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Zusammenfassung

Die Erde dreht sich um ihre Rotationsachse auf unregelmäßige Art und Weise. Die
Erdrotationsachse und ihre Orientierung im Raum variieren in Bezug auf das Referenzsystem
(sowohl im terrestrischen wie auch im zälestischen System) aufgrund des breiten Spektrums von
Prozessen, die zur Rotationsanregung beitragen. Daher kann die Untersuchung der Erdrotation
wesentliche Informationen über das Erdsystem liefern. Weltraumgestützte geodätische Sensoren
liefern Informationen über erdgebundene Orientierungsparameter (EOP), die das Verhalten
der Erde im Weltraum vollständig beschreiben. EOP werden für verschiedene Bereiche und
Anwendungen, wie beispielsweise für grundlegende astronomische und geodätische Referenzsy-
steme, benötigt. Des Weiteren sind sie auch für die präzise Bestimmung von Satellitenorbits
und die weltraumgestützten Navigation, bis hin zu Anwendungen im Katastrophenschutz von
Bedeutung.
In den letzten drei Jahrzehnten zeigen sich bereits die negativen Auswirkungen des
Klimawandels auf Biosphäre, menschliche Aktivitäten und sozioökonomische Aspekte. Der
Klimawandel unterliegt Fluktuationen und verändert die Wettermuster, wie z.B. die Nieder-
schlagsverteilung, sowie Meeres- und Ozeanspiegel. Er bedroht aber auch die biologische Vielfalt
der Ökosysteme, die Ernährungssicherheit, die menschliche Gesundheit und verschlimmert
Naturkatastrophen. Die Intensität und Häufigkeit von Naturgefahren werden zunehmen, hierbei
ist ihre Verteilung aufgrund von Klimaveränderungen allerdings unregelmäßig; auch der Grad
von Schadensanfälligkeiten und die Einteilung von Risikozonen werden sich zukünftig ändern.
Die Analyse von Naturgefahren, wie atmosphärische und hydrologische Ereignisse, kann
zur Verbesserung des Krisenmanagements beitragen. Daher werden Satellitenbeobachtungen
und simulierte Daten, die von verschiedenen atmosphärischen Modellen abgeleitet werden,
für die Gefahr- und Risikomodellierung benötigt; dies kann Frühwarn- und Vorhersagesy-
steme unterstützen. Obwohl kontinuierliche Sensormessungen und Archivdaten (historische
Daten/Klimadaten) für die Wettervorhersage in entwickelten Ländern zur Verfügung stehen,
kamen es im Mai 2016 in der Nähe von Stuttgart in Süddeutschland bei einer katastrophalen
Überschwemmung zu Verlusten von Menschenleben, die möglicherweise durch ein präzises
Wetterwarnsystem vermeidbar gewesen wären.
Eine Echtzeitschätzung der geodätischen Weltraumtechnik wäre notwendig, um sie als Ein-
gangsdaten in Wettervorhersagemodellen zu verwenden. Für die Analyse von raumgeodätischen
Techniken in (nahezu) Echtzeit sind Vorhersagen der EOP unerlässlich. EOP werden durch
das Rapid Service Prediction Centre des International Earth Rotation and Reference Systems
Service (IERS) am USNO, Washington D.C., mit einer Verzögerung von Stunden bis Tagen zur
Verfügung gestellt. Demzufolge wurden in der Vergangenheit mehrere Methoden für die EOP-
Vorhersage entwickelt und angewendet. Die Genauigkeit dieser EOP-Vorhersagen ist jedoch



nach wie vor - selbst für einen Vorhersagezeitraum von nur wenigen Tagen - unbefriedigend.
Um die Genauigkeit der EOP-Vorhersage zu verbessern, beschäftigt sich die vorliegende Studie
mit der Untersuchung von der Vereinbarkeit von Erdrotationstheorien mit Beobachtungen.
Darüber hinaus wird das Potenzial verschiedener geophysikalischer Phänomene analysiert, um
die Wechselwirkungen verschiedener Prozesse, die die zeitabhängige Anregung der Erdrotation
beeinflussen, besser zu verstehen.
Die meisten Theorien und Lösungen zur Erdrotation basieren auf der Lage der Hauptträgheits-
achsen der Erde (PAI). Diese Position wird durch die Stokes-Koeffizienten zweiten Grades des
Geopotentials, das mit Hilfe der Satellitenmission Gravity Recovery and Climate Experiment
(GRACE) und der Satelliten-Laser-Entfernungsmessung (SLR) genau beobachtet wird, definiert.
In dieser Studie wird zum ersten Mal die Entwicklung der Trägheitsachsen der Erde analysiert.
Bemerkenswert an den vorgestellten Ergebnissen ist, daß sich die Trägheitsachsen während der
Untersuchungsperiode nicht um eine mittlere Position, die in einem bestimmten terrestrischen
Bezugsrahmen festgelegt ist, bewegen, sondern sich in nicht zu vernachlässigender Weise von
ihrem ursprünglichen Position entfernen.
Darüber hinaus schlägt diese Studie einen neuartigen hybriden Ansatz zur EOP-Vorhersage
vor. Es gibt eine gut eingeführte stochastische Methode, die “kopula-basierte Analyse”,
die wir mit der “Singulär-Spektrum-Analyse” (SSA) für die EOP-Vorhersage kombiniert
haben . Wir analysierten das Potenzial kopula-basierter Methoden zur Vorhersage von
Erdrotationsparametern, die aus der Kombination verschiedener geodätischer Satellitensensoren
und aus anderen geophysikalischen Parametern, wie z.B effektiven Drehimpulsen, abgeleitet
werden. Die Kopula ist eine statistische Methode, die lineare und nicht-lineare Beziehungen
zwischen zwei oder mehreren Variablen nutzt, indem eine theoretische Kopula-Funktion an
eine empirische, bivariate oder multivariate Verteilungsfunktion angepasst wird. Wir haben
eine hybride Vorhersagemethode entwickelt, die auch auf andere geophysikalische Parameter
angewendet werden kann.
In dieser Studie wird der Zusammenhang zwischen der Bewegung des Himmelspols (CPM) und
dem geomagnetischen Feld (GMF) untersucht, um die derzeitigen CPM-Vorhersagemethoden
zu verbessern. Während des letzten Jahrzehnts wurden mehrere Untersuchungen durchgeführt,
um eine mögliche Verbindung zwischen polaren Bewegungen und geomagnetischen Ausbrüten
- hierbei handelt es sich um rasche Veränderungen der säkularen Variationen des GMF - zu
erörtern. Weniger Aufmerksamkeit wurde jedoch den Auswirkungen der GMF-Änderungen
auf die CPM, z.B. der Wechselbeziehung der geomagnetischen Ausbrüte, des geomagnetischen
Dipolmoments, der geomagnetischen Feldelemente und der CPM-Variationen, gewidmet. In
dieser Studie verwenden wir CPM-Zeitreihen, die aus Beobachtungen der Very Long Baseline
Interferometry (VLBI) gewonnen wurden und aktuelle GMF-Daten, um die Korrelation
zwischen CPM und GMF zu untersuchen. Unsere vorläufigen Ergebnisse zeigen einige auffallente
Gemeinsamkeiten in den CPM- und GMF-Variationen, die das Potenzial besitzen, unser
Verständnis des GMF-Beitrags zur Erdrotation zu verbessern. Alles in allem veranschaulichen
die Ergebnisse mathematisch die Kohärenz zwischen den GMF-Parametern und der CPM und
weisen damit perspektivisch den Weg für eine Verbesserung der EOP-Produkte.
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Abstract

The Earth is rotating around its rotation axis in an irregular manner. The Earth rotation
axis and its orientation in space vary with respect to the reference system (both the terrestrial
and the celestial) due to the wide range of processes that contribute to the rotation excitation.
Therefore, the study of the Earth rotation can provide essential information concerning the
Earth system. Spaceborne geodetic sensors can determine Earth orientation parameters (EOP),
which fully describe Earth’s behaviour in space. The EOP are needed for several fields and
applications such as fundamental astronomical and geodetic reference systems, precise satellite
orbit determination, space navigation, and disaster prevention.
Over the past three decades, climate change has caused undesirable alterations in living
organisms, human activities, and socio-economic aspects. Climate change is fluctuating and
alters weather patterns such as precipitation patterns and sea and ocean levels. It also
threatens the biodiversity of ecosystems, food security, and human health, and exacerbates
natural disasters. The intensity and frequency of natural hazards are increasing with erratic
distribution due to changes in the climate. Also, the level of vulnerability and zonation of risk
are changed. Analysis of natural hazards, such as atmospheric and hydrological events, can help
improve crisis management. Therefore, satellite observation data and simulated data derived
from different atmospheric models are needed in order to model different types of hazards and
risks, which can help early warning and prediction systems. Even though continuous sensor
measurements and archive data (historical data/climate) are used for weather forecasting in
developed countries, deadly flooding happened close to Stuttgart in southern Germany in May
2016, which might be avoided by a precise weather warning system. Therefore, real-time space
geodetic technique data estimation is necessary to use as input data in weather prediction
models. For the analysis of space geodetic techniques in (near) real-time, predictions of the
EOP are required. EOP are made available by the International Earth Rotation and Reference
Systems Service (IERS) Rapid Service Prediction Centre at USNO, Washington D.C., with a
delay of hours to days. Accordingly, in the past, several methods were developed and applied
for the EOP prediction. However, the accuracy of EOP prediction is still unsatisfactory, even
for prediction of just a few days in the future.
To improve the EOP prediction accuracy, this study investigates the consistency between
Earth rotation’s theories and observations. Moreover, the potentials of different geophysical
phenomena are examined to better understand the interaction of different processes that affect
the Earth rotation excitation with the time. Most of the Earth’s rotation theories and solutions
are based on the location of the Earth’s principal axes of inertia (PAI). That location is defined
by the second-degree Stokes coefficients of the geopotential, which are accurately observed by
the Gravity Recovery and Climate Experiment (GRACE) and satellite laser ranging (SLR).



In this study, the evolution of the Earth’s axes of inertia is analyzed for the first time. The
presented results are remarkable, as the inertia axes do not move around a mean position fixed
to a given terrestrial reference frame in the study period, but drift away from their initial
location in a non-negligible manner.
Moreover, this study proposes a novel hybrid approach to predict EOP. There is a well-
introduced stochastic method called copula-based analysis, and I combined it with singular
spectrum analysis (SSA) for EOP prediction. I analyzed the potential of copula-based
methods for predicting Earth rotation parameters that are derived from the combination
of different satellite geodetic sensors and from other geophysical parameters like effective
angular momentums. The copula is a statistical method that exploits linear and non-linear
relationships between two or more variables by fitting a theoretical copula function into an
empirical bivariate or multivariate distribution function. I introduced a hybrid prediction
method that can be applied to other geophysical parameters is introduced in this thesis.
In this study, the interconnection between the celestial pole motion (CPM) and geomagnetic
field (GMF) is investigated to improve the current CPM prediction methods. During the last
decade, several investigations have been conducted in order to discuss a possible interconnection
of polar motion and geomagnetic jerks, which are rapid changes in GMF secular variations.
However, less attention has been paid to the impact of the GMF changes on the CPM, e.g.,
the interrelation of the geomagnetic jerks, geomagnetic dipole moment, geomagnetic field
elements, and CPM variations. In this study, I use the CPM time series obtained from very
long baseline interferometry (VLBI) observations and the latest GMF data to explore the
correlation between CPM and the GMF. Our preliminary results revealed some impressive
common features in the CPM and GMF variations, which show the potential to improve
our understanding of the GMF’s contribution to the Earth’s rotation. All in all, the results
mathematically illustrate the coherency between the GMF parameters and CPM, which helps
improve EOP products.
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1
Introduction

1.1 Overview

Geodesy is the knowledge of Earth through observing and modeling that provides information
about Earth’s shape, e.g., topography, sea level, and rotation, and information on its space,
e.g., polar motion, precession, and nutation. Also, geodesy measures the gravity field of the
Earth to provide the gravity and geoid of the Earth. These three pillars are the basis of the
realization of the reference frames required to assign time-dependent coordinates to objects
(see Figure 1.1). Space geodesy provides measurements between the ground-based instruments

Figure 1.1: Geokinematics, Earth rotation, and gravity field are the three main pillars of geodesy
(Plag and Pearlman, 2007).

and objects (satellites, radio sources, etc) in space. Space geodetic techniques provide global
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and local information on Earth that is associated with a wide range of geophysical and
meteorological processes. The quality and the quantity of the observations are improving
through the advancement of space geodetic techniques. The Global Geodetic Observing
System (GGOS) of the International Association of Geodesy (IAG) provides the geodetic
infrastructure needed to monitor the Earth system (Schuh et al., 2015). The accuracy goals
pursued by the GGOS are 1 mm accuracy and 0.1 mm/year stability on global scales in
terms of the terrestrial reference frame defining parameters (Plag et al., 2009). Therefore, the
understanding of geodesy’s fundamental pillars could bring us significantly closer to meeting
the goals of GGOS. Earth rotates once per day, around its rotation axis, which undergoes slow
variation on the Earth’s crust with respect to the celestial system. The rotation of the Earth
can provide essential information concerning the Earth system. The rotation of an egg on
a table is a well-known example that obtains information from inside the egg since rotation
is noticeably different when the egg is in a raw, semi-boiled, or boiled condition. The same
idea is considered for the Earth rotation and orientation observation relative to a reference
frame. Several processes contribute to the excitation of the Earth’s rotation changes from the

Figure 1.2: Schematic of the processes that contribute to the excitation of changes in the Earth’s
rotational state.

inner part of the Earth to the outer side (see Figure 1.2), e.g., viscous torque, core activities,
electromagnetic coupling, sea level loading, ice melting, atmospheric loading, groundwater,
ocean currents, plate tectonics, earthquakes, wind, and lunar/solar gravitational attraction
(Wahr, 1988; Hide and Dickey, 1991; Dehant et al., 1997; Dehant and Mathews, 2015).
Therefore, the Earth’s rotation time series became a great interest in different fields of geoscience
and astronomy since their changes are related to gravitational and geodynamic processes in
the Earth system. Earth orientation parameters (EOP) are the five angles that show the
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orientation of the Earth in the space, and they are used to relate points in the terrestrial
and celestial reference system (see Figure 1.3). The polar motion describes the variation of
the celestial intermediate pole with respect to the terrestrial frame. The UT1-UTC describes
the variation of the Earth’s rotation angle. The variation of the Earth’s orientation in the
celestial frame is called the celestial pole motion (Petit and Luzum, 2010). The EOP can be
observed with modern high-precision space geodetic techniques, such as a Very Long Baseline
Interferometry (VLBI), Satellite Laser Ranging (SLR), Lunar Laser Ranging (LLR), Doppler
Orbitography and Radiopositioning Integrated by Satellite (DORIS), and Global Navigation
Satellite System (GNSS) (Schuh and Schmitz-Hübsch, 2000; Dow et al., 2009; Angermann
et al., 2010; Coulot et al., 2010).

Figure 1.3: Schematic of Earth orientation parameters [not to scale]. The EOP are the five
angles that show the orientation of Earth on the space, and they are used to relate points in the
terrestrial and celestial reference system. The polar motion describes the variation of the celestial
intermediate pole with respect to the terrestrial frame. The UT1-UTC describes the variation of
the Earth rotation angle. The variation of Earth orientation in the celestial frame is called celestial
pole offset.

1.2 Motivation and Research Objectives

1.2.1 State of the Art

Earth rotation monitoring is considered a fundamental topic that contributes to understanding
atmospheric research to decrease natural disasters. Dangerous meteorological phenomena
such as tsunamis and floods have led to the loss of several billion euros in the last decade
(Baldassarre et al., 2013; Schröter et al., 2015). Besides many human casualties, the extreme
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events led to more than 400 billion euros of loss between 1980 and 2017 (European Environment
Agency, 2019). Also, two floods happened in Germany, which resulted in losses of more than
20 billion euros (Oldenborgh et al., 2016). The early warning system (EWS) could decrease the
risk of natural hazards by sending people relevant information before a disaster. Space geodetic

Figure 1.4: EWS send people relevant information before a disaster which is a major element of
disaster risk reduction.

techniques observe the meteorological variables in high temporal and spatial resolution. Thus,
the observed parameters using space geodesy play a crucial role in improving the weather
prediction model, which is considered as input data for EWS (see Figure 1.4). For the analysis
of space geodetic techniques in (near) real-time estimation of the EOP to days required. EOP
are made available by the International Earth Rotation and Reference System Service (IERS)
Rapid Service Prediction Center at U.S. Naval Observatory (USNO), Washington DC, with a
delay of hours. Besides, other applications related to astronomy, geodesy, timekeeping, and
geophysics could benefit from these estimations. Therefore, it is essential to predict the EOP
parameters precisely (Barnes et al., 1983; Wahr, 1983; Mathews et al., 1991; F. Seitz and
Schuh, 2010).
The Earth orientation center (EOC) of the IERS obtains and releases a solution with daily
EOP values, named C04, which updated weekly and published in the IERS Bulletin A. Several
techniques have been developed and applied for the EOP prediction (Schuh et al., 2002; Kalarus
et al., 2010). However, the accuracy of EOP prediction is unsatisfactory even for prediction
of just a few days in the future (Kalarus et al., 2010; Dick and Thaller, 2020). Thus, several
aspects of the current techniques of modeling and prediction of EOP need to be revised and
improved to meet the GGOS requirements. Therefore, it is highly demanding to develop a
framework for improving the efficiency of the predicted EOP, considering the time variation of
the periodicities and the excitation terms.
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1.2.2 Research Questions

The main research questions which will be discussed in this thesis can be summarized as
follows:

• Can the current Earth rotation theories adequately describe the motion of the Earth in
space?

• How could space geodetic technique observations improve the current Earth rotation
theories?

• How could EOP prediction bring us closer to the GGOS goals?

• How could we improve the accuracy of EOP prediction?

• How could the EOP prediction approach benefit from the understanding of the
interconnections between EOP data and other geophysical variables?

1.2.3 Innovation

In this thesis, a new approach based on the combination of Copula-based analysis and singular
spectrum analysis (SSA) is investigated to predict EOP. The Copula-based analysis method
performs linear and nonlinear dependency between variables, and it is a powerful tool for
dealing with multi-dimensional data and modeling the association between parameters (Favre
et al., 2004; Bárdossy, 2006; Dupuis, 2007; Bárdossy and J. Li, 2008). SSA exploits data-driven
base functions for deriving periodic components of the time series (Broomhead and King, 1986;
Vautard et al., 1992). The combination of SSA and Copula-based methods will be applied
for the first time as a novel stochastic tool for EOP determination. Despite the development
of the new dynamic and hybrid method, which can capture all information underlying the
time series, the relationship between the EOP and the processes contributing to the excitation
of changes in the Earth’s rotation should be assessed, as there are several effects that are
not wholly understood. Thus, the interconnection between the Earth rotation parameters
in space and geophysical phenomena such as atmosphere, ocean, hydrological loading, and
geomagnetic field (GMF) variation is investigated to reveal common features between the
variables independent of their theoretical implications, e.g., the dependence structure between
EOP and effective angular momentum functions or EOP and geomagnetic field components.

1.3 Structure of the Dissertation

This dissertation can be divided into three levels, where level 0, aims to understand the Earth
rotation theory. The level 1, pertains to investigate the interrelation of EOP and different
geophysical components and the level 2 is aimed to design a robust prediction method for
EOP prediction (see Figure 1.5). The dissertation is classified into eight chapters with respect
to the scope of this study.

• Chapter 2 presents an overview of the Copula-based theory, SSA, and wavelet coherence
analysis. Here, we deal with Archimedean Copula, which provides a useful stochastic tool
for modeling the dependence structure between random variables. The mathematical
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Figure 1.5: Three levels are defined to obtain the main goals of this study.

part of Copula is provided, and some of the Copula-based analysis applications are
pointed out. Furthermore, the framework of the combination of Copula-based analysis
and SSA is introduced as a novel prediction technique.

• Chapter 3 is dedicated to describing the theory and fundamental definition of the Earth’s
movements in space, the reference frames, and the data used in this study.

• Chapter 4 introduces space geodetic techniques that observe EOP. The basic concepts of
DORIS, GNSS, laser ranging techniques (SLR and LLR), and VLBI are provided. The
VLBI is the only approach that can provide the full EOP set.

• Chapter 5 pertains to the comparison of Earth rotation theories and observations. All
the official Earth rotation theories are based on a reference system whose axes are aligned
with the Earth’s principal axes of inertia (PAI). The location of the Earth’s PAI has
a significant effect on many fields, including astronomy, geodesy, and satellite-based
positioning and navigation systems. In this chapter, the PAI evolution is investigated,
which might raise many questions concerning the geophysical aspects of PAI evolution.

• Chapter 6 constitutes the potential of the Copula-based + SSA methods for predicting
Earth rotation parameters that are derived from the combination of different satellite
geodetic sensors and from other geophysical parameters like effective angular momentums.
The Copula is a statistical method that exploits linear and nonlinear relationships between
two or more variables by fitting a theoretical Copula function into an empirical bivariate
or multivariate distribution function. I introduced a hybrid prediction method that could
be applied for EOP and other geophysical parameters.

• Chapter 7 deals with the interconnection between the Earth rotation parameters in space
and geophysical phenomena. I studied the interrelation between the Earth’s magnetic
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field and celestial pole motion to understand the nature of Earth’s interior. In this
chapter, I argued the correlation between the free core nutation (FCN) changes and
GMF variation. Our investigation revealed some exciting common features between these
two variables, which show the potential to improve the understanding of the GMF’s
contribution to the Earth rotation.

