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Summary

For the computation of the perturbation potential and the height
anomalies at the Earth’s surface in terms of the isostatic gravity
anomalies, a new and refined expression is developed, (97) (68).
The theoretical error of the final solution for the height ano-
malies will not be greater than about 1 cm. Looking back to the
traditional isostatic theory, the main progress is the fact that

two amendment terms have to be added to the traditional solution;
they can be computed easily.

Zusammenfassung

Fir die Berechnung des Storpotentials und der Hohenanomalien an
der Erdoberfldche aus isostatischen Schwereanomalien wird eine
neue und genaue Formel angegeben, (97) (68). Der theoretische
Fehler bei der Finalldsung fiir die Berechnung der Hohenanomalien
ist nicht grosser als etwa + 1 cm. Der wesentliche Fortschritt

im Vergleich mit der traditionellen isostatischen Theorie besteht
darin, dass zu der traditionellen LOsung 2 Zusatzgliecder hinzu-
addiert werden missen. Diese sind leicht zu berechnen.

AHHOTATIA

Il17 BHYHECJEHAS BO3MymapmeTo OOTEHIAana ¥ BHCOTHHX aHoMasldit
Ha NOBEDXHOCTH 3eWIX H3 M30CTATHYECKUX IDABUTALMOHHHX aHOMa—
Jafi OpUBONETCA HOBad K TOYHadA dopmysaa, (97) (63). TeopeTu—
9ecKad OOTPEmHOCTDH 3aKIOYMTEJBHOTO DEeleHUss OpM BHIMCIECHUK
BHCOTHHX aHOMaJiii COCTaBJsgeT He Oolee + 1 CM. CymeCTBEHHHit
OpOTpecc MO CPaBHEHAW C TPaIMIMOHHO¥ M30CTATEYECKO¥ Teopmei
3apmyaeTcad B TOM, YTO K TPANHMIMOHHOMY DEmMeHM0 NOJKHH CHTB
Op#GaBJIEeHH 2 NONOJHUTEJNbHHX WieHa, KOTODHE JIETKO BHUACIMTH.
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g Introduction

1.1. The general solution

For the general solution of the geodetic boundary problem, con-
venient also for high mountain test points, the following formula
was found, [S] ‘eq. (267),

1] - Z#—R JJ’[AQT4C+CI(M)]‘ 5(p) dv+ {R (M)}
v

Here, T is the perturbation potential at the surface of the Earth
u; the parentheses { } describe the fact that the share of the
surface spherical harmonics of the degree n=0 and n=1 has to be
split off. R is the radius of the mean globe v in ocean level,
Fig. 1. AgT is the free-air anomaly of the perturbation poten-
tial T computed for the points at the surface of the Earth u,

(2) Agy = - 91/9dr - (2/r2 T .

r 1is here the geocentric radius of wu. C is the plane topo-
graphic reduction of the gravity. CI(M) is about the vertical
gradient of the Bouguer-anomalies, [5] eqg. (291) and (292),
(see also chapter C of this publication),

2 2
(3} ¢ () = - 225 (Agﬂouguer) :
¢ (4 e )
2 g - (49
N - R 3ouguer’Y Bouguer’Q
(a) Cl(r_h = L im ﬂ 5 dl.
00

1
Further, in (1), S(p) is the Stokes function depending on the
spherical distance p from the moving surface point Q to the fixed

test point P, Fig. 1. % (M) has the following expression, [5]
eq. (268),
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HP 1] 1
(5) R = R ;M) + M +[8] + g ﬁ C,5(p)-dv.

'

As to the first term of the right hand side of (5), the formula

for R 1(M) is given by the equation (224) of [5] . Concerning the
development for S?l(M), please, confer to the equations (87)
through (96) of the publication in hand, also. In the second term
on the right hand side of (5), Fig. 1, HP is the height of the

test point P above the sphere v with the radius R, and, further,

M can be approximated here in this term by, (see [5] eq. (271)),

In (5), the third term is [B8]" . It is defined by eq. (24Ba) of
[5] , being the difference of the potential of the visible
mountain masses B at the test point P, on the one hand, and the
potential of these masses condensed at the globe v and computed
for the point P* perpendicular below P, on the other hand, Fig. 1.
It can be computed precisely by the formulae of eq. (82) through
(88) of the chapter B of [3] , and by the equation (68) of the
chapter B of [4] , too. The quantity of [B] " turned out to
be very small, [3] page 36.
In the last term on the right hand side of (5), the expression C2
is described by eq. (266) of [5] , (accounting for eq. (240) of
[51).
The formula (1) for {T] refers to the T values along the surface
of the Earth u. Thus, in (1))it is essential that the parentheses
{ 1 demand that the surface spherical harmonics of degree n=0
and n=1 (contained in the T values distributed along the surface
of the €arth u) are eliminated. After these terms are eliminated,
we are confronted with the fact that many geodetic applications
need not the elimination of these above terms, but, instead of
them, the elimination of the spatial spherical harmonics of degree
n=0 and n=1 in the spatial three-dimensional spherical harmonics

representaticn of the T values in the exterior of the body of the
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farth is resquired.

If we have freed the {T} values of (1) from the surface spherical
harmonics of n=C and n=1, it is afterwards a little work only modi-
fying these {Tl values in order to reach the situation where even
the spatial spherical harmonics of n=0 and n=1 are eliminated,
finally. The concerned mathematical transformations can be found

in [5] , chapter 6, eqg. (115a) through (141v). The numerical
quantities effecting this transition procedure will be rather small,
probably, since in good apgproximation, the surface of the Earth is

equal to a sphere.

1.2. The lowlanc solution

The above relation (1) solves the problem for all cases, also for
test points situated in high mountains. By far in most cases, the
test point P is situated in the lowland, in low mountain ranges,
or on the oceans. Considering this lowland constraint, (7), the
formula (1) simplifies enormously. The lowland condition is,

Figl. &
2 2 2
(1) [zreg] = [(Hg-Hp)leg]l = "¢ 1,
[5] = (oo w7277 ) HQ - HP is the height difference with regard
to the test point P, eg is the distance from P. As to the meaning

of the various symbols here applied, this meaning can be taken
from Fig.1. Hence, the lowland variant of (1) has the following

shape, (see [5] RERN (1272)'; [6] ),

®) {7} = 7% “ [A9; + € + c;]-5(p)-av + {R ")} ;

v

the formula for $ (M) is with [S] , eq. (273),
H
. * P ]
(9) S = R+ Mgt 8]+ e “ C,-S(p)-dv.

v
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As to the first term on the right hand side of (9), the detailed
formula for the computation of SEI(M) was described by [5] ,
eq. (226) through (227c). See also eq. (98) through (103) of the
publication in hand.

The relation (1) constructs a universal, complete and closed
solution for our boundary value problem, it is convenient for
numerical routine computations. Introducing in (1) the restric-
tions formulated by the inequality (7), the solution (1) turns to
the shape of (8) for the lowland solution. The theoretical error
of (1) and (8) is smaller than about 1 cm considering the effect
on the height anomalies which can be obtained by deviding the
error quantity of {Tg through the standard gravity at the sur-
face test point P.

Now, after this short repctition of the results of the investiga-
tions published in [5] and [61 , returning back to the in-
vestigations here in view, a special question of importance for
the numerical calculations is now put into the fore: This is the
question of the representativeness of the free-air anomalies AgT
which appear in both the integrands of (1) and (8).

1.3. The representativeness of the free-air anomalies

In the formulas (1) and (8), the integral

(1) x = (1/(aTR)) f[ dg;-5Cp)-av

v

does appear. The more smoothed the free-air anomalies dgT the
easier the computation of the integral (10) for X, this matter is
obvious. Or, speaking with other words, the better the represen-
tativeness of the free-air anomalies AgT the easier the numerical
evaluation of the integral (10) in order to find the X value.

Along the oceans and in the lowlands, the free-air anomalies have

a rather good representativeness, it is well-known. But, in hilly
and mountainous areas, this good representativeness of the free-air

anomalies is lost. In the mountains, these anomalies show a clear
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linear correlation with the topographical -heights, H. Thus, the
first impression may come up that the hilly and mountainous aresas
demand a relative dense net of gravity stations, counteracting the
bad representativity of these anomalies in these arcas, - a very
expensive affair.

But, a remedy against this handicap is found easily. The scource
of this remedy comes even from the clear linear correlation of the
free-air anomalies with the heights, H, already discussed above.
This is a well-known correlation, and this is a well-known remedy.

10

Fig. 2.

In this context, a square grid is laid over the mountainous area
considered. The grid cells may have a side length of T 10,
perhaps, (see Fig. 2). For the interior of such a cell, we have

the well-known relation

(11) 49y =a(9,2) +b . H
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Within a cell of 1% x 1° size, b is taken as a constant; in most
cases, we have b ¥ 0.1. The free-air anomalies AgT and the func-
tion a( ¢, A) depending on the latitude and longitude are mea-
sured in 10_} cm sec_z, (mgal). The heights H are taken in meters.
The essence of the relation (11) lies in the fact that a(y, 2>

is a rather smoothed function within an individual cell, a(¢ , &)

can be computed from the free-air anomalies and the heights by

(12) a(y, 2) = 4g; - beH

for the individual gravity points.

Since a( ¢, A) is a smoothed function within an individual cell,
some few stations with given 4 97 and H values will suffice for
finding a reliable mean value of the function a(y , 2) averaged
over the considered cell. Along these lines, we can find the mean
value 51 being the mean value of the function a(y, 2) for the
considered cell, having the running number i. For the same cell,
ﬁi is the corresponding mean height taken from the topographical
maps or from a digitized height system. Even in the mountains,
this net of height data is very dense, a fact which allows fin-
ding reliable values of Hi for the averaged heights. Hence, (11),
for the cell of the running number i, the mean value of the
gravity anomaly can be computed from 51 and from ﬁi by the for-
mula (13),

(13)  Adgp); = 50 00y

The value of bi for the cell of the running number i is deter-
mined in such a way that the amounts of a(y, A) within this cell
have no more any correlation with the heights H.

The relation (13) can be inserted into (10). The integration of
(10) can be transformed into a summation. Along these lines, the
relation (10} turns to

(18} x = (1/(4'|TR))-AV>_: a;-(s(p)); +

1

+ (/TR - Av I byfi, - (5(p));

i 1 1

DOI: https://doi.org/10.2312/zipe.1990.114




15

a; comes from an averaging over the smoothed values a(yg , ), the
amount of Hi is precisely computed from the topographical maps.
Thus, finally, in (14) there is no more any trouble with an
averaging over too few free-air anomalies of bad representativity
in the mountains.

But now, in the subsequent investigations, we follow another way
which leads to a second remedy against the bad representativeness
of the free-air anomalies in hilly and mountainous areas: This is

the way which uses isostatic anomalies of the gravity.

25 The model potential M

2.1. The universal solution for the model potential M

The model potential M was introduced by the relation

(1s) M =T -8 |,

[SJ eq. (145). T is the usual perturbation potential and B is
the potential of the mountain masses situated above sea level
(the mass density being 9 = 2670 kg m_},some authors prefer
2650 kg m ).
In the exterior of the body of the Earth, the spatial function for
M fulfills the Laplace differential relation, as the function for
T and B do.

a2y 92 2]
+ +
b

(15a)
ax? ay?

x, y, z: Spatial Cartesian
co - ordinates.
We have, [5] eq. from (148) through (152),

(16)  dgy = - am/ ar - (2/pM
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(17) gy = 49y - dgg )
(18) 2 e T/ or - (2/r) T = (g)Q - (T)Ot )
(193 A9 - 98/ ocr - (2/r)B ;

@205 4 -~ 9T/ or + 9B/ or - (2/c)-(7-B).

@
==

The above 5 lines are sclf-explanatory. In (18), (g}D is the ob-
served gravity at the surface point Q, and (r)at is the standard
gravity at the telluroid point Dt perpencicular below Q, Fig. 1.
The distance between Q and Qt is the height anomaly ¢

Dur model potential M fulfills the following relation, [5]

eq. (223),

tz1y: {H}, = TT}T H [Agy + £y ]-S()dw + {RI(M)]
W

R' is the geocentric radius of the test point P,

(223 R = R +'H

w is the ball of the radius R’, (see' Fig. ). JQM is described
by (16), and C (M) is given by (3) and (4. As to §2,(M), the
reader is asked to refer to eq. (87) and (88) of the publication
in hand and to [5] eq. from (224) through (225h).

2.2. The lowland solution for the model potential M

By the lowland condition (7), the formula (21) turns to its low-
land variant, [5] g (23098,

(23) {.‘4} :#RTﬁ[Angl(M)]‘S(p)-dw{SE'I(M)%

w
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As to the meaning of Q I(M), the reader is asked to refer to eq.
(98) and (99) of the publication in hand, and to [5] , eq. (238)
and (226) through (227c). The formula for SPI M) is much morsz
short and much more easy to compute than that for S?l(M).

3. The perturbation potential T

3.1. The universal solution for the perturbation potential T

In the formula (21), the model potential M can Ye substituted by
the perturbation potential T, because both of them obey the
Laplace differential equation, and because both of them have
about the same structure and amounts of about the same order.

Hence, T has the universal formula

1
(28) {7} = pier jj[AgT + € (D] s dw + {le}
w

In (24), M was replaced by T. AgT comes from (18). Cl(T) is
explained by (3) (4) of the publication in hand, or, better, by

[5] eq. from (278) through (284), and by [5] eq. (290).
There, in [5] , we found in good approximation, replacing M
by T, (Z=Hg - Hp),
Clall
- ’

(24a) Cl(T) g 7o

neglecting Cl b(T), [5] eq. (290); see also eq. (69)(84) of the
publication in hand. In (24), Szl(T) is found by (87) (88) of
the publication in hand, or by [5] eq. (224) and (225).

3.2. The lowland solution for the perturbation potential T

In that way that transforms from (21) to (24), the lowland solution
for T follows from (23). We have
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(25) {1} s J[[doy + £, (D] se) aw + {27} .

w

ﬂa*(T) is found by [5] eq. (230) (227), substituting M by T.

4. The potential Biso of the Airy-Heiskanen isostatic system

4.1. The potential Bi50 in terms of the masses

Now, we have to think back to the traditional isostatic system of
Airy-Heiskanen. In this context, first of all, it seems to be
advisable to recapitulate the main ideas inherent in this system.
In the center of our retrospect lies the isostatic reduction of
the gravity values transporting them from the surface of the Earth
u, down to the geoid.
This topographic - isostatic reduction removes the gravitational
effect exerted on the surface gravity value g by the mountain
masses and by their roots, and by the oceans, and by their anti-
roots. Further, this topographic - isostatic reduction involves
also the free-air reduction of the gravity which accompanies
a vertical shift of the point Q from the surface u down to the
point Q' on the geoid, Fig. 3, Fig. 1,
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Globe, v

D=30km

Fig. 3.

DOI: https://doi.org/10.2312/zipe.1990.114




20

The running point Q on the surface of the Earth u has the observed
gravity g = (g)Q; Fig. 1,3.

The usual isostatic reduction of g describes the transition to an
Earth the crust of which has everywhere the widst D = 30 km,6being
free of mountains and oceans and free of the corresponding roots
and antiroots, [2] [7] fB] [9] . As taken from Fig. 3, the
cross-hatched visible mountains of standard density )= 2670 kg m_3
exert a certain gravitational effect dgt on the gravity in the
surface point Q. This effect c)'gt is computed, at first, Than,

Jgt is subtracted from the g value observed in the surface point
Q. dgt comprises the Bouguer reduction and the terrain correction
of the gravity. Since Jgt has reference to the surface point Q,
the following denotation with a special suffix Q makes this matter
more clear,

(26) Jgt = (dgt) Q- e

Further, the hatched mountain roots below the compensation depth
of D = 30 km exert a second gravitational effect 6gc on the
gravity in the surface point Q, Fig. 3. This second effect is
taken from the isostatic reduction tables or it is computed by the
mass-line method, [8] . For the mountain roots, a density deficit
of - 600 kg m_3 is applied, in the Airy-Heiskanen system. The
fact that chc refers to the surface point Q can be stressed by
the suffix Q,

(27) d 95 * (\¢9

dgc is subtracted from the surface gravity g, too, - as Jgt.

Finally, as the third step, the point Q is subsided downwards in
vertical direction, down to the point Q’ on the geoid, Fig. 3.
The accompanying gravity change is approximated by the standard
value of the free-air reduction, according to the instructions
which can be found in the text books on isostasy, [8]. Hence,
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the amount of (as to (28),more precise considerations require
the addition of the term quadratic in the height hj )

(28) 2:Cy /R)-h,

has to the added. 3 is the standard gravity. ho is the orthometric
height, i.e. the height the point Q has above the geoid, Fig. 3.
Consequently, the topographically and isostatically reduced gravity
at the geoid point Q' is as follows,

(29) loge,] = 9- dog - o, + 2-C /R)-hg .
Or, to be more precise in the writing style,
(30)  [9555] = (&g = (@ - (Juy) g - (dug )g+ 20y /RO, .

(gisoj is the gravity, being reduced topographically and isosta-
tically in the traditional way.

In the mountains, dgt is positive and dgc is negative. For
oceanic areas, the signs of the corresponding effects are reversed.

The following matter should be stressed: The amounts of (26) and

(27) refer to the surface point Q. However, it has to be observed

that some isostatic tables give the dgc value for sea level. Thus,

these tables yield (dgc)qt . Supplementary , a modification of

(dgg )Q’ has to be added, accounting for the transition from Q’

to Q, [8] .

After this excursion into the field of the traditional isostatic

considerations, now, we return back to our boundary value problem,

(see eq. (24) (25)).

As a main feature of the coming investigations, the harmonic poten-

tial Biso is considered in the exterior of the Earth and on the

surface of the Earth u. It is the gravitational potential generated

by the following 4 scources, Fig. &, [8] g

1. The mass surplus of the visible mountains, having the density
surplus J'@l ,and filling the volume Vl.

2. The mass defect of the oceans, having the density defect é fhz )
and filling the volume V2.
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3. The mass defect of the continental mountain roots, having the
density defect J!’} and filling the volume V3.

4. The mass surplus of the oceanic antiroots, having the density
surplus of 4'0‘ and covering the volume V‘.

These densities here implied have the subsequent values:

(31) S = + 2670 kg m™> ;

(32) §, = - (2670 - 1027) kg m >
(33) doy = - (3270 - 2670) kg m>
(38) §9, = (3270 - 2670) kg m™> .

The volume V1 has the running point J1 in its interior. The ana-
logous property is valid for V, and J
Fig. A.

In the coming derivations, the volume element is expressed by

2 29 V3 and 33, and V‘ and J‘;

(35) dV = r sinp-dr-dp-dA.

The mass element around the running point Jj’ (3 =1, 2, 3, 4), has
the following expression, Fig. 4,

(36) dm; = cSi%j -dv, (3 =1, 2, 3, 4).

In sequence, the suffix j of Vj and Jj’ (3 =1, 2, 3, 4), is also
assigned to the corresponding expressions d'ﬁhj of (31) (32)
(33) (34), one after the other.

Hence, in the exterior point 0, the potential Biso’ now in the
fore, is computed in the subsequent way, (37), Fig. &,
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e (0, Jj) is the distance between the exterior point @ and the
running point J. with the mass element dm. situated in the volume
Vj, (36); Fig. A. Vj is the volume having the density J19’j.
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Now, the exterior point § subsides down to the surface of the Earth
u reaching the point Q, Fig. 4. In this procedure, the distance

e (1, Jj) turns to the distance e (Q, Jj), (3=1, 2, 3, 8); (see
Fig. 4). Consequently, (37) changes to (38),

s ( Wl
(38) (B lg=1-5_ J”‘a"j'm T
3=1 =
J

For our investigations, we need the potential Biso' Jjust as the
radial derivative of it

(39) d8;, / Or *
and, just as the gravity anomaly, (19),

(40)  Agg  =- o8B

or - (2/r)-8._ .
iso e 1Ss0

iso /

All these 3 values have to be computed for points on the surface
of the Earth u having the radius r, Fig. 1,

(a1) r=R+Hq

(37) and (38) give

1
4B 4 e (4, 3.
(42) —tBR | .- g 0 G IS T .dv,
ar JZ=1 g J Sg or
v d=q

or, abbreviating,
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4 b
9 JSJ e(Q,J7.)
(42a) — Bigo = T Y Sy —J—a . av .
j=1
Vi
J
Further,
9 1
4 e(q, J)
(43) a4 - f . 4 .
gBiso .]-:1 J?’J jjj dr
v

Here, in (42) (42a) (43), the derivative
)
(aa) o 1/e(q, J.)
or [ J ]
is reached by the radial derivation of
(45) 1/e(d, Jj)

and by the subsequent transition from the exterior point 0 to the
point Q situated on the surface of the Earth u, (42).

Comparing (26) and (42a), the relation (46) is obtained,
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24,

L.
(46) dgt=-f-il ch?’j-jsg %—Ji’—--dv ;
2
Vi
3

1
4 9 —
{Q, J.)
(47) 696 = - f ‘Z: J'!,"J o SSI -—';TJ—'UV %
3=3
%

Hence, from (42a) (46) (A47),

)
(48) (-__a_: Bis0 )Q a7 (Jgt )Q N (ch)u ; |

The values on the right and left hand side of (48) refer to the
surface points.

4.2. The universal solution for the potential B o

is0

Some properties of the potential Biso can be confronted with some

properties of the perturbation potential T of (24) and (25): In the
exterior of the body of the Earth, Biso is harmonic as T. Biso and
T are continuous functions. Further, in the exterior and on the

surface u of the Earth, Bis

turbation potential T.

o has about the same order as the per-
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Hence, in (24), BISD can be used as a substitute for T. In doing

so, (28) changes to (a9),

}
1 : :
(49) {Biso} = zﬁf—ﬁT‘jj [ angso+ Cl(bisu)]'S(D)-du+ {Szl(ﬂiso)j
w
498. is explained by (40), and even these values of (40) are

iso
understood tnat txivey are distributed on the Earth’s surface u,

Fig. 1.

Cl(Biso) of (49) neeus no separate detaiied discussion, since,

later on, this term disappears. It is merged in the term

CI(T-BiS.) = CI(I), (see eq. (52)). Cl(Biso) and Cl(T) are combined

into the one term Cl(I)' Certain, this term Cl(I) and the numerical
calculation of it is thorougnly discussed by the equations from
(51) througn (B6), later on.

