1 

rGPS - R - h + 11' ( E) 

11' ( f) is a correction for the flattening of the Earth. 
The more detailed formulation of (115) is 

(116) 
I 

,:; GPS = r GPS - r E - h + r

rE is the radius of the mean Earth ellipsoid E for the geocen­
tric latitude f of the GPS station on the surface of the Earth, 
(more precise: The geocentric latitude of the surface GPS 
station after its vertical projection down to the ellipsoid) 

017) 1 e2 2 1 4 
E sin 'f'+ - eE (-

2 2 

aE resp. bE is the semi-major axis (resp. semi-minor axis) of 
the mean Earth ellipsoid. eE is defined by 

,, ., [· - -
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(118) 

(117) can be found in the text books.
h

1 

is the normal height, in (116). The correction term r accoun­
ting for the flattening of the ellipsoid can be taken from:
Arnold, K.; Das Geoid aus Beobachtungen der Satellitenaltimetrie.
Veröff. Zentralinst. Physik d. Erde, Nr. 7, Potsdam, 1972, pg.
19, eq. (98).

(119) r
1 4 _aE ' 2 
- eE (h + �) sin 2'f 
B rGPS

In the braces of (119), an approximative value of t is 
required merely. 
As lang as the distances between the z;GPS values are not more
than about 500 km, the first and the third term on the right 
hand side of (103) will vary as a linear function between these 

t'GPS values, probably. Thus, the first and the third term on
the right hand side of (103) will, probably, be absorbed by the 
procedure of the linear interpolation. The linear variations of 
these two terms between the (GPS values will be taken into 
account automatically by the procedure of the interpolation. 
Thus, in the lowlands, for this interpolation procedure wor­
king between the points with /: GPS values, it will possibly
suffice to calculate the gravimetrical ( values simply by the 
subsequent formula (120), along the lines between two GPS stations, 

(120) _1 __
4 r.'R g'

)J [Jg + C + C1(M)J H(p) dv + M :p

V 

But, only in the lowlands, the form (120) can be convenient 
to simplify the interpolation of the gravimetrically obtained 

( values between the GPS derived !; values. In the high 
mountains, for this interpolation procedure, we have to take 
the ( values of (77) and (78). The fourth term of (78) will 

e2 
E 
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be linear over ranges of 500 km, probably. Thus, it is neglec­
ted here. The following formula can suffice for the interpola­
tion of the /:; values, possibly, in high mountains, 

(121) --1._ 
4i'R g' \( [ '59 + C + c1 (M)] H(p) dv + 

V 

+ H1> [B ]"QH.l(M) + M - + 
R 

For the interpolation of the t; values over ranges of about 
500 km, in (121), nH.l(M) is computed by (67). Here, in the
expression for F(M)H, the terms linear over 500 km can be split 
off. Thus, in context with the relation (121), we can put,(in(67) ), 
possibly, the expression ( 122) instead of F (M) H , approxima te­
ly, for the interpolation procedure over 500 Ion ranges,(84�107) , 

(122) [ t1(M) - f�(M)H] +

+ [r
2
(M)H + f

3
(M) - f;(M)

H ] + 

+ [ f
4
(M) - f;(M)

H ] +

(122) ie quasi the expression of F(M)H minus F*(M)H ,(122) is

!ree o! the constituents which variate linearly over ranges 
not langer than about 500 Ion, Sure, the expressions (120) 

(121) (122) come into question only within this above dis­
cusaed interpolation procedure, ( see (84) (107) ), 
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Summary 

Recent crustal movements give rise to changes of the heights, 

of the gravity values, and of the gravity potential. The verti­

cal derivative of this deformation potential is expressed in 

terms of the changes of the height and of the gravity. This ver­

tical derivative depends on the density changes which accompany 

the recent crustal movements. These density changes consist of 

two parts: The first part is a surface layer of the real density 

and of a thickness which is equal to the height changes. Thus, 

the first part has beforehand given parameters. The second part 

consists of the density changes in the interior of the Earth. 

Along these lines, it is possible to find an empirically given 

signal function for these density changes in the interior. These 

density changes can be found in terms of the quantities of this 

signal function along the lines of the gravity methods of the 

geophysical prospecting. 

Zusammenfassung 

Rezente Erdkrustenbewegungen reflektieren in Änderungen der 

Höhen, der Schwerewerte und des Schwerepotentials. Die vertikale 

Ableitung dieses Oeformationspotentials kann dargestellt werden 

als Funktion von den Änderungen der Höhe und der Schwere. Anderer­

seits kann diese vertikale Ableitung dargestellt werden als Funk­

tion von den Oichteänderungen im Erdinnern, die im Zuge der re­

zenten Erdkrustenbewegungen entstehen. Diese Oichteänderungen be­

stehen aus 2 Teilen. Der erste Teil ist eine Schicht an der Erd­

oberfläche; sie hat die Dichte des Oberflächengesteins und ihre 

Mächtigkeit ergibt sich aus den Höhenänderungen. Der zweite Teil 

besteht aus den Dichteänderungen im Erdinneren. Für diese Oichte­

änderungen kann eine Signalfunktion angegeben werden, die empi­

risch gegeben ist. Mit Hilfe der Methoden der gravimetrischen 

Lagerstättenforschung können diese Dichteänderungen im Erdinne­

ren als Funktion von den Werten dieser Signalfunktion gefunden 

werden. 