• Chapter 8 summarizes the most significant achievements, conclusions, and recommenda-
tions for further research.
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dissertation.
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2
Methodology

2.1 Copula-based Analysis

The word "Copula" is employed for the first time in the mathematical or statistical context
by Sklar, 1959 in Sklar’s Theorem to illustrate the univariate joint distribution function.
Traditionally, the joint distribution between variables is modeled by classical multivariate
distributions such as the normal distribution. However, the main limitation of such approaches
is that each variable’s behavior and joint dependence between them, are characterized by the
same parameter. On the contrary, the Copula-based analysis does not have such drawbacks.
The Copula describes the dependence structure between random variables independent from
their marginal distributions (Genest and Favre, 2007; Salvadori and De Michele, 2007). The
Copula approach exploits linear and non-linear dependency between variables. The Copula-
based analysis is a flexible tool offering an enormous improvement in capturing the real
correlation pattern (Embrechts et al., 2002). More detailed information about Copula can be
found e.g. in Joe, 1997 and Nelsen, 2007. The Copula-based analysis technique is used for
different types of studies, e.g., economics (Rachev and Mittnik, 2000; Patton, 2006, 2009),
biomedicine (W. Wang and Wells, 2000; Escarela and Carriere, 2003), hydrology (Bárdossy
and J. Li, 2008; Bárdossy and Pegram, 2009; Verhoest et al., 2015), meteorology (Laux et al.,
2011; Vogl et al., 2012), hydro-geodesy and geodesy (Modiri et al., 2015, 2018, 2020).

2.1.1 Sklar’s Theorem

Sklar’s theorem is the main idea of Copula-based analysis, and it indicates that a Copula
function C connects a given multivariate distribution function with its univariate one. For
bivariate distribution, there is a bivariate Copula C, which models the joint cumulative
probability distribution function of two variables X and Y based on the marginal cumulative
distribution functions FX(x) and FY (y).

P (X ≤ x, Y ≤ y) = FX,Y (x, y) = C(FX(x), FY (y))

= C(u, v)
(2.1)
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2. Methodology

where C is the joint distribution function FX,Y (x, y). The variables u and v are transformations
of X and Y to a uniform distribution, respectively.

2.1.2 Copula Properties

In the bivariate case, a Copula is indicated as a function C from [0, 1]2 to [0, 1]. The general
properties of Copula can be itemized as follows (Genest and Rivest, 1993; Nelsen, 2007):

• C(u, 0) = C(0, v),

• C(x, 1) = x and C(1, y) = y,

• The Copula is unique when the marginals are continuous function.

Besides, it should be mentioned, the variables transformed by any monotonic increasing
functions will not affect its Copula.

2.1.3 Frecht-Hoffding Bounds

The probability distributions of a multivariate Copula is within the unit cube In. The theory
by Frecht-Hoffding states that for any Copula C : [0, 1]n → [0, 1] and (u1, u2, . . . , un) ∈ [0, 1]n

the following bounds hold:

W (u1, u2, . . . , un) ≤ C(u1, u2, . . . , un) ≤ M(u1, u2, . . . , un), (2.2)

where, W is called the lower Frecht-Hoffding bound and it is yielded by:

W (u1, u2, . . . , un) = max{0, Σn
i=1ui − (n − 1)}, (2.3)

Also, M is the upper Frecht-Hoffding bound and it is given by:

M(u1, u2, . . . , un) = min{u1, u2, . . . , un} (2.4)

For the bivariate case, the Frecht-Hoffding theorem states as follow

max{u + v − 1, 0} ≤ C(u, v) ≤ min{u, v} (2.5)

2.1.4 Empirical Copula

The empirical Copula is an estimator for the unknown theoretical Copula distribution
(Deheuvels, 1979). Also, it is the best representation of the theoretical Copula as it is
purely data-based. The empirical Copula is defined on the rank space as (Genest and Rivest,
1993; Genest and Favre, 2007):

Ce(u, v) = 1
n

n∑︂
i=1

1( ri

n + 1 ≤ u,
si

n + 1 ≤ v) (2.6)

where,

(r1), (r2) . . . , (rn) denote the pairs of ranks of the variable (x1), (x2), . . . , (xn),
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2.1 Copula-based Analysis

(s1), (s2) . . . , (sn) denote the pairs of ranks of the variable (y1), (y2), . . . , (yn),

n is the length of the data vector,

1 is the indicator function. If the condition is true, the indicator function is equal to 1.
Otherwise, the indicator function is equal to 0.

In the following, the most commonly used Copula, which is used in this thesis, is illustrated.
For additional information regarding different Copula families, the reader is referred to Joe
(1997) and Nelsen (2007).

2.1.5 Archimedean Copula

The Archimedean Copulas reveal a-/symmetrical upper/lower tail dependency, and they can
be estimated directly in a simple form. An Archimedean Copula can be expressed in the
following form:

C(u, v) = ϕ−1{ϕ(u) + ϕ(v), θ} (2.7)

where θ is the Copula parameter and the function ϕ is the Copula generator with the following
characteristics (ibid.):

• ∀ u ∈ (0, 1), ϕ(u) < 0, ϕ is decreasing,

• ∀ u ∈ (0, 1), ϕ(u) < 0, ϕ is convex,

• ϕ(1) = 0,

and ϕ−1 is pseudo-inverse of ϕ and it is illustrated by

ϕ−1(t) =

ϕ−1(t; θ), if 0 ≤ t ≤ ϕ(0)

0, ifϕ(0) ≤ t ≤ ∞

Further information about mathematical aspects of these families can be found in Salvadori
and De Michele (2007).

2.1.5.1 Archimedean 12 Copula

The Archimedean 12 Copula is known to be symmetrical and shows both upper and lower tail
dependence. The generator of the Archimedean 12 is given by (Nelsen, 2007):

ϕArch12(t) = (1
t

− 1)θ. (2.8)

The Copula parameter θ is defined over 1 ≤ θ and the Archimedean 12 Copula formula is
given by (ibid.):

Cθ(u, v) = (1 + [(u−1 − 1)θ + (v−1 − 1)θ](
1
θ

))−1. (2.9)

In the case of θ = 1, the dependence structure between the variables shows independency.
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2. Methodology

Figure 2.1: Archimedean 12 Copula with θ = 2.

2.1.5.2 Archimedean 14 Copula

The generator of the Archimedean 14 which is also and a symmetric Copula is given by (Nelsen,
2007):

ϕArch14(t) = (t
−1
θ − 1)θ. (2.10)

Also, The Archimedean 14 Copula can capture the tail dependence structure. The Copula
parameter of Archimedean 14 Copula is defined over 1 ≤ θ, and the Archimedean 14 Copula
formula is given by (ibid.):

Cθ(u, v) = (1 + [(u
−1
θ − 1)θ + (v

−1
θ − 1)θ]

1
θ )−θ (2.11)

Figure 2.2: Archimedean 14 Copula with θ = 1.2.
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2.1 Copula-based Analysis

2.1.5.3 Clayton Copula

The Clayton Copula is an asymmetric Archimedean Copula, showing the lower tail dependence
structure. The generator of the Clayton is given by (Clayton, 1978):

ϕCl(x) = 1
θ

(t−θ − 1) (2.12)

The Clayton Copula parameter is defined over −1 ≤ θ and the Clayton Copula can be simplified
to (Nelsen, 2007):

Cθ(u, v) = max[(u−θ + v−θ − 1), 0]−
1
θ (2.13)

Figure 2.3: Clayton Copula with θ = 2.

2.1.5.4 Frank Copula

The Frank Copula is known to be symmetrical, i.e., it shows no tail dependence structure.
The generator of the Frank is given by (ibid.):

ϕF r(t) = − ln{e−θt − 1
e−θ − 1 } (2.14)

The Frank Copula parameter is defined over −∞ < θ < ∞ and its formula is given by (ibid.):

Cθ(u, v) = 1
θ

ln(1 + (e−θu − 1)(e−θv)
e−θ − 1 ) (2.15)

If θ = 0, the Frank Copula obtains the independence Copula, and if θ → ∞ or −∞, it
approaches the comonitinicity Copula.
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2. Methodology

Figure 2.4: Frank Copula with θ = 3.

2.1.5.5 Gumbel Copula

The Gumbel Copula is an asymmetric Archimedean Copula, presenting upper tail dependence.
The generator of the Gumbel is given by:

ϕGu(t) = (− ln t)θ (2.16)

The Gumbel Copula parameter is defined over 1 ≤ θ and its formula is given by Nelsen, 2007:

Cθ(u, v) = e−((− ln(u)θ)+(− ln(v)θ))
1
θ (2.17)

The θ = 1 indicate independence structure and it is a special case, and the limit of θ → ∞ is
the comonotonicity Copula. Therefore, the Gumbel Copula interprets between independence
and positive dependence, and the parameter describes the strength of the relationship.

2.1.5.6 Joe Copula

The Joe Copula is an asymmetric Archimedean Copula, capturing a heavy upper tail dependence
and lower dependency, which looks like a bell. The generator of the Joe is given by (Joe, 1997):

ϕJoe(t) = − ln[1 − (1 − t)θ] (2.18)

The Joe Copula parameter is defined over 1 ≤ θ and its formula is given by (Nelsen, 2007):

Cθ(u, v) = 1 − [(1 − u)θ + (1 − v)θ − ((1 − u)θ(1 − v)θ))]
1
θ (2.19)
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2.1 Copula-based Analysis

Figure 2.5: Gumbel Copula with θ = 2.

Figure 2.6: Joe Copula with θ = 2.15.

2.1.6 Copula Parameter θ Estimation and Classical Dependence Parameter

There is a link between classical dependence parameters such as Kendall τ and Copula
parameters. For one-parametric Copula, the functional association between the Kendall τ

Copula functions is written:

τ = 4
∫︂ 1

0

∫︂ 1

0
Cθ(u, v)dCθ(u, v) − 1, (2.20)

The relationship between the Kendall τ and Archimedean Copula generator Φ(t) is shown in
Equation 2.21:

τ = 1 + 4
∫︂ 1

0

Φ(t)
Φ(t)′ dt. (2.21)
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Table 2.1: Archimedean Copulas (Archimedean 12, Archimedean 14, Clayton, Frank, Gumbel,
and Joe Copula) and generator, parameter space, and formula. θ is the Copula’s parameter called
the dependence parameter, which measures the dependence between the marginal (Nelsen, 2007).

Family Generator Parameter Formula
Archimedean 12 ϕArch12(t) = ( 1

t
− 1)θ 1 ≤ θ Cθ(u, v) = (1 + [(u−1 − 1)θ + (v−1 − 1)θ](

1
θ

))−1

Archimedean 14 ϕArch14(t) = (t
−1
θ − 1)θ 1 ≤ θ Cθ(u, v) = (1 + [(u

−1
θ − 1)θ + (v

−1
θ − 1)θ]

1
θ )−θ

Clayton ϕCl(x) = 1
θ

(t−θ − 1) −1 ≤ θ Cθ(u, v) = max[(u−θ + v−θ − 1), 0]−
1
θ

Frank ϕF r(t) = − ln{ e−θt−1
e−θ−1 } −∞ < θ <

∞
Cθ(u, v) = 1

θ
ln(1 + (e−θu−1)(e−θv)

e−θ−1 )

Gumbel ϕGu(t) = (− ln t)θ 1 ≤ θ Cθ(u, v) = e−((− ln(u)θ)+(− ln(v)θ))
1
θ

Joe ϕJoe(t) = − ln[1 − (1 − t)θ] 1 ≤ θ Cθ(u, v) = 1−[(1−u)θ +(1−v)θ −((1−u)θ(1−v)θ))]
1
θ

Table 2.2: The link between Archimedean Copula parameter θ and Kendall τ (Cherubini et al.,
2004).

Family τ

Archimedean 12 θ− 2
3

θ

Archimedean 14 2θ−1
2θ+1

Clayton θ
θ+2

Frank 1 − 4
θ [1 − D1(θ)]∗

Gumbel θ−1
θ

Joe 1 − 4
θ D1(θ)

* Dk(x) is the Debye function for any positive integer k. Here D is Debye functions.

Dk(θ) = k

xθ

∫︂ x

t=0

tθ

eθ − 1dt (2.22)

Thus, the connections between the Kendall τ and the Archimedean Copula parameters are
indicated in Table 2.2.

2.1.7 Copula-based Simulation Random Data

The required steps to simulate random data using Copula-based conditional random data are
written in (Laux et al., 2011; Vogl et al., 2012; Modiri et al., 2018). The following steps are
taken to provide the proper theoretical Copula function and simulation data

1. Independent identical distribution (iid) transformation of input time series.

2. The marginal distributions FX(x) and FY (y) of the input data x and y are estimated.

3. Transform data to rank space using the estimated marginal distributions of data with ui

and vi in rank space.

4. The empirical Copula is computed the dependence structure of random variables using
the rank-transformed data.

5. A theoretical Copula function Cθ(u, v) is fitted to empirical Copula.

6. The conditional Copula function is computed.
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2.2 Singular Spectrum Analysis

7. The random data are sampled from the conditional cumulative distribution function
(CDF) of Copula.

8. The sampled data are transferred back to the data space using the inverse marginal.

2.2 Singular Spectrum Analysis

The SSA method for trend extraction comprises four following steps (see e.g., Golyandina et al.
(2001), Ghil et al. (2002), and Hoseini et al., 2020 for more details):
The Embedding step is the procedure of forming a subspace, which is spanned by a set
of basis vectors derived from the time series. The Embedding step is done using a moving
window with the length of to embed the time series into the subspace by constructing a set of
L-dimensional lagged vectors, as follows:

X = (xij)L,K
i,j=1 =



f1 f2 f3 . . . fK

f2 f3 f4 . . . fK+1

f3 f4 f5 . . . fK+2
...

...
... . . . ...

fL fL+1 fL+2 . . . fN


,

{︄
1 < L < K

K = N − L + 1
(2.23)

The matrix X is called the trajectory matrix. X is a Hankel matrix, which means it is a
symmetric matrix having equal elements on anti-diagonals. The columns (and rows) of X
can be correlated since they might hold similar pieces of information. We need to remove
redundant repeated information and group the remaining common information into uncorrelated
components. Therefore, we select window length L to maximize the correlation between the
columns of the trajectory matrix.
Moreover, the importance of each uncorrelated component compared to others should be
determined. This is carried out in the decomposition step. In the decomposition step, a
singular value decomposition (SVD) is applied to the trajectory matrix,

X = UΣV T

where the columns (and rows) of U and V are uncorrelated, orthonormal (UUT = V T ) and are
called left and right singular vectors, respectively. Σ is a diagonal matrix with non-negative
entries, the singular values, which reveal the importance of the singular vectors. Singular
values/vectors of X can be calculated using the eigenvalues and eigenvectors of the matrix
S = XXT .

XXT = (UΣV T )(UΣV T )T = UΣ2UT (2.24)

Let λ1 ≥ λ2 ≥ . . . ≥ λL ≥ 0 denote diagonal entries of Λ = Σ2 or the eigenvalues of S.
The columns of U indicate their corresponding innovators of the matrix S, which are called
Empirical Orthogonal Functions (EOF) of X. The right singular vectors of X are eigenvectors
of XT X calculable by:

Vi = XT Ui/
√︁

λi ,

{︄
d = max(i|λi > 0)
i = 1, 2, . . . , d

(2.25)
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where d conveys the number of uncorrelated components of X. It should be mentioned that in
practice the condition λi > 0 turns to λi > ó, in which ó is is a selected small value. This is
due to the fact that λi simply reveals the importance of the component, so one can choose
different values for ó in order to include a desired level of details and to prevent numerical
calculation problems.
Now, the trajectory matrix can be written as:

X = X1 + X2 + . . . + XdXi =
√︁

λiUiV
T

i (2.26)

where
√

λi is the corresponding singular value of Xi. Each of the matrices Xi represent some
features of the time series and summing them should produce X.
Let A be X1, X2, . . . , Xd, then the reconstruction of X begins with selecting a group from A,
which is called the grouping step. Each member of the set A can contain different aspects
of the trajectory matrix. Since the singular values are sorted in decreasing order, the most
important part of X is retrievable using the first few singular vectors and their corresponding
singular values. Analysis of the spectrum of the singular values and its variations would be a
key tool for selecting the proper subset of A for different applications.
The vertical segment’s singular values also hold the most important information of the time
series for the trend extraction. Therefore, the corner of the L-shaped curve in which the
maximum curvature of the singular values spectrum happens can be a reasonable choice for
truncation.
The selected group of A using equation Eq. 2.26 form an estimation of the trajectory matrix.{︄

Xtrend = X1 + X2 + . . . + XI = (xijˆ )L,K
i,j=1

Xresidual = XI+1 + XI+2 + . . . + Xd

(2.27)

where I ≤ d, with d number of non-zero singular values.
In the reconstruction step, a reverse calculation (with respect to the embedding step) is
needed to rebuild the time series. Having the fact that the trajectory matrix was originally
a Hankel matrix with equal elements on anti-diagonals, the trend extraction is achieved by
averaging the anti-diagonal entries of the matrix Xtrend in Eq. 2.27. Let L < K, then the
trend of time series G = (g1, g2, . . . , gN ) is:

gi =


1
i Σi

m=lX̂m,i−m+11 ≤ i ≤ L
1
LΣL

m=lX̂m,i−m+1L ≤ i ≤ K
1

N−i+1ΣN−K+1
m=i−K+1X̂m,i−m+1K ≤ i ≤ N

(2.28)

where x̂i,j is an estimation of the element fi+j−1 of the original time series. It should be noted
that the reconstructed trajectory matrix might not preserve Hankel property anymore, and
thus X̂i,j ̸= X̂j,i.

2.3 Combination of Copula-based Analysis and SSA

The combination of SSA and Copula-based analysis (Copula + SSA) is one of the machine
learning (ML) techniques which can be defined as subset of artificial intelligence (AI). In ML,
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machines can learn on their own without being explicitly programmed. In the last decade, ML
has attained outstanding results in estimating climate variables and related biogeophysical
variables (Bishop, 2006; Murphy, 2012). The Copula + SSA is developed and introduced as a
novel method to predict time series. The Copula + SSA is a hybrid method that uses training
data to model the data’s underlying structure.

1. Deterministic part, the periodic terms, can be modeled by SSA as it is described in
section 2.2.

2. The stochastic part; the subtracted time series by reconstructed time series, can be
modeled using Copula-based analysis as explained in subsection 2.1.7.

The Copula + SSA approach can be employed for two cases; the first one is the algorithm
that uses the information within a time series. As can be seen in Figure 2.7, the algorithm
consists of two parts, the periodic and anomaly parts. The first part is dealing with the
deterministic part, which can be modeled by SSA. The residual of subtracted data by the
reconstructed time series can be modeled by Copula-based analysis. Then, the periodic terms
are extrapolated, and the anomaly part is predicted using Copula-based analysis, separately.
Finally, both predicted periodic, and anomaly terms are combined (Modiri et al., 2018). The

Figure 2.7: Copula + SSA algorithm for modeling and predicting the time series by using the
information within the time series.

second case is the algorithm that takes into account the information within a time series and
other variables (here other geophysical parameters) in addition (see Figure 2.8. The second
algorithm is aimed at the possibility of utilizing some variables to forecast the EOP due to
the existing relationship between them. The procedure operates as follows; first, derive the
dependence structure between time series one and the time series two arising from geophysical
parameters. The Copula-based analysis model the underlying relationship between the time
series (T1 and T2). The T1 is predicted based on the fitted theoretical Copula by conditioning
the predicted T2, as shown in Figure 2.8. Then, the remaining part is modeled using SSA and
extrapolated. Finally, the Copula-based predicted data added to the SSA forecasted residual.
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Figure 2.8: Copula + SSA algorithm for modeling and predicting the time series by using the
information within the time series and other variables.

2.4 Wavelet Analysis

Wavelet transform (WT) analysis is a useful signal processing tool that is widely used to
analyze the localized variation of signal power and periodicities within a time series (Bentley
and McDonnell, 1994; Cohen, 1995; Akin, 2002). The WT analysis is applied in different
geoscience fields, such as geophysics, meteorology, oceanography, and climatology (Meyers
et al., 1993; Chakraborty and Okaya, 1995; Lau and Weng, 1995; Massel, 2001; Herrera
et al., 2014). The WT can be split into two classes; the discrete wavelet transform (DWT)
(Tzanetakis et al., 2001; Demirel and Anbarjafari, 2011), which mainly used for noise reduction
and the continuous wavelet transform (CWT) (Rioul and Duhamel, 1992; Sinha et al., 2005),
is applied for feature extraction of the signal.
The WT decomposes a signal over functions called mother wavelets which can be expressed as
the function of two parameters, time position (τ) and scale of the wavelet (a) as follows (Ngui
et al., 2013):

Φa,τ (t) = 1√
a

Φ( t − τ

a
). (2.29)

The wavelet transform of a time series x(t) with respect to a chosen mother wavelet is performed
as follows:

Wx(a, τ) = 1√
a

∫︂ ∞

−∞
x(t)Φ∗( t − τ

a
)dt =

∫︂ ∞

−∞
x(t)Φ∗

a,τ (t)dt, (2.30)

where, ∗ denotes the complex conjugate form. The wavelet coefficients, Wx(a, τ), express the
contribution of the scales (the values) to the signal at different time positions (the τ values).
By moving the wavelet along the signal structures relating to a specific scale can be identified.
The choice of the wavelet function (Φ) is not arbitrary. This function is normalized to have
unitary variance (

∫︁
|Φ(t)|2dt = 1) and it verifies

∫︁
Φ(t)dt = 0. Thus, the wavelet decomposition

is a linear illustration of the signal where the variance is preserved. This means that the
original signal can be recovered using the inverse wavelet transform:

x(t) = 1
Cg

∫︂ ∞

−∞

∫︂ ∞

0

1
a2 Wx(a, τ)Φa,τ (t)dτda, (2.31)

where, Cg =
∫︁ ∞

0
Φ̂2

f df and Φ̂(f) indicates the Fourier transform of Φ(t).

20



2.4 Wavelet Analysis

2.4.1 Wavelet Coherence Analysis

The wavelet coherence analysis of two times series can be shown as follow (Lachaux et al.,
2002; Grinsted et al., 2004):

R2
n(s) = |S(s−1W XY

n (s))|2
S(s−1|W X

n (s)|2).S(s−1|W Y
n (s)|2) , (2.32)

where S is a smoothing operator. The Equation 2.32 resembles the traditional correlation
coefficient, and it is useful to think of the wavelet coherence as a localized correlation coefficient
in time-frequency space. The smoothing operator S is written as (Grinsted et al., 2004):

S(W ) = Sscale(Stime(Wn(s))), (2.33)

where Sscale denotes smoothing along the wavelet scale axis and Stime smoothing in time.
The statistical significance level of the wavelet coherence is computed by using Monte Carlo
methods.

