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Abstract 

Understanding how resilient rangelands are to climatic disturbances such as drought is of major 

importance to land managers. The resilience of ecosystems can be reduced by livestock grazing and by 

environmental conditions. Most studies quantifying resilience are based on model simulations. 

However, natural time series from satellite data offer the possibility to infer aspects of resilience from 

real systems. The objective of this study was to investigate two aspects of ecological resilience, namely 

resistance to climate variability and recovery from drought, by applying a change detection method 

(Breaks For Additive Seasonal and Trend; BFAST) spatially on a 28-year Landsat NDVI time series in a 

dry rangeland in southern Cyprus. First, we used the number of breakpoints fitted by the BFAST model 

as an inverted proxy for long-term vegetation resistance to climate variability (the ability to withstand 

change during a disturbance reduces the likelihood to trigger a breakpoint in the time series). Second, 

we used the linear slope of the BFAST model after a known drought as a proxy of the recovery rate of 

the vegetation. This information was then used to analyse the spatial distribution of the total number 

of breakpoints and of the NDVI recovery trend in relation to grazing and environmental properties. 

Our results show that high NDVI and a northern orientation (i.e. favourable environmental conditions) 

were associated with a highly resilient system, due to high resistance to climate variability and fast 

recovery after drought. Intermediate conditions were associated with low resistance. Unfavourable 

conditions and high grazing intensities were associated with an unresponsive ecosystem state 

characterised by high resistance and slow recovery after a drought event. Low grazing intensities 

positively affected the NDVI recovery trend, but did not improve resistance. On northern slopes, 

terrain slope had a positive effect on the NDVI recovery trend, while on southern slopes it had a 

negative effect. Our satellite-driven approach has a strong potential for resilience monitoring, because 

it can be applied on broad spatial and temporal scales in areas with low availability of field data. 

Moreover, it allows to jointly extract two important components of resilience: resistance and recovery 

rate.  
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1. Introduction 

In southern Europe, rangelands are strained by an erratic Mediterranean climate with frequent 

droughts and intensive land use practices, such as livestock grazing. This combination of anthropogenic 

and climatic stressors makes them particularly susceptible to land degradation. In the last decades, 

there has been an increase in temperature throughout Europe as well as decreasing precipitation in 

southern Europe (IPCC, 2014). A marked increase in extreme climate events, such as heavy 

precipitation events and droughts is predicted for Europe due to climate change, (IPCC, 2014). How 

resilient rangelands are to climatic anomalies and how this is affected by land use, is therefore of major 

importance to land managers. We developed an innovative satellite-driven approach to spatially 

quantify two aspects of ecological resilience: (i) resistance to climate variability and (ii) recovery from 

drought, with different pressures due to grazing. 

Ecological resilience has been described by Holling (1996, 1973) as a system’s ability to absorb 

perturbations and persist without being flipped into another regime of behaviour, also termed “basin 

of attraction”. In resilience theory, this concept has often been characterised by use of a “ball-in-a-

cup” model (see e.g. Fig. 2 in Scheffer et al., 2012 for a graphical representation), where valleys 

represent basins of attraction and the ball represents the system state (Dakos et al., 2014; Holling, 

1973; Peterson et al., 1998; Scheffer et al., 2001, 2012, 2015; van Nes and Scheffer, 2007). In this 

picture, resilience is theoretically depicted as the size of the basins of attraction. However, ecological 

resilience is hard to measure directly (van Nes and Scheffer, 2007). As a good proxy for the size of the 

basin of attraction the rate of recovery after small perturbations has been proposed (Scheffer et al., 

2015; van Nes and Scheffer, 2007). The recovery rate becomes slower when ecological resilience is 

reduced. This relationship has been shown to hold true also for larger experimental or natural 

perturbations (van de Leemput et al., 2018; van Nes and Scheffer, 2007). In this work, we use the 

recovery rate of vegetation after a drought to approximate the ecological resilience of the system to 

drought. To complement recovery rate as a measure of resilience, we additionally assess the long-term 
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resistance of the ecosystem to climate variability over 28 years. This was motivated by recent studies 

that emphasize the need to jointly consider recovery and resistance when measuring the resilience of 

ecosystems to disturbance (Hodgson et al., 2015; Ingrisch and Bahn, 2018; Nimmo et al., 2015). We 

base our measure of resistance on Hodgson et al. (2015), where resistance is described as the 

“instantaneous impact of exogenous disturbances on the system state”. In our study, we consider 

climate variability as an external process affecting vegetation dynamics. 

Most studies attempting a quantification of ecological resilience have been based on simulated data. 

Yet, with the increasing availability of remotely sensed data, satellite-driven approaches have been 

established (see e.g. Washington-Allen et al., 2008; Frazier et al., 2013; De Keersmaecker et al., 2015; 

Schwalm et al., 2017). In this study, we used remotely sensed time series of the Normalized Difference 

Vegetation Index (NDVI), which provide an excellent basis to study long-term vegetation dynamics as 

well as vegetation responses to disturbances such as drought. Satellite data has the advantage of being 

consistently collected over time at a global scale. This consistency in measurement makes it possible 

to monitor vegetation dynamics at a high cadence, instead of reverting to temporal snapshots, e.g. 

before and after a disturbance. According to Kennedy et al. (2014) a temporal consistency of 

observation is critical for understanding ecosystem dynamics. The Landsat archive contains the longest 

record of global- scale medium spatial resolution earth observation data (Hansen and Loveland, 2012). 

The Landsat 5 TM, 7 ETM+ and 8 OLI sensors have a repeat cycle of 16 days each, while satellite orbits 

are offset to allow 8-day repeat coverage of any Landsat scene when two Landsat sensors are flying 

concurrently. Landsat TM, ETM+ and OLI data are collected at a spatial resolution of 30 m in the VIS, 

NIR and SWIR spectral bands. Its spatial scale makes Landsat data especially suitable for addressing 

ecological questions (Kennedy et al., 2014) and allows for the detection of small changes (Zhu and 

Woodcock, 2014). However, its relatively low temporal frequency is a drawback, especially since the 

number of pixels available for the analysis of vegetation dynamics is reduced by cloud coverage. 

Furthermore, there is large variation in the regional annual coverage of Landsat 5 data due to technical 

problems with downlinking acquired data to the ground stations (Goward et al., 2006). In most places 
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of the world outside the United States this large variation yields a far lower frequency of available 

images, with several long data gaps, especially in the 80s and 90s. After the launch of Landsat 7 ETM+ 

in 1999 the number of acquisitions increased with the introduction of a global acquisition plan. 

Accordingly, some international ground stations switched their reception from Landsat 5 TM to 

Landsat 7 ETM+. However, several of them changed their operations again to Landsat 5 TM after the 

failure of the Landsat 7 ETM+ scan line corrector system in May 2003 (Kovalskyy and Roy, 2013). 

The NDVI is a measure of the photosynthetic activity of plants. Since the earliest reported use of the 

NDVI in the Great Plains study by Rouse et al. (1973) it has already been widely applied to study 

vegetation dynamics, monitor habitat degradation, as well as effects of disturbances such as drought 

(Pettorelli et al., 2005). While the NDVI is known to be affected by soil background, Weiss et al. (2004) 

demonstrated its effectiveness for capturing the intra- and inter-annual variation in dryland 

vegetation. Gaitán et al. (2013) found the NDVI to be the best predictor of ecosystem attributes, such 

as vegetation cover, compared to several other vegetation indices in a dryland. Furthermore, NDVI 

variability was shown to agree with precipitation variability (Gaitán et al., 2013; Helman et al., 2014), 

and to correlate with drought in large areas of the world (Vicente-Serrano et al., 2013). Therefore, in 

this study we use the NDVI as a well-established vegetation index to assess the response of vegetation 

to climate variability. 

Satellite time series offer the possibility to infer aspects of resilience from real world systems. Van Nes 

and Scheffer (2007) suggest estimating recovery rates after stochastic disturbances in natural time 

series as an alternative to experimental perturbations. However, especially in seasonal, climate-driven 

time series of vegetation with large natural variation, it is difficult to distinguish between the intrinsic 

seasonal variation and a disturbance (e.g. see extensive review on change in grasslands in Henebry, 

2019). To this effect, several change detection methods have been developed, which are able to detect 

abrupt changes (henceforth “breakpoints”) in time series, while accounting for seasonality and trends 

present in the data (Ben Abbes et al., 2018). One of these is the Breaks For Additive Seasonal and Trend 
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(BFAST) method (Verbesselt et al., 2012, 2010a, 2010b). BFAST type approaches have been validated 

and tested for detecting and monitoring abrupt vegetation changes in forested landscape (DeVries et 

al., 2015b; Dutrieux et al., 2015; Lambert et al., 2013; Verbesselt et al., 2012, 2010a), as well as in 

drylands (Browning et al., 2017; Watts and Laffan, 2014), and were found successful in detecting 

drought induced trend changes (Huang et al., 2014; Verbesselt et al., 2012). Even though the original 

BFAST method was developed for regularly spaced time series, adapted versions of the algorithm that 

are able to deal with missing data have been applied in several studies (de Jong et al., 2013; DeVries 

et al., 2016; Verbesselt et al., 2012). In this study, we applied an adapted version of BFAST, based on 

DeVries et al. (2016), to a dense long-term Landsat time series of the NDVI, making use of all available 

data. 

Intensive livestock grazing has been shown to reduce the resilience of dryland ecosystems (Holling, 

1996; Ruppert et al., 2015). For example, rangelands in savannas of southern Africa used for cattle 

grazing lose species diversity in favour of grazing resistant species, which are often less resilient to 

drought; this loss in diversity increases the likelihood for the system to flip into another system state 

dominated by woody shrubs (Dougill et al., 1999; Holling, 1996). Overgrazing reduces vegetation cover 

(Kawamura et al., 2005) and trampling further damages the soil, which strongly enhances the 

ecosystems susceptibility to soil erosion (Zhou et al., 2010). Southern-oriented slopes (in the northern 

hemisphere), as well as steep slopes, are particularly vulnerable to soil erosion processes. A southern 

orientation means a maximum exposure to solar radiation, which leads to particularly high 

evapotranspiration rates. On steep slopes, the time for water infiltration into the soil is low, yielding 

high water runoff rates. In both cases, the conditions are unfavourable for vegetation. The combined 

effect of a loss of vegetation cover and soil erosion reduces the capacity of the ecosystem to resist and 

recover from drought (Mayor et al., 2013; Zhou et al., 2010). 