DOI: https://doi.org/10.2312/zipe.1990.114



161 

1. Introduct ion

In many test-areas and along many test-lines, the changes of the 
heights and of the gravity values caused by recent crustal move­
ments are detected by levellings and by gravity measurements. 
As to the geophysical interpretation of these measurements, it 
is intended here to develop a comprehensive and satisfactory 
theory. Till now, the height changes are discussed, separately. 
In other cases, the gravity changes are discussed separately 
accounting for the reduction on account of the height changes 
(applying the free-air gradient or the free-air gradient supple­
mented by the effect of the Bouguer plate). Then, the reduced 
or the non-reduced gravity values are divided through the 
height changes, and 1finally 1 the thus obtained quotient is com­
puted, But in the literature, there is not a satisfactory quan­
titative discussion about the value of this quotient which is 
influenced by the accompanying density changes in the interior 
of the Earth. The latter question is the subject here to be
treated. 

2. Theoretical foundations

Along the surface of the Earth 6"', the perturbation potential T
depends on the free-air gravity anomalies.1gT by the following 
expression, K. Arnold (1986)(1987b)(l989a,b), ( lowland version

The braces denote that the harmonics of zero and first degree 
are split off. In (1), we have (for test points in the lowlands) 

(2) 2*(M) = 
Hp 

+ l'k � /4Tf 90Hq �
28HQ Mr --;:r J S(y) dv +

R 

+ ½r ff 
3 Z 1 1

ff 
M Z 1 dv -119M � lf e0 

dv + 'ff lf lf e0 

1 
ff 

oM Z[ 
cos ! 

+ 2 dS(y)
J dv-

8l'R2 � (sin �)2 � 
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v denominates the globe with the radius 
height of the test point P resp. of the 
Q. f is the gravitational constant, p0

-3) ( � 0 ·= 2.67 g cm . S(v,) is the Stokes
distance. We have 

(3) z = HQ - Hp 

(4) eo 2R sin !

(5) M = B - T 
'

(6) .dgM
c!M l M

- är - r 

R. Hp resp. Hq 
is the

moving integration point
is the standard density 
function, � the spherical 

.dg
M 

can be replaced by the Bouguer anomaly in sufficient 
approximation, (see ( 7), d g * ;;' Ll�). 
B is the potential of the mountain masses (of standard density 
p

0
) situated above the surface of the globe v. Cis the plane 

terrain reduction of the gravity; c1(M) has the following rela­
tion, K. Arnold (1989a,b), 

(7) 
1 - z "'11r

(see also chapter C of this volume). 
.dg is the Bouguer anomaly which is described by W.A.Heiskanen 

and H. Moritz (1967). The relation (1) is valid as lang as the 
test-point Pis not situated in high mountains, K. Arnold 
(1989a). 
By the recent crustal movements which happen during the epoch f

situated between the time values t1 and t2, the T value changes
by 

(8) D

• 

~ = 
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��-92�Ef2
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1 
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� ----/-r, l -------
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1 
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1 

( hn) 1 1 ( hn ) 2

1 El\\psoid 
----
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Fig. 1.: The shifts of the telluroid � and of the Earth's 

surface e-'; the changes of the normal gravity 'lt•
of the observed gravity g, and of the normal 

heights nn . The epoch covers the time from

t1 to t2

Thus, at the beginning of the here considered epoch � , at 
the time t1 , the perturbation potential T at the Earth's

surface can be computed in tenns of the free-air anomalies Ll gT
which are located on this surface and which are measured at 
this time t1 ( i.e. (L'.]gT) 1 ). This computation happens by
means of the following universal fonnula (9) which can be re­
garded as the solution of the geodetic boundary value problem. 

The formula (9) is valid for test points in the lowlands, in 
the Mittelgebirge, and in the high mountains, too. 