21





3
Theory, Fundamental Definition, and

Data sets

3.1 Earth Motion

The Earth is the third planet from the Sun, and like all other planets in the solar system,
revolves around the Sun in an elliptical orbit. Also, it rotates on its axis. These two motions
are responsible for many phenomena like day and night, season, wind. The Earth rotation
is spinning around its axis, an imaginary line that passes through the center of the Earth,
connecting the north pole to the south pole. The spin of the Earth around its axis is called
Earth rotation, which takes one day for the Earth to complete one rotation. Earth’s rotation
causes the apparent westward movement of the Sun, Moon, and stars over the sky each day. If
the Sun’s path is observed from the Earth, it appears to move around the Earth in a tilted
path, with respect to the spin axis, at 23.5◦. In other words, the Earth’s spin axis is tilted
concerning the plane of the Earth’s solar orbit by 23.5◦ (see Figure 3.1). The Earth’s orbital
plane’s projection onto the celestial sphere (the sky as seen from Earth) is called the ecliptic
(Dehant and Mathews, 2015). The movement of the Earth in orbit around the Sun is named
Earth revolution. It takes one year for the Earth to complete one revolution. The points where
the ecliptic crosses the equatorial plane of the celestial sphere are called equinoxes when the
daylight and dark time are equal. The summer solstice (Jun 21st) is the point of the Sun’s path
farthest north on the celestial sphere, and the point of the ecliptic farthest south is called the
winter solstice (Dec 21st). The gravitational force of the Sun and the Moon on the Earth cause
changes in the direction of Earth’s axis very slowly, and it is named precession. Consequently,
the North celestial pole always will not be a point in the same direction. It describes a circle
on the celestial sphere with a period of approximately 26000 years, as Hipparchus estimated it.
Currently, the axis points toward Polaris, making it the North star; in 14000 years, Vega will
be the North star (See Figure 3.1).
The celestial poles and equators’ locations are changing on the celestial sphere. Therefore,
the celestial coordinates of objects, which are defined by the reference of the celestial equator
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Figure 3.1: Earth at the Celestial sphere. The celestial sphere is imaginary with the equator
(green), a projection of the Earth’s equator onto the celestial sphere, and the ecliptic (black),
the Sun’s apparent path during the year. The intersection of Ecliptic and Equator are called
equinoxes (Vernal equinox and Autumnal equinox) when daytime and night are of approximately
equal duration. The gravitational force of the Sun and the Moon on the Earth cause changes in
the direction of Earth’s axis very slowly, and it is named precession. Also, The precession of Earth
wobbles from pointing at Polaris (North Star) to the star Vega.

and celestial poles, are also continuously changing. Since the position of the Equinox changes
with time, coordinate systems that are defined by vernal Equinox must have a reference date
associated with them. The specified year is called the Equinox. The common practice is to
use reference years such as 1950, 2000, and 2050 to cite the Equinox. Currently, the Equinox
J2000.0 is used, the Equinox and mean equator of 2000 Jan 1st 12:00 UT (J refers to Julian
year, which is 365.25 days of 86400s).

3.2 International Celestial Reference System (ICRS)

The ICRS is defined as being a space-fixed reference system (Arias et al., 1995; Ma et al.,
1998). The ICRS’s origin is at the solar system barycenter and with it axis X̂ and Ŷ in the
plane of the mean equator of J2000, X̂ being in the direction of the mean equinox of J2000.
The direction of the third axis Ẑ at this epoch explains the celestial pole of the ICRS. It is
kinematically non-rotating concerning the ensemble of distant extragalactic objects. It is the
idealized barycentric celestial reference system (BCRS).
If the origin of the reference system moves from barycenter (OXY Z) to the geocenter (Oξζη),
the reference system is called the geocentric celestial reference system (GCRS). The axis of
Oζ̂, Oη̂, and OẐ and OŶ of the two reference systems are coplanar, and Oξ̂ and OX̂ coincide.
The GCRS is kinematically non-rotating concerning BCRS or ICRS (Dehant and Mathews,
2015).
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3.3 International Terrestrial Reference System (ITRS)

The ITRS is an Earth fixed system, and it has its origin at the geocenter and has axes x̂ and
ŷ in the plane of the true equator of date (J2000). The x̂ is approximately on the Greenwich
meridian, under the condition that there is no residual rotation about the Earth’s surface.
The point on the celestial sphere in the direction of the Earth’s figure axis ẑ is the pole of the
ITRS (Boucher et al., 1999; Altamimi and Boucher, 2001; Altamimi et al., 2002).

3.4 Reference Frames

The realization of the ICRS and ITRS are called the international celestial reference frame
(ICRF) and international terrestrial reference frame (ITRF), respectively. The IERS responsible
for ITRF and ICRF. Space geodetic techniques contribute to the ITRF and ICRF like Doppler
orbitography and radio positioning integrated by satellite (DORIS), Global Navigation Satellite
System (GNSS), Satellite laser ranging (SLR), and very long baseline interferometry (VLBI).
Currently, the latest released frames are ITRF 2014 (Altamimi et al., 2016) and ICRF 3
(Malkin et al., 2015; Charlot et al., 2020). Figure 3.2 shows the ITRF 2014 network sites and
Figure 3.3 presents the source’s coordinates of ICRF 3.

Figure 3.2: ITRF 2014 network sites (VLBI, SLR, DORIS, and GNSS). The Figure is taken from
(Altamimi et al., 2016). International VLBI Service for Geodesy and Astronomy (IVS) contributes
daily solution in the period 1980-2015. The International Laser Ranging Service (ILRS) submitted
weekly SLR from 1993 to 2015. The International GNSS service (IGS) provides daily data from
1994 to 2015, and the International DORIS service (IDS) submitted weekly solutions from 1993 to
2015 to ITRF.
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Figure 3.3: S/X -band coordinates for 4536 sources of the ICRF3. The Figure is taken from:
[http://hpiers.obspm.fr/icrs-pc/newwww/icrf/icrf3sx.txt].

3.5 Earth Orientation Parameters (EOP)

The rotation of the Earth can be interpreted as a variation of the orientation of a terrestrial
reference system relative to a celestial reference system. Observations and the Earth rotation
theory, show that the spectral content of the motion of the Earth’s figure axis in space is
almost entirely in the low-frequency domain. The spectrum of the Earth’s rotation pole motion
relative to the Earth itself (i.e., polar motion in the classical sense) is also almost exclusively
in the low-frequency domain. Therefore it made sense to break up the transformation between
celestial and terrestrial frames into precession-nutation and polar motion parts (apart from
an axial rotation) such that each part contains only spectral components of low frequencies
between -0.5 and 0.5 cpsd (Dehant and Mathews, 2015). The International Astronomical
Union (IAU) proposed in 2000 to adopt the celestial intermediate pole (CIP) (Capitaine,
2002; Capitaine et al., 2003, 2005). The CIP is introduced into the transformation between
the celestial reference frame (CRF) and the terrestrial reference frame (TRF) (Seidelmann
and Kovalevsky, 2002). The IERS gives the location of the CIP in the Earth-fixed reference
system based on space geodetic observations and underlying models. The CIP performs motion
with periods longer than two days to the space fixed reference system. In the Earth-fixed
system, retrograde motions of CIP with frequencies between 0.5 and 1.5 cycles per sidereal day
are allocated to nutation, whereas all other motions are interpreted as polar motion. IERS
convention provides a three-dimensional rotation to describe the relationship between the
GCRS orientation to ITRS orientation. The rotation between ITRS and GCRS is specified by
a set of 5 Earth Orientation Parameters (EOP) as following equation (Petit and Luzum, 2010):

[GCRS] = Q(X, Y, s).R(−ERA).W (−s, xp, yp)[ITRS], (3.1)

where, Q describe celestial pole offsets, the observed corrections to the conventional celestial
pole needed to obtain the CIP. The conventional celestial pole position is given by the IAU
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precession and nutation models. R is the Earth rotation, an angle measured along the
intermediate equator of the CIP between the terrestrial intermediate origin (TIO) and the
celestial intermediate origin (CIO) (Capitaine, 2007). Variation in the rotational speed of the
Earth and consequent variation in the Earth rotation angle (ERA) are conveniently represented
by UT1 time differences (dUT1). The Universal time (UT1) is defined by conventionally
adopted linear proportionality to the ERA. The W represents the polar motion, the coordinates
of the CIP concerning the IERS reference pole in the ITRS. The corrections angle s and s′

locate the position of the CIO and TIO on the equator of the CIP, respectively (Petit and
Luzum, 2010).

3.6 Geomagnetism Field Data and Model

Earth behaves like a bar magnet, and a magnetic field surrounds it (see Figure 3.4). The
magnetic field is a zone with the forces active along imaginary lines from the south magnetic pole
to the north magnetic pole. The imaginary bar magnet has an axis with a tilt approximately 11
degrees to Earth’s rotation axis (Glassmeier et al., 2008). The Earth’s magnetic field originates
in the Earth’s core. The core is made mainly of Iron and Nickel. In the inner core, these metal
are on the solid-state, and in the outer core, they are liquid with a constant motion under the
influence of the Earth rotation. According to the dynamo theory, the movement of the fluid
(molten iron) outer core of the Earth generates a magnetic field (Gilbert and Wright, 1967;
McElhinny and McFadden, 1998).

Figure 3.4: Earth’s magnetic field extends from the Earth’s interior. Unlike a bar magnet,
geomagnetic field changes over time as it is generated by the geodynamo process from the motion
of molten iron alloys on the outer core (Roberts and Glatzmaier, 2000).

3.6.1 Geomagnetic Field Elements

The geomagnetic field is a vector field, which can be described on the Earth’s surface by its
three orthogonal components X (pointing in the geographic North direction), Y (pointing
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Eastward), Z (pointing downward) (see Figure 3.5. The horizontal component H is yielding
by two horizontal components X and Y with:

H =
√︁

X2 + Y 2, (3.2)

which is aligned in the direction of the compass needle. The intensity of the total field F is
obtained as

F =
√︁

X2 + Y 2 + Z2. (3.3)

The intensity of the field is often measured in Gauss (G) and nanoteslas (nT ), with 1G =
100000nT (Gauss, 1839). The angle between the horizontal component and geographic north
is defined as declination D. The declination is positive for an Eastward deviation of the field
relative to true north. The magnetic inclination is the angle between the horizontal plane and
the total field vector. The inclination is given by an angle that has values between −90◦ (up)
to 90◦ (down) (Glassmeier et al., 2008).

Figure 3.5: Earth magnetic field coordinate system: The three orthogonal components X, Y ,
and Z. The total field F , and the horizontal component H as well as the declination D and the
inclination I.

3.6.2 Geomagnetic Field Models

The geomagnetic field models offer a global representation of the magnetic field based on the
observational data from ground and satellites which can be used for several practical and
scientific purposes such as predicting the field distribution at locations or times without direct
observations or studying the field evolution and its underlying processes deep within the Earth.
The most commonly used method to obtain a global magnetic field is developed by Gauss,
1839 using spherical harmonic analysis. In a source-free region, the magnetic field B can be
written as the negative gradient of a scalar potential V , B = −∇V , which fulfills Laplace’s
equation (Langel, 1987):

∇2V = 0

For the field originating inside the Earth, the potential Vi can be developed in a series of
spherical harmonic functions (Langel, 1987; Lühr et al., 2009):

Vi(r, θ, ϕ) =
∞∑︂

n=1

n∑︂
m=0

RE(RE

r
)n+1[gm

n cos mϕ + hm
n sin mϕ]P m

n (θ), (3.4)
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where RE is the Earth’s radius, r, θ, ϕ are the spherical coordinates radius, co-latitude, and
longitude, and P m

n are the Schmidt quasi-normalized associated Legendre function of degree
n and order m. Core and lithospheric field models are parameterized by a set of Gauss
coefficients, g, and h, which can be determined from the data using least-squares inversion.
Field arising outside the sphere of observation can furthermore be expressed by a potential Ve

(Langel, 1987; Lühr et al., 2009):

Ve(r, β, ) =
∞∑︂

n=1

n∑︂
m=0

RE( r

RE
)n[qm

n cos m + sm
n sin m]P m

n (β). (3.5)

The International Geomagnetic Reference Field (IGRF) provides the most widely known
geomagnetic field model, which is used for different applications like navigation. The IGRF
model is based on the spherical harmonic analysis, and the main field and linear secular
variation data are used since 1900 (Peddie, 1982; Thébault et al., 2015). Also, concerning
the scientific approaches, some models are better tailored for specific aims (Olsen et al., 2000;
Maus et al., 2006).

3.6.3 CHAOS – A Satellite-based Geomagnetic Field Model

The CHAOS model series, which stands for CHAMP, Ørsted, and SAC-C magnetic satellite
data of Earth’s magnetic field, describes the latest geomagnetic field by using high-precision
satellite observations at low-Earth-orbit (LEO) (Olsen et al., 2006). In particular, the CHAOS
models represent the core field variation with high spatial and temporal resolution. The first
version in the series, called CHAOS (ibid.), was based on 6.5 years (March 1999 to December
2005) of Ørsted, CHAMP and SAC-C satellite data; CHAOS-2 (Olsen et al., 2009) is derived
from 10 years of satellite data (until March 2009) expanded by monthly observatory averages
for 1997 to 2006. The CHAOS-3 (Olsen et al., 2010), is based on more than ten years of
satellite data (up to December 2009) and 13 years of ground observatory data. CHAOS-4
used more than 14 years of satellites, augmented with the magnetic monthly mean value
(Olsen et al., 2014). CHAOS-5 updated the low-degree internal field model (up to degree 14)
compared to CHAOS-4 (Finlay et al., 2015). The CHAOS-6 employed more than two years of
magnetic data from the SWARM mission, and monthly mean from 160 ground observatories
since 2016, to update the CHAOS geomagnetic field model (Finlay et al., 2016). The CHAOS-7
is the latest version of the CHAOS model, which provides high spatial and temporal resolution
between 1999 and 2020. In this study, the CHAOS-6 has been investigated as it was the latest
released version.
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4
Space Geodetic Techniques for EOP

Determination

4.1 Introduction

Space geodetic technique is the use of precise measurements between space objects such as
orbiting satellites and quasars to determine positions of points on the Earth, positions of the
Earth’s pole, and Earth’s gravity field and geoid (Seeber, 2008). The derived data from space
geodetic technique observation are utilized for direct science observations and geodetic studies
like EOP, gravity field earthquake displacements, and effective angular momentum. Also, the
data contribute to the determination of the TRF, precise orbit determination (POD), weather
forecasting models, and deep space navigation (Gambis, 2004; Rothacher et al., 2009; Schuh
et al., 2015). Among the space geodetic techniques, laser ranging, GNSS, DORIS, and VLBI,
contribute to Earth’s orientation parameters and observations. (Dickey et al., 1985; Schuh and
Schmitz-Hübsch, 2000; Dow et al., 2009; Angermann et al., 2010; Coulot et al., 2010; Nilsson
et al., 2010, 2011, 2014).
A simplified scheme of the satellite geodetic techniques is shown in Figure 4.1 for EOP
observation. As can be seen, the two VLBI telescopes equipped with x/s wide-band receivers
register the signal from the radio source to measure differences in signal arrival time. The
GNSS are equipped with precise clicks, transmitting messages such as ephemeris and clock
offset to ground receivers to measure station to satellite pseudo-range. The laser ranging
ground-based transmits a short-pulse laser to a satellite or moon that is equipped with corner
cubes to measure the round trip pulse time of the flight to the satellite. The DORIS satellite
equipped with DORIS receiver and up-link hardware transmits signals to ground beacons to
measure Doppler shift on radio-frequency signals.
Table 4.1 shows the VLBI is the only technique that can observe the full set of EOP and

other space geodetic techniques, as mentioned earlier, that contribute to the Earth rotation
parameters (ERP) and length of day (LOD). In this chapter, the basic principle of each
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Figure 4.1: A simplified scheme for different space geodetic techniques, e.g., VLBI, GNSS, DORIS,
and laser ranging.

Table 4.1: Contribution of space geodetic techniques to EOP observation.

EOP VLBI GNSS DORIS Laser ranging
Polar motion

LOD
UT1-UTC

CPO

technique is illustrated as follows:

4.2 Doppler Orbitography and Radiopositioning Integrated by
Satellite

DORIS is a French microwave tracking system and an uplink radio system based on the Doppler
law, needing a host satellite and a global network of ground-based tracking stations, called
DORIS beacons. DORIS’s system was designed by the French space agency (CNES), Institut
Geographique National (IGN), and Groupe de Recherches en Geodesie Spatiale (GRGS) to
offer high precision orbit determination and beacon positioning (Willis et al., 2010a). DORIS
has been performed since 1990 when the first technology demonstration system was started
on-board the SPOT-2 satellite (Auriol and Tourain, 2010). The DORIS system principally
consists of a space segment where beings satellites, and the ground segment with three types
of centers, and DORIS instrument. The DORIS system was designed for the precise orbit
computation required for observing the oceans by altimetry (Tavernier et al., 2005; Willis
et al., 2010b). The DORIS receivers operate on LEO satellites for precise orbit determination
as well as for geodetic purposes. The ground segment is responsible for the maintenance and
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operation of the DORIS constellation. The ground segment is comprised of the following
elements: A beacon installation and management center at IGN coordinates the global network
of orbit determination beacons. The segment Sol Altimetrie et Orbitographie (SSALTO)
multi-mission control center is operated by Collecte Localisation Satellites (CLS) on behalf
of CNES. Three master beacon sites can upload commands to the instrument: Toulouse,
Kourou, and Hartebeetshoek. The master beacon sites are tied to an atomic clock, enabling
synchronization of the DORIS system with an international reference time. The DORIS
instrument is on-board the DORIS receiver developed by Thales airborne systems (TAS),
receives two RF chains at the frequencies 2036.25 and 401.25 MHz (Lourme and Leloup, 2010).
The DORIS system includes all the instruments on-board the carrying satellite (antenna,
receiver, oscillator), an international network of autonomous stations spread around the globe,
and a control and processing center that calculates the orbit of the satellites. The ground
beacons broadcast signals. The DORIS receives on-board satellites that make the Doppler
shift measurements and stores them in its internal memory. The data are transmitted to the
ground on each pass of the satellite over a station. Then they are sent to SSALTO at regular
periods, the DORIS mission control center in Toulouse, France.

4.3 Global Navigation Satellite System

GNSS are satellite constellations orbiting the Earth to provide continuous position and timing
information over the globe (Hofmann et al., 2007; X. Li et al., 2015). GNSS are used in
a growing number of applications (Dow et al., 2009; Awange, 2012). The most common
application is navigation tools for regular users. Several countries developed and operated their
systems due to the importance of GNSS. The American Global Positioning System (GPS) is
the only fully operational GNSS (El-Rabbany, 2002). However, the Russian GLONASS system
is now almost wholly deployed, and the European Galileo was designed to be independent
but fully inter-operable with both GPS and GLONASS (Cai, Gao, et al., 2007). Other
countries, such as China and India, are developing their local or global navigation satellite
systems(Ganeshan et al., 2005; Cai, Gao, et al., 2007; Sharma and Poonia, 2018; Yang et al.,
2019). The common characteristics of the GNSS constellation are satellites transmitting signals
to the users, one-way communication between satellite and user, and use of atomic timekeeping
devices. The potential compatibility and interoperability of the different systems could provide
unparalleled coverage and positioning accuracy, even for ordinary users (Hofmann et al., 2007).
All satellite systems contain the following segments:

1. Space segment: satellites,

2. Control segment: monitoring, controlling and uploading stations,

3. User segment: user community or GNSS receivers.

The space segment is formed by the satellites. The functions of the satellite are as follows:

• It receives and stores data from the ground control segment.
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Figure 4.2: Schematic diagram of GNSS segments.

• It maintains a very precise time in order to achieve such a goal, and each satellite usually
carries several atomic clocks of two different technologies (e.g., cesium and rubidium)
depending on the generation of the satellite.

The main functions of the ground segment are as follows:

• Monitor the satellites, activate spare satellites to maintain system availability, and check
the satellite health

• Estimate the on-board clock state and define the corresponding parameters to be
broadcast

• Define the orbits of each satellite in order to predict the ephemeris data with the almanac.

The main functions of the user segments are as follows:

• Receive the data from the satellites belonging to one or several constellations on one or
several frequencies,

• Receive the signal from each satellite on Sky,

• Track the signal received from the satellite on Sky.

The GNSS receiver compares the time a signal was transmitted by a satellite with the time
it was received. The time difference tells the GNSS receiver the satellite’s distance from the
receiver location.
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4.4 Laser Ranging

Laser ranging has been used to determine EOP for more than four decades routinely,
determining Lunar laser ranging (LLR) measurements from 1969 when Apollo 11 lunar
mission was launched and Satellite laser ranging (SLR) measurements since 1976. Therefore,
laser ranging-derived EOP are required for investigating long-term variations.

4.4.1 Lunar Laser Ranging

LLR precise measurements of the Earth-Moon distance have been used in a variety of fields to
perform necessary tests in areas such as general relativity. The laser pulses are transmitted via
a telescope, and the reflectors which were deployed during the American Apollo lunar missions
11, 14, and 15 (Bender et al., 1973) and two Soviet Union-French missions, Lunokhods 1
and 2 between 1969 and 1973, reflect the laser pulse back (Barker et al., 1975). On Earth,
the reflected pulses are registered by the telescope. The observation variable is the signal
transit time of the laser pulse emitted. The performance of LLR equipment on the Moon
has been affected by adverse phenomena such as solar rays and lunar librations. Only a few
ground stations can perform LLR measurements to the Moon due to the atmosphere, and the
diffraction effects on the reflectors. Today, there are still three stations that regularly carry
out laser distance measurements to the Moon: Grasse (France), APOLLO (USA), and Matera
(Italy). The distance between the Moon and Earth is calculated as follows:

Figure 4.3: Lunar laser ranging measures the range between an observatory on Earth and a
retro-reflector on the Moon. Figure not to scale.
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D = (C ∗ τ)/2 (4.1)

where d is the distance between the Earth and the Moon, C is the speed of light, and τ is the
duration of delay due to reflection. Since the first LLR measurements in 1969, measurement
accuracy has improved from a few decimeters to a few millimeters at the most advanced
LLR observatories. LLR can be used to estimate several parameters that provide insight
into the Earth-Moon system. These parameters can be categorized into different areas, e.g.,
reference system, dynamics of the Earth-Moon system, and physics of the Moon (Ferrari et al.,
1980; Whipple, 1993; Arias et al., 1995; Bois and Vokrouhlicky, 1995; Chapront et al., 2000;
Krasinsky, 2002; Williams et al., 2006).

