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SUMMARY

Clusty is a new open source toolbox dedicated to earthquake clustering based on waveforms
recorded across a network of seismic stations. Its main application is the study of active faults
and the detection and characterization of faults and fault networks. By using a density-based
clustering approach, earthquakes pertaining to a common fault can be recognized even over
long fault segments, and the first-order geometry and extent of active faults can be inferred.
Clusty implements multiple techniques to compute a waveform based network similarity
from maximum cross-correlation coefficients at multiple stations. The clustering procedure is
designed to be transparent and parameters can be easily tuned. It is supported by a number
of analysis visualization tools which help to assess the homogeneity within each cluster and
the differences among distinct clusters. The toolbox returns graphical representations of the
results. A list of representative events and stacked waveforms facilitate further analyses like
moment tensor inversion. Results obtained in various frequency bands can be combined to
account for large magnitude ranges. Thanks to the simple configuration, the toolbox is easily
adaptable to new data sets and to large magnitude ranges. To show the potential of our new
toolbox, we apply Clusty to the aftershock sequence of the My, 6.9 25 October 2018 Zakynthos
(Greece) Earthquake. Thanks to the complex tectonic setting at the western termination of the
Hellenic Subduction System where multiple faults and faulting styles operate simultaneously,
the Zakynthos data set provides an ideal case-study for our clustering analysis toolbox. Our
results support the activation of several faults and provide insight into the geometry of faults
or fault segments. We identify two large thrust faulting clusters in the vicinity of the main
shock and multiple strike-slip clusters to the east, west and south of these clusters. Despite
its location within the largest thrust cluster, the main shock does not show a high waveform
similarity to any of the clusters. This is consistent with the results of other studies suggesting a
complex failure mechanism for the main shock. We propose the existence of conjugated strike-
slip faults in the south of the study area. Our waveform similarity based clustering toolbox is
able to reveal distinct event clusters which cannot be discriminated based on locations and/or
timing only. Additionally, the clustering results allows distinction between fault and auxiliary
planes of focal mechanisms and to associate them to known active faults.

Key words: Persistence, memory, correlations, clustering; Seismicity and tectonics; Frac-
tures, faults, and high strain deformation zones.

spatial and temporal seismicity patterns in great detail. In gen-

I INTRODUCTION eral, earthquakes occur along pre-existing faults. Both, the extent

The world-wide increasing number of seismic stations, even de- and the stress state of seismogenic faults are of interest for struc-
ployed in areas of moderate seismicity, significantly lowers earth- tural studies and for seismic hazard assessment at local, regional or
quake detection thresholds. This enables seismologists to study global scale. The association of seismic events to faults is a major
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but also challenging task. Depending on the location of active faults,
fault identification may involve field investigations (i.e. mapping,
trenching, etc.), aerial investigations (analysis of satellite images
or air-born lidar) or seismic-reflection/bathymetric data. Following
large-magnitude earthquakes (M,, > 6), the geometry of the fault
associated with the main rupture, as well as its slip distribution, is
often estimated using seismological and geodetic tools (e.g. Koper
et al. 2011; Yokota et al. 2011; Grandin et al. 2015; Cirella et al.
2020).

Moment tensor inversion represents a powerful tool to identify
earthquake faulting mechanisms. Focal mechanisms obtained for
seismic sequences are often used to obtain insight into the faulting
style and the extent of an active fault (e.g. Orgiilii & Aktar 2001;
Serpetsidaki er al. 2010; Asano ef al. 2011; Herrmann ef al. 2011)
or the geometry of multiple faults (e.g. Cesca et al. 2017). Although
moment tensor inversion provides valuable insights, it has several
limitations that complicate the identification of active faults. First,
robust moment tensor inversions require a detailed knowledge of
velocity structures and station instrumentation. Furthermore, the
quality of moment tensor solutions strongly depends on the radiated
frequencies: for lower magnitude events moment tensor inversion
is often not feasible. In these cases, the signal to noise ratio is only
sufficient at higher frequencies which cannot be modelled using
simple 1-D velocity models. Finally, the causative fault plane cannot
be distinguished from the auxiliary plane of the moment tensor (MT)
without additional geological (e.g. fault geometry) or geophysical
constraints (e.g. GPS displacements or aftershock distributions).

The clustering of earthquakes into groups of similar events is an-
other approach to analyse the observed seismicity regarding under-
lying seismogenic processes. The clustering analysis can be based
on various parameters such as: (1) spatial and/or temporal distribu-
tions (e.g. Frohlich 1987; Shearer ef al. 2005; Ansari et al. 2009;
Ouillon & Sornette 2011; Mouslopoulou & Hristopulos 2011; Mes-
imeri et al. 2019; Czecze & Bondar 2019); (2) the smallest rotation
between moment tensors (e.g. Cesca 2020); (3) P and S polarities
(e.g. Shelly et al. 2016) or (4) waveform similarities, as for exam-
ple in Tsujiura (1983), Maurer & Deichmann (1995), Shearer ef al.
(2003), Barani et al. (2007), Trugman & Shearer (2017), Ruscic
et al. (2019), Abramenkov et al. (2020) and in this study.

The clustering based on waveform similarity favours fault map-
ping by considering locations and mechanisms, since waveforms
are inherently sensitive to both. Waveform similarity is generally
assessed by cross-correlating waveforms of earthquakes at one or
multiple stations. Very high waveform similarities (i.e. >0.9-0.95)
are attributed to so-called repeaters (e.g. Geller & Mueller 1980;
Igarashi et al. 2003; Baisch et al. 2008; Han et al. 2014). According
to Geller & Mueller (1980) repeaters are located at distances smaller
than a quarter of the dominant wavelength, however, also larger
spatial separation was reported (e.g. Arrowsmith & Eisner 2006).
Similar waveforms, observed at multiple stations, imply similar fo-
cal mechanisms and travel paths (locations and depths, e.g. Maurer
& Deichmann 1995). Thus, the identification of clusters of similar
events can shed light on the fault geometry and on the faulting style.
In favourable conditions, waveform similarity studies can help to
identify faults and map their geometries (e.g. Tsujiura 1983; Maurer
& Deichmann 1995; Shearer et al. 2003). The waveform similarity
based clustering approach is independent from the uncertainty of
the hypocentral locations, therefore it can be applied even when
hypocentral locations are poorly constraint. Only at a later stage of
this study, when fault planes are inferred from the clusters, the loca-
tion uncertainties are considered. Waveform similarity is also used
to identify groups of events for relative relocation methods (e.g.
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Shearer et al. 2005; Trugman & Shearer 2017). High waveform
similarities among a small magnitude foreshock or afterhock with
a larger main shock with a known focal mechanism can be used to
infer a similar mechanism for the weaker event. Such analyses can
also be used for a more advanced declustering of a catalogue, not
only relying on occurrence times (Barani ez al. 2007), as well as for
determining event pairs for an empirical green’s function analysis.

Here we use a density-based clustering approach, which allows
grouping earthquakes with a wide range of magnitudes, locations
and focal mechanisms. End members of a density-cluster are not
required to be as similar as neighbouring events, if they are con-
nected via multiple events with gradually changing locations or
mechanisms. Consequently, we are able to assign individual earth-
quakes assumed to be produced along an elongated fault into a
single cluster.

Here, we introduce a new open-source, user-friendly and highly
adaptable waveform clustering toolbox, named Clusty. The tool-
box allows correlating and clustering hundreds to few thousands of
events recorded by a network of stations based on what we refer to
as the network similarity of the event pairs. We implemented dif-
ferent approaches to combine the waveform similarities computed
for multiple stations across a network, allowing a comparison of the
clustering methods and their results. In the development of the code
we put emphasis not only on computational efficiency and the sta-
bility of results, but also on a broad range of analysis and plotting
tools. Apart from the resulting catalogue of clustered events and
accompanying plots, Clusty provides a list of representative events,
i.e. one event for each cluster that is most similar to the rest of the
cluster. The representative events can be used to perform moment
tensor inversions aiming for a representative focal mechanism for
each cluster.