DOI: https://doi.org/10.2312/zipe.1990.114



164 

(9) ( T ) t 
R 

\� at. 1 · S ( "f') • dl
+ { Q (M) r T

1 w t, 1
1 

(9a) �1 [ L1gT + C + c 1 
(M) ] t,

( see K.Arnold (1989a), pg. 10, eq. (3), the suffix 1 of c 1
(M} 

does not refer to the time t1 ).
In ( 9), the parentheses { l denote tha t the harmonics of O th 
and first degree are split off. R ·1s the radius of the globe 
situated in sea level, Cis the plane terrain reduction of the 
gravity, c

1
(M) results from the vertical gradient of the re­

fined Bouguer anomalies by eq.(4) on pg. 1 o of K.Arnold (1 989a). 
S( "I') is the Stokes function, y is the spherical distance to 
the test point, 1 is the unit sphere. The term {Q<Mit 

is
given by eq.(268) and (224) on page 75 and 62 of 1 

K.Arnold t1989a). These equations represent the universal for­
mula for Q(M) which is valid for test points in high moun­
tains , too.
In case, the test point is situated in low mountains or in the
lowlands or on the oceans, the universal supplementary term
{ Q(M)tcan be replaced by the simple term fgt(M)f which

can be computed more easily than the universal version {Q(M){ 
using eq. (272) (273) (230) (266) given oh pg. 76, 66, and 
74 of K.Arnold (1989a). 
Hence, the transformation from the one version to the other 
version can be described by ( see (1) ), 

( 9b) Q (M) 
� 

� Q (M) 

These above ciied relations give 

(10) Q* Q* 
Hp 

(M) = 
1 

(M) + M -
R 

+ 
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Hp is the height of the test point, [ B]" can be neglected 
in nearly all cases ( see the first 3 lines of pg. 76 of 
K.Arnold (1989a)).c

2 
comes from eq. 266 of K.Arnold (1989a).

In the above relation (10), we have ( K.Arnold (1989a) eq. (230)),
neglecting relative errors of the order of Hp/ R

* 3 :t ( 11) Q1(M)
(4 11' )2 ��

F (M) • S(v) • dl 

+ 

+ 

Here is 

(11a) 

1 

R2 

)\ .LJgM •--

2'r 

z 

R 

3 
. - .

2 

1 

R2 

\) 
1( 

-

2 'II' R 
1 

an-

1 

cos y/ 2 

(ein y/2 )2 

z 

R 
. -

eo 

• z •

d S('ljl} 
+ 2--­

d 'fl 

. 

+ 

• dl
eo

dl 

tx.2 • dl •

* F (M) comes from eq. (227) of K.Arnold (1989a). The quantity
of the right hand side of (11) will be dominated by the 2 nd,
3rd and 4th term on this side. LfgM 

can be replaced by the

+ 

)\ 

Ol2 
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Bouguer anomalies, in good approximation, ( see K.Arnold (1986) 
pg, 48 ). Z is the height difference relative to the test point. 
Further, 

( 1 2) 2 , R sin v/ 2 

The spatial position of a point in the exterior of the body of 
the Earth is given by the placement vector x. A point speci­
ally situated on the surface of the Earth

a

has the placement 
vector x 

Hence, considering the placement of a certain point on the sur­
face of the Earth a t the beginning of the epoch , x 1 , the po­
tential T

1 
( at the time t

1 
) on the left hand ;ide of (9) 

can be represented by 

( 13) 

here,the two suffixes 1 refer to the time t1 • 

For the end of the epoch, at the time t2 , the perturbation
potential T has the analogous expression 

( 14) 

Here, I1 
and ;2 refer to the same physical particle, the 

first vector refers to t�e time t1 and the second one to the 
time t2 The shift from I1 

to �2 happens by the re-
cent crustal movements. (9) and (14) lead to 

(15) � \(<>< 3 • S(�)• dl +fQ(Mit2 •

1 

(15a) 

Further, for a fixed spatial position ! which is not shifted by 
the recent crustal movements, we have for the time t1 
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( 16) 

Similarly, for the time t2, in the same fixed spatial point �,

( 17) 

Consequently, the change the potential 
point � during the epoch between t1
quent relation 

T undergoes at the fixed 
and t2 has the subse-

( 18) D(x) 

D(�) ia a ha:nnonic potential function in the exterior of the 
body of the Earth, likewise as T1(�) and T2(�) , D(�)
fulfilla the Laplace differential equation. 
Now, the aolution of the geodetic boundary 

( which is represented by(1)(9) and(15) ) 
to the potential D(; ) , l18). 

value problem 
is to be applied 

In thia context, and to be as precise as possible, we introduce 
now the surface ;o , which is defined in the following
way 

In case, the new geocentric radius of the surface of the Earth 
( for the time t2) is greater than the old one ( for the
time t1 ) ,

(19) 

on this condition , the radiua r2
!o But, in case we have 

(2o) 

describes the surface 

on this condition, even the old radiua r1 describea the
surface x

=0 

With theae peculiar definitiona, the apace exterior to the 
aurface deacribed by the vector X 

:0 
ia free of maases. The 
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difference potential Dis a ha:nnonic function in the exterior 
of the surface j0 • D fulfills the Laplace differential equa­
tion in the exterior of. �o 