4.4.2 Satellite Laser Ranging

SLR became an essential contributor to space geodetic techniques in particular after lunching
of the first two SLR-designed geodetic satellites, Starlette in 1975 and Laser GEOdynamics
Satekkite (LAGEOS) in 1976 (Degnan, 1985; Ciufolini et al., 2009). SLR measures the time

Figure 4.4: Schematic diagram of satellite laser ranging system, describing signal paths.

intervals needed for pulses emitted by a laser transmitter to travel to a satellite and return to
the transmitting station. The time of firing and the pulse’s time of return combine to equal
the time of travel. This leads to the range measurement, using the simple model

R = c(tr − ts)/2 (4.2)
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where R is the range from the laser reference point to the average satellite retro-reflector
position, and c is the speed of light. tr is the epoch corresponding to the return of the
laser pulse, and ts is the epoch corresponding to the firing of the laser pulse. Therefore, the
distance between the satellite and the observing site is approximately equivalent to half of
the travel time multiplied by the speed of light. Over the last few years, a global network of
precise, fixed, and mobile tracking stations have routinely tracked LAGEOS and several other
satellites, producing a large quantity of exact data. SLR measurements require a correction
for the dry component of the troposphere; thus, the SLR sites measure atmospheric pressure,
temperature, and relative humidity to calculate this correction. Analysis of these data sets
has demonstrated the potential of the laser ranging systems to make significant contributions
to geodesy, geophysics, and crustal mechanics (Abshire and Gardner, 1985; Christodoulidis
et al., 1985; Degnan, 1993; R. J. Eanes and S. V. Bettadpur, 1996; Bloßfeld et al., 2018a;
J. M Ferrándiz et al., 2020b).

4.5 Very Long Baseline Interferometry

VLBI is a differential technique for observing the radiation of compact extragalactic radio
sources at a quasi-infinite distance with several telescopes (a specific range of frequencies is
recorded by VLBI antenna). The time delay in arrival can be inferred by cross-correlating
the signals received by telescopes. Many primary geodetic and astrometric parameters can
be determined by analyzing these delays. Karl Jansky identified the radio waves from
the extragalactic in 1931 (Lovell, 1964; Richard T et al., 2017). The relevant technology
was developed for long-baseline radio interferometry in the 1960s and 1970s, as seen in such
innovations as the atomic clock, large scale antenna, recording technology, and signal processing.
The geodetic VLBI developments and observations of 1969 laid the basis for the modern multi-
band and broadband geodetic VLBI techniques that are used today (Schuh and Behrend, 2012).
The geodetic VLBI consists of two components: space and ground segments (see Figure 4.5).
The space segment is generally natural extragalactic radio sources. The active radio sources
emit synchrotron radiation, which occurs when a charged particle is accelerated along a spiral
path following the magnetic field, emitting electromagnetic radiation. The ground segments are
ground stations, infrastructure, and correlators. The main task of the correlator is to process
raw VLBI observations and to determine the arrival time difference at the two antennas. The
main observable element of geodetic VLBI observations is the time delay (the difference in
arrival times of extragalactic radio source received at VLBI stations). The time delay τ is
measured by amplifying, down-converting in frequency, and digitally sampling the radiation
received from the radio sources at each antenna site with electronic signal processing devices
whose time, frequency, and phase information are derived coherently from an on-site atomic
frequency standard, usually a hydrogen maser (Cannon, 1999; Schuh and Behrend, 2012).
Figure 4.5 shows the basic idea of VLBI, a radio source emitting a planar wavefront that
propagates along the unit vector to the radio source and arrives at two antennas, which are
pointing simultaneously at the same radio source and are separated by the baseline vector b.
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Figure 4.5: Principle of VLBI observation: The main observable is the difference in the arrival
times of a plane wavefront emitted by an extragalactic radio source in direction k̂ at two VLBI
telescopes.

The geometric delay is determined as:

τg = −b.k

c
= t2 − t1 (4.3)

where b is the baseline vector, and k is the unit vector to the radio source. The delay of the
VLBI signal (τ) measured at the correlator is dominated by the geometric delay (τg). However,
some correlations are required to be added to geometrical delays as follows (Cannon, 1999)

τ = τg + τab + τclk + τinst + τtrop + τiono + τrel (4.4)

where τg is the geometric delay, τab is a contribution due to diurnal aberration, τclk is a
contribution to the signal delay arising from the mis-synchronization of the reference clocks at
each observatory, and τinst is a contribution to the signal delay arising from the propagation
delay through on-site cable runs and other instrumentation. The τtrop is a contribution to
the signal delay arising from the propagation delays through the non-ionized portions of the
Earth’s atmosphere, and τiono is a contribution to the signal delay arising from the propagation
delays through the ionized portions of the Earth’s atmosphere. The τrel are special and general
relativistic corrections to the classical geometric delay (τg). The computation of τab and τrel are
known from physics. The calibration information is used for knowing τinst. The τclk and τtrop

are measured using the least square estimation, and τino is removed based on dual-frequency
observations (Finkelstein et al., 1983). More information about the concept and application
of VLBI in geodesy and astronomy can be found (Ma, 1978; Clark et al., 1985; Schuh and
Moehlmann, 1989; Sovers et al., 1998; Schuh, 1999, 2000; Böhm and Schuh, 2007; Heinkelmann
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et al., 2009; Heinkelmann and Schuh, 2009; Böckmann et al., 2010; Heinkelmann, 2013; Schuh
and Böhm, 2013).
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5
Earth Rotation Theory Versus Space

Geodetic Techniques Observation

Some parts of this chapter were originally taken from our published paper at the Remote sensing
Journal: Ferrándiz, J. M., Modiri, S., Belda, S., Barkin, M., Blossfeld, M., Heinkelmann,
R., and Schuh, H. (2020b). Drift of the Earth’s principal axes of inertia from GRACE and
satellite laser ranging data. Remote Sensing, 12(2):314. DOI: https://doi.org/10.3390/

rs12020314.

5.1 Introduction

All the official theories of Earth rotation and most of any approaches start from a reference
system whose axes are aligned with the Earth’s principal axes of inertia (PAI) either with
the origin of the center of mass (COM) or at a point fixed relative to point fixed the body.
Therefore, the Earth’s PAI’s location has a significant effect on many fields, including astronomy,
geodesy, and satellite-based positioning and navigation systems (Chao et al., 1991; Barkin and
J. Ferrándiz, 2000; Shen et al., 2008; Cheng et al., 2011).
The location of the COM was not determined with high accuracy until a few years ago.
However, at present, the highly accurate mean position of the COM and its time variations
is computed using modern satellite geodesy techniques. For many years, SLR was the main
satellite technique to determine the gravity field of the Earth (until certain attainable degree
and order of spherical harmonics coefficients (SHC))(Yoder et al., 1983; Rubincam, 1984; Chao
and R. Eanes, 1995). The three first degree SHC give the COM. Also, concerning the Earth’s
rotation, the most relevant parameters are the second-degree SHC, linearly related to the inertia
matrix (J. Chen et al., 2000; Bloßfeld et al., 2015). After launching the Gravity Recovery and
Climate Experiment (GRACE) mission in 2002, the accuracy and spatial-temporal resolution
of the Earth’s gravity field is improved significantly (Tapley and Reigber, 2001; Tapley et al.,
2004a,b). W. Chen and Shen (2010) showed the location of the PAI before and after the
GRACE mission. Additionally, the geopotential models, e.g., EGM2008 and EIGEN05C with
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constant Stokes coefficients that integrate GRACE data were already capable of determining
the small deviations of the Earth’s PAI out of the equator or the polar axis, whose magnitude
is below 1 arcsecond (as) (Förste et al., 2006; Pavlis et al., 2012).
Moreover, the GRACE mission allowed detecting time variations of the Earth’s gravity field
with at least monthly temporal resolution (J. Chen et al., 2004; Tapley et al., 2004b, 2005;
Belda et al., 2017b). Therefore, accurate mean positions of the PAI and its time variations
with monthly resolution can be computed. However, the time evolution of the PAI location
has never been studied since the GRACE launch, despite its relation to the Earth’s rotational
dynamics.
In this chapter, the evolution of the PAI is investigated, which might raise a lot of questions
concerning the geophysical aspects of PAI evolution.

5.2 Analytical Method

The basic equations used in this analytical method are the same as those introduced and
employed by Barkin and J. Ferrándiz (2000), where the PAI oscillations derived from the
Earth’s elasticity yielding to the Sun and Moon attraction and its rotation. Also, the impact
of tidal and pole tide deformation on the Earth’s PAI are excluded from the solution showed
in this chapter as they included in the background models used to derive the SHC.

5.2.1 Basic Equations

Stokes coefficients are related to the elements of the Earth’s matrix of inertia through

J2 = −C20 = 2C − A − B

2mR2 , C22 = B − A

4mR2 , (5.1)

S21 = D

mR2 , C21 = E

mR2 , S22 = F

2mR2 ,

where A, B, and C are the inertia moments and D, E, and F are the inertia products. In case
the axes are principal, the Stokes coefficients (denoted with superscript p) hold the relations

Jp
2 = −Cp

20 = 2Cp − Ap − Bp

2mR2 , Cp
22 = Bp − Ap

4mR2 , (5.2)

Sp
21 = Dp

mR2 = 0, Cp
21 = Ep

mR2 = 0, Sp
22 = Fp

2mR2 = 0.

Inertia moments and products can be computed from principal ones using the rotation matrix
M = (aij), that relates the coordinates Xnp = (x, y, z) and Xp = (ξ, η, ζ) of a point in an
arbitrary, non-principal reference frame and the principal one, respectively:

Xnp = MXp. (5.3)

The relations look like as

A = Ap + (Bp − Ap)a2
12 + (Cp − Ap)a2

13, B = Bp + (Ap − Bp)a2
21 + (Cp − Bp)a2

23, (5.4)

C = Cp + (Ap − Cp)a2
31 + (Bp − Cp)a2

32, D = (Ap − Bp)a22a32 + (Ap − Cp)a23a33,
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E = (Bp − Ap)a31a11 + (Bp − Cp)a33a13, F = (Cp − Ap)a11a21 + (Cp − Bp)a12a22.

The computation of the principal moments of inertia and the rotation matrix can be performed
by solving a cubic equation whose roots are the principal moments. The main steps of the
procedure are presented in several references, e.g., (Barkin and J. Ferrándiz, 2000; Marchenko
and Abrikosov, 2001; W. Chen and Shen, 2010).
However, when deviations are small, an analytical approximation up to the first order can be
derived, which allows obtaining the rotation matrix in the form

M =


a11 ∼= 1 a21 ∼= F

B0−A0
a31 ∼= E

C0−A0

a12 ∼= F
B0−A0

a22 ∼= 1 a32 ∼= D
C0−B0

a13 ∼= E
A0−C0

a23 ∼= D
B0−C0

a33 ∼= 1

 (5.5)

The poles of the principal axes of inertia relative to a frame deviating from them not beyond
first order are given by

xξ
∼= R, yξ

∼=
RF

B0 − A0
, zξ

∼=
RE

C0 − A0
, (5.6)

xη
∼=

RF

B0 − A0
, yη

∼= R, zη
∼=

RD

C0 − B0
,

xζ
∼=

RE

A0 − C0
, yζ

∼=
RD

B0 − C0
, zζ

∼= R.

where, the superscript 0, which can be chosen in the initial moment. R is the radius of the
frame.

5.2.2 Introduction of An Auxiliary Terrestrial Reference Frame (ATRF)

The ITRF (Altamimi et al., 2016) or similar frames (such as the JPL Kalman Filter and
Smoother Realization of the ITRS (JTRF), DGFI-TUM realization of the ITRS (DTRF),
and others (M. Seitz et al., 2012; Abbondanza et al., 2017)) are not close to the PAI frame.
However, it can be transformed into a system close to it by merely performing a rotation
around the third axis about 14.9◦ west, similar to the Groten’s "best" Stokes coefficients
(Groten, 2004). The result of that rotation is called ATRF. The ATRF does not have to concur
with the PAI at any time, according to the above equations. The differences are matter to
be small enough to obtain the rotation matrix by deriving an analytical approximation up to
the first order. The three infinitesimal rotations can be used to transform the given TRF into
the ATRF. In such a way, the time series of PA from any time series of second degree Stokes
coefficients can be derived (Barkin and J. Ferrándiz, 2000).

5.2.3 Expression of the Earth’s Principal Axes

Let us consider a body with a principal axis system Oxyz, subject to a mass redistribution
that changes its inertia tensor and let Oξηζ be the resulting principal axes system. In Barkin
and J. Ferrándiz (2000), it was proved that the Cartesian coordinates of the poles of the Earth
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axes of inertia after deformation, Oξ, Oη,Oζ could be approximated in the Oxyz system by:

xξ = 1, yξ = 1
2

∆S22
C0

22
, zξ = ∆C21

2C0
22 − C0

20
, (5.7)

xη = −1
2

∆S22
C0

22
, yη = 1, zη = − ∆S21

2C0
22 + C0

20
,

xζ = − ∆C21
2C0

22 − C0
20

, yζ = ∆S21
2C0

22 + C0
20

, zζ = 1.

with an error of second-order, where subscripts 0 correspond to chosen reference values of the
principal moments of inertia. For the sake of studying the time evolution of them, any choice
is feasible. Thus, the principal moments can be taken at the beginning of the series.
However, the equation . 5.6 and . 5.7 are valid up to first order of approximation relative to
C2m, S2m, provided that the Stokes coefficients are referred to the ATRF or any other frame
close enough to the actual PAI frame at the relevant time.
In relation to Eq. 5.6, the superscripts 0 correspond to chosen reference values of the principal
moments of inertia. For the sake of studying the time evolution of them, any choice is possible,
e.g., their values at the initial or other chosen time, or an average. Transforming the second-
degree SHC through a rotation of angle α around the Oz axis (in the auxiliary system Oxyz) is
straight forward since the zonal term remains unchanged and the tesseral and sectorial terms
of each frame are related through

CAT RF
21 = cos(α)CIT RF

21 +sin(α)SIT RF
21 , SAT RF

21 = −sin(α)CIT RF
21 +cos(α)SIT RF

21 , (5.8)

CAT RF
22 = cos(2α)CIT RF

22 + sin(2α)SIT RF
22 , SAT RF

22 = −sin(2α)CIT RF
22 + cos(2α)SIT RF

22 .

In the equations, each coefficient is identified with the superscript corresponding to its reference
frame. In such a way, we can derive the time series of the PAI location from any time series
giving the second-degree Stokes coefficients. It is worth mentioning that for the computation
of the uncertainties of the pole locations from the Stokes coefficients, formal uncertainties
Eqs. 5.8 can be applied as well, unlike when computing the PAI poles by numerical methods
since the former relations are linear.

5.2.4 Rotation Providing the Principal Axes

Belda et al. (2017b) expressed the transformation of the frames through three infinitesimal
rotations Rx, Ry, Rz. The differences (∆x, ∆y, ∆z) between the coordinates (ξ, η, ζ) in the
mean monthly principal axis frame Oξηζ and the coordinates (x, y, z) in the auxiliary system
Oxyz are related to those rotations by:

∆x

∆y

∆z

 =


0 −Rz Ry

Rz 0 −Rx

−Ry Rx 0




x

y

z

 . (5.9)
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The rotations transforming the auxiliary, quasi-principal system into the principal are

Rx = − ∆S21
2C0

22 + C0
20

, Ry = − ∆C21
2C0

22 − C0
20

, Rz = 1
2

∆S22
C0

22
, (5.10)

where superscripts 0 stands for the initial term of the series, and the neglected terms are
second-order concerning the variations of the Stokes coefficients. Let us notice that each
rotation is related to one of the former pole’s coordinated, for instance

Rx = −yζ , Ry = −zξ, Rz = yξ.

5.3 Data Analysis

The time evolution of the Earth’s PAI can be computed accurately from some of the available
geopotential solutions providing a time-varying Stokes coefficients of degree 2, C2m, and S2m

(Cheng et al., 2011, 2013a,b). In this study, I use the time series provided by the center for
space research at the University of Texas at Austin (CSR/UT), which contains monthly mean
estimates of those coefficients referred to the international terrestrial reference frame (ITRF)
(Cheng et al., 2013a; Save et al., 2018). Also, the SLR-based analysis used with weekly time
resolution from Deutsches Geodätisches Forschungsinstitut (DGFI-TUM), Munich, Germany
(Bloßfeld et al., 2015). The following analysis covers the period from January 2000 to February
2018. The used data are given the degree 2 normalized Stokes coefficients C̄2m and S̄2m with
their corresponding time tags (The basic meaning of the coefficients can be found in (Cheng
et al., 2011, 2013a,b). The processing standards of this solution follow the IERS Conventions
(2010) (Petit and Luzum, 2010), as indicated in Bloßfeld et al. (2015, 2018b).
The degree 2 normalized Stokes coefficients C̄2m and S̄2m are used with their corresponding
time tags and uncertainties, with the weekly resolution, along the period from January 2000
to February 2018.
The outline of the computation flow is the following for each of the time series. First, Stokes
coefficients are transformed from normalized to unnormalized using the standard approach
presented, e.g., in Eqs.6.2b and 6.3 of (Petit and Luzum, 2010). Then, I obtain the SHC after
performing a rotation of angle α = −14.9286648815724558 degrees (corresponding to an initial
value S22 = 0 of the CSR rotated SHC) of the reference frame. That rotation angle defines
the chosen ATRF that is not principal since the (2, 1) SHC not vanish but is close enough to
the PAI to enable the application of the previous equations. Then, the location of the PAI at
each data point is found by computing the three infinitesimal rotations given by Eqs. 5.10.
Next, these three rotation time series, for each input data, are examined emphasizing on the
identification of trends. All the statistics and the linear fit functions are estimated weighting
the input data with their squared formal errors and using the MAPLE 17 package of Maplesoft,
a division of Waterloo Maple Inc., Waterloo, Ontario (Bernardin et al., 2011).

5.4 Results

The results corresponding to the RL06 CSR and DGF-TUM SLR data are displayed in
Figures 5.1, 5.2, and 5.3 in [cm]. Notice that vertical scales are different. The Figure 5.1
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illustrates the three rotations Rx, Ry, and Rz (in blue) and the first-degree polynomials are
fitted to them (in black); at the legend of each plot, there is a part that shows the WRMS
(weighted root mean squared) of the date before and after the fit. The middle panel is
made of another three plots that display the respective residuals. The lower panel shows
the corresponding spectral analysis results of the residual part. All the offsets and trends
are significant. The most substantial rotation corresponds to Rz, around the Oz axis of the
auxiliary frame, coincident with Oz of the ITRF. Its trend reaches 321.882 ± 86.781 cm/yr on
the Earth’s equator (see Table 5.1).
Table 5.1 indicates the value of the WRMS after the fit and the coefficients of the linear
regression line, together with their formal errors (1σ). The time origin is set to be the date
JD 2000.0 (modified Julian date 51544.5). All the coefficients apart from the Rx trend are
larger than 3σ, thus significant. The Rz is the largest rotation, around the Oz axis of the
ATRF, coincident with the ITRF Oz. Its trend reaches 321.88 ± 86.78 cm/year on the Earth’s
equator, and its direction is Eastwards since it is positive (counterclockwise rotation, bringing
the instantaneous Ox closer to the ATRF Oy). The trends of the other rotations are much
smaller. The rotation Rx around the Ox axis is negative (clockwise), driving the ATRF Oz

axis towards the positive Oy axis, with the smallest velocity of roughly −0.26 ± 0.82 cm/year.
Finally, the Ry rotation is positive (counterclockwise), moving Ox and Oz Southwards (Oz

towards to the ATRF Ox) by 10.40 ± 0.36 cm/year on the surface.
The Rx and Rzrotations also exhibit nearly annual and seasonal variations. They might be
attributed to the seasonal variations visible in the GRACE gravity fields or to inaccuracy of
the background models, at least to some extent. A fast Fourier analysis confirms that the main
period of all the rotations is annual, although it also detects power at many other frequencies,
like those associated to the semi-annual, Chandler, and semi-Chandler periods, in general with
noticeably smaller amplitudes and correspondingly larger formal errors (see Figure 5.1, lower
panel).
Figure 5.2 shows the motion of Rx, Ry, and Rz in blue. Also, a linear function and the annual

Table 5.1: Results derived from the RL06 CSR Stokes coefficients with monthly resolution.WRMS
after fitting a linear function to each, biases, and drifts of the equivalent rotations Rx, Ry, and Rz

from ATRF to PAI. Units are [cm] and [cm/year], time origin is 2000.0. The lower panel shows
the results of the fast Fourier analysis.

WRMS [cm] Bias [cm] Drift [cm/year]
Rx 56.66 999.12 ± 9.35 −0.26 ± 0.82
Ry 25.06 442.92 ± 4.13 10.40 ± 0.36
Rz 5955.06 −5029.83 ± 989.57 321.88 ± 86.78

oscillations of Rx, Ry, and Rz is fitted to data in black color (upper panel). Table 5.1 and 5.2
illustrate fitting the annual oscillations decreases WRMS of Rx, Rz significantly except for Ry.
The trends of Rx and Ry are almost indifferent of the ones in Table 5.1, whereas the Rz trend
differs by about 6% between the two fits.

The same computations have been performed for the weekly DGFI-TUM time series
provided by Mathis Bloßfeld (Bloßfeld et al., 2015). Figure 5.3 is equivalent to Figure 5.1
for the former RL06 data set and thus does not require description. Let us recall that the
DGFI-TUM series do not cover the same time interval than the CSR one: it starts in 2000,
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Figure 5.1: Results derived from the RL06 CSR Stokes coefficients with monthly resolution.
Upper panel: Equivalent rotations [cm] Rx, Ry, and Rz from ATRF to PAI frame (in green, from
left to right) and fit linear functions (in black). Middle panel: The residuals are also given in [cm].
The lower panel shows the results of the fast Fourier analysis.
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Figure 5.2: Results derived from the RL06 CSR Stokes coefficients with monthly resolution.
Upper panel: Equivalent rotations [cm] Rx, Ry, and Rz from ATRF to PAI frame (in green, from
left to right) and fit linear functions plus annual oscillations (in black). Middle panel: The residuals
are also given in [cm]. The lower panel shows the results of the fast Fourier analysis.

two years earlier, and ends a few months earlier in 2018. The vertical scales of the plots are
subject to change, like in the previous cases.

