

Available online at www.sciencedirect.com

ADVANCES IN SPACE RESEARCH (a COSPAR publication)

Advances in Space Research 67 (2021) 919-920

Erratum

www.elsevier.com/locate/asr

Erratum to "Assessment of the capabilities and applicability of ionospheric perturbation indices provided in Europe" [Adv. Space Res. 66 (2020) 546–562]

Claudia Borries^{a,*}, Volker Wilken^a, Knut Stanley Jacobsen^b, Alberto García-Rigo^{c,d}, Beata Dziak-Jankowska^e, Guram Kervalishvili^f, Norbert Jakowski^a, Ioanna Tsagouri^g, Manuel Hernández-Pajares^{c,d}, Arthur A. Ferreira^a, Mainul M. Hoque^a

> ^a German Aerospace Center, Neustrelitz, Germany ^b Norwegian Mapping Authority, Honefoss, Norway ^c UPC-IonSAT, Technical University of Catalonia – BarcelonTech, Barcelona, Spain ^d Institute of Space Studies of Catalonia (IEEC), Barcelona, Spain ^e Space Research Center, Polish Academy of Science, Warsaw, Poland ^f GFZ German Research Centre for Geosciences, Potsdam, Germany ^g National Observatory of Athens, Athens, Greece

> > Available online 8 November 2020

It has come to the attention of the authors that the header of Table 2 was unfortunately not presented correctly in the final article.

Please find the correct Table 2 in full below: The publisher would like to apologise for any inconvenience caused.

^{*} DOI of original article: 10.1016/j.asr.2020.04.013.

^{*} Corresponding author. *E-mail address:* claudia.borries@dlr.de (C. Borries).

Table 2

920

Overview on applicable indices for different use cases. References are given for those applications which have been reported in following references: [1] Berdermann et al. (2018), [2] Jakowski and Hoque (2019), [3] Hernández-Pajares et al. (2012) and García-Rigo (2012), [4] Pi et al. (1997), [5] Jacobsen and Andalsvik (2016), [6] Burke et al. (2003), [7] Park et al. (2013), [8] Hernández-Pajares et al. (2017), [9] Wilken et al. (2018), [10] Liu et al. (1983), [11] Tsagouri et al. (2005), [12] Tsagouri et al. (2000), [13] Tsagouri et al. (2010), [14] Stanislawska and Gulyaeva (2015), [15] Juan et al. (2018), [16] Béniguel et al. (2017), [17] Abe et al. (2017a), [18] Abe et al. (2017b), [19] Aquino et al. (2005), [20] Xiong et al. (2016), [21] Liu et al. (2017), [22] Sieradzki and Paziewski (2016b), [23] Jacobsen (2014). Recommended applications of indices are indicated with asterisks.

Use case		AATR	Dfu/ Dfl	DIXSG	GEC	GIX	IBI	IG12	$R12_{eff}$	ROTI	$S4/\sigma_{\phi}$	SIDX	SISTED/ SOLERA	SRMTID/ SSMTID	W- index
Natural	Solar flares Small scale irregularities						*			[1] [4]	[5,6]	[2]	[3]		
	Equatorial plasma depletions						[7]								
	MSTIDs/LSTIDs Planetary waves													[8]	
	TEC gradients Ionosphere modelling	*		[9]		[2]		[10]	[11]						
	Deviation from quiet conditions		[12]						[13]						[14]
	CME, CIR, etc. SEP	[15]	[12]	[9]	*	*	*		[13]	[4]	[5,6]	*			[14]
Technical	SBAS/EGNOS Lol. GNSS	[15,16]	*	*	* [2]	[2]	* [20]	* [20]	*	[16,17,18] [4]	[16,19]	[2]	[8]	*	*
	Radio		*		*		[20]		*	[་] *	*		*	*	*
	RTK performance Stationary GNSS application	*		*						[22]	[5]	[5]		[8]	
	Mobile GNSS application Model degradation									[23]	[19]				*
	(SPP) GBAS impact Polar Cap Absorption (PCA)			*		*						*	*	*	