In this study we apply the clustering toolbox to the aftershock
sequence of the 25 October 2018 M,, 6.9 Zakynthos (Greece) earth-
quake (Chousianitis & Konca 2019; Cirella ef al. 2020; Ganas et al.
2020; Karakostas et al. 2020; Mouslopoulou ez al. 2020; Sokos et al.
2020). The data set includes >2300 events with M > 2.8 recorded at
33 stations from 25/10/2018 to 14/11/2019. The catalogue is avail-
able in Mouslopoulou ez al. (2020). Zakynthos is located in the prox-
imity of the western termination of the Hellenic subduction zone.
The region is known for its high seismic activity and a great variety
of faulting mechanisms (Mouslopoulou ef al. 2020). Serpetsidaki
et al. (2010) studied another seismic sequence offshore Zakynthos
in April 2006 and emphasized the importance of the identifica-
tion of active faults for regional seismic hazard assessment. Our
waveform-based clustering analysis provides a better understand-
ing of the geometries and kinematics of the faults involved in the
2018-2019 aftershock sequence. Further, we associate moment ten-
sors inverted for representative events to the individual clusters. The
identification of different waveforms excited by spatially clustered
earthquakes provides evidence for the presence of various faulting
styles on neighbouring faults, an outcome that is in agreement with
the local geology (Mouslopoulou et al. 2020) and the regional stress
field (Konstantinou et al. 2017).

We use the Zakynthos application to assess the stability of the
clustering results, using different clustering settings, frequency
ranges and discuss limits and opportunities of the toolbox. In Sec-
tion 2, we describe the work-flow of the clustering toolbox Clusty.
We applied our toolbox to the Zakynthos Earthquake aftershock case
study and present the results of the clustering analysis in Section 3.
We discuss both, the methods and the application with respect to
the clustering results, inferred fault geometries and methodological
limitations in Section 4.
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Figure 1. Schematic workflow diagram for the waveform-based network
similarity clustering toolbox Clusty.

2 METHODOLOGY: THE CLUSTY
NETWORK SIMILARITY CLUSTERING
TOOLBOX

Clusty is a flexible, efficient and user-friendly python toolbox ded-
icated to seismic cluster analysis based on waveform similarity
across a network of stations. It is based on the seismological python
library Pyrocko (Heimann et al. 2017) and is running on Linux
systems including desktop and server environments.

The general workflow is sketched in Fig. 1. As input Clusty
requires an earthquake catalogue, waveform data and station meta-
data. If phase picks are not available, it is possible to compute
theoretical arrival times using a chosen 1-D velocity model and
cake, a tool implemented in Pyrocko to solve ray theory problems

for layered earth models (Heimann et al. 2017). The user can ei-
ther select a fixed time window for each phase or use our empirical
relations (i.e. for surface waves: [fonset — 105, fonset + (3/fmin) +
10s] and for body waves: P: [tp — 2, ts], S: [ts — 2, 1.5(ts — tp)]).
Clusty preprocesses the waveforms, that is downsampling and band-
pass filtering, and applies thresholds for inter-event distances (either
epicentral (in this study) or hypocentral), event-to-station distances
and signal-to-noise ratio (SNR). While none of these thresholds are
strictly required, we recommend using them for computational ef-
ficiency. Distance-based thresholds should be set conservatively to
avoid rejecting event pairs or station-event-pairs due to mislocated
events. A minimum station—event distance is recommended as the
clustering method assumes a station—event distance that is large
compared to the event—event distance.

The workflow can be quickly adjusted to three channel or single
channel data. For all event pairs passing the thresholds, Clusty com-
putes the maximum cross-correlation coefficient (cc) at each sta-
tion and for each component. For computational efficiency, this step
runs in parallel on a user-defined number of cores on the CPU. Only
event-pairs, that exceed an additional cc threshold (e.g. >0.7) at a
minimum number of stations (e.g. >5), with a minimum azimuthal
station coverage (e.g. >60°) are considered in the subsequent analy-
sis. However, it is important to notice that once these conditions are
satisfied, all stations which passed the primary SNR and distance
thresholds (and not only those passing the cc threshold) will be
considered for the network similarity computation to assure that the
statistics are not biased. The cc threshold does not represent a mea-
sure of the minimum similarity among events in the later applied
clustering process. It only assures higher computational efficiency.

By applying the above mentioned thresholds, we reduced the
number of calculated cross-correlations in our test data set from
more than 378 million (45 stations, 3 components, 2367 events)
to about 5 million. The pre-processing of the waveforms and the
calculation of the cc values is the computationally most expensive
step within Clusty. In the frequency band of 0.05-0.20 Hz (allowing
a downsampling to 10 Hz) it takes about 4 hr on a cluster using 16
cores. All further steps within Clusty require only a few minutes on
a single core. A memory saving option is available, so that Clusty
can also be used on personal computers.

The cc values of the event pairs at each station are combined to
a network similarity for each component using one of the methods
described below. Subsequently, the components can be combined or
analysed individually, for example to compare the results obtained
from horizontal and vertical components. The network similarity
matrix is then used as input for the clustering algorithm DBSCAN
(Ester et al. 1996, see Section 2.2). The choice of appropriate clus-
tering parameters is often difficult and sometimes subjective. To
overcome these difficulties we implemented tools for testing vari-
ous sets of clustering parameters and compare them using multiple
analysis plots (see Section 2.3).

To analyse earthquakes with a broad range of magnitudes, the
entire workflow can be repeated using different frequency bands.
The resulting cluster labels can be harmonized with respect to a
defined reference frequency band to create a joint cluster result
catalogue. The user can run Clusty in one flow, but tuning the
settings of the network similarity computation and the clustering
parameters is a crucial point in this analysis. Therefore all steps
can be run separately and repeated (e.g. computation of cc, network
similarity, clustering, plotting of the results).

Settings for the toolbox like frequency filters, downsampling,
SNR thresholds to retain or reject events as well as the choice
of methods to compute the network similarity can be defined in a
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configuration file. We provide an example configuration file in the git
repository including information on the settings used for this study
(https://git.pyrocko.org/clusty/clusty, last accessed October 2020).
Clusty returns several figures to evaluate and present the results
together with the output from the cluster analysis (i.e. clustering
matrices and event-cluster identification). In addition, Clusty can
provide stacked waveforms for each cluster as well as a list of
representative events for subsequent studies.

2.1 Network similarity computation

The network similarity nsim of two events with index 7 and j (event
pair ij) across a network of stations s with components ¢ can be com-
puted based on the maximum cross-correlation coefficients ccjj
using a variety of methods implemented within the clustering tool-
box to allow an easy comparison of different techniques. The net-
work similarity of each event-pair is a value between 0 and 1, with
1 being the highest correlation.

For each pair of events 7, j the maximum, the mean or the median
of the ccjj., value of all stations s (separate components c) can,
among other methods, be used as a measure for network similarity.
These three methods are computationally very efficient. However,
the mean of the cc values of all stations is generally prone to outliers
especially when calculated from a small sample of events, while the
maximum of the cc values can be distorted in case of highly corre-
lated monotonous noise or band-limited stations, for example due
to high near-surface attenuation (Aster & Scott 1993). Moreover,
the maximum-method is based on the cc value of a single station
and cannot separate two different mechanisms which may radiate
similar, highly correlated waveforms in the particular direction of
the station. Therefore Aster & Scott (1993) suggest using the me-
dian of the cc values of all stations as best practice to determine the
degree of similarity between two events. Consequently, the maxi-
mum value should only be used for testing, to adjust time windows
and select appropriate bandpass filters or in cases where only single
stations close to the epicentre have a sufficient SNR (Ruscic et al.
2019). For smaller magnitudes only the closest stations are expected
to record an event, therefore it helps to use the mean or median of
those stations that comply with the given SNR threshold.

For the same reason Maurer & Deichmann (1995) introduced an
asymmetrically trimmed mean for the computation of the network
similarity nsim;;,. across a total number of M stations: For each event
pair the lowest k per cent of the cc values are removed before the
mean is computed:

M—kM

) 1
nsimi; . = m ; CCijc.s» (1)

where ccj; ., is sorted by descending cc value. Lower cc values
between events at some stations do not necessarily imply weaker
correlation of the events in regard to mechanism and location but
can also be caused by other influences, such as variable site effects
or noise conditions (Akuhara & Mochizuki 2014).

