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SUMMARY

Rotation of the Earth affects the propagation of seismic waves. The global coupling of
spheroidal and toroidal modes by the Coriolis force over time is described by normal-mode
theory. The local action of the Coriolis force on the propagation of surface waves can be
described by coefficients for the coupling between propagating Rayleigh and Love waves
as derived by Snieder & Sens-Schonfelder. Usin6g global wavefield simulations we show
how the Coriolis force leads to coupling and conversion between both surface wave types
depending on latitude, propagation direction, frequency, and local velocity structure. Surface
wave coupling is most efficient for periods where the modes have similar phase velocities, a
condition that is equivalent to the selection rules of the angular degree in the normal-mode
framework, a phenomenon that we refer to as resonant coupling. In the time-domain, resonant
coupling gradually converts energy from one wave type—Rayleigh waves or Love wave—into
the other, which then propagates independently. Due to the lateral heterogeneity, the condition
of equal phase velocity renders the rotational coupling location-dependent. East—west oriented
ray path segments and segments at high latitudes (across the Poles) only weakly couple the
fundamental mode Rayleigh and Love waves while coupling is strongest for propagation along
the meridians across the equator. At 250 s period, where Love and Rayleigh waves have similar
phase velocities, the net energy transfer from Rayleigh to Love wave reaches about 10 per cent
for one orbit.

Key words: Computational seismology; Structure of the Earth; Surface waves and free
oscillations; Wave propagation; Wave scattering and diffraction.

1 INTRODUCTION

The theory of linear elasticity predicts the independent propaga-
tion of shear waves (S waves) and compressional waves (P waves)
in homogeneous non-rotating media (Landau & Lifshitz 1959). In
practice there are a number of effects that cause coupling between
the two wave types during propagation in the Earth’s interior. Inter-
faces (Ben-Menahem & Singh 1981) and heterogeneity (Sato et al.
2012) of the subsurface cause conversion between wave types. The
rotation of Earth as propagation medium exerts an additional force
on moving matter—the Coriolis force. Depending on the angle of the
polarization vectors of P and S waves with Earth’s rotation axis, the
Coriolis force causes a small transverse component for P waves and
a small longitudinal component for S waves. Moreover the Coriolis
force causes a slow rotation of the shear wave polarization vector
akin to the motion of a Foucault pendulum (Snieder et al. 2016b,a).

Similar to P and S waves in the bulk, surface waves are sepa-
rated into transversely polarized Love waves and vertically or lon-
gitudinally polarized Rayleigh waves (Aki & Richards 2002) that
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propagate independently in a laterally homogeneous non-rotating
isotropic medium. Again the lateral heterogeneous and anisotropic
structure of the Earth causes conversion between Love and Rayleigh
waves (Kennett 1984; Snieder 1986) and Earth’s rotation couples
Love and Rayleigh waves (Backus 1962).

Following the observations of Earth’s eigenfrequencies after the
Chilean earthquake from 1960, the effects of Earth’s rotation on
eigenfrequencies were investigated to first and second order in Q/w
(e.g. Backus & Gilbert 1961; MacDonald & Ness 1961). Here,
Q is the angular velocity of Earth’s rotation and w is the angular
eigenfrequency. The rotation causes a shift and splitting of eigen-
frequency multiplets, and rotation also perturbs the displacement
fields of spheroidal and toroidal normal modes (Dahlen 1968). The
spheroidal modes ,S; of order / couple to toroidal modes , 774 | and
atoroidal mode , 7; of couples to spheroidal modes ,,S; + 1, where the
difference of one angular degree is a consequence of the selection
rules (Dahlen 1968). Spheroidal multiplets couple between pairs
(»S1, ;) whereas there is no coupling among toroidal multiplets
by rotation (Dahlen & Tromp 1998).
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When the eigenfrequencies of the coupled toroidal and spheroidal
modes with a difference of one angular degree are in (or close
to) resonance, strong coupling occurs (Dahlen 1969), and quasi-
degenerate perturbation theory of the nearly degenerate eigenmodes
is needed to account for this coupling. While the effects of weak
rotational coupling are comparable to the effects of ellipticity and
heterogeneity, the strong rotational coupling of resonant modes can
dominate the other types of perturbations (Luh 1974). Ziirn et al.
(2000) show that for frequencies below 1 mHz rotation is the most
effective mechanism to explain vertical motion observed for toroidal
modes. The influence of attenuation can be integrated with pertur-
bations from rotation and ellipticity in the calculation of eigenfre-
quencies using a Galerkin procedure (Park & Gilbert 1986). Masters
et al. (1983) show observations of frequency repulsion and attenua-
tion averaging of rotationally coupled normal modes. Time-domain
observation of free oscillation amplitudes show the alternation be-
tween radial and transverse displacement components for coupled
modes (Park 1990). In general, the effects of Earth’s rotation on de-
formation are well understood in the frame of normal mode theory
(Dahlen & Smith 1975; Dahlen & Tromp 1998).

