
1.  Introduction
Electromagnetic ion cyclotron (EMIC) waves are known to be generated by the cyclotron instability of 
anisotropic distributions of medium energy ring current and plasmasheet protons in the equatorial region 
of the magnetosphere in the energy range of a few to hundreds of kilo-electronvolts during geomagnetic 
storms and substorms (Anderson et al., 1996; Clausen et al., 2011; Erlandson & Ukhorskiy, 2001; Fraser 
et al., 2010; Halford et al., 2010; Jordanova et al., 2001; Keika et al., 2013; Kennel & Petschek, 1966; Kozyra 
et al., 2013; Lin et al., 2014; Lyons & Thorne, 1972; Noh et al., 2018; Summers & Thorne, 2003; Thorne, 2010; 
Thorne & Kennel, 1971; Zhang et al., 2016). Magnetospheric compression due to solar wind dynamic pres-
sure increases has also been considered to be one of the generation mechanisms for EMIC waves (Anderson 
& Hamilton, 1993; Anderson et al., 1992; Cho et al., 2016; Engebretson et al., 2002, 2015; H. Kim et al., 2017; 
Lessard et al., 2019; Park et al., 2016; Saikin et al., 2016; Usanova et al., 2012, 2010). While occurrences of 
EMIC waves increase typically in the aftermath of geomagnetic storms or during the main phase of such 
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storms, EMIC waves during quiet times and/or storm recovery phases have also been reported (Clausen 
et al., 2011; Halford et al., 2010, 2015; K.-H. Kim et al., 2016; Saikin et al., 2016; Usanova et al., 2008).

Radial and local time occurrences of EMIC waves in the magnetosphere appear to be widely distributed: 
preferentially observed at L > 7 at 11–15 MLT (Allen et al., 2015; Anderson et al., 1992; Usanova et al., 2012); 
in the inner magnetosphere (near L = 6) in the afternoon section (Halford et al., 2010; Saikin et al., 2015), 
at L = 10–12 in the dawnside for H+ band waves and at L = 8–12 in the duskside for He + band waves (Min 
et al., 2012), at L > 7 in the afternoon sector for H+ band waves and at L < 6 near the afternoon to dusk 
sector for He + band (Keika et al., 2013; Saikin et al., 2015). The prenoon sector has also been found to be 
a favorable location in the inner magnetosphere (Saikin et al., 2015). A number of studies have shown that 
EMIC waves are observed preferentially in the inner magnetosphere near the storm-time plume (e.g., L. 
Chen et al., 2009; Clausen et al., 2011; Erlandson & Ukhorskiy, 2001; Halford et al., 2010; Keika et al., 2013). 
In addition, there is recent studies showing that wave occurrences are not strongly correlated with the plas-
mapause location (e.g., Tetrick et al., 2017).

As mentioned above, substorms are known to be one of the major sources for EMIC wave generation. His-
torically, there have been a number of reports on “intervals of pulsations with diminishing periods (IPDP),” 
a subset of EMIC waves which are known to be associated with substorm activity (Arnoldy et al., 1979; 
Hayashi et al., 1988; Kangas et al., 1987; Søraas et al., 1980; Yahnina et al., 2003), followed by more recent 
studies suggesting plasmaspheric plumes as a favorable location of EMIC wave enhancements in associ-
ation with ring current injections (Halford et al., 2015; Morley et al., 2009; Spasojević et al., 2004; Yuan 
et al., 2010). Direct evidence of injection-associated EMIC wave events has also been reported (L. W. Blum 
et al., 2015; Remya et al., 2018, 2020).