Ql(ﬂiso) comes from the equation (224) of the former publication

[5] , replacing M by Biso'

4.3. The lowlandg solution for the potential Biso

Tne lowland equacion for the potrential Biso is derived from (25),
in a similar way as (49) was obtained from (24). Consequently,
we have

(50) {uiso ] = Tﬂ_‘rﬂ_')J [Agﬂlso’cl(ﬂiso) 1 S(p)-dw+ {Q;(Biso)} °

-
Q I(Bisu) derives from the eguation (230) of [5] , replacing M
by B; .- In (50), the lowiand condition (7) 1s effective. The
question how to finog 498_ and cl(aisu) was already discussed

so
in connection with eq. (493.
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5. The superposition of the two potentials T and Biso

5.1. The superposition of the universal salutions for T and Bisu

Considering the fact that the free-air anomalies have not very
smoothed values in the mountains and in the Mittelgebirge, we
leave now the free-air anomalies in order to reach a system of
anomalies which has smoothed values. But now, we do not prefer the
smoothing procedure connected with the equations from (10) through
(14). Instead of it, now, we change over to the isostatic anoma-
lies of the gravity. Within this procedure, the relation (49) is
subtracted from the relation (24). Thus, the eguation (51) is
found, [l] .

(51) {T} - {BiSO} = #WH [[lgT - Agaiso+ Cl(I)l'S(o)-du +

L

+ ?,mn}
In (51), the subseauent relation (52) is inserted,

(52) I

s

With (3) (4), and considering the relations (269) (278) (279) (280)
of [S ] (replacing M by T ,CI(I) is found to be linear in I.
Thus,

(53) B (1) = (B ) STy (T = By o) = Ey (T)

Further, accounting for (224) and (225) of [5 ] L 521(1) is linear
in I, too.
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Hence,

GaXER (1) - 808, ) S O B e SR

iso

The relations (53) and (54) were respected in the derivation of

(51).

The essential of the equation (51) is the fact that the Agr values,
being rugged in the mountains, are now replaced by the values of

(55) AgT - AgBi = Ag.[
S0

These values of (55) are very smoothed, also in the mountains. By
the superposition, (52), we came away from rugged gravity anomalies.
The anomalies of (55) are in close vicinity to the isostatic ano-
malies of the gravity, this matter is discussed in chapter 6,

later.

Thus,

(56) AgT - AgBiso = ng z [Agiso] 4

[ a4 giso] are the traditional isostatic anomalies of the gravity.
The relation (56) and the precise shape of it are also discussed
later, in paragraph 6, from page 31 through page 3S.

5.2. The superposition of the lowland solution for T and Biso

From (25) and (50) the relation (57) for the lowland
solution follows,
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61 {1} - {80} - T‘%R"‘ﬁ [89y - dog,_ + €, (1] 5(p)-adw +

w

+{9;(1)} :

b ;(I) derives from the equations (230) (227) of [5] . These
relation of [S] are linear in I. See also the equations (98) (99)
of the publication in hand. Thus, (52) (53) (54),

* * * E 3
(58). .10 = Ry ) =R (TeBy) = Ry (L

The relation (57) has the essential property that the smoothed ano-

malies AgT - 498. appear, instead of the 4 g; anomalies
iso
which are rugged in the mountains.

6. The isostatic gravity anomalies

Now, the relations (55) and (56) are in the fore. The free-air ano-
maly dgT, appearing in these formulas, can be computed by the
observed gravity at the surface point Q, g = (g)u, and by the stan-
dard gravity (3-)0 at the telluroid point Qt perpendicular below
of Q, (18). t

(39)  dgp = (@ - (gh, -

(59) is an often used elementary formula, (18); it can be brought
into the following shape,
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(60) AgT = (g)'J - ro + z(r/r)hn

Yo is the standard gravity at the level ellipsoid, and hn is the
normal height of the point Ot above the level ellipsoid (mean
Earth ellipsoid). (40) and (48) yield (at the surface point Q)

(61) 493_ = Jgt + ch- (2/r) Bel,
1Sso0

The relation (61) is understood that it refers to the points Q
situated on the surface of the Earth u, Fig. 1.

In this elaboration in hand, we define the isostatic anomaly in
the following way, in view of (68),

(62)  dajg, = () - dg, - DY A PCR YR, st

o

The term quadratic in h, can be added to 2(p~/r)h, , in (62).
However, the traditional isostatic anomaly is as given by (63);
(see (29) (30)), (see also [81]).

(63) [Agiso]= [giso] e ro 2
= (9)g - dog - dg, + 2p/RI N, - . .

The term quadratic in ho can be added to 2(2~/r) higed p=sin(63)
The difference between (62) and (63) comes from the difference
between the normal and the orthometric heights ,(30) (62).With (60)
and (61), the crucial anomaly (given by (64) )

(64) d 97 - Agei
SO

of (51), (55) and (57) has the following expression
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(65) dg; - 495150 2 A0)qr Fo 2 RGFr)hy, =
- Jgt - dgc + (2/:)-Biso =

Comparing (62) with (65), the subsequent important relation
follows, in view of (51) (57),

(66) Ndmpas Sap - dgy = dugjgq + (2/r)Byg, -

As to the second term on the right hand side of (66), the expression
- Biso is the change the potential at the surface point Q under-
goes by the removal of the mountain masses and their mountain roots
(and the mass defect of the oceans and their antiroots).

In the traditional theory of the isostatic gravity anomalies, there
appears also the indirect or Bowie effect exerted on the gravity
anomaly by the potential change of - Biso’ [B] . This effect
refers to the geoid level, it has the shape, [8] -

(67) (2/R)-Biso

The second term on the right hand side of (66) is in very close
neighborhood to this Bowie effect, (67), obviously.

Finally, it seems to be useful to stress again the fact that the
isostatic anomalies Agiso of (62) are much more smoothed and much
more representative than the free-air anomalies AgT of the
gravity.

In this context, we present Table 1. For certain stations in the
area of the Alps, Table 1 represents the position (¢, 1), the
height h, the free-air anomaly, and the isostatic anomaly of the
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Airy-Heiskanen system (of 30 km compensation depth), [8] .
Obviously, the isostatic anomalies are much more smoothed and
representative than the free-air anomalies. This is a well-known
fact which the publication in hand makes use of with advantage.
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Table 1

Gravity anomalies im the Alps

Anomalies

Station H, |Free-air, Isostatic

Airy-Heiskanen

o A System,
0=30 km,
m [1073cm 572 | 1073cm 572

Campiglio 46°13°9 | 10°51.4 | 1530 + 58 + 16
Ober-Orauburg 1 46 44.9 |12 58 618 - 38 + 33
Greifenburg 2 46 45.1 |13 11 632 - 36 + 21
Sandbiichel 46 45.3 |11 01.8 | 2967 +116 - 44
S. Leonardo 46 48.7 |11 16.4 655 -107 23 ¥
Lienz 1 46 50.0 |12 46 674 - 51 + 16
M@llbriicken 46 50.3 |13 22 556 - 42 + 28
Hochstradenkogl 46 50.8 |15 56 607 + 69 + 38
Iselsberg 46 51.4 |12 52 1198 + 19 + 22
Sterzing 46 53.9 |11 26 950 - 175 - 17
Weissenbachscharte (47 01.4 10 2196 + 71 - 30
Sonnblick 47 03.4 |12 58 3099 +143 - 24
Steinach 47 05.4 |11 28.4 | 1050 - 76 - 31
Bucheben A7 09.5 (12 58 1062 - 68 S
Innsbruck 1 47 15.7 |11 24.3 584 -127 - 4L
Mixnitz 47 19.8 |15 22 445 - 46 - 8
Bruck an der Mur 47 24.6 |15 15 487 - 19 + B
wirgl 47 29.5 |12 03.9 | 508 -108 - 45
Semmering 47 38.0 (15 SO 986 + 70 + 26
Benediktbeuern 47 42.5 |11 24.1 618 - 37 - 20
Hohenpeissenberg 47 48.1 (11 00.9 996 TN - 18
Wiener Neustadt 1 |47 48.5 |16 15 270 - 13 + 1
Kaufbeuren 47 52.8 |10 38 680 - 16 - 17
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7. The final solution

7.1. The universal final solution

The combination of (51) and (66) yields the final solution of our
boundary value problem developed in terms of the isostatic anoma-
lies zjgiso , (62). This formula is universally valid, also in
high mountains and in the Mittelgebirge, [1] .

1 2
@ {1t ([ [Anseg 2010+ 00 Jrstor-an -

{Biso% o { QI(I) §

for the introduction in (68), Biso can be computed by (38) inser-
ting the densities of (31) (32) (33) (34). The T value on the left
hand side of (68) refers to the surface u.

The potential I was described by (52).

The terms Cl(I) and QI(I) - produced by our here developed precise
theory - construct in detail the refinements of the traditional
computation of the T values in terms of the isostatic anomalies.

By these refinements, the theoretical error of the resulting height
anomaly T/B“ gets smaller than about 1 cm.

As to the calculation of CI(I) by [5] eq. (269), Cl(I) derives
from the deflections of the vertical in the potential field I,
substituting M by I. These deflections in the potential field I

are denominated by Xy and ciz. The potential I comes from (52)
of the publication in hand.

Thus, [5] eq. (269), substituting M, Pis p2 by I, &), 0,
0 o d x t

(69) cl(I) = 62| — L1z, - 20 an P .
R -O&o R:cos f-@/\ R! %
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G is the global mean gravity, and Z = HQ - Hp is the height diffe-

rence with regard to the test point P. <, and oy have the
following equations, [5) eq. (153) (154) (156),

)
(70) Nl=- '1 -—1-_1 -
R'+Z g+ Q¥
G
(M), = - 11 i IR ST ¢
R 42 g* costf DA
with
(72) g* =‘ V (U+I)| = | grad(U+I) \ 2

U is the standard potential. The values of T, U, I, S ys Oy

R'+2, g*, I/ ’t‘)\f‘ , and D1/DA refer to the surface of the
Earth u.

In order to express the amount of Cl(I) in terms of the isostatic
anomalies (62), principally, the ideas applied in [5] , eq. from
(274) through (292), can be used also here,(see also chapter C ).
Thus, we have ina self-explanatory way,

(73) Cl(I) = cl.a(I) + Cl.b(l)

Pu; D,
(7a) Cl a(I) = G6Z N Y — )
" o x Dy

x and y are horizontal coordinates.
(15) ¢, = - z[@z 1/9x2 + 921/ 3y? J 2
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Introducing the Laplace differential equation, we have
(16) By.a=2 -[az 1/ 9221 ,
z is the vertical coordinate.

(77) c =C

1.b e

15b.1 Yiba2

the detailed developments for the two terms on the right hand side
of (77) yield

Vo and vy is the slope of the terrain in the north-south and in the
east-west direction. (62) and (66) give (79), anticipating (85)
and (86), (see also (5] , eq. (274)),

29 s et = IO N Agiso - (2/r).1 .
i

The new symbol of (79) is 419;50 . It denotes the modified iso-
static anomalies, modified according to (79), modified by the
addition of (2/r) T.

The details of (79) will be derived later, below, by (85) (86).
The first term on the right hand side of (78) gives with (79),
for a north-south profile,
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(s0) C w788 ( 49 50)0 - ¢ Ag e : (), - (W),
1.0-1° i - .

The suffix ( )O and ( )u refer to the end points of the considered
north-south profile of the length Ax.
Here is

(80a)  dx = (x), - (x), > o,

(80b) ) aiie> (x)u 4

Cl b.2 follows in a similar way as C1 b.1.° exchanging x for y.
For the amount of Cl .6t and C1 b.2 expressed by Bouguer anomalies,
we found in [5] , eq. (290), for the extreme conditions in the
Swiss Alps

3 =74

(81) c ¥0.02 - 10 cm s

"
(=]

l.b.1

Cl.b.Z in terms of the Bouguer anomalies will have a similar
amount, in the area of the Swiss Alps.

On the oceans, in the lowlands, and in the Mittelgebirge, the
amounts of Cl.b.l and Cl.b.z in terms of the Bouguer anomalies
will be much more small than (81), sure.

But now, the amounts of cl.b.l and Cl.b.Z expressed by the isosta-
tic anomalies éjg'iso are in the fore, (BO). These amounts are
evaluated by a small test computation carried out in the profile
of E. Holopainen, ( [B] , page 194, Fig. 7-1). This profile
crosses the Alps from Trieste to Salzburg, about. Hence, we have
an extreme mountainous area. By a short computation of Cl.b.l
according to (80), in terms of isostatic gravity anomalies, for
Cl.b.l an absolute amount which is by far smaller than

0.02 . llJ-3 cm 5-2, i.e. 0.02 mgal, was found. This amount is
negligible.

- -
(81a) | ¢, ,( dg’; ) [<0.02 - 107 cm s72 .

For this Holopainen-profile, the amount of Cl 4l in terms of the
Bouguer anomalies was computed also, by the formula of [5] , €qg.
(289). Cl il in terms of Bouguer anomalies proved to be a little
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greater than C1 b.1 expressed by isostatic anomalies, (8la).

fFor lowland areas, for the oceans, and for the Mittelgebirge, the
absolute amount of Cl.b.l and Cl.u.z in terms of isostatic anoma-
lies will be much more small than 0.02 - 10™> cm s 2 which is the
quantity found in the Alps, (8la). Thus, summarizing these test
computations in the Holopainen-profile, the isostatic anomalies

yield negligible amounts for C and C

1.b.1
See also chapter C of this publication.
After this excursion into the Alps, we look back to the equations

(73) through (80) of the publication in hand. Now, we continue

to consider the investigations about Cl(I), by analogy with [5],
eq. (274) through (292). In the course of the deductions connected
with (73) (77) (81a), CI(I) can be expressed by the following
relation approximatively valid,

1.b.2°

(82) c (D) F¢g, (1) ,
and further (see [5] eq. (284)),
(03);: Rl IR b libih- P Toaes

And, regarding (79),

?

(83a) ¢, (I) ¥ -2 dg,,, ¢

0]

z

Thus, finally, the formula for routine computations of CI(I) has
the shape given by (BA); (see Fig. 1). (see [5] , eq. (274) (28a)
(285) (291) (292); [6] eq. (37)).

DOI: https://doi.org/10.2312/zipe.1990.114

e —




41

( Ag;_)y- ( éﬂg? )
(8) (DY -7+ ise’Y iso’q .-
27 3
eOO
v

v is the sphere with the radius R, being the ball(in sea level).

Now, we turn towards the egquation (79), especially. Belated, we
supplement the verification of this equation, now. In this context,
the relations (52) and (66) yield (85), considering the following

differential relation for AQI ;

(84a) Agl = - @I1/Qr - (2/r)-1.

(85) - Ag =iz Agl s (2/c)B;, =

iso

91/Qr + (2/r)-1 + (2/r)B;_, =

Q71/9r - 8, /Or + (2/r)(T-B;_.) + (2/r)B, =

D(T-8;,,)/ P + (2/r)T =
= 1/RQr + (2/r) 1
(85) turns to (86), (see (79)),
(86)  QI/Rr = - dg;_ - (2/r)-T = - Ag;_, .

1so

The last term of (B6) with the star index has the meaning of an
abbreviating symbol.
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After the preceding developments from (69) through (86), we can
finish now the description of the details of the computation of
the amending term CI(I) of our basing expression (68) for the
perturbation potential T.

(68) expresses T by the isostatic anomalies ‘agiso in the form of
a universally valid formula, valid also in the high mountains.

Now, the details of the computation of the amending term QI(I)
of (68) are in the fore.

The relation (224) of [5] gives, substituting M by I,

——3—2- F(I)-S(p-)-du +

(6D o) - 2

2% Y.ty
w
+—1 —-1-3— 22 -—l-dw+
20l R R y+y
w
v
4_1- l.—l.du+
27 R
w

(cos /2)2
R T _'a._l.._i.._p_.%-hl.d_ﬂgl.d,“
R dp R sinp 2(R")2 dp
w
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/
. -L AQI ‘de’ - dA  +
2%
2
1
== -2x 2.y, 'del~dA .
20 y+y

g Ql(vz bu) de cdA o+

e’

N
o

{ (-6Z) @ (x «,, x'uz)-ae’-cu .

The radius of the sphere w is R + HP' (see Fig. 1). In (87), we
have from [5], (225) through (225h),

(88) F(I) = ZS fi(I) :
i=1

(89) 1,(1) = gg Ang %- 2 - ——17 .ll.d. .
y+y

(90) 1,(I) = (

(91) 15(1)

"
==
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2
o1 1 (cos p/2) “b, AT

R-Op R sinp

(92) £,(1) =

2 i
X
9 - de - dA
éj 1 ;:;7 L]

(93) fs([)

"
[}
N,
N

2
(98) 16(1) = Sg l-[ -2’(2 + vy ]-de’- dA
R Y4y

o1 ’
-(v2 - bll)-de +dA

(95) 17(1)
e’

(96) fg(1)

- g( 6z - §(x'-041, x 0(2)-del-dA :

By the relation from (68) through (96), the precise and universal
formula for the perturbation potential T in terms of isostatic
gravity anomalies along the Earth’s surface is developed in good
detail. The theoretical error for the height anomalies T/aa will
not be greater than about 1 cm, basing on (68).

As to further details, the precise and complete expressions for
b7, bll’ Vis Vs V3 x., X, Yy , which appear from (87) through
(96), can be found in [5], eq. (75) (76) (78), (8BD) to (B8a),
and also in the appendix of [5-].
The formula (68) is of use especially if the height anomalies
=T/ have to be computed up to a precision of + 1 cm in
the mountains. This case is very rare. In most applications, the
relative simple lowland version of this solution will suffice.
This case is discussed subsequently, it will suit the purposes
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for test points P situated on the oceans, in the lowlands, and in
the Mittelgebirge, as long as the slopes of the terrain are not too
great.

7.2. The lowland version of the final solution

The combination of the relation (57) with (66) yields the lowland
version of the final solution in terms of isostatic anomalies,

97) [TE = 4',7'1R' [Agiso + % Biso + Cl(I)}'S(D) cdw +

i { Biso% 4 { Qj(l) } ¥

In (97), the potential Biso on the surface of the Earth u can be
computed by (3B) with the densities of (31) (32) (33) (34). The

T value on the left hand side of (97) refers to the surface u,
too.

The term Cl(I) constructs one of the amendment terms, being
amendments which correct the traditional theory.

It can be computed along the lines of (69) through (B6).

The term Q;(I) of (97) is the second amending term of this
lowland solution. It is a simplification of (87), this simplifica-
tion is induced by the lowland constraint (7). The lowland relation
(230) of [S5] leads to (98), if M is replaced by I.

(98) Q;(I) =—-}—2 g( F’(I) ‘S(p)-dw +
(4WR)
w
P 4791 Z. Dl e i
2% R2e
o
w
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+ 1 l;l_ dw =
2% R R e,
w
K 1 . oI 7.| ces p/2 w + 2 ds(p) | . dw
B7R R Qdp (sin p/2) dp

w

In (98), we have the subsequent formula (99) representing F’(I),
obtained from the relations (227) through (228) of [5],

3
(99)  F(I) = 2 e 61 Ly
i=1
with
(100) f(1) = Aglél_l ol I
R 2 eq
w
(101)  £(1) = g EBLI P
RRe
o
w
b 91 /4 cos p/2
(102) f.(I) = - . -—2—2— . dw .
3 R Qp :;(7 (sin p/2)
w
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(103) g= 2 R sin p/2

As to the computation of B;_ , (38), see also [2] [7] Bﬂ [53-

As to the impact Cl(I) exerts on T by the formula (97), we

recommend warmly to read the section 12.2. of {S] , especially

its equations from (293) through (305); further, the section 5 of
[6] is recommended likewise warmly, 3s so as the chapter C of the

publication in hand.

8. Conclusions

The isostatic anomalies of the gravity are defined in a new way
for points at the surface of the Earth considering the transition

from the orthometric heights to the normal heights, effecting small
changes.

In terms of these anomalies, it is shown that a precise formula
for routine calculations of the height anomalies can be developed,
having a theoretical error of not more than about + 1 cm, (97) (68).
This method profits from the fact that the isostatic anomalies
have smoothed values.

The routine application of the final formulas for the height ano-
malies expressed by the isostatic gravity anomalies is facilitated
enormously by the modern technical progress. For instance, the
numerical application of the obtained formulas can profit from the
use of electronic computers in the computation of the isostatic
anomalies.

Recent progresses bring the required datain a new light, now:

Now, we have more complete terrestrial gravity material, and, last
not least, we have global sets of 1° x 1° mean heights, supplemen-
ted by dense grids of digitized heights of regional extension,

9]
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8. Density distribution in the Earth's mantle by gravimetrical
and seismological data
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Summary

For the area of the mantle of the Earth, it is investigated how
far the real density values deviate from the standard values of
an Earth being in hydrostatic equilibrium. The order of the r,
m,s, value of these deviations is estimated. This r.m.s. value

3 for a distance

is found to cover the range of + 6 to + 14 kg m~
of 3470 km to 5970 km from the gravity center, i.e. a depth range
of 400 km to 2900 km (the core). The global density anomalies are
modelled in terms of low-degree spherical harmonics. They com-
prise both the effect of the chemical composition variation and
an eventual effect of elastic compression or extension. These
density anomalies are determined from an observational material
that consists of both the global variation of the gravity poten-
tial and the lateral variation of the seismic velocity in the
upper layers of the mantle. The here treated model Earth is made
up by a superposition of 4 phenomenons: 1. The Earth in hydro-
static equilibrium; 2. The Airy-Heiskanen isostatic system of the
mountains, the oceans, their roots and their antiroots; 3. The
density anomalies in the upper layers down to a depth of 400 km.
4. The density anomalies deeper than 400 km, down to the core-
mantle boundary.

It are the latter density anomalies which are to be determined
here. The working hypothesis is the demand to find the minimum
of the r.m.s. value of these anomalies situated in the depth
range of 400 km to 2900 km depth. Finally, for the area of the
deep mantle, a comparison of the density anomalies here computed
and of the anomalies of the seismic velocities obtained by other
authors is carried out.

