
1. Introduction
In many volcanic regions, eruptive vents may be spatially scattered: they sometimes cluster along rift zones 
or are distributed over areas that may exceed 10,000 km2. Some of these regions are densely populated. In 
order to better protect human life and infrastructure, it is important to better understand the factors deter-
mining vent distributions and improve vent location forecasts.

The most common approaches to probabilistic forecasts of future vent opening locations rely on the spatial 
density of past eruptive events, sometimes complemented with the surface distribution of structural fea-
tures, such as faults and fractures (Bevilacqua et al., 2015; Connor & Hill, 1995; Martin et al., 2004; Selva 
et al., 2012). Such models, however, often remain poorly constrained due to scarce or spatially sparse data 
and cannot be easily validated in volcanic systems where eruptions are infrequent.

Recently, Rivalta et al. (2019) proposed a mechanical-statistical approach to inversely constrain the state 
of stress, and thus magma pathways, of a volcanic region on the basis of the known location of magma 
reservoirs and past eruptive vents. Dike trajectories are assumed to follow a “least resistance to opening” 
path calculated from the elastic stress field, which is optimized so that any magma batch released from the 
magma reservoir reaches one of the past eruptive vents. Once the stress field is constrained, the trajectories 
of future dikes can be forecast. Rivalta et al. (2019) applied the concept only to Campi Flegrei caldera in 
Italy, performing inversions on two stress parameters: namely, the tectonic and the unloading stress. As 
independent estimates of such parameters in nature are affected by large uncertainties, it remains unclear 
how accurately the model can capture them, how much other factors, such as medium layering, were bias-
ing the results, and how this would affect the forecast.

Abstract Assessing volcanic hazard in regions of distributed volcanism is challenging because of the 
uncertain location of future vents. A statistical-mechanical strategy to forecast such locations was recently 
proposed: here, we further develop and test it with analog models. We stress a gelatin block laterally and 
with surface excavations, and observe air-filled crack trajectories. We use the observed surface arrivals 
to sample the distributions of parameters describing the stress state of the gelatin block, combining 
deterministic crack trajectory simulations with a Monte Carlo approach. While the individual stress 
parameters remain unconstrained, we effectively retrieve their ratio and successfully forecast the arrival 
points of subsequent cracks.

Plain Language Summary In regions of distributed volcanism, eruption locations (vents) 
are scattered over a large area. Forecasting the new eruption locations over such regions is critically 
important, as many are densely populated. One of the main difficulties is dealing with few known past 
eruptions, that is, the data available to constrain forecast models are scarce. Thus, we develop a forecast 
strategy by applying extension or compression to blocks of gelatin with surface excavations and observing 
the propagation of air-filled cracks. Such models, if properly scaled, are an analog for magma propagation 
in the Earth's crust. We use the surface arrival points of some observed cracks to retrieve the statistical 
distributions of a few parameters controlling the stress field. Next, we use such distributions to forecast 
the arrival points of other observed cracks. Although we could not retrieve all the stress parameters 
accurately, the forecasts we perform are reliable. Our strategy may help retrieving the state of stress in 
volcanic regions and forecast the location of future vents.
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Here, we delve deeper into the stress inversion concept, investigating these issues in a controlled setting: air-
filled cracks propagating in a gelatin box. Such analog experimental setups have proven useful in validating 
dike propagation models (Maccaferri et al., 2019; Watanabe et al., 2002), for example, assessing the influ-
ence of surface loads (Gaete et al., 2019; J. R. Muller et al., 2001), rigidity layering (Maccaferri et al., 2010), 
and external stress fields (Acocella & Tibaldi, 2005). We stress the gelatin with extension/compression and 
surface excavations, shown in previous works to be the dominant stressing mechanisms in volcanic regions 
(Corbi et al., 2016; Maccaferri et al., 2014; Roman & Jaupart, 2014). Here, we do not intend to reproduce 
a specific geologic setting, but rather to test the ability of our strategy to retrieve the state of stress and the 
relative importance of surface excavations and regional stresses. We chose a valley-shaped surface geometry 
so that the stresses within the gelatin block can be approximated by plane strain, but our setup may provide 
insights on the same stress-generating mechanisms also in caldera-like settings. First, we run a series of 
experiments where we track the propagation of air-filled cracks. Second, we use a boundary element (BE) 
model to calculate expected crack trajectories with a realistic topography, combined with a Markov Chain 
Monte Carlo (MCMC) algorithm to sample two parameters describing the state of stress within the gelatin. 
This improves on Rivalta et al. (2019) both in terms of numerical modeling and sampling algorithm used. 
Third, we validate our strategy by running forecasts for additional cracks, which we compare to further 
injections.