There is no complete overlapping of the confidence regions, but the trends are kept. Small
differences may arise from little differences in background models or processing strategies.
Table 5.3 shows the statistic results derived from the SLR DGFI-TUM Stokes coefficients with
weekly resolution. To discard that the higher temporal resolution of the DGFI-TUM input
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Table 5.2: Results derived from the RL06 CSR Stokes coefficients with monthly resolution.WRMS
after fitting a linear function and an annual oscillation to each, biases, drifts, and annual amplitudes
of the equivalent rotations Rx, Ry, and Rz from ATRF to PAI. Units [cm] and [cm/year], time
origin 2000.0, null phase at the origin.

WRMS [cm] Bias [cm] Drift [cm/year] Amp. cos [cm] A sin [cm]
Rx 35.81 998.32 ± 5.95 −0.26 ± 0.82 58.80 ± 3.58 −19.32 ± 3.64
Ry 24.43 442.67 ± 4.050 10.41 ± 0.35 7.86 ± 2.44 −0.21 ± 2.49
Rz 4211.05 −4747.51 ± 703.91 302.93 ± 61.70 3408.96 ± 420.54 −4924.77 ± 428.73
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Figure 5.3: Equivalent rotation (in cm) of Rx, Ry, and Rz from ATRF to PA using the data
from DGFI solution.

Table 5.3: Results derived from the SLR DGFI-TUM Stokes coefficients with weekly resolution.
WRMS after fitting a linear function to each, biases, and drifts of the equivalent rotations Rx, Ry,
and Rz from ATRF to PAI. Units are [cm] and [cm/year], time origin is 2000.0.

WRMS [cm] Bias [cm] Drift [cm/year]
Rx 58.37 1005.23 ± 3.25 −2.15 ± 0.39
Ry 42.17 448.42 ± 2.78 11.78 ± 0.28
Rz 6550.04 −7474.45 ± 436.28 120.073 ± 43.61

data might cause some distortion of the results, I have also examined a smoothed version
of them with a monthly resolution like the CSR data and found that there is no relevant
difference in the results. The resulting drifts are R′

x = −1.96 ± 0.60, R′
y = 11.42 ± 0.39,

R′
z = 120.55 ± 71.46 cm/y, very close to the weekly ones.

5.5 Discussion

The results of the observed principal axes of inertia of the Earth, as computed from the Stokes
coefficients provided by CSR/UT at a monthly rate and DGFI-TUM at the weekly rate, are
not tight to the ITRF axes, however, exhibit a non-negligible drift.
It may be somehow striking that the trends of the Rz rotation are at least one order of magnitude
larger than the ones of the other two rotations. That is because the value is obtained after
a division by C22 according to Eqs.(5.10), while in the other two the denominators have the
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order of magnitude of C20. Consequently, the motion of the first two axes of inertia along the
equator is expected to be much larger than the shift of the Oz axis. A similar feature appeared
in the periodic tidal disturbances of the Earth’s PAI computed by Barkin and J. Ferrándiz
(2000), where the maximum amplitude for the third axis (corresponding to the fortnightly
perturbation) was about 19 km, whereas for the other axes the oscillation at the same period
is only of about 19 m, as illustrated in Table 3, row 11 of that reference.
The results derived from the two data sets, based on the UT/CSR GRACE RL06 and the
DGFI-TUM SLR solutions, are compared. The corresponding trends are re-arranged on
Table 5.4, where the columns refer to the individual rotations. The values of the annual trends
( "drifts") fit to the data set are shown in the first row (CSR or DGFI-TUM), and the 95%
confidence intervals ("CI95") are presented in the adjacent columns to the right. The values
of the Ry trends are very close, but the other two look quite different. Nevertheless, the
respective CI95 of the latter two do overlap, and consequently, I can conclude that the trends
of Rx and Rz do not differ significantly. As for Ry, their two CI95 do not overlap, but the
distance between them is only 1 mm over about 10 cm, and thus a slight increase of the level
of significance would result in overlapping.
Therefore, the results are robust enough to be meaningful and can be considered a physical
feature of the Earth change, not an artifact. The last column of Table 5.4 holds the mean value
of the two trends, which may be considered to be a preliminary reference value of the linear
trend associated with each rotation, i.e., the annual drift of the relevant axis. Though some
of the values are very small, all of them are above the accuracy and stability requirements
asked for by GGOS of IAG, to the reference frames and related parameters, namely 1 mm in
position and 0.1 mm/year in velocity.
The small differences found between the two solutions may arise from some differences in
background models or processing strategies. As can be seen in Figures 5.1 and 5.3, there is a
clear trend in the Ry component in both solutions. However, the trend seems to accelerate
around the years 2005-2006, the DGFI-TUM time series. The difference in the C21 and S21

derived rotation time series might be caused by the different handling of the mean pole in the
CSR RL06 and the DGFI-TUM solution. Using different mean pole model could provoke a
systematic long-term difference in the C21 and S21 time series (Wahr et al., 2015; Göttl et al.,
2018; W. Chen et al., 2019; Dahle et al., 2019). The CSR RL06 solution is processed based
on the new linear mean pole model, whereas the DGFI-TUM SLR time series is based on
the conventional (cubic polynomial) mean pole model (Petit and Luzum, 2010). Our results
provide a further example of the relevance of the choice of a mean pole model.
The magnitude of the Rz rotation, which drives the other two axes Eastwards along the equator
at a velocity of about 2.2 m/year is surprising since that motion has not been detected till
now. However, the satellite-derived time-varying gravity field solutions have been available
for not too many years and have never been examined for that purpose. If we consider other
ways of identifying that motion, the analysis of the evolution of the EOP is not as suitable
as this approach (although the EOP may be affected by the PAI drift). In fact, most of the
nutation theories are based on a symmetric Earth model; therefore, they are not sensitive at
all to the rotation of the inertia axes A and B, lying almost on the equatorial plane. Similarly,
most of the investigations on polar motion and length of day (or UT1) also neglect the terms
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corresponding to the Earth’s triaxiality and become thus insensitive to the motions of those
inertia axes. An additional difficulty arises from the aliasing between the diurnal rotation (for
instance UT1) and the node of the satellite orbits.
As additional evidence in support of our finding of the agreement of the two solutions, I
complete this section with joint plots of the rotations computed from each data set (displayed
as a line) together with their CI95 (displayed as a colored area around the line). It can be
visualized easily in Figure 5.4 that the solutions for each of the three rotations Rx, Ry, and
Rz are very similar across the entire time interval which reinforces the hypothesis that the two
solutions do not exhibit significant differences.

Table 5.4: Comparison of the linear trends of the rotations Rx, Ry, and Rz obtained from the
monthly CSR and weekly DGFI-TUM solutions. CI95 denotes the 95% confidence interval of the
fit drift value. Units are cm/year.

Drift (RL06) CI95 (RL06) Drift (DGFI-
TUM)

CI95 (DGFI-
TUM)

Mean drift

Rx −0.26 ± 0.82 (−1.9, 1.4) −2.15 ± 0.39 (−2.9, −1.4) −1.21
Ry 10.40 ± 0.36 (9.7, 11.1) 11.78 ± 0.28 (11.2, 12.3) 11.09
Rz 321.88 ± 86.78 (150.8, 493.0) 120.07 ± 43.61 (34.5, 205.7) 220.97

5.6 Conclusions and Outlook

From J. M Ferrándiz et al. (2020b) (Correspondence to Sadegh Modiri):

The computation of the motion of the Earth’s principal axes of inertia using
two different data sets for the time-varying second-degree Stokes coefficients,
derived from GRACE and SLR solutions, shows a significant agreement, in spite
of small differences in the processing standards and time interval or range of each
solution, monthly and weekly, respectively. The most remarkable feature is that the
determined principal axes of inertia of the Earth are clearly closely aligned to the
ITRF axes nor oscillating around certain "mean" equilibrium position, but exhibit
non-negligible drifts, with magnitudes clearly exceeding the accuracy threshold
of GGOS, the IAG Global Geodetic Observing System. The most remarkable
detected motion drives the two nearly equatorial inertia axes Eastwards, at a rate
of 2.2 m/year. Besides, the axis of less inertia deviates away from the equator
Southwards at 11 cm/year, and the medium axis also moves Southwards out of
that plane at a smaller rate of 1 cm/year. The axis of major inertia follows the
drifts of the other two.
This results are intentionally limited to quantifying observational facts, but the
physical causes of the drift of the Earth’s principal axes is still unknown, as well as
its impact on other topics, e.g. Earth rotation. Getting more insight into these
topics seems to be not an easy task, but different ideas or issues may emerge from
future discussions about the topic. Whether or not motion is due mainly to a sole
cause, concerning external mass transport, changes in the Earth’s inner layers,
tectonics, or a combination of processes. In this case, the geophysical budget could
be closed to some extent. Another open question is whether these variations of
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Figure 5.4: Joint plots of the rotations from ATRF to PAI frames derived from the RL06 CSR and
SLR DGFI-TUM Stokes coefficients with their respective 95% confidence regions. Left Rx, middle
Ry, and right Rz. Color code: CSR: curve in blue, confidence region in light blue; DGFI-TUM:
curve in red, confidence region in light red. Units: cm (equivalent).

the Earth’s inertia tensor might affect other processes of the Earth and could be
related to, e.g., decadal or long-term EOP variations or other observed trends.
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6
A New Hybrid Method for EOP

Prediction

Some parts of this chapter were originally taken from our published papers at the Journal of
Geodesy and Earth, Planets and Space:
Modiri, S., Belda, S., Hoseini, M., Heinkelmann, R., Ferrándiz, J. M., and Schuh, H. (2020). A
new hybrid method to improve the ultra-short-term prediction of LOD. Journal of Geodesy,
94(2):23. DOI: https://doi.org/10.1007/s00190-020-01354-y.
Modiri, S., Belda, S., Heinkelmann, R., Hoseini, M., Ferrándiz, J. M., and Schuh, H. (2018).
Polar motion prediction using the combination of SSA and Copula-based analysis. Earth,
Planets and Space, 70(1):115. DOI:https://doi.org/10.1186/s40623-018-0888-3.

6.1 Introduction

Accurate near real-time EOP is needed for applications related to fundamental astronomical
and geodetic reference frames, monitoring and modeling Earth rotation, and geophysical
research (Munk and Revelle, 1952; Lambeck and Cazenave, 1973; Munk and MacDonald, 1975;
Hinderer and Zurn, 1990; Brzeziński, 2000, 2005; Kalarus et al., 2010; F. Seitz and Schuh, 2010;
Schuh et al., 2011; Stamatakos, 2017; Belda et al., 2018). A number of techniques have been
developed and applied for the EOP prediction, which could be classified into two main groups.
The first group is the methods that use the information within the EOP time series such as
auto-covariance (AC) (Kosek et al., 1998; Kosek, 2002; Kosek et al., 2005), least squares (LS)
collocation (Włodzimierz, 1990; Zotov et al., 2018), wavelet decomposition (Akyilmaz and
Kutterer, 2004; Kosek and Popinski, 2005; Akyilmaz et al., 2011), or neural network (Schuh
et al., 2002; Liao et al., 2012; Q. Wang et al., 2014; Lei et al., 2015). Also, the hybrid methods
are categorized in the first group, for example, the combination of least squares (LS) and
auto-regressive (AR), auto-regressive moving average (ARMA), or auto-covariance and neural
network (Kosek et al., 1998; Akulenko et al., 2002; Kosek and Popinski, 2005; Kosek et al.,
2007; Xu et al., 2012; Xu and Zhou, 2015; Wu et al., 2019).

53

https://doi.org/10.1007/s00190-020-01354-y
https://doi.org/10.1186/s40623-018-0888-3
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The second group is the methods that take into account the geophysical parameters such as
axial component of effective angular momentum (EAMZ). Freedman et al. (1994) showed that
the use of atmospheric angular momentum (AAM) wind terms in the Kalman filter technique
to predict LOD variations improved near-term predictions (Freedman et al., 1994; Gross et al.,
1998; Johnson et al., 2005; Niedzielski and Kosek, 2008; Kosek et al., 2011; Nastula et al.,
2012; Dill et al., 2019; Sun et al., 2019). Johnson et al. (2005) used UT1 observations as
determined by AAM in the UT1-UTC combination solution to predict UT1, which showed
a significant reduction in the prediction errors when compared with the previous prediction
method (McCarthy and Luzum, 1991). Also, Dill et al. (2019) used six days of long-predicted
EAM values for the PM and UT1-UTC prediction using LS extrapolation and AR model.
The EOP prediction comparison campaign (EOP PCC) took place within (2005–2009) due
to the initiative of Prof. Harald Schuh (Kalarus et al., 2008). The results of EOP PCC
indicate that there is no particular approach preferred over others for all prediction intervals
(ultra/short-term, and long-term) (Kalarus et al., 2010). Also, as the EOP prediction
accuracy profits from atmospheric angular momentum (AAM) forecast data, EOP PCC
recommended paying more attention to the analysis and prediction of AAM, the continental
hydrology angular momentum (HAM), and the ocean angular momentum (OAM). Among
these techniques, the combination of LS and AR process is considered to be one of the most
effective for EOP prediction. The mentioned combination method achieved reasonable results
for short-term forecasting. However, due to the complexity of the EOP excitation model, it
is not able to reproduce the time variation of the periodic terms that affect the long-term
predictive accuracy of EOP.
Accordingly, a new prediction approach is required that could bring us significantly closer
to reaching the accuracy goals pursued by the GGOS of the IAG, i.e., 1 mm accuracy and
0.1 mm/year stability on global scales in terms of the ITRF defining parameters (Plag et al.,
2009).
Thus, new methods, or a combination of the existing approaches, must be investigated to
develop the efficiency of the predicted EOP considering the time variation of the periodic
terms and the trend.
I explored the combination of Copula-based analysis and SSA to predict EOP (Modiri et al.,
2019). In Modiri et al. (2018), I applied the combination of SSA and Copula for the first
time as a novel deterministic-stochastic tool for PM prediction using only PM past data (first
group). Also, in Modiri et al. (2020), I applied our hybrid technique for LOD prediction by
taking the advantages of the EAM (second group). Please see the methodology part for more
details about the model. The two above-mentioned groups will be examined in this chapter as
follows:

6.2 First Group: PM Prediction

PM consists of two parts: trend and undulation. Our hybrid model consists of a deterministic
annual and the Chandler component as well as long-term lower frequency parts, which are
estimated by SSA. The difference between the deterministic solution and the PM data is then
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used in a Copula-based model to predict stochastic processes. Then, the final PM prediction
is a combination of the deterministic prediction (derived from the SSA solution) and the
stochastic prediction (obtained from the Copula solution).

6.2.1 Data Description

The PMx and PMy time series is taken from the International Earth Rotation and Reference
System Service (IERS) combined (EOP) solutions 08 C04 (available at http://hpiers.

obspm.fr/eop-pc/analysis/excitactive.html). The EOP 08 C04 series is derived from
different geodetic techniques, and it is consistent with ITRF 2008. The EOP 08 C04 time
series covers the period from 1962 to present, with daily resolution (Figure 6.1). I used 6
years of observed PM time series, from January 1997 to December 2002, for the 365-days-
ahead prediction. To verify the reliability of this method, the results were compared with
the IERS Bulletin A predictions (https://datacenter.iers.org/web/guest/bulletins/-/

somos/5Rgv/version/6). The IERS Bulletin A contains the PM parameters and the predicted
PM for one year into the future, and they are released weekly by IERS RS/PC, hosted by
USNO (Petit and Luzum, 2010; Gambis and Luzum, 2011).

6.2.2 Data Analysis

The SSA is used to model the deterministic part of PM time series, which is dealing with
the periodic terms, e.g., Chandler wobble, annual variation, and geophysical tides. Then, the
Copula-based analysis model is employed to model the difference between the observed PM
and SSA-estimated data. After that, the periodic terms of PM are extrapolated using the
SSA a priori model. Moreover, the anomaly part is predicted using the Copula-based model.
Eventually, the anomaly solution is added to the SSA-forecasted time series. Consequently,
the final PM predicted data is the sum of the results of predicted periodical terms and the
anomaly using SSA and the Copula-based model, respectively.

6.2.2.1 SSA Periodic Terms Estimation

Choosing the window length is the most challenging part of the SSA model as it has a
significant impact on the decomposition of the time series. As can be seen in Figure 6.2,
it depicts the Chandler period as the main period of both time series, which would be a
reasonable choice. Also, the least common multiple of the Chandler and annual periods
are recommended by Golyandina and Zhigljavsky (2013). After the selection of the window
length, the number of singular vectors or empirical functions for the reconstruction of the time
series should be determined. The goal of this procedure is to find and apply a proper set of
constructive components. Most significant periodicities, as well as excitation mechanisms, are
rather low-frequency components and reveal their impact in the first few singular vectors while
high-frequency components fall in later singular vectors. The singular value spectrum reflects
the importance of each singular vector. As can be seen in Figure 6.3, in order to achieve an
accuracy of about 1 mas for PM modeling, at least the first 70 singular vectors are needed to
be employed, which correspond to using all components with periods more than or equal to 14
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Figure 6.1: Daily PM time series from 1990 to the present.

days. Then, the trajectory matrix is constructed, having the window length and the number of
singular values. As can be seen in Figure 6.4, the data between 1997 and 2003 is used as the
training period. The cyan curve is the SSA-reconstructed Pmx time series. Prediction of the
future entries starts by adding the initial guess of future entries to the end of the time series.
Then, the iteration of the SSA process is done until the result of two successive iterations has
a difference less than a certain threshold. This will map the initial values onto the estimated
periodic terms of the time series. The remaining part of the difference between the original
PMx time series and SSA estimated time series is named anomaly of PMx, which has a
stochastic behavior. Therefore, the anomaly part will be investigated by the Copula-based
technique.
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Figure 6.2: Spectral analysis of the PMx (up), PMy (down) using Fast Fourier Transform (FFT)
(Modiri et al., 2018).
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Figure 6.3: Number of singular values and vectors applied in modeling polar motion to achieve 1
mas degree of accuracy (Modiri et al., 2018).

6.2.2.2 Copula Anomaly Modeling

The anomaly part, which is shown in Figure 6.4 (lower panel) with dark violet, is formed
into a matrix with the same window length L. Then, the dependency structure between the
columni and columni+1 is investigated for the whole data set.
In this study, three univariate distribution functions are investigated in order to fit the marginal
distribution of data as follows: extreme value (Stephens, 1977), generalized extreme value (Bali,
2003), and generalized Pareto distribution (Hosking and Wallis, 1987) (see Table 6.1). Then,
the root mean square error (RMSE) is estimated to identify which univariate distribution is
the best fit for PM. Besides the goodness of fit, the marginal distribution is tested with Akaike
and the Bayesian information criterion (AIC and BIC) (Bozdogan, 1987; Vrieze, 2012).
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Figure 6.4: The original time series (upper panel), the reconstructed time series (middle panel)
and the difference between original and reconstructed time series (lower panel) for PMx (Modiri
et al., 2018).

AIC = 2k − ln(L) (6.1)

and
BIC = k ln(n) − 2 ln(L) (6.2)
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where k denotes the number of the free parameters in the model, n is the sample size, and L is
the maximized value of the likelihood function of the estimated model. The smallest amount
of AIC or BIC, respectively, infers the best fitting model or distribution.
After the estimation of the parameters by maximum likelihood approach, the AIC, BIC,
and RMSE values are calculated for both PMx and PMy distribution. As it can be seen in
Figure 6.5, the generalized extreme value (black) provides the best fit in comparison with
the generalized Pareto distribution function (blue) and extreme value distribution function
(green). Furthermore, Tables ?? and 6.3 illustrate the result of the AIC, BIC, and RMSE,

Figure 6.5: Marginal distribution’s goodness-of-fit test for PMx (left) and PMy (right).
Generalized extreme value distribution is the black curve, green shows the extreme value distribution,
and the blue curve is generalized Pareto distribution (Modiri et al., 2018).

which confirmed that the generalized extreme value provides the best fit in both PMx and
PMy distribution. Therefore, generalized extreme value distribution was selected in this study.

6.2.2.3 Estimating Empirical Copula

Once the univariate marginal distribution is fitted, the dependence structure between the time
series has to be investigated. The first step is to calculate the empirical Copula using the
Equ. 2.6. As can be seen in Figure 6.6, there is a scatter plot of two adjacent columns, and it
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Table 6.1: Marginal distributions.

Distribution Formula Parameters
Extreme value

f(x; µ, σ) = σ−1 exp(x − µ

σ
) exp(− exp(x − µ

σ
))

location µ scale σ

Generalized extreme
value

f(x; µ, σ, ξ) =


(︁
1 + ξ(x−µ

σ )
)︁−1/ξ if ξ ̸= 0

e−(x−µ)/σ if ξ = 0

location µ scale σ
shape ξ

Generalized Pareto

f(x; σ, ξ) = f(ξ,µ,σ)(x) = 1
σ

(︃
1 + ξ(x − µ)

σ

)︃(︁
− 1

ξ
−1

)︁ location µ scale σ
shape ξ

Table 6.2: Goodness-of-fit test for marginal distribution of PMx.

Distributions AIC BIC RMSE
Extreme value 574.60 582.66 0.04
Generalized extreme value 511.14 523.23 0.01
Generalized Pareto 758.22 770.31 0.13

Table 6.3: Goodness-of-fit test for marginal distribution of PMy.

Distributions AIC BIC RMSE
Extreme value 310.99 319.05 0.03
Generalized extreme value 261.25 273.34 0.01
Generalized Pareto 523.99 536.09 0.14

shows a scatter linear dependency structure with the heavy tail, which can be fully modeled
using the Archimedean Copula.

6.2.2.4 Fitting A Theoretical Copula Function

The next step is fitting a theoretical bivariate Archimedean Copula function with its parameters
estimated by the maximum likelihood approach. Here, three different theoretical Copula
functions are tested (Figure 6.7): Clayton, Frank, and Gumbel Copula.