Zusammenfassung

Fir den Bereich des Erdmantels wird untersucht wie sehr die wirk-
lichen Dichtewerte von ihren Standardwerten abweichen, wobei die
letzteren Werte sich aus einer Erde im hydrostatischen Gleichge-

wicht ableiten. Die GroBenordnung des mittleren quadratischen
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Wertes m2 dieser Abweichungen wird ermittelt. Der Wert von m

liegt zwischen + 6 und + 14 kg m'3 fir eine Entfernung von 3470 km
bis 5970 km vom Mittelpunkt der Erde, d.i. eine Tiefe von 400 km
bis 2900 km (Kern-Mantel-Grenze). Die globalen Dichteanomalien und
die anderen Daten werden dargestellt durch eine Kugelfunktionsent-
wicklung, die nur die Glieder geringeren Grades umfaBt. Diese
Dichteanomalien reflektieren nicht nur den Effekt der Anderung

der chemischen Zusammensetzung, sondern auch einen eventuellen
Effekt der elastischen Deformation. Diese Dichteanomalien leiten
sich ab aus einem Beobachtungsmaterial, das das globale Schwere-
potential umfaBt und dariiberhinaus auch die horizontale Verdnde-
rung der seismischen Geschwindigkeiten in den oberen Schichten

des Mantels.

Die hier eingefihrte Modellerde besteht aus der Suoerposition
von 4 Teilen: 1. Die Erde in hydrostatischem Gleichgewicht;

2. Die Gebirge, die Ozeane, die Gebirgswurzeln und die ozeani-
schen Gegenwurzeln im Sinne des isostatischen Systems von Airy-
Heiskanen; 3. Die Dichteanomalien in den oberen Schichten bis

zu einer Tiefe von 400 km; 4. Die Dichteanomalien zwischen einer
Tiefe von 400 km und der Kern-Mantel-Grenze. Die zuletzt genann-
ten Dichteanomalien sind die Werte, die hier zu bestimmen sind.
Das Minimum des mittleren quadratischen Wertes dieser Anomalien
im Bereich zwischen 400 km und 2900 km Tiefe zu finden, das ist
die hier eingefihrte Arbeitshypothese.

SchlieBlich werden die so bestimmten Oichteanomalien mit den von

anderen Autoren fir gen Bereich des tiefen Erdmantels empirisch
gefundenen Anomalien der seismischen Geschwindigkeiten verglichen.

DOI: https://doi.org/10.2312/zipe.1990.114

R —————————————————.




52

ARHOTanug

111 30HH MaHT®M 3eMITH HCCJIEeNYyOTCA OTKIOHEHUA NeHCTBHTENBHHX
3HayeHMii IIOTHOCTA OT MX CTaHNAPTHHX 3HaueHm#t, mpmyeM HOC—
JIefHAe 3HAUeHUsd BHBONATCA IJIA 3eMIX B I'EIPOCTATHIECKOM DaB—
HoBecma. OmpemeJsifiercAd MNOPANOK BEJMMWAH CpefHETO0 KBajpaTHdec—
KOTO 3HAayeH#wa m 2  BTAX OTKIOHeHWH. BHaYeHMe m HAXONETCA
B IOpemejax + 6 m 14 kr M3 npE ymajieHHocT:m oT 3470 mo 5970
KM OT IleHTpa 3eMIn, 4TO ABIAeTcA TayOuHoit oT 400 mo 2900 kM
( rpanma MeRIy MaHTHe# ¥ AnpoM ). IVOGAJIbHHE AHOMATHE ILIOT-
HOCTH ¥ MIpPyTHe NaHHHE MIPelOCTABIANTCA Ha OCHOBE Da3JIOREHHES
mapoBoOii YHXIMH, KOTOpOEe BKJINYAET B Ce0A TOJNBKO WIEHH MeHb—
meit cTemeHu. 3T AHOMATKMA [LUIOTHOCTE OTPaRalT He TOJBKO 3(-
(DeKT A3MEeHeHHUd XUMMYECKOTO COCTaBa, HO Tawkke BO3MOXHHE 3d—
PeKkT ynpyroit medopmalraa. 3TYH aHOMAIAE ILIOTHOCTH BHBOIATCHA
“3 MaTepnaja HaOJOOEeHM#, KOTOPHH BRMOYAeT B celsa TIJobalb—
HHii TDaBUTAIMOHHHI{ NOTEHUAAN K, KPOME TOTO, T'OPH30HTAIBHOE
U3MEeHeHAe CeliCMAYEeCKIX CKOPOCTeil B BEDXHHEX CJOSX MaHTHH.
[lpyBeneHHas 3mecCh MONEeJb 3eMIM COCTOMT B3 Cynepno3miuit 4
qacTe# :

I. 3emna, B THmpoCTaTAYECKOM DABHOBECHHE ;
2. TopH, OKeaHH, KODHE T'Op ¥ IPOTABOKODHM OKEaHOB B CMHCJE
A30CTATAYECKOl CHCTEMH Airy -~ Heiskanen ;

’

3. AHOMaME IUIOTHOCTH B BEPXHAX CJOAX MO TayouHH 400 KM ;
4. AHOMaNIER ILTOTHOCTY MeRIy IyOmEOit 400 kM M rpaHmiIell Mex-—
Iy MaHTHeil U AmPOM.

Ha3paHHHEe NOCJHENHAMM aHOMATHM MIOTHOCTHE ABIADTCS 3HAYEHHEAMH,
KOTOpDHE HaMmedaeTCH OmpenesMTh. OmpelNe/IATh MEHEAMyM CDeIHEero
KBaIpaTAYEeCKOTO 3HAYeHUAA 3TAX aHoMarm#t B 30He Merny 400 m
2900 ki TIyOMHH ABJIAETCA NpUBENEHHO# 3mech padodeil rEmOTE-
301,

B 3awmueHEZ 3TH omepelnejieHHHe TakdAM o6pa3oM AHOMAIHE ILIOT-

HOCTHM CDaBHMBAWTCH C aHOMAIZAME ceficMEIeCKEX CKopocTeit,

sMnepydecKn HalimeHRUMM IDYTMMK aBTOpaMd IJIA 30HH Iy GOoKO#
MaHTHK 3emH.
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1. Introduction

In this article, we model density anomalies in the interior of
the Earth down to the depth of the core. These density anomalies
depend on the latitude, the longitude and the radius. The obser-
vation material comes from seismology and from gravimetry. Thus,
geophysical and geodetical ideas meet in this elaboration.

Density variations in the Earth are deviations of the real densi-
ty (or better: The model of the real density obtained within the
potentialities of the here applied methods) from the standard
density of an Earth model of a density law with pure radial
variations of the density.

The velocity of the seismological waves depend on the density of
the masses crossed. The gravity along the surface of the Earth
depends on the density values in whole the body of the Earth.
Thus, the inversion of these relations leads to a non-unique
estimation of the density anomalies in the interior of the Earth,
using seismological and gravimetrical data which play here the
role of the underlying observation material.

Here, all the values are given in terms of low-degree spherical
harmonics. The density anomalies are determined in relation to
the global variation of the gravity potential and to the lateral

variation of the seismic velocity in the upper layers of the
mantle.

We first discuss the basic observational evidence that bears
upon density distribution in the Earth. We next present mathe-
matical models for computing density from measurements of gra-
vity potential and seismic wave velocity. Finally, we discuss
the results of a model computation for the distribution of den-
sity anomalies in the mantle, /6//7/. In comparison with [6//7/,
the publication in hand is a more detailed description, which I
was asked for.
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2. A surface Bouguer layer

The gravity anomalies on the surface of the Earth are caused by
density anomalies within whole the body of the Earth. For a
moment, in a very simple version, the density anomalies can be
taken to be distributed in a small depth, only. Thus, they can
be represented by a Bouguer plate. For a plate of the density
§p = 2650 kg m—3’ we have the well-known formula

(1) (Ag) = 20,815 (JIE)

mgal meter °’

if T is the widst of the plate. Considering the relation (1),

its coefficient 0.1 is proportional to the density,

(2o B Las itk St

k1 is a constant value. Thus, for a homogeneous Bouguer plate
of the arbitrary density anomaly JQ , we have the gravity of (3),

(3) o)y a1 = 0-100/0) (Mpeier
T is the width of the plate, Fig. 1. For a Bouguer anomaly of

A4g = 20 mgal, (0.02 cm s-z)
we have by (3)

, and for T = 400 km, (upper mantle),

(4) o1 kg m™> , (i.e. 1/1000 g cn °).

Surface ,G

-

Fig. 1. A modelling of the gravity anomalies by a Bouguer
plate of 400 km width.
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3. The potential of a shell

In the deep interior of the Earth, for great values of the depth
t, we can introduce a gravitating spherical shell being the
source of the gravity anomalies. The widst of this shell may be
equal to T, whereat T is much more small than the radius R,

T<L R (R: radius of the Earth). Within this shell or within this
layer, we have a density distribution of lateral variation only.
This layer of density anomalies d? in the mantle can be replaced
by a surface distribution (0 = B(q,l)) in the mean depth of this
layer. ( ¥ is the geocentric latitude and A the longitude).

A spherical shell of the density Jé , of the width T, and of the
mean depth t may play the role of the underlying gravitating
body. This shell causes the potential Y. Thus, we have the follo-
wing potential Y for test points P situated at the surface of

the Earth,

€Dy V7= N Gg“aﬁ-ge(a)-dvu 4
Vv

G is the gravitational constant, v is the volume of the gravi-
tating shell, the meaning of e(P,Q) comes from Fig. 2. In (5),
within the shell of the width T (see Fig. 2),d¢ or do(a) does
not depend on the radius. For T << R, the relation (5) can be
approximated by the potential of a surface distribution in the
mean depth t of the shell

"

(6) BYAEY(PYSE R G gs e—(-é—uy-JQ(o)-T.dapQ

of
The radius of e¢ is (R-t). Thus

(M Y=Y %6 gg H},T-a-daeg y
with 53
®) 8 =06, = de -1 = do(p) T

B8 is the gravitating surface distribution, see Fig. 2.

DOI: https://doi.org/10.2312/zipe.1990.114




56

Fig. 2. A modelling of the gravity anomalies by a spherical
shell.

We have the harmonics development for 1/e in terms of the
Legendre functions P_ , /117,

n
1 _ (R-t)
(9 &7 s i niSoe e
? = (R-t) <R

Now, the surface spherical harmonics Sn(@,l) are introduced,
(9a)3 integrating over the unit sphere, we have

2
(9a) ( [Sn(cf,k)} - cosy * dy .dl = aW 3

This are fully normalized harmonics. The symbol Sn(¢,l) represents
all the surface spherical harmonic functions of degree n, what-
ever the order of them may be. Or, with other words, only the
zonal harmonics of degree n are written down, since the tesseral
and sectorial harmonics of the degree n have similar relations

as the zonal harmonics. This is an often used abbreviating style.
By the decomposition formula of the harmonics, Pn can be express-
sed by the surface spherical harmonics of degree n (being
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Sn(y,k)). Thus, the relation (9) turns to
o0
an 1.5 QB Los s @),

p— Rn#l

for

(10a) 7= (R-t) < R .

¢ and A are the co-ordinates of Ps @’ and A' are those of Q.
Thus, we find the following form for Y(P) which is the potential
of a shell, (5)(6)(7),

oo

an e = Ty s pd)

n=o0

with the subsequent expression (12) for the Stokes constants Y

’

and with ky =G, (8)(9a), (R-t : Radius of the sphere 2 ,Alg 2),

(R-t)"
(12) Fgesgio g( ToneT de Sy (ghhdt)e T 9% -
e

Or, inserting
oo

(12a) J€=§o (der s (¢ A,
(13) y, = 4Fk,- R (R-p)? (Jg)

Rn+1 2n+1

The surface distribution B8 along the sphere & has the harmonics
development, (8)(12a),

o SO
(14) e:mzoﬁn- Sp(pd) = T nZ::D (Je)n- S (@A)

Hence,

2
B N (RED) N (RS
(15) y, =40k, el el B, -
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The potential Y(P), described by (11)(13)(15), is valid for test
points P on the Earth's surface of radius R. The value

(Rt

(16) Rn+1

appearing in (13) and (15) is the smaller the greater the para-
meter n, because of (10a). For

(17) R-t =

N —
2

and for
(18) n =20 ,

we find

as EHn

n . ;
But, the smaller [ER—t)/E/ , the greater A%n oGSt y, is under-
stood that it is fixed, (15).

Since, in (13) and (15), always the product of (16) with the
Stokes constants ’&n resp. (5Q )n appear, the effect of a change
of the t value can be compensated by the effect of a correspon-
ding change of the ‘9’n or (Je)n value.

Thus, basing on Y(P) as a given function, it is not possible
to compute the precise value of the depth of the density ano-
malies in terms of the surface potential values, or, what is
equivalent, in terms of the surface gravity anomalies.

What is possible by these methods without the introduction of
any hypothesis, that is the computation of the whole mass dm
of the density anomalies. The concerned formula (20) follows
from the Gauss theorem,/11/. We have, integrating over the sur-
face @ of the Earth,
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(20) JM = ky ({ cfg-de* .

G
kBis a constant quantity, cs‘g is the gravity perturbation along
¢ (being the radial derivative of the perturbation potential).
The derivation of (20) can be found in the text books on poten-
tial theory.

4. On the potential of the surface distribution

The density anomalies, (8),
21 de - de (eb) = Leecp)

within a certain layer of the width T have the surface spherical
harmonics development, (12a)(l4),

=]
(22) d¢ (pd) = 25 (@), 5 (p.d)

n=o

In order to be clear, the right hand side of (22) is the abbre-
viated shape of the detailed form (23),

oo
(23) J? 5 nZ::') '“Z::'j Pn.m(?)[(c{’?)l.n.rﬁcos mz *(59 )2.n.|ﬁ51n mA :|'

Pn_m(&p)-cos mA
and
Pn_m(‘P)'Sin mA
are the fully normalized surface spherical harmonics, (9a).

(cfg)

l.n.m
and

(Jf)z.n.m

are the Stokes constants.
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Sure,(22) can be understood in such a manner that only the zonal
harmonics of the degree n are written down, the sectorial and
tesseral harmonics of the degree n will transform in the same

way, in the course of the subsequent deliberations.

The r.m.s. value of d? within the volume V of the considered
layer, (5), is Qg? )a . For this r.m.s. value, we have

(24) (cfg)ﬁ -1 W CTIE:IA

v

As to (24), within the shell of the volume V,the density anomaly
Jg does not depend on the radius, (12a). Thus, the volume inte-
gral (24) can be substituted by the subsequent surface integral
covering the sphere aeQ JGsee! Eligr 2K EE208

(25) (dg)2 = T (( (d)? dag

2¢
(-
Now, in the integrand of (25),5@ is replaced by the expression

(22). Considering the relation (26)
2 2

(26) deeq = 7 -cos?-d?-dh

with

(27) N=R-1t,

and accounting for (9a), the relation (25) turns to

oo
(27a) (d’g)§=47v’-T-712-%-Z (Jg)z
n=e

The volume of the shell can be approximated by

(27b) vZag.-T-9°2

Hence, (27a)(27b),
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oo

(1) (602 % L (de)?

n=0

5. The gravity potential

The gravity potential W of the Earth can be approximated by the
following spatial spherical harmonics series expression valid

in the exterior of the body of the Earth, [}][@]Zi]. This series
is of common use,

N a
_GM e\n .
(28) W = %[h 3 G, Sn(cp.))]+ AL
(283 )7 (%)-a}z-rz-cosz&p

M is the mass of the Earth, W are the concerned Stokes constants,
and Z is the potential of the centrifugal force.w is theangular
velocity of the Earth's rotation. ag is the equatorial radius of
the mean Earth ellipsoid.

We took the W values of GEM-10. Meanwhile, refined values are
available. Table 1 gives the W values, (see the appendix), [7]

ny.

6. The convergence of the spatial spherical harmonics series
development of the potential down to the surface of the Earth

Here, in our investigations, the spatial harmonic potentialsare
represented by spatial spherical harmonics series developments.
This series is uniform convergent in whole themass-freeexterior

37067 (5].

During the last years, some authors published "retorts".These

"counter-proofs" have no foundation: A counter-proof is possible
only in case the problem is unique. But, even this case is the
crux: The harmonic downwards continuation of a potential function
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is unique only if the potential function is continuous, /3//47
[/57/11]. 1f the downwards continuation is divergent, it is
simultaneously discontinuous, too. Thus, there is no uniqueness.
Consequently, the counter-proof examples are paralysed because

they forget the continuity contraint.

In case the harmonic potential in the exterior of the Brillouin
sphere undergoes a harmonic downwards continuation, we have. two

branches.

The first branch leads to discontinuous harmonic functions,
divergent series, and it leads to a field being of no use for
natural science; it cannot lead to the potential of a gravita-

ting body.

The second branch leads to continuous harmonic functions, con-
vergent series, and it is, thus, the branch which cultivates
natural science. It is the branch of our choice. In the down-
wards continuations, the constraint of continuity is indispen-

sable, [/3//6//5).

Brillouin sphere

discontinuous, . continuous,
divergent, convergent,

no natural unique,

science natural science

Surface of the corth, 6

Fig. 3. The continuous and the discontinuous branch in the
downwards continuation of a harmonic function.

DOI: https://doi.org/10.2312/zipe.1990.114




&3

7. The potential of the isostatic masses

The potential of the isostatic masses consists of the potential
of the mountain masses above sea level, of the potential of the
compensating mountain roots, of the potential of the oceanic
mass defects, and of the potential of the oceanic antiroots,
(see chapter A of the publication in hand, especially the equa-
tions (37) and (31)(32)(33)(34) of chapter A).The isostatic
system according to Airy-Heiskanen having a compensating depth
of T‘ = 30 km is well-proved even by recent computations, /147
0778809

The isostatic potential wI comes from the isostatic masses my
by

y 1
(29) My =6 §V§f = dn;
We have a development for wI in terms of the height of the

mountains H and in terms of the depth b of the mountain roots.
It is represented by the form (30).

P
e
/
Sea level 2 4 2
T* =
i Compensation depth
~H=>
”
R L? i r

Fig. 4. The mountains, the mountain roots, and the compen-
sation depth.
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T*

(30) W, = G [Ag: hib . ¢° h{jo ]-gg—é—-dh'dw,

[y
(31) dw = (r')z-cos?'d?.dﬂ .

3

(31a) 4@ = - 600 kg m™°

(316)  @° = 2650 kg m= 2

(see eq. (31)(33) of chapter A).

Respecting the oceans and their antiroots also, (30), an equi-
valent rock topography was introduced, /8/. Thus, in (30), the
H values for both the mountains and the oceans are represented
by one single globally valid mathematical development, (38),
being convenient for the isostatic computations.

The inverse value of the distance e is developed by the relation
(32); (see also (10)(l0a), /117, Fig. 4&).
oo
N DR ST . L '
(32) I ng(; (r ) FET Sn((f”)) Sn((P N L
2 45 9', A' are the polar co-ordinates of the volume element
dh-dw of the isostatic masses; r' = R + h

The amount of r' does not deviate enormously from the mean
radius R of the globe.
r,(p,) are the polar co-ordinates of the test point P, Fig. 4.

Following up these developments about (30)(31)(32), we find de-
finite mathematical formulas which imply integrals of the follo-

wing shape
*

o -T
(33) g (ﬁ—')”-dh-dw = (&))" ( " oh-dw
h=-b h=-b
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and

JI'I

"

(

"~

H
(38) (EH™ dh-dw
hgo L

=

&N gh.g o .
With

35) G Y A pn,

the integrands of (33) and (34) can be developed in terms of
powers of g s

(36) . R, ARkl

.y
they are convergent since

(36a) h << R

A thoroughinvestigation about these questions is found in [7]
(17/. In connectionwith our investigations, it suffices to take
into account the linear term % , only. For the H values, spheri-
cal harmonics developments are given. Sophistications should in-
volve the powers (%—)2 , and further,an eventually existing over-
compensation along the Moho-discontinuity, and further on,the
possibly variating depth-range of the lower border of the litho-
sphere(about 70 km depth in the oceanic areas and about 140 km
depth in the continental areas, probably), /71//17/.

Along these lines, we find an expression of the following shape
for the potential wI , valid for the mass-free exterior of the
body of the Earth, (see chapter 6),

(=)
GM ae n
37) Wes 2 () owp o0 Salpd) 5

3 is the equatorial radius of the ellipsoid of the Earth.
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Table 2 shows the Stokes constants of the spatial spherical har-
monics development for the isostatic potential WilR according

to Lachapelle /14/, and further on, for the heights H accord-
ing to /8/, (equivalent rock topography).

The heights have the development
oo

(38) H = = Hy S, (e, )

8. The reference potential U of the hydrostatic equilibrium figure

The level ellipsoid is not a convenient reference figure in our
context. It cannot be generated by an equilibrium figure, or by
a stratification which is physically plausible. It is a pure
mathematical fiction. Here, a reference potential is introduced,
the underlying masses of which have the stratification of hydro-
gtatic equilibrium. The density anomalies treated later on de-

scribe deviations from this state of equilibrium.

The hydrostatic Earth of G. Darwin is recommended here [6//17/13/
/157 . The parameters of this reference potential (40) derive as
follows:

The coeffiecient J of (40) is obtained from J2 by J = - %-32
Here, the coefficient 32 of the zonal spherical harmonic of 2.
degree comes empirically from satellite observations, /16/.

As to J and 32 , it may be stfessed that J is here not computed
from the dynamic flattening H , /13/,

fi apahtiR o B
(39) H = S J.a & 3

(5p)

-A
a

A
2

C and A are in (39) the main moments of inertia. The meaning of
the q value is found in /137, page 12.

The K value of (40) comes from the theory of the hydrostatic

equilibrium in the interior of the Earth, it is the value com-
puted by Bullard /13/.
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We have for a rotating model, (28a), /[71//137,
GM a2 2 " 4 a4
(40) U = ?—[1-(?) -3-3-P2(51n P+ Tg-(;) +K-P,(sin ?)J+ e

In (40), the term a is the equatorial radius of the surface of

the hydrostatically stratified masses; this surface is simulta-
neously a level surface. Z is the zentrifugal potential (28a),

and Pi(sin ?) are Legendre functions. From the literature, /7/

/137, we take

(41) T & 262739500 1

(42) K 1,027 10 ° %

As to details about the theory of equilibrium figures, please,
consult the chapter contributed by H. Moritz to the Hungarian
Winter School 1989 in Sopron.

The relation (40) was extended up to the harmonic P6(sin ?) by
Lanzano, recently, [15].

9. The law of Birch

The gravitation law of Newton expresses the gravitational force
in terms of the density of the gravitating masses. The law of
Birch relates the density of the masses in the upper 400 km of
the Earth with the velocity of the seismie P-waves. This velocity
VP of the P-waves in the upper 400 km of the Earth depends on the
density ¢ of these upper layers by a linear expression, in good
approximation, /97. We have,

(43) Vp = - 0.665 + 0.002 64-0 , 0 £ t <400 knm,
or, abbreviating,

(44) VP =a+ by
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Vp in km/s, e in kg/m}. t is the depth.