2. Methods
2.1. Experimental Setup

We use a perspex container of size A × B × C = 40 × 20 × 20 cm (Figure 1a). We let a 2.0 wt% or 2.5 wt% 
aqueous solution of 220 Bloom pig gelatin powder solidify in the box at T = 8 °C for 20 h. These concen-
tration values are well characterized in previous works (e.g., Di Giuseppe et al., 2009; Gaete et al., 2019; 
Kavanagh et al., 2013; Smittarello, 2019). Along the y-direction, the gelatin block surface is molded to in-
clude a rectangular excavation of width w  =  6–7  cm and varying depth h (Figure  1a), causing surface 
unloading (Gaete et al., 2019). The height of the gelatin block, H, varied throughout the experiments (see 
Figure 1a). Compression or extension were imposed on the set gelatin by inserting or removing two plastic 
plates of thickness d = 2.5 ± 0.1 mm at the box sides, separated from the medium by a transparent plastic 
film (Figure 1a). We chose d = ±2.5 mm both to work with a small strain, e = 2 d/A, and to obtain ratios 
between stresses due to extension/compression and unloading comparable with estimates in nature (see 
Section 2.2).

Air is injected into the gelatin from the bottom of the box, resulting in ascending air-filled cracks. Different 
injections are made through different holes at 1 cm intervals, both to avoid the reopening of previous cracks 
and to observe trajectories over as wide a section of the gelatin block as possible. Air has often been used 
as a magma analog in gelatin-based models (Corbi et al., 2016; Menand et al., 2010). Air is nearly inviscid, 
so that trajectories are not influenced by viscous effects, which are investigated in other works (e.g., Pi-
nel et al., 2019; Smittarello, 2019). All experiments were carried out at room temperature, with timescales 
short enough (≤1 h) to maintain the experiments in an elastic regime (Kavanagh et al., 2013). The Young's 
modulus E of the gelatin was determined case by case by applying a small cylindrical load on the surface 
and measuring the resultant subsidence under the assumption of a half space (Kavanagh et al., 2013). E 
was mostly within the 2,000–3,500 Pa range (supporting information, Table S2). We assumed the Poisson's 
ratio is ν = 0.49 (van Otterloo & Cruden, 2016) and take ρgel = 1,020 kg m−3 for the gelatin density (Smit-
tarello, 2019). We attached polarized sheets on the box front and back walls (Figure 1c) to observe stress 
inhomogeneities during the experiments. The resulting sequences of colored fringes (Table 1) visualize the 
differential stress (σ1−σ3) perpendicular to the light direction (Gaete et al., 2019).

We present seven experiments (2DLA-i, i  =  1,…,7), involving extension (2DLA-1,3,4,5,6,7), compression 
(2DLA-2) and layering (2DLA-3,4). Three more experiments with compression were discarded as most of 
the cracks hit the box walls (see Figure S4). We measure the surface arrival points of the cracks ( obs

ix ). In 
2DLA-5,6,7, we changed the state of stress midway in the experiments: we performed NI injections, then 
removed the side plates (2DLA-5) or partially refilled the surface excavation with water (2DLA-6,7), and 
finally injected NF more cracks (see Table 1 and Figure S2). The data from 2DLA-6 and 2DLA-7 were also 
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pooled to test the method with a larger data set. All the respective data sets are collected in the supporting 
information and published as a separate data publication (Mantiloni et al., 2021).