In this study, we aimed to investigate two aspects of ecological resilience: (i) resistance to climate 

variability and (ii) recovery from drought by applying a change detection method (BFAST) spatially on 
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a 28-year Landsat NDVI time series in a dry rangeland in southern Cyprus. As a relative inverted 

measure of ecosystem resistance to climate variability, we use the total number of breakpoints fitted 

by BFAST during the study period (1984-2011). This choice was motivated by studies that validated and 

tested BFAST type approaches, showing that breakpoints can be used to find drought induced trend 

changes (Huang et al., 2014; Verbesselt et al., 2012). Using the number of breakpoints as an inverted 

measure of ecosystem resistance is an innovative approach which, to our knowledge, has not been 

used in previous studies. As a proxy for the recovery rate of the vegetation after a drought, we used 

the modelled linear slope of the NDVI (henceforth “NDVI recovery trend”), succeeding breakpoints 

that occurred during a prolonged dry period (hydrological years 2005 to 2008 from 01.10.2004 until 

30.09.2008). Our research objectives were: 1) to quantify and map ecosystem resistance to  climate 

variability and the recovery rate after a drought (total number of breakpoints, NDVI recovery trend) in 

our study area, and 2) to analyse the spatial distributions of our measures for resistance and recovery 

in relation to grazing intensity, mean NDVI, terrain slope and aspect.  

In our study area, we assumed that climatic forces were the main driver of breakpoints, because 

besides grazing no other temporal causes of changes in vegetation dynamics were known by local land 

users. We expected that the likelihood of individual pixels to experience a breakpoint (i.e. our inverse 

measure of resistance) and the recovery after a drought would be affected by the spatial variation of 

grazing intensity and environmental factors. We assumed that a healthy ecosystem has a higher 

resilience (being resistant and recovering fast) to climate variability than a degraded one. Regarding 

our proxy for recovery rate after drought, we expected a negative relationship with all factors that 

promote degradation in our study area, namely a high grazing intensity, a southern orientation and 

steep slopes. The same holds true for the mean NDVI, which can serve as a relative inverted proxy for 

degradation related to a loss of vegetation cover. When looking at the spatial density distribution of 

resistance to climate variability, we expected a bimodal shape with regard to the degradation state of 

the ecosystem (Figure 1): pixels with few breakpoints (i.e. high resistance) should be overrepresented 

in areas that are likely to be in a healthy ecosystem state (phase C in Figure 1; associated with low 
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grazing, very high NDVI, shallow, northern slopes), while pixels with many breakpoints (i.e. low 

resistance) should be overrepresented in areas that a likely to be in transition to a degraded state 

(phase B in Figure 1). However, once the ecosystem has reached a strongly degraded state (associated 

with very high grazing intensity, very low NDVI, steep, southern slopes), or in areas with rocky surfaces, 

it cannot react to climate variability any longer (phase A in Figure 1). In such an unresponsive 

ecosystem state, we also expected an overrepresentation of pixels with no or one breakpoints (i.e. 

high resistance); yet in this case high resistance would not be an indication of ecosystem health, and 

would be expected to occur in combination with a low recovery rate.  

 

Figure 1. Graphical hypothesis of resistance related to ecosystem state. The spatial density distribution of Landsat pixels 

representing high resistance were expected to show a bimodal pattern with regard to ecosystem state (blue line). Maxima 

were expected at a strongly degraded (phase A) as well as at a very healthy (phase C) ecosystem state. Pixels representing 

areas with low resistance (red line) were expected to be concentrated at intermediate ranges of ecosystem health, associated 

with areas in transition between states (phase B). 

Our hypothesis about resistance and recovery with regard to the degradation state of the ecosystem 

is supported by López et al. (2013). They suggested that a healthy ecosystem state would be associated 

with high resistance in combination with high recovery potential; beyond a critical threshold the 

ecosystem would become unstable, which would be associated with a reduction in resistance and 

recovery potential; in a highly degraded state the ecosystem would reach an indifferent stable dynamic 
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equilibrium, which would be associated with enhanced resistance to a disturbance factor, but with loss 

of recovery potential (López et al., 2013). Our hypothesis is further in line with the two steady state 

model by Noy-Meir (1975), where there is a stable/resistant state with regard to grazing at high plant 

biomass as well as at low plant biomass (in the later phase, most of the soil is bare and only less 

palatable plant species are present). Between those two stable/resistant states is a “turning point” 

where the ecosystem has low resistance.  
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2. Materials and Methods 

2.1. Study Area  

The study area, Randi Forest, is located in southern Cyprus, near Pissouri town (34°40'20"N 

32°38'50"O). The area was originally a pine woodland, which was cut around 1930 (pers. comm. local 

farmer). Since then, the area is covered by an open shrubland with mosaics of vegetation patches 

including some grasses. It is grazed mostly by goats, but also some sheep. There is a wide diversity of 

shrubs both palatable (e.g. Sarcopoterium spinosum) and unpalatable (e.g. Urginea maritima). Woody 

vegetation in the area consists mainly of small bonsai-type shrubs. This shape is caused by the goats 

that eat the outer palatable sprouts while avoiding the thorny inner parts. Palatable perennial herbs 

mainly grow within thorny shrubs, thereby being protected from grazing. The diversity of annuals is 

large, including small grasses, legumes and forbs. The area is not owned by the shepherds, but they 

are commons open to all. Since the 1970s grazing pressure has strongly increased, due to a growing 

tourism development and coastal urbanization in the Pissouri district, which reduced the total area 

available for livestock grazing. This development has led to strong overgrazing in the Randi Forest 

(Daliakopoulos and Tsanis, 2014). 

The climate is Mediterranean: summers are dry and hot, while winters are relatively wet (see Figure 

S1 for monthly rainfall and temperature). The average annual rainfall in our study period (1.10.1983-

30.09.2012) was 396 mm. Mean daily maximum temperature varies between 30°C (July and August) 

and 17°C (January and February). In the last decades there has been an increasing trend in aridity due 

to rising temperatures and a higher frequency of years with low precipitation and drought (Republic 

of Cyprus: Meteorological Service, 2019). The soils are derived from marls and are shallow Calcaric 

Regosols (IUSS Working Group WRB, 2015) with a light colour and high calcium carbonate content (60-

70%). The area is moderately hilly with an elevation between 65 and 281 m above sea level. Most 
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hillslopes range between 10° and 20° and are predominantly facing south-west (based on SRTM v3.0 

digital elevation model). 

Based on interviews with local farmers, we selected our area of interest. In our study area, there used 

to be seven farms (Figure 2). According to the farmers, the goats usually walk a maximum distance of 

800 meters away from the farms. Therefore, we included everything within a 1000 m distance from 

the 7 farms (using an extra buffer of 200 meter). Between 2000 and 2006, a highway was built. To 

exclude disturbances by this road, we excluded the area at the southern side of the highway that 

blocked cattle from accessing this area. Further, we drew a circle with a radius of 800 m around a farm 

north of our study area. This region was excluded to eliminate the influence of this farm. This selection 

process resulted in our area of interest (Figure 2), covering 3.1 km2 (3439 Landsat pixels). 

 

Figure 2. Area of interest (3.1 km2, 3439 Landsat pixels). Red stars show all 7 farms in the area of interest. Blue triangles 

represent farms outside the area of interest. Grey circles of 1000 m radius are drawn around the farms of interest to show the 

grazing area related to those farms. Final area for the grazing study is outlined in red. 
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2.2. Satellite data acquisition and data pre-processing 

This study makes use of all available Landsat 5 and 7 data available for the time period 1984-2011. The 

spectral response functions of the bands required for the calculation of the NDVI of the TM and ETM+ 

sensors aboard Landsat 5 and 7 are almost identical. This allows inter-sensor comparability of the 

information collected by these bands, which is essential when aiming at time series analysis that is by 

nature highly sensitive to external error sources. Landsat TM, ETM+ data are collected decentralized 

via several ground stations around the globe. Both the archives from the U.S Geological Survey (USGS) 

and the European Space Agency (ESA) have acquired a comprehensive collection of Landsat scenes, 

which are available for free download. However, the data collections in neither archive are complete, 

and at the time of our study, at WRS-II path/row 176/36, most scenes from the 80s were only available 

in the ESA archive. We therefore downloaded all available level-1 ground-terrain-corrected TM and 

ETM+ (excluding SLC-off) Landsat imagery (542 scenes in total) from the ESA archive for the time period 

1984-2011.  

The collected data was atmospherically corrected to surface reflectance using the Landsat Ecosystem 

Disturbance Adaptive Processing System (LEDAPS, version 2.7.0) (Masek et al., 2006; Schmidt et al., 

2013). All scenes were included independent of total cloud cover, but subsequently pixels affected by 

clouds, cloud shadow, snow and missing data were masked out on pixel level based on the “QA” layers 

produced by LEDAPS. Hence, the total number of valid observations used for our analysis varies slightly 

within our study area (Figure S2). Since we found that there were geospatial shifts in the sub-pixel 

range present in the data that would hamper multi-temporal analyses, all scenes were geospatially co-

registered to a master scene using the software AROSICS (Scheffler et al., 2017). For details about the 

coregistration with AROSICS see S2. Finally, several erroneous scenes were sorted out, e.g. scenes 

where the co-registration failed due to high cloud cover, or scenes that were shifted over the sub-pixel 

range. In total, 476 Landsat scenes (414 TM and 62 ETM+ scenes) were included in our analysis (Figure 

S3). On average we have 17 (± 6.3 SD) scenes per year. There are no extensive data gaps in the time 
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series but temporal image density varies (Figure 5F). In 1999 to 2002 image density is higher than the 

average, while in 1990 and 2003 very few images were available. All datasets were projected to UTM 

(Universal Transverse Mercator) coordinate system zone 36N (WGS 1984). 

2.3. Change detection in NDVI time series and extraction of proxies for 

resistance and recovery 

We chose the NDVI as a climate driven indicator of ecosystem dynamics. Regarding the effect of the 

choice of vegetation index on BFAST performance, a study by Watts and Laffan (2013), which used 

NDVI and the Enhanced Vegetation Index (EVI) in a BFAST time-series analysis in a semi-arid 

environment, concluded that there was no clear advantage in using one particular index. Here, NDVI 

is used as a proxy for physical vegetation properties like fraction cover or biomass. NDVI is similarly 

frequently used in other studies in a range of environments including drylands (Vicente-Serrano et al., 

2013; Watts and Laffan, 2013) because of its strong relation to structural and functional characteristics 

of vegetation (Gaitán et al., 2013; Simoniello et al., 2008) and its simplicity in use. 

The NDVI was calculated for each scene, resulting in an irregular time series for each pixel of our study 

area. Additive season-trend models were fitted to our data as described in detail in Verbesselt et al. 

(2010b), using the R package “bfast” (Verbesselt et al., 2012, 2010a, 2010b), where the data are 

decomposed into a linear trend and a harmonic, seasonal part. Since our time series is irregularly 

spaced, we used a frequency of 365. To describe the seasonality in our data, we used three harmonic 

terms. Using a higher order resulted in over-fitting, while a lower order did not adequately capture the 

intra-annual variation in our data. 

To detect breakpoints in the time series, we followed the “breakpoint” approach originally described 

in Bai & Perron (1998) and implemented in the R package “strucchange” by Zeileis et al. (2003, 2002). 