One of the important aspects of EMIC waves is their important role in pitch-angle scattering relativistic 
electrons in the outer radiation belt via cyclotron resonant interactions, thus leading to the precipitation 
of both tens of kilo-electronvolts ions and million electronvolts electrons to the ionosphere (e.g., Albert 
& Bortnik, 2009; Denton et al., 2019; Engebretson et al., 2015; Jordanova et al., 2008; Khazanov & Gama-
yunov, 2007; L. Blum et al., 2019; L. W. Blum et al., 2020; Lee et al., 2020; Lessard et al., 2019; Loto’aniu 
et al., 2006; Meredith et al., 2003; Miyoshi et al., 2008; Qin et al., 2018; Qin et al., 2020; Thorne, 2010; Uk-
horskiy et al., 2010; Usanova et al., 2014; Z. Li et al., 2014). The radiation belt electron dropout in association 
with EMIC waves has been shown as decreases in phase space density (PSD) (e.g., Engebretson et al., 2015, 
2018; Shprits et al., 2016; Turner et al., 2014; Xiang et al., 2017; Zhang et al., 2016). Scattering loss of elec-
trons with energies of a few MeV due to EMIC waves can be very efficient with the time scale of minutes 
(e.g., Thorne & Kennel, 1971) and even seconds (Ukhorskiy et al., 2010).

Although there have been a number of theoretical studies showing efficient scattering of radiation belt elec-
trons by EMIC waves as listed above, systematic observations to support such an effect have not been exten-
sively reported. It is still challenging to observe a direct relationship between EMIC waves and correspond-
ing electron dropout and precipitation, though some studies have shown limited success (e.g., Capannolo, 
Li, Ma, Chen, et al., 2019; Capannolo, Li, Ma, Shen, et al., 2019). This study reports a radiation belt dropout 
associated with EMIC waves that were observed by the Van Allen Probes spacecraft, direct evidence of such 
a correspondence which is still not frequently reported due to the limited in-situ observing capability.

2.  Data Sets
The primary data used in this study were from the Van Allen Probes mission. For magnetic field observa-
tions, level-3, high time-resolution (64 Hz) data from the Electric and Magnetic Field Instruments Suite and 
Integrated Science (EMFISIS) instrument (Kletzing et al., 2013) were used. Proton flux data (level-3, pitch 
angle and pressure and spin-averaged [∼11 s]) in the energy range of ∼40–600 keV were acquired by the 
Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE) instrument (Mitchell et al., 2013). 
Proton flux data (level-3 and spin-averaged) in the energy range of ∼1 eV–50 keV were from the Helium 
Oxygen Proton Electron (HOPE) plasma spectrometer (Funsten et al., 2013) of the Energetic Particle, Com-
position, and Thermal Plasma Suite (ECT) (Spence et al., 2013).

Both DC and AC magnetic field data near the ground magnetic footprint of Van Allen Probes were ac-
quired by the fluxgate and induction-coil magnetometers at Neumayer Station (VNA), Antarctica (Wesche 
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et al., 2016). The fluxgate magnetometer at VNA provides tri-axial, 1-s resolution data. The induction-coil 
magnetometer, part of the Magnetic Induction-Coil Array (MICA) provides 20-Hz, bi-axial, time-varying 
magnetic field (dB/dt) data for wave observations. Solar wind parameters (IMF and dynamic pressure) were 
provided from high time-resolution (1 min) OMNI data (King & Papitashvili, 2005). For ring current and 
auroral electrojet activities, Applied Physics Laboratory (APL) SuperMAG indices (Gjerloev, 2012; Newell 
& Gjerloev, 2011, 2012) were used. Particle precipitation data were obtained by the Medium Energy Proton 
and Electron Detector (MEPED) aboard the NOAA Polar Orbiting Environmental Satellites (POES) (Galand 
& Evans, 2000), which monitors the intensities of protons and electrons at an altitude of ∼800 km over a 
range extending from 30 keV to more than 200 MeV.

PSDs of electrons in adiabatic coordinates were calculated from the directional differential electron flux 
from both Magnetic Electron Ion Spectrometer (MagEIS) (Blake et al., 2013) and the Relativistic Electron 
Proton Telescope (REPT) (Baker et al., 2013) of ECT aboard the Van Allen Probes spacecraft. The first invar-
iant (μ) is calculated for a given energy channel and pitch angle from observations. The second invariant (K) 
is calculated by estimating magnetic field intensity at the mirror point (Bm) for a given pitch angle. All data 
are level-3. The International Geomagnetic Reference Field (IGRF) and Tsyganenko (TS05) (Tsyganenko & 
Sitnov, 2005) models were used as an internal and external model, respectively, to estimate the second (K) 
and third (L*) adiabatic invariants. Also, note that both the PSDs and energy channels were interpolated for 
given μ's and K's. The PSD calculation methods used in this study are based on those introduced in previous 
studies (e.g., Y. Chen et al., 2005; Onsager et al., 2004; Roederer, 2012).