The network similarity of an event pair can also be computed as
a weighted sum of the cc values at all stations. The weights w; . ; are
the absolute differences between the first and the second maximum
of the according cross-correlation function (Shelly ez al. 2016):

M
nsim,-j,c = E ccij.c,s w,-j_m. (2)
s=1

The use of a weighted sum limits the influence of poorly correlated
records from distant or noisy stations and stabilizes the computation.
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However, we recommend to use a threshold for a required cc value
at a minimum number of stations. Further, the resulting weights
should be analysed along with the network similarity to avoid that
the result is dominated by few stations only.

Another approach to combine the cc values of all stations is a
composite correlation measure computed as the Mth root of the
product of the cc values (Stuermer et al. 2011):

M

nsimy e = [[ J(ceie)]™. 3)

s=1

Stuermer ef al. (2011) combined P and S cc values extracted from
the same single component trace in the product. When using three
component data, we first compute the Mth root of the product for
each component ¢ separately, and then combine the obtained net-
work similarities in a consecutive step.

The network similarity matrices nsim;;,. are computed for the
different components c (e.g. Z, N and E) separately and subsequently
combined as a weighted sum:

c
nsim;; = E nsimij . . 4)
c=1

The weighting of the components w, is defined in the configura-
tion file. A component-based weighting allows compensating site-
effects, which can lead to complex horizontal traces. The weighting
can also compensate for variations in waveforms originating from
different mechanisms that affect horizontal and vertical components
differently. By comparing the results of independent phases (e.g. P
and S or Love and Rayleigh) and components (i.e. Z, N and E)
one can learn about the sensitivity of the waveforms in regard to
different faulting types.

2.2 Event clustering

For the clustering algorithm input, the network similarity matrix
(with 1 being the highest correlation) is converted into a distance
matrix (with 0 corresponding to identical events). To avoid con-
fusion with the spatial distance we hereafter refer to it as the
similarity-distance. At the current version of the clustering tool-
box, the density-based DBSCAN algorithm (Ester et al. 1996), as
implemented in the python package scikit-learn (Pedregosa et al.
2011), is used for clustering. Other clustering algorithms, such as
OPTICS (Ankerst ef al. 1999) or k-means (Lloyd 1982) can be
added by the user depending on the clustering targets.

Clusters derived using the DBSCAN algorithm can have any
shape and the number of clusters is not predefined. Further, the
algorithm allows for unclustered events (a noise class). Following
the definitions of Ester ez al. (1996), events belonging to one cluster
are either core events or border events. Core events have at least
a minimum number of neighbouring events (MinPts) within the
similarity-distance Eps. Events at the border of the cluster (bor-
der events) are connected to at least one core point, but have less
then MinPts neighbouring events within the similarity-distance Eps.
Clusters are formed based on the concept of density reachability. An
event i is considered directly density-reachable from a core event j,
if it is within the similarity-distance Eps. Further the events i and j
are density-connected if they are density-reachable through one or
more density-connected core events.

The DBSCAN clustering procedure starts with the selection of an
arbitrary event of the data set. All events that are density-reachable
from this very first event (with respect to Eps and MinPts) are
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retrieved. A cluster is only formed if there is at least one core event.
If not, DBSCAN visits the next point of the database. This process
is continued until all points have been processed (Ester ez al. 1996).
Events not lying within similarity-distance Eps of any other event
are assigned to a noise class (unclustered). Eps and MinPts need to
be tuned by the user according to the data set.

2.3 Tuning of the clustering parameters and graphical
analysis of clustering results

Our clustering toolbox provides several analysis plots that facilitate
the tuning of the clustering parameters and the evaluation of the
stability of the clusters. Further, these plots provide detailed insight
into the clustering results. The plotting tools can also be used to
analyse, compare and choose multiple target frequency bands to
include surface waves for larger, distant events and body waves for
smaller, local events. The graphical output is generated using GMT
(Wessel ef al. 2013) and the python plotting packages matplotlib
(Hunter 2007) and plotly (Plotly Technologies Inc. 2015). The plots
presented in this section illustrate the analysis that was performed
to obtain optimal clustering settings and stable results for the appli-
cation to the aftershock sequence of the 25 October 2018 Zakynthos
M,, 6.9 earthquake in Greece.

Clusty allows the user to run the entire clustering process for
different DBSCAN parameters (Eps and MinPts) in parallel to com-
pare the results. As mentioned above, the input similarity-distance
matrix for DBSCAN is computed from the cross-correlations of
waveforms. Therefore the similarity-distance radius (Eps) is di-
rectly related to the underlying physical process and a rough first
estimate of Eps can be made based on expected similarities. How-
ever, the expected cc values, and consequently, the optimal Eps
value may vary depending on the length of the considered wave-
form time windows, the frequency content as well as on site and
noise conditions at the stations. An Eps of 0.1 implies that a pair of
connected events has at least a network similarity of 0.9. Depend-
ing on the chosen method for the network similarity computation,
waveform cross-correlation values at single stations can be smaller
if other stations with higher values compensate for it. Eps needs
to be adjusted to the purpose of the clustering. Using a small Eps
value allows finding very similar events or repeaters. However, in
this case other events are omitted, which would still be considered
similar when clustering is performed using a higher Eps for fault
identification and tracing.

Ester et al. (1996) suggested a k-nearest neighbour (k-NN)
plot (Fig. 2a) to choose the Eps parameter. Therein, the average
similarity-distance of every sample to its £ nearest neighbours (here
corresponding to the MinPts parameter) is calculated and plotted
in an ascending order to visually find a ’knee’, that corresponds to
the optimal Eps value for the given data set (Ester ef al. 1996). In
Fig. 2(a), the sorted similarity-distances of the kth nearest neigh-
bours are shown for MinPts values from 5 to 8. For MinPts 5, sig-
nificant gradient changes are seen for Eps values of 0.16 and 0.21
(red arrows in Fig. 2a). For increased MinPts values these gradient
changes are observed for larger Eps values. However, we prefer
smaller Eps values, because otherwise we observe rather unstable
and heterogeneous clusters in our application (Fig. 2b and following
paragraphs). Therefore, we suggest three additional metrics to con-
strain a range of appropriate DBSCAN clustering parameters for
fault tracing purposes: (1) the silhouette score, (2) the number of
clusters and (3) the total number of clustered events. These metrics

reflect the ensemble of all clusters, while the influence of differ-
ent parameter sets onto single clusters can be analysed using more
sophisticated analysis tools, introduced hereafter. Fig. 2(b) shows
these metrics for Eps values between 0.01 and 0.30 and MinPtS
values of 5 and 8. The trends of the three curves are similar for both
MinPts values. The silhouette score is a measure of the homogeneity
of all clusters (Rousseeuw 1987), here neglecting the unclustered
events. It is the mean of the silhouette coefficients of all clustered
events. The silhouette coefficient of a single event expresses how
similar that event is compared to the other events within the same
cluster and compared to the events of the nearest other cluster. The
silhouette coefficient is defined as:

s = (icd — ned)/max(icd, ned), 5)