The advantage of normal mode theory for the investigation of free
oscillations and globally propagating wavefields comes at the cost
of an implicit description of propagation effects. Seismological ob-
servations are represented as time series point measurements which
shapes the intuitive interpretation of seismograms as the signature
of propagating waves rather than a superposition of normal modes.

In particular, the effect of Earth’s rotation on seismic waves is
described well by coupling between the different normal modes and
perturbations of the eigenfrequencies. Even though the mode-ray
duality can be used to synthesize time-domain seismograms of
body and surface waves from normal-mode representation by
summation over normal modes (Dahlen & Tromp 1998), the local
effect of the rotational coupling on propagating waves is implicit
and lacks clarity.

A formulation for the coupling of travelling Love and Rayleigh
waves was derived in a companion paper (Snieder & Sens-
Schonfelder 2020). Their treatment leads to the derivation of cou-
pling coefficients that describe the local action of the Coriolis force
on surface waves propagating in a Cartesian coordinate system.
These coupling coefficients depend on the location, polarization,
propagation direction and the local phase velocity dispersion curves
of Love and Rayleigh waves. This approach accounts for the local
coupling between transverse and radial components of propagating
surface waves along a given path. An illustration of this coupling is
shown in Fig. 1.

Another time-domain comparison of seismograms with and with-
out rotation is shown by Komatitsch & Tromp (2002b) who focus
on the numerical implementation of the Coriolis force in spectral
element calculations. They conclude that the maximum effect of
Earth’s rotation at 120° distance amounts to about 3.5 per cent of the
surface wave amplitude for a source on the Pole. The seismograms
derived from coupled normal mode calculations by Park & Gilbert
(1986) show a considerable imprint of Earth rotation, especially
for propagation paths in the north—south direction. Narrow-band
precursory phases travelling with approximately the Love wave ve-
locity ahead of the Rayleigh wave, were generated by the Coriolis
force. Park & Gilbert (1986) note that this converted energy re-
sults in a bias of traveltime and anisotropy observations if it is not
correctly accounted for.

Questions about the effects of coupling between Love and
Rayleigh waves arise also in the context of the seismic ambient
noise field (Ardhuin ez al. 2019). The ratio between horizontal and
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vertical amplitudes in the ambient field is affected by both the rel-
ative excitation strength of Love and Rayleigh waves as well as by
propagation effects that might either act differently on both wave
types or lead to an exchange of wave energy between them.

Since the ambient seismic field is excited mostly by oceans
(Longuet-Higgins 1950; Ardhuin et al. 2015) and atmosphere
(Nishida et al. 2000), which are devoid of shear traction, the exci-
tation of Love waves requires a more complex excitation mecha-
nism than Rayleigh waves. Despite the vanishing shear traction of
oceanic and atmospheric loading, Nishida ez al. (2008) observed the
simultaneous excitation of Love and Rayleigh waves in the Pacific.
Tanimoto et al. (2015) observed significant Love wave amplitudes
in the microseismic period band at station Wettzell (Germany). In
fact, the observed Love wave amplitudes exceeded Rayleigh wave
amplitudes outside the secondary microseismic peak at 0.2 Hz. At
low frequencies the ambient vibrations occur as Earth’s free oscil-
lations known as the ‘hum’ (Tanimoto 2001; Rhie & Romanowicz
2004, 2006; Webb 2007; Deen et al. 2017) which are continuously
excited by processes in the atmosphere or the oceans which are not
expected to excite toroidal modes. Nonetheless, Kurrle & Widmer-
Schnidrig (2008) also observe continuously excited toroidal modes
of the Earth. At low frequencies the most likely mechanism for
the excitation of Love waves is the interaction of ocean infragrav-
ity waves with seafloor topography (Nishida ef al. 2008; Nishida
2014). In the microseismic frequency band the mechanism is less
clear (Tanimoto et al. 2015). Since there is no certainty about the
source processes, understanding propagation effects, such as the
mode-coupling by Earth’s rotation or anisotropy (e.g. Park & Yu
1993; Laske & Masters 1998) is essential.

The local character of the theory of Snieder & Sens-Schonfelder
(2020) for the coupling of surface waves by rotation makes their ap-
proach suitable for the study of propagation effects between partic-
ular source and receiver regions. However, their theory is developed
in a Cartesian geometry and the extension to spherical geometry is
heuristic. Here we perform qualitative tests of the derivations by
Snieder & Sens-Schonfelder (2020) for the coupling between Love
and Rayleigh waves and demonstrate the most important conse-
quences of Earth rotation on surface wave propagation. Comparing
global wavefield simulations with and without the Coriolis force
allows us to investigate effects of propagation distance, source lo-
cation and propagation direction for a given rotation vector in a
spherical geometry. With the simulations we focus on the 4 mHz
frequency (250 s period) band where strong coupling between Love
and Rayleigh waves occurs. This frequency corresponds to coupling
between the (73; and (S5, normal modes.

We summarize the theory of Snieder & Sens-Schonfelder (2020)
in Section 2. In Section 3, we describe the numerical simulations
that we use to simulate the wave coupling. We present computed
waveforms in Section 4 before concluding in Section 5.