First, an ordinary least squares (OLS) residuals-based Moving Sum (MOSUM) test was performed to 

test for a deviation from structural stability. If the MOSUM test was significant (p-value <0.05), 
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breakpoints were fitted. The optimal number of breakpoints was determined by minimizing the 

Bayesian Information Criterion (BIC) and the position of the breakpoints (breakdates and confidence 

intervals) were chosen by globally minimizing the residual sum of squares. The parameter “h”, which 

sets the minimum number of observations required between two breakpoints, was set to 0.15, based 

on recommendations in Bai and Perron (1998) as well as Watts and Laffan (2013); the latter found an 

advantage of using h values of 0.2 or smaller. With our 476 scenes, setting “h" to 0.15 results in a 

minimum of 71 scenes (approximately 3.4 years, depending on data availability and cloud conditions) 

between two breakpoints. The total number of breakpoints and their time of occurrence for each pixel 

was extracted and saved for further analysis. 

To study how the NDVI recovery trend after a drought was affected by grazing and topographic 

properties, we selected pixels that experienced a drought-associated breakpoint in the hydrological 

years 2005 to 2008 (01.10.2004-30.09.2008) on a pixel by pixel basis. During this time period, a 

majority (77%) of the pixels in the study area experienced at least one breakpoint (Figure 5D). This 

widespread occurrence of breakpoints throughout our study area cannot be explained by small-scale 

disturbances or local land use change, nor by temporal variation in data availability. A denser time 

series increases the likelihood to detect a breakpoint, yet it is not above average during the time period 

in question (Figure 5F). Climatic drivers, however, affected the area as a whole. The hydrological years 

2005 to 2008 (01.10.2004-30.09.2008) were relatively dry, including two major droughts (2006 and 

2008). This dry period was preceded by three successive wet years (from 2002 until 2004) (Figure 5E). 

In this study we therefore assume that the widespread occurrence of breakpoints throughout our 

study area between 2005 and 2008 was driven by drought. To make this assumption more robust, we 

calculated the relative change in the mean NDVI of the three years before and after the breakpoint. 

Only if the NDVI dropped by at least 10% the pixels were included in the further analysis (81% of all 

breakpoint pixels). In the rare case that more than one breakpoint was found between 2005 and 2008 

the first one was selected for further analysis. Additive season-trend models (Verbesselt et al., 2010b) 

were fitted to the segment after the breakpoint, using the robust regression approach described in 
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DeVries et al. (2016) that is particularly robust to outliers. The slope of the linear trend component was 

extracted from the model parameters and used as a measure for the recovery rate of the vegetation 

after a drought (“NDVI recovery trend”). 

Finally, maps of the number of breakpoints and the NDVI recovery trend, together with the location 

and size of the farms in 1987 and terrain contour lines, were produced for our study area. All satellite 

data processing steps are summarized in Figure 3. The code for the adapted BFAST analysis and for 

extraction of the number of breakpoints and NDVI recovery trend can be found at 

“https://github.com/jennifervk/resInd”. 

 

 

Figure 3. Scheme of the satellite data processing steps. 

The BFAST analysis, together with two high resolution satellite images taken in August 2003 and 2009, 

is shown for three exemplary Landsat pixels (A, B, C) located in the south of our study area (Figure 4 & 

Figure 5 A-C). The pixels show varying dynamics: pixel A is located on a southeast-facing slope with few 

shrubs, little grass cover and visible rill erosion (Figure 4). It has three breakpoints (i.e. low resistance), 

and a low NDVI recovery trend after the breakpoint in 2005 (Figure 5A). This combination indicates 

low ecosystem resilience. Compared to pixel A, pixel B has higher vegetation cover that also contains 
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an herbaceous layer (Figure 4). It has only two breakpoints and shows a steeper recovery trend after 

the breakpoint in 2006 (Figure 5B). This combination indicates higher ecosystem resilience compared 

to pixel A. Pixel C mostly contains bare soil (Figure 4) and has no breakpoints (Figure 5C). This pixel 

represents the almost barren, unresponsive state, for which we expected no or one breakpoint. 

 

 

Figure 4. Example 30x30 m Landsat pixels A, B & C. Two Quickbird images (panchromatic, spatial resolution: 0.6 m) taken on 

27.08.2003 and 04.08.2009. Results of BFAST analysis for pixels A, B & C are shown in Figure 5 A-C. 
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Figure 5. BFAST results for example pixels A, B, C. The two arrows indicate the time point of the Quickbird images shown in 

Figure 4. Relative frequency of breakpoints (D) and rainfall anomaly (µ = 396 mm, SD = 92 mm) (E) in the study area for the 

hydrological years 1984-2012. The red borders around the bars in E and F indicate the period of drought (hydrological years 

2005 - 2008) that was selected to study the NDVI recovery trend after a drought breakpoint. (F) Number of available TM and 

ETM+ (excluding SLC-off scenes) scenes from the ESA archive that were included in the analysis. All scenes irrespective of cloud 

cover were included; clouds and cloud shadows were masked on pixel level. 
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2.4. Topographic properties and grazing 

Both aspect and terrain slope can affect the vegetation resilience to climate variability. We obtained 

these topographic properties from the digital elevation model provided by the Shuttle Radar 

Topography Mission (SRTM v3.0) at a spatial resolution of 1 arc-second. To align the elevation cells 

with the Landsat raster, a bilinear resampling was performed in ArcGIS 10.6.1. Thereafter, aspect (in 

degrees) and terrain slope (in %) were obtained with the ArcGIS Spatial Analyst Toolbox.  

Grazing by goats affects the vegetation dynamics both directly, by reducing vegetation cover, and 

indirectly, by trampling. In this paper, we look at the combined effects without differentiating between 

direct and indirect aspects. Local farmers were interviewed to estimate the grazing intensity in our 

study area. The farmers explained that the goats can walk freely throughout the study area during 

several hours of the day throughout the whole year. The farmers occasionally give additional fodder, 

mainly in summer, due to sparse palatable vegetation in this season. The amount of fodder given varies 

a lot between year and season. The animals prefer to stay close to the farm, so our estimated grazing 

intensity decreases with the distance to the farm. The farmers also explained that when the animals 

want to reach an area up- or downhill, they do not walk straight uphill. Instead, they have created 

walking paths along the hills, thereby increasing the distance to walk uphill. We received information 

about the number of animals for each of the seven farms around 1987 and 2007, respectively.  

This information from the local farmers was used to estimate the relative grazing intensity 

(livestock/m) for each 30x30 m pixel (x,y) with the path distance tool in ArcGIS. As input variables, we 

used the number of animals per farm (𝑖) and the distance between the pixel and the farm: 

𝐺𝑟𝑎𝑧𝑖𝑛𝑔 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦𝑥,𝑦 = ∑
𝑎𝑛𝑖𝑚𝑎𝑙𝑠𝑖

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖(𝑥,𝑦)

𝑛

𝑖=1

 

This calculation is in agreement with other studies (e.g. Manthey and Peper 2010), which show that 

grazing can be estimated by the inverse distance from a hotspot, which is in our case the farm. A 

vertical friction factor (symmetric inverse linear with the default slope of -1/45 in ArcGIS) was added 
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to the distance to represent the extra ‘friction’ for the goats to walk up- or downhill as explained by 

the local farmers. The distribution of estimated grazing intensity is strongly right skewed. Therefore, 

we removed all grazing values above the 97.5% quantile. These calculations resulted in estimations of 

the grazing intensities for both 1987 and 2007 (S4). Our estimates of 0-9 livestock/m are in the same 

range as found in another semi-arid rangeland by Manthey and Peper (2010). For the statistical analysis 

of the NDVI recovery trend, we have log-transformed the grazing intensities with 

𝑙𝑜𝑔 (𝑔𝑟𝑎𝑧𝑖𝑛𝑔 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 –  1). This transformation gave the best approximation to a normal 

distribution.  

2.5. Data Analysis  

To study the relationship between grazing intensity, terrain slope, aspect, mean NDVI and the number 

of breakpoints spatially on a pixel by pixel basis, we sorted all pixels into breakpoint categories from 

zero to four. Pixels with five breakpoints were excluded, because only two pixels were in this category. 

The mean NDVI was calculated based on all available observations between 1984 and 2011 for each 

individual pixel. 

We calculated the spatial Kernel probability density distributions of each breakpoint category over 

grazing intensity, mean NDVI, terrain slope and deviation from south (i.e. deviation from maximum 

solar radiation), and compared them to the overall distributions of these variables in our study area. 

We assumed that a random sample of pixels should not deviate considerably from the overall 

distribution of the studied variable; if a distinct deviation can be observed, it must be caused by some 

mechanism related to that variable. A two-sample Kolmogorov-Smirnov test (henceforth “KS-test") 

was performed to test against the null hypothesis that the breakpoint categories were drawn from the 

same underlying continuous distributions as the overall distributions of the respective variables in our 

study area, using the R package “stats” (R Core Team, 2017) at a significance level of 𝛼 =  0.01. To 

visually highlight the differences to the overall distributions of grazing intensity, mean NDVI, terrain 

slope and aspect, we divided the density of each breakpoint category (estimated at 1000 equally 
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spaced points between the min. and max. data ranges), by the overall density of the studied variables 

in our study area, keeping the bandwidth for estimating the smoothing kernels constant. We thus 

created a “Relative Density Breakpoint Index (RDBI)”: 

 𝑅𝐷𝐵𝐼𝑖 =  
𝐷𝐵𝑖

𝐷𝑇
 with 𝑖 = {0, . . . ,4} 

𝐷𝐵 stands for the density of the respective breakpoint category (𝑖) and 𝐷𝑇 for the overall density of 

the studied variables in our study area. A value of 1 signifies no difference to the overall distribution 

of the studied variable; a value larger than 1 signifies an overrepresentation of the breakpoint category 

at this data range and a value below 1 an underrepresentation.  

To study the relationship between the NDVI recovery trend, grazing, topographic properties and the 

mean NDVI in the three years before the breakpoint, we applied generalized linear regression analysis 

with the “gls” function in the “nlme” package in R (Pinheiro et al., 2018). Scaled factors were used to 

obtain the ß-values. Spatial autocorrelation is present in the data. We tested six autocorrelation 

structures within the “gls” function, namely exponential, gaussian, spherical, linear and rational 

quadratic. In all cases, the rational quadratic models had the lowest AIC values and were therefore 

used for our analysis.   
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3. Results 

3.1. Spatial distribution of breakpoint categories and NDVI recovery trend  

Between 1984 and 2011, pixels experienced between zero and five breakpoints in our study area (3439 

pixels in total). 41.6% pixels had two breakpoints, followed by one breakpoint (29.1%), three 

breakpoints (18.6%), zero breakpoints (6.4%), four breakpoints (4.2%) and five breakpoints (0.1%). The 

spatial distribution of the number of breakpoints shows a large variability, with some breakpoint 

classes appearing more clustered (0, 4, 5), and others (1, 2) more evenly distributed in the whole area 

(Figure 6A). 