Now, we do the following consideration: The layers in the upper
400 km are crossed in vertical direction by a seismic P-wave;

and in the area of these layers, the density © deviates from

the standard density by 6@ ,JQ being constant along this part
of the way of the P-wave, being the way through the upper 400 km.
Such a change of the @ value by 59 leads to a change of the VP
value in the depth-range 0 <t = 400 km, as it is evidenced by

(83),
(85) &v, = 0.002 64 - Jg .

Further, such a change of the VP-value over a distance of about
400 km range leads to a time delay u of the travel time of the P
waves crossing the layers of the upper 400 km.

If, the seismic P-waves run over a distance s within the time 1,
the VP value is defined by

5
(56) VP = '1- .

For the variation of the velocity VP in terms of the travel time
variation(JVP, 61), we find in a self-explanatory way,

(47 Svp = - .61 - - (v
From (44), we find (48),
(48) dv, = b de ,

With (47) and (48), the relation (49) yields,
(49) b-do= - (vH28L

Thus,

(50) &1 & =8 .5, de

2
(vp)

The quantity of s can be identified with T = 400 km.
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61 can be identified with the above introduced travel time delay
u. Consequently,

(51) (f? it <VP)2'%“1F’“ : (T = 400 km).

Inserting the values of v e o I , (51) yields

B
(52) Jg = - g-10%u

5915 measured in kg/m3 and u in time seconds.

A value of u = + 0.5 s leads to about 5? S (535 kg/m} .

u is the deviation of the observed travel time from its standard
value found by the Travel Time Tables.cgq is the deviation from

the density of a standard Earth which is described later in the
section 11 about the mathematical model.

10. The seismological data

The seismologically obtained data to be introduced in our com-

putations should be described more thoroughly, now; [1][2][1Q]
270871971207

At one selected place on the surface of the Earth, we have a
seismological station which records the arrival times of the
seismic waves radiated from the different earthquakes which happzan
at the different foci all over the world(takingoverepicentral di-
stances of the range 20° to 105°). The geographical positions of
these different earthquake foci can be considered to be known,

as so as the time at which the earthquakes did happen. The time
the seismic wave needs to reach our seismological station, this

is the travel time of the wave considered. If the recording seis-
mological station is labelled by Pi,if the considered earthquake
focus has the notation Qk, so, the travel time observed (which the
seismic wave needs to travel from Qk to Pi)is denoted by
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(53) (4 kobs.

On the other hand, for a standard Earth, having a density which
depends on the radius only, (@= Q(r)), the standard value of
the travel time can be interpolated in the seismological Travel
Time Tables. Along these lines, the standard value

(54 ) (L )

i.k’comp.

is obtained. This computed travel time of (54) is compared with
the really observed travel time of (53). The difference between
these two kinds of travel times is the travel time residual, which
is denoted by

(55) ri.k

Thus,

(563 Ty yo = (T liNs (li.k)comp.

(li.k)comp. implies corrections for the flattening of the Earth.

From the foci of the different earthquakes distributed all over
the globe, all the seismic waves arrive at our recording station,
Pi' The average value of ri.k covering all the earthquakes re-
corded at our one single Pi station is obtained by

Fi
(571 Ty Eerrrdeanl

1 k=1 ep

Fi is the number of the earthquakes recorded at the Pi station.
Fig. 5 shows clearly that the P-waves recorded at a certain sta-
tion have paths which diverge in a fan-shaped form, according

to the geographical positions of the different foci.

Only the P-waves are considered in thiscontext. Within the layers

of the depth 0 <= t < 400 km below the seismological station Pi
at the Earth's surface, there is a kind of a narrow pass for all
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Station

Fig. 5. The fan-shape form of the paths of the seismic waves
reaching one seismological station.

the P-waves which are running to this one single seismolaogical
station P.1 . This speciality is clearly recognized looking on
FigEEDE

The (1 values of (57) here introduced are determined for many
continental stations (some hundreds). But, the T& values are
rare on the oceans; only at some island stations in the midst
of the oceans, the T} values are recorded, see Fig. 6, 7.

Seismological recording instrumentations at the ocean botton

will be a help.

Especially, the addition of some more seismological stations

situated on the islands in the midst of the oceans will improve
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the precision of the finally computed density anomalies in the

mantle.

As to the value 7} obtained by (57), it is generally assumed
that certain density anomalies situated below the seismological
station P.1 are the underlying cause for the existence of signi-
ficant quantities of the values“t:i . It is generally accepted
that the value T& is in the main depending on the density anoma-
lies in the upper layers of the depth range 0 St £ 400 km,
situated vertically below the seismological station Pi MEagLt 5.
Thus, the value T gets the denomination to be the travel time
residual or to be the station anomaly. The relation between the
mean density anomalies [(JQ)B]i in the upper 400 km (vertically
below the station Pi) and the station anomaly TE is found with
(52). Thus,

s8) [(dprgl; = - 15 10°- 7,

It is supposed that the density anomalies in the upper 400 km
do not vary in vertical direction.

The label [ (¢ )B]i
value of the global function (59 )8 , this discrete value refers

of (58) signifies that we have here a discrete

to the seismological station Pi . This global function (5§>)B
depends on  and A by (59),

(59) (d@dg = X (@)

Along the surface of the Earth, also the station anomalies 7’ do
vary only in dependence on g)and R , obviously. Hence,

(60) T =T (pA)

The station anomalies 2 (labelled also by T} d

at the point Pi) depend in the main on the (cﬂ?)B value in the

being the 7’ value

upper 400 km, situated below the station Pi . This dependence
is arranged by the law of Birch, (43)(52). As long as the depth

below the point Pi does not surpass the value of t = 400 km,
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all the seismic waves which reach the station P. are affected by

the one density anomaly [(‘59)811 , crossing the layers of the
depth range 0 £ t £ 400 km.

But, for depths ranges greater than about 400 km, the P-wave

paths diverge in a fan-shape form according to the geographical
positions of the different foci. This pattern is shown by Fig. 5.
For t= 400 km, the seismic waves which reach the station F'i will
run through different parts of the interior of the Earth.
Eventually, in these different parts, velocity anomalies of the
P-waves can exist, below a depth of about 400 km, (see for example:
Dziewonski, A. M.; Hager, B. H., and R. J. 0'Connell, Large-scale
heterogeneities in the lower mantle. J. geophys. Res. 82 (1977),
239-255). These velocity anomalies will (as anticipated) not
have the same sign, always. The sign of the velocity anomalies
below t = 400 km will vary, it will be positive and negative.
Thus, all the eventually existing velocity anomalies below of

the depth of about 400 km will affect the one single station
anomaly 7 (or T&) of the point F’.1 as a kind of random variances
which are (at least more or less) averaged out - this fact is
essential - in the mean value obtained by (57).

The average value which the station anomalies T} have on the
surface of the Earth within a 5° x 5° grid cell, this value can
be computed. Fig. 6 shows the global pattern of such mean grid
cell values of T°. Fig. 6 comes from Toksdz, Arkani-Hamed, and
Knight, /19/.

Fig. 7 was taken from Toksdz, Arkani-Hamed, /1B/. Fig. 7 shows
the geographic distribution of data of seismic station anomalies
T (travel-time residuals) which are obtained by an averaging

within the cells of a 5° x 5° grid. Solid circles indicate posi-

tive residuals, open circles negative residuals, Fig. 7.
Fig. 8 was published by Arkani-Hamed and Toksdz, (2/. It shows
the contours of the seismic travel-time residuals 2 (in seconds)

based on spherical harmonics up to the 3rd degree. The coeffi-
cients of this development are tabulated in Table 3.
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Fig. 6. Distribution of averaged (5° x s° grid) travel-time
residuals used for spherical harmonic expansion.
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Fig. B. Contours of the seismic travel-time residuals (in
seconds) based on spherical harmonics up to the 3rd
degree.

E. Herrin and J. Taggert, /10/, have determined azimuthally de-
pendent station corrections for 321 seismological stations. The
records of 400 large earthquakes and 30 explosions were considered
in these evaluations, /10/. In the estimation procedure, data for
epicentral distances in the range 20° to 105° were used, only.
Herrin and Taggert assumed a dependence on azimuth (Zij) of the

form
(61) Cij = Ai + B.1 « sin (Zij+ Ei)
Cij is the travel-time residual (the correction to be added to

the tabled time) for the pair of the following two points:Qj,Pi
focus and station. Ai is the mean station correction, equivalent
to our T (D)o Bi is the amplitude and Ei the phase of the
second term of (61). For some selected european stations, Table
4 shows the amounts of the A, B, E-values of the relation (61).
In Table 4, N gives the number of the observations,and <f2 is a
measure for the variance of the random errors of the travel-
time residuals.
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11. The mathematical model

A certain model for the denmsity distribution in the interior of
the Earth is now introduced. For this purpose, the interior of
the Earth from the surface down to the core is divided into 4
spHerical shells. By Fig. 9, these 4 shells in the earth's inte-
rior are pictured for the reader.

/Nﬂcce

t30km=T*
D=200km ! (dg)B T=400km
D,=8161 km_ (ds )A 1 T=8333km
D,~16500km (as,)A : T=8333km
0,=244833kml (ay)A 3 T;8333km
core

Fig. 9. The &4 shells in the Earth's interior.
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The density anomalies ((5@)8 in the crust and upper mantle (in
the depth range O £ t <€ 400 km) are considered to be not depen-
dent on the radius r, but on ¥ and A only. They can be expres-
sed by spherical harmonics in the following form, (59),

5)

(62) (d@)g = (9 A = 2 (Jplg ,°5,(p)

n=o

(Je )B can be computed from the travel-time residuals

T (p,2), (60), according to the law of Birch, (58).

These computations of (o’g)B can be executed before the ad-
justment calculations which follow later on. From (5B8) and (59)
(60)(62), the relation (63) follows,

(63) (d0)g = X (pA) = - 1-10°- T (@A) .

(d'e)B is here in kg/m3, and 7 in seconds. If 7 is equal to
+ 0.5 s , a value for (JQ)B of - 33 kg m™> is reached for
T = 400 km, Fig. 9.

But, the relation (63) is only a primitive picture of the
function which gives (C;Q )B' The Airy-Heiskanen isostatic system
has to be included into the layer of the upper 400 km. The in-
clusion of the mountain roots of this isostatic system, having a
density jump of (Ag)B transforms the relation (63) into the
following amended shape, ((13?)8 = - 600 kg/m}),

(68) T = "s[“<5§’>e + (de)g- (-1 )] )

Here is, (52), /17, Fig. 4 and 9,

(65) kgT = - 15-107,  (b-T)>0

The inversion of (64) gives the relation which computes the de-
sity anomalies in the layers of the upper 400 km, (59 %V in
terms of the given seismological station anomalies ¥ and the

given isostatic mountain roots,

(66) (Jp)g = c =¥ + cpep H
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or, [17,
(61) (@) = - s 107+ - H .

The Airy- Heiskanen system is governed by the relations, (see
(31a)(31b)),

(68) (419)8-(D-T') vo M =0,
(69) (dg)g = - 600 kg/m>

With the harmonics developments, (60)(38),
3
(10)  T- nZO () 5, (e D

and

3
(71) “H s TS D,
n=o

the coefficients of which are tabulated in Table 2 and 3, we
have, (62)(67),

(12) (09X = - 15 105 (@) + Fro M,

O}

(72a)L SiR=N0IRIn 2 8.

These coefficients (d'e)a.n are shown in Table S5, third column.
In the interior of the Earth belowof the uppermostlayer with the

density anomalies (de )B computed by inserting the law of Birch,

(67)(72), we have the 3 layers of the width Ly 15 13 EdS =

B833,3 km. The corresponding density anomalies are (JQ)A_l ,
(6?)A.2 , and (de)A,3 , see Fig. 9.

The surface spherical harmonics development for (ée)A i
(i=1,2,3), is with (21)(22), [&/[77,

(73) @RS Rl A )5, G s

(78 )FENET ER1S2N83))

DOI: https://doi.org/10.2312/zipe.1990.114




80

It can be taken from (73), the density anomalies in the 3 in-
dividual layers of the width 833,3 km do not vary in radial
direction.

The coefficients of the 3 harmonics developments of (73), that
are the unknowns of our problem which we have to determine. They
represent the beforehand unknown density anomalies in the deep
mantle,i.e.the depth range between t = 400 km and the core-

mantle boundary.

Now, we come to the detailed definition of our mathematical
model.

The model of the gravity potential W has the following expression
in terms of the different gravitating scources,

(75) W =U+ W, + Wy, + W

I B A

This equation is fundamental for our investigations.

The gravity potential W is explained by (28), the reference poten-
tial U has the representation (40), both of these expressions are
given in spatial spherical harmonics. The isostatic potential WI
has the mass integral (29) and the spatial harmonics development
(37). The potential WB is the potential of the beforehand known
density anomalies in the crust and upper mantle, (C;Q)B , (0 €

t € 400 km); see (62)(72). WB has the following shape of a mass
integral

b 1
(76) WB = 6 g{( E-de

Here,VB is the volume of the shell situated between the depths

0 £t <400 km. With the volume element dV, we have for the mass
element of (76),

(77)  dmy = dv-(cfg)H

The potential WB of (76) can be brought into the shape of the
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potential of a surface distribution in the depth of D = 200 km,
Fig. 9. Considering (5)(6)(11)(14)(15)(72), the mass integral
(76) turns to (78) for test points P on the surface of the Earth,

(6017,

(R-D)" (R-D)? . ;
(783 My PptE L = “U?sz T el 9P Snle ) s
(78a) k) =G .

In (75), the potential WA comes from the a priori unknown densi-
ty anomalies; thus, it is given in terms of (5§J)A_1 5 ((§Q)A_2 '
and (JQ)A.S which are the density anomalies in the 3 different
layers of the lower mantle. All these three layers have the same
width of 833,3 km, (see Fig. 9). If V, is the volume between the
depth of t = 400 km and the core-mantle boundary, WA has the

mass integral (integrating over these 3 shells)
(19) W, = 6 m L gm

A v e A

A

with - for the 1lst shell -
(80) dmy = dV-(d @)y ; »
with - for the 2nd shell -
(81) dmy = dv-(d), , ,
and with - for the 3rd shell -
(82) dmy = dV-(d@), 5 .
Hence, (B80)(B1)(B2) show how to divide the integral (79),
accounting for the densities of the different 3 layers filling
the volume VA described above.
If D1 s D2 5 D} are the mean depths of these 3 layers, Fig. 9,

and if T1 o T2 ) T3 are the width values of these 3 layers, we
find according to (73)(78), [6//[17,
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(R-0)" (R-D,)?
» 1 1
(83) Wy = Wy (P = 47T KTy — o — o] (90), -5, (9, A)s

(R-0,)" (R-D,)?
~ 2 2
+4% Z: k2T2 Rn+1 Zn+1 (JQZ.H'Sn(‘P'A)"

n

(R-0;)" (R-D,)?
e 3 3
+47 ; k2T3 RFH-I TS (d’e)}_n-sn(qa,l) .

Herewith , considering (28)(40)(37)(78)(83), the expressions on
the right and left hand side of (75) are explained; they can be
represented by harmonics developments, [E][l].

In (75), the potentials W, U, WI , and WB have beforehand

known functions. Thus, the unknown function wA has the following
constraint which is also a constraint for the a priori unknown
coefficients of it, (8), . , (i =1, 2, 3,

i 1 T i
(84) W, =G i}{ ol e R
A

For the above constraint (84), we can introduce the symbol 8.

(85) B8 =W - WA - WI - WB -uUu=0.

B8 can be decomposed into surface spherical harmonics,

(86) 8 = 3 8-S (@A)
n

Consequently, en is the symbol for the following cdonstraints,

(87) 8 = (W-2) - (Wy) - (W) -

hi ((Npdee (U-Z) ¢ =i,

(88l In = a1 2

On the right hand side of (87), the shares of the harmonics of
degree n of the individual 5 potentials can be found.
For instance for n = 2 , we find for test points in the ex-

terior space,
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a GM,a\2 2 oM, %e .2
(89) =8, = HM2)? wpe 2D 536 - FE v, -

7 RS
2
(R-D)
1 2
-A% sz ‘g(R-D) (5?)3-2 =

)
2

(R-D,)

~ 1 2 i
i 'Ry (b Ol SCIN

& (R-0)% | 204
_All szz —r}——— g(R-Dz) '( ?)2'2 -

L8 R b
shists e 5(R-05)7-(0¢)5 5 -

€ stands for the transition from the Legendre function of 2.
degree (PZ) to the harmonic Sz(q,)) in the course of the full

normalization, P2 = C-Sz . (89) can be written in the following
abbreviating form,

(90)- g ts [w_U-WI_WB}Z+ k6,291 2% K7.208905 5+ Kg.2(00)3

Obviously, (90) allows symbolically the following generalization
for all degrees n,

(91) e 8= ["“U‘”‘I‘”a]n + j:%,:z,} kj.n(J?)j.n H

(92) nl =N0RF1E27,

Ej.n are given constants, the formulas of these constants can

be obtained by a comparison with (B7)(89). The comprehension

and the clear understanding of the essentials of our coming
deliberations will not be impaired considerably by the fact that
not the detailed formulas for all the coefficients R.'n can be
given here, (see [(1]).
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12. The determination of the density anomalies in the deep

mantle

The relations (91) have the character of condition equations for
the (6§7)j.n values! (35="17572, B3 S8ni="gm=", 2N SEN)MIWhE ch can
be found in the last terms on the right hand side of (91).

Each individual equation of the type (91) assigned to the index
n has the character of one relation for the 3 unknown values
(de )l.n 3 ﬂfe Yo (dQ)B_n . Thus, the relations (91) do not
suffice to determine the coefficients

(93) (5e)j_n;
(984) 3 =1, 2, 3;

(G5 ¥ @

"
o
—
N

in a unique way. The reason lies in the fact that we have only
n equations for 3n unknown values.

Furthermore, in connection with the equations (16)(17)(18)(19),
it was already discussed that the surface values of a potential
do not allow to find precise and unique values for the amount
and the spatial place (depth) of the gravitating masses in the
interior of the Earth: The integrals of the type (5), giving the
potential in terms of the gravitating scources (5e, have not a
unique inversion. This is a fact well-known from exploration

gravimetry.

Further on, it is not necessary to decompose our density anoma-
lies distributed in the interior of the Earth, (i.e. (JQ)B ,
(JQ)A.I A (ée)A.Z y (dQ)A_3 ), into the part of them which

is caused by elastic compression and, on the other hand, into

the part of them which is caused by a spatial variation of the
chemical composition. The reason is, that our fundamental rela-
tions, as the law of Birch (43) and the integral relations of

the type (5), relate the density with the velocity of the P-waves
and, further, the density with the gravity potential values in
the exterior of the body of the Earth, irrespective to the deeper
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reasons which cause the density anomalies, may they be generated
by elastic compression or may they be generated by distinctions
in the chemical composition. This fact is a relief for our com-
putations.

In order to find a reliable and plausible solution for the un-
knowns marked by (93), a reasonable working hypothesis is in-
troduced. It makes the integrals over the squares of the unknown
density anomalies (d’? )A.l ; (de)A.Z A (AQ)A.} (given by (73)
(74)) to a minimum value accounting simultaneously for the con-
straints of (91).

—
We define the following fundamental / operator as given by (96),

(79)(80)(81)(82)(89)(91), [1/,

3
=
(96) [Ny “f(d’g)ﬁ.dV+Z X -8
) . NS

i=1,2,3 v n=0

A.i

VA i is the volume of the one single shell of the number i
situated in the deeper mantle, Fig. 9; it has the mean depth Di’
the density anomaly (59)A ; » and the width T, (i=1,2,3).
The symbols Xn mean Lagrange multipliers, they are a priori
unknown.

Our working hypothesis is, /é7/17,
(97) ¥ g Minimum,

or, more detailed, in terms of the Stokes constants (ée)i S
(13), ]

(9B)r{(éQ)i.nf—>Minimum;
( 9:8:2)) L= P REUsee W =0

For the subsequent mathematical derivations, considering the
relation (96), it is recommended to change over from the (6€)A.1
values to the unknown coefficients of the series developments
of them, (73)(93). With regard to (24)(25)(26)(27)(27a), the re-
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relations (96)(98) turn over to
3 3 3
2 2
@) [ L =ats 2, p2.3, -3 (O dihas - reinBgs
i=1 ?1 1 n=0 e 5 U] n=0 n n
with, (27b),
(99a) Vv R T L
A.i L) RS

In the depth range between t = 400 km and the core-mantle boun-
dary, 7i is the mean radius of the spherical shell of the num-
ber i and the mean depth Di MLIGitm=N01y 52530 TR 32 RN

The minimum principle (98) demands the fulfillment of the follo-
wing relations, observing (91):
(100) 1I.) —<ﬁ——3’_' =0

S8 e ’1.n [

—_

9
(101®s Tile: ) W 2000 5

.N

el

s iy
(102) III.)5(d.—§-)-3‘n =0 ;

(103) 1Iv.) 8 = 0 ;
(104) 420 B, 2y

The relation (103) comes from (91), it has to be observed simul-
taneously with the derivatives (100)(lol)(lo2). The equations

from (100) to (103) construct the system which allows the deter-
mination of the unknown values of (93) and the unknown X, values.

After the Stokes constants of (93) will be found by the inversion

of the determining system I, II, III, and IV, we will find the

series development (73). The reader will be well-acquainted with

inversion calculations of this kind. Therefore, the author can

dispense himself from the task to give a comprehensive descrip-
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tion of these calculations at great length; (Gaussian algorithm).

The last 3 columns of Table 5 give the detailed amounts of the
Stokes constants of (93) obtained by (100) to (104), specified

for the three shells in the individual depth ranges of 400 km &

t €1233 km, 1233 km € t £ 2067 km, and 2067 km < t < 2900 km;
this are the three layers in the deep mantle of the Earth, Fig. 9.

Table 5 shows the results of all our investigations. As can be |
taken from Table 5, the masses of the density (139)8 are rather
well compensated by the masses of the density [(JQ)A_I* (d?)A.Z]'
Consequently, the density anomalies in the depth range O <€ t =
400 km are rather well compensated by the density anomalies in
the depth range 400 km < t <€ 2067 km. We have, (62)(72)(73),

(1042) (d¢)g ¥ - (de)y , - (@), »

or, summing-up over the harmonics of all the degrees and orders
here considered,

(105) (d@)y ¥ - (@), , - (40, ,

Finally, it is useful to execute the step from the Stokes con-
stants of (93) to the full density anomalies covering all the
harmonics here involved,

(106) (de)g , (d9)y 1 , (d)y , » and (Jg), 5 .
Along the deliberations connected with (24)(25)(26)(27)(27c),
the r.m.s. values for the 4 functions of (106) are computed.