For the three different Copula functions, the goodness-of-fit test, which is based on the
Cramer-von-Mises statistics, is utilized. Then, one thousand values of the test statistics are
sampled to evaluate the performance of the Copulas. The proportion of values larger than Sn

is estimated by calculating the corresponding p-values. The results based on Sn show that the
performance of them is approximately similar with slightly less error for Frank Copula (Table
6.4).
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Figure 6.6: Scatter plot(left) two adjacent columns in the residual matrix. The empirical Copula
(right) is estimated based on the dependency structure of two columns.

Figure 6.7: Theoretical Copula are fitted to the empirical Copula. The Copula parameter is 3.82,
15, and 3.61 for the Clayton, Frank, and Gumbel Copula, respectively (Modiri et al., 2018).

6.2.3 365 Days Ahead Prediction

Six years of observed PM time series, from January 1997 to December 2002, is used for the 365
ahead prediction. The predicted data are compared with the IERS Bulletin A prediction (https:

//www.iers.org/IERS/EN/DataProducts/EarthOrientationData/eop.html) to verify the
reliability of our prediction hybrid method. The IERS Bulletin A contains the PM parameters
and the predicted PM for one year into the future, which are released weekly by IERS Rapid
Service/Prediction Center (RS/PC), hosted by the USNO. The predictions of PM from the
IERS Bulletin A are produced by LS + AR method. In the current prediction method, the
PM prediction was the sum of the LS extrapolation model (including the Chandler period,
annual, semiannual, terannual, and quarter annual terms), and the AR predictions of the LS
extrapolation residuals.

Table 6.4: Goodness-of-fit test for Copula model.

Copula name Clayton Frank Gumbel
mean(Sn) 43.57 12.13 17.58
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Figure 6.8: Mean value of MAE of PMx and PMy for 2003, 2006, and 2009 with the unit [mas].
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6.2.4 Discussions of Results

In this example, the combination of the SSA and the Copula-based analysis method is
demonstrated for PM prediction from 2003 to 2009 (seven years). Our method is tested based
on hindcast experiments using data from the past.
Hence, the Bulletin A prediction data are available weekly; approximately 52 time series of
PM predictions are available for each year. So, Figure 6.8 shows the mean value of mean
absolute error (MAE) for each year. In Figure 6.8, the Bulletin A solution is shown in black,
and the SSA predicted data in red. Also, the results of SSA + Copula are displayed by green,
blue, and pink for Clayton, Frank, and Gumbel Copula, respectively. Compared to the results
from the IERS Bulletin A, the MAE of the predictions produced by the proposed method
were smaller in different short-, mid-, and long-term intervals for different cases (e.g., between
1 and 5 mas progression of PMx prediction for different time intervals in 2003). The better
prediction performance of the SSA + Copula prediction may have been due to the modeling
of the linear change of the Chandler and the annual oscillation amplitudes.
Additionally, the combination of SSA + Copula improves the SSA solution because of its ability
to model the stochastic behavior of the anomaly part of the PM time series. However, the
proposed method did not always perform better, especially in cases of long-term predictions
where the quality of the results was not as good as we expected (see Figure 6.8). This may
have been caused by changes in the amplitudes of the periodic terms in these six years, where
because the SSA was not able to capture all features in order to predict more precisely, we
would have to increase the interval of training time. Figure 6.9 presents the absolute error
of 365 days ahead of the prediction between 2003 and 2009. Different patterns and features
can be seen in our solution and Bulletin A’s solution. For instance, Bulletin A predicted that
PMx from January to March 2003 displays errors of more than 30 mas, which cannot be found
in our results, and there is a clear feature in PMx Bulletin A that means an absolute error
plot from August to December 2008, which does not appear in our prediction. However, our
predicted PM results indicate a periodic error in mid- and long-term predictions although the
results of the combined SSA + Copula show smoother errors in comparison to the SSA results.
To understand this particular periodic error of our method better, I plot Figure 6.10, which
demonstrates the improvement of the SSA + Copula-predicted solution compared to Bulletin
A. The yellow color in the heat map shows improvements in predictions with fewer errors.
The red color indicates where our method shows more errors in the prediction process. Also,
the orange shows where both PM prediction techniques display the same number of errors.
The results illustrate that SSA + Copula can improve the accuracy of PM prediction in the
different time intervals of prediction (short, mid, and long). Tables 6.5 and 6.6 indicate the
success rate of PM prediction when using the SSA + Copula algorithm.

Success rate of PM prediction = number of improvement in the predicted PM
total number of PM prediction

∗ 100 (6.3)

The improvement of the prediction is up to 64.99% for PMx using SSA + Frank Copula. Also,
as it can be seen in Table 6.6, the success rate for PMy is up to 46.66 using SSA + Copula
method.
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Figure 6.9: Absolute errors of the predicted PMx (up) and PMy (down) using SSA, SSA+Gumbel
Copula, SSA+Clayton Copula, SSA+Frank Copula compared with Bulletin A product. The unit
is [mas] (Modiri et al., 2018)

.

6.3 Second Group: LOD Prediction

In this example, the combination of Copula-based analysis and SSA is explored to predict
LOD. First, the dependence structure between the LOD and the axial component of EAM is
derived. Then, the LOD data is simulated based on the fitted theoretical Copula from EAMZ

data. Next, the difference between the LOD time series and its Copula-based estimation is
modeled using SSA. After that, the LOD will be computed from the predicted EAMZ . Finally,
the difference will be predicted and will be added to LOD predicted by Copula.
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Table 6.5: Success rate of PMx prediction [%]

Method\Y ear 2003 2004 2005 2006 2007 2008 2009
SSA 55.29 33.31 26.52 40.16 22.90 45.94 64.70
SSA + Clayton 61.71 33.88 31.91 40.17 22.91 45.96 64.95
SSA + Frank 58.31 34.31 33.61 42.50 22.91 45.97 64.99
SSA + Gumbel 55.90 33.81 28.31 41.00 22.90 45.94 64.97

Table 6.6: Success rate of PMy prediction[%]

Method\Y ear 2003 2004 2005 2006 2007 2008 2009
SSA 35.95 44.99 25.43 45.28 39.50 29.21 39.50
SSA + Clayton 35.99 44.84 24.93 41.27 39.57 29.14 39.65
SSA + Frank 35.94 44.82 25.54 46.66 39.45 29.30 39.70
SSA + Gumbel 38.45 44.60 26.66 44.46 39.36 29.55 39.74
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Figure 6.10: Improvement of PMx and PMy prediction using SSA + Copula-based model. The
improvement in prediction is shown by yellow color.

6.3.1 Data Description

6.3.1.1 Length of Day (LOD)

The LOD time series are available from the IERS EOP 05 C04 series(http://hpiers.obspm.

fr/eop-pc) and span the time interval from 1996 to 2008 (Kosek et al., 2005).
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6. A New Hybrid Method for EOP Prediction

Figure 6.11: Scheme of the Copula + SSA model for LOD prediction (Calibration step).

6.3.1.2 Effective Angular Momentum (EAM) Functions

EAM functions, in both mass and motion terms, explain the non-tidal geophysical excitation of
the Earth’s rotation due to mass redistribution in the atmospheric and terrestrial hydrosphere,
as well as the oceans. The EAM data consists of three main components: X, Y, and Z. The X
and Y components are associated with the excitation of polar motion, whereas the Z component
is responsible for the excitation of LOD variation. The EAM functions are dimensionless with
the sampling of one day and are provided by the Earth System Modeling group at Deutsches
GeoForschungsZentrum Potsdam (ESMGFZ) (Dill and Dobslaw, 2018). The EAM time series
are available from: (ftp://ig2-dmz.gfz-potsdam.de/EAM/).
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Figure 6.12: The EAMZ being the sum of mass and motion terms of AAM, HAM, and OAM
(ZAAM + ZHAM + ZOAM ).

66

ftp://ig2-dmz.gfz-potsdam.de/EAM/


6.3 Second Group: LOD Prediction

1998 2000 2002 2004 2006 2008

2

2.5

3

3.5

4

(Z
A

A
M

+
Z

H
A

M
+

Z
O

A
M

) 10
-8

Z
AAM

+Z
HAM

+Z
OAM

1998 2000 2002 2004 2006 2008

-1

0

1

2

3

L
O

D
 [

m
s
/d

a
y
]

LOD

Training

Training

Validation

Validation

Prediction

Prediction

Figure 6.13: Time series of LOD and (ZAAM + ZHAM + ZOAM ) between 1996 and 2008. The
time series is divided into three parts: training part (1996-2003), validation (2003-2005), and
prediction (2005-2008). The unit of LOD is in [ms/day]. The figure is taken from (Modiri et al.,
2020).

6.3.2 Data Analysis

Multiple sets of ultra-short-term (10 days) LOD predictions have been made based on the
IERS 05 C04 time series to assess the capability of our hybrid model. The same conditions
as EOP PCC are considered to show the performance of the presented model. Then, the
prediction results are compared with those of existing techniques of EOP PCC, and the results
prove that the proposed approach can efficiently predict LOD.
Here, the Copula-based analysis technique aims to estimate the models for capturing the
dependence structure between observed LOD and the EAMZ . Also, SSA is used as a
deterministic technique to obtain stochastic residuals (the difference between the observed
data and the Copula-generated data).

6.3.3 Data Processing and Analysis

As can be seen in Figure 6.12, the EAMZ is the sum of mass and motion terms of AAM,
HAM, and OAM. The dependence structure between LOD and the EAMZ is captured by the
Copula-based analysis method. Then, the difference between the observed LOd and Copula-
based LOD estimated data is modeled by using the SSA method. Figure 6.13 shows that the
time series is divided into three parts: training part (1996-2003), validation (2003-2005), and
prediction (2005-2008).

6.3.3.1 Copula-based Joint Distribution Function of LOD and EAMZ

In this example, the training data set, which ranges from 1996 to 2003, is used to fit a
Copula-based joint distribution function; both EAMZ and LOD are transformed to uniformly
distributed values between (0, 1) interval through their empirical cumulative distribution
function. Thereafter, the dependence structure between the EAMZ and LOD is investigated.
First, the empirical Copula is estimated. As can be seen in Figure 6.14, there is a scatter plot

67



6. A New Hybrid Method for EOP Prediction

0 0.2 0.4 0.6 0.8 1

LOD

0

0.2

0.4

0.6

0.8

1

Z
A

A
M

+
Z

H
A

M
+

Z
O

A
M

 

Dependency structure between LOD and (Z
AAM

+Z
HAM

+Z
OAM

 )

0 0.2 0.4 0.6 0.8 1

LOD

0

0.2

0.4

0.6

0.8

1

Z
A

A
M

+
Z

H
A

M
+

Z
O

A
M

 

Emprical Copula between LOD and (Z
AAM

+Z
HAM

+Z
OAM

) 

0

5

10

15

20

25

30

Figure 6.14: Scatter plot of LOD and (EAMZ) and its empirical Copula (upper panel). The
fitted Archimedean 12 (θ = 1.30), Archimedean 14 (θ = 1.53), and Clayton (θ = 1.31) Copula
(middle panel), Frank (θ = 5.10), Gumbel (θ = 1.69), and Joe (θ = 2.92) Copula (lower panel)
between 1996 and 2003 in the rank space [0 1].

(upper panel) of LOD and EAMZ , and it shows approximately a linear dependence structure
with both upper and lower heavy tail, which can be modeled by using the Archimedean Copula.
Therefore, the theoretical bivariate Archimedean Copula functions with their estimated
parameters are fitted to the estimated empirical Copula. The LOD data are sampled based
on the Copula and the empirical marginal distribution of EAMZ . Next, the residuals of the
generated LOD by Copula are estimated using SSA. After that, the (ZAAM + ZHAM + ZOAM )
data between 2003 and 2005 are used for the validation of LOD prediction (calibration step).
Here, the predicted EAMZ are used for the LOD prediction in the time interval between 2005
and 2008 (see Figure 6.13).

6.3.3.2 EAMZ Prediction

The prediction algorithm for EAMZ is shown in Figure 6.15. The (ZAAM + ZHAM + ZOAM )
time series can be split up into two parts. The first part is dealing with periodic effects such as
annual and semi-annual variations due to the spectral analysis of EAMZ (illustrated in Figure
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6.16. The SSA models the periodic terms of the (ZAAM + ZHAM + ZOAM ); see Figure 6.17.

Figure 6.15: Scheme of the SSA + Copula model for PM prediction (Modiri et al., 2018)

Then, the difference between the observed EAMZ and SSA estimated data is modeled by
using the Copula-based analysis method. First, the window length (L=365 days) is selected
considering the main periodicity see Figure 6.16. After that, the number of singular vectors for

Figure 6.16: Spectral analysis of the LOD (up), ZAAM + ZHAM + ZOAM (down) using fast
Fourier transform (FFT).

the reconstruction of the EAMZ time series is determined. The trajectory matrix is constructed
by having the window length and number of singular vectors. The cyan curve depicts the
SSA-reconstructed EAMZ time series. The periodic terms of EAMZ are extrapolated using
the SSA as a priori model. The difference between the values predicted by SSA and the
predictions based on the EAMZ is called EAMZ anomaly and has a stochastic nature. This
anomaly part is predicted using the Copula-based model. The anomaly part is presented in
Figure 6.17 (lower panel) in violet color. This part is formed with the same window length
L. The dependence structure between the columni and columni+1 in the residual matrix is
investigated. As can be seen in Figure 6.18, the scatter plot illustrates a linear dependence
between the two adjacent columns, which are modeled by Archimedean Copula. Then, the
empirical Copula is determined. The next step is fitting a bivariate Archimedean Copula. In
this example, Frank Copula is selected for predicting the EAMZ anomaly due to its ability to
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Figure 6.17: The original time series and the reconstructed time series (upper panel), and the
difference between the original and reconstructed time series (lower panel) for (ZAAM + ZHAM +
ZOAM ).
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Figure 6.18: Scatter plot(left) two adjacent columns in the residual matrix. The empirical Copula
(middle) is estimated based on the dependency structure of two columns. The Frank Copula with
θ = 4.79 is fitted to the empirical Copula (right).

capture the linear dependence structure. Finally, the Copula-based predicted anomalies are
added to the previously described deterministic part. Here, I employed seven years of EAMZ

time series, from September 1998 to September 2005, for the ten-days-ahead forecasting during
the interval between October 2005 and 2008, i.e., the same interval that has been used for the
EOP PCC. As can be seen in Figure 6.19, the MAE of the EAMZ prediction is up to the 0.76
for the next days which is two orders of magnitude smaller than the EAMZ magnitude.

In Figure 6.14, the scatter plot reveals a linear relationship between columni and columni+1.
Then, the corresponding empirical Copula is estimated. Finally, the anomalies are added to
the SSA-forecasted time series.

6.3.3.3 LOD Prediction from Predicted EAMZ Using the Calibrated Copula +
SSA Model

The predicted EAMZ dataset from 2005 to 2008 is used as an input time series for the calibrated
model. As seen in Figure 6.20, the periodic terms in the residual part are predicted using
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Figure 6.19: MAE of (ZAAM + ZHAM + ZOAM ) prediction between 2005 and 2008 (left). Mean
value of MAE of (ZAAM + ZHAM + ZOAM ) prediction between 2005 and 2008 (right).

SSA extrapolation as well. Eventually, the Copula-based predicted data are added to the
SSA forecasted residual. The results are compared with the EOP PCC solution to asses the
proposed method.

Figure 6.20: Scheme of the Copula + SSA model for LOD prediction using the calibrated Copula
+ SSA model.

6.3.4 Discussion of the Results

In this example, a hybrid LOD prediction method Copula + SSA has been tested by taking
advantage of the EAM (second group). The proposed combination method is tested based on
the hind-cast experiments using the data from the past; the LOD data are predicted using the
same time span (2005–2008) as the EOP PCC (Gross et al., 1998; Akyilmaz and Kutterer, 2004;
Kosek et al., 2005). Figure 6.21 shows the MAE of ultra-short-term prediction. The MAE of our
hybrid Copula + SSA model, displayed in red (Archimedean 12 + SSA), yellow (Archimedean
14 + SSA), green (Clayton + SSA), blue (Frank + SSA), purple (Gumbel + SSA), and the
cyan (Joe + SSA), indicates fewer errors compared to the EOP PCC solutions. Nevertheless,
the Kalman filter with forecasted AAM (black curve) shows comparable performance with our
proposed hybrid model with smaller MAE for the first four days in the future. Table 6.7 present
the MAE of Copula + SSA and EOP PCC results in numbers. Adoptive transform, AR, LS
collocation, and NN show errors of more than 0.1ms/day for the first day of prediction. Also,
the MAE of the wavelet, LS extrapolation, LS + AR, and HE reaches more than 0.1 ms/day
after 2 or 3 days in the future. From all of the contributions to the EOP PCC solution, the
Kalman filter provides the best accuracy. However, the MAE of the Kalman filter gets larger
than 0.1ms/day after 7 days. All Copula + SSA models show MAE smaller than 0.1 ms/day
over 10 days prediction, except smaller Joe Copula + SSA. Figure 6.21 presents the MAE of
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Figure 6.21: Absolute errors of the predicted LOD using Archimedean 12 + SSA, Archimedean
14 + SSA, Clayton Copula + SSA, Gumbel Copula +SSA, Frank Copula + SSA, Joe Copula +
SSA, and EOP PCC results. The unit is in [ms/day].

10 days’ ahead prediction between 2005 and 2008 for all 6 hybrid models to better understand
the prediction performance and its causes. Different features can be seen, and there are some
common patterns, such as high errors from the beginning of 2007, which might be caused by
the El Niño effect or certain geomagnetic jerk events, as pointed out by Shirai et al. (2005)
and Malkin (2013a). As NOAA’s National Centers for Environmental Information’s “State of
the Climate” reported, the El Niño warm event had a peak in December 2006 and started to
dissipate during January 2007. Thus, the equatorial Pacific sea-surface temperature (SST)
anomalies decreased during the first 2 months of 2007, eventually declining to near average
by the end of March 2007. Kalarus et al. (2010) suggested benefiting from the prediction
of the AAM, OAM, and HAM. Therefore, our better prediction performance may be due to
considering both mass and motion terms of EAMZ for modeling the dependence structure
between LOD and EAMZ . It is important to note that the Copula + SSA Archimedean 12
and 14 Copula provide significantly smaller errors than the other methods. On the other hand,
Joe Copula exhibits slightly larger errors than the two aforesaid models. This may have been
caused by Archimedean 12 and 14 Copula’s ability to capture the upper and lower heavy tail
dependence structure.
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Table 6.7: Comparison of Copula + SSA prediction and EOP PCC prediction errors (unit:
ms/day).

Prediction day 1 2 3 4 5 6 7 8 9 10
Archi 12 + SSA 0.047 0.060 0.063 0.063 0.059 0.064 0.066 0.061 0.072 0.083

Archi 14 + SSA 0.050 0.065 0.066 0.068 0.064 0.067 0.072 0.064 0.073 0.082
Clayton + SSA 0.051 0.067 0.079 0.085 0.079 0.078 0.084 0.078 0.086 0.093
Gumbel + SSA 0.052 0.065 0.073 0.076 0.070 0.076 0.085 0.080 0.082 0.094
Frank + SSA 0.047 0.062 0.070 0.086 0.083 0.081 0.084 0.085 0.092 0.097
Joe + SSA 0.052 0.079 0.081 0.088 0.097 0.102 0.116 0.111 0.120 0.121
Kalman filter 0.042 0.051 0.057 0.062 0.071 0.084 0.094 0.107 0.119 0.128
wavelet 0.096 0.131 0.164 0.197 0.233 0.258 0.271 0.322 0.313 0.398
LSE 0.061 0.088 0.107 0.117 0.128 0.138 0.151 0.163 0.171 0.173
LS+AR EOP PC 0.070 0.097 0.118 0.133 0.142 0.143 0.154 0.171 0.179 0.188
Adaptive transform 0.165 0.158 0.162 0.159 0.160 0.160 0.154 0.179 0.528 0.593
AR 0.154 0.182 0.183 0.193 0.207 0.216 0.224 0.239 0.253 0.261
LSC 0.176 0.222 0.245 0.266 0.276 0.275 0.264 0.255 0.254 0.255
NN 0.161 0.196 0.218 0.237 0.250 0.257 0.256 0.257 0.264 0.274
HE 0.093 0.157 0.200 0.235 0.257 0.281 0.289 0.279 0.273 0.266
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Figure 6.22: Absolute errors of the predicted LOD using Archimedean 12 + SSA, Archimedean
14 + SSA, Clayton Copula + SSA, Gumbel Copula +SSA, Frank Copula + SSA, Joe Copula +
SSA. The unit is [ms/day].