2 THEORY OF COUPLING BETWEEN
PROPAGATING LOVE AND RAYLEIGH
WAVES BY THE CORIOLIS FORCE

In the companion paper (Snieder & Sens-Schonfelder 2020) we ana-
lyze the local coupling between Love and Rayleigh waves by Earth’s
rotation by extending the theory of Kennett (1984) for the coupling
of surface wave modes to include rotation. The theory is formulated
in a Cartesian coordinate system where plane surface wave modes
propagate in the x-direction and the z-axis points downward. The
rotation vector Q = (€2, Q,, Q.)7 points in an arbitrary direction.
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Figure 1. Excitation of Love waves by rotational coupling with Rayleigh waves. The globe shows a snapshot of the transverse motion field at 250 s period that
is excited by coupling with Rayleigh waves due to rotation of the Earth. Without rotation no transverse motion is excited by the explosive source. The shown
transverse component is magnified by a factor 10. The transverse motion vanishes for propagation in the equatorial direction. The star at 60°N indicates the
location for which the seismograms are shown. The arrow in the right panel indicates the time of the snapshot shown on the left. Around 1750 s lapse time the
Rayleigh wave passes the receiver with the /2 phaseshift between vertical and radial components. The Love wave on the transverse component arrives earlier.
Around 1000 s an SH wave arrives that is due to the rotation of the SV polarization induced by rotation of the Earth (Snieder et al. 2016b). Without Earth’s
rotation amplitudes of the transverse component, due to numerical inaccuracies, is three orders of magnitude smaller than the radial component. Synthetic
seismograms were calculated using the SPECFEM3D_GLOBE package (Komatitsch & Tromp 2002a,b).

We show in section 6 of Snieder & Sens-Schonfelder (2020)
that when the perturbation is smooth—as is the case for Earth’s
rotation—the coupling to backscattered surface waves is weak.
When the coupling to backscattered surface waves is ignored, the
displacement vector w of a wave propagating in x-direction can
be represented in terms of the modes w?(k,, z) with index » in a
reference medium as:

w= 3 0e Wik 7). M

where the modes wf?(k,, z) and their normalization are defined in
expressions (7) and (10) of Snieder & Sens-Schonfelder (2020).
The ¢;'(x) are the modal coefficients for surface wave mode r prop-
agating in the positive x-direction. In a homogeneous reference
medium these coefficients are constant. A similar expressions holds
for the traction vector with the same modal coefficients (Snieder
& Sens-Schonfelder 2020). As shown by Kennett (1984), lateral
heterogeneity introduces a variation of ¢ with position x. Similarly
Earth’s rotation perturbs the modal coefficients which are coupled
by the following differential equation:

5, c; _ Z iK et @)
-

where the coupling to backscattered waves has been ignored. The
wavenumber of mode ¢ is denoted by k.

As shown in expressions (18) and (21) of Snieder & Sens-
Schonfelder (2020) the rotational coupling coefficients for modes
propagating in the same direction are given by

o0
KquR = (KVISIL)* = 2@/0 plf (iQur] + Q.r5)dz ,

o0
Kib=0 , KiFt= —Za)Qy/ p (rir] +riry)dz. 3)
0

In these expressions K| {ff gives, for example, the coupling of Love

mode » to Rayleigh mode ¢. In these expressions 7|, , and /;
are the Rayleigh wave and Love wave displacement eigenfunc-
tions as defined in Aki & Richards (2002) that are normalized with
the condition (10) of Snieder & Sens-Schonfelder (2020). Because
K[! = 0, rotation does not introduce coupling between Love wave
modes. Love and Rayleigh modes are coupled by components of the

rotation vector that are vertical (£2;) and in the propagation direction
(£2,). There is coupling between different Rayleigh wave modes by
the component of the rotation vector (£2,) that is normal to the plane
of particle motion in the unperturbed medium.

In eq. (3), 2 = (2, Ry, 2,)7 is Earth’s rotation vector in the
local coordinate system whose x-axis is aligned with the direction of
wave propagation. On a spherical Earth a surface wave propagating
along a great circle has a varying direction of propagation on the
sphere. Snieder & Sens-Schonfelder (2020) show that for a surface
wave propagating on a sphere with the azimuth v of the propagation
direction, measured clockwise from north and colatitude 6 that the
rotation vector of the Earth is given by

Q. = Qcosysinb ,
Q, = —Qsiny sing ,
Q. = —Qcosb, 4

In the numerical examples shown here, we analyse the coupling
of Rayleigh to Love waves, as described by the coefficient K. in
expression (3). For the fundamental mode Rayleigh and Love waves
(¢ =r=1) the contribution of €2, is equal to Zwafgcpllrzdz while
the contribution of €2, is equal to 2i w2,z f ;o plyridz. For the funda-
mental modes for realistic earth models the Love wave eigenfunc-
tions /;(z) and the vertical component Rayleigh wave eigenfunction
r2(z) do not change sign with depth, while the horizontal compo-
nent of the Rayleigh wave eigenfunction r(z) does change sign with
depth (Aki & Richards 2002). This means that the contribution of
Q. and Q, to K1 ¥ satisfies

contribution of .| [ plirdz )
contribution of Q| | [ o pliradz
Ignoring the contribution of €2, implies that
(o)
KILIR ~ Za)Qx/ plirdz . (6)
0

In summary Earth’s rotation has the following imprint on surface
waves:

(1) a wavenumber perturbation of Rayleigh waves [section 4 of
Snieder & Sens-Schonfelder (2020)],
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(i1) coupling of surface wave modes where Rayleigh waves ob-
tain a small transverse component while Love waves obtain a
vertical/radial component [expression (44) of Snieder & Sens-
Schonfelder (2020)],

(iii) mode conversion: Modes with similar phase velocity convert
into each other [section 5 of Snieder & Sens-Schonfelder (2020)].