3.  Observations
This study presents Van Allen Probes observations of EMIC waves in association with dispersive particle 
injection events on February 27, 2019 when both Spacecraft A and B were near the afternoon/dusk sector. 
Spacecraft A observations of waves and ring current particle flux enhancement, which is seemingly related 
to injection, are shown in Figure 1a, in which EMIC waves were observed between 14:00 and 15:00 UT (top 
panel). Spacecraft B observed a similar wave event between 17:30 and 19:00 UT associated with particle in-
jection (Figure 1b) approximately 3.5 h after Spacecraft A observed the preceding event (Figure 1a), passing 
a similar local time sector (17:00–18:00 MLT) over a limited L-shell range (∼5.5–6.0). The gyrofrequency 
curves (the white traces in this figure) indicated that the waves are mainly in the He-band. Both events dis-
play a mix of left-hand and linear polarization (second panel). Similar wave events were observed by both 
spacecraft in the next orbit (plots not shown here), indicating the persistent nature of the wave activity. The 
enhancement of proton flux (seen as dispersive particle injection) was detected over the energy range of 
∼5–100 keV in HOPE and RBSPICE data as shown in the third and bottom panels in Figures 1a and 1b. The 
injection appeared at ∼12: 30 UT (∼16: 00 UT) at ∼100 keV (RBSPICE) and tapered off at ∼16 : 00 UT (∼20 : 
30 UT) at ∼10 keV (HOPE) as observed by Spacecraft A (Spacecraft B). Given their temporal extent as shown 
in both energy spectra in Figures 1a and 1b, the injection persisted from 12:30 to 20:30 UT. The electron den-
sity derived from EMFISIS level-4 data (not shown here) presented no clear plasmapause boundary while it 
appears that the observations were made within the plasmapause, given the values of electron density data.

Simultaneous observations of the EMIC waves near the ground geomagnetic footprint of the spacecraft 
observations are shown in Figure 2, displaying FFT-spectrograms of bi-axial search-coil magnetometer data 
from Neumayer Station in Antarctica (GMLAT = −61.1°, GMLON = 42.3°, L = 4.3). The two red boxes (a) 
and (b) in Figure 2 denote the time ranges when Van Allen Probes A and B observed the EMIC wave events, 
respectively. Although not strong, there was a persistent spectral structure from ∼13:00 UT to ∼19:00 UT as 
shown in the spectra of this figure. The fluxgate magnetometer data (top panel), on the other hand, do not 
present any remarkable signatures during the events. Only the Spacecraft B pass during the second wave 
interval (17:30–19:00 UT) was relatively close to the geomagnetic location of the station (VNA) as shown 
in Figure 3. For example, at 18:00 UT, Spacecraft B was at GMLAT = −68.6°, GMLON = 65.9°, and L = 6. 
The map also shows the magnetic footprint of Spacecraft B from 14:00 to 15:00 UT during which Spacecraft 
A observed the first event (see Figure 1a). However, the waves observed by Spacecraft B were weak (figure 
not shown here).

It is well known that waves generated at limited latitudes are measured over a wide range of L's on the 
ground owing to propagation in the ionospheric waveguide (e.g., H. Kim et al., 2011). Nevertheless, the 
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weak ground signature for Event (a) might be due to the longitudinal separation between the spacecraft and 
the ground station. The polarization at the ground for the first event (a) is linear although not strong and 
that for the second event (b) is right-handed and linear whereas a mix of left-hand and linear polarization 
was observed by Van Allen Probes (Figure 1). This polarization reversal (left-hand to right-hand) has been 
reported previously (Johnson & Cheng, 1999; E.-H. Kim & Johnson, 2016; Mann et al., 2014). The wave 
normal angles calculated using EMFISIS data (not shown here) are predominantly ≤ 20°, indicating that the 
wave propagation was mostly field-aligned.