In the relatively dry hydrological years between 2005 and 2008, 77% of the pixels in the study area 

experienced at least one breakpoint (Figure 5D). Of those breakpoints, 81% were associated with a 

relative decrease in NDVI of at least 10%. Following this decrease in NDVI, nearly all pixels (99.7% of 

the pixels experiencing a decrease in NDVI of at least 10%) showed a positive NDVI recovery trend, 

although there was a large spatial variability in the magnitude of the NDVI recovery trend (Figure 6B).  
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Figure 6. (A) Number of breakpoints fitted by BFAST on pixel basis in the period 1984-2011. Circles depict goat farms with the 

size of the circle proportional to the estimated number of animals in 1987. (B) NDVI recovery trend (
 ∆𝑁𝐷𝑉𝐼

𝑑𝑎𝑦
× 10,000) after the 

2005-2008 relatively dry hydrological years for pixels that experienced a breakpoint in this time period. Results are only shown 

for pixels that experienced a relative decrease in NDVI of at least 10% using average NDVI of the three years before and after 

the breakpoint. Circles depict goat farms with the size of the circle proportional to the estimated number of animals in 2007.   
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3.2. Analysis of breakpoint category distributions in relation to spatial patterns 

of topographic properties, mean NDVI and grazing intensity  

The 1- and 2-breakpoint categories dominate over all data ranges of grazing intensity, mean NDVI 

terrain slope and deviation from south (i.e. deviation from maximum solar radiation) (Figure 7 A-D). 

The relative density distributions of the individual breakpoint categories discernibly differ in shape 

(Figure 7 E-H): while some follow the shape of the overall distributions of the studied variables, others 

deviate clearly from the latter, indicating that their behaviour in relation to that variable is not random. 

The distribution of the 2-breakpoint category was not affected significantly by any of the variables, 

which fits to the visual impression that this category appears randomly spread in space (Figure 6A). 

For grazing intensity, the distributions of the 0-, 3- and 4-breakpoint categories differed significantly 

from the overall distribution in our study area (KS test, α=0.01; Table S5). When interpreting the results 

of different grazing levels, one has to note that the distribution of grazing is strongly right skewed 

(Figure 7A). Thus, we used the 25% and 75% quantile to differentiate between low (<1.8), medium 

(1.8-2.8) and high (>2.8) grazing intensities. Relative to the overall distribution of grazing intensity 

(Figure 7E&I) the 0-breakpoint category is particularly overrepresented at high to very high grazing 

levels, corresponding mostly to areas in the vicinity to farms. The 3-breakpoint category is slightly 

overrepresented at high grazing levels and the 4-breakpoint category is overrepresented at different 

ranges from medium to high grazing levels. 

For mean NDVI, the distributions of the 0-, 1- and 3-breakpoint categories differed significantly from 

the overall distribution in our study area (KS test, α=0.01; Table S5). Relative to the overall distribution 

of mean NDVI (Figure 7F&J) the 0-breakpoint category is strongly overrepresented at low NDVI levels 

(< 0.2), the 1-breakpoint category at extremely low (< 0.16) as well as extremely high (> 0.27) NDVI 

values, and the 3-breakpoint category at medium NDVI values.  

For the topographic properties, only aspect showed significant results. The distributions of the 1- and 

3-breakpoint categories differed significantly from the overall distribution of aspect (measured as 
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deviation from south) in our study area (KS test, α=0.01; Table S5). The 1-breakpoint category was 

overrepresented on northern slopes, the 3-breakpoint category on western slopes. 

 

Figure 7. Spatial distributions of breakpoint categories over grazing intensity 1987 (livestock/m), mean NDVI 1984-2011, 

terrain slope and deviation from south. Number of pixels in each breakpoint category: 0 breakpoints: 220, 1 breakpoint: 1001, 

2 breakpoints: 1432, 3 breakpoints: 639, 4 breakpoints: 145, total: 3439. A-D: stacked frequency histograms of breakpoint 

categories showing absolute numbers of pixels. E-H: kernel density estimations for each breakpoint category separately and 

for all pixels combined (bandwidth=0.27 (E), 0.01 (F), 2.50 (G), 9.91 (H)). Breakpoint categories for which the KS test indicated 

a significant deviation (α = 0.01) from the overall distribution are marked with a star. I-L: Relative Density Breakpoint Index 

(𝑅𝐷𝐵𝐼𝑖): the densities of the breakpoint categories 𝑖 = {0, . . . ,4} divided by the overall density of grazing intensity, mean NDVI, 

terrain slope and deviation from south. Note that the RDBI is a relative measure that only applies to the distribution of the 

data within each category in relation to the overall distribution of the studied variable.  
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3.3. The effect of grazing and topographic properties on the NDVI recovery 

trend  

To study what affects the recovery after the drought between the hydrological years 2005 and 2008, 

we used linear regression models. The simple linear regression shows that there is a clear positive 

relation between the mean NDVI three years before the breakpoint and the NDVI recovery trend after 

the breakpoint (Figure 8A). This relationship indicates that ‘greener’ pixels recover faster. However, no 

significant relationship (α=0.05) was found between terrain slope and the NDVI recovery trend (Figure 

8B). A significant relationship has been found between aspect and the NDVI recovery trend (Figure 8C). 

Namely, southern pixels have a low NDVI recovery trend, while the recovery trend significantly 

increases when the orientation turns towards north (Figure 8C). This relationship indicates that 

northern-oriented pixels recover faster. The grazing intensities for 1987 (Figure 8D) and 2007 (S6B) 

have a slightly negative relationship with the NDVI recovery trend. 

When combining all factors that could explain the NDVI recovery trend after the breakpoint in one 

multiple regression model including significant interaction factors (using backward elimination), the 

relationships have a similar direction and two significant interaction factors were found (Table 1). The 

variance inflation factor (VIF) was below 1.6 among factors, indicating that there is low 

multicollinearity between the explanatory factors. The most significant interaction factor is between 

aspect (measured by deviation from south) and terrain slope. While the NDVI recovery trend was not 

significantly related to terrain slope when using simple linear regression (Figure 8B), this relationship 

changes when including aspect (Figure 9A). The relationship between NDVI recovery trend and terrain 

slope is positive for northern-oriented slopes, while it is negative for southern-oriented slopes. Thus, 

on northern slopes, terrain slope has a positive effect on the NDVI recovery trend, while on southern 

slopes it has a negative effect. The second interaction factor is between deviation from south and the 

mean NDVI before the breakpoint. In the simple linear regression, there was a significant positive 

relationship between the deviation from south and the NDVI recovery trend (Figure 8C). Yet, when 
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grouping the data based on the upper and lower 25% of NDVI values, this positive relationship was 

only significant for the group with the low NDVI data (Figure 9B). 

 

Figure 8. Simple regression analysis between the NDVI recovery trend (
 ∆𝑁𝐷𝑉𝐼

𝑑𝑎𝑦
× 10,000) and A) NDVI before the breakpoint 

(β=0.278, p<0.001) B) terrain slope (β= 0.003, p=0.932) C) aspect measured as deviation from south (β=0.242, p<0.001), D) 

estimated grazing intensity in 1987 (β=-0.192, p=0.010). Regression lines are shown for significant relations (α=0.05). 

Additional regression analyses can be found in S6.   
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Table 1. Multiple regression between NDVI recovery trend and the independent variables including significant interactions.  

Independent variable β p-value 

Deviation from south (degrees) 0.295 <0.001 

NDVI before breakpoint 0.211 <0.001 

Log grazing intensity 1987 (livestock/m) -0.121 0.0424 

Terrain slope (%) -0.005 0.866 

Deviation from south*Terrain slope 0.097 <0.001 

Deviation from south*NDVI before breakpoint -0.059 0.0116 

 

 

Figure 9. Simple linear regression for significant interaction factors for the NDVI recovery trend (
 ∆𝑁𝐷𝑉𝐼

𝑑𝑎𝑦
× 10,000) after the 

drought breakpoint. A) Simple linear regression between the terrain slope and the recovery trend of the NDVI after the 

breakpoint. The relationship is positive for northern-oriented slopes (Aspect >315° or <45° indicated by black circles, β=0.251, 

p=0.012), while it is negative for southern-oriented slopes (135°>Aspect<225°, indicated with blue triangles, β=-0.191, 

p=0.001). B) Simple linear regression between aspect (measured as deviation from south) and the NDVI recovery trend. The 

relationship is not significant for the 25% of the data with the highest NDVI before the breakpoint (indicated by black circles, 

β=0.107, p=0.105), while it is significantly positive for the 25% of the data with the lowest NDVI before the breakpoint 

(indicated with blue triangles, β=0.231, p<0.001). Regression lines are shown for significant relations (α=0.05).  
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4. Discussion  

4.1. Deriving spatial indicators for resistance and recovery using a BFAST model 

The first objective of this study was to quantify and map vegetation resistance to climate variation and 

recovery from drought using a dense irregular Landsat time series. We used the spatial distribution of 

the number of breakpoints fitted by a BFAST model as an inverse indicator for vegetation resistance 

to climate variation. The NDVI recovery trend after a drought breakpoint, derived from the BFAST 

model, was used as an indicator for the vegetation recovery rate. Our results (Figure 6A) show that 

between 1984 and 2011, zero to five breakpoints occurred on a pixel level, with most pixels 

experiencing two breakpoints. We thus considered pixels with zero or one breakpoint to have relatively 

high resistance and pixels with three or more breakpoints to have relatively low resistance to natural 

climatic variation such as droughts. Note that in this study resistance is not used as direct measure for 

ecosystem health, but that we did expect high resistance at both ends of the ecosystem state: in a very 

healthy, as well as in a degraded, or barren unresponsive ecosystem state. The spatial frequency of 

pixels with relatively high resistance (36%) exceeded those with relatively low resistance (23%). During 

the period of drought in 2005-2008, more than 3/4 of the pixels within our study area showed a 

breakpoint, and of those 99.7% displayed a positive NDVI recovery trend afterwards. These results 

indicate that overall our study area has a positive recovery potential and that areas with high resistance 

exceed those with low resistance. 

4.2. Vegetation resistance and recovery in relation to grazing, mean NDVI and 

topographic properties 

Our second objective was to study the spatial distributions of resistance to climate variability and 

recovery from drought in relation to controlling factors for vegetation resilience: grazing, mean NDVI, 

terrain slope, aspect. For resistance, the spatial distribution of the breakpoint categories related to 

grazing and topographic properties in our study area partially agreed with our expectations. High NDVI 
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and/or a northern orientation (i.e. favourable conditions) were associated with an overrepresentation 

of pixels with high resistance (few breakpoints). Contrary to our expectations, low grazing intensities 

did not significantly promote resistance. Potentially strongly degraded areas, with medium to high 

grazing and/or low NDVI were associated with an overrepresentation of pixels with high resistance. At 

variance with our expectations, a southern orientation was not clearly associated with high resistance. 

Intermediate conditions (intermediate grazing and/or NDVI values, and/or western/eastern slopes) 

were associated with an overrepresentation of pixels with low resistance (many breakpoints). Overall, 

this spatial pattern of resistance is in accordance with the bimodal pattern we expected for resistance 

related to ecosystem state: potentially healthy areas, as well as potentially degraded areas (e.g. with 

sparse vegetation cover) were associated with an overrepresentation of pixels with high resistance.  