With (24)(27c), these r.m.s. values are denominated by the terms
of (107), (see [6//17),

(107)  ((dQg),s ((dPy 1), ((dPy ), (B, ),
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The individual amounts of the 4 r.m.s. values of (107) are figured
in the graph of Fig. 10, in dependence on the distance from the
center of the Earth. In the crust and upper mantle, the r.m.s.
value of the density anomalies is about 25 kg/m3, for 0 t =
400 km. In the 3 shells in the deep mantle, we have the r.m.s.

values of 14, 10, and 6 kg/m}, respectively.

The pure gravimetric evaluation type without seismological data
gave the amount of 1 kg/m3 only, (4). This value - being free of
seismology - is by far too small, consequently. (See also the
discussion about the work of Kaula and that of Tscherning/Siinkel
presented in the final remarks;chapter 13. These authors found
quantities one order too small.)

kgm®
25
14
10
6 L

6370 5970 5137 4303 3470 km

Fig. 10.
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13. Final remarks

Further amendments of the investigations above can possibly hap-
pen along the following lines:

1. Constraints for the inertial moments of the Earth can be
introduced.

*
2. A constraint for the dynamical flattening H , (39), can be
of help.

3. Further condition equations, already applied in /7/, can
come from a consideration of the gravity potential field in the
interior of the Earth's core. In this context, it is of interest
that the mass in the exterior core is commonly regarded as a
fluid. Therefore, in this area, the gravity potential has to be
represented by the zonal harmonics of the Oth and 2nd degree of
the potential U, only, (40). Following up this concept, along
the core-mantle boundary, a condition for the isostatic potential
and for the potential caused by the density anomalies (situated
between the surface of the Earth and the core) follows.This
condi tion prohibits in the exterior core that tesseral and sec-
torial harmonics of 2nd degree come into existence, as so as all
the harmonics of degree 3, 4, ... . In /7], this speciality was
considered by computing a special version of our mathematical
model.

4, The fact can be put into the fore that Europe and North
America have a relative dense coverage by the 2 values of the
travel time residuals, Fig. 6, 7. Thus, for these areas, it will
be of interest to find out what will come out if the density
anomalies are represented by finite elements, instead of the
usually used spherical harmonic development. These finite elements
have to have the shape of bodies of three-dimensional extension.
Along these lines, it is possible to check how far our finally
obtained density anomalies are biassed by the fact that spherical
harmonics were favoured in this publication in hand, in the mathe-
matical representation of the data material.
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5. Further, the isostatic potential WI can be extended and
refined by the inclusion of the terms quadratic in the heights,
(H/R)Z, [17], (see also: Arnold, K., The isostatic potential in-
cluding the 2nd - order terms. Gerlands Beitrdge z. Geophysik
89(1980), 287-293).

Finally, in this context, it should be mentioned that significant
values for spherical harmonics developments of the velocity ano-
malies of the seismic waves have been determined by Dziewonski

et al., see /7/. In (1], we computed the r.m.s. values of these
velocity anomalies, and we compared them with the r.m.s. values
of the density anomalies in the deep mantle, (107), Fig. 10,
Table 55 ((d@, ), .
s. values (thus, this quotient is determined by the definition:

(i = 1,2,3). The quotient of these two r.m.

The r.m.s. value of the seismic velocity anomaly has to be divided
through the r.m.s. value of the density anomaly) was in the mean
about x = 0.0022 . For the upper 400 km, the corresponding co-
efficient x obtained by the law of Birch was x = 0.00264 , (43).
B8oth these values are in good neighbourhood.

At anearlier time,Kaula evaluated the density anomalies in the
deep mantle, (Elastic models of the mantle corresponding to
variations in the external gravity field. J. Geophys. Res. 68
(1963), 4967-4978). Data from seismology were not introduced.
Kaula found a r.m.s. value for the density anomalies in the deep
mantle of about + 1 kg m's. This value is too small by one order
(factor 0.1). Thus, this value is not a realistic one. The real
value will be about 10 time greater, because otherwise the con-
straints from the seismological data cannot be fulfilled. The
same statement is valid for a more recent paper by Tscherning
and Sinkel, (A method for the construction of spheroidal mass
distributions ... . Verdff. Zentralinst. Physik d. Erde, Pots-
dam 63 (1981)II, 481-500).

The here considered mathematical model is relative simple, since
the here unnecessary elastic deformation considerations are not
involved. Indeed, the density anomalies here obtained will cause

gravitational forces which are relative small and long-time
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effective. Thus, regarding the rigidity of the material in the
interior, and regarding these above discussed small gravitatio-
nal forces, it will be questionable whether we are over the
concerned threshold value which opens the door to enter the
area where the common elasticity theory is valid. This Earth
model here discussed is in good harmony with both the geophysi-
cal and geodetic conceptions.
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15. Tables
Table 1

Coefficjents of the gravity potential
GEM 10.; wn__values.

-4B4.165

w 0 v o

2.43
1.40
.96
.03
.25
.89
.62
0.70
1.41

“ 0 uw o v o
'
o
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Table 2

The Stokes constants of the isostatic potential
and of the heights, LA and Hn -

6

n m Wy 10 Hn[meter]
il 0 0.109 447
1 Ic 0.106 385
1 IFE 0.086 273
2 0 0.134 288
2 lejc 0.054 200
2 ls 0.081 2217
2 2%¢c ~0.090 -274
2 2s -0.005 D
3 0 -0.095 =299
2} lgic -0.039 - 99
3} ls 0.048 78
3 288 C -0.124 =313
3 2s 0.108 299
3 3uie 0.021 71
3 OpS) 0.111 344
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Table 3.

Spherical Harmonics Development for the

~

Station Anomalies T.

n m T)

s
1 0 RS9,
1 lc - 0.014
1 1s 0.086
2 0 - 0.149
2 lc 0.002
2 1s O]
2 2c - 0.062
2 2s 0.100
3 0 - 0.040
2 1) - 0.089
3 ls 0.080
B 2c 0.113
2 2s - 0.053
B 3c - 0.015
5 3s - 0.013
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Table &

Stations Corrections

Code Station N A 8 E o2

ABE Aberdeen, Scotland 12 1.86 IS 156 4.04
ATH  Athens, Greece 59 .05 1.00 222 1.35
BOB Bagnerres de Bigorre, France 39 .45 .51 138 2,21
BNS Bensberg, Germany 45 .14 .32 322 .43
BED Beograd (Belgrade), Yugoslavia 59 .88 .47 156 1.40
BES Besancon, France 46 .40 .53 113 .82
BRA  Bratislava,Czechoslovakia 57 .01 .56 121 .80
BUC  Bucharest, Romania 20 2.49 2.91 267 3.57
BUOD Budapest, Hungary 35 .44 1.75 85 1.79
CRT  Cartuja (Granada), Spain 39 .BS .76 175  3.49
CHE  Cheb, Czechoslovakia 25 .25 1.06 126 ' 3.27
CFF Clermont Ferrand, France 43 .45 .87 112 .94
CLL Collmberg, Germany 108 .00 .25 191 3l
cop Copenhagen, Oenmark 98 .85 .51 177 .76
DBN  Debilt, Holland 28 1.90 .71 289 2.01
DUR  Ourham, England 39 .86 .23 617 9% 1..50
FIR Firence, Italy 25 2.14 SH 91 188 7.57
FLN  Foliniere, France 63 .18 .37 131 1.11
GoT Goteborg, Sweden 60 .05 .84 185 .94
HEL  Helsinki, Finland 47 .03 .62 90 .73
JEN Jena, Germany 110 .28 .28 115 .88
KRL  Karlsruhe, Germany 18 .07 1.83 66 3.72
KHC Kasperske Hory, Czechoslovakia 62 .60 S22 75 .80
KRA  Krakow, Poland 99 .02 .36 72 .76
LIS Lisbon, Portugal 31 .68 .47 151 1.68
LJu Ljubl jana, Yugoslavia 54 .12 .49 157 .87
MOS  Moskow, USSR 156 .08 .17 181 .86
MWG Minster-Westfalen, Germany 11 .47 .56 119 .67
PAR Paris, France 27 .06 1.16 80 .98
PRA  Prague, Czechoslovakia 38 .56 .76 161 1.47
PUL Poulkovo, USSR 140 .14 .29 36 .87
REY  Reykjavik, Iceland 26 2.13 .59 359 1.19
STR  Strasbourg, France 96 .13 .47 108 .75
STU Stuttgart, Germany 143 .30 .62 74 75
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Table 5

Final Spherical Harmonics Developments for the Density Anomalies
in the Earth's Mantle.

(8e)g o)y @)y - ©o)y 5
Depth Depth Depth Depth

n m 0 - 400 km, 400-1233 km, 1233-2067 km, 2067-2900 km,
kg/m3 kg/m3 kg/m3 kg/m3
1 0 - 7.7 3.0 2.6 2.1
) e SES - 1.4 - 1.2 - 1.0
1 1s A3.9 1.6 103 .1
2 0 151859 - 6.2 - 4.5 =u3.0
2 lc 1%2 - 0.6 - 0.5 - 0.3
2 1s 152581 - 6.3 - 4.6 =03.1
2 2c 253 £ 10 - 0.7 - 0.5
2 2s - 6.9 3.5 289 1t 7
3 0 280 = 1.1 - 0.7 - 0.4
3 lc i3 E 3.1 S o) gl . 1
3 1s - 4.8 318! 1.9 1.1
3 2c - 9.6 6.2 3.8 2.1
3 2s 569 - 3.6 - 2.2 - 1.2
3 3c 1.5 - 0.8 20015, - 0.3
3 3s %7574 - 1.8 S @E | - 0.6
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C. Considerationsabout the term Cl(M)
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Summary

In the solution of the geodetic boundary value problem, the term
Cl(M) appears in the integrand of the Stokes integral; [2],

equation (3) on page 10. This term can be represented by the
smoothed Bouguer anomalies for numerical routine computations; [ZJ,
equation (4) on page 10. Cl(M) has positive and negative amounts
which surmount 1 mgal in seldom cases, only. This mathematical
expression of CI(M) in terms of the Bouguer anomalies is in the fore.
It is proved that the expression (4) on page 10 of [2 ] is suffi-
cient precise for our applications, the residua can be neglected.

Zusammenfassung

Die Ldosung des geoditischen Randwertproblems enthdlt im Integranden
des Stokes-schen Integrals den Ausdruck Cl(M); [2] , Gleichung (3),
Seite 10. Dieser Ausdruck kann durch Bougueranomalien ausgedriickt
werden; man erhdlt so eine Formel, die fir numerische Routinebe-
rechnungen besonders geeignet ist, weil die Bougueranomalien

einen glatten Verlauf haben; [2], Gleichung (4), Seite 10. Cl(M)
hat positive und negative Werte, die selten den Betrag von 1 mgal
ibersteigen. Dieser mathematische Ausdruck fir Cl(M) steht hier

im Vordergrund. Es wird gezeigt, daB der Ausdruck (4) auf Seite 10
von [2] fir unsere Anwendungen genigend genau ist; die dahei ver-
nachldssigten Terme sind bedeutungslos.
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1. On the definition of the term Cl(M)

The term CI(M) here to be considered is defined by the equations
(221), (219), and (217a) on the pages 60 and 61 of [2],

with

(@) @ (py, pp) = Qg s Po.)

0) o]
1 Hlu 1 e STl

3 ] == . + R 3

) (y,p2) R 9 R'cosp DA i SiEe ey

The model potential M is
(4) M=T-8

where T is the usual perturbation potential, and where B is the
gravitational potential of the mountain masses situated above
ocean level (having the standard density €, = 2.674g cm_3); [2],
Pg. 46 and 47. G is the global mean gravity, Z is the difference
between the height HQ of the running point Q and the height HP of

the fixed test point P,
(5) 14E Hy - Hp
6) =P

and

N t2 © Pa.u

are the north-south and the east-west components of the plumb-line
deflection on the surface of the Earth u, they are computed for the
potential M. R'is the radius of the test point P,

(8) R'=R + Hp
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¢ and A are the geocentric latitude and longitude. The deflection
components at the surface of the Earth u are obtained from M by,
(M 2P, 28k, eq . MCLSBOY)

1 oM
€)) Py | ——— ;
Pl Jv--'|--l-l gul R'a‘f’
u
and
1 1 oM
(10) = -\ . % ;
PZ ladr 20T g™ R'COS? DA
u
with
¢ ILDg P +«+ M)

U is the standard potential.

In (9) and (10), it is allowed to introduce some approximations.
g"' can be replaced by the global mean of the gravity G, and R
can be substituted by R; these approximations involve relative
errors of not more than about 1/300. 1 and p, are two-parametric
functions along the surface of the Earth, as evidenced by (9) and
(10). Thus,

|-
&

(12)  p; =L, A)

(19 .

GR CoS

(13) Py = ﬂ( P.A)

Here, 9 is the spatial function for the spatial potential M. In
spatial polar coordinates r, V3 ) , we have

(1) M = 'Sa(r,?,l)

The potential M,4}, T, and B are harmonic functions,
DOI: https://doi.org/10.2312/zipe.1990.114
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(15) AM= 89S = AT = AB = 0.

According to (15), the Laplace-operator for & is, [1] [5] 5

. & 2 1
(16) 0=A88 = \%rr+;far+?,\9,?v

el e . ohad 3
r?coszgp ’SM r? e
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2. The development for the term Q(pl, yz)

Considering the third term on the right hand side of (16), we have

the term

(17) -&9? >, L&z

2¢
It does contain the derivatives of ~$ along the line where only
the y values vary, but where the values r and A are constant.
The line where only the ¢ values vary is horizontal, and it has
north-south direction. A similar property is valid for the
expression ~Hj3 of (16).
But, in (12) and (13), the functions « and /5 describe quantities
distributed along the surface of the Earth u. Thus, ¥ and A are
Gauss curvilinear coordinates on the surface u, in case of the
functions o« and f
In this context, we are confronted with the problem to express the

derivative
(18) oacs
2

in terms of the second derivatives of the function §.

The derivation (18) happens along the surface path from Qa to Qb’

Fig. 1. Fig. 1 is a cross-section through the surface of the

Earth u for the case that A = const. But, if the derivations of
9, are in the fore, Qb can be reached from Qa along another way

by a first step from Qa to A, and by the ensuing second step

from A to Qb, [FilE)o kg During the first step, r and A are

constant. During the second step, ¢ and A are constant.
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Fig. 1: The replacement of the oblique derivation in the

direction of y by a horizontal and a vertical derivation.

From Fig.

12) (13),

1, the following self-explanatory lines can be taken,

2 Qu, (e, R)
(19) | S (R+H) dyp = TRE AL o
(R+H) Dy CX';

Qo (w,A)

T = A S

X G e (Badg, - Wy,
=l)g - () =--L .
B 255005 o [(—&‘P)Db - (B )g } .

= B [(Ss?)% - D)+ By - («9,,,)03]
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Hence,
(20) a_“ﬁizﬁd? Sppaid il oy de +-9 &d?
CRY/ GR fe pr a\p

Along the surface u, the radius r has the relations

(22D P

HQ is the height above the globe of the radius R. (20) and (22)

can be combined to

OH
(23) ?Q‘—(‘Pra—l 2.0 Ll B! ‘e .&r a1
Qv GR| P £ Oy

Obviously, in a similar way, the derivative of ﬁwith regard to A
can be found, Fig. 2, (13). Fig. 2 is a cross-section through the

surface of the Earth u for the case that ¢ = const.

(R+H)cosy-dA /Y

or |
ox A l

M

Fig. 2: The replacement of the oblique derivation in the direction
of A by a horizontal and vertical derivation step.
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The subsequent relation results, (13),

DH
PL(e, A5 1 [S 8 __Q]
24 = = +
4 21 GR-cos ¢ A2 EAi104

Now, we return back to (2) and (3). With (12) (13) (23) (24), the
expression (2) turns to

I g 10 )
27 @l #a)' G{ RZS‘?‘F R?

&1 fg e tangt g }
CUSZ\P R? b i
Oh oH
L e ey _wil s el
[Rz &r‘? 'O'p choszp ’th A ]

A comparison of (16) and (25) leads to

with
1 2
(273 leg[arr +E'&r] '
OH OH
(28) Be 5 L I $20) 5 1 9 q
2 G [Rz S’rP 2¢ choszn{; ra 24

Hp is fixed. Thus, (5],

“OH OH
(o)l e ege L g, B

Dy _fa(p " 92

The combination of the equations (1) (28) (29) yields

Wi D7 1 972
(30) GZ®2=-—{%—2--& + 5 -ara ?)—

07 D¢ R COSZQP

With (1) (26) (27) (28) (30), the equation (31) follows
(31) € (M) = 62-9 = GZ [ Bals  Dug ]

In the solution of the geodetic boundary value problem, the term

Cl(M) appears in the integrand of the Stokes integral, (68); [2],

page 10, equation (3). Therefore, the following terms have a
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direct impact on the perturbation potential T obtained by the
boundary value problem,

(32) ¥-1 SS C,(M)-S(p)-dv

4w R
v
(33) ¥ = ¥, , 8 ;
(34) ¥, = 1 g(sz- &, - S(p)-av
4% R
v
(35) ¥, = —L1_ ( 6z~ ®, - S(p) - dv
2 4w

v

The sphere v has the radius R + HP.
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3. The term ?1

\1’1 is defined by (34). In the integrand of this expression, the
term G- %, appears. With (27), it has the following development,

(36) G- o, = é%rr + % '{%r

In [2] , page 77, equation (274), it was demonstrated that the
radial derivative of M can be put equal to the Bouguer anomalies
‘jgﬁou with the reverse sign. Hence,

oL

or

(37)

"Sr = AgBou

Comparing (36) and (37), it seems to be possible to express G- 3,
by the Bouguer anomalies. In this context, it seems to be con-
venient to introduce the harmonic potential V = V (r, ¢ ,A) by

(38) AV =0
and by

(39) v = r-\Sr

The vertical derivative of V has the following relation, [4]
pg. 38,

2 Vy -V
(40) v =-Ly —SSY—Jd
[ )u RURPT” e "
[}

® is the unit sphere.

The radial derivation of (39) gives GHOEITE =Rk

D v o=r§ - 3

=
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(39) and (41) is inserted into (40).

Hence,
2 ((RY ), - RY)
(42) R-&+Sr:_—g+R_{ r; £’ 4.
10 S i o 5
00
")

(42), (36), and (37) give

2 =
(a3) 68, = - R2 g( (ngou)\}( (Ageou)l] i

29 eOO

w

Consequently, (34) takes the following final shape

¥4 -
LU RO ({[ ZL({(AQBOU)Yz %008 44 55)-av.

v
4% R 2w ar
v ®
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4. The term wz

The expression for ¥, is given by (35). The formula for the
integrand of (35) is represented by (30); (30) can be written in
the shape of a scalar product. With the vector

1
b ﬁ‘gw
(45) ql = = 3
= ¥ 1
q jare SRt
a2 R-cos‘f "Sr)
and
. [l 072
21
(46) q, - sarlf B & ;
b 1 z
q —_—
R d [ Rcos-P Dl J

the relation (30) takes the shape

(47) GZ-@, = -

[N
[N
—
o
N

According to (45) and (46), the vectors q; and g, can be written
as gradients,which are situated in the horizontal plane ,(that is

the ¥ operator ),
V()

L]

(48) qQ;

(49)  a, = v(2H

For the rearrangement of the integrand of (35), we put (see [l])
(50) §=q;. 22 -S(p)

The multiplication with the nabla operator leads to
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@) % Trdnggl 2 - 5(p)

- Vs(p) + a;- V2% - S(p) +Va, - 2

Here, we have

(52) q, - US(p) = E% &rp°5p

Further, Beltrami's differential parameter of the second order

gives
(53) Yo =v2 (8 = a4, 8D ,
with, (16),

1 1
(s4) 8,8 '&l‘ﬁ"‘f’ =R 8.4 - — tang - QW

Inserting (52) (53) (54) into (51), the relation (55) is ob-

tained,

G5) s = - 28 (8,9 )ste) - 22 5§ s vy

=)

(35) and (47) gives

(56) | T = ] G,-9,-S(p)-d
: avrag(:l L
v
Thus,
(1) ¥, =_?1 g (A -\Qr)-S(D)-dv +
v
DS(p)
o . dy =
e f e
v
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8%R
v

The integrands in the first and second integral on the right hand
side of (57) are well defined, because we consider a starshaped
Earth which has per definitionem finite values for ZZ-S(p) and
2 9§

for Z Q—p 3

As to the third term on the right hand side of (57), for the in-
vestigation of it, the test point P is surrounded by a very small
circle ¢, of the radius Rep, .The interior of this circle is v

and the exterior v__,
oo

o]

(58) Tvicsugaty g

The unit vector of the normal of this circle is go, it is

heading into the exterior of the circle c Big. 3¢

o’
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Fig. 3: The Gauss divergence theorem is extended over the

area v . and its boundary Co+
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The divergence of the vector t is treated by the Gauss diver-

gence theorem, [4] , (2] pg. S8.

(59) (( (V - £) dv = = gg.go.dco

VOO CO

If Py tends to zero, t tends to

(60) t—>=aq, - vl (Rpe)2 4 2
= pﬂ
with
(61) " sl
an

The amount of q, is finite and continuous, (48). The quantity 7%

is finite because we have a starshaped Earth. Thus, (60) turns
to

(62) t—= ;-7 . 2:R%

Hence, s

(63) |t| —>0, if p,— O

Further, the length of the circle o is equal to ZW'RpO.
Consequently, a look on the right hand side of (59) shows that
the amount of the integral on this side tends to zero as P i A

Po tends to zero. Thus, (59),

(68) (( (V1) dv = 0

v

(37), (57), and (64) yield
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(65) 37 8, + 8 |
with
1 2
(66) 8 —_— 2 - (ba, Aog,, ) S(p)-dv
1 8% R 2 o= R
v
2
1 z o) 9s(p)
CET) g 1) _ £ (= Adg . -dv.
2 8w R ([R] <’ap B°“> ?p
v

Obviously, the deductions from (45) to (67) involve some

simplifications. Of course, certain oblique derivations were
substituted by their horizontal derivations. But, these simp-
lifications will have a small effect on the quantity of the
term ¥, . These simplifications will not change the order

of the quantity of ¥, - In the next paragraph 5, the quan-
tity of the term ¥, comes out to be negligible, (71) (72)
(76) (77) (78). Thus, these simplifications in the mathe-
matical deductions from (45) through (67) will falsify the

term Wz

by negligible quantities, only. These simplifica-

tions in the deductions executed in order to reach (66) and
(67) have the same basing philosophy as & simplification in
the relation (33) which comes into being by the neglection
of the expression (35).