Thus, it is possible to understand the potential Das a func­
tion which can be introduced into the solution of the boun­
dary value problem, likewise as T1(�) and T2(�) , (9) (15). 
However, here we should observe the fact that the radial deri­
vative of D ( 1.e. �D / c)r ) has no correlation with the 
topographical heights. This fact is in clear contrast to the 
peculiari ties of the free-air anomalies �g T ( appearing 
in (9) and (15) )which have a distinct correlation with the 
heights. Hence, applying the solution of the boundary value 
problem to the potential D, it is not necessary to work with 
the superposition of the potential T and the potential B of 
the visible mountain masses, (5). This superposition procedure 

transforms the rugged te:nn DT(1.1) or c1( T) or KG(.dg T) 
into the smoothed te:nn C + c1(M) 1 (9) (15) , ( see K.Arnold 
(1989a) chapters 5, 7, and 8 ,  and K.Arnold (1986) pg. 14 ). 

This discussed ruggedness of the free-air anomalies(and ofthese 
3 expressions depending on them)comes into being by these 

correlations with the height. 
Therefore, we can desist from an application of the formu­

las of the type of (9) or (15). Here, we can prefer the re­
lations developed in K.Arnold (1989a), eq. (114), pg. 36. 
With Das a substitute for T, we obtain (DT(1.1) ➔D:(1.1)

fDt f D(�o)} 
R' 

l\ �4(21)
4V 

1 

• )#( 
( 21a) 

0( 4 LJgD + DD(1.1) + 

'c)D 2 
(22) LJgD - -- - --

'vr r 

• S("f') • dl

D 

3 F(D) 
-- ·---
41r R' 

f F(D)t 
+--

2'lr' 
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For the second term in the integral of (21), the following deve­
lopment is known, K.Arnold (1989a) from pg. 52 through pg. 61. 

R' 

1� 
* 

( 22a) DD ( 1 .1) • S('jf) • dl
4" 

1 

4'iYR' )\ 
C1(D) • S(

,r
) • dw

w 

z • dw •
4'il' (R' )2

w 

The symbol w denotes the globe with the radius R' , 

(22b) R + Hf = R'

His the height above the globe the surface of which is situ­
ated in sea level. Z is the height difference: Running point 
height minus test point height. 
Neglecting relative errors of the order of 

(22c) 
H! 

R 

and inserting (22a) into (21), the following relation for 
the difference potential D yields 

( 22d) { D} 

here is 

4
: ) � 0( S • S �) • dl + \_V , 

1 

+ -

4'u 

F(D) 

R 

d S('f') 1 v D ---
dy R' 'c>y 

3 
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(22e) \lf= 

1 

170 

d S (1j1) 1 c)D 
Z, --- ·- ·-- -dl 

d 'f' R r.) '1/f 
+ 

t F(D) t 
2 tr 

C1(D) is explained by eq. (4) on pg. 1o of K.Arnold (1989a) ,

(22f) - z 

1 

Ol6 ( LJgD)Y ( L'.lgD)Q

• dl 

as to AgD , see eq. (23g) which follows later in this
chapter , ( see also Fig.2 on pg. 15 of K.Arnold (1989a) , 
see also chapter C of this volume in hand ). 
In most cases, the test point of (22d) for which D is to be com­
puted, this point is situated in the low mountain areas or 
in the lowlands, but not in the high mountain ranges. In this 
oase, not the universal expression for F(D) is recommanded to 
be applied. This universal fo:nnula is given by K.Arnold (1983a) 
pg. 63, from eq. (225) through (225h), replacing M by D .  
In case, the test point is not situated in high mountains, the 
much more simple fo:nn F*( D ) should be preferred in place of 
F(D) • 
Thus, in (22d) and (22eJ,we substitute 

F(D) 

Referring to the relations from eq. (227) through (228) 
on pg. 65 of K.Arnold (1989a) , the following equation (22g) 
is found; it expresses the lowland term F*(D) by three 
global integrale. Thus, F*(D) is a very smoothed function. 
The subsequent equation (22g) expresses Ff(D) in terms of 

LlgD , of the potential D and its radial derivative; in
this context, approximative values for .1gD , for D and
its radial derivative are required in the integrands on the
right hand eitle of (22g) , only. LlgD is obtained by c2Jg).

c1 (D) 

1 (( 

4;, ) ) 
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F
0\D) \\ 

z 

( 22g) L'.JgD dw + 

R 2 eo 
w 

)� 
D z 

+ -- . dw 
R R eo

w 

\\ 
c)D z cos v/ 2 

�- (sinl'f2 )2 
• dw

R 'r) "+'

w 

Now, it ia necessary to apeak of the anomaly ,1gD , (22),
whioh appeara in the integrand of the relation (22d). In the 
firat term on the right hand side of (22), the derivative 
/'e) D/ 'c>r appeara. It ia the radial deri va ti ve of the poten­

tial D(�) taken for the points at the surface described by 

!o , (18) (19) (2o). The value D atands for the change of the 
perturbation potential T during the time interval between the 
times t1 and t2• At the time t2 , the measurements
happen on the aurface 1o if (19) is right. Thus, the mea­
aured gravity values are 