6.4 Summary and Conclusion

The improvement of the Earth rotation prediction is a relevant, timely problem, as confirmed
by the fact that the International Astronomical Union (IAU) Commission A2, the International
Association of Geodesy (IAG) and the IERS have at present two Joint Working Groups on
Prediction (JWG-P) and Theory of Earth rotation and validation (JWG-ThER). According to
the United Nations (UN) resolution in 2015, the primary objective of these JWGs is to assess
and ensure the level of consistency of Earth Orientation Parameter (EOP) predictions derived
from theories with the corresponding EOP determined from analyses of the observational
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data provided by the various geodetic techniques. Therefore, accurate EOP predictions are
essential to avoid any systematic drifts and/or biases between the international celestial and
terrestrial reference frames (ICRF and ITRF). The results illustrate that the proposed method
could efficiently and precisely predict the PM parameters. As clearly demonstrated, the
SSA + Copula algorithm shows better performance for PMx prediction in comparison to the
SSA prediction. The Copula-based analysis is entirely successful in its aim to increase the
accuracy of PM prediction by modeling the stochastic part of the PM and subtracting PM
by SSA reconstructed time series. I suspect the main error contributions come from the SSA
extrapolation part. So, further investigations about the SSA training time will be required to
clarify this issue. Also, the SSA + Copula prediction method shows periodic errors, and these
errors have a significant impact on the mean absolute error. Therefore, these occasional errors
should be further investigated to have a noticeable progression in the PM prediction accuracy.
LOD represents the variation in Earth’s rotation rate, which is most difficult to predict, because
of the occurrence of extreme events in the LOD signal. In this example, I introduce several
approaches based on Copulas, which were applied to bivariate frequency analysis. Using Copula
is promising since it allows us to take into account a wide range of correlations, frequently
observed in time series. The presented work here is aimed at the possibility of utilizing the
EAMZ data to predict LOD data due to the existing relationship between them. In order to
study this relationship, two data sets were compared: the observed LOD from IERS EOP C05
and EAMZ derived from GFZ. The comparison with the results of other methods indicates that
the Copula + SSA can efficiently and precisely predict the LOD parameter at ultra-short-term.
All of our methods introduced here provide comparable error with the existing methods used
for their evaluation in the time interval considered of up to ten days. Besides, it is clearly
demonstrated that the predicted AAM, HAM, OAM time series as additional input information
can improve the LOD prediction. Among the analyzed combinations, the Archimedean 12 +
SSA and Archimedean 14 + SSA show the most sophisticated performance with low errors.
As the Kalman filter prediction provides better results within the first three to four days, I
will investigate this topic further in future in order to find out how the EAM functions can
deliver even better LOD predictions.
The EOP PCC proved once more to be very useful. As long as the data are still available for
post-processing, new methods can adequately be compared in a consistent way to the methods
applied in the past.
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7
Interconnection Between Celestial Pole

Motion and Earth’s Magnetic field

7.1 Introduction

The understanding of celestial pole motion (CPM) excitation could bring us significantly closer
to meeting the accuracy goals pursued by the GGOS of the IAG, i.e., 1 mm accuracy and 0.1
mm/year stability on global scales in terms of the ITRF defining parameters (Plag et al., 2009).
Meteorological and geophysical phenomena cause the irregularities of the CPM. Therefore,
investigation of the CPM is vital to understand the nature of the Earth’s interior. The IAU
adopted IAU 2006 precession and IAU2000A nutation theory to describe the CPM. However,
the IAU 2006/2000A precession-nutation theory cannot explain the Earth’s rotation fully for
several reasons, e.g., inconsistency among products (e.g., TRF and CRF), systematic errors,
and unmodeled geophysical signals (Escapa et al., 2013, 2016; Belda et al., 2017b; Escapa
et al., 2017; Escapa and Capitaine, 2018; J. M Ferrándiz et al., 2020a).
Belda et al. (2017a) determined a new set of empirical corrections to the precession offsets and
rates and the amplitudes of a broad set of terms included in the IAU 2006/2000A precession-
nutation theory. After applying these corrections to the EOP, some signals were found in
the remaining residuals. The signals could be caused by different geophysical phenomena
such as strong ENSO, free inner core nutation (FICN) (Mathews et al., 2002; Koot et al.,
2010; Lambert et al., 2012; Malkin, 2013b), and Geomagnetic field (GMF) (Shirai et al., 2005;
Malkin, 2016). Some studies have been done to determine nutations considering the influence
of the magnetic field mathematically (Buffett, 1993; Greff-Lefftz and Legros, 1999; Greff-Lefftz
et al., 2000). The nutation amplitudes are computed in a displacement field approach that
incorporates the influence of a prescribed magnetic field inside the Earth’s core. The existence
of relative nutational motions between the liquid core and its surrounding solid parts induces
a shearing of the magnetic field. Then, an incremental magnetic field is created, which returns
and perturbs the nutations themselves. This problem has already been addressed within a
nutation model computed from an angular momentum budget approach.
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7. Interconnection Between Celestial Pole Motion and Earth’s Magnetic field

The dynamic equation for the infinitesimal elastic gravitational motion for a rotating, slightly
elliptical Earth is given as, in a steadily rotating reference frame constant speed Ω0 (Smith,
1974; Dahlen and Tromp, 1998):

ρD2
t s+2ρΩ0 ×Dts = −ρΩ0 ×(Ω0 ×s)+∇.T e −∇(γ∇.s)−ρ∇ϕ1 −ρs.∇∇ϕ+∇.[γ(∇s)T ] (7.1)

where rigidity γ is the equilibrium pressure, and ϕ1 is the incremental gravitational potential
induced by the mass redistribution due to deformation. The stress tensor (T e is the incremental
stress, with respect to the reference stress, T ref. = −γI, where I is the identity tensor that is
linked to the displacement field by two Lamé parameters (λ, µ) for an isotropic medium as

T e = λ(∇.s)I + µ[∇s + (∇s)T ], (7.2)

where rigidity µ = 0 un a liquid part of the Earth.
Huang et al. (2011) proposed a new strategy to estimate nutations, considering the magnetic
field influence directly in the motion equation and in the boundary condition. Their results
indicate that the Free core nutation (FCN) period decreases by 0.38 days, and the out of phase
(in-phase) amplitudes of the retrograde by 18.6 years, and the retrograde annual nutations
increase (decrease) by 20 and 39 µas, respectively.
Also, during the last decade, several investigations have been done to discuss a possible
interconnection of GMF changes with the polar motion (Le Mouël et al., 1981; Mandea et al.,
2000; Bellanger et al., 2002; Holme and De Viron, 2005; Gorshkov et al., 2012; Silva et al.,
2012). However, less attention has been paid to the impact of the GMF changes, such as the
geomagnetic jerks (GMJ), which are rapid changes in GMF secular variations, and other GMF
variations on the FCN variations. The GMJ occurs about every one to two years. The GMJ
events are registered at geomagnetic observatories (as well as satellite observations), and they
can be observed worldwide (global jerks) or within specific geographic regions (regional jerks).
Shirai et al. (2005) studied the association between the GMJ and FCN, which revealed a close
coincidence of two FCN phase jumps with two GMJs that occurred in 1992 and 1999. Vondrák
and Ron (2015) and Malkin (2016) suggested geomagnetic jerk as a potential parameter to be
investigated. Malkin (2013b) showed that the extreme variations in the amplitude and phase
of FCN coincide with GMJ epochs. This means that the FCN can be excited by the same
processes that cause the GMJ, which could be close to reality, as the flows in the core mostly
generate the GMJ, and the same flows lead to variations in the core moments of inertia and
thus can cause the FCN variations (Dehant and Mathews, 2003).
However, some doubts still need to be resolved before this correlation is confirmed. Most
previous studies have indicated that the FCN is excited by Earth’s geophysical surface fluids
(e.g., the atmosphere and oceans) because of the exchanges between their angular momentum
and the solid Earth (Sasao and Wahr, 1981; Vondrák and Ron, 2015). Core–mantle couplings,
which can directly affect the misalignment between the rotational axes of the mantle and outer
core, are also an important excitation source (Cui et al., 2018). Various effects are mixed in the
signal variation of the FCN; among these, the effects of surface fluids such as the atmosphere
and ocean have significant time-varying characteristics. Therefore, it is not easy to obtain
reliable results by directly connecting the amplitude and phase of FCN to the GMJ epochs
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without removing other factors (Malkin, 2013b).
In this chapter, the relationship between FCN and GMJ, magnetic dipole moment and GMF
models are investigated to find whether there is a dependency structure between the CPM
and GMF.

7.2 Data Set

A brief analysis of the data set used in this chapter is illustrated as follows:

7.2.1 FCN Data

Belda et al. (2016) have developed a new empirical FCN model with a higher temporal
resolution by fitting the amplitude parameters directly to the VLBI solution calculated.
FCN models can be characterized by a weighted least-squares fit of these equations (Lambert,
2007):

FCNX = ACcos(σF CN t) − ASsin(σF CN t) + X0 (7.3)

FCNY = AScos(σF CN t) − ACsin(σF CN t) + Y0

where σF CN = 2π
P is the frequency of FCN in the Celestial Reference Frame (CRF), A is the

amplitude, t is the time relative to J2000.0, P is the period, and X0 and Y0 are constant offsets.
These offsets accumulate the low-frequency part of the signal. Therefore, the contribution of
the FCN to the CIP offsets (CPO) can be computed by using Eq. 7.3 without taking into
account the shift terms X0 and Y0. Figure 7.1 illustrated CPO observation using VLBI and
the B16 FCN, which was empirically estimated between 1990 and 2015. The B16 model is
empirical and fitted to VLBI data using a sliding window length of 400 days, a displacement
step size of one day, and a fixed period of 431.18 sidereal days.
In this study, we are interested more in the dynamic behavior signal. Then, the FCN data
and its products are transformed from data space into the normalized space between 0 and 1.
Figure 7.2 shows the normalized FCN (left panel), the first derivative of FCN (right panel),
and the second derivative of FCN (lower panel). The spectral analysis of the FCN’s products
is done using the fast Fourier transform (FFT). The results show that the dominated signals of
FCNX are 12.2 (410 days, primary signal), 18.9, and 9.9 months. Also, the dominated signals
of other products are shown in Figure 7.3, in which the magnitude of the main signals is
approximately less than %20. However, both FCNX0 and amplitude of FCN held in common
signals for 29.7 and 52 months from 1997 to 2017.

7.2.2 GMF Data

7.2.2.1 GMJ

GMJs occurred mainly in 1991, 1999, 2003/2004, 2007/2008, 2011, and 2014 (Olsen and
Mandea, 2007; Chulliat et al., 2010; Mandea et al., 2010; Torta et al., 2015). Besides these
confirmed jerks, Sabaka et al. (2004) derived a comprehensive model (CM4) of the geomagnetic
field based on hourly magnetic observatories and satellite data and found another jerk of
questionable global extent in 1997. Malkin (2013b) also considered a possible jerk in 1994
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Figure 7.1: CPO and FCN in X and Y direction.

based on some observations at geomagnetic stations. Because satellite data have made it
possible to calculate the global secular acceleration (SA) of the geomagnetic field, some large
SA pulses at the core surface were found in 2006, 2009, and 2012.5, which may be related to
GMJs observed at Earth’s surface (Chulliat et al., 2015).
GMJ usually has a time scale of several months to a year. In comparison, the inflection points
of the FCN period changes (i.e., 1991/1992, 1997, 1999, 2003/2004, 2006/2007, 2009, 2011,
2012.5, and 2014) all corresponded to times when GMJ or SA pulses at the core surface
occurred. Only the epoch of the questionable GMJ in 1994 did not occur at an inflection point
in the variation of the FCN period.

7.2.2.2 Magnetic Dipole Moment

The Earth’s main dipolar magnetic (DM) field results from the convective movement of the
electrically conducting fluid iron-sulfur mix that forms the liquid outer core at depths between
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Figure 7.2: Normalized FCN products and their derivatives.
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Figure 7.3: FFT analysis of FCN products.

3480 and 5150 km. This field is tilted by about 10.5◦ from the Earth’s rotational axis and
varies smoothly in space and time due to changing current interactions in the core. Figure 7.4
shows the DM and normalized DM rate and the second derivative of DM. As can be seen in
Figure 7.4, the DM rate is increasing after mid-1999 to 2003. Also, the d2DM/dt2 is changing
between 2002 and 2005: very sharp.

7.2.2.3 Geomagnetic Field Model

CHAOS-6 core field provides information on time variations of the core generated as part of
the Earth’s magnetic field (Finlay et al., 2016). The CHAOS model series aims to estimate
the internal GMF at the Earth’s surface with high resolution in space and time. The CHAOS
model derived primarily from magnetic satellite data, although ground space activity indices
and monthly observatory means are also used. The CHAOS model series are considering
vector measurements at mid- to low-latitudes and scalar data (Olsen et al., 2006, 2009, 2010,
2014). The CHAOS’s validity is restricted to post-1999 when the Orset satellite was launched.
In this study, the CHAOS-6 core field model is used to investigate the dependency structure
between the GMF model and the FCN time series. The CHAOS-6 provides information on
time variations of the core generated part of the Earth’s magnetic field. It is one of the latest
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Figure 7.4: DM and normalized dDM/dt, and d2DM/dt2.

Figure 7.5: Geomagnetic’s SHC up to degree and order 20 (right). The C1,0 time series and its
rate (left).

generations of the CHAOS series of global geomagnetic field models developed by (Olsen et al.,
2006, 2009, 2010, 2014).
The CHAOS-6 model parameterization follows that of CHAOS-5 and CHAOS-4. See Olsen
et al. (2014) for a more detailed account of the CHAOS field modeling scheme, including
the external model. The time-dependent internal field Bint(t) = −∇Vint is designed as the
gradient of the scalar potential:

Vint = a
20∑︂

n=1

n∑︂
m=0

[gm
n (t)cosmϕ + hm

n (t)sinmϕ](a

r
)n+1P m

n (cosθ) (7.4)

where a = 6371.2km is a reference radius, (r, θ, ϕ) are geographical coordinates, and P m
n (cosθ)

are the Schmidt semi-normalized associated Legendre functions of degree n and order m. gm
n (t)
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and hm
n (t) are time-dependent Gauss coefficients (Geomagnetic’s SHC up to degree and order

20 are shown in Figure 7.5).
The description in terms of spherical harmonics with constant Gauss coefficients is applicable
for static snapshot fields. However, since the magnetic field changes in space and time, all
field models use time-dependent Gauss coefficients. The commonly adopted approach is to
model the temporal evolution with spline functions.

7.3 FCN Prediction Error and GMJ

As mentioned in the introduction, some investigations have been done to indicate the association
between GMJ and changes in FCN’s amplitude and phase. However, the relationship between
the FCN prediction error and GMJ was not investigated. Here, the connection between the
FCN prediction and GMJ is studied.
As the GMJ and significant SA pulses at the core surface could affect the FCN’s amplitude
or phase at those epochs or with some months’ delays, some errors are expected in the FCN
prediction results.
The FCN amplitude, phase, and offsets of the FCN (B16 model) are computed and transformed

into normalized space. Also, the first derivative of these time series is determined and then
normalized. The uncertainty of GMJ epochs is approximately one year; therefore, all the
epochs are shown by a box with one-year coverage. Hence, the epochs of the FCN variations
and the GMJ epochs coincide when the difference between the two epochs is not greater than
two years with a possible general lag. As can be seen in Figure 7.6 and 7.7, the changes in
the FCN amplitude and phase are approximately related to the GMF sudden disturbance.
Observed extremes in the FCN amplitude and phase variation occurred at the epochs close to
the GMJ epochs. Most of the minima of the FCN amplitude followed corresponding GMJs
with a delay of 1–3 years, which is consistent with the conclusion of Gibert et al. (1998) and
Bellanger et al. (2002), who found that the rapid changes in the Chandler Wobble phase follow
the GMJ with a delay of 1–3 years. All the maxima of the first derivative of the FCN amplitude
also occurred near the GMJ epochs. The correlation between the FCN variations and GMJ
was verified for all five GMJs that occurred from 1991 to 2016, including the supposed jerks
in 1994 and 1997, which are not yet widely accepted in literature. The substantial FCN
amplitude and phase disturbance was around 1999 and 2000 at the epoch close to GMJ, and
it was detected for the first time by Shirai et al. (2005).
As can be seen in Figure 7.8, the FCN prediction errors occur coincidentally with observed

GMJ and sharp SA pulses epochs, e.g., in 1991, 1999, 2006, 2009, 2011, and 2016. Also, some
errors can be seen after the GMJ epochs, which could prove the assumption as mentioned above.
However, the association between the FCN prediction errors and GMJ was not approved in
1994 and 1997, which are not officially recognized in the literature and GMJ due to different
features of disturbances, but a significant SA pulse at the core surface occurred at those epochs.
In addition to the prediction error, the computed amplitude, phase, and prediction offset could
be investigated.
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Figure 7.6: Time series of the normalized FCN amplitude and phase for the B16 model. The
dashed box indicates GMJ and SA pulses at the core surface. The red color shows the confirmed
GMJ. The yellow shows questionable SA of the GMJ. The green indicates a significant global SA
of the GMF.

7.4 FCN and GMF Models

7.4.1 Geomagnetic Spherical Harmonic Coefficients (SHC) and FCN

The spherical harmonic coefficients are widely used to describe the magnetic field as a derivative
of potential in a spherical coordinate system. This is the representation of the magnetic field
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Figure 7.7: Time series of the normalized FCN offsets for the B16 model. The dashed box
indicates GMJ and SA pulses at the core surface. The red color shows the confirmed GMJ. The
yellow shows questionable SA of the GMJ. The green indicates a significant global SA of the GMF.

potential as a series of multi-poles, n = 1 represents the dipole contribution, and n = 2
represents the quadrupole contribution. In this study, the SHC up to degree and order 20
have been taken from the CHAOS 6 model. The CHAOS model is based on satellite and
observatory data, paying special attention to variations on sub-decadal time scales.
Figure 7.5 shows the schematic of SCH degree and order up to 20 in the left panel, and the
time series of SHC C40 in the right top panel, and its rate is shown in the right bottom panel.
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Figure 7.8: FCN prediction errors and the GMJ epochs. The black curve is the FCN amplitude.

The relation between geomagnetic SHC rate and FCN data analysis is shown in the following
steps:

• Perform WCA between each coefficient and FCN to extract all co-movements.

• Perform the principal component analysis (PCA) over the results of WCA to detect
common patterns of feathers.

As can be seen in Figure 7.9, around 45% of the SHC show the local coherence, which is almost
near to the GMJ epochs. The contribution of the first principal component (PC) is shown in

Figure 7.9: PCA helps to extract all common features.

Figure 7.9. The first PC indicates the primary behavior of detected feathers between SHC and
FCN (here FCNx is displayed as an example). Several episodic terms can be seen with a period
of 10 to 30 months over the time of 1997–2010. The second PC shows extended-term coherence
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with a period of 30 to 35 months and some episodic co-movement terms (see Figure 7.10). The
lower degrees agree more with the first PC, and higher degrees have more contribution to the
second PC. Several studies have been done to show how the lower degree of SHC relates more

Figure 7.10: The Contribution of SHC to second PC.

to the core activity. Also, the presented results confirm the mentioned fact. Therefore, the
lower SHC should be investigated more due to their direct relationship with the Earth’s core
activity (Lühr et al., 2003).
The time series of FCNAmp, FCNP hase rate, and the SHC rate up to degree 2 are shown in
Figure 7.11 as an example to show the dynamic behavior of the studied time series. The red
curve shows the amplitude of FCN, and the FCN phase is in blue. The rate of FCNAmp shows
sharp changes in the years 1999 and 2003, which coincide with the GMJ epochs. As can be
seen in Figure 7.11, the shown SHC indicate different dynamic behavior. The S11 and C22

time series are increasing up to 2000, and then they decrease. The C21 and S22 decrease up to
2002 and dramatically increase after this year. Also, C10 indicates a sharp variation between
2002 and 2004. Accordingly, all SHC should be investigated in order to find the most relevant
coefficient to FCN variation.
First, the correlation coefficient between the SHC rate and FCN products is determined to

evaluate the linear dependency between them. Figure 7.12 displays the Pearson coefficient,
which is defined as between -1 and 1. The positive linear correlation is shown in red, and the
negative is in blue. The linear correlation is significant in the amplitude of the sin and cos
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Figure 7.11: FCNAmp, FCNP hase, and the SHC up to degree 2.

part of FCN. Nevertheless, the Pearson coefficient is only able to show a linear correlation.
Thus, coherence between the FCN products and SHC is examined using wavelet transformation

analysis. The result of PCA, which shows the contribution of SHC on the primary principal
component around %70 and less than %10 of SHC, contributes to the PC2 and PC3. The
results shown in Figure 7.13 illustrate a meaningful contribution of the SHC to the principal
component by approximately 70%. Also, the sum of the first seven components is presented
on the right panel. The red color box shows the corresponding GMJ epochs.
The Figure 7.14 shows the coherence analysis between the FCNAmp rate and SHC rate and

the contribution of each coefficient in the specific pattern. Three statistically significant long
term coherency with a period of approximately 3–5, 18–24, and 36 months are detected over
the whole interval of time. The contribution of each SHC for the first three PC is shown on
the right side.
Figure 7.15 shows the coherence analysis between the FCNPhase rate and SHC rate. A

statistically significant long-term coherence with a period of approximately 30 months and
some local patterns can be seen with a period of 2 to 4 months. The coherence analysis
between FCNX0 rate and SHC rate is shown in Figure 7.16. Some local patterns are detected
with a period of 2 to 4 months. Also, two episodic patterns can be observed in 1999 with a
period of 7 and 30 months, which nearly related to the second PC, and it is highly related
to the degree 1 and 2. The coherence analysis between FCNY0 rate and SHC rate is shown
in Figure 7.17. A significant lengthy-term agreement with a period of 30 months is detected
during 1997–2005, which is related more to the third PC with a degree up to 4. Several local
co-movements are detected with a period of 2 to 6 months.

7.4.2 FCN and Magnetic Dipole Moment

The association between the rate of change of FCN’s products and DM rate is investigated
performing wavelet coherence analysis. The dipole moment time series from 1997 to 2010 with
monthly temporal resolution is prepared for this research. The daily FCN data are converted
to monthly series by block averaging to enable the comparison with the dipole moment. Then,
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Figure 7.12: Correlation between FCN and SHC.

Figure 7.13: The relation between the FCNX and SHC of CHAOS6. The degree up to 10
represents the Earth’s core activities.
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Figure 7.14: Contribution expected by each PC of PCA between SHC and FCN product.

the dynamic relationship between FCN product rate and DM rate is identified using WCA.
The cone of influence separates the true (full colors) and less reliable (pale colors) regions.
The phase difference, such as a lag or lead relationship, is shown by oriented arrows. The
arrows show phase relationships (pointing to the right is a positive correlation; a negative
correlation by one to the left; leadership of the DM rate is shown by a downward pointing
arrow; the upward-pointing arrow means FCN rate is leading DM rate).
The WCA detected statistically significant coherence at a higher period year extending from
1997 and 2010. In particular, the approximate period of 30 months can be identified in all
cases Figure 7.18. Moreover, some little statistically significant local coherence is found where
the epochs of GMJ are reported. Figure 7.18 (top left panel) indicates the co-movements
between the rate of changing FCNY and DM rate, and it shows a coherence at 16 months.
Also, some episodic terms can be seen around 1999, 2003, and 2007 with a period of 4 months
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Figure 7.15: Contribution expected by each PC of PCA between SHC and FCNP hase.

where GMJ is observed. The connection between the offset of FCNY rate and the DM rate is
illustrated by a strong correlation with the same phase at 30 months (approximately 1024 days).
Additionally, some local co-movement can be discovered in 1999, 2003, and 2007. However,
the phase local wavelet spectra of the FCNY offset rate and DM rate in 2003 is quite different
from other FCN products, which shows almost anti-phase. The coherence analysis between
DM rate and FCNAs illustrates a strong coherency between theses variables with a period of
32–64 months from 1997 to 2010. The results of FCN amplitude, phase rate, and DM rate
indicate statistically significant local co-movement in 2003 with different periods, 2–6 and 8–16
months, in addition to the long-term coherence with a period of 32 months over 1997–2010.
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Figure 7.16: Contribution expected by each PC of PCA between SHC and FCNX0 .