Inhomogeneities of various nature affect the outcome of the experiments. Some of them are unplanned, 
such as temperature differences up to ∼3°C between the gelatin surface and the bottom (see Table S2), 
leading to differences in the Young's modulus (≤600 Pa) that are of the same order of, or may exceed, 
the uncertainties on our measures (van Otterloo & Cruden, 2016), and localized strain concentrations 
induced when removing and, especially, inserting the side plates. Conversely, rigidity layering is inten-
tionally introduced in experiments 2DLA-3 & 2DLA-4 (Table 1): elastic interfaces were welded by pouring 
a ∼25°C second layer (Kavanagh et al., 2017). In 2DLA-3, the bottom layer had a higher gelatin concen-
tration, and thus rigidity, than the top one, and reverse in 2DLA-4. The Young's modulus E of the bottom 
and top layers was measured and estimated from other measurements for the same concentration, respec-

MANTILONI ET AL.

10.1029/2020GL090407

3 of 11

Figure 1. (a) Schematic view of the gelatin box: the side plates are highlighted in blue, the median plane of the block in red. The quantities are defined in 
Section 2.3. (b) Discretization of the box and its surface over the median plane. Arrows: normals to BEs. The length of the illustrated BEs is larger than the 
one we employed. (c) Front view of the gelatin box at the conclusion of experiment 2DLA-2 (compression): crack trajectories are marked post-intrusion with 
red ink. (d) Numerical simulation of 2DLA-2 (c) from random parameters: s

ix  are marked with blue dots, obs
ix  with magenta circles. Simulated trajectories are 

highlighted in red and σ1 directions are drawn in black. zstart is marked by a black dashed line. BE, boundary element.

(a) (b)

(d)(c)
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tively (Table S2). For these two experiments, we assume a homogeneous medium in the numerical model 
and an “effective” Young's modulus obtained by carrying out the measurement on the whole block. The 
aim here was to test the performance of the strategy when ignoring an existing layered structure in the 
simulations.

2.2. Scaling

The length scaling factor between our experiments and nature is given by the buoyancy length (Secor & 
Pollard, 1975):
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where Kc is the medium fracture toughness and Δρ is the density contrast between the host medium and the 
injected fluid. Taking Δρr = 100 kg m−3, Δρgel = 1,000 kg m−3 as the rock-magma and gelatin-air density con-

trasts, respectively,   
1

9 20.2 – 1 10 Pa mr
cK  as the rock fracture toughness and  

1
260 – 80 Pa mgel

cK  for a 
gelatin with Young's modulus in the range of E = 2,000–3,000 Pa (Kavanagh et al., 2013; Smittarello, 2019), 
we obtain L* = 3.3 × 10−6–1.2 × 10−5, where the asterisk refers to the ratio between analog and natural 
values. Thus, the excavation width range w = 6–7 cm we measured (Table S2) corresponds to 6–20 km in na-
ture, compatible with the broad range of lateral scales (100 m–100 km) displayed by unloading mechanisms 
on Earth, such as the development of rifts or calderas or icecap melting. Likewise, a typical starting depth 
of 100–150 mm (Table 1) corresponds to 10–50 km in nature. Such a starting depth for dikes is deep but not 
unreasonable. The stress scaling factor is calculated by dividing the unload stress σU = ρgelgh for the exca-
vation in the gelatin by the one for the natural case. Taking h = 2–5 cm (Table 1) and excavations 0.1–1 km 
deep, assuming ρr = 2,500 kg m−3, we obtain σ* = 8 × 10−6–1 × 10−4. We also require the ratio between the 
stresses arising from lateral strain and the unloading to be comparable to natural cases. In our experiments, 
such ratio Ee/ρgelgh, where e = 2 d/A = 1.25 × 10−2, is in the range 0.04–0.31. The same ratio in nature, for 
rifts or calderas 100–1,000 m deep, assuming ρr = 2,500 kg m−3 and a typical range for absolute values of 
tectonic stresses of 1–10 MPa (Heidbach et al., 2016), is 0.04–4.00, which comprises our experimental range, 
even if the latter lies close to its lower limit. An overview of our scaling factors is reported in the supporting 
information (Table S1).

2.3. Numerical Modeling

We assume an elastic rheology in the numerical model. This is commonplace in previous works (Ander-
son, 1937; O. H. Muller & Pollard, 1977; Roman & Jaupart, 2014) and supported by field observations on 
dikes (Gudmundsson, 2002; Lister & Kerr, 1991). There is, however, evidence of nonelastic dike propagation 
in nature (Poppe et al., 2020; Spacapan et al., 2017), which is reproduced in different analog models (e.g., 
Poppe et al., 2019).