Effects (ii) and (iii) are often referred to as mode coupling, inde-
pendently of whether modes have different or similar phase veloci-
ties. In the following, we demonstrate these effects on propagating
surface waves using numerical wavefield simulations.

As the coefficient that describes the conversion of Rayleigh to
Love waves K quR is up to a difference in phase equal to the co-
efficient K ‘ﬁL that describes the opposite conversion from Love to
Rayleigh waves, the conversions in both directions share the same
characteristics. To illustrate the conversion process we use explo-
sive sources that only excite Rayleigh waves in radially symmetric
non-rotating models, This makes it possible to observe the wave
conversion that is undisturbed by the excitation of Love waves by
the source. The conclusions drawn from the Rayleigh to Love wave
conversion can directly be transferred to the conversion of Love
to Rayleigh waves because of the symmetry of the conversion co-
efficients between Love and Rayleigh waves (the first identity in
expression (3)).

3 SPECTRAL-ELEMENT WAVE
SIMULATIONS AND HANDLING OF
CORIOLIS FORCE

We investigate the effect of Earth’s rotation on the coupling of
Rayleigh and Love waves based on 3-D numerical simulations of
global seismic wave propagation using the SPECFEM3D_GLOBE
package (Komatitsch & Tromp 2002a,b). This is a spectral-element
solver where full anelastic wave theory can be incorporated, in-
cluding topography/bathymetry, gravity (Cowling approximation),
attenuation, ellipticity, rotation and the ocean load. It gives the flex-
ibility to separate all the various effects that might couple Rayleigh
and Love waves. Since our focus is on the effect of Earth’s ro-
tation we use explosive sources that only excite Rayleigh waves,
perform simulations for different radially symmetric and laterally
heterogeneous wave speed models and compare the wave propa-
gation with and without Earth’s rotation. The incorporation of the
Coriolis force for planetary bodies in spectral-element simulations
is described by Komatitsch & Tromp (2002b). We run global sim-
ulations for periods down to approximately 10 s using NEX=480,
where NEX denotes the number of spectral elements on one side
of each of six chunks at the surface of the cubed sphere. Despite
the long periods we consider in this study, we choose a high spatial
and temporal discretization to minimize numerical noise on com-
ponents which should be strictly zero in theory. In the following, we
present synthetic seismograms computed using radially symmetric
(Sections 4.1 and 4.2) and laterally heterogeneous (Section 4.3)
models.

4 THE IMPACT OF EARTH’S ROTATION
ON SYNTHETIC SEISMOGRAMS

4.1 Wave excitation at the equator

In a first example we use an explosive surface source on the equator
and compare the amplitudes of longitudinal and transverse wave
displacements in the presence and absence of rotation for a laterally
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Figure 2. Phase velocity dispersion curves of fundamental mode Love and
Rayleigh waves. Earth’s structure is from the elastic 1-D velocity model
PREM (Dziewonski & Anderson 1981). Dots indicate great circle averaged
phase velocity observations by Dziewonski & Landisman (1970).

homogeneous Earth model. The seismogram envelope is calculated
as the instantaneous amplitude of the analytical signal and its maxi-
mum in a wide time window around the surface wave arrival is used
to quantify the wave amplitudes.

Fig. 1 shows the transverse amplitudes 1500 s after excitation by
an explosion source on the equator. In numerical simulations the
Preliminary Reference Earth Model (PREM, Dziewonski & Ander-
son 1981) without an ocean layer is used. Since we focus on the
imprint of rotation, ellipticity and self-gravitation are not taken into
account. We run two sets of simulations with and without rotation
and in both simulations the attenuation of PREM is used. Such an
explosive source does not generate any transverse motion in the
radially symmetric model used here. However, in a rotating Earth
there is significant transverse energy propagating away from the
equator. The traces show the arrival of S waves at 1100 s that are
caused by conversion from P waves at interfaces. The transverse
component, which is only generated in the simulation with rota-
tion, is due to the Foucault pendulum-like rotation of the S-wave
polarization (Snieder et al. 2016b).

As shown by Snieder & Sens-Schonfelder (2020), the strongest
coupling between Love and Rayleigh waves by Earth’s rotation
should be observed for degenerate phase speeds. In the PREM
model, Love- and Rayleigh-wave phase-dispersion curves cross at
a period of about 250 s (Fig. 2). We thus focus on the period band
between 200 and 300 s in our seismograms.