(23) , on the surface �o

where g
2 

ia the measured gravity on the surface Io at 
the time t2 
In the identical spatial point (with the same spatial co-ordi­
nates) for which the relation (23) is valid for the time t2 ,
the gravity at the time t1 is deacribed by

(23a) , on the surface �o

(g)
t 

ia not a directly measured quantity on the surface 
- 1
�o . The quantity of (g)t 

1 

on the surface x has to be=0 

•

J 

-·-· 

-- · 
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computed in tenns of the measured gravity values obtained on 
the old surface of the Earth which does exist at the time t1 , 
Here, the derivation of the concerned computation procedure 
may base on the vertical free-air gradient of the etandard 
gravity. Thie procedure can be followed in eufficient approxi­
mation, at least in this context. For a more precise procedure, 
we have to go over to the vertical free-air gradient of the 
real gravity, ( see K,Arnold (1989), pg. 214, eq, (75a) (76) 
( 77) ) •

During the time interval t2 - t1 , the measurement station at 
the Earth's surface undergoes a vertical spatial shift by 
the amount E ,Fig.1, 

(23b) E = D + dh
G 

( see K,Arnold (1986), pg, 2o9, eq, (49) ). G is the global 
mean of the gravity, Jh ie the change of the nonnal heights 
obtained by levellings. The firet tenn of (23b) , D/G, stands 
for the change of the height anomalies /:, 
Hence, by the standard value of the free-air gradient of the 
gravity, (23a) (23b), the following relation is found 

(23c) 
2G 

[ 
R 

dh + : ] , on the su.rface �o

The g1 value of (23c) ie the measured gravity on the old aur­
face found at the time t1 • Consequently, in a self-explana­
tory way, 

�D 
(23d) - -- (g)t - (g)t , on the aurface

'clr 2 1 =0 

(23e) g2 g1 cfg 

/ö)D 2G 2 
(23f) - -- Jg + ,fh + D

'c)r R R 

dh is the change of the measured nonnal heights, Jg that 

i 
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of the measured gravity. The relation (23f) is inserted into 
(22), the following relation yields in sufficient approximation 

(23g) dg + 

2 G 

R 
dh 

The relation (23g) is valid not only for (19). It is easily 
proved that the relation (23g) is valid for whole the surface 

1o , for (2o) in the same way as for (19).
Now, (23g) is inserted into (22d). The subsequent relation 
follows, 

( 23h) [ D f { D(�0 ) l 
R 

\\ 4'ii 

cx.
7 

• S(y). dl +'I( 

1 

2 G 3 F(D} 
cfg + dh + c

1 
(D) + -

R 471' R 

This is the formula for the D potential expressed in terms 
of the changes of the gravity and height • Computing 
the D potential by (23h), the test point is situated on the 
surface of the Earth; or - to be more precise - on the 
surface !o • The same is valid for the boundary values
appearing in (23h). 
The spherical simplification of the formula (23h) is the 
integral of Strang van Hees, 

R 

) ([og
2G 

dh] S('f') • dl • (231) D = -

4\r R 

1 

A shift of the values of 

(23j) 
c)D 

.Lign 
D and 

'c)r 

from the old surface of the Earth to the new surface ( which 
is moved by the recent crustal movements has a negligible 

Cl(. 7 

+ 
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effect on these values of (23j). This fact can be demonstrated 
easily, now. 
For instance, the potential D conaists of constituents of the 

following type, 

(23k) /1.. = .A.(x)= 

r, 'f, A are geocentric polar co-ordinatea, aen are the 

Stokes constants, and Yn is a spherical harmonic of the 

degree n .  In (23k) , a shift of the test point x in the ver­
tical direction by the amount of cSr reflects in a certain 
change of the /l. value. The following change is obtained 

(24} cf/1.. • -(n+1) ;n+z • �n • Yn( 'f',A.) • dr

(23k) is inserted into (24), the relation (25) yields, 

(24a) JA -;: - <n + 1) • !L • dr 

In case, the wave length of the globally distributed A. values 
is denominated by L, the assigned degree n is obtained by 
the following rule of thumb, 

2 'i7' R 
(24b) n .. 

L 

Thus, we find 

(240) 
n 2 'iY 

R L 

Here, in our example, the value 

(24d) L 1o km 

is a convenient choice. The relations (24d) and (24b) give 

(24e) 
R 

n „ 2fr-
...., 
= 3600 n + 

Rence, in (24a) , n + 1 can be replaced by n. Inserting (24c) 

1 

L 

, 
R 

DOI: https://doi.org/10.2312/zipe.1990.114



175 

(24e) into (24a) , the following relation 

JA. N 

Jr 
( 24f) 2?i' 

L 

With J r = 0.001 lan, and accountig for 
(24f) turns to 

( 25) 
JA. 