Consequently, the evaluations executed in the next para-
graph will yield reliable quantities for the crucial

term wi!'
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5. The quantity of the term by

At first, the amount of the term 61 is to be evaluated, (66).
The solution of the boundary value problem was ( [2], pg. 10,
eq. (3))

1
(68) T = m [dgT + C + cl(M)]-s(p)-dv - { Q(M)§

'

AgT are the free-air anomalies and C is the plane terrain
reduction of the gravity. The supplementary term { Q(M)} is
explained in [2] .

Comparing (66) and (68), it is evidenced that the expression

(69) TS -;- 2ty Any, )

has the character of a free-air anomaly. (69) and (54) lead to

2 2
14852 1 ,2| 9 2 1 ?
(70) - 272%(A, A9, ) = - = 2| —% + —5 - = tang=|l8g . .

2 2 Bou 2 ’Ox2 ,ayz R ox Bou
dx and dy is the line element in the north-south and in the
east-west direction, along the globe.
For the numerical evaluation of (70), the data of a realistic

. 1 i ) _ 50 mgal
example are fc;‘zmstance. 2 -21 km, R dgaou S TRy oC
. _ 9 _ 100 mgal

tan S Tip P Aoy, - oy A%oy = TG0 km - 100 km °

With these data, the expression (70) results to be equal to

(71) < 10 pgal

1,2
2 i (AZ AgBou)
Thus, 91 can be neglected generally.

Now, the amount of 8, is to be evaluated, (67). For a surface
element which has a relative great distance to the test point P,
an example with the following parameters is realistic:
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R.p =2000 km,—z— e .

R 6000
S e S s B gl
P pZ " DdRep Bou 190 km

dv = 100 km x 100 km

These data lead to the following impact exerted by one compart-
ment

[op N [

(72) |

In case, we have a number of N = 10 000 ot such compartments
globally distributed, the total impact will be 0.001 cm. This is
a negligible quantity.

But, for a surface element which lies in a close vicinity to the
test point P, it is convenient to adapt the formula (67) to this
special situation. For small values of p, the surface element
takes the form

(&75)) dv = e.-de-dA
where

(74) e = R.p,

and where A is the azimuth.

Considerung (61), the relation (67) takes the following shape
adapting it to the case where the p values are small,

s 2 |
(75) 82 -’4—1r— g(fr (5; AgBou}.e.deodA

With the following parameters,

?
1 _ 40 mgal
el iR 34 :19 g - S2smgal
20 Qe Bou 40 km
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=T, v€e €40 knm ,

2
(75) yields

1

(76) T8 |= 0.02 cm .

And, in a second example for 82, the data set

CJ
PR . & Agﬂou _ 4 mgal -
e 4 km

dA=Z,dge<dkm .
2

leads to

(77) i 0, |= 0.1 cm
G

The relations (72) (76) (77) show that the 92 value can be
neglected, always.
Summarizing (71) (72) (76) (77), (65) turns to

(4
(78) '1'2 £lous

DOI: https://doi.org/10.2312/zipe.1990.114

D ——,—,————




120

6. Lonclusions

Considering (33) and (78), (79) is obtained,

(79) y ¥ Wl :
For the computation of ¥ according to (32),

(80) vy = —I—S C,(M) .5(p)-dv L

4 TR

v
there exist two possibilities. The theoretical model of each of

these possibilities has the same precision; this is the main
result of the above developments, (78). The first possibility
depends on deflections for the potential M, (1) (2) (3),

Qp) y il OP2  tanw

(81) € (M) = 3
1 RD@¢ R-cosy 92 R o]

The second way depends on the Bouguer anomalies. The theory of
the second way has the same precision as the theory of the
first way. We have, (44),

2 (( (Agg, )y - (Agg. )
(82) ¢, (M) =-ZL« RN A, Ll T

2% e
w

The term C1 p of [2]( pg. 79, eq: (287)] can always be
neglected consequently because of (78).
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p. The Hotine version of the boundary value problem
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Summary

The boundary value problem of geodesy is considered. The surface
of the Earth is the boundary surface. The gravity disturbances
serve as the boundary values (Hotine problem). The theory is
developed for an error in the height anomalies of not more than

about 1 cm.

Zusammenfassung

Das Randwertproblem der Geoddsie wird betrachtet. Die Erdober-
fldche ist die Randfldche. Die Schwerestorungen sind die Rand-
werte (Hotine Problem).

Die Theorie wird entwickelt fiir einen Fehler in den Hdhenano-

malien von nicht mehr als etwa 1 cm.
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1. The preferences of the Hotine problem

The refined Stokes solution is well developed by [3], pg. 10,
eq. (3),

A e [AgT ET Cl(M)jl~S(p)'dl % 5 Q(M)%
4y

T is the perturbation potential in the test point P at the
surface of the Earth u, <1gT the free-air anomaly, C the plane
terrain reduction, Cl(M) is in close relation to the vertical
gradient of the refined Bouguer anomalies ( [3}, pg. 10, eq.
(4); see also the previous chapter), the expression S(p) is the
Stokes function depending on the spherical distance p to the
test point P, 1 represents the unit sphere, and, finally,

Q(M) is a relative small supplementary term depending on the
heights H and on the model potential M,

where B is the gravitational potential of the mountain masses
(with the standard density &= 2.67 g cm'}) situated above sea
level ( [3], pg. 46).

The free-air anomalies are obtained by

() dgy = (9)g - (Q’)Qt

where (g), is the real gravity at the running surface point Q,
and where (g’)Q is the standard gravity at the running
; ¢

telluroid point Q, perpendicular below Q, ([3], pg. 12, eq. (6));
Fig.gne
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Fig. 1. The telluroid t, the Earth’s surface u, the globe v,
the normal height h , and the height anomaly C ",

’
Now, the term (g )0 is in the fore. Considering the precision
t

of this term, we have with 1. order approximation, Fig. 1,

1 ] '
(&) (9 = 9hq. —;—-h
Q* is perpendicular below Q at the globe v having the radius
R. G is the global mean of the gravity, and h’ is the normal
height, Fig. 1. An error An' in the height has the following
impact on (gl)u 5

£ 4
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it R

or

!/
LS\ )

(6) é](g'),J ;

t
in (6), the left hand side in mgal, and zﬂh' on the right hand
side in meters. As long as the distance to the coast is not too
great, 4Jh' will not surmount some centimeters. Hence, the
left hand side of (6) will be negligible in this case.
But, in case of a great continent with levelling lines of 1000 km
length and more, the quantity of 4ﬂhl can reach one meter. By
(6) and (4), an error of 0.3 mgal in the free-air anomaly is the
result. In the midst of this continent, we may have a GPS-deter-
mined geocentric radius (rGPS) of the point Q with a nms error of

+ 0.1 meter; than, h’ can be obtained by (see Fig. 1) (for a
spherical Earth)

!
(7) h =|.‘GPS-R-¢

From satellite orbit perturbations and by the combination of

these satellite methods with terrestrial gravimetric methods,
the £ values are known within about + 2 meters, in a global
scale, [7]. If this error is denominated by A4¢ , (7) gives

1
(8) wprdty el
and with (6), in this case,

(9) elot) a0 s Frind
0, g

In case, 41{ is equal to + 2 m, the free-air anomalies are
falsified by + 0.6 mgal, (3) (6) (9). These considerations are

valid in case of the Stokes problem, introducing free-air ano-
malies.
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Now, we turn to the Hotine problem, ( [2], pg. 122, eq. (54)).
Here, the gravity disturbances dg figure instead of the free-air

anomalies.

' '
(10) dg -ﬂ=g-g=(g)q-(g)0.
Pr
’
In (10), both the gravity values g and g refer to the same sur-
face point Q. Computing (gl)Q instead of (g')Q , the normal
it

height h/ has to be replaced in (4) by, (Fig. 1),
L Janatlivue. bl gt

This fact has the advantage that H can be determined directly
from GPS measurements. From (7) and (11), (12) follows

(12 wils Tapeli'F ,

Lgpg is known from GPS within about + 0.1 meter. R is errorless
computed. Thus, H is known within about + 0.1 meter, too.
From (10) (11) (4) (6), (13) yields in aselfrexplanatory way

(13) A(dg) = 0.3 « A4H =

With AH = 0.1 meter, the gravity disturbances Jg are
falsified by 0.03 mgal only, whereas for the free-air anoma-
lies, the much more great value of 0.6 mgal was found, above.
This fact is of cardinal importance, comparing the Hotine
integral with the Stokes integral.

Considering a great continent with height determinations by
spirit levelling over distances of about 1000 km and more, a
strengthening and an improvement of the height values by TGps
values is more effective in case of the Hotine method ( dg
values) than in case of the Stokes method (AgT values).
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2. The identity of Green

The formula (1) leads to the height anomalies £ expressed in

terms of the free-air anomalies, with a theoretical error of not
more than about 0.01 meter. Now, it is intended to develop the
corresponding formula which expresses the t values by the gravity
disturbances(/ with a theoretical error of not more than about

0.01 m, too, (10)).The subsequent derivations will be carried

out under the influence of (3].

Referring to (3], pg. 16, eq. (17), the identity of Green gives
for the perturbation potential T at the test point P situated on
the surface of the Earth u, Fig. 2,

TSI (ool | D o LTCL SRRRRIE 1) N IRCAEES Batny Yy
27 e(P,Q) dn 2% dn e(P,Q)

u u

The meaning of the symbols of (14) is explained further to
Fig. 2.
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—_—
r———"::____-—- % *
P =——— e\- Y
0 00 ~
/ V
R R
Figr. 123
u : Surface of the Earth,
v : Mean (geocentric) globe in ses level, R is the
radius,
: Geocentric sphere, R + HP is the radius,
P : Fixed test point at the surface of the Earth u,
Q : A point on u, moving during the integrations which have
P as fixed test point,
Y : A point on u, moving during the integrations which have

Q as fixed test point,
P+, Q*, Y* : The vertical projections of the points P, Q, Y on

v,
Q= : The perpendicular projection of the point Q on w,
P : A point perpendicular above the test point P,
e : Straight distance between P and Q, (P and Q),

e , e,, €,o * Straight distance between P and Q**, resp. P* and
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Q*, resp. Q* and Y*,
HP’ : Height of P, Q,above the globe v,
4 : The difference of HQ minus HP’

The identity of Green of the shape of (14) refers to the real
surface of the Earth u. The oblique straight line e, the unit
normal vector n of the surface u, and the surface element du refer
to the oblique surface of the Earth u shaped by the topography.
All the two integrands on the right hand side of (14) are now
multiplied with and divided through the term cos (g’', n).

K(g/, n) is the angle defined by the positive directions of the
two vectors g’ and g, taken for points on the surface of the
Earth u. g’ =is the vector of the standard gravity heading into
the interior of the Earth. The vector p is heading into the in-
terior, too, Fig. 3.

1=

R+H

0.

Fig. 3. The vector of the standard gravity g' and the unit normal
vector n of the Earth’s surface u.
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Along these lines, (14) turns to

as) Ty =L | —1_., 2T, O e o
2% e(P,Q) “9n oos(g’,n)

c

? 1
Ly (e( 1UJ) g 1 * du . cos(g’,n) -
dn cos(g’,n)

Now, the terms in the integrands of (15) are decomposed into their
spherical parts and into the residual parts. The relations from
(16) through (21) come up,

t1e) 1 N Nl 1) - Ky +Kl' X
dn cos(g’,n) Or

(17) SRS L T VI L
e(P,0) e e’ fra: 2
1l 1 L ’

(lgdem =2 —2=— = . & 130 % K. « K, ..
dn cos(g’,n) dr ¥ 43

(19) du . cos(g',n) = dw + D(1.4) = Ky + K:

(20) dw (R + HP)2 cosy - dp ° dA .

(21) e

2 - (R + HP) sin p/2 .

The relations from (16) through (19) are inserted into (15).
Hence, neglecting negligible terms,

~ ~ !
(22 2N g [K2 RN P R Ky
u
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- T[K3K4+K3K4+K3 Kd]
u
The equations from (16) through (21) are combined with (22);

thus, putting

(23) D(2.1)

-gg BCA S N e g_l_‘.n(w.a) N

dr
w
~ g( T-—E2=.D(1.4) - T.D(1.3) . dw +
W
+ ( D(1.1) » D(1.2) °* dw ¥

the Green identity turns into the following shape

(28) 277 = ( [— /aT+D(1 1)]— < dw +
fa ’

r e
w

Al
Tl
5

L

From Fig. 4, the subsequent differential relation can be taken,

Q¢! :
(25) OB o /e x B
. sin p/ oL

(25) leads to
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1
0 e’ 1 y 1
4R’ 2.sin p/2

(26) = - — = -
?

Fig. 4. The derivation of the distance e* with regard to the
radius r.

In order to have denotations which are not too different from
the corresponding symbols of [3], pg. 29, we put

(27) F(T)H = 0(2.1) .

Putting

91
r

(28) o = - <SPG

(29) f=-Lrny, ,

rig
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(31Dt

"
=
+
=9
-

(32) dw=R'2 cosy « dy -dd ,

(33) dw = R'? sinp + dp « dA ,

(38) dl = cosp -dy -dAd

(24) turns to

oL
(35) D”l' 2 ST b T—1—d1+[3—}
17 sin p/2 8% sin p/2 R
1

—
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3. The Hotine integral

The continuous functions o, ﬂ, and 7~describe values which are
distributed along the surface of the Earth u, (28) (29) (30),

(36) o = ot(g,2) :
(}7) ﬂ:ﬂ(?’l) »
(38) p=7(p,2) .

Consequently, these functions can be developed in surface spheri-
cal harmonics,

so n
(39) =xii= Z Z %1.nmm Bnim (‘?”2) +
n =0 m=0

ps uZm.Msmm(y'A) } 4

®y .m and e, o are the Stokes constants. R (¢ ,A ) and

Sn.m (lp,R') are the well-known normalized spherical harmonics

of the degree n and of the order m, [3] P greliBs

0 ; N¥Fi or m¥k
or both

-e

(40) g( Rym (p A )Ry Cp,2)eav =

v AFRZ; n=i, m=k

for Sn.m ( P> A), a similar relation is valid.

(41) dv = R%.cosp-dg- dA = RZ.dl .

As usual, (39) is now written in the following abbreviating form
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co
(42) & = > ay- Y, (9, )
n=o
Further, (37) turns to
oo
p
(83) A A Gp 1) )
n=0

oo

n=0

In (35), the inverse of sin p/2 appears also. Acrording to the
decomposition formula of the spherical harmonics, this inverse
has the following development, [3] [5], (g g 2

O

(45) —— = :

sin p/2 2n+1
n=0

Yo Gpa Ay, VI

(42) (43) (44) (45) are inserted into (35). Hence, the equation
(46) is obtained

o= oo
(46) § dn-Yn(»f,).)P,=i—;rZ an2 zl-Yn (-p,))P,-AT.“ -
n=0 n=0 g
o
1
- = d o= ,2 DL - S b
ew;: e T '
oo
+E o Yo (P’R)P* A
n=0

The orthogonalityrelations for (1 (sp,l) are, (40),
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o, if i3l
(a7) g Yi (g, 2)0Y5 Cp,A)-dl= :
: AY , it i=)
(46) and (47) give
g O T a“'2nf1 —2n_11_"jn e

Thus,

(49) 0'="28..# (2n+1)~cn Sl ) ok

(=20, SIS T o

In (49), the Stokes constants dn have the character of unknown
values, whereas the constants a, and Ch have to be considered
as given quantities. For the computation of D(1.1) in(28)and of
F(T)H in(29),an approximate knowledge of T suffices. This re-
quirement is met since the height anomalies

(49a) C = (l'—J

g e
are known within some meters, considering their global distri-
bution, [7]. We are now confronted with the problem to find a
closed analytical relation by which the function developed in
terms of the dn values, (44), is expressed by the functions
developed in terms of the a, and c_ values, (42) (43), observing
(49). For a moment, the relation (50)(here1narter) is supposed
to be the solution of the system (49). Then, immediately after-
wards, this supposition is verified,

B A
(50) =1—S§[u-l—JH Yol ik
() 4% 2 R' fp R’

1
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H(p) is the Hotine function, ( [2], pg. 114, eq. (23);

(6] pg. 311).
oo

2n_+1_-Pn (cos p) =
}:: n+1

n=o0

(51) H(p)

cosec p/2 - 1n (1 + cosec p/2)

The Hotine function comprises the spherical harmonics of all
degrees, the degrees n=0 and n=1 included. But, the Stokes
function is free of these degrees of the numbers n=0 and n=1.

As to the verification of (50), the Legendre functions
s (cos p) of (51) have the following expression, [3] pg. 35,
C5URpgEaBA

P (cos p) = —2 isF R (pA) , - R (e, 1)
n d i Z;% n.m ' X n.m Q* it

* So.m (PA) -5, g @,l)m J . (52)

(52) is inserted into (51). With the here preferred manner of
writing, the equation (53) is obtained,

o
H(p)=z L G 2~ ek x 53
TR N

n=0

The equations (42) (43) (44) and (53) are introduced into (50),
the subsequent equation follows

oo [e3=) o o0
(58) g d -y = 2 iy R
Hiasn) ¥ n+l B 5% T+ T 'n *) Cn'¥y
n=0 =

n=0 n
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(54) and (47) lead to
(55) 0 = 2a + (2n+1)-cn - 2(n+1)-dn

(55) corroborates (49). Thus, (50) is right. (28) (29) (30) are
inserted into (50) and the detailed shape of the solution is

found,
! F(T) FCT)
(56) T =il 2L, D;(1.1) - I _-H H(p).dl + H .
Y] or AT R! 2%
1

Comparing (56) with (28), the reader will realize that in (56)
the term Dy (1.1) has now the suffix T. This suffix is useful
in the further developments, it stresses the fact that UT (C151)
refers to the pertubation potential T. Later on, in the formula
for DT (1.1), T will be replaced by another potential.
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4. The superposition with the visible mountain masses

In (56), the term DT (1.1) is rather rugged, even in low moun-

tains, (see (1] , pg. 14: Fig. 2 and eq. (77); the term KG( AﬂgT )
is equal to DT (1.1)). This term is smoothed now by the

superposition with the visible mountain masses. Here, these

masses have the standard density & - 2.65 g cm-3. These masses

have the following gravitational potential 8, f)] pg. 46,

(51) 8B=148 Sg( é-dv .

v

f is the gravitational constant,V is the volume element, and e
represents the straight distance between the running volume

element dV and the test point P at the surface of the Earth u.
Thus, (57) turns to

-rz-sin p e+ dp « dA .

i |—

v 2% R+H
(58) Bsz93 g
p=0 A=0 r=R

The potential M is introduced by

(59) M

n
—_

[}
@

In (56), T can be substituted by M,

' F(M) F(M)
(60) M =R _9_M+0M iy e TG R i
AT 2r 4% R 2%
1

The relation (56) is vaelid for M,just as for T.

In the mathematical developments in [3] from pg. 52 through 61,
or from eq. (176) through (221), it is allowed to substitute the
function S(p) by H(p), obviously. In consideration of these
circumstances, the Gauss integral theorem turns the integral
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61y 3-=% §DM(1'.1) H(p)-dl
17'

>

1

appearing in (60), to

(62) Jn—ﬁr C (M) «H(P). dw -
A
w
S| 2 GH(p) 1 QMI,
4R’ 2 dap R’ Qp
w
(63) 7= Hy - H :
2

(64) dw = R “.dl ’
dl is the surface element of the unit sphere.

(65) C1(M) =G Z o Q(ul) uz) ]

’aul ’aUZ t
(65a)  a(uy, u,) = + e T
- RYQ¢  R'cos ' <A R’ 2

G is the global mean gravity, oy and H, are the components of
the deflection of the vertical in the potential field M + U,
where U is the standard potential. As to details about CI(M),
see the previous chapter C of the publication in hand, and
further [3], from eq. (176) through eq. (221), replacing S(p)
by H(p) in a self-explanatory way. CI(M) can be expressed in
terms of the Bouguer anomalies. (61)(62) and (65) are inserted
into (60), the equation (66) is obtained,

(66) Mm=—L ([|- 2%, com[Hp) -aw+ gy 0,

anR' dr
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with
F(M) F(M)y
61 @, 0 = - =% HoH(p) dw v —
: anR aTR 20

=

1 g 7 dH( )1_.@. - dw
S — gl elos - !
dp R Op
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5. The retransformation back to the potential T

Now, the way back to the perturbation potential T has to be gone.
(59) is inserted into (66), yielding

(68) T-8=—1 ([[- 2L 28, com|Hp)aw+ @y M .
4R’ L. - )

w

Bp is the potential B at the test point P, (58), Fig. 2; and

dr

point Q. (L; + L,)p, is the potential of the mountain masses
condensed at the globe v, it is taken at the point P%*, Fig. 2.
(L3 + Ld)u* is the corresponding quantity for the radial deri-
vative of B, taken at the point Q*. Thus, [3] pg. 70,

fég-] is the radial derivative of B at the running surface
Q

(69) BP =(L1 + LZ)P, + [8] :

il 8 1"
(70) —| = (Lg + Ly)ay + |—
[’(‘)r ]Q ? il ':’ar]

If we have a spherical boundary surface v with radius R, and
if we have a harmonic potential X exterior of v, in this case,
the Hotine integral gives

(10a)  x = - =L (| 2X.4cp)-av,

4R Ar
v

(see [6], pg. 311; [2], pg. 114).
Consequently, the Helmert condensation method gives rigorously

1
(71) (L, + LZ)P, - ;;;— (Ly + Lydge + H(p).dv ,
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or
(T2 L), ¥t (Le + L, )naHC )-dw+B-E—P‘
1 2 3 aqe-HiP B
W
with
H
) LlaveLlogwc1-=L) .
R R R
Further,
(78) 1 KAy TRy S8R gy Wy +
oy At 47R Dr
w \'}
H
+ T .—P n
R

On the left hand side of (68), we have with (69)
(75 Tt Lz)P, - [B]

Considering (74) (72) (70), on the right hand side of (68)

appears the subsequent expression with always tolerable appro-
ximations

H
(76) _1_ "- ﬂ H(p)-dv + T.—P +
L or R
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+ 2 C (M) -H(p)-dv + @ | (M.
47R

v

According to (68), (75) is equal to (76). Thus, accounting for
(10) (72),

(77) (S 5 ég + C+ Cq(M) | H(p)-dv + Qy M)

L
v

with the topographical supplement
H H )2
(78) Qy (M) = Ry (M) + M E-z + [B] Qs fS (—-’-;Q] H(p)-dv -

v

cfg are the gravity disturbances, C is the plane terrain reduction
of the gravity, (see [1], from pg. 36 through 39),

Ar

(719 [Qﬁ] =c+ dc-2 [8]",
R
~ HQ
(80) dc*d,c-aveu, 2 |
4 Q R
The third term on the right hand side of (79) will not surmount

10 pgal, ( [1],pg. 36).
Hence

”n H
(81) [ﬂ] Yc+aveS Hu—lJ
Dr R

DOI: https://doi.org/10.2312/zipe.1990.114



147

6. The topographical supplements for test points in high moun-
tains

The equation (77) describes the perturbation potential T in terms
of the gravity disturbances Jg; the theoretical error of (77)
will be smaller than about 1 cm in the height anomalies &, if
the computations will be executed carefully. (77) is of uni-
versal applicability, may the test point P be situated in high
mountains, in the lowlands, or on the oceans.