To calculate the elastic stresses within the gelatin, we use the two-dimensional (2D) BE code “Cut&Dis-
place” (Crouch et al., 1983; Davis et al., 2017, 2019). We approximate the experiment's geometry as plane 
strain, as we observed no strain in the analog model's y-direction (Figure 1a). The box bottom, top and walls 
are discretized into BEs of length lBE = 2 mm (Figure 1b). Displacement is set to zero on the bottom ele-
ments, while we impose fixed displacement on the side walls, equal to d or −d for extension or compression, 
respectively. The free surface is shaped to model the excavation; stress boundary conditions are imposed 
on them to reproduce the gravitational stress due to the unload (Martel & Muller, 2000, Equation 1). We 
assume that w and the position of the excavation are known exactly, and we employ the measured values 
of E for each experiment. In the data pooling of 2DLA-6&7 (see Section 2.1), we assumed for E and h the 
arithmetic mean of the respective values from the two experiments, as these were similar but not identical 
(Table 1).
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We calculate the principal stress directions on a dense grid of observation points within the box. We simulate 
the crack trajectories assuming that the cracks open against, and propagate perpendicular to, the least com-
pressive stress axis, σ3 (Anderson, 1951). This assumption makes a good approximation of real trajectories 
provided the size and volume of the cracks are not too large (Maccaferri et al., 2019; Watanabe et al., 2002) 
and the effects of viscosity can be neglected, as well as those of external stress gradients (Dahm, 2000). 
The more these assumptions are far from reality, the larger the mismatch between real and σ3-perpendicu-
lar trajectories. More complex dike trajectory models exist for simulations in 2D (Dahm, 2000; Maccaferri 
et al., 2011) and recently also in three dimensions (3D) (Davis et al., 2020). However, the predictive power of 
models increases if their complexity is reduced with regard to accurate explanatory dike trajectory models 
(see e.g., Forster & Sober, 1994). Thus, we opt for the simpler option of σ3-perpendicular trajectories, which 
also necessitate much shorter computation time and better serve the stochastic part of our strategy.

If the cracks are misaligned with the stress field at injection, they will require some distance to realign 
(Maccaferri et al., 2019; Menand et al., 2010). The starting depth in the simulations is shallower than the 
injection depth so that this readjustment occurs at least partly.

2.4. MCMC Scheme

Our sampling procedure relies on the Delayed Rejection and Adaptive Metropolis MCMC algorithm (Haar-
io et al., 2006; Laine, 2013). The set of N observed arrivals ( obs

ix , i = 1,…,N) is first divided into two subsets NI 
and NF (“I” and “F” stand respectively for “inversion” and “forecast”). The NI set is used to sample the two 
parameters d and h. The size of our data sets varies from a minimum NI = 2 in 2DLA-2 to a maximum of 
NI = 5 in 2DLA-6&7 (see the supporting information, Tables S3–S4).

At start, ranges and guesses for the parameters d and h are fixed together with a common starting depth for 
the cracks, zstart. Starting locations, start

ix , are assigned as the horizontal coordinate of the upper tips of the 
observed cracks at zstart. At each iteration, we simulate NI crack trajectories and sample d and h in order to 
minimize the objective function
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where s
ix  are the simulated arrivals.

The squares of the uncertainties on the two parameters (Δd = ±0.1 mm; Δh = ±1 mm) populate the diago-
nal of the covariance matrix. M = 104 iterations were made for every chain. Our runs highlight a correlation 
between d and h, as expected from Rivalta et al. (2019), so we consider a further parameter: R = d/h, which 
partly removes the trade-off, and use the posterior probability distributions (PPDs) of d and R to perform 
the forecasts.

2.5. Forecasting Approach

After performing the inversions, we run MF = 103 iterations of NF simulations for the forecasts, where we 
sample the parameters (d, R) from their PPDs. Starting points are drawn from Gaussian distributions cen-
tered on , ,,start F start F

i ix z , with standard deviation σ = 1 mm. The combined distribution of simulated arrivals 
is compared to the observed arrivals set aside for the forecast ,obs F

ix . We measure the success of a forecast 
from how far the median ,med F

ix  of the simulated arrivals lies from ,obs F
ix . Thus, for each individual i-th fore-

cast, we define  , ,Δ F obs F med F
i i ix x x  and compare it to the standard deviation  F

ix  of the distribution (see 

Table 1).