A. 

N 

for d A. results, 

(24d), the relation 

(25) proves that a vertical shift of the test point by the
amount of 0.001 \an reflects in the D value by a negligible
impact. The same property can be found for the tenns of
'c)n/'o r and L'.JgD of (23j), too.

The relations (22) and (23g) lead to 

uD 2 2 G 
(25a) - -- D cfg + Jh

'or r R 

The potential D has the following series development (25b) 
which is unifonn convergent in the exterior of the surface 

!o , K.Arnold (1986) (1987a,b). This series convergence
was proved considering the problem from different sides and
along different ways; all these deliberations corroborate 
the fact that the series development (25b) is unifonn con­
vergent in the mass free exterior of the gravitating body. 
(25b) is a representation of the potential D valid in the 
exterior. 

00 

(25b) D z 
n= 2 

The different individual areas of recent crustal movements 

A. 
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will have a horizontal extent of not more than about 
1000 km x 1000 km .  Coneequently, it will be allowed to put 
the inequality (25c) which etates a lower bound for the quantity 
of the degree n, 

( 25c) n > 2o 

A look on (23k) and (24a) givee the inequality (25d) , acc­
counting for (25c) , 

( 25d) 
'<>D 

'<>r 

and with l25a) and (25d) , 

(25e) 
'JD 

'c)r 

2G 
+ -- dh

� D / � V is the downward derivative of the potential D, 
it is taken in the direction vertically downwards into the 
interior of the Earth. The equation (25e) represents this 
downward derivative of D in tenne of the meaeured quantitiee 
of c:Jg arid dh • 

Now, we finish theee theoretical preliminaries. We go over 
to a consideration of the potential D .  This etep ie recomm­
mended in order to prepare thie potential D for the further 
numerical evaluatione. In view of the further intentions, 
it is convenient to divide the potential D into 2 parts 
The potential Db of a eurface layer and the potential Dg
of the density changes in the interior. 
Thus, 

(26) D + 

,., 
= 

R 
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(27) Ob f 

(28) Dg f 

{f � ¼ E dS' 

f5\ 0� l dV 
V e 
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9 is the real density along the Earth's surface, e is the 
straight distance, � is the vertical shift of the Earth's sur­
face (Fig. 1), and V is the volume of the body of the Earth. 
The derivation of (27) in the vertical direction of d V leads 
to (29) using the jump relation for this derivation, 0.0. 

Kellogg (1929), 

üD 
(29) a}

and with (23), ( & can be put equal to 6 h in sufficient appro­
ximation, K. Arnold (1985)(1986)), 

clD 
OO) 0/ 2if� � 2'iif� · oh

The relations(25e),(26), and (30) give 

og + (� - 2'if� ) cl h 

Approximating f by the standard density 90
turns to 

02) = c\g + 0.1967 clh

(The gravity in mgal, the heights in meters). 

2.67 g -3 cm ,

¾ Dg is a signal function for the density changes J9 in the
interior, (28). 

01) 

The validity of (31) and (32) can be corroborated in a trivial 
way. The right hand side of (31) and (32) is the difference of 
the new gravity at the new surface minus the value of the old 
gravity reduced from the old surface to the new surface. This 
reduction happens by the free-air reduction and by the Bouguer 
plate reduction, whereat the effect of the shift of the level 
surface can be neglected (or the change of the height anomal.iea). 

• 

• • 

• 
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3. The density changes along the main profile of 100 km length

The main profile an Iceland crosses the rift zone and has a length 
of about 100 km. In 1975 and in 1980, along this profile, precise 
measurements of the heights and of the gravity were carried out. 
The levellings have a standard deviation of � 1.5 mm/km. The gra­
vity values are measured within � 6 pgal by relative gravity me­
ters. Thus, the changes of the heights and of the gravity values 
are found precisely. The reference point of the levellings lies 
at an undisturbed coastal place,(a height change by 1 cm reflects 
in the gravity by 2 �gal). A comprehensive review of these mea­
surements can be found in: Zeitschrift f. Vermessungswesen 114 
(1989), Tectonophysics 71 (19Al), J. of Geophysics 47 (1980). 
8y 02), the 6g values and the c5h values measured along this 
main profile allow to compute the signal function 'c>Dg /ci V
along this profile, Kanngieser (1982), Torge (1989). 
Considering the course of the signal function in Fig. 2, it is 
obvious that the general level of these values is lowered down 
during the epoch from 1975 to 1980. lt is lowered down to the 
quantity of - 9 �gal; this number has a standard deviation of 
about � 1.3 pgal averaging over 150 values of the signal function. 
Thus, the subsidence of the level of the signal function is sig­
nificant; it cannot be explained only by a change of the gravity 
at the reference point. 

Fig. 2. 

r., 

r.,'I) Dg 

+SO

+30

+10

-10 

-�

- !50

µGoi 
135 km 

cJ The course of the signal function e� □
9

along the 
100 km profile. 