Since the local noon at Neumayer is approximately 14:00 UT, the local time extent of the wave activity 
encompasses most of the postnoon sector (11–17 MLT) as observed from the ground data. Perhaps, the 
spacecraft observed only the “snapshot” of the long-lasting event. It appears that only the lower frequency 
component of the first event (a) was observed by the ground magnetometer while the spectral structure of 
the second event (b) remarkably resembles the space-borne counterpart. The second event (b), in particular, 
appears to be a classic substorm-associated IPDP event (in other words, rising spectral signatures), similar 
to the space-borne observations (Figure 1b). This is confirmed in Figure 4 in which large auroral electrojet 
indices were measured during the second event. The onset of the persistent Pc1 waves began at ∼13:00 UT 
also coincided with the large auroral electrojet indices presented in Figure 4 (refer to the next paragraph).

The solar wind parameters (IMF and dynamic pressure) from the OMNI data set and SuperMAG indices 
during the events are presented in Figure 4. The first event (Spacecraft A, ∼14:00–15:00 UT, red box [a]) 
occurred ∼30 min after the sudden decrease in solar wind dynamic pressure (Pdyn, second panel of the fig-
ure), followed by the second event (Spacecraft B, ∼17:30–19:00 UT, red box [b]) when the pressure remained 
stable (∼5 nPa). The IMF orientation was mostly northward with occasional southward turning occurred 
during the second event around 18:00 UT. The SuperMAG ring current index (SMR) was > − 20 nT dur-
ing the events (third panel of Figure 4), implying relatively quiet times. The first event occurred during a 
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Figure 1.  (a) Van Allen Probes-A Observations of EMIC waves and ring current particle injection: the spectra of the azimuthal component in mean field-
aligned coordinates of EMFISIS data showing EMIC waves (top panel) and the wave polarization (second panel); RBSPICE (third panel) and HOPE (bottom 
panel) omni-flux data showing particle flux enhancement. (b) Same as (a) but for Van Allen Probes-B. The white traces indicate He+ and O+ gyrofrequencies. 
EMFISIS, Electric and Magnetic Field Instruments Suite and Integrated Science; EMIC, electromagnetic ion cyclotron; HOPE, Helium Oxygen Proton Electron; 
RBSPICE, Radiation Belt Storm Probes Ion Composition Experiment.
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descending period of auroral activity while the second event occurred during an interval of high auroral 
activity as indicated by the SuperMAG auroral electrojet indices or SME (fourth panel).