where ncd is the mean nearest cluster similarity-distance for
each event and icd is the mean intracluster similarity-distance
(Rousseeuw 1987). The silhouette coefficient ranges between —1
and 1, where 1 corresponds to a cluster of identical events, that
are completely different from events belonging to other clusters.
Coefficients between —1 and 0 indicate that the similarity-distance
of an event with respect to events of other clusters is smaller than
the average similarity-distance to events of its own cluster. We use
the implementation of scikit-learn (Pedregosa et al. 2011) to cal-
culate the silhouette coefficients. The silhouette score in Fig. 2(b)
is largest at very low Eps values, when only highly similar earth-
quakes are assigned to one or few clusters. Thereafter, the silhouette
score decreases with increasing Eps value, so in fact we are visually
searching for local maxima or changes in the gradient of the curve,
but not for the global maximum. The shift between the two lines
for MinPts 5 and 8 (grey and black, respectively) in Fig. 2(b) is the
result of an increased number of earthquakes required per cluster for
higher MinPts values. The first cluster can therefore only be found
for a slightly higher Eps value in case of a higher MinPts value.
In both curves a local maximum is seen at an Eps value of 0.06.
Several minor changes in the gradient are observed between 0.10
and 0.14, followed by a major gradient change at 0.15 (black arrow
in Fig. 2b). Below Eps 0.15, the silhouette score is relatively stable
on a low level. By decreasing the Eps only by 0.01 or 0.02 we ob-
tain significantly higher silhouette scores, thus more homogeneous
clusters (Fig. 2b), a prerequisite for a reliable identification of ac-
tive faults. The total number of clusters and the number of clustered
events decreases with increasing MinPts, resulting from a higher
required number of earthquakes to form a cluster. The number of
clustered events increases rapidly until an Eps value of 0.13 (MinPts
5, green arrow in Fig. 2b) and 0.16 (MinPts 8) and shows a smaller
gradient afterwards. Local maxima of the number of clusters are
found for 0.10 and 0.13 (blue arrow in Fig. 2b) for MinPts 5 and
0.13 for MinPts 8. For larger Eps values single clusters collapse into
larger, more heterogeneous ones, as can be seen in the flow diagram
(Fig. 3).

The flow diagram helps to assess the stability of the clustering
results. It allows a comprehensive comparison of clustering results
obtained using different clustering parameters (Fig. 3) or waveform
frequency filters (Fig. S1). Fig. 3 shows the flow diagram of clus-
tering results obtained for an Eps range of 0.06—0.30. The width of
the connecting bands between two clusters obtained with two sets
of parameters is proportional to the number of common events. In
this way, the diagram reflects conserved quantities as well as the
splitting or merging of clusters (Fig. 3). In Fig. 3 the small clusters
in the lower part of the diagram remain stable over a wide range
of Eps values. The two largest and distinct green and light blue (3
and 5) clusters collapse into one heterogeneous cluster when Eps
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Figure 3. Screenshot of the interactive flow diagram for a comparison of clustering results obtained with Eps values between 0.06 and 0.30, MinPts 5
(0.05-0.2 Hz). Black represents the noise cluster (here reduced in size to emphasize the clustered events). Same colours represent the same cluster. The size of
the clusters varies depending on the required similarity (Eps value), the block size is proportional to the number of events within the cluster. The grey bands
connect clusters obtained with different clustering parameters which share at least one event. The thickness of the grey bands is proportional to the number of
shared events. This representation allows evaluating the stability of cluster results when changing clustering parameters.

increases from 0.14 to 0.15. For Eps values as small as 0.06 only few
small clusters are found. For Eps = 0.30 large clusters with clearly
distinguishable event types (when using a smaller E£ps) collapse into
one cluster.

When using multiple clustering settings, the resulting clusters as
well as their labels will differ. Therefore, we implemented a function
that provides harmonized cluster labels across the different cluster-
ing results. The harmonization of labels can lead to a discontinuous
cluster label numbering but assures that labels are persistent.

Finally, we introduce two more visualization tools to analyse
the clustering parameters and control the clustering results: the
silhouette coefficient plot (Figs 4a—c) and the event-connectivity
plot (Figs 4d—f). Both depict the homogeneity and the connectivity
within each cluster or among different clusters, respectively.

The silhouette coefficient plot (Figs 4a—c) shows how similar
each event is to the events in its own cluster compared to the events
of the most similar cluster (Rousseeuw 1987). Each coloured block
represents the events of one cluster, sorted by their silhouette coef-
ficient. The silhouette plot helps to find appropriate Eps and MinPts
settings and the optimal number of clusters by evaluating the simi-
larity of events within each cluster. The connectivity plot (Figs 4d—f)
provides a complementary visualization of the similarity between
events as well as between clusters. Within this force-directed projec-
tion (Fruchterman & Reingold 1991) the relative distance between
events or clusters of events represent their similarity. When choos-
ing Eps=0.06 (Figs 4a and d) only a few, very similar events are
clustered. However, the visualization of the connectivity (Fig. 4d)
shows that there are many more clusters of similar events. This
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cannot be seen from the silhouette plot alone (Fig. 4a). By increas-
ing Eps to 0.13 (Figs 4b and e) all clusters are well separated and
homogeneous, except for cluster 3 and 18. For Eps=0.30 (Figs 4c
and f) the central clusters collapse into one. In the latter case, the
silhouette plot indicates that the clusters are generally more hetero-
geneous and larger. We want to stress the importance of the analysis
of both, the similarity between separated clusters as well as among
the events that belong to the same cluster, before interpreting the
results. The user can get insights into the quality of the performed
clustering analysis by comparing the presented plots for a range of
parameters.

Clusty provides maps and waveform plots as final graphical
output along with the catalogue of clustered events (for examples,
see also Section 3). Station-wise waveform plots display all aligned
waveforms per cluster and component. The waveform plots provide
another direct visualization to evaluate the similarity of waveforms.
We would like to point out that the clustering algorithm, the plots
to evaluate the stability of the results (flow diagram, silhouette and
connectivity plots) and the final maps may be used independently

with any other distance matrix provided by the user. For example,
these distance matrices could be based on Kagan angles or spatial
distances.

3 APPLICATION: OFFSHORE
AFTERSHOCK SEQUENCE OF

THE M 6.9 ZAKYNTHOS EARTHQUAKE,
GREECE

3.1 Study area

The study area is located at the western margin of the Hellenic Sub-
duction System (HSS), along which the oceanic lithosphere of the
African Plate is subducted beneath the continental lithosphere of the
Eurasian Plate with a NE dipping slab (Fig. 5). Within the study area,
faults of varying geometries and slip movements (Mouslopoulou
et al. 2020) accommodate the northward kinematic transition from
convergence to strike-slip (i.e. Pérouse et al. 2017; Sachpazi et al.
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Figure 5. Study area and station network. Triangles indicate seismic stations. Colour intensity depicts the contribution of each station to the clustering result
(number of clustered event pairs for which the station was used). The dashed square outlines the extent of Figs 6(a) and 7. The grey arrow indicates the relative
movement of the African Plate with respect to stable Eurasia (Pérouse et al. 2017). Active regional faults from Basilic ez al. (2013), topography from SRTM

(Farr et al. 2007). KTF, Kefalonia Transform Fault; AEF, Achaia-Elia Fault.

2000). Although all types of faulting (thrust, normal and strike-slip)
may occur (Konstantinou et al. 2017; Mouslopoulou et al. 2020),
thrust faulting appears to prevail south and southwest of Zakynthos
(Papadimitriou et al. 2013; Wardell ef al. 2014), while strike-slip
faulting is dominant to the northwest (Louvari ez al. 1999; Sachpazi
et al. 2000), onshore Peloponnese (Feng et al. 2010; Stiros et al.
2013) and in the offshore area between Zakynthos and Peloponnese
(Kokkalas et al. 2013; Haddad et al. 2020; Mouslopoulou et al.
2020). Normal faulting is accommodated in the shallower sections
of the crust (above 15 km), often at high angles to the prevailing
strike of the mapped thrust/strike-slip faults (Mouslopoulou et al.
2020).

The study region is characterized by intense seismic activity and
strong main shocks (M > 6, Papazachos & Papazachou2003). On 25
October 2018, a magnitude M,, 6.9 earthquake struck southwest of
Zakynthos (Chousianitis & Konca 2019; Cirella et al. 2020; Ganas
et al. 2020; Karakostas ez al. 2020; Mouslopoulou et al. 2020; Sokos
et al. 2020). It occurred after a 4-yr-long phase of seismic unrest
which was probably triggered by a slow-slip event (Mouslopoulou
et al. 2020) and was followed by strong aftershock activity, which
is still ongoing (Mouslopoulou et al. 2020; Sokos et al. 2020).
The complex moment tensor of the main shock, with a significant
non-double couple component, was attributed to subevents of thrust
faulting and moderately dipping right lateral strike-slip faulting, in
accordance with the African—Eurasian Plate motion (Cirella et al.
2020; Mouslopoulou et al. 2020; Sokos et al. 2020). While seismo-
logical results alone cannot clearly discriminate between a splay-
thrust and a subduction-thrust fault scenario for the main candidate
earthquake fault, the scenario of a splay-thrust fault is supported by
published seismic-reflection and bathymetric data (Mouslopoulou
et al. 2020) and the recording of a minor tsunami that suggests
rupture of the sea-bed (Cirella ez al. 2020).