Fig. 3 shows the amplitude of the transversely polarized wave-
field as a function of epicentral distance and azimuth. The transverse
wave motion vanishes for waves propagating east- and westwards
along the equator whereas the transverse motion steadily increases
for propagation in the north and south directions. This dependence
on wave azimuth can be derived from eqs (3) and (4) which show
that the real part of coupling coefficient KX involves the factor Q,
that is maximum for propagation along the meridians (¢ = 0 or
Y = 180°) and zero in the zonal direction. In fact, the wave am-
plitude in the north—south direction is increasing with distance up
to 90° distance despite geometrical spreading and attenuation. The
azimuthal dependence of transverse motion excitation agrees with
normal mode synthetics and observations by Park (1986). Ampli-
tudes of the transverse motion in the absence of rotation are three
orders of magnitude below those shown in Fig. 3 and are attributed
to numerical errors in the simulation. The radial motion in the ab-
sence of rotation does not depend on azimuth, confirming that the
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Figure 3. Normalized amplitude of the transversely polarized wave excited
by an explosive source at the equator. Values are normalized to the maximum
transverse amplitude. Source and antipode locations are not shown because
of diverging amplitudes. The transverse motion vanishes for propagation in
the east and west directions. The amplitude of the transverse component of
wave propagating in the meridional direction increases with distance.
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Figure 4. Radially polarized wavefield observed along the meridian of the
equatorial source. Amplitudes are normalized for the amplitude of the radial
component of the Rayleigh wave propagating with a group velocity of 3.6 km
s~!. Amplitudes for A < 180° and A > 180° are identical except for the
normalization that is applied for minor (R1) and major arc (R2) Rayleigh
waves, respectively.

pattern of transversely polarized waves is due to the coupling by the
Coriolis force.

To illustrate where the coupling occurs along the propagation path
we analyse the evolution of the amplitude of the transverse motion
for a full orbit along the meridian. We again use an explosive source
at the equator. The amplitude of the radially polarized wavefield
is shown in Fig. 4 normalized for the amplitude in a 1000 s long
traveltime window centered around a wave propagating with the
Rayleigh wave group velocity vz = 3.6 km s~! over 360° distance
(dashed line). The time window for the normalization therefore
corresponds to the minor arc Rayleigh wave (R1) for distances
A < 180° and to the major arc Rayleigh wave (R2) for A > 180°.
The same normalization is used for the amplitude of the transversely
polarized wavefield shown in Fig. 5. White lines overlain in Fig. 5(b)
indicate different velocities. Energy on the transverse component is
propagating faster than vg. A first wave train propagating at the Love
wave group velocity of v, = 4.2 km s~! is generated at the source
(blue patch). At distances beyond 180° it is followed by a second
wave train with the same group velocity v, that is generated at the
antipode (180° distance) at the time when the Rayleigh wave passes
the caustic (orange patch). This dominant excitation of transverse
motion at the antipode is a consequence of energy focusing at the

135

.- _________
0 2000 4000 6000 8000 10000
time [s]

135

0 2000 4000 6000 8000 10000
time [s]

Figure 5. Amplitudes of the transversely polarized wavefield along the
meridian of the equatorial source normalized for the amplitude of the
Rayleigh wave propagating at 3.6 km s~! (a). (b) Overlay of velocities
and time windows used to estimate wave amplitudes. Rayleigh wave veloc-
ity is shown by the dashed line. Love wave velocity is indicated by bold lines
for one wave emanating from the source and another one emanating from
the antipode (A = 180°) at the time of the Rayleigh arrival. The blue and
orange bars indicate the time windows for picking the maxima for the wave
amplitude shown in Fig. 6.

caustic which leads to a concentration of transverse motion in time
(Snieder & Sens-Schonfelder 2020).

We track the envelope maximum in 600 s long time windows
centered around the travelling Rayleigh and Love waves in Fig. 6.
Transverse amplitude is measured in the two time windows indi-
cated in Fig. 5 corresponding to waves excited at the source and the
antipode location during passage of the Rayleigh wave. Fig. 6(a),
displaying wave amplitudes in the period band 200-300 s, shows
a rapid increase of the transverse motion amplitude reaching about
15 per cent of the amplitude of the radial motion at 45° distance
it decreases. This decrease is interrupted by waves focusing at the
antipode. In contrast, the amplitude in the time window measuring
the excitation of transverse motion by rotational coupling at the
antipode increases at the antipode to about 20 per cent of the radial
amplitude. In the 100-200 s period window shown in Fig. 6(b) the
situation is different and the amplitude on the transverse component
remains below 5 per cent due to the difference in phase velocities
between Love and Rayleigh waves in this period band which pre-
vents strong coupling and conversion (Snieder & Sens-Schonfelder
2020).