7.4.3 Near-Earth Magnetic Field and FCN

In this section, the near-Earth magnetic field is analyzed. The CHAOS 6 model gives a
near-Earth magnetic field in the Cartesian coordinate. First, the near-Earth magnetic field
data are transformed from geocentric coordinates (X, Y, Z) to local coordinates (east, north,
up). As can be seen in Figure 7.19, the near-Earth geomagnetic field is divided into globally
gridded conservatively interpolated onto a regular latitude-longitude grid with 5◦. Thus, the
coherence between the time series of Earth’s magnetic field of each grid and FCN is examined
using WCA.
Each grid has a time series of GMF in its local coordinate from 1997 to 2017. First, the primary
behavior of GMF and its first and second derivatives are estimated using PCA (see Figure 7.20).
As can be seen in Figure 7.20, the primary behavior of total GMF, declination, horizontal,
northward, eastward, and upward of GMF is shown. The GMF is in black, the first derivative is
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Figure 7.17: Contribution expected by each PC of PCA between SHC and FCNY0 .

displayed in a dashed back curve, and the second derivative is green. All shown time series are
normalized. The main principal components of GMF values tend to decrease over time, except
GMFHorizontal values. It clearly highlights the sudden drop in all GMF ’s rate values around
2004. Figure 7.21 illustrates the second derivative of GMF. There is no apparent trend in the
second derivative of GMF over this period. As can be seen in Figure 7.21, the second derivative
of GMF shows some strong cyclic behavior. The d2GMFEast/dt2 show a different pattern
compare to GMFF r or GMFtotal. When one is increasing, the other one decreases over this
time. The dominated signals of d2GMF/dt2 are shown in Table 7.1. The first dominated signal
of d2GMFF r/dt2, d2GMFHorizontal/dt2, d2GMFNorth/dt2, and d2GMFUp/dt2 is 69.3 months,
and it is 104 months for d2GMFDeclination/dt2 and d2GMFEast/dt2. Also, the FFT results
indicate 52, 34, 20, and 16 months signals as dominated signal, which they have in common with
the FCN product’s signals. Figure 7.22 demonstrates the coherence between the d2GMFF r
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Figure 7.18: The relation between the rate of FCN product and DM rate.

Figure 7.19: Scheme of grid-based analysis. The near-Earth geomagnetic field is divided into
globally gridded conservatively interpolated onto a regular latitude-longitude grid with 5◦.

and FCN rate from 1997 to 2017. The top left panel shows some local correspondence between
FCNX and d2GMFF r with a period of 2–6 months. Furthermore, some significant local

93



7. Interconnection Between Celestial Pole Motion and Earth’s Magnetic field

Figure 7.20: Main behavior of GMF and its derivative [no unit].

Figure 7.21: The second derivative of GMF (Normalized).
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Table 7.1: FFT analysis of the main behaviour of GMF.

d2GMFF r d2GMFDeclination d2GMFHorizontal d2GMFNorth d2GMFEast d2GMFUp

1 69.3 104 69.3 69.3 104 69.3
2 26 52 41.6 34.7 52 34.7
3 18.9 13 16 16 16 20.8
4 13.9 20.8 9.9 11.6 23.1 13
5 9.9 16 11.6 9.9 13.9 8.3

co-movements are detected from 1998 to 2003 and 2006–7 in several periods. Additionally,
a long term coherence is detected within a period of 20–34 months between 1998 and 2017.
Also, approximately the same pattern with a phase shift can be observed in the top right
panel between FCNY rate and d2GMFF r. The rate of cosine and sine amplitudes of FCN are
investigated, and the results exhibit a significant association between the FCNAs rate and
d2GMFF r within the period of 32–64 months. The down, left figure indicates the coherence
between the FCNAmp rate and d2GMFF r. Some episodic terms match with the GMJ epochs,
which the FCNAmp is leading during 1997–2003, and, after that, they are anti-phase with a
period of 30 months. Also, the corresponded plot for the FCNP hase rate and d2GMFF r shows
a statistically significant long-term coherency with a period of 20–32 months in which they are
anti-phase until 2009, and, then, the FCNphase is leading the GMFF r.
Figure 7.23 presents the coherence between the d2GMFDeclination and the FCN rate from

1997 to 2017. The FCNX rate shows a clear relationship with d2GMFDec/dt2 in a period
of 1–4 months. Also, some local co-movements are detected around 2000 and 2011. The
FCNAc rate and d2GMFDeclination show a strong coherence over 1997–2017, where the FCNAc

rate is leading d2GMFDeclination at a period of 30 months. In addition, there are some local
co-movements between these two variables in 1999, 2003/4, 2007, and 2011. The association
between the FCNY0 rate and d2GMFDeclination appears significant in the 16–30 periodic
band during these times. However, they are anti-phase until 2009, and, then, the FCNY0

rate is leading the d2GMFDeclination. The FCNAmp rate shows a clear relationship with
d2GMFDec/dt2 in a period of 34–64 months. Also, the FCNphase rate shows a strong co-
movement with d2GMFDec/dt2 in a period of 16–32 months, where d2GMFDec/dt2 is leading
the FCNphase until 2007, and, then, FCNphase is leading the d2GMFDec/dt2.
Figure 7.24 displays the coherence between the d2GMFNorth and FCNX rate. There is some

periodic local coherence at the 4-month period that coincides with GMJ epochs. In addition,
there are statistically significant correlations with the 32- and 64-month periods between
d2GMFNorth and FCNAs rate. Also, a long term co-movement is detected at a period of 64
months between d2GMFNorth and FCNX0 rate. The coherence analysis between d2GMFNorth

and FCNAmp rate illustrates at periods of 16–32 months. However, stronger coherence is
more significant after 2007. Additionally, FCNP hase and d2GMFNorth indicates very clear
co-movement, and d2GMFNorth is leading FCNP hase.
The coherence between the d2GMFEast and FCNX rate is displayed in Figure 7.25. There

is a strong coherence with the period of 1–4 months. Moreover, some local co-movements
can be seen around 2000, 2007, and 2010–2015 with a period of 8–16 months. Also, there is
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Figure 7.22: Wavelet coherence analysis between FCN products and d2GMFF r/dt2.

a statistically long-term significant association in period 20–34 months that the d2GMFEast

is leading the FCNX rate. The coherence analysis results between d2GMFEast and FCNAc

rate show the local co-movements in the same epochs of GMJ with the period of 6–12 months.
Besides a significant correlation with 16–32 months from 1997–2017, there is a clear coherence
between d2GMFEast and FCNY0 with the period of 16–32 where they are anti-phase until
2007, and then the FCNY0 rate is leading the d2GMFEast. The rate of FCNP hase shows a
strong periodic relationship with the second derivative of GMFEast in 5-9 months. There
is a statistically notable long-term relationship in lower frequency between d2GMFEast and
FCNAmp rate during the period. Figure 7.26 presents the coherence between the d2GMFUp

and FCNX rate (top left), which show a periodic local relationship with d2GMFUp/dt2 in a
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Figure 7.23: Wavelet coherence analysis between FCN products and d2GMFDec/dt2.

period of 1–4 months. Also, some local co-movements are detected around 2001/3, 2007, and
2011 in 8–16 months. The FCNAs rate and d2GMFUp show a strong correspondence from 1997
to 2017, which FCNAs rate is leading d2GMFUp for a period of 30–64 months. In addition,
there are some local co-movement among these two variables in 1999—2003, 2007, and 2011.
The association between the FCNX0 rate and d2GMFUp indicates a significant agreement in
the 5—14 months periodic band in 1998–2011 where FCNX0 is leading d2GMFUp. In addition,
a long, weak correlation is shown with a period of 32 months. The lower plots present the
coherence between the rate of FCNAmp and FCNP hase in left and right, respectively. There is
a significant long-term dynamic coherence between FCNAmp and d2GMFUp, with its period
decreasing from 23 months to 20 months during the time interval. Also, the local relationship
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Figure 7.24: Wavelet coherence analysis between FCN products and d2GMFNorth/dt2.

with a different period of 8 to 16 months could be found around 2003, 2007, and 2015. It
is an obvious long-term coherence with a period of 16–32 months between FCNP hase and
d2GMFUp.

Figure 7.27 illustrates the coherence between the d2GMFHorizontal and the FCN rate.
There are some episodic terms in a period of 1–4 months and a weak coherence with a period
of 32 months in the FCNX rate. There is a clear coherence between d2GMFHorizontal and the
FCNAs rate throughout the studied time with 32–64 months. Besides, some local co-movement
can be seen which co-occur with GMJ epochs. There is a clear notable extended-term coherence
between d2GMFHorizontal and the FCNAs rate with a period of 32 months, and it becomes
more effective after 2007. It is also similar for the result of d2GMFHorizontal and the FCNAmp
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Figure 7.25: Wavelet coherence analysis between FCN products and d2GMFEast/dt2.

rate with a period of 16–32 months. Moreover, some episodic terms are distinguished, which
co-occurred with GMJ.

7.5 Discussion

The CPO describes the movements of Earth’s rotation axis concerning the theoretically
predicted motions in the celestial reference frames. The variations of the CPO are caused by
many meteorological and geophysical phenomena, which include the geomagnetic field (GMF)
mutations. During the last decade, several studies have been done to discuss a potential
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Figure 7.26: Wavelet coherence analysis between FCN products and d2GMFUp/dt2.

interconnection of GMF changes with the polar motion. Nevertheless, less attention has been
paid to the impact of the GMF changes, such as the geomagnetic jerks, which are rapid changes
in GMF secular variations, and other GMF variations on the CPO variations. In this study,
I use the CPO time-series obtained from VLBI observations and the latest GMF data to
explore the association between CPO and the GMF. The Free Core Nutation (FCN) is a free
mode of the Earth’s rotation caused by the different material characteristics of the Earth’s
core and mantle. This causes the rotational axes of those layers to slightly diverge from each
other, resulting in a wobble of the Earth’s rotational axis comparable to nutations. The FCN
period mainly depends on the inertia coupling and the dissipative coupling (such as viscous,
electromagnetic, and topographic couplings) at the core-mantle boundary, according to the
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Figure 7.27: Wavelet coherence analysis between FCN products and d2GMFHoriz/dt2.

theory of Earth rotation. Whatever the GMJ mechanism, it is most likely to affect the FCN
by changing the core-mantle coupling. Also, if the GMJ mechanism is related to torsional
oscillation or slow magneto-Coriolis waves, its correlation with the FCN is highly likely to
originate from electromagnetic coupling, which means they have a direct relation. In this
chapter, the time series of the FCN amplitude and phase and their rate are investigated to
confirm the connection between the FCN variation and GMJ. The substantial FCN amplitude
and phase disturbance occurred at the epochs close to the revealed GMJ events (see Figure 7.6
and 7.7). Also, as the FCN prediction method (B16) is based on past data, some errors might
be visible around the GMJ epochs. Figure 7.8 argues for the direct connection between the
timing of GMJ and the features of FCN prediction errors. The results show that the jerk-like
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features in the FCN prediction errors can be observed with global GMJ events, not local GMJ
events. The correlation analysis between the SHC rate and FCN rate provides meaningful
information and shows a linear correlation, especially with the amplitude of the sin and cosine
part of the FCN rate (see Figure 7.12). The amplitude and phase of FCN rate and SHC show
a clear co-movement (see Figure 7.14, 7.15). Figure 7.18 confirms a clear correlation between
the DM rate and the FCN rate. Figure 7.22 to 7.27 show the coherence analysis between
the FCN rate and the second derivative of GMF, which, as indicated in our investigation,
confirms the results of previous research. In this study, there was no physical mechanism for
how GMF can influence CPO. Nevertheless, our preliminary results revealed some interesting
common features in the FCN and GMF variation, which show the potential to improve the
understanding of the GMF’s contribution to the Earth’s rotation.
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Real-time EOP is highly demanding for various geophysics and meteorology approaches,
including precise tracking and navigation of satellites and spacecraft, weather modeling, and
disaster prevention. Among the space geodetic sensors, DORIS, laser ranging (LLR and SLR),
GNSS, and VLBI are the main active mission concepts that can observe and monitor the
EOP. However, real-time estimation of EOP is not possible due to several limitations and the
complexity of the measurement model and data processing.
Several attempts have been made to predict the EOP; however, the accuracy of EOP prediction
is still unsatisfactory even within a few days. Therefore, advanced methods for modeling
and predicting EOP should be further investigated. Also, knowledge of the interconnection
between different processes that contribute to the Earth’s rotation excitation is required to
modify the current methods.
The main objectives of this study can be divided into three parts:

• Investigate consistency between the rotation theory of the Earth and space geodetic
sensor observations.

– Can the current rotation theories of the Earth adequately describe the motion of
the Earth in space?

– How could space geodetic technique observations improve the current rotation
theories of the Earth?

• Introduce a new algorithm for EOP prediction and capturing the dependence structures
between EOP and their excitation functions.

– How could EOP prediction bring us closer to the GGOS’s goals?

– How could the Copula + SSA method improve the accuracy of EOP prediction?

– How could the EOP prediction approach benefit from the understanding of the
interconnections between EOP data and excitation functions, such as EAM?

• Investigate the interconnection between the EOP and effective processes that contribute
to the Earth’s rotational variation.
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– How could it be possible to describe the relationship between the GMF and CPM?

– How could CPM prediction take advantage of understanding the interrelationship
between the CPM and GMF?

The consistency between the current Earth rotation and the rotation axis from the space
geodesy technique observation is investigated in Chapter 5. The Earth rotation theories are
mostly defined based on the PAI, which considers geophysical processes that can help us
better understand Earth’s rotation. The origin of PAI is Earth’s COM observed by using
space geodetic approaches. The COM is determined by the first-degree Stokes coefficients
of the geopotential that can be derived from space gravity missions (GRACE and GRACE
Follow-on) and the SLR solution with a monthly and weekly temporal resolution, respectively.
In Chapter 5, the evolution of the Earth’s inertia axes is determined, and the investigation is
conducted by taking advantage of previous analytical derivations to simplify the computations
and estimations of the solutions by Ferrandiz and Barkin, 2006. The motion of the Earth’s
PAI using data set give time-varying, second-degree Stokes coefficients that are derived from
SLR and the GRACE mission. Overall, the results from the two-time series illustrate that
the Earth’s PAI does not move around some mean position fixed to a given TRF in the
studied period. However, Earth’s PAI is exhibiting hitherto-unknown, non-negligible drifts
with magnitudes that exceed the GGOS goals of delivering a TRF at an accuracy level of 1
mm and stability of 0.01 mm/yr. The results shown in Chapter 5 are limited to quantifying
observational facts. The physical causes of the drift of the Earth’s principal axes are still
unknown, raising many questions for researchers, and the most critical questions can be
summarized as:

• whether these variations of the Earth’s inertia tensor might affect other Earth processes?

• Which are the causes of the observed variation of the inertia tensor?

• Can the geophysical budget be closed to some extent?

• Which are the effects on the EOP variations and the theoretical formulations?

• Can we extract more information from the time series, like a change of trends?

Two joint working groups on prediction (JWG-P) and Theory of Earth rotation and
validation (JWG-ThER) of IAU commission A2, IAG, and IERS confirmed the fact of
importance of the Earth rotation prediction. According to the United Nations (UN) resolution
in 2015, the primary intention of these JWGs is to evaluate and ensure the level of consistency of
EOP predictions derived from theories with the corresponding EOP determined from analyses
of space geodetic sensor observations. Therefore, accurate EOP predictions are required to
prevent any systematic drifts and biases between the ICRF and ITRF. Among the EOP
parameters, ERPs (polar motion, dUT1, and its first derivative) are the most difficult to
predict due to the occurrence of many geophysical processes in ERP, e.g., tides, non-tidal
atmospheric and oceanic processes. Therefore, I focus mainly on the high accuracy of ERP
predictions in Chapter 6.
Several methodologies have been adopted to predict EOP, but the EOP PCC evaluates the
participating method, and the results indicate that there is no particular forecasting method
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superior to the other techniques. Therefore, new prediction methods should be developed to
provide more accurate EOP predictions. The main focus of Chapter 6 is to introduce a new
algorithm that can capture all deterministic and stochastic information within the EOP time
series. Chapter 6 pertains to the introduction of the new method for the first time in geodesy.
Our novel technique, Copula + SSA, is a hybrid method. It can be categorized as a machine
learning approach that is mainly designed for EOP prediction, but which can also be used for
predicting other geophysical variables. The method consists of two parts, deterministic and
stochastic, which can capture all information within the EOP time series and the dependence
structure between the EOP and other geophysical parameters. Our hybrid approach can be
employed for two cases: the first is the algorithm that uses the information within a time
series; the second is the algorithm aimed at utilizing some variables to forecast the EOP, due
to the existing relationship between them.
The results illustrate that our hybrid method could efficiently and precisely predict the EOP.
In this thesis, I introduce several approaches based on different Archimedean Copulas, which
were applied to the bivariate frequency analysis. The use of Copulas is promising since it
allows us to take into account a wide range of correlations, which is frequently observed in
time series.

• Concerning the PM prediction, it is demonstrated that the Copula + SSA algorithm
shows better performance for PMx prediction, compared with the SSA prediction. The
Copula-based analysis is entirely successful in its intention to increase PM prediction
accuracy by modeling the stochastic part of the PM and subtracting PM by the SSA-
reconstructed time series. I suspect the main error contributions derive from the SSA
extrapolation part. Consequently, further investigations about the SSA training time
will be required to explain this issue. These infrequent errors should be investigated to
have a remarkable progression in the PM prediction.

• Concerning the LOD prediction, the employment of the EAM data is investigated
to predict LOD data due to the existing relationship between them. Compared with
the results of other methods, the copula + SSA can efficiently and precisely predict the
LOD parameter at ultra-short-term. All of our methods presented in this study provide
comparable error with the existing techniques used for their evaluation in the time
interval considered of up to 10 days. Moreover, it is demonstrated that the predicted
EAM time series as additional information can improve the LOD prediction. As long as
the data are still available for post-processing, new methods can adequately be compared
in a consistent way to the methods applied in the past.

The third objective of this study aims to study the physical relationship between the
EOP and other geophysical parameters, e.g., the correlation between the irregularities of the
celestial pole motion (CPM) and GMF. Several investigations have been done to examine the
potential interconnection of GMF variations with the polar motion. However, less attention
has been paid to the impact of the GMF changes, such as the GMJ, which are rapid changes in
GMF secular variations and other GMF variations on the CPM variations. In this study, the
association between FCN and GMJ, magnetic dipole moment, and GMF models is investigated
to explore the dependency structure between the CPM and GMF.
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• FCN and GMJ: The study of FCN’s amplitude and phase and the rate of changes
verify the association between the FCN variation and GMJ as the substantial disturbance
within the FCN time series that occurred at the epochs close to the revealed GMJ
events. Moreover, the GMJ events, which are on a global scale, propagate themselves in
FCN prediction errors. However, the local GMJ epochs cannot be detected over FCN
prediction errors. Accordingly, our investigations confirm the results of previous research,
which showed agreement between the FCN and GMJ.

• FCN and geomagnetic dipole moment: The results indicate a significant association
between the DM and FCN, which can be a potential external parameter to improve the
FCN prediction model by considering DM information. WCA detects the coherence
between the offset of FCN rate and DM rate at 30 months (approximately 1024 days),
as well as statistically significant local coherency around 1999, 2003, and 2007 within a
period of four months when GMJ happened.

• FCN and GMF models: The lower degree of SHC describes the core activity, and
our investigation proves the mentioned fact. Therefore, the lower SHCs are investigated
because of their direct relationship with the Earth’s core activity. The coherence analysis
between the FCNAmp rate and SHC rate indicates statistically significant long term
coherence with a period of 3–5, 18–24, and 36 months over the whole interval of time.
The coherence analysis between FCNY0 rate and SHC rate shows significant long-term
association with a period of 30 months in 1997–2005. Also, several local co-movements
are detected with a period of 2 to 6 months. In the near-Earth magnetic field, the
d2GMFEast/dt2 show a different dynamic behavior compared to GMFF r or GMFtotal.
The first dominated signal of d2GMFF r/dt2, d2GMFHorizontal/dt2, d2GMFNorth/dt2,
and d2GMFUp/dt2 is 69.3 months, and it is 104 months for d2GMFDeclination/dt2 and
d2GMFEast/dt2. The FFT results indicate 52, 34, 20, and 16 months as the dominant
signals, which they have in common with the FCN product’s signals. The results
of wavelet coherence analysis mostly indicate a statistically significant long-term co-
movement period of around 30 months between 1998 and 2017. Also, some significant
local co-movements are detected, which co-occur with GMJ epochs in 1999, 2003, 2007,
and 2011.

Although both CPM and GMF depend on the processes in the fluid core and the core-mantle
boundary, there was no physical mechanism identified to explain how GMF can influence CPO.
Nevertheless, our results revealed some common features in the FCN and GMF variation,
which show the potential to improve knowledge regarding the GMF’s contribution to the
Earth’s rotation. The shown results are consistent with the conclusion of Gibert et al. (1998)
who found that the rapid changes in the Chandler Wobble follow the GMJ with a delay of 1 to
3 years. Also, the WCA of the GMF’s elements and FCN identify the coherency of around 30
months (approximately 1034 days), which confirms the conclusion of the Belda et al. (2017b).
They pointed out that the most consistent VLBI data regarding ICRF 2 revealed two clear
dominated retrograde signals at about 1034 and 2069 days. They also suggested that the
periodic signal near 1034 days in FCN offsets could be caused by the GMF variation and its
sudden changes.
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Understanding the geophysical phenomena that excite the FCN could effectively improve the
CPO predictions as the current methods are not designed to consider the geophysical effects.
The primary purpose of studying the connection between the CPM and GMF is to improve the
CPM prediction, as the understanding of CPM excitation could bring us significantly closer to
meeting the accuracy goals pursued by the GGOS of the IAG.
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