As to the terms on the right hand side of (77), after CI(M) was
discussed thoroughly in the last chapter, the description of the
way how to reach Q (M) is left over for the author. (78) is
the formula for QH(M). The computation of the second term on

the right hand side of (78) happens with (58) and (59) by means
of

¥ 2% R+H
H H H
(82) MLy .32 1:2sinp.dp - oA .
Ay R R 8
p=0 A=0 r=R

[8]" is the third term on the right hand side of (78). The
formula for.[B]" is developed in [1] pg. 36 and further in
[ZJ'from page 25 through page 33. In nearly all cases, (if G is
the global mean gravity), the amount of [B]"/G can be forgotten
because it is smaller than 1 cm, an exception perhaps in moun-
tains crossable by roped party only. The computation of the
fourth term on the right hand side of (78) is simple, it re-
quires no comment. But, the computation of the first term on
the right hand side of (78), i.e. QH.I (M), needs a detailed
description. This term has the formula (67), depending on
F(M)H. F(M)H is defined by (27), exchanging T by M,

(83) F(M)H = DM(Z.I) :

From the developments in [}], from eq. (74) through eq. (78),
or from the eq. (225) through (225h), the subsequent expression
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yields,
8

(88) F(M)H =1, (M) + fz(M)H +§ fi(M)
i=3

The individual terms on the right hand side of (84) are as

follows,
(85) f,(M) = Ao TR ML Bl gy
1 g( MR{ Y*yz el"
W
(86) T (M) o ([ NZP v ieny B AN g o
S b

87) t3(M) = g

(88)  f,(M) = - O, 1, (cos p/2)* by-dw
RO R sin p
w
(89) £ (M) = - g(dg —[“2 cde’ . da
? Myey .
(90) £ (M) = [ 22 + va|ode’ - da
6 : 2t o ’
OM
(91)  f,(M) = q o (v - by)-de's aa

(92) !B(M) = - gg GZ - ‘»(x'-pl, x"P2)'de' dA
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A is the azimuth, counted clockwise. In the expressions for 1’1,
12, f3, f“, the integrations cover whole the globe. But, in the
integrals for fs, 1’6, 17, and fa, being of interest in case of
high mountain test points only, the integration has to be exten-
ded over the surroundings of the test point P only, up to a
distance of not more than about 30 km or 100 km. dgM is equal
to the Bouguer anomaly, in sufficient approximation, [1] pg. 48.

(922) 4oy = AgBouguer

Calculating QH.I(M) by (67) and (84), the term IQ(M) appearing in
1

2_171_?“)}{ by (38)(1n the second expression on the right hand side of

(67) ) should be combined with the third term on the right hand

side of (67) . Roth these terms should be melted into one another,

which will bring a great relief to the computations.

The above equations contain the following abbreviations, [3)

pg. 30 and 31,

(93) x = 2.
' 1]

(98) ' 1+ x2 L
(95) y? =1 4 x?

]
(96) x* = |[x2 ., _&X 1
R! x! + (x')]‘/2 4

97) v, ® & (x + arsinh x)
2

(98) v2=-5+arsinhx+(sinp/2)|:1-l+2y] )
y y

(-00 <x< +oo, &' < 1000 km),
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3]
(99) V}=1*lv-2-*lx2 'l*(l) ¥
2 2y 2 y y
3 3
+ xz-(l) . sinp/2 + L x4 (l)
y 2 Y,
(-0o<x< +00, e! <1000 km),
(100) b, = arsinh x "
*
(101) by = XX 3

Some of the above expressions have the following series develop-

ments valid for small values of x,

(101a) x? <<1 .

(3] eq. (A 327a) gives

(o) vy = x - L3 .ol ,
12

[3] eq. (A 334) gives

(101c) e 23 0

[3] eq. (A 345) gives

(101d) iz =Rt

[3] eq. (A 320) gives

(101e) b7=x-lx3,_ Z A
6

[3] eq. (84) gives

~
=

(101¢) bll

4+ = o0

LU [
x
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The universal formula (77),(with (78) and the expressions from
(84) through (101)),should have an exclusive field of application,
only. This sole and exclusive field of application will be the
area of test points situated in high mountains. In all the other
cases (and this are by far the most cases having test points in
low mountains, in the lowlands, and on the oceans),the applica-
tion of (85) through (92) will be eccentric. In these cases,

the computation by (85) through (92) means to be a procedure
that does go too far, because in the lowlands many parts of
(85) through (92) are very very small; they can be cancelled
saving much work.

Hence, it is convenient to adapt the formulas (77), (78), (84)
through (101) to the case where the test points are situated

in the lowlands, in the Mittelgebirge, or on the oceans.
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7. The topographical supplements for test points in the lowlands

The transition from the universal formula (77) to this special
lowland formula is carried out by putting the higher powers of
x, (93), equal to zero, i.e. x2, x>, ..., .By this transition,

x
the term ‘ZH(M) of the relations (77) (78) turns to QH(M).
Consequently, the lowland formula for T has the following shape
(102),

(102) 7T = -1 g [ég (B Cl(M)J'H(p)wiv + Q;(M) :

47R
v

In the lowland version (102), in the term Q;(M), the expression
[B]" figuring yet in the universal expression (78) can be ne-
glected, [1] pg. 35 and 36, [2] from pg. 18 through pg. 33.
Thus,

* » HP HQ 2
(103) QuM) = QL (M) + M=+ £9 -—) - H(p)-dv .
R R

v

With (67), Q; 1(M) has the subsequent expression

* < 1 F’(M)H 1 K
(108) Qy M) = - ey gS o H(p)-dw + 2—'|7F M)y, -
w
= 1 dH(p) 1 OM
- o e s (] W
a7 (RY) ¢ g dgp R p
w

The expression for F’(M)H of (104) is obtained modifying the
formulas from (84) through (92) by putting the terms xz, x),...

equal to zero. Thus, the terms from (89) through (92) can be
cancelled. In (B85), we have the transition

(105) 2 - ﬁl - 3
y+y 2 !
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and in (86) and (87), inserting (101lb),

l 2 1 1 74 B
(106) £= 3L T —_ 4+ v, - == Jom 0 =—
R y+y e 1R R e

A similar modification happens with (88) accounting for (10le).

Thus, the equations from (84) to (92) turn to the following
lowland version

(107)  Fe(M), = E £ (M), ,
* Z 3
(108) fl(H)H = gg AgM ;;;—-dw 3

Wz
(109)  £o(M) LA e
2 H R R

o

"
R
—

(110) f;(M)H = -dw

"
I
S am )

M _Z _cos p/2
R-'apm (sin p/2)°

(111) e, * 2:R-sin p/2

With (92a), and with [1] pg. 48, the term A gy, can be replaced
by the Bouguer anomalies of the definition of [5] from pg. 130
through 133, plane terrain correction of the gravity is applied
calculating the Bouguer anomalies.

(112) AQM s AgBouguer

Inserting the equations from (107) through (110) into (IOA)Jthe
following lowland version of Q; 1(M) is obtained; [3] eq.
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(230) and (272) and (273); and [4], eq. (29) through (33), and
eq. (37).

» _ 1 F*(M), « H(p)-dw +
(21830 QH.I(M) e g( H

LNk " oM ;.| _cos p/z7 . 2 QD) [ 4.
R-Op (sin p/2) dp
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8. The application of the gravimetrically obtained height ano-

malies for the interpolation between the GPS derived height
anomalies

Hence, by (102) (103) and (113), the explicit formulas of the
lowland version is obtained. It is the lowland version for the
computation of the T values, or for the calculation of the

height anomalies : 7

(118) £ = (l-) -

[}
AL

in terms of the gravity disturbances ég.

As to the practical application of (102), (or the high mountain
version (77)), in many cases, this formula is used for the
interpolation of the & values between the CGPS values ob-
tained from the GPS derived geocentric radii, rgpg, (7),

[
(115) &,’GPS= feos - R -h & Y(E)

¥(&) is a correction for the flattening of the Earth.
The more detailed formulation of (115) is

(116) :GPS ShFges \TAlpis My +a "

Te is the radius of the mean Earth ellipsoid E for the geocen-
tric latitude ¢ of the GPS station on the surface of the Earth,
(more precise: The geocentric latitude of the surface GPS
station after its vertical projection down to the ellipsoid)

1 1 1
a1n Leg =ap 11 - 'E e% 51"2‘?* % eé (- sinz;p + -i— sinasy) .

ap resp. bE is the semi-major axis (resp. semi-minor axis) of
the mean Earth ellipsoid. ec is defined by
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gy
s e i
B ’
£

(117) can be found in the text books.

h' is the normal height, in (116). The correction term I' accoun-
ting for the flattening of the ellipsoid can be taken from:
Arnold, K.; Das Geoid aus Beobachtungen der Satellitenaltimetrie.
Ver6ff. Zentralinst. Physik d. Erde, Nr. 7, Potsdam, 1972, pg.
19, eq. (98).

3

(119) T = (h' &) sin? 29

4
€g

@ =

Teps

In the braces of (119), an approximative value of [ is
required merely.

As long as the distances between the ZbPS values are not more
than about 500 km, the first and the third term on the right
hand side of (103) will vary as a linear function between these
(GPS values, probably. Thus, the first and the third term on
the right hand side of (103) will, probably, be absorbed by the
procedure of the linear interpolation. The linear variations of
these two terms between the ZhPS values will be taken into
account automatically by the procedure of the interpolation.
Thus, in the lowlands, for this interpolation procedure wor-
king between the points with ZGPS values, it will possibly
suffice to calculate the gravimetrical I’ values simply by the
subsequent formula (120), along the lines between two GPS stations,

AR g’ R

H
(120) 8 dved g( [Jg + EM, Cl(M)J H(p) dv + M =B

v

But, only in the lowlands, the form (120) can be convenient
to simplify the interpolation of the gravimetrically obtained
l values between the GPS derived £ values. In the high
mountains, for this interpolation procedure, we have to take
the &' values of (77) and (78). The fourth term of (78) will
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be linear over ranges of 500 km, probably. Thus, it is neglec-
ted here. The following formula can suffice for the interpola-
tion of the £ values, possibly, in high mountains,

’

(121) 1 Sg+C+ Cl(M) H(p) dv +
67Rg'

v

H ”"
sy (M) + M ;R + [e]

For the interpolation of the L‘ values over ranges of about

500 km, in (121), QH.I(M) is computed by (67). Here, in the
expression for F(M)H, the terms linear over 500 km can be split
off. Thus, in context with the relation (121), we can put,(in (67)),
possibly, the expression (122) instead of F(M)H , approximate-
1y, for the interpolation procedure over 500 km ranges,(84¥107),

(122) [ HCOEENCOMN ] +
. [:2«4)“ ERCOEEEMON :| .

+ [fA(M) - fS(M)H ] +

v tg(M) + £ (M) & £o(M) + fB(M) i

(122) 18 quasi the expression of F(M)H minus F*(M)H ,(122) is
free of the constituents which variate linearly over ranges
not longer than about 500 km. Sure, the expressions (120)

(121) (122) come into question only within this above dis-
cussed interpolation procedure,( see (84) (107) ),
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Summary

Recent crustal movements give rise to changes of the heights,

of the gravity values, and of the gravity potential. The verti-
cal derivative of this deformation potential is expressed in
terms of the changes of the height and of the gravity. This ver-
tical derivative depends on the density changes which accompany
the recent crustal movements. These density changes consist of
two parts: The first part is a surface layer of the real density
and of a thickness which is equal to the height changes. Thus,
the first part has beforehand given parameters. The second part
consists of the density changes in the interior of the Earth.
Along these lines, it is possible to find an empirically given
signal function for these density changes in the interior. These
density changes can be found in terms of the quantities of this
signal function along the lines of the gravity methods of the
geophysical prospecting.

Zusammenfassung

Rezente Erdkrustenbewegungen reflektieren in Anderungen der
Hohen, der Schwerewerte und des Schwerepotentials. Die vertikale
Ableitung dieses Deformationspotentials kann dargestellt werden
als Funktion von den Anderungen der Hohe und der Schwere. Anderer-
seits kann diese vertikale Ableitung dargestellt werden als Funk-
tion von den Oichtedanderungen im Erdinnern, die im Zuge der re-
zenten Erdkrustenbewegungen entstehen. Diese Dichtednderungen be-
stehen aus 2 Teilen. Der erste Teil ist eine Schicht an der Erd-
oberflache; sie hat die Dichte des Oberflachengesteins und ihre
Machtigkeit ergibt sich aus den Hohendanderungen. Der zweite Teil
besteht aus den Dichtedanderungen im Erdinneren. Fir diese Dichte-
anderungen kann eine Signalfunktion angegeben werden, die empi-
risch gegeben ist. Mit Hilfe der Methoden der gravimetrischen
Lagerstattenforschung kdnnen diese Dichtednderungen im Erdinne-
ren als Funktion von den Werten dieser Signalfunktion gefunden
werden.
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1. Introduction

In many test-areas and along many test-lines, the changes of the
heights and of the gravity values caused by recent crustal move-
ments are detected by levellings and by gravity measurements.

As to the geophysical interpretation of these measurements, it
is intended here to develop a comprehensive and satisfactory
theory. Till now, the height changes are discussed, separately.
In other cases, the gravity changes are discussed separately
accounting for the reduction on account of the height changes
(applying the free-air gradient or the free-air gradient supple-
mented by the effect of the Bouguer plate). Then, the reduced

or the non-reduced gravity values are divided through the

height changes, and,finally,the thus obtained quotient is com-
puted. But in the literature, there is not a satisfactory quan-
titative discussion about the value of this quotient which is
influenced by the accompanying density changes in the interior

of the Earth. The latter question is the subject here to be
treated.

2. Theoretical foundations

Along the surface of the Earth 6, the perturbation potential T
depends on the free-air gravity anomalie54dgT by the following
expression, K. Arnold (1986)(1987b)(1989a,b), ( lowland version )

W T=qg | ragpeie, 07 s ave R0} .
v

The braces denote that the harmonics of zero and first degree
are split off. In (1), we have (for test points in the lowlands)

3 H Hy 28H
(2) (M):MRE*F}’R ﬁ[ﬂ’fgoHuﬂgg_zﬂj S(y) dv +
v R
1 3721 1 MZ1
*T.’-“AQMT'R'e—O'dV* H'R"R"é:dv-
1 oM cos ¥ dS(¥)
—_— Y4 2 d
BYR2 f LA e 5’ Iy 7/ O
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v denominates the globe with the radius R. H, resp. HQ is the
height of the test point P resp. of the moving integration point
Q. f is the gravitational constant, %o is the standard density

( RS 2.67 g cm-j). S(¥) is the Stokes function, ¥ the spherical
distance. We have

(3)Z=HQ-HP,
(a) e, = 2R sin % .
(5) BMS=5B 1 -T ',
(6) dg, = -2 _2y

AgM can be replaced by the'Bouguer anomaly in sufficient
approximation, (see (7),d4g % AEM).

B is the potential of the mountain masses (of standard density
90) situated above the surface of the globe v. C is the plane
terrain reduction of the gravity; Cl(M) has the following rela-

tion, K. Arnold (1989a,b),

ag"), - (4g")
(M M ¥ -7 ff 5 Q gv;

¢

(see also chapter C of this volume).

Ag. is the Bouguer anomaly which is described by W.A.Heiskanen
and H. Moritz (1967). The relation (1) is valid as long as the
test-point P is not situated in high mountains, K. Arnold
(1989a).

By the recent crustal movements which happen during the epoch j
situated between the time values tl and t2, the T value changes
by
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The shifts of the telluroid ¢+ and of the Earth's
surface e ; the changes of the normal gravity T
of the observed gravity g, and of the normal
heights hn . The epoch covers the time from
t to t

1 LN

Thus, at the beginning of the here considered epoch o) , at

the time t1 , the perturbation potential T at the Earth's
surface can be computed in terms of the free-air anomalies LJgT
which are located on this surface and which are measured at
this time t, (GEier, (zﬂgT )1 ). This computation happens by
means of the following universal formula (9) which can be re-
garded as the solution of the geodetic boundary value problem.
The formula (9) is valid for test points in the lowlands, in
the Mittelgebirge, and in the high mountains, too.
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(9 (1) =y ~0 gg w, - S(y)-dl +{Q(M)I’t1 .
)l

(9a) «, = [AgT + C o+ Cy (M) ]t1 :

( see K.Arnold (1989a), pg. 10, eq. (3), the suffix 1 of C,(M)
does not refer to the time t, ).

In (9), the parentheses {} denote that the harmonics of O th
and first degree are split off. R is the radius of the globe
situated in sea level, C is the plane terrain reduction of the
gravity, 01(M) results from the vertical gradient of the re-
fined Bouguer anomalies by eq.(4) on pg. 1o of K.Arnold (1989a).
S(yw) 1is the Stokes function, v 1is the spherical distance to
the test point, 1 is the unit sphere. The term {Q(M)}t is
given by eq.(268) and (224) on page 75 and 62 of

K.Arnold (1989a). These equations represent the universal for-
mula for G2 (M) which is valid for test points in high moun-
tains , too.

In case, the test point is situated in low mountains or in the
lowlands or on the oceans, the universal supplementary term
{Q(M)l’can be replaced by the simple term { (M)} which

can be computed more easily than the universal version {Q(M)
using eq. (272) (273) (230) (266) given on pg. 76, 66, and

74 of K.Arnold (1989a).

Hence, the transformation from the one versjon to the other
version can be described by ( see (1) ),

¥
(9v) @ — Qo )

These above cited relations give

(o) Q- L +w® L [5] <5 S(cz-sw)-cu.

1
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Hp 1s the height of the test point, [B]" can be neglected
in nearly all cases ( see the first 3 lines of pg. 76 of
K.Arnold (1989a)).C, comes from eq. 266 of K.Arnold (198%a).

In the above relation (10), we have ( K.Arnold (1989a) eq. (230)),
neglecting relative errors of the order of HP/ R

* 3 *
(1) Q. (M) = ——— F (M) e S(y)+ a1 +
. (4%)2 SS .
1
2
R 2 8 1
e
2% R 2 e
o
1
B N 2 1
A iy em e e o Al -
2w R R e,
1
1 M
_ e ZM3é °‘2-d1 0
8 R ’ay
1
Here is
cos y/ 2 das
(11a) X, = o + 8

_— 2
(sin y/2)2 dy

.

X%

F (M) comes from eq. (227) of K.Arnold (1989a). The quantity
of the right hand side of (11) will be dominated by the 2nd,
3rd and 4th term on this side. Agm can be replaced by the
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Bouguer anomalies, in good approximation, ( see K.Arnold (1986)
PE. 48 ). Z is the height difference relative to the test point.
Further,

(12) e, = 2. R . siny/2 .

The spatial position of a point in the exterior of the body of

the Earth is given by the placement vector x . A point speci-
=

ally situated on the surface of the Earth has the placement

vector X .,

Hence, considering the placement of a certain point on the sur-
face of the Earth at the beginning of the epoch ,?1 , the po-
tential T, ( at the time t, ) on the left hand side of (9)
can be represented by

(13) 7, (F,) ;

here,the two suffixes 1 refer to the time t1 o

For the end of the epoch, at the time t2 , the perturbation
potential T has the analogous expression

(14) B,(E,) ;

Here, X and X5 refer to the same physical particle, the

=1
first vector refers to the time t1 and the second one to the
time t, . The shift from ?1 to 32 happens by the re-

cent crustal movements. (9) and (14) lead to

- R
G115 (T)t2 = T, = T,(x) "47,,.(("‘3‘3("’)"11 +§Q(M)}t
1

2

(15a) x = |dg, + ¢ + ¢, (M) a2
3 i 1 &
2
Further, for a fixed spatial position x which is not shifted by
the recent crustal movements, we have for the time ¢t
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(16) T,(x) = [T(g):lt1 .
Similarly, for the time t2 , in the same fixed spatial point x,
(1) Ty(x) = [ (x) ]tz .

Consequently, the change the potential T undergoes at the fixed
point x during the epoch between t1 and t2 has the subse-
quent relation

(18) DD = B - Ty

D(J_!) is a harmonic potential function in the exterior of the
body of the Earth, likewise as 7, x) and T,( x). D( %)
fulfills the Laplace differential equation.

Now, the solution of the geodetic boundary value problem

( which is represented by(1)( 9and (15) ) 1is to be applied
to the potential D(x) , (18).