Our study is based on the catalogue of the aftershock se-
quence reported by Mouslopoulou et al. (2020). It consists of
>2300 events (M,, >2.8), including about 80 double-couple so-
lutions showing a large variability of thrust, normal and strike-slip
mechanisms. This hints at the activation of a complex fault sys-
tem, in accordance with local fault diversity (e.g. Konstantinou
et al. 2017; Mouslopoulou et al. 2020). Thanks to the complex
tectonic setting, together with the multitude of activated faults,
we consider the Zakynthos data set an ideal case study for our
clustering analysis tool. The waveform data of the networks HA,
HC, HL, HP, HT, MN (University Of Athens 2008; Technologi-
cal Educational Institute Of Crete 2006; National Observatory Of
Athens, 1. O. G. 1997; University Of Patras, G. D. 2000; Aristo-
tle University Of Thessaloniki Seismological Network 1981; Med-
Net Project Partner Institutions 1990) used in this study was ob-
tained using the pyrocko fdsn client to access the databases of
the National Observatory of Athens Seismic Network (NOA, http:
//www.gein.noa.gr/en/), GEOFOrschungsNetz (GEOFON; https://
geofon.gfz-potsdam.de/), Observatories and Research Facilities for
European Seismology (ORFEUS; https://www.orfeus-eu.org/), In-
corporated Research Institutions for Seismology (IRIS; https://ww
w.iris.edu/hq/) and Instituto Nazionale di Geofisica e Vulcanologia
(INGYV; http://webservices.ingyv.it).

3.2 Results

Here, we present the clustering results for the Zakynthos data set
obtained using a 30 per cent-trimmed mean for the calculation
of the network similarity from waveforms of the seismic stations
presented in Fig. 5. Vertical (HHZ) and horizontal (HHN and HHE)
components were combined with weightings of 0.4, 0.3 and 0.3,
respectively. Only event-pairs with cc values >0.7 and an SNR > 2
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at more than five stations, covering a minimum azimuthal range of
60°, are considered. We discuss the choice of the network similarity
computation method and the DBSCAN clustering parameters (here:
Eps 0.13, MinPts 5, primary frequency band 0.05-0.20 Hz, time
window 80 s) in Section 4.

We used four different frequency bands to account for surface
waves (0.02-0.15 Hz and 0.05-0.20 Hz) and body waves (0.1—
0.5 Hz and 0.2-1.0 Hz). The overall patterns of clustered events are
similar in all four frequency bands. Considering the stability and
homogeneity as well as the total number of clustered events, the
frequency band 0.05-0.20 Hz provides the best results. Using this
frequency band, the clustering toolbox grouped 387 of 2361 (16 per
cent) earthquakes with M,, > 2.8 into 22 clusters (Fig. 6a). 75 per
cent of the events in the catalogue were rejected because they did not
meet the quality thresholds (SNR, min. number of available traces)
described above. Despite the small number of events compared to
the total number of events in the catalogue, we consider the clustered
events representative for the entire aftershock sequence as they cover
70 per cent of the cumulative moment.

The results of the primary frequency band are combined with the
other, secondary frequency bands, mainly to account for smaller
events with a low SNR at low frequencies. About 50 events were
added to the clustering results, resulting in a total of approximately
430 clustered events. For each cluster, we computed deviatoric MTs
(Fig. 6a) for one representative event using the probabilistic full
waveform inversion framework Grond (Heimann et al. 2018), fol-
lowing the approach described in Mouslopoulou ez al. (2020). The
inversion includes 101 bootstrap chains with different weightings
of the station-component-based misfits. The ten best MTs of each
bootstrap chain, referred to as the ensemble of solutions, are used
to analyse the uncertainties of the best solution obtained in the
inversion.

Fig. 7 shows the temporal activity and moment release of the
clusters. 84 per cent of the cumulative seismic moment of the af-
tershocks is released within the first month of the sequence. The
central clusters (3, green; 4, pink; 5, light blue and 20, blue) are
activated soon after the main shock. Our representative mecha-
nisms (Fig. 6a) as well as the MT solutions of Mouslopoulou ef al.
(2020) for events belonging to the central clusters (3, 4, 5, 20 in
Fig. S2) indicate predominantly thrust faulting. The thrust clus-
ters 3 and 5 release 50 per cent of the cumulative seismic moment
of the 1-yr aftershocks sequence or 70 per cent of the cumulative
seismic moment of the clustered events (Fig. 7, inset). The prox-
imity to the main shock, the time of initiation and the thrust nature
of these events collectively suggest that they may be directly trig-
gered by slip during the main shock. This is further supported by
the representative mechanisms of cluster 3 and 5, which resem-
ble the geometry resolved for the thrust part of the main shock
by Sokos et al. (2020) and Mouslopoulou et al. (2020), possibly
reflecting slip on the same (or neighbouring) fault. The represen-
tative mechanism of cluster 4 (Fig. 6a) shows a shallowly dipping
(<10°) fault plane, however, its slip mechanism cannot be resolved
unambiguously.

Following the rupture of the thrust clusters 3 and 5, and within
hours of the main event, several strike-slip faults were activated
north and south of the main shock’s epicentre (Fig. 7), contributing
significantly (12 per cent) to the total moment release of the after-
shock sequence (Fig. 7, inset). West of the island of Zakynthos, we
observe two NE-SW elongated seismicity clusters, which are asso-
ciated with strike-slip faulting: overlapping clusters 11, 18 and 35
and the isolated cluster 7 (Fig. 6a). The small strike-slip cluster 24
abuts against the cluster 5 which is associated with thrust faulting.

Due to the vicinity of these two clusters, the smaller strike-slip clus-
ter cannot be detected based on spatio-temporal clustering. While
the strike-slip clusters 7 and 24, which are located to the east and to
the west of cluster 5, respectively, are active within the first ten days
after the main shock, the activity of the overlapping strike-slip clus-
ters 11, 18 and 35 starts two months later (Fig. 7). Cluster 33, which
overlaps spatially with cluster 11, 18 and 35, in contrast is active
within the first days after the main shock and shows a more oblique
mechanism (Fig. 6). South of the main shock, three spatially and
temporally overlapping strike-slip clusters (8, 15, 23) show a similar
elongation in NE-SW direction (Fig. 6a). There, the activity starts
within the first week after the main shock. The mechanisms of the
three representative events of these clusters, together with the solu-
tions from Mouslopoulou ez al. (2020) (Fig. S2) indicate strike-slip
on NS or EW striking fault planes, incompatible with the distribu-
tion of hypocentres. The latest cluster in the aftershock sequence is
cluster 27 (red cluster in Figs 6a and 7), located to the south of the
main shock. It is associated with a thrust slip on a NW-SE striking
plane. The cluster consists of eight highly similar events.

4 DISCUSSION

In the introduction we briefly described the problem of the identifi-
cation of active seismic faults and two related seismic methods,
MT inversions and clustering of earthquakes based on selected
precomputed features. Unlike the clustering of seismic events by
their moment tensor, the clustering based on waveform similarities,
which we propose here, is able to resolve closely located faults of
different mechanisms without the limitation to larger magnitudes.
Spatial clustering analysis is not limited by the magnitude, either,
but is not able to resolve differences in the faulting mechanism.
The clustering approach upon waveform similarity reflects the sen-
sitivity of mechanism, location and depth, thus, providing a tool
for the identification of active faults. Following a discussion on the
methodological implementation, we review how a joint analysis of
the clustering results and M T solutions for representative events can
help to identify and describe active faults.