Regarding recovery from drought, the multiple regression analysis showed that the NDVI recovery 

trend was positively affected by in order of importance: a northern orientation, high NDVI values 

before the breakpoint and low grazing intensities (Figure 8; Table 1). These results indicate that, as 

expected, recovery of vegetation prevails in locations that have more favourable conditions (low stress 

levels by grazing and sunshine) and/or higher NDVI values and agrees with other studies: Del Barrio et 

al. (2010) found that trends to improve vegetation are represented most in land in good or unusually 

good condition, while degrading or static trends of vegetation in drylands are found to prevail in 

degraded or unusually degraded land. In other words, the recovery is expected to be fastest in areas 

where vegetation is already in a good condition.  

When studying the impact of terrain slope by itself, it was neither related to resistance nor to the 

recovery rate. This was contrary to our hypothesis that steep slopes promote the unresponsive 

ecosystem state characterized by high resistance and low recovery rates. The multiple regression 

model revealed that there was a significant interaction between terrain slope and orientation: on 

southern-oriented slopes, the NDVI recovery trend was indeed negatively related with terrain slope 

(Figure 9A). This finding implies that the negative effects of southern orientation and steep terrain 
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slope were synergetic. It agrees with our expectations that southern steep slopes have low recovery 

rates. However, for northern-oriented pixels, the relationship between NDVI recovery trend and 

terrain slope is positive. This result indicates that steep terrain slope alone does not necessarily yield 

a permanently degraded state, but that amplifying effects by other factors are needed. A second 

interaction factor showed that the positive relationship between the NDVI recovery trend and 

deviation from south was stronger for pixels with lower mean NDVI before the drought breakpoint 

(Figure 9B). Thus, regarding the recovery rate, pixels with low mean NDVI before the drought 

breakpoint benefit more from a northern orientation than pixels with high mean NDVI. Pixels with low 

mean NDVI before the breakpoint are associated with scarcer vegetation and thus are more 

susceptible to the negative effects of strong solar radiation. 

In our study, potentially strongly degraded areas (i.e. areas with very low NDVI and/or high grazing 

intensities) displayed low recovery rates and were associated with a strong overrepresentation of 

pixels with high resistance. These results conform with our hypothesis that these areas have likely 

reached an unresponsive permanently degraded state with no or little vegetation cover. It agrees with 

findings by De Keersmaecker et al. (2015), who showed that drought sensitive vegetation with a high 

fraction of bare soil displayed the strongest vegetation memory effects, resulting in particularly low 

recovery speed after a drought. Further, in a study on vegetation cover resilience in Italy (Simoniello 

et al., 2008), Sparsely Vegetated Areas and Pastures (i.e. potentially stressed lands) were the only 

Corine land cover type for which mean positive recovery trends did not exceed the negative trends 

during the period 1992-2003; the main clusters with a negative recovery potential were corresponding 

to areas at risk of desertification. Our result that strong grazing intensity promoted an unresponsive 

ecosystem state matches with a study by Schneider and Kéfi (2016), who found that grazing increases 

the bi-stability domain of a desert and a vegetated state. The authors argue that strong grazing reduces 

ecosystem resilience, thereby making a transition to a stable, permanently degraded desert state more 

likely. That strong grazing not only increases the domain of a desert state, but also makes the transition 

to such a state more likely, might explain why we also found a slight overrepresentation of pixels with 
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low resistance at high grazing intensities. Since we did not similarly find an overrepresentation of pixels 

with low resistance at low NDVI values, areas with low resistance that were associated with high 

grazing intensities do not represent a totally degraded state (with low NDVI). However, they might be 

in transition to a degraded state due to reduced ecosystem resilience (in our study indicated by low 

resistance and low recovery). 

Our result that potentially degraded areas were associated with high resistance and low recovery also 

matches with findings by Saruul et al. (2019), who showed that highly degraded grasslands in Mongolia 

had high resistance to and low recovery from natural disturbances. However, in the same study 

moderately degraded grasslands displayed higher resistance and recovery than slightly degraded and 

undegraded ones. Saruul et al. (2019) ascribe their finding to positive effects of intermediate grazing 

levels on species composition and richness and relate it to the intermediate disturbance hypothesis. 

Contrarily, we found that intermediate NDVI and grazing levels were associated mostly with low 

resistance, and an intermediate recovery. In areas with very high NDVI however, as well as on 

northern-oriented slopes, we did find a significant overrepresentation of pixels with high resistance, 

which might indicate that these areas are in a healthy ecosystem state. That intermediate levels of 

grazing did not seem to have any positive effects on ecosystem resilience in our case might be ascribed 

to the fact that the area has been overgrazed for decades. Thus, the vegetation might not benefit from 

the continuation of even intermediate grazing intensities, and such areas were probably more than 

“moderately degraded”.  

In conclusion, the effects of grazing on resistance appears to depend on the ecosystem state as a 

whole: if highly grazed areas are associated with a strongly degraded state (in our case indicated by 

very low NDVI values), grazing seems to increase ecosystem resistance to climatic variation such as 

droughts. In this state the ecosystem cannot react to climate variability any longer. By removing 

vegetation cover, grazing even more promotes this state. Otherwise, strong grazing appears to lower 

ecosystem resistance, as also reported in a study by Whitford et al. (1999) and in De Keersmaecker et 
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al., (2016). Whitford et al. (1999) further found that heavy grazing reduced the recovery rate from 

drought, which corresponds to our results. However, the effects of grazing on resistance and recovery 

should be treated cautiously, since they depend on many factors. Maestre et al. (2016) pointed out 

that the effects of grazing on ecosystem structure and functioning in drylands vary with the intensity 

of grazing, the composition of herbivore assemblages, the shared evolutionary history of plants and 

herbivores, the way grazing pressure is measured and the spatial scale. The authors also found that 

grazing effects on resilience to climatic stresses are highly modulated by grazing interactions with 

species composition and richness. In our study area, we observed during field visits that in areas with 

higher grazing intensity, the number of unpalatable plant species increased. However, we did not see 

a clear shift in species composition from shrubs to grasses. Shrubs were the dominant vegetation type 

for all grazing levels. A study by Ruppert et al. (2015), who quantified drought resistance and recovery 

using 174 long-term datasets from more than 30 dryland regions, shows that the effects of grazing on 

drought resistance and recovery are modulated by the dominant life history of the herbaceous layer: 

in perennial systems, grazing negatively affected resistance, in annual systems it positively affected 

recovery. Altogether, interpreting effects of grazing on vegetation resistance and recovery across 

different systems and studies remains challenging. 

4.3. Methodological limitations 

The number of breakpoints fitted by BFAST during a given time period is a relative measure of 

resistance and absolute values cannot be compared between different study systems. Its 

interpretation depends on the overall frequency of breakpoints within the study area, which is affected 

by the ecosystem type, the climate regime, the duration of the study period, the spatial scale, data 

availability, BFAST model parameters, as well as land use and local disturbances; e.g. a total number 

of one breakpoint may indicate high resistance in our case, but may be indicating low resistance in 

another study system. It further depends on the overall aim of the study, i.e. resistance to what factor 

is studied. 
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Some considerations should be taken into account when transferring our approach to other areas. In 

our study, we interpret the relative occurrence of breakpoints within our study area as an inverted 

proxy for long-term vegetation resistance to climate variability. This interpretation presupposes that 

climatic forces are the main driver of breakpoints, and that the climate can be assumed to be similar 

in the study area. Further, it requires comparability regarding land cover type as well as land use regime 

(within the area). Finally, detailed knowledge about past disturbances and land use regime of the area 

is crucial to exclude effects of other not climate related large-scale disturbances. Our study area is 

relatively small, driven by the same climate regime and with a comparable land cover type and land 

use (a grazed dryland with mosaics of vegetation patches). The small size of our study area allowed us 

to combine remote sensing data with detailed information on local grazing regime. Studying resilience 

at a global scale would make it possible to obtain more general results (e.g. see Bernardino et al. (2020) 

about global-scale characterization of turning points using BFAST), but a global scale would not allow 

to study the local specific processes affecting resilience.  

From the interviews with local farmers we gathered detailed information both about the present and 

the past grazing regime, which allowed us to derive a spatially explicit grazing intensity index. We learnt 

that no major land use change or large-scale disturbance has occurred within our area during our study 

period except grazing. Hence, we considered it valid to assume that main driving force of the NDVI 

dynamics acting on the area as a whole were climatic forces. Still, we are aware of limitations of this 

approach: local land use changes or small-scale disturbances in local topography might have triggered 

additional breakpoints in our area that were not related to climate variability and may also have 

affected the vegetation’s ability to recover after a drought. However, such small-scale disturbances 

could not have been captured adequately with our 30-m Landsat scale. Besides, no reliable spatially 

explicit data on the past occurrence of such small-scale disturbances exists. We therefore did not 

include effects of small-scale disturbances in our study and treated such effects as outliers, for we 

believed they would not significantly affect the overall distribution of breakpoints within our study 

area. For example, between 2003 and 2009 we observed a local land use change in the northeast of 



35 

our study area (based on Quickbird imagery), appearing like the opening of a soil dumping site. Yet, 

this local land use change affected only 2% of more than 3000 pixels that were included in our analysis 

and can therefore be treated as an outlier. Using a more detailed spatial scale would probably increase 

the effects of small-scale disturbances on the spatial occurrence of breakpoints. 

Other factors might also have affected the overall number of breakpoints. Watts and Laffan (2014) 

found that the optimal value for the “h” parameter, which sets the minimum number of observations 

between two breakpoints in the BFAST model, depends on vegetation type. In areas with little 

vegetation cover, the number of breakpoints might be overestimated. Our results, however, revealed 

an overrepresentation of pixels with none or one breakpoint in areas with low NDVI, and therefore 

appear to be robust even with this limitation. The same holds true for potentially noise-induced 

breakpoints, which might have occurred in areas with low NDVI that have a low signal to noise ratio. 

Data availability is another relevant factor affecting the likelihood to detect breakpoints with BFAST. 

Temporal satellite data availability was not constant (Figure 5F). Low data availability in 1990 might be 

a reason why we observed few breakpoints during the dry period 1990/91, compared to the dry period 

2005-08. However, since temporal data availability relates to our complete study area, it does not 

affect the spatial distribution of breakpoints. In contrast, spatial data availability in our study area was 

not uniform, since clouds were masked on a pixel by pixel level. Hence, cloud-masking on pixel level, 

could have affected our results. 