Since the generation of Love waves by the Coriolis force occurs
continuously as the Rayleigh wave propagates, the Love wave is
spread out in time. This is most apparent by the two apparent Love
wave trains in Fig. 5(b) that are generated at the actual source
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Figure 6. Comparison of wave amplitudes on radial and transverse com-
ponents. (a) Period band from 200 to 300 s and (b) period band between
100 and 200 s. The two curves for transverse components correspond to two
waves that are excited at the source and antipode locations and propagate
with Love wave velocity (see Fig 5). Note the 10-fold relative amplification
of transverse amplitudes that is used for illustration purposes.
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Figure 7. Envelopes of transverse and radial components at 315° distance
from the source. Shading in the background indicates the integration time
windows for estimation of energy. G2 and R2 indicate the major arc Love and
Rayleigh waves, respectively. For the radial component this corresponds to
the R2 wave. The window for the transverse component starts 600 s before
the G2 wave and ends after the R2 wave. The energy on the transverse
component sums up to 10 per cent of the radial Rayleigh wave. G1 and R1
indicate the minor arc Love and Rayleigh waves with an epicentral distance
of 45°, respectively.

and the antipode. The amplitude maximum shown in Fig. 6 alone
does not suffice to compare the energy content of the transverse
motion since it does not take into account the duration of Love and
Rayleigh waves. Fig. 7 shows the envelopes of the transverse and
radial components at a distance of 315° as a function of time.
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To obtain estimates of the wave energies we integrate the squared
envelopes of the radial component over a time window around the
R2 wave [#(R2)-500 s, #R2)+700 s] for the Rayleigh wave and
the squared transverse envelope over a time window starting before
the major arc Love wave (G2) lasting until the R2 wave has passed
[#(G2)-600, #(R2)+700]. These time windows are indicated by the
shaded time intervals in Fig. 7. Using these estimates, the energy of
the transverse component is 10 per cent of the energy on the radial
component in the 200-300 s period window.

4.2 Influence of source location

The excitation of Love waves by conversion from Rayleigh waves
due to Earth’s rotation depends on the amplitude of Rayleigh wave
motion and the propagation direction as described by expressions (3)
and (4). Coupling requires a component of Rayleigh wave propa-
gation parallel to the rotation axis. Additionally, the focusing of the
Rayleigh wave increases the Love wave excitation at the source and
the antipode. For a source at the equator, the location of maximum
coupling for north—south propagation coincides with the strongest
focusing of the Rayleigh wave which results in dominant Love wave
excitation at source and antipode locations.

The situation is different for other source locations. As shown in
expression (6) the coupling from the fundamental mode Rayleigh
wave to the fundamental mode Love wave depends mostly on €2,.
According to expression (4), at the poles, Q2, = 0 and 2, = £,
hence according to eq. (6) the coupling of the fundamental mode
Love and Rayleigh waves is weak at the poles. This means that for
a source at the pole the near-source coupling between fundamental
mode Rayleigh and Love waves is weak. However, as propagation
distance from the polar source increases, coupling increases until
the propagation direction is aligned with the rotation axis on the
equator. Beyond the equator, coupling decreases again and vanishes
at the caustic on the South Pole. The evolution of the maximum
transverse amplitude for a polar source with distance and azimuth
is shown in Fig. 8(a).

Vanishing rotational coupling at the source illustrates that the
excitation of Love waves really occurs due to conversion along the
way during the Rayleigh waves propagation. The time dependence
of observed Love wave generation is shown in Fig. 9 which shows
that the increase of Love wave amplitude is strongest at a distance
of 90° when Rayleigh waves cross the equator where coupling is at
a maximum (cf. Fig 5a).

Sources at mid latitudes have a more complex dependence of
Love wave excitation on azimuth and distance (Fig. 8b). For small
epicentral distances, the coupling vanishes for east—west propaga-
tion but increases with distance since rays assume an oblique angle
with meridians and thus acquire a component parallel to the rotation
vector.

A surface wave that leaves the source at latitude 50°N (Fig. 8b)
with an arbitrary azimuth v/ in the range || < 90°, travels along
a great circle that is inclined with respect to the rotation axis. The
propagation initially has a northward component (|| < 90° in
eq. (4)) before reaching the point of highest latitude and then as-
sumes a southward component (|| > 90°) before crossing the
source latitude (50°N in Fig. 8) again. The contributions of the two
segments with the northward and southward components are equal
but of opposite sign. Hence the total Love wave generation is zero
when the wave crosses the source latitude, which causes the trans-
verse motion to vanish when the source and receiver are at the same
latitude (the green line in Fig. 8b).
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Figure 8. Normalized amplitude of the transversely polarized wave excited
by a source at the pole (a) and a source at S0°N (b). The green curves in panel
(b) indicate azimuth and distance along a small circle of constant latitude at
50°N leaving the source in the east or west direction.
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time [s]

Figure 9. Envelope of the transverse component of the motion in PREM
with rotation for an explosive source at the pole. This wave field has rota-
tional symmetry leading to identical seismograms for all azimuths.