4.1 Discussion Part I: On the methodological
implementation

The clustering toolbox presented here is dedicated to the study of ac-
tive faults based on the waveform similarities of event pairs across a
network of seismic stations. Compared to a single station approach,
the network similarity has several advantages. By taking into ac-
count spatially distributed stations, a larger portion of the seismic
radiation pattern is considered. Therefore a network similarity al-
lows distinguishing mechanisms which cannot be distinguished in
single station approaches. Especially in narrow frequency bands, it
is possible to achieve high correlations at single stations that are
excited by different faulting mechanisms. Further, even for a single
high quality station noise conditions may vary temporarily and data
gaps are likely. Using multiple stations in our network similarity
approach assures the most efficient use of the available data.

We tested all methods for the network similarity computation
(Section 2) by applying them to the aftershock sequence of the 25
October 2018, Zakynthos Earthquake. We observe that the network
similarity based on the highest cc value across the network cannot
resolve small differences between clusters of similar location and
mechanism. The other methods implemented in the toolbox, that is
median, mean, trimmed mean, the weighted sum and the composite
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Figure 6. (a) Combined waveform-based clustering results for the aftershock sequence of the 25 October 2018, My, 6.9 earthquake offshore Zakynthos, Greece
(black MT). Clusters and representative MTs are colour-coded. Cluster label numbers are discontinuous due to harmonization of different Eps values and
frequency bands (see Figs 3 and 4). Open grey circles represent events rejected from the clustering analysis due to selection criteria. The primary frequency
band results (0.05-0.20 Hz) are shown as dots, diamonds refer events added to the clusters using the secondary frequency ranges. For the four largest clusters
surface projections of the nodal planes of the representative MTs are shown in (b)—(e). Causative planes are coloured. For cluster 3 the strike angle is poorly
resolved in the MT solution. The red arrows show the slip direction on the shallow nodal plane (green rectangle). Dashed lines depict the principle axes of
principle component analyses of epicentres (see Section 4). Offshore faults are compiled and reinterpreted by Mouslopoulou et al. (2020) from bathymetric
data and seismic-reflection profiles provided by Kokkalas ez al. (2013), Wardell ez al. (2014) and EMODnet Bathymetry Consortium (2018).

correlation measure (see Section 2.1), return comparable results
after slightly adjusting the clustering parameters. For the sake of
clarity, we only refer to the 30 per cent-trimmed mean network
similarity when discussing the choice of the clustering parameters
and the clustering results.

In the methodological section, we introduced the density-based
DBSCAN clustering algorithm (Ester et al. 1996; Pedregosa et al.
2011). DBSCAN does not require that all events within one cluster
are (highly) similar to all other events. Instead, it is sufficient that
events within one cluster are connected by more similar events.
Events with small differences in waveforms due to gradual changes
in site effects, faulting mechanism or the travel path (location) can
still belong to the same cluster if there are other connecting events
in between them. Consequently, this approach is not only able to
identify repeaters (e.g. Figs 4a, d and 8) (Geller & Mueller 1980),
but allows grouping of events located on elongated faults. In our
clustering toolbox we allow for unclustered events: If an event is not
exhibiting a high similarity to any cluster of events, it is assigned
to the noise class. In contrast, for instance the k-means clustering
algorithm assigns every event to one of the given clusters without
allowing for a noise class (Lloyd 1982). Therefore, we do not rec-
ommend using k-means for fault mapping purposes. Furthermore,

in contrast to density-based clustering algorithms like DBSCAN,
centroid-based clustering like k-means require a predefined number
of clusters. Another common density-based clustering algorithm is
OPTICS (Ankerst ef al. 1999). Contrary to DBSCAN, which has
a fixed radius Eps, OPTICS can handle varying cluster densities.
However, for the fault tracing, we intend to have fixed criteria in
regard to the required similarity of events and therefore use a fixed
search radius. Thus, we rely on DBSCAN that assures that the event
similarities, which result from physical processes and interevent
distances, are comparable between the clusters. However, since our
toolbox is set-up in a modular fashion, more methods can easily be
implemented.

Clusty is applicable to different seismological scales since it di-
rectly uses waveforms and does not require precomputed features,
such as moment tensors, characteristic functions, polarities or am-
plitude ratios. Potential applications range from acoustic emissions
in laboratory or mining experiments to sequences of regional seis-
micity. Days to weeks long swarm activity as well as yearlong
seismic sequences can be analysed. The flexibility in combining
results from different frequency bands allows to investigate events
with a large range of magnitudes. Thanks to the output of repre-
sentative events of each cluster and stacked waveforms (optional),
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Figure 8. Aligned waveforms of the events in the two thrust clusters 3 and 5 and in the strike-slip cluster 8 at stations HL.ITM and HL.VLS (left-hand
panel). See Fig. 5 for station locations. Numbers below the station name indicate the number of stacked traces versus the number of events within the clusters.
Differences arise from waveform quality thresholds or missing data. When lowering the Eps to 0.06, cluster 3 splits up into smaller, more homogeneous

subclusters (right-hand panel).

further analyses, such as subsequent moment tensor inversion, is
facilitated.

The clustering toolbox returns several analysis plots to cali-
brate the settings for each study and to avoid black-box like usage.
The DBSCAN parameter Eps should always be carefully adjusted.
Larger values result in larger and more heterogeneous clusters. In
contrast, low Eps values result in a higher similarity within the single
clusters at the cost of a smaller number of clustered events, eventu-
ally losing information on the fault orientation. This trade-off needs
to be considered when choosing an Eps value. We recommend test-
ing different Eps values in parallel, for example from 0.05 to 0.30,
and inspect what can be learned with respect to event clusters. We
chose the Eps value of 0.13 for the cluster analysis after the joint
consideration of the analysis tools as presented in Section 2. By

testing different MinPts values, we find that the parameter does not
significantly influence the observed pattern of earthquake cluster-
ing. To allow for smaller clusters to be included in the results, we
set MinPts to 5.

Fig. 8 (left-hand panel) shows the aligned waveforms of clusters
3, 5 and 8 at two stations located north and east of the epicentral
region (Fig. 5). The stacked waveforms of cluster 3 are clearly
more diffuse than those of the other clusters. When lowering the
Eps to 0.06 the large cluster 3 splits up into multiple homogeneous
subclusters (right-hand part of Fig. 8 and see also Fig. 3). While the
homogeneity within the subclusters is much higher, this approach
substantially reduces the total number of clustered events (40 in 5
subclusters versus 126 in one cluster), showing a trade-off which
was previously described.
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4.2 Discussion Part IT: On the application to the
Zakynthos sequence

By applying the clustering toolbox to the aftershock sequence of
the Zakynthos Earthquake, we are able to assign about 430 events
to 22 distinct clusters. This is five times the number of aftershocks
(~80) that were clustered using the Kagan angle in Mouslopoulou
et al. (2020). The increased number of clustered events enables
a more precise characterisation of seismic patterns. Contrary to
other clustering approaches that use event locations and/or times
(e.g. Mouslopoulou & Hristopulos 2011; Ouillon & Sornette 2011;
Karakostas et al. 2020), here we are able to distinguish events that
are located close to each other but have different focal mechanisms
and, thus, are expected to excite different waveforms, as seen for
thrust cluster 5 and strike-slip cluster 24. Karakostas et al. (2020)
identify 8 clusters for the same aftershock sequence based on event
locations. We identify several additional small clusters (e.g. 24, 14
and 30), extending the insight into the complex fault system. Spatial
or temporal clustering cannot separate events in complex faulting
patterns as seen for the southernmost strike-slip clusters 8, 15, and
23. Cluster 33 overlaps spatially with clusters 11, 18 and 35, but the
waveform similarity clearly separates these event groups, which are
also separated temporally by 2 months.

Location errors need to be taken into account in the analy-
sis of structures inferred from the clustering results. Earthquake
(re-)location offshore Zakynthos is challenging due to the effects
of a non-homogeneous velocity model, large azimuthal gaps and
a sparse station coverage (e.g. Karastathis et al. 2015; Sachpazi
et al. 2016). The locations and their uncertainties in the catalogue
of Mouslopoulou et al. (2020) that we use here, were obtained using
NonLinLoc (Lomax et al. 2000, 2009). The clustered events in this
study have median uncertainties of 1.8 km and 2.7 km in horizontal
and vertical direction, respectively (95 per cent confidence interval:
3.8 and 4.5 km). Due to the location errors, we do not consider any
small structures (<10 km) in our analysis of fault planes.