The temporal progression of PSDs and their distributions in L*-values are demonstrated in Figure 5 which 
reveals that there were noticeable relativistic electron dropouts over L* = 4–5 for lower energies (i.e., lower 
first adiabatic invariant, μ = 2000 MeV/G) during and after the EMIC wave events (note the difference be-
tween black and red traces and between blue and light blue traces). At higher energies (μ = 4,000 MeV/G), 
there was no clear dropout. Note that μ = 2,000 MeV/G corresponds to ∼3.4 MeV at L* = 4 and ∼2.4 MeV 
at L* = 5 and μ = 4,000 MeV/G corresponds to ∼5.0 MeV at L* = 4 and ∼3.5 MeV at L* = 5. PSDs at μ's 
corresponding to the higher energy ranges (∼3.5–5 MeV) using MagEIS and REPT data have been reliably 
estimated in a number of previous studies (e.g., Allison & Shprits,  2020; Foster et  al.,  2015; Katsavrias 
et al., 2019; Reeves et al., 2013). The maximum dropout occurred from the Spacecraft A observations at 
L* = 4.9 for μ = 2000 MeV/G and K = 0.15 REG1/2 (see the bottom left panel in Figure 5), for which the PSD 
change from 11:28:47 UT to 14:53:03 UT was −1.45e-9 (s3/m6). If the exponential fitting of the decay is used 
(e.g., Borovsky & Denton, 2009), this corresponds to a decay rate represented by e-folding time of ∼3.3 h. For 
μ = 4,000 MeV/G (and the same K, see the bottom right panel in Figure 5), the maximum dropout occurred 
from the Spacecraft A observations at L* = 4.4, for which the PSD change from 10:51:42 UT to 15:31:11 UT 
was −3.68e-11 (s3/m6), yielding the e-folding time of exponential decay ∼8 h. We note that the decay rates 
are approximate, as it is unknown when the PSD started to change.
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Figure 2.  Magnetic field data from the fluxgate (top panel) and induction-coil magnetometers at Neumayer Station, 
Antarctica (VNA). Spectrograms of bi-axial induction-coil magnetometer data represent time-varying magnetic fields in 
the geomagnetic south (second panel) and geomagnetic east (third panel) components, both perpendicular to the local 
field. The wave polarization from the induction-coil magnetometer data is presented in the bottom panel. The first and 
second events observed by the Van Allen Probes spacecraft are indicated by the red rectangles (a) and (b), respectively. 
The local noon at Neumayer is approximately 14 UT.
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A more detailed view of spatiotemporal changes in PSD as a function of 
the first adiabatic invariant, μ and the second adiabatic invariant, K for 
different L* values is presented in Figure 6. To make it easier to discern 
the PSD changes, these figures show the PSD ratio of “preevent pass” to 
“event pass” (PSDPre/PSDDuring) and to “postevent pass” (PSDPre/PSDPost) 
in the μ − K space for different L* values as observed by Spacecraft A and 
B. The time ranges that we define as “preevent,” “during,” and “poste-
vent” were determined by their orbit to include a complete range of L*'s 
(i.e., from perigee to apogee or vice versa). Thus, those time ranges are 
as following: 08:45–13:13 UT, 13:13–17:41 UT, and 17:41–22:09 UT for 
Spacecraft A; 08:34–13:02 UT, 13:02–17:29 UT, and 17:29–21:57 UT for 
Spacecraft B. The ion concentration ratio, nH: nHe: nO = 0.93: 0.04: 0.03, 
was obtained using the same method described in (Min et al., 2015) in 
which ion concentrations are inferred from the cold plasma dispersion 
relation with the two cutoff frequencies of each wave band of observed 
wave spectra.

We chose wave frequencies 0.29 Hz and 0.9 Hz based on the Van Allen 
Probe-A observations, corresponding to the minimum resonant energies 
E‖ = 5.0 MeV (solid magenta curve) and E‖ = 0.9 MeV (dashed magenta 
curve), respectively. The dashed green curve corresponds to the constant 
total energy E = 0.9 MeV. The decreases in PSDs of electrons took place 
mostly below the resonance curve corresponding to the upper bound of 
the dropout energy, E‖ = 5.0 MeV and above the curve corresponding to 
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Figure 3.  Map of Antarctica with Neumayer Station (VNA) and the 
magnetic footprint of the spacecraft tracks shown.

Figure 4.  OMNI data showing IMF orientation (top panel) and solar wind dynamic pressure (second panel), 
SuperMAG ring current index (SMR, third panel), and SuperMAG auroral electrojet index (SME, bottom panel) on 
February 27, 2019. The red rectangles (a) and (b) indicate the time periods when the EMIC wave events were observed 
by Spacecraft A and B, respectively. EMIC, electromagnetic ion cyclotron.
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the lower bound of the dropout energy, E = 0.9 MeV. The electron dropout is more dominant at L* = 4.5 
(Spacecraft A) and at L* = 4.5–5.0 (Spacecraft B). The PSD observations clearly suggest localized (in L*'s) 
electron dropout events associated with EMIC waves.

The resonance curves were calculated from the relativistic resonance condition for the parallel EMIC waves 
(e.g., Silin et  al.,  2011; Summers et  al.,  1998) and transformed to adiabatic coordinates (see, e.g., Boyd 
et  al.,  2014). We note that, unlike for the constant total energy curve (green curve), all energies (paral-
lel, perpendicular and total) vary along the resonance curves (magenta curve). The curves in each panel 
correspond to the resonance at L* = 4.5 where the waves were observed. Thus, these curves may not be 
meaningful at smaller L*'s although they might be used to identify the region where PSD changes would be 
expected to be observed if there were waves at these L*'s. In addition, since the pitch angle decreases with 
increasing K along constant energy curves, one can notice that the PSD changes at lower pitch angles (larger 
K) were more significant than those at larger pitch angles (smaller K) as shown in Figure 6 (at L* = 4.5, in 
particular).