-

DOI: https://doi.org/10.2312/zipe.1990.114



179 

As to the interpretation of this subsidence, the well-developed 
methods of gravimetrical prospection come now into the fore. 
The potential 0 can be expressed in terms of mass changes om 
in the interior of the body of the Earth, 

e is here the distance between the test point Pk and the place 
Ki of the point mass 6 mi . The following 4 lines are self-expla­
natory, 

(34) 
cJ °ev 0g(Pk) 

(35) !! � !l 

(36) !l �-1
!! 

(37) s { c5 mi} 

zk is the vertical co-ordinate of Pk, zi that of the point Ki . 

Returning back to the interpretation of the values of �g shown 
by Fig. 2, the gravitating scources which cause these values can 
be represe�ted by a Bouguer plate of 7 km thickness, (7 km is
about the width of the lithosphere in the area of Iceland).
A lowering down of the at □

9 
values by the quantity of - 9 �gal

is equivalent to a lowering down of the density of this Bouguer 
layer (of 7 km thickness) by the quantity cf 69 = -3.hl0-5gcm-3,
In this context, the dynamic of the spreading movement of the
lithosphere in the area of Iceland is of interest. A diminution
of the density of the masses in the lithosphere plate by -3.4x 
10-5 g cm-3 can have its cause in a horizontal extension of this
plate. This extension has to happen in the direction of the main
profile of 100 km length, i.e. the direction perpendicular to
the rifts.
There are two opinions about this driving mechanism. They are
described by Jacoby et al. (19B0): "What is the driving mechanism
of the rifting event? Is magma squeezed in gravitationally (buo­
yantly) pushing the sides into compression or is regional tension

g 
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from plate divergence released in fissures tearing open and • 
making space for the magma? The regional deformation of the area 
can be interpreted either way." 
Dur above gravimetric investigations about the signal function 
h Dg led to a diminution of the density along the profile.
Thus, the evalution of our signal function is in favour of a 
long-distance extension of the lithosphere plate. Thus, our signal 
function is able to discriminate between the different geophysical 
models. 
In this context, it is of interest that the extension of the main 
profile of 100 km was determined by terrestrial geodetic distance 
measurements, MHller (1989): " ... whole the test area having an 
east-west range of about 110 km has merely an extension of not 
more than 2 m ... ". 

1 -5 -3 This quantity leads to a density change by about o� = -2·10 gern ,

eure. Both thß values of the density change are in a relative
good agreement, (i.e. the value obtained gravimetrically by
� Dg, and the value obtained by terrestrial geodetic distance
measurements). 
In the above investigations about the lowering down of the signal 
function /;, Dg along the 100 km profile, the reference points for
the heights and for the gravity were considered to be stable. The 
stability of the heights can be controlled within some millimeters 
by water-gauge observations in a satisfactory way. The stability 
of the gravity level can be checked by absolute gravity measure­
ments, a precision of about � 1 �gal is announced to come. 

4. The density changes within the test area of 10 km x 14 km size

New, we consider a test area of the extension of 10 km x 14 km. 
The eastern and the southern part of it covers the hat spots of 
the Kraflar caldera and of the Namafjall area. In the pronounced 
uplift phase of 197B, the changes of the heights dh and that of 
the gravity og are determined precisely by measurements. The 
first measurement campaign was in January 1978 and the final one 
was in June 1978. During this time 1 some seismic events and erup­
tions o�cured in this area. These dg and Jh values allow to 
compute the signal function-{; Dg by the formula (32).
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Fig. 3. The course of the signal function within the 
10 km x 14 km test area. 

Fig. 3 shows the course of our signal function within the 10 km 
x 14 km test area. Falk (1988), Kanngieser (1985). 
The signal function of Fig. 3 has a smoothed shape because a 
smoothing operator was applied. In the areas of the hat spots, 
the signal function �v D has two minima of about - 20 �gal. 

vll g 

In the north-western part, the test area has a maximum of about 
� 20 �gal. In the Fig. 3, the course of 2 profiles is plotted. 
Fig. 4 and Fig. 5 show the course of the signal function along 
these two profiles. 
The course of the quantities of the signal function along these 
two profiles was approximated by straight lines respectively, 
applying the method of least squares. 

The parameters of these 2 straight lines and the concerned stan­
dard deviation are as follows, taking the signal function in �gal: 
Profile A - B, 

(+5.B +0.1) Ekm - (24 +0.6) ,(3B) ...i. D 
i)y g 
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(39) (+9.1 +0.6) Ekm - (23 +1.8) .