Moment tensor solutions for representative events or for stacked
waveforms of all events in a cluster enable the interpretation of
the seismicity clusters with respect to faulting styles and fault ori-
entations. Using stacked waveforms for each cluster can facilitate
moment tensor inversion if the SNR of single events is too low
otherwise. However, stacked waveforms need a particularly care-
ful checking due to possible artefacts. For the application to the
Zakynthos aftershock sequence the magnitudes of the representa-
tive events (M,, 3.5-4.6) allow for full waveform moment tensor
inversions. In case of cluster 3, we report the moment tensor for
the event with the second highest silhouette coefficient, because
its magnitude is significantly larger (M,, 4.6 versus 3.9), provid-
ing a more stable MT result. Since Clusty is based on the Pyrocko
python package, subsequent MT inversions using the probabilistic
inversion framework Grond (Heimann et al. 2018) are facilitated.

The representative MTs show a wide variety of faulting types
including thrusts, strike-slips and few normal faults. In general, our
results are consistent with the MT solutions from Mouslopoulou
et al. (2020) (Fig. 6a and Fig. S2). The P axes of their MTs are ori-
ented NE-SW in general agreement with the regional compression.

For 15 of our 22 clusters, there is at least one MT available
from Mouslopoulou et al. (2020, Fig. S2). Our representative MT
solutions and MTs from Mouslopoulou et al. (2020) for events
that belong to our clusters differ by a Kagan angle <30° for >50
per cent of the clusters and by <40° for 12 of our 15 clusters,
respectively, implying homogeneous clusters. A Kagan angle of
30° is often used as a threshold for similar focal mechanisms in
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literature (e.g. Lee et al. 2014), while an angle «60° still indicates
a good correspondence (Pondrelli ef al. 2006; d’ Amico et al. 2011).
The large clusters 3 and 5 have increased mean Kagan angles of 40
and 55°, respectively. The variations of mechanisms in clusters 3
and 5 might primarily reflect varying dips of thrust fault planes.

For cluster 3, Mouslopoulou et al. (2020) report oblique strike-
slip MTs for four earthquakes besides the predominant thrust mech-
anism. The oblique strike-slip and thrust mechanisms within this
cluster cannot be distinguished, even when the Eps value is as low
as 0.06. In our clustering approach we use a broader frequency band
(0.05-0.20 Hz) compared to the MT inversions by Mouslopoulou
et al. (2020). Repeating the MT inversion for all events for which
solutions are reported by Mouslopoulou et al. (2020) in a broader
frequency band (0.02—0.07 Hz), we obtain thrust mechanisms with
minor oblique components. Kagan angles between our representa-
tive event for cluster 3 and our own MT solutions for the events that
were also reported by Mouslopoulou et al. (2020) result in a mean
angle of 25°, indicating similar event mechanisms. We assume that
the narrower bandwidth used by Mouslopoulou ef al. (2020), along
with the unfavourable station distribution along the coast, results in
two possible mechanisms that could not be distinguished in the MT
inversion in the case of these four events.

Varying fault plane dip angles could be attributed to listric thrust
faults offshore Zakynthos (Kokinou ez al. 2005; Papoulia & Makris
2010; Kokkalas et al. 2013). Cluster 3 was active immediately after
the main shock (Fig. 7). As the cluster is located within the main
shock rupture area (Sokos ef al. 2020), its heterogeneity may be
linked to the complexity of the main shock, which possibly involves
two overlapping events (Mouslopoulou et al. 2020; Sokos et al.
2020). The main shock itself does not belong to any of the clusters.
Its waveforms are different probably because of its larger magni-
tude (and lower corner frequency) and/or because of its rupture
complexity.

Strike-slip clusters are activated to the south and to the north
of the M,, 6.9 epicentre few days after the main shock (and after
the activation of the dominant thrust clusters 3 and 5). Activity on
these distinct faults may have been triggered by stress perturbations
imposed by the main shock and aftershock activity. The overlapping
strike-slip clusters 11, 18, 35 southwest of the island of Zakynthos
are activated two months after the main shock.

The identification and tracing of fault planes cannot be automated
in this study. Increased vertical uncertainties of the hypocentres in
the studied catalogue inhibit the direct fitting of fault planes into
clouds of clustered events. Instead, we use their epicentral locations,
geological constraints, and the projection of the two nodal planes of
the representative MTs onto the surface (Figs 6b—e) to distinguish
the fault plane from the auxiliary plane. The nodal planes are centred
atthe mean cluster location. The area of the nodal planes is estimated
using an empirical relation to the cumulative seismic moment
magnitude of the cluster following Wells & Coppersmith (1994).
Local magnitudes are converted to moment magnitudes using an
empirical relation derived from the MT solutions of Mouslopoulou
et al. (2020). Since we only analyse event clusters with a moderate
cumulative moment, we assume that a square-shaped fault model is
representative for the fault plane (Delouis et al. 2009). We compare
the projected planes and the epicentre distribution to distinguish
the fault plane from the auxiliary plane. Additionally, we apply a
Principle Component Analysis (PCA, Jolliffe 2002; Shearer et al.
2003) to each cluster by determining the eigenvectors (v;, v,) and
eigenvalues (A1, 1,) of the covariance matrix of the epicentres within
each cluster. The length of the axes (dotted lines in Figs 6b—e) is
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Table 1. Results of the joint interpretation of the clustering analysis and the representative MTs (nodal
plane orientation) for clusters containing >10 earthquakes (ney). Time period is activity in days after the
main shock. Interpreted fault planes in bold type. TF, thrust fault; SSF, strike-slip fault; NE, normal fault.

Cluster Ney Time MLy, cum. moment Nodal planes Mechanism
label period (Nm) (strike/dip/rake)

3 126 0-23 5.9 1.3e+18 134/84/83, 4/8/138 TF
5 75 0-47 5.7 4.7e+17 138/37/68, 344/55/105 TF
14 11 0-74 4.6 2.6e+16 284/80/-70, 39/22/-152 NF
7 24 3-20 53 2.3e+17 124/51/-9, 219/82/-140 SSF
8 22 5-67 52 1.2e+17 256/84/7, 165/82/173 SSF
23 12 7-27 5.1 6.9¢+16 84/72/-8, 176/81/-162 SSF
11 10 83-87 4.7 2.1e+16 131/63/3, 40/87/153 SSF
18 15 87-187 4.1 1.3e+16 302/83/-23, 35/66/-173 SSF
12 10 199-226 4.9 4.3e+16 128/70/-14, 223/75/-159 SSF

estimated from the 95 per cent confidence interval. When using
epicentres (2-D case), the eigenvector of the largest eigenvalue can
be interpreted as the strike direction of the fault, while the smaller
eigenvalue can provide insight into the dip of the fault. For steep
faults we expect 1| > >X,, while 1| & X, represents a low-angle
dip.

We test the results of Clusty against structural fault mapping oftf-
shore Zakynthos by focusing on prominent seismicity patterns: (1)
the central thrust clusters 3 and 5 north of the M,, 6.9 epicentral area
and (2) the large strike-slip clusters 7 and 8 north and south of the
epicentral area. Figs 6(b) and (d) show the central clusters 3 and 5.
The representative MT for cluster 3 has one steeply dipping (84°)
SE-NW striking nodal plane and one shallowly dipping (<10°),
NS striking plane. Due to the shallow dip angle of the latter and the
unfavourable station distribution, it is difficult to resolve the strike
angle of this nodal plane: among the ensemble of MT solutions hav-
ing a small misfit the strike direction of the low-angle dipping nodal
plane varies between NNW and N. Despite the limited resolution
of the strike angle, both, the orientation of the P- and 7-axis and
the NE-ward slip of the shallow nodal plane (red arrow in Fig. 6d),
are distinct and in agreement with the tectonic setting. Considering
the broad scatter of the epicentres and the regional tectonic setting
we identify the shallowly dipping nodal plane as the fault plane
(coloured nodal plane in Fig. 6d). It has a similar orientation as the
fault planes that Cirella et al. (2020) and Ganas et al. (2020) inferred
for the main shock by jointly considering geodetic and seismic data.
However, in contrast to our representative MT of cluster 3, the main
shock mechanism has a large strike-slip component (Cirella et al.
2020; Ganas et al. 2020; Mouslopoulou et al. 2020; Sokos et al.
2020). The PCA supports the identification of the causative plane,
as both PCA axes have a similar length, which indicates a low dip
angle. However, in this case of two axes of similar length the PCA
cannot resolve the strike direction of the fault plane. For cluster 5,
both nodal planes (striking NNW and SE) could explain the scatter
of events. A mapped thrust fault coincides with the NNW strike
direction and ENE dip direction of the first nodal plane as well
as with the major axis from the PCA (Fig. 6b). The identification
of the causative plane is further supported by the regional tectonic
setting. (Fig. 6a). The lack of seismic activity between the two large
thrust clusters (3 and 5) may reflect a locked patch on an otherwise
creeping fault plane (Moreno ef al. 2011) or a rupture on two fault
segments with deviating geometries, as seen in Fig. 6(a). However,
it may also reflect a bias from the short observational period (~1
yI).