Figure 7 presents proton data during four NOAA spacecraft passes near the geomagnetic footprint of Van 
Allen Probes before and during the electron dropout event associated with the EMIC waves. The green 
rectangles denote the approximate time ranges during the conjunction flight near the footprint of Van Al-
len Probes. See the map in Figure 3 for locations of the spacecraft footprints. The lower energy channels 
(top three panels in the figure, 39, 115, and 332 keV, respectively) show increases in precipitating proton 

KIM ET AL.

10.1029/2020JA028503

7 of 14

Figure 5.  The temporal progression of phase space densities (PSDs) and their distributions in L*-shell values for Spacecraft A and B. Top: L*-shell changes of 
each spacecraft. The thick magenta traces indicate the times when the EMIC waves were observed by Spacecraft A and B, respectively. Bottom: PSD versus L* 
for two different first adiabatic invariants, μ = 2,000 MeV/G (left) and 4,000 MeV/G (right). The second adiabatic invariant, K = 0.15 REG1/2 for all cases.
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flux (black traces), which are typically considered to be an indicator of the interaction of the ring current/
plasma sheet protons with EMIC waves (e.g., Engebretson et al., 2015; Miyoshi et al., 2008; Yahnin & Yah-
nina, 2007). The highest proton energy channel (>6,174 keV, the bottom panels of the figure) of the space-
craft is often used as a proxy measurement of relativistic electrons. The first column shows NOAA-15 data 
before the dropout (13:20–13:30 UT), in which there is no clear precipitating particle flux (black traces, 0° 
telescopes). The middle and last columns present NOAA-18 and NOAA-15 data during the dropout event, 
displaying enhancement of precipitating relativistic electron flux. There were no further clear observations 
of precipitating flux enhancement during the next NOAA spacecraft passes (figures not shown here).

4.  Discussion and Summary
This study presents direct evidence of radiation belt electron dropout due to EMIC waves as observed by the 
Van Allen Probes spacecraft, a mission that has been providing invaluable data for the study of radiation 
belt and ring current dynamics. It is well known that EMIC waves play a critical role in scattering radiation 
belt electrons from a number of theoretical and modeling studies quantifying pitch-angle scattering mecha-
nisms due to EMIC waves (as in the references listed in Section 1). Observations of such an interaction are, 
however, still rare, given the limited spatiotemporal coverage of space-borne instrumentation. The event in 
this study presents a well-defined correspondence between EMIC wave occurrence and relativistic electron 
dropout as seen in PSD following ring current injection thanks to the confluence of multipoint data sets.

The injection and EMIC wave events in this paper occurred at L = ∼5–6 near the dusk sector, similar to the 
previous observations (e.g., L. W. Blum et al., 2015; Remya et al., 2018). It has been statistically shown that 
with higher auroral activity (i.e., higher AE index), the wave occurrence favors the afternoon sector (Saikin 
et al., 2016). This is mainly related to injected ring current ions interacting with the cold plasmaspheric 
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Figure 6.  The PSD ratio of “pre-event pass” to “event pass” (PSDPre/PSDDuring) and to “post-event pass” (PSDPre/PSDPost) in the μ–K space for different L* 
values, estimated from the spacecraft A (panel a) and spacecraft B (panel b) observations. The solid and dashed magenta lines represent resonance μ–K curves 
corresponding to the minimum resonant energies, E‖ = 5.0 and 0.9 MeV, respectively at L* = 4.5. The dashed green lines represent μ–K curves of the constant 
total energy E = 0.9 MeV at L* = 4.5.
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population, thus lowering the EMIC instability threshold (e.g., Halford et al., 2015; Kozyra et al., 1984). 
Recent Van Allen Probes studies by Remya et al. (2018, 2020) showed EMIC wave events triggered by ion 
injection during isolated substorms with no influence from geomagnetic storms or enhancements in solar 
wind dynamic pressure, suggesting that an associated decrease in the geomagnetic field and enhanced tem-
perature anisotropy provide free energy for wave generation. The EMIC waves in our study also occurred 
after the solar wind dynamic pressure change became stable (Figure 4). The ground magnetometer data 
(Figure 2) indicate that the onset of the wave activity was at ∼13 UT, accompanied by the decrease in solar 
wind dynamic pressure and enhanced auroral activity (Figure 4), perhaps tied to ion injection.