By using the linear NDVI recovery trend fitted by the BFAST model after a breakpoint as an indicator 

for the recovery rate, we assumed a linear recovery behaviour. We are aware that this assumption is 

a simplification, yet we believe it to be a good approximation, as long as the time period of the segment 

for which the recovery trend is fitted is comparable among pixels. In our case this requirement is 

fulfilled, since the NDVI recovery trend is fitted to the last segment of the BFAST time series and almost 

none of the pixels experienced a second breakpoint before the end of the time series (Figure 5D). 
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We measured grazing intensity indirectly through interviews with local farmers, which were input for 

calculations based on the distance to the farm, number of animals in farm and topography. Actual data 

about the grazing intensity (e.g. through GPS tracking) was not available for our time period. In general, 

it is very difficult to obtain the actual time, location and length of grazing, which can differ even for 

pastures with the same grazing season (e.g. summer or winter) (Wang et al., 2018). Therefore, the 

number of animals and the distance to the farm is commonly used as a proxy for grazing intensity 

(Manthey and Peper, 2010; Wang et al., 2018). To draw more general conclusions on grazing effects 

on resistance and recovery, future studies applying a consistent methodology on different ecosystems 

and comparing different spatial scales are needed. 

5. Conclusion and Outlook 
This study demonstrates the potential of a Landsat NDVI time series to infer two aspects of ecological 

resilience (namely resistance to climate variability and recovery from drought) of a grazed dryland 

ecosystem using a change detection method (BFAST). The overall aim of this paper was to spatially 

quantify resistance and recovery on an ecological meaningful scale and to assess how these two 

aspects of resilience were modulated by grazing intensity and environmental properties. Our results 

show that favourable environmental conditions (high NDVI and northern orientation) were related to 

high resilience, i.e. high resistance to climate variability and fast recovery after a drought. 

Unfavourable conditions as well as high grazing intensities were related to an unresponsive, potentially 

degraded ecosystem state. Grazing reduced recovery rate after drought. Overall, we conclude that 

resilience to climatic variation such as droughts was modulated by grazing and environmental 

conditions. 

Our study presents a new methodology to estimate two aspects of resilience in a natural system on 

the basis of stochastic natural climatic variation (as has been suggested e.g. by van Nes and Scheffer, 

2007), as opposed to using experimental perturbations, which are difficult to apply in coherent natural 

systems. Quantifying and combining both resistance and recovery in context with grazing data is a 

novel approach. By applying an adapted version of the BFAST algorithm that can deal with missing 
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data, we were able to make use of all available Landsat data, enabling us to cover 28 years of 

vegetation dynamics on an ecological meaningful spatial scale. While several previous studies have 

made use of a BFAST model to make inferences on vegetation recovery after a disturbance (e.g. 

DeVries et al., 2015; Katagis et al., 2014; Zewdie et al., 2017), it is a novel approach to make use of the 

spatial distribution of the number breakpoints to explicitly gain insights on vegetation resistance. We 

believe our data-driven approach has a strong potential for resilience monitoring, since it can be 

applied on broad spatial as well as temporal scales and is applicable to areas with a low field data 

availability. It allows to jointly extract indicators for resistance and recovery, which are two important 

components of resilience. However, more research on other study areas is needed to test the 

robustness of our approach.  

Extensive research based on mathematical models has focused on resilience in the context of 

predicting abrupt system transitions (e.g. Kéfi et al., 2014; Scheffer et al., 2015). However, these 

studies mainly focus on theoretical relationships without fully incorporating the local ecological 

mechanisms - a solid understanding of which is required for any actions to prevent such transitions 

(Maestre et al., 2016). In this study we illustrated how two aspects of resilience derived from satellite 

time series can be related to terrain, NDVI and local knowledge on grazing. Knowledge of how terrain 

and NDVI affect the vegetation’s resilience to climatic variation such as droughts can highlight areas 

which are particularly susceptible to climate-triggered land degradation processes. An understanding 

of how different grazing intensities modulate vegetation resilience can enable land users to adapt their 

grazing management accordingly. However, the results presented here are limited to our study area 

in southern Cyprus. To draw more general conclusions, further testing of the methodological 

framework in comparable Mediterranean rangelands is be needed. Also, including other satellite 

derived vegetation indices such as the Enhanced Vegetation Index (EVI) or the Soil Adjusted Vegetation 

Index (SAVI), could show if the results on breakpoint occurrence and NDVI recovery trend are sensitive 

to the chosen vegetation index particularly in sparsely vegetated areas. It would also be interesting to 

combine our approach with data on plant productivity and soil fertility (see e.g. Berdugo et al., 2020). 
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Finally, field-based observations of resistance to climate variability and recovery from drought under 

different grazing pressures would be a valuable addition to our framework to draw comprehensive 

conclusions on ecosystem resilience. 

6. Author Contributions Statement 

J.v.K and M.d.H. contributed to the design of the research, wrote the paper in equal parts and 

performed the analysis of the results. J.v.K performed the pre-processing of the satellite data, 

implemented the change detection algorithm and did the analysis of the number of breakpoints in 

relation to grazing and environmental factors. M.d.H. conducted interviews about the grazing history, 

generated the grazing intensity index and performed the analysis of the factors affecting the NDVI 

recovery trend. S. F. gave guidance in the design and implementation of the research, particularly the 

analysis of the satellite data. A.G.M, S.C.D and M.R. contributed to the design of the concepts and 

objectives in the paper. All authors discussed the results and commented on the manuscript. 

7. Funding 

 This work was supported by the Deutsche Forschungsgemeinschaft (DFG) within the research training 

group NatRiskChange [grant number GRK 2043/1]; and by NWO and SENSE Research School within the 

Graduate Programme “Complex Dynamics in Human-Environment Systems” [project number 

022.003.009]. 

8. Acknowledgements 

 We would like to thank Ben de Vries, Jan Verbesselt and Achim Zeileis for their valuable advice on the 

implementation of the BFAST algorithm for an irregular Landsat time series. We would also like to 

thank Daniel Scheffler for his assistance with the geometric co-registration with AROSIC, Lars Schulz 

for his assistance in implementing the atmospheric correction with the LEDAPS algorithm and Ugur 

Öztürk for his advice on the Kernel density estimations. Gerald Dörflinger assisted in the acquisition of 



39 

the meteorological data, which we highly appreciate. We are grateful to the farmers in the Randi Forest 

for providing the information about animal stocking numbers. We want to acknowledge the technical 

support on computation provided by Sylvia Magnussen (GFZ) and thank NASA and ESA for providing 

the Landsat data used in this study. Finally, we thank the anonymous reviewers for their constructive 

comments, which considerably helped to improve this manuscript.  



40 

9. Literature 

Bai, J., Perron, P., 1998. Estimating and Testing Linear Models with Multiple Structural Changes. 
Econometrica 66, 47. https://doi.org/10.2307/2998540 

Ben Abbes, A., Bounouh, O., Farah, I.R., de Jong, R., Martínez, B., 2018. Comparative study of three 
satellite image time-series decomposition methods for vegetation change detection. European 
Journal of Remote Sensing 51, 607–615. https://doi.org/10.1080/22797254.2018.1465360 

Berdugo, M., Delgado-Baquerizo, M., Soliveres, S., Hernández-Clemente, R., Zhao, Y., Gaitán, J.J., 
Gross, N., Saiz, H., Maire, V., Lehman, A., Rillig, M.C., Solé, R.V., Maestre, F.T., 2020. Global 
ecosystem thresholds driven by aridity. Science 367, 787–790. 
https://doi.org/10.1126/science.aay5958 

Bernardino, P.N., Keersmaecker, W.D., Fensholt, R., Verbesselt, J., Somers, B., Horion, S., 2020. Global-
scale characterization of turning points in arid and semi-arid ecosystem functioning. Global 
Ecology and Biogeography 29, 1230–1245. https://doi.org/10.1111/geb.13099 

Browning, D.M., Maynard, J.J., Karl, J.W., Peters, D.C., 2017. Breaks in MODIS time series portend 
vegetation change: verification using long-term data in an arid grassland ecosystem. Ecological 
Applications 27, 1677–1693. https://doi.org/10.1002/eap.1561 

Dakos, V., Carpenter, S.R., van Nes, E.H., Scheffer, M., 2014. Resilience indicators: prospects and 
limitations for early warnings of regime shifts. Philosophical Transactions of the Royal Society 
B: Biological Sciences 370, 20130263–20130263. https://doi.org/10.1098/rstb.2013.0263 

Daliakopoulos, I., Tsanis, I., 2014. Historical evolution of dryland ecosystems. CASCADE Project 
Deliverable 2.1. CASCADE Report 04. www.cascadis-project.eu/documents (accessed 31 
January 2019). 

de Jong, R., Verbesselt, J., Zeileis, A., Schaepman, M., 2013. Shifts in Global Vegetation Activity Trends. 
Remote Sensing 5, 1117–1133. https://doi.org/10.3390/rs5031117 

De Keersmaecker, W., Lhermitte, S., Tits, L., Honnay, O., Somers, B., Coppin, P., 2015. A model 
quantifying global vegetation resistance and resilience to short-term climate anomalies and 
their relationship with vegetation cover: Global vegetation resistance and resilience. Global 
Ecology and Biogeography 24, 539–548. https://doi.org/10.1111/geb.12279 

De Keersmaecker, W., van Rooijen, N., Lhermitte, S., Tits, L., Schaminee, J., Coppin, P., Honnay, O., 
Somers, B., 2016. Species-rich semi-natural grasslands have a higher resistance but a lower 
resilience than intensively managed agricultural grasslands in response to climate anomalies. 
Journal of Applied Ecology 53, 430–439. https://doi.org/10.1111/1365-2664.12595 

del Barrio, G., Puigdefabregas, J., Sanjuan, M.E., Stellmes, M., Ruiz, A., 2010. Assessment and 
monitoring of land condition in the Iberian Peninsula, 1989–2000. Remote Sensing of 
Environment 114, 1817–1832. https://doi.org/10.1016/j.rse.2010.03.009 

DeVries, B., Decuyper, M., Verbesselt, J., Zeileis, A., Herold, M., Joseph, S., 2015a. Tracking disturbance-
regrowth dynamics in tropical forests using structural change detection and Landsat time 
series. Remote Sensing of Environment 169, 320–334. 
https://doi.org/10.1016/j.rse.2015.08.020 

DeVries, B., Pratihast, A.K., Verbesselt, J., Kooistra, L., Herold, M., 2016. Characterizing Forest Change 
Using Community-Based Monitoring Data and Landsat Time Series. PLOS ONE 11, e0147121. 
https://doi.org/10.1371/journal.pone.0147121 

DeVries, B., Verbesselt, J., Kooistra, L., Herold, M., 2015b. Robust monitoring of small-scale forest 
disturbances in a tropical montane forest using Landsat time series. Remote Sensing of 
Environment 161, 107–121. https://doi.org/10.1016/j.rse.2015.02.012 

Dougill, A.J., Thomas, D.S.G., Heathwaite, A.L., 1999. Environmental change in the Kalahari: Integrated 
land degradation studies for nonequilibrium dryland environments. Annals of the Association 
of American Geographers 89, 420–442. https://doi.org/10.1111/0004-5608.00156 



41 

Dutrieux, L.P., Verbesselt, J., Kooistra, L., Herold, M., 2015. Monitoring forest cover loss using multiple 
data streams, a case study of a tropical dry forest in Bolivia. ISPRS Journal of Photogrammetry 
and Remote Sensing 107, 112–125. https://doi.org/10.1016/j.isprsjprs.2015.03.015 