4.3 Comparison with the effect of heterogeneity

To assess the importance of the rotational coupling one needs to
compare it to other coupling mechanisms. An obvious mechanism
is the Rayleigh to Love wave coupling by lateral heterogeneity. We
compare wave propagation in a rotating and non-rotating Earth in the
presence of lateral heterogeneities for the 3-D global mantle model
S362ANI (Kustowski et al. 2008), which is transversely isotropic
in the upper mantle, together with the 3-D global crustal model
Crust2.0 (Bassin et al. 2000). In this case, topography/bathymetry,

0 2000 4000 6000 8000 10000
time [s]

0 2000 4000 6000 8000 10000
time [s]

Figure 10. Envelope of the transverse components for source at North Pole
in 3-D heterogeneous velocity model S362ANI. Envelopes for all azimuths
are averaged. (a) without rotation and (b) with rotation. Note the different
colour scale limits.

the ocean load and attenuation are considered while gravity and
the ellipticity of the planet are disregarded. Beghein er al. (2008)
investigated a similar situation using normal modes to study the
influence of anisotropy on mode coupling. As in the simulations
for the laterally homogenous earth models we kept rotation on and
off to generate two sets of seismograms. We again use an explosive
source located at the North Pole and investigate the 250 s period
band of resonant coupling. To obtain representative envelope sec-
tions we average envelopes for all available azimuths. As shown in
Fig. 10(a), heterogeneity causes motion on transverse components
in the absence of rotation. There is transverse energy accompanying
the Rayleigh wave but earlier arrivals of body waves are of similar
amplitude. However in the presence of rotation the amplitudes on
transverse components are more than twice as large (Fig. 10b) and
dominated by the propagation of Love waves.

In Fig. 11 we quantify the effects of rotation and heterogeneity
by integrating the energy on the transverse component over the
surface of the Earth and comparing it to the energy on the radial
components. Irrespective of the presence of rotation, the transverse
energy is zero at the beginning of the simulation and increases
during the wave propagation. In the presence of rotation, transverse
energy grows faster and reaches close to 10 per cent of the energy of
the radial component at propagation times larger than about 5000 s.
If only heterogeneity causes transverse motion the energy of the
transverse motion remains at about 1 or 2 per cent of the radial
energy.
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Figure 11. Seismic energy integrated over the surface of the whole Earth for
radial and transverse polarization excited by an explosion at the North Pole.
Wave propagation was modelled in the heterogeneous 3-D velocity model
s362ani. Energy on the transverse component is significantly enhanced by
Earth’s rotation and reaches almost 8 per cent of radial energy beyond 180°
distance.

4.4 Phase shift of Rayleigh waves

The numerical simulations on a rotating Earth show a jump in the
phase of the radial motion at the frequency where the Rayleigh
waves and Love waves have the same phase velocity at a frequency
of about 4 mHz. A similar shift also occurs in the normal mode
frequencies of spheroidal modes (Masters ef al. 1983). In this sec-
tion we investigate the step in the phase of spheroidal modes as
a function of propagation distance. Because we study propagating
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Figure 12. Phase change of the radial motion due to Earth’s rotation. (a)
Broad-band radial seismogram section tapered around the R1 segment of
the Rayleigh wave. (b) Phase difference of the seismogram section in (a) for
simulations with and without Earth’s rotation.
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Figure 13. Same as Fig. 12 but for the R2 segment of the Rayleigh wave.
Note that the propagation distance of the R2 wave increases from A = 180°
towards A = 0°.

surface waves, the step in the phase corresponds to a step in phase
velocity.

This step in the phase can be visualized as a difference in the phase
shift between numerical seismograms with and without rotation. For
increasing traveltime the phase velocity step causes a growing phase
difference. We illustrate this in Figs 12 and 13 in which panel (a)
shows the broad-band radial seismograms tapered around R1 and
R2, respectively, whereas panel (b) shows the phase difference of
these seismograms for the simulations with and without rotation. A
clear change in the phase difference occurs in Figs 12(b) and 13(b)
at about 4 mHz (250 s period). Fluctuations in the phase originate
from interfering body waves. Note that the amplitude of the phase
difference increases with traveltime. For the minor arc R1 wave
(Fig. 12b) traveltime increases with distance from the source. For
the major arc R2 wave (Fig. 12b) the source distance A decreases
for increasing traveltime. Averaging over the distance ranges of the
R1 and R2 waves as shown in Fig. 14 reveals a clear transition
from positive phase difference below 4 mHz period to a negative
phase difference above for both R1 and R2 segments of the Rayleigh
wave with a larger amplitude for R2. A phase difference of 20 mrad
corresponds to a traveltime difference of 0.8 s at period of 250 s.

The jump in the phase velocities at a period of around 250 s can
be explained as follows. As shown by Snieder & Sens-Schonfelder
(2020) the surface wave modes on a rotating Earth are close to
Rayleigh wave modes and Love wave modes when the phase ve-
locities of the Rayleigh waves and Love waves are different. But at
periods where the Rayleigh and Love waves are degenerate, in the
sense that their phase velocities are equal, the surface wave modes
on a rotating Earth are a mix of Rayleigh wave and Love wave
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Figure 14. Phase differences between seismograms simulated with and
without Earth’s rotation averaged over all distances for the R1 and R2
segments of the Rayleigh wave.
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Figure 15. The phase velocity of the surface mode with the highest phase
velocity (solid line) and the surface wave mode with the lowest phase velocity
(dashed line) on a non-rotating Earth.