It is apparent that the electron dropout, seen as decreases in PSD, was associated with the EMIC waves 
which began at ∼13 UT (supported by the ground data) as shown in Figure 5. It is, however, still challenging 
to clearly identify the cause of dropout as various loss mechanisms have been proposed and either one or 
combination of those can contribute to loss: outward adiabatic transport (e.g., H.-J. Kim & Chan, 1997; X. 
Li et al., 1997), outward radial diffusion (e.g., Shprits et al., 2006), magnetopause shadowing (e.g., Turner 
et al., 2012, 2013; Xiang et al., 2017), and pitch-angle scattering and precipitation due to resonant interac-
tion with plasma waves (chorus, hiss, and EMIC) (e.g., Miyoshi et al., 2008; Summers & Thorne, 2003; Turn-
er et al., 2014; Usanova et al., 2014). Nevertheless, the events in our study provide evidence to support the 
idea of the dropout due to the EMIC waves, ruling out the other mechanisms because (1) the PSD decreases 
were seen in a limited L* range of 4–5 (in particular, Spacecraft A observed more dominant PSD decreases 
near L* = 4.5 than higher L*'s; (2) the PSD decreases are energy-dependent (μ and K); (3) the μ and K profile 
follows the estimated energy range (1.2–3.9 MeV, Figures 6a and 6b); (4) no clear chorus waves and hiss 
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Figure 7.  NOAA spacecraft observations of proton fluxes before (first column, 13:20–13:30 UT) and during (middle and last columns) the EMIC wave event 
observed by Van Allen Probes near the footprint. The black and red traces indicate precipitating (0°) and trapped (90°) particle flux, respectively. The green 
dashed rectangles denote the approximate time ranges during the conjunction flight near the footprint of Van Allen Probes before and during the dropout. 
EMIC, electromagnetic ion cyclotron.
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were observed (figure not shown here); (5) last closed drift shells and magnetopause standoff positions 
obtained by the Tsyganenko model indicated no clear magnetopause shadowing effect during the event 
period (figure not shown here); (6) precipitation of relativistic electrons was observed by multiple NOAA 
spacecraft passing near the magnetic footprint; (7) there was persistent Pc1 wave activity over the course of 
the dropout event as observed by the ground magnetometer. In fact, there are recent reports of Van Allen 
Probes observations of EMIC wave-induced radiation belt electron dropout (e.g., L. W. Blum et al., 2020; 
Engebretson et al., 2015, 2018; Sigsbee et al., 2016; Xiang et al., 2017; Zhang et al., 2016). Our study provides 
a more direct and comprehensive view of EMIC wave-induced dropout event.

We summarize our study as follows:

1.	 �EMIC waves were observed simultaneously in space (Van Allen Probes) and on the ground
2.	 �Van Allen Probes particle data show that the wave event was associated with a particle injection
3.	 �PSDs were investigated to reveal that there was a significant energy-dependent relativistic electron drop-

out over a limited L-shell range of 4–5 during and after the EMIC wave event
4.	 �NOAA spacecraft data show relativistic electron precipitation during the dropout event

Data Availability Statement
All Van Allen Probes data are publicly available on the following websites: http://www.RBSP-ect.lanl.gov/ 
(ECT), https://emfisis.physics.uiowa.edu/data/index (EMFISIS), and http://rbspice.ftecs.com/Data.html 
(RBSPICE). NOAA POES particle data are publicly available at https://www.ngdc.noaa.gov/stp/satellite/
poes/dataaccess.html.
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