For cluster 7, the SW striking nodal plane of the representative
MT clearly coincides with the elongated epicentre distribution. This

makes the selection of the fault plane unambiguous, also when rely-
ing on the PCA results (Fig. 6¢). Cluster 8 is an example of a more
complex fault system. The two steeply dipping nodal planes strike
in SSE and WSW direction while the cluster is elongated in NE-SW
direction, as indicated by the PCA (Fig. 6¢). Consequently, an unam-
biguous identification of the fault plane is not possible. Considering
similar observations for the clusters 15 and 23 we propose that this
deviation is not caused by limitations in the analysis or a systematic
bias in epicentre locations. Instead, it may be attributed to multiple
strike-slip faults forming a bookshelf structure (en-echelon). Sokos
et al. (2020) decompose their main shock moment tensor into one
major strike-slip segment and a thrust segment. Similar to our find-
ing for clusters 8, 15 and 23, they describe that the N10°E striking
nodal plane of the strike-slip subevent is not in accordance with the
alignment of the aftershocks.

The strike-slip faults associated with clusters 7 and 8 (north and
south of the epicentral area) have not been constrained geologically
using the available bathymetric data, possibly due to their subtle
signature on the seabed and the limited resolution of the bathymetric
data. Seismic-reflection data are not available for these regions.
In addition to the mapped normal faults south of Zakynthos, we
identify strike-slip clusters (11, 18, 35) which are oriented parallel
to cluster 7 (Fig. 6a). This possibly implies the presence of NE-SW
trending strike-slip faults north and south of the M,, 6.9 epicentral
area, providing an example of how the toolbox Clusty can enhance
or complement available tectonic information on active faults which
might be of importance for seismic hazard scenarios.

Additional identified fault planes from the cluster analysis are
presented in Table 1. The analysis demonstrated here depends on
the availability of both, a sufficient number of cluster members with
reliable event locations, and representative MTs. This prevents a
fault plane identification for small clusters. If MTs are not available
or cannot be computed, the clusters of earthquakes can still be com-
pared to mapped faults, possibly providing additional information
on activated faults and on the faulting style.

In summary, we show how our new waveform-based network
similarity clustering toolbox Clusty helps to better constrain the
geometries and kinematics of earthquake sequences that rupture
multiple faults. We applied our toolbox onto the western-end of
the HSS in the eastern Mediterranean, a complex tectonic setting
where all types of faulting occur simultaneously. However, Clusty is
applicable on other multifault systems globally, including subduc-
tion terminations (e.g. Mouslopoulou et al. 2019), closely spaced
faults in narrow rift basins (Nicol et al. 2006) or fault intersections
(Mouslopoulou et al. 2007). In ongoing studies we use it to analyse
acoustic emission activity from a mine-scale experiment as well as
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low magnitude seismicity in areas where moment tensor inversion
meets its methodological limits.

5 CONCLUSIONS

The open source toolbox Clusty clusters earthquakes based on the
waveform similarity across a seismic network. Thanks to compre-
hensive analysis tools, and the flexible choice of methods, the tool-
box provides an easily tunable workflow and produces transparent
results. Based on the analysis plots (i.e. flow diagram, silhouette
score plot, connectivity plots), the user can visually inspect the
results and select the most appropriate settings such as frequency
bands, the quality thresholds and DBSCAN clustering parameters
(Eps and MinPts). Besides the clustered catalogue and its graphical
representation, Clusty provides a list of representative events and op-
tionally stacked waveforms for each cluster to facilitate subsequent
analyses such as moment tensor inversions and fault plane identifica-
tions. The modular setup of the toolbox allows an easy adaption to a
broad range of applications e.g. local swarm like activity or regional
long-term seismic patterns. The toolbox is open-source and can be
downloaded at https://git.pyrocko.org/clusty/clusty. We applied the
clustering toolbox to a seismic sequence following the magnitude
M,, 6.9 Zakynthos Earthquake, Greece. We show how clustering
parameters can be selected using the analysis plots provided by the
toolbox. As a result we identify 22 clusters comprising more than
430 events that represent >70 per cent of the cumulative seismic
moment released during the investigated time period. Relying on
full waveform analysis, we can distinguish closely located events
with different faulting styles. Moment tensor inversions for repre-
sentative events of each cluster complement the clustering analysis
of the seismic sequence. We show how our waveform-based clus-
tering approach can be used to discriminate the fault plane from
the auxiliary planes. Using 1 yr of seismic activity, we are able to
associate clusters of events to individual faults and shed light onto
the complex fault system in the study region. Thrust faulting is ob-
served in two large clusters that are activated immediately after the
main shock and remain active during the entire observation period,
although the largest portion of the seismic moment from these clus-
ters is released within the first days after the main shock. We suggest
that these events are closely related to the M,, 6.9 earthquake and
possibly occur on the same fault plane, accommodating subduction-
related strain. However, the main shock itself does not show a high
waveform similarity compared to these clusters. Clusty suggests
the presence of strike-slip faults north and south of the main shock,
in areas which are poorly resolved by seismic-reflection data. The
results are broadly compatible with the geometry and kinematics of
offshore faults mapped using seismic-reflection profiles and bathy-
metric data.
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6 DATA AVAILABILITY

The code for the toolbox is open-source and can be accessed at
https://git.pyrocko.org/clusty/clusty. The event catalog used in this
study can also be downloaded from the git repository (database last
accessed in November 2019). The waveform data is freely available
via the FDSN services (see section 3.1).
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SUPPORTING INFORMATION
Supplementary data available at GJ/ online:

Figure S1 Screenshot of interactive flow diagram for a comparison
of clustering results obtained in four different frequency bands, tar-
geting surface waves and body waves. The diagram was produced
using the waveform-similarity based clustering toolbox Clusty and
data from the 2018/2019 Zakynthos aftershock sequence. Each
colour refers to one cluster of earthquakes. The width of connecting
bands is proportional to the number of shared events between the
results obtained in the different frequency bands.

Figure S2 Moment tensor solutions from Mouslopoulou et al.
(2020) along with the estimated extent of our clusters, for com-
parison. MTs of events that were grouped into clusters in our study
are coloured according to the cluster they belong to. Offshore faults
are adopted from Mouslopoulou et al. (2020).

Please note: Oxford University Press is not responsible for the con-
tent or functionality of any supporting materials supplied by the
authors. Any queries (other than missing material) should be di-
rected to the corresponding author for the paper.

120z Atenige |0 Uo Jasn weps)od wniuazsbunyosioo0as) Aq 8§929009/v+02/S/v2z/omie/B/woo dnooiwepese//:sdiy wo.ll papeojumod


http://dx.doi.org/10.1002/2016GL070447
http://dx.doi.org/10.1016/j.tecto.2013.02.016
https://doi.org/10.7914/SN/HC
https://doi.org/10.7914/SN/HA
https://doi.org/10.7914/SN/HP
https://academic.oup.com/gji/article-lookup/doi/10.1093/gji/ggaa568#supplementary-data