In this context, and %o be as precise as possible, we introduce
now the surface ZQ , Which is defined in the following

way :

In case, the new geocentric radius of the surface of the Earth
( for the time t2 ) is greater than the o0ld one ( for the

time t, D) A

(19) e T e

on this condition , the radius T describes the surface

_J_c'o . But, in case we have

(20) g s ¢ Ty é

on this condition, even the old radius T, describes the

surface Yo

With these peculiar definitions, the space exterior to the
surface described by the vector '__f'o is free of masses. The
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difference potential D is a harmonic function in the exterior
of the surface Zo . D fulfills the Laplace differential equa-
tion in the exterior of. ?o 4

Thus, it is possible to understand the potential D as a func-
tion which can be introduced into the solution of the boun-
dary value problem, likewise as T1(J=c) and T2(g__t) , (9) (15).
However, here we should observe the fact that the radial deri-
vative of D ( i.e. @®D/Dr ) has no correlation with the
topographical heights. This fact is in clear contrast to the
peculiarities of the free-air anomalies AgT ( appearing
in (9) and (15) )which have a distinct correlation with the
heights. Hence, applying the solution of the boundary value
problem to the potential D, it is not necessary to work with
the superposition of the potential T and the potential B of
the visible mountain masses, (5). This superposition procedure
transforms the rugged term Dp(1.1) or C1(T) or KG(dgqp)
into the smoothed term C + C,(M) ; (9) (15) , ( see K.Armold
(1989a) chapters 5, 7, and 8 , and K.Arnold (1986) pg. 14 ).
This discussed ruggedness of the free-air anomalies(and ofthese
3 expressions depending on them) comes into being by these
correlations with the height.
Therefore, we can desist from an application of the formu-
las of the type of (9) or (15). Here, we can prefer the re-
lations developed in K.Arnold (1989a), eq. (114), pg. 36.
With D as a substitute for T, we obtain(DT(1.1) —>Dt(1.1) )

2 R' {F(D)}
(21) Dbt = D(x.) = —_— « S . dl :
v} {D(z )} == S %y - Sy il
1
(218) o A Bt o % !
a = + 1. + .
4 gD D 4171 Rl ’
2D 2
(22) dg AP - — D :
D /ar r
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For the second term in the integral of (21), the following deve-
lopment is known, K.Arnold (1989a) from pg. 52 through pg. 61.

R' *
(22a) —_— gg DD(1.1) . Sky) - dl =
4~

n

al

1
= C,(D) » S(y)* dw =
4"1’R' g( 1 Y

w

1 ds(y) 1 ©D
- — ] — e — ¢ dW ,
47 (R")2 g ay R' vy

The symbol w denotes the globe with the radius R'

14

(22b) R + H = R

H is the height above the globe the surface of which is situ-

ated in sea level. Z is the height difference : Running point
height minus test point height.

Neglecting relative errors of the order of

H

R

(22¢)

and inserting (22a) into (21), the following relation for
the difference potential D yields

(22a) {p} = {D(F)} = % Sgus s -a1 + Y,
1

here is

3 F(D)

Doﬁﬁps:ﬁdoi.érgﬂ0.53129ﬁ68)|996.1144—7;- ks '
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and

V — o — 4 —— +

dvy R Oy

1 adsy) 1 D F(D) }
(22e) Y= - —:g( {—2—17"

C,(D) 1is explained by eq. (4) on pg. 10 of K.Arnold (1989a) ,

R 1
(22£) C,(D) ¥ - 2= — - &g -dl

~xg = (dgy)y - (g '
as to AgD , see eq. (23g) which follows later in this
chapter , ( see also Fig,2 on pg. 15 of K.Arnold (1989a) ,
see also chapter C of this volume in hand ).
In most cases, the test point of (22d) for which D is to be com-
puted, this point is situated in the low mountain areas or
in the lowlands, but not in the high mountain ranges. In this
case, not the universal expression for F(D) is recommanded to
be applied. This universal formula is given by K.Arnold (1989a)
pg. 63, from eq. (225) through (225h), replacing M by D .
In case, the test point is not situated in high mountains, the
much more simple form F (D) should be preferred in place of
F(D) .
Thus, in (22d) and (22e),we substitute

FE) < ey B (D

Referring to the relations from eq. (227) through (228)

on pg. 65 of K.Arnold (1989a) , the following equation(22g)

is found; it expresses the lowland term F (D) by three

global integrals. Thus, FXRD) is a very smoothed function.

The subsequent equation (22g) expresses F¥(D) in terms of
zﬂgD , of the potential D and its radial derivative; in

this context, approximative values for 493D , for D and

its radial derivative are required in the integrands on the

right hand side of (22g) , only. AﬂED is obtained by (23g).
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¥ Z 3 1
(22g) BN (D) Agy — »— + — « AW+
R 2 €o
w
D Z 1
+ —  — . dw a2
g R R N
w
DD Z cos W/ 2
- - ) . 5 o« dw .
ROv 4R (siny/2)
w

Now, it is necessary to speak of the anomaly Agp (22

which appears in the integrand of the relation (22d). In the
first term on the right hand side of (22), the derivative

D D/Dr appears. It is the radial derivative of the poten-
tial D(x) taken for the points at the surface described by

§° g (183 (19) (20). The value D stands for the change of the
perturbation potential T during the time interval between the
times t1 and t2 . At the time ¢t
happen on the surface Zo
sured gravity values are

2 the measurements
if (19) is right. Thus, the mea-

(23) (&) B 8, » on the surface X 5

? =0
where 8o is the measured gravity on the surface 35 at
the time t2 3

In the identical spatial point (with the same spatial co-ordi-
nates ) for which the relation (23) is valid for the time ts s
the gravity at the time t1 is described by

1

, on the surface X, -

(g)t is not a directly measured quantity on the surface

X, .V The quantity of (g)t on the surface 3; has to be
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computed in terms of the measured gravity values obtained on
the o0ld surface of the Earth which does exist at the time t1 .
Here, the derivation of the concerned computation procedure
may base on the vertical free-air gradient of the standard
gravity. This procedure can be followed in sufficient approxi-
mation, at least in this context. For a more precise procedure,
we have to go over to the vertical free-air gradient of the
real gravity, ( see K.Arnold (1989), pg. 214, eq. (75a) (76)
1 ).

During the time interval t2 - t1 , the measurement station at
the Earth's surface undergoes a vertical spatial shift by

the amount €& ,Fig.1,

;
(23b) € = —G-D + dn ,

( see K.Arnold (1986), pg. 209, eq. (49) ). G is the global
mean of the gravity, dh 1is the change of the normal heights
obtained by levellings. The first term of (23b) , D/G, stands
for the change of the height anomalies £ .

Hence, by the standard value of the free-air gradient of the
gravity, (23a) (23b), the following relation is found

2G D
(23¢) KBle o = 80 5 —— [Jh + ——-], on the surface X .
1 R G =0

The g, value of (23c) is the measured gravity on the old sur-

face found at the time t1 . Consequently, in a self-explana-

tory way,

( ) ? (g) ()

23d - —_— = g - (g , on the surface x_ .
e t2 t1 =0

(239) 82 . 81 - d-g »
QD 2G 2

(23f) - = Jg + At s i) .
dr R R

éh is the change of the measured normal heights, Jg that
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of the measured gravity. The relation (23f) is inserted into
(22), the following relation yields in sufficient approximation

2G
(23g) AgD = g IS = ITh

R

The relation (23g) is valid not only for (19). It is easily
proved that the relation (23g) is valid for whole the surface

X, » for (20) in the same way as for (19).

Now, (23g) is inserted into (22d). The subsequent relation
follows,

R
(23n) {p} = {D(go)}= Fg(a,r.s(v).dl P/
- T

L

2G | 3 F(D)
dh + 01(D) + — —

4% R

X = dg +

This is the formula for the D potential expressed in terms

of the changes of the gravity and height . Computing
the D potential by (23h), the test point is situated on the
surface of the Earth; or -

to be more precise - on the
surface :-io

x « The same is valid for the boundary values
appearing in (23h).

The spherical simplification of the formula (23h) is the
integral of Strang van Hees,

R 2G
(231) D T — g([cfg ¥ — dh] S(y) - d1 .
Y

A shift of the values of

oD

(233) D » 57 » end Ag,

from the o0ld surface of the Earth to the new surface ( which
is moved by the recent crustal movements ) has a negligible
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effect on these values of (23j). This fact can be demonstrated
easily, now.

For instance, the potential D consists of constituents of the
following type,

1
(23k) A= /'-(5) = m =k L Yn(%k) .
= r

r,o)a,), are geocentric polar co-ordinates, 2, are the
Stokes constants, and Yn is a spherical harmonic of the
degree n . In (23k) , a shift of the test point x in the ver-
tical direction by the amount of dJr reflects in a certain
change of the ./ value. The following change is obtained

1
(28) A = —(n+1) e S @, ¢ Y ( ¢, A) - dr .
(23k) 1is inserted into (24), the relation (25) yields,
1
(24a) Ad. 5 = ol )il agd P | s
R

In case,the wave length of the globally distributed A values
is denominated by L, the assigned degree n is obtained by
the following rule of thumb,

27TR
(24v) n = -
L
Thus, we find
n 2w
(240) P 2 .
R L

Here, in our example, the value

(244) L = 10 km

is a convenient choice. The relations (24d) and (24b) give

R
(24e) Ny nepPiT s L& - e 360008 BT Nt
L

Hence, in (24a) , n + 1 can be replaced by n. Inserting (24c)
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(24e) into (24a) , the following relation for d A results,

LY - on 2 !
L

(24£)

ne

With Jdr = o0.001 km, and accountig for (24d), the relation
(24f) turns to
A 4
(25) o el 4
A

(25) proves that a vertical shift of the test point by the
amount of 0.001 km reflects in the D value by a negligible
impact. The same property can be found for the terms of
D/dr and AgD ot (235 Rmtook

The relations (22) and (23g) 1lead to

2D 2 2G
= —D = dg + — dh
r

R

(25a) -

dr

The potential D has the following series development (25b)
which is uniform convergent in the exterior of the surface
X, » K.Arnold (1986) (1987a,b). This series convergence
was proved considering the problem from different sides and
along different ways; all these deliberations corroborate
the fact that the series development (25b) is uniform con-
vergent in the mass free exterior of the gravitating body.

(25b) is a representation of the potential D valid in the
exterior.

(> =}

1
(25v) D, oot Z ST T A noBpy Yn(p.h) .

n= 2

The different individual areas of recent crustal movements
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will have a horizontal extent of not more than about

1ooo km x 1000 km . Consequently, it will be allowed to put
the inequality (25¢) which states a lower bound for the quantity
of the degree n,

(250 n > 20 .

A look on (23k) and (24a) gives the inequality (25d4) , acc-
counting for (25c¢) ,

? 2
(254) R S !
or r
and with (25a) and (254) ,
9D 2D 2G

ne

(25e) - dg + dh .

or Y

9D/ 9V is the downward derivative of the potential D,
it is taken in the direction vertically downwards into the
interior of the Earth. The equation (25e) represents this
downward derivative of D in terms of the measured quantities
of dg and Jh .,

Now, we finish these theoretical preliminaries. We go over
to a consideration of the potential D . This step is recomm-
mended in order to prepare this potential D for the further
numerical evaluations. In view of the further intentions,

it is convenient to divide the potential D into 2 parts :

The potential Db of a surface layer and the potential Dg

of the density changes in the interior.
Thus,

(26) D = D
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with
1
(21) o, = fifqgeds ,
. so Lav .
(28) 0y = f féS ¢ =

¢ is the real density along the Earth's surface, e is the
straight distance, € is the vertical shift of the Earth's sur-
face (Fig. 1), and V is the volume of the body of the Earth.
The derivation of (27) in the vertical direction of dy leads
to (29) using the jump relation for this derivation, 0.0.
Kellogg (1929),

90, 1
(29) S Tein 2ﬁ'f96 +-2-R-Db 3

and with (23), ( & can be put equal to dh in sufficient appro-
ximation, K. Arnold (1985)(1986)),

aﬂb ¥ ¥ L.
(30) 3o ok 2%fo ¢ = Zif?‘éh z
The relations(25e),(26), and (30) give

- 2 : 26
G FHog = FH0 -Foy = dg+ (g2 - 27LQ) én

Approximating p by the standard density ¢, = 2.67 g cm'3, (31)
turns to

(32) 0y = dg+ 0.197 6n

(The gravity in mgal, the heights in meters).

é% Dg is a signal function for the density changes d¢ in the
interior, (28).

The validity of (31) and (32) can be corroborated in a trivial
way. The right hand side of (31) and (32) is the difference of
the new gravity at the new surface minus the value of the old
gravity reduced from the old surface to the new surface. This
reduction happens by the free-air reduction and by the Bouguer
plate reduction, whereat the effect of the shift of the level
surface can be neglected (or the change of the height anomalies),
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3. The density_phanges along the main profile of 100 km length

The main profile on Iceland crosses the rift zone and has a length
of about 100 km. In 1975 and in 1980, along this profile, precise
measurements of the heights and of the gravity were carried out.
The levellings have a standard deviation of + 1.5 mm/km. The gra-
vity values are measured within + 6 pgal by relative gravity me-
ters. Thus, the changes of the heights and of the gravity values
are found precisely. The reference point of the levellings lies
at an undisturbed coastal place,(a height change by 1 cm reflects
in the gravity by 2 pgal). A comprehensive review of these mea-
surements can be found in: Zeitschrift f. Vermessungswesen 114
(1989), Tectonophysics 71 (19R1), J. of Geophysics 47 (1980).

B8y (32), the d¢g values and the dh values measured along this
main profile allow to compute the signal function 7®D_/3V

along this profile, Kanngieser (1982), Torge (1989).

Considering the course of the signal function in Fig. 2, it is
obvious that the general level of these values is lowered down
during the epoch from 1975 to 1980. It is lowered down to the
guantity of - 9 pgal; this number has a standard deviation of
about + 1.3 pgal averaging over 150 values of the signal function.
Thus, the subsidence of the level of the signal function is sig-
nificant; it cannot be explained only by a change of the gravity
at the reference point.

Z50g
+50
+30
+10
-0~ L =
2 304

_w-
M Gal

135 km

F & ; o)
Fig. 2. The course of the signal function > Dg along the
100 km profile.
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As to the interpretation of this subsidence, the well-developed
methods of gravimetrical prospection come now into the fore.
The potential D_ can be expressed in terms of mass changes dm
in the interior of the body of the Earth,

N
3 1
(33) Dg(Pk) = 4 %:—i cSmi -e—('P'k—’R? -

e is here the distance between the test point Pk and the place

Ki of the point mass 6mi . The following 4 lines are self-expla-
natory,

d - N o 1
(38) 75 0,(P) = % EE% dm, (z,- Z,) ;3?;1722; )
(COPRNEL e AVgT S
(BEAD = 1A B

Gn g ={dn}, p - {(g-vng),,k}

z, is the vertical co-ordinate of Pk, ii that of the point K1 3

Returning back to the interpretation of the values of 5%09 shown
by Fig. 2, the gravitating scources which cause these values can
be represerrted by a Bouguer plate of 7 km thickness, (7 km is
about the width of the lithosphere in the area of Iceland).

A lowering down of the j%-ﬂg values by the quantity of - 9 pgal
is equivalent to a lowering down of the density of this Bouguer
layer (of 7 km thickness) by the quantity of dp = -3.4):1()'Sgcm'3
In this context, the dynamic of the spreading movement of the
lithosphere in the area of Iceland is of interest. A diminution
of the density of the masses in the lithosphere plate by -3.4x
107% g cm™> can have its cause in a horizontal extension of this
plate. This extension has to happen in the direction of the main
profile of 100 km length, i.e. the direction perpendicular to

the rifts.

There are two opinions about this driving mechanism. They are
described by Jacoby et al. (19B0): "What is the driving mechanism
of the rifting event? Is magma squeezed in gravitationally (buo-

yantly) pushing the sides into compression or is regional tension
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from plate divergence released in fissures tearing open and =
making space for the magma? The regional deformation of the area
can be interpreted either way."

OQur above gravimetric investigations about the signal function

;% []g led to a diminution of the density along the profile.

Thus, the evalution of our signal function is in favour of a
long-distance extension of the lithosphere plate. Thus, our signal
function is able to discriminate between the different geophysical
models.

In this context, it is of interest that the extension of the main
profile of 100 km was determined by terrestrial geodetic distance

measurements, Moller (1989): . whole the test area having an
east-west range of about 110 km has merely an extension of not
more than 2 m...".

3

g em™,

This quantity leads to a density change by about 59 = -2.10"
sure. Both the values of the density change are in a relative

good agreement, (i.e. the value obtained gravimetrically by

3% Dg, and the value obtained by terrestrial geodetic distance
measurements).

In the above investigations about the lowering down of the signal
function j% D_ along the 100 km profile, the reference points for
the heights and for the gravity were considered to be stable. The
stability of the heights can be controlled within some millimeters
by water-gauge observations in a satisfactory way. The stability
of the gravity level can be checked by absolute gravity measure-
ments, a precision of about + 1 pgal is announced to come.

4. The density changes within the test area of 10 km x 14 km size

Now, we consider a test area of the extension of 10 km x 14 km.
The eastern and the southern part of it covers the hot spots of
the Kraflar caldera and of the Namafjall area. In the pronounced
uplift phase of 1978, the changes of the heights Jh and that of
the gravity dg are determined precisely by measurements. The
first measurement campaign was in January 1978 and the final one
was in June 1978. During this time,some seismic events and erup-
tions ogcured in this area. These dg and d&h values allow to
compute the signal function j% Dg by the formula (32).
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420 415 +10+5 O

Fig. 3. The course of the signal function within the
10 km x 14 km test area.

Fig. 3 shows the course of our signal function within the 10 km
x 14 km test area. Falk (1988), Kanngieser (1985).

The signal function of Fig. 3 has a smoothed shape because a
smoothing operator was applied. In the areas of the hot spots,
the signal function 5% Dg has two minima of about - 20 pgal.

In the north-western part, the test area has a maximum of about
+ 20 pgal. In the Fig. 3, the course of 2 profiles is plotted.
Fig. 4 and Fig. 5 show the course of the signal function along
these two profiles.

The course of the quantities of the signal function along these
two profiles was approximated by straight lines respectively,
applying the method of least squares.

The parameters of these 2 straight lines and the concerned stan-

dard deviation are as follows, taking the signal funct;on in pgal:
Profile A - B,

L -
(38) p 1 Dg 2y (45HBE +0I) B - (28 +0.6) ,
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(39) _a% Dy = (+9.1 +0.6) Eyp - (23 +1.8)

Thus, the coefficients of these 2 straight lines are clearly
significantly given. Consequently, the structures of the signal
function shown in Fig. 3 are clearly significant, proving clear-
ly that certain density changes in the interior have to exist.

A depression of the signal function with a minimum value of about
- 20 pgal can be explained by certain density changes in the in-
terior. It can be explained along the lines of the methods of

the gravimetrical prospection, from (34) through (37).

For instance, a spherical mass of the radius % = 1 km, of the
density change dp = - 0.006 g cm'B, and of a center in a depth
of 3 km will cause a depression of the signal function having

a horizontal extent of about 4 km and a minimum of about -20 pgal,
as figuring in Fig. 3.

This absolute density change (by - 0.006 g cm'j) means a relative
density change by - 0.006/2.67, being equal to - 2-10'3.

This quantity of the relative density change corresponds to a
horizontal extension of the upper layers of the Earth by about

4 m over a distance of 2 km. Extensions of such an amount are
determined by terrestrial geodetic distance measurements in this
rift area, indeed, M&ller (1989): "... the great extension quan-
tities in the rift zone amounting up to 4 m ...". (This is valid
for the period 1977 - 1980).

5. The relation of dg to dh

Several authors finish the discussion of the measured dJdg and
dh values by quoting the relation of &g to dh. For instance,
Hagiwara found for the Izu peninsula, H.G. Wenzel (1989),

og -1
(40) Zﬁ = - 0.3 mgal m™~ ,

leading to the following quantity of our signal function, (32),

0
(a1) 3 Bg = -0.1-dnh .
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For Iceland, we have with W. Torge (1989),

(42) - 0.43 mgal ml 2 gﬁ < -0.12 mgal m 1
hence, for the lower limit of (42),
a = - .
(a3) a—vng = 0.23 -dh ,
and for the upper bound of (42)
(48) 4% 0 = + 0.08-dh
v g
As an extreme quantity, W.Torge found
Jda . -1
(45) 3& = + 1.3 mgal m ~ ;
thus,
(a6) o PREECFETE e
oy 9
For dh = 1 m, the relation (46) leads to the relative great
value of
(847) 20 = 1.5 mgal .
v g

This latter amount of our signal function can be interpreted by
the gravitational effect of a sphere of 1 km radius, having a
homogeneous density of 0.45 g cm'B, and having a center point
situated in a depth of 3 km. In this case, we have possibly an
inflow of magma into an empty or into a widening chamber.
Consequently, the evaluation of the dg and & h values should
not stop after the first step which leads to the values of only

dg /3h., A second step should follow computing the signal
function (31)(32) which allows to calculate plausible values for
the density changes in the interior.
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6. The mass conservation law

Finally, a discussion of the mass conservation law is of impor-
tance. In this context, this law has the following shape intro-
ducing tolerable approximations, W.A. Heiskanen and H. Moritz

(1967), 0. D. Kellog (1929),(without the Earth rotation term)

(48) oM = 0 = £ H%D-dv.
v

0f course, the mass change JM during the period ﬁ has to be
equal to zero.
The relations (25e) and (48) lead to

A< P sg ¢§E Shj dv ,
v
relating the global integral over Jdg and that over dh,

0 [ oga = -2 [ gnoov

v v
This is acondition which isto be observed considering a recent
crustal movement phenomenon.

The coefficient - 2G/R is the free-air gradient being equal to
- 0.3 mgal m 1

For instance, applying the above developments about the mass
conservation law on the fennoscandian land uplift, we have for
this area by empirical means, H.G. Wenzel (1989),

(51) gﬁ = - 0.19 mgal m~1
(32) and (51) give
]
(52) b Dg = 0 .
The above relation (52) shows that our signal function is equal

to zero for the area of the fennoscandian land uplift. Thus, it

is very probable that there are no great density changes in the
interior.

Consequently, the mass conservation law demands that the masses
of the central uplift ,96% distributed over the Earth's surface
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(dh >~ 0) have to be compensated by the mass defects of a sur-
rounding belt of subsidence, (dh < 0). For the concerned sur-
fical mass distribution (9 -dh), we have the following constraint

(53) 0 = &M = Hg-éh.de 2
\Y

7. Results

In a refinement of the here discussed geodynamic model, the first
step should be to replace the standard density 90 of the sur-
face layer by the real density on the surface of the Earth.

The usual interpretation method which finishes the discussion

of the gravity changes and height changes by quoting the relation
dg: éh only, this is not an optimal one. The information con-
tent of the measurements is not exhausted fully; this method
means to stop halfway.

In any case, it is better to add a second step, computing the
signal function (31)(32) in terms of the dg and dh values and
determining plausible quantities for the density changes in the
interior. This second step should not be missed. The estimation
of the density changes should happen in close collaboration with
geophysicists and geologists.

The above investigations show that it is possible to find signi-
ficantly certain parameters characterizing the time-dependent
density variations which appear in the interior and which are
caused by the procedures of recent crustal movements.
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