Thus, the coefficients of these 2 straight lines are clearly 
significantly given. Consequently, the structures of the signal 
function shown in Fig. 3 are clearly significant, proving clear­
ly that certain density changes in the interior have to exist. 
A depression of the signal function with a minimum value of about 
- 20 �gal can be explained by certain density changes in the in­
terior. It can be explained along the lines of the methods of
the gravimetrical prospection, from (34) through (37).
For instance, a spherical mass of the radius ,{), = 1 km, of the
density change 69 = - 0.006 g cm-3, and of a center in a depth
of 3 km will cause a depression of the signal function having 
a horizontal extent of about 4 km and a minimum of about -20 �gal, 
as figuring in Fig. 3. 
This absolute density change (by - 0.006 g cm-3) means a relative
density change by - 0.006/2.67, being equal to - 2•10-3.
This quantity of the relative density change corresponds to a 
horizontal extension of the upper layers of the Earth by about 
4 m over a distance of 2 km. Extensions of such an amount are 
determined by terrestrial geodetic distance measurements in this 
rift area, indeed, Möller (1989): " .•. the great extension quan­
tities in the rift zone amounting up to 4 m .•• ". (This is valid 
for the period 1977 - 1980). 

5. The relation of dg to oh

Several authors finish the discussion of the measured d g and 
oh values by quoting the relation of 6 g to 6h. For instance, 

Hagiwara found for the Izu peninsula, H.G. Wenzel (1989), 

(40) � -0.3 mgal m-l ,

leading to the following quantity of our signal function, (32), 

(41) -0.l·oh .
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For Iceland, we have with W. Torge (1989), 

(42) - 0.43 mgal m-1 L � � -0.12 mgal m-1

hence, for the lower limit of (42), 

(43) ..E.. 0 
eh• g 

-0.23-&h

and for the upper bound of (42) 

(44) +0.08-cfh

As an extreme quantity, W.Torge found 

(45) � + 1.3 mgal m-l ;

thus,

(46) .E.. 0 
av g + 1.5· cfh .

For dh 1 m, the relation (46) leads to the relative great 
value of 

(4 7) c) 
<Jv Dg 1.5 mgal . 

This latter amount of our signal function can be interpreted by 
the gravitational effect of a sphere of 1 km radius, having a 
homogeneous density of 0.45 g cm-3, and having a center point
situated in a depth of 3 km. In this case, we have possibly an 
inflow of magma into an empty or into a widening chamber. 
Consequently, the evaluation of the cJ g and d h values should 
not stop after the first step which leads to the values of only 

dg / dh. A second step should follow computing the signal 
function (31)(32) which allows to calculate plausible values for 
the density changes in the interior. 
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6. The mass conservation law

Finally, a discussion of the mass conservation law is of impor­
tance. In this context, this law has the following shape intro­
ducing tolerable approximations, W.A. Heiskanen and H. Moritz 
(1967), 0. 0. Kellog (1929),(without the Earth rotation tenn) 

( 48) cl M 0 -rtfr Jl ..@._ 0-dv. 
II V e))I 

0f course, the mass change oM during the period � has to be 
equal to zero. 
The relations(25e)and (48) lead to 

(49) 0 SJ [ c5g + � cl h] dv

relating the global integral over cl g and that over cS h,

(50) Sf cl g dv - � H oh-dv .
V 

This is aconditionwhich isto be observed considering a recent
crustal movement phenomenon.
The coefficient - 2G/R is the free-air gradient being equal to
- 0.3 mgal m-1.
For instance, applying the above developments about the mass
conservation law on the fennoscandian land uplift, we have for
this area by empirical means, H.G. Wenzel (1989),

(51) � 0.19 mgal m-1. 

(32) and (51) give

(52) 0 •

The above relation (52) shows that our signal function is equal 
to zero for the area of the fennoscandian land uplift. Thus, it 
is very probable that there are no great density changes in the 
interior. 
Consequently, the mass conservation law demands that the masses 
of the central uplift ,�·dh, distributed over the Earth's surface 

V 

V 
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( c.5 h � O) have to be compensated by the mass defects of a sur­

rounding belt of subsidence, (oh L 0). For the concerned sur­
fical mass distribution (� • cSh), we have the following conetraint 

(53) 0 J[ si•oh•d6 
V 

7. Resul ts

In a refinement of the here discussed geodynamic model, the first 
step should be to replace the standard density �o of the sur­

face layer by the real density on the surface of the Earth. 
The usual interpretation method which finishes the discussion 
of the gravity changes and height changes by quoting the relation 
og: r!J h only, this is not an optimal one. The information con­

tent of the measurements is not exhausted fully; this method 
means to stop halfway. 

In any case, it is better to add a second step, computing the 

signal function 01)(32) in terms of the 6g and oh values and 

determining plausible quantities for the density changes in the 
interior. This second step should not be missed. The estimation 
of the density changes should happen in close collaboration with 
geophysicists and geologists. 
The above investigations s�ow that it is possible to find signi­
ficantly certain parameters characterizing the time-dependent 

density variations which appear in the interior and which are 
caused by the procedures of recent crustal movements. 
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