Frazier, A.E., Renschler, C.S., Miles, S.B., 2013. Evaluating post-disaster ecosystem resilience using 
MODIS GPP data. International Journal of Applied Earth Observation and Geoinformation 21, 
43–52. https://doi.org/10.1016/j.jag.2012.07.019 

Gaitán, J.J., Bran, D., Oliva, G., Ciari, G., Nakamatsu, V., Salomone, J., Ferrante, D., Buono, G., Massara, 
V., Humano, G., Celdrán, D., Opazo, W., Maestre, F.T., 2013. Evaluating the performance of 
multiple remote sensing indices to predict the spatial variability of ecosystem structure and 
functioning in Patagonian steppes. Ecological Indicators 34, 181–191. 
https://doi.org/10.1016/j.ecolind.2013.05.007 

Goward, S., Arvidson, T., Williams, D., Faundeen, J., Irons, J., Franks, S., 2006. Historical Record of 
Landsat Global Coverage. Photogrammetric Engineering & Remote Sensing 72, 1155–1169. 
https://doi.org/10.14358/PERS.72.10.1155 

Hansen, M.C., Loveland, T.R., 2012. A review of large area monitoring of land cover change using 
Landsat data. Remote Sensing of Environment 122, 66–74. 
https://doi.org/10.1016/j.rse.2011.08.024 

Helman, D., Mussery, A., Lensky, I.M., Leu, S., 2014. Detecting changes in biomass productivity in a 
different land management regimes in drylands using satellite-derived vegetation index. Soil 
Use and Management 30, 32–39. https://doi.org/10.1111/sum.12099 

Henebry, G.M., 2019. Methodology II: Remote sensing of change in grasslands, in: Gibson, D.J., 
Newman, J.A. (Eds.), Grasslands and Climate Change. Cambridge University Press, pp. 40–64. 
https://doi.org/10.1017/9781108163941.005 

Hodgson, D., McDonald, J.L., Hosken, D.J., 2015. What do you mean, ‘resilient’? Trends in Ecology & 
Evolution 30, 503–506. https://doi.org/10.1016/j.tree.2015.06.010 

Holling, C.S., 1996. Engineering Resilience versus Ecological Resilience, in: Schulze, P.C. (Ed.), 
Engineering Within Ecological Constraints. The National Academies Press, Washington, DC, pp. 
31–43. 

Holling, C.S., 1973. Resilience and Stability of Ecological Systems. Annual Review of Ecology and 
Systematics 4, 1–23. https://doi.org/10.1146/annurev.es.04.110173.000245 

Huang, K., Zhou, T., Zhao, X., 2014. Extreme Drought-induced Trend Changes in MODIS EVI Time Series 
in Yunnan, China. IOP Conference Series: Earth and Environmental Science 17, 012070. 
https://doi.org/10.1088/1755-1315/17/1/012070 

Ingrisch, J., Bahn, M., 2018. Towards a Comparable Quantification of Resilience. Trends in Ecology & 
Evolution 33, 251–259. https://doi.org/10.1016/j.tree.2018.01.013 

IPCC, 2014. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. 
Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental 
Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New 
York, NY, USA. 

IUSS Working Group WRB, 2015. World Reference Base for Soil Resources 2014, update 2015 
International soil classification system for naming soils and creating legends for soil maps. 
World Soil Resources Reports No. 106, FAO, Rome. 
http://www.fao.org/3/i3794en/I3794en.pdf (accessed 12 November 2018). 

Katagis, T., Gitas, I.Z., Toukiloglou, P., Veraverbeke, S., Goossens, R., 2014. Trend analysis of medium- 
and coarse-resolution time series image data for burned area mapping in a Mediterranean 
ecosystem. Int. J. Wildland Fire 23, 668–677. https://doi.org/10.1071/WF12055 

Kawamura, K., Akiyama, T., Yokota, H., Tsutsumi, M., Yasuda, T., Watanabe, O., Wang, S., 2005. 
Quantifying grazing intensities using geographic information systems and satellite remote 
sensing in the Xilingol steppe region, Inner Mongolia, China. Agriculture, Ecosystems & 
Environment 107, 83–93. https://doi.org/10.1016/j.agee.2004.09.008 



42 

Kéfi, S., Guttal, V., Brock, W.A., Carpenter, S.R., Ellison, A.M., Livina, V.N., Seekell, D.A., Scheffer, M., 
van Nes, E.H., Dakos, V., 2014. Early Warning Signals of Ecological Transitions: Methods for 
Spatial Patterns. PLOS ONE 9, e92097. https://doi.org/10.1371/journal.pone.0092097 

Kennedy, R.E., Andréfouët, S., Cohen, W.B., Gómez, C., Griffiths, P., Hais, M., Healey, S.P., Helmer, E.H., 
Hostert, P., Lyons, M.B., Meigs, G.W., Pflugmacher, D., Phinn, S.R., Powell, S.L., Scarth, P., Sen, 
S., Schroeder, T.A., Schneider, A., Sonnenschein, R., Vogelmann, J.E., Wulder, M.A., Zhu, Z., 
2014. Bringing an ecological view of change to Landsat-based remote sensing. Frontiers in 
Ecology and the Environment 12, 339–346. https://doi.org/10.1890/130066 

Kovalskyy, V., Roy, D.P., 2013. The global availability of Landsat 5 TM and Landsat 7 ETM+ land surface 
observations and implications for global 30m Landsat data product generation. Remote 
Sensing of Environment 14. 

Lambert, J., Drenou, C., Denux, J.-P., Balent, G., Cheret, V., 2013. Monitoring forest decline through 
remote sensing time series analysis. GIScience & Remote Sensing 50, 437–457. 
https://doi.org/10.1080/15481603.2013.820070 

López, D.R., Brizuela, M.A., Willems, P., Aguiar, M.R., Siffredi, G., Bran, D., 2013. Linking ecosystem 
resistance, resilience, and stability in steppes of North Patagonia. Ecological Indicators 24, 1–
11. https://doi.org/10.1016/j.ecolind.2012.05.014 

Maestre, F.T., Eldridge, D.J., Soliveres, S., Kéfi, S., Delgado-Baquerizo, M., Bowker, M.A., García-
Palacios, P., Gaitán, J., Gallardo, A., Lázaro, R., Berdugo, M., 2016. Structure and Functioning 
of Dryland Ecosystems in a Changing World. Annual Review of Ecology, Evolution, and 
Systematics 47, 215–237. https://doi.org/10.1146/annurev-ecolsys-121415-032311 

Manthey, M., Peper, J., 2010. Estimation of grazing intensity along grazing gradients – the bias of 
nonlinearity. Journal of Arid Environments 74, 1351–1354. 
https://doi.org/10.1016/j.jaridenv.2010.05.007 

Masek, J.G., Vermote, E.F., Saleous, N.E., Wolfe, R., Hall, F.G., Huemmrich, K.F., Gao, F., Kutler, J., Lim, 
T.-K., 2006. A Landsat Surface Reflectance Dataset for North America, 1990–2000. IEEE 
Geoscience and Remote Sensing Letters 3, 68–72. https://doi.org/10.1109/LGRS.2005.857030 

Mayor, Á.G., Kéfi, S., Bautista, S., Rodríguez, F., Cartení, F., Rietkerk, M., 2013. Feedbacks between 
vegetation pattern and resource loss dramatically decrease ecosystem resilience and 
restoration potential in a simple dryland model. Landscape Ecology 28, 931–942. 
https://doi.org/10.1007/s10980-013-9870-4 

Nimmo, D.G., Mac Nally, R., Cunningham, S.C., Haslem, A., Bennett, A.F., 2015. Vive la résistance: 
reviving resistance for 21st century conservation. Trends in Ecology & Evolution 30, 516–523. 
https://doi.org/10.1016/j.tree.2015.07.008 

Noy-Meir, I., 1975. Stability of Grazing Systems: An Application of Predator-Prey Graphs. Journal of 
Ecology 63, 459–481. https://doi.org/10.2307/2258730 

Peterson, G., Allen, C.R., Holling, C.S., 1998. Ecological resilience, biodiversity, and scale. Ecosystems 
1, 6–18. https://doi.org/10.1007/s100219900002 

Pettorelli, N., Vik, J.O., Mysterud, A., Gaillard, J.-M., Tucker, C.J., Stenseth, N.C., 2005. Using the 
satellite-derived NDVI to assess ecological responses to environmental change. Trends in 
Ecology & Evolution 20, 503–510. https://doi.org/10.1016/j.tree.2005.05.011 

Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., 2018. Nlme: Linear and Nonlinear Mixed Effects Models. 
R package version 3.1-137. https://CRAN.R-project.org/package=nlme. 

Platt, R.V., Ogra, M.V., Badola, R., Hussain, S.A., 2016. Conservation-induced resettlement as a driver 
of land cover change in India: An object-based trend analysis. Applied Geography 69, 75–86. 
https://doi.org/10.1016/j.apgeog.2016.02.006 

R Core Team, 2017. A language and environment for statistical computing. R Foundation for Statistical 
Computing, Vienna, Austria. http://www.R-project.org/. 

Republic of Cyprus: Meteorological Service, 2019. Climate of Cyprus. 
http://www.moa.gov.cy/moa/ms/ms.nsf/DMLcyclimate_en/DMLcyclimate_en?OpenDocum
ent (accessed 22 August 2019). 