motion. This behavior is described by eqs (57)—(58) and fig. 3 of
Snieder & Sens-Schonfelder (2020). In the numerical example of
that figure the Rayleigh waves and Love waves are degenerate for a
period of 250 s, or a frequency of 4 mHz. As shown in section 6 of
Snieder & Sens-Schonfelder (2020) the Rayleigh wave corresponds
at frequencies much less than 4 mHz to the mode with the highest
phase velocity and for frequencies much larger than 4 mHz to the
mode with the lowest velocity, this behavior is sketched in Fig. 15.
Close to the degenerate frequency (at 4 mHz) the eigenmodes on a
rotating earth are a mix of Rayleigh wave and Love wave motion.
As shown in Fig. 15 the phase velocity of Rayleigh waves ‘jumps’
from the phase velocity of the fastest mode to the phase velocity
of the slowest mode. This gives rise to the growing jump in the
phase difference for the Rayleigh wave that is shown in Fig. 14. The
crossover of the dispersion curves sketched in Fig. 15 and the result-
ing jump in the phase shown in 14 occurs at a period of about 250 s.
This is the period for which Rayleigh waves and Love waves are
observed to have the same phase velocity, see for example the phase
velocities of Rayleigh and Love waves measured by Dziewonski &
Landisman (1970) that are indicated by dots in Fig. 2. The resonant
propagating surface waves correspond to the coupling between the
normal modes (S5, and (73;. A similar situation results from the
coupling of modes with / = 12 and / = 19 at even longer periods
(Masters et al. 1983).

5 DISCUSSION

The simulations presented here illustrate the effect of Earth’s ro-
tation on propagating surface waves and confirm the theoretical
derivations of Snieder & Sens-Schonfelder (2020) for the local
coupling between radial and transverse displacement on a rotating
Earth. One can discriminate two regimes of coupling: when the
phase velocities are different and coupling is small on the one hand
and the situation of degenerate phase velocities which causes strong
coupling on the other hand. In globally averaged velocity models
the dispersion curves of Love and Rayleigh waves cross at about
250 s period in the range of the degenerate normal modes (75, and
0532 (Dahlen & Tromp 1998). Phase velocities of fundamental Love
and Rayleigh waves are also close in the frequency range of the
microseism (10-20 s) and lateral heterogeneity may cause locally
equal phase velocities. As Maupin (2004) points out, the velocity
structures of oceanic or tectonically active regions can result in close
phase velocities of different Love and Rayleigh modes allowing for
strong local coupling.

If strong coupling occurs, it depends on location and azimuth of
wave propagation (expressions 3 and 4). In general a component
of the propagation vector along the direction of the rotation axis is
required to couple radial and transverse motion. This is predomi-
nantly the case for propagation in the north—south direction in the
equatorial region. There is no coupling along equatorial paths. For
an initially pure Rayleigh wave, the conversion to Love wave oc-
curs during propagation leading to a gradual buildup of transverse
displacement. The rate of buildup is not constant but changes along
a given path depending on the location, local amplitude (e.g. focus-
ing at source and antipode) and local azimuth. The coupling of a
Rayleigh wave to a Love wave by rotation perturbs the wavenumber
of the Rayleigh wave. This leads to a repulsive perturbations of the
hybrid multiplets of normal modes and repulsive phase perturba-
tions of Rayleigh waves for frequencies above and below a frequency
of degenerate phase velocity (Snieder & Sens-Schonfelder 2020).
In the wavefield simulations this can be observed by comparing
waveforms with and without rotation and clearly shows the change
in sign of the phase perturbation at the degenerate frequency.

Time-domain comparison of synthetic seismograms on a rotating
Earth by Park & Gilbert (1986) showed the azimuth dependence of
the rotational coupling. Park (1986) compared synthetic seismo-
grams in a laterally heterogeneous model with data and conclude
that the effect of rotation is visible for favorable orientations of the
source and nearly polar source—receiver paths in the form of well
dispersed quasi-Love precursors to the Rayleigh wave arrivals simi-
lar to Fig. 9. The difficulty to observe the rotational coupling in time
domain is partially due to the simultaneous excitation of Love and
Rayleigh waves by earthquakes which complicates the isolation of
rotational coupling during the propagation. Seismic interferometry
(Curtis et al. 2006) makes it possible to create virtual sources, not
only at locations defined by stations rather than real sources but
moreover sources of different polarization can be created virtually.
To demonstrate the local coupling we suggest to use the vectorial
character of the coupling. For a roughly north—south oriented pair of
stations with similar distances to the equator the waves propagating
in opposite directions should attain coupled displacements of oppo-
site sign. This means that the noise correlation (Z, E*) of the vertical
component form the station on the Northern Hemisphere (Z,) with
the east component of the station on the Southern Hemisphere (E;)
should lead to the same waveform as (Z, E), because the transverse
directions for northward and southward propagation are oriented in
the £ and —FE directions, respectively. Seismic interferometry thus
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makes is possible, in principle, to investigate rotational coupling by
cross-correlating suitably chosen components of the wave motion.
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