43 

Ruppert, J.C., Harmoney, K., Henkin, Z., Snyman, H.A., Sternberg, M., Willms, W., Linstaedter, A., 2015. 
Quantifying drylands’ drought resistance and recovery: the importance of drought intensity, 
dominant life history and grazing regime. Global Change Biology 21, 1258–1270. 
https://doi.org/10.1111/gcb.12777 

Saruul, K., Jiangwen, L., Jianming, N., Qing, Z., Xuefeng, Z., Guodong, H., Mengli, Z., Haifeng, B., 2019. 
Typical steppe ecosystems maintain high stability by decreasing the connections among 
recovery, resistance, and variability under high grazing pressure. Science of The Total 
Environment 659, 1146–1157. https://doi.org/10.1016/j.scitotenv.2018.12.447 

Scheffer, M., Carpenter, S., Foley, J.A., Folke, C., Walker, B., 2001. Catastrophic shifts in ecosystems. 
Nature 413, 591–596. https://doi.org/10.1038/35098000 

Scheffer, M., Carpenter, S.R., Dakos, V., van Nes, E.H., 2015. Generic Indicators of Ecological Resilience: 
Inferring the Chance of a Critical Transition. Annual Review of Ecology, Evolution, and 
Systematics 46, 145–167. https://doi.org/10.1146/annurev-ecolsys-112414-054242 

Scheffer, M., Carpenter, S.R., Lenton, T.M., Bascompte, J., Brock, W., Dakos, V., van de Koppel, J., van 
de Leemput, I.A., Levin, S.A., van Nes, E.H., Pascual, M., Vandermeer, J., 2012. Anticipating 
Critical Transitions. Science 338, 344–348. https://doi.org/10.1126/science.1225244 

Scheffler, D., Hollstein, A., Diedrich, H., Segl, K., Hostert, P., 2017. AROSICS: An Automated and Robust 
Open-Source Image Co-Registration Software for Multi-Sensor Satellite Data. Remote Sensing 
9, 676. https://doi.org/10.3390/rs9070676 

Schmidt, G., Jenkerson, C.B., Masek, J., Vermote, E., Gao, F., 2013. Landsat ecosystem disturbance 
adaptive processing system (LEDAPS) algorithm description (Report No. 2013–1057), Open-
File Report. Reston, VA. https://doi.org/10.3133/ofr20131057 

Schneider, F.D., Kéfi, S., 2016. Spatially heterogeneous pressure raises risk of catastrophic shifts. 
Theoretical Ecology 9, 207–217. https://doi.org/10.1007/s12080-015-0289-1 

Schwalm, C.R., Anderegg, W.R.L., Michalak, A.M., Fisher, J.B., Biondi, F., Koch, G., Litvak, M., Ogle, K., 
Shaw, J.D., Wolf, A., Huntzinger, D.N., Schaefer, K., Cook, R., Wei, Y., Fang, Y., Hayes, D., Huang, 
M., Jain, A., Tian, H., 2017. Global patterns of drought recovery. Nature 548, 202–205. 
https://doi.org/10.1038/nature23021 

Simoniello, T., Lanfredi, M., Liberti, M., Coppola, R., Macchiato, M., 2008. Estimation of vegetation 
cover resilience from satellite time series. Hydrology and Earth System Sciences 12, 1053–
1064. https://doi.org/10.5194/hess-12-1053-2008 

van de Leemput, I.A., Dakos, V., Scheffer, M., van Nes, E.H., 2018. Slow Recovery from Local 
Disturbances as an Indicator for Loss of Ecosystem Resilience. Ecosystems 21, 141–152. 
https://doi.org/10.1007/s10021-017-0154-8 

van Nes, E.H., Scheffer, M., 2007. Slow Recovery from Perturbations as a Generic Indicator of a Nearby 
Catastrophic Shift. The American Naturalist 169, 738–747. https://doi.org/10.1086/516845 

Verbesselt, J., Hyndman, R., Newnham, G., Culvenor, D., 2010a. Detecting trend and seasonal changes 
in satellite image time series. Remote Sensing of Environment 114, 106–115. 
https://doi.org/10.1016/j.rse.2009.08.014 

Verbesselt, J., Hyndman, R., Zeileis, A., Culvenor, D., 2010b. Phenological change detection while 
accounting for abrupt and gradual trends in satellite image time series. Remote Sensing of 
Environment 114, 2970–2980. https://doi.org/10.1016/j.rse.2010.08.003 

Verbesselt, J., Zeileis, A., Herold, M., 2012. Near real-time disturbance detection using satellite image 
time series. Remote Sensing of Environment 123, 98–108. 
https://doi.org/10.1016/j.rse.2012.02.022 

Vicente-Serrano, S.M., Gouveia, C., Camarero, J.J., Begueria, S., Trigo, R., Lopez-Moreno, J.I., Azorin-
Molina, C., Pasho, E., Lorenzo-Lacruz, J., Revuelto, J., Moran-Tejeda, E., Sanchez-Lorenzo, A., 
2013. Response of vegetation to drought time-scales across global land biomes. Proceedings 
of the National Academy of Sciences 110, 52–57. https://doi.org/10.1073/pnas.1207068110 

Wang, Y., Lehnert, L.W., Holzapfel, M., Schultz, R., Heberling, G., Görzen, E., Meyer, H., Seeber, E., 
Pinkert, S., Ritz, M., Fu, Y., Ansorge, H., Bendix, J., Seifert, B., Miehe, G., Long, R.-J., Yang, Y.-P., 
Wesche, K., 2018. Multiple indicators yield diverging results on grazing degradation and 



44 

climate controls across Tibetan pastures. Ecological Indicators 93, 1199–1208. 
https://doi.org/10.1016/j.ecolind.2018.06.021 

Washington-Allen, R., Ramsey, R., West, N., Norton, B., 2008. Quantification of the ecological resilience 
of drylands using digital remote sensing. Ecology and Society 13. https://doi.org/10.5751/ES-
02489-130133 

Watts, L.M., Laffan, S.W., 2014. Effectiveness of the BFAST algorithm for detecting vegetation response 
patterns in a semi-arid region. Remote Sensing of Environment 154, 234–245. 
https://doi.org/10.1016/j.rse.2014.08.023 

Watts, L.M., Laffan, S.W., 2013. Sensitivity of the BFAST algorithm to MODIS satellite and vegetation 
index. Modelling & Simulation Soc Australia & New Zealand Inc, Christchurch. 

Weiss, J.L., Gutzler, D.S., Coonrod, J.E.A., Dahm, C.N., 2004. Long-term vegetation monitoring with 
NDVI in a diverse semi-arid setting, central New Mexico, USA. Journal of Arid Environments 
58, 249–272. https://doi.org/10.1016/j.jaridenv.2003.07.001 

Whitford, W.G., Rapport, D.J., deSoyza, A.G., 1999. Using resistance and resilience measurements for 
“fitness” tests in ecosystem health. J. Environ. Manage. 57, 21–29. 
https://doi.org/10.1006/jema.1999.0287 

Zeileis, A., Kleiber, C., Krämer, W., Hornik, K., 2003. Testing and dating of structural changes in practice. 
Computational Statistics & Data Analysis 44, 109–123. https://doi.org/10.1016/S0167-
9473(03)00030-6 

Zeileis, A., Leisch, F., Hornik, K., Kleiber, C., 2002. strucchange. An R package for testing for structural 
change in linear regression models. Journal of Statistical Software 7, 1–38. 
https://doi.org/10.18637/jss.v007.i02 

Zewdie, W., Csaplovics, E., Inostroza, L., 2017. Monitoring ecosystem dynamics in northwestern 
Ethiopia using NDVI and climate variables to assess long term trends in dryland vegetation 
variability. Applied Geography 79, 167–178. https://doi.org/10.1016/j.apgeog.2016.12.019 

Zhou, Z.C., Gan, Z.T., Shangguan, Z.P., Dong, Z.B., 2010. Effects of grazing on soil physical properties 
and soil erodibility in semiarid grassland of the Northern Loess Plateau (China). CATENA 82, 
87–91. https://doi.org/10.1016/j.catena.2010.05.005 

Zhu, Z., Woodcock, C.E., 2014. Continuous change detection and classification of land cover using all 
available Landsat data. Remote Sensing of Environment 144, 152–171. 
https://doi.org/10.1016/j.rse.2014.01.011 

   



45 

Supplementary material  

Supplementary material of the manuscript “Resilience of vegetation to drought: studying the effect of 

grazing in a Mediterranean rangeland using satellite time series” by J. von Keyserlingk, M. de Hoop, 

A.G. Mayor, S.C. Dekker, M. Rietkerk, S. Foerster 

 

S1. Monthly rainfall and precipitation 

 

Figure S1. Monthly mean rainfall (A) and maximum temperature (B) for the hydrological years 1984-2012. Error bars show 

the standard deviation (±1SD). The red triangles in A represent the mean monthly rainfall for the hydrological years 2005-

2008. This time period represents the period of drought, which was used for the detection of drought breakpoints. Monthly 

mean temperature was calculated based on daily maximum temperature measured at meteorological station at Pafos 

airport. Monthly mean rainfall was calculated based on total daily rainfall measured at meteorological station at Pissouri. 

All data was obtained from the Meteorological Service of Cyprus.  
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S2. Satellite Data Pre-processing 

Coregistration with AROSICS: As geospatial reference for the co-registration, a cloud-free scene 

(LE71760362002225SGS00, surface reflectance, band 4), downloaded from USGS archive was used. A 

scene from the USGS archive was chosen, because the Landsat surface reflectance products are well 

geospatially aligned among each other, and we wanted to keep the option for including imagery 

downloaded from USGS in our data analysis later. 

Number of valid observations after cloud-masking: s, cloud shadows, snow and missing data were 

masked on pixel level. Hence, spatial data availability of valid observations varied slightly within our 

study area. 

 

Figure S2. Number of valid observations in our study area during the hydrological years 1984-2012. Valid observations refers 

to all Landsat pixels free of clouds or cloud shadows that were included in our analysis. 
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S3. Temporal distribution of Landsat scenes included in the analysis 

 

Figure S3. Temporal distribution of all Landsat 5 TM-scenes and Landsat 7 ETM+-scenes that were included in the analysis. 

Landsat 7 ETM+-scenes affected by the failure of the scan line corrector in 2003 (Landsat 7 ETMP+ SLC-off) were excluded 

prior to the analysis and are not included in this figure.  
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S4. Grazing intensity maps 

 

Figure S4. Estimated grazing intensity for 1987 and 2007, based on the number of animals per farm, the inversed distance to 

the farm and the vertical friction factor (to account for the difficulty to walk up- or downslope). Grazing values above the 

97.5% quantile are excluded. Circles depict goat farms with the size of the circle proportional to the estimated number of 

animals in the specific period.  
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S5. Detailed results of Kolmogorov-Smirnov test for the analysis of resistance 

Table S5. Results from a two-sample Kolmogorov-Smirnov test performed with the R package “stats” (R Core Team, 2017). 

Significant p values at α = 0.01 are highlighted in grey. The spatial probability distributions of each breakpoint category were 

calculated and compared to the overall spatial distributions of grazing intensity 1987, mean NDVI, terrain slope and deviation 

from south in our study area. A significant p value indicates that the two distributions do not share the same underlying 

continuous distribution. D is calculated as the maximum vertical difference between the cumulative distribution functions of 

the two samples. Since the breakpoint categories are sub-samples of the overall distributions there are ties present in the 

data. Hence the p values are an approximation. To account for this issue and to make our results robust, we used a 

conservative significance level of α = 0.01. 

Breakpoint 

category 

Grazing intensity 1987 Mean NDVI 1984-2011 Terrain slope Deviation from south 

D (max ∆) p value  D (max ∆) p value  D (max ∆) p value  D (max ∆) p value  

0 0.3 <0.001 0.348 <0.001 0.095 0.049 0.104 0.024 

1 0.058 0.013 0.116 <0.001 0.052 0.028 0.059 0.009 

2 0.046 0.03 0.037 0.133 0.019 0.847 0.045 0.036 

3 0.087 0.001 0.116 <0.001 0.035 0.539 0.077 0.003 

4 0.151 0.004 0.135 0.012 0.08 0.34 0.125 0.026 
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S6. Regression analysis for the NDVI recovery trend 

 

Figure S6. Simple regression analysis between the NDVI recovery trend (
 ∆𝑁𝐷𝑉𝐼

𝑑𝑎𝑦
× 10,000) after the drought breakpoint and A) 

aspect B) estimated grazing intensity in 2007 (β=-0.149 p=0.042).  