A different approach is adopted in experiments 2DLA-5 and 2DLA-6&7 to account for the modified state of 
stress between the NI and NF cracks. In 2DLA-5, we fit the PPDs of d and R with Beta functions and then 
update them by shifting the mean value and their upper and lower limits to account for the added extension 
(from d = 0 mm to d = 2.5 mm). In 2DLA-6&7, we use the same strategy, except that we update h (subtract-
ing the height of the water filling the surface excavation) and R.
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3. Results
3.1. Experimental Results and Numerical Modeling

Experiments with extension and compression resulted in markedly different observations. Surface unload-
ing deflects vertical crack trajectories, as seen in both natural (Corbi et al., 2015; Tibaldi, 2004) and exper-
imental (Corbi et al., 2016; Gaete et al., 2019) settings. Regional extension competes against the former, 
leading to more vertical trajectories (Maccaferri et al., 2014). Compression, instead, tends to rotate σ1 to 
horizontal (Menand et al., 2010), thus amplifying the effect of the unloading. The effect of extension is 
observed in 2DLA-5, where extension was applied after NI cracks had propagated, by comparing green 
(early) to red (late) trajectories (Table 1). The partial refilling in experiments 2DLA-6 and 2DLA-7 (Table 1) 
reduced the influence of the unloading and led to less deflected trajectories. Trajectory simulations for the 
experiments with extension are not identical to, but closely match the observations, if the measured d and 
h are employed.

Trajectories in compressional settings (2DLA-2 and discarded experiments, see Figure S3) tend to diverge 
significantly from each other and spread the uncertainty of the initial location into scattered arrival loca-
tions. Simulations with the imposed parameters fail to reproduce these data sets. This is reflected in the 
outcome of the inversions and forecasts, as we explain later on.

Dike trajectories are deflected toward the vertical direction when passing from a high-rigidity layer to a 
low-rigidity one and viceversa, as theoretically predicted by Maccaferri et al. (2010) (see experiments 2DLA-
3 and 2DLA-4, Table 1).

3.2. Parameters Sampling

We find that in most cases the retrieved PPDs fail to constrain d and h individually, though they generally 
succeed in constraining their ratio R. This can be seen in the joint distributions for R and h (Figure 2a). 
In the homogeneous extensional cases, the PPDs for d and especially h are generally spread. In spite of 
this, the imposed value of d is well recovered in 2DLA-5 and 2DLA-6 & 7 (see Table S5). The distributions 
of h tend to be uniform. In contrast, the PPD for R is always peaked around or close to the imposed value 
(Figure 2a). The PPDs, including those of h, are more peaked when more data are available (2DLA-6&7). 
In the layered cases, the medians of all the PPDs are rather far from the respective imposed values, except 
for R in 2DLA-4. This was expected, since we purposely neglected the medium layering in the modeling 
(see Section 2.1).

In the only compressional case (2DLA-2), the PPDs are extremely spread and fail to constrain the parame-
ters, though the median of R is close to the imposed value (Figure 2a).

3.3. Forecasts

In spite of the PPDs for d and h being often spread or even uniform, the forecast distribution generally 
shows NF sharp peaks (Figure 2b and Table 1). Moreover, in spite of the PPDs for d and h failing to accu-
rately recover the imposed values, the peaks of the forecast distribution generally coincide or are very close 
to the observed arrivals (Figure 2b and Table 1). This includes the layered cases. Again, the compressional 
case 2DLA-2 marks an exception: the forecast is rather spread (see  F

ix  values in Table 1) and shows two 
maxima, one closer to the box center and a sharp one at the box margin (Figure 2b); this is due to the fact 
that many simulated cracks hit the right side of the box. Neither of the maxima coincides with the observed 
arrival, and the median falls ∼1 cm away (Figure 2b and Table 1).

Two secondary peaks are also obtained in the combined forecast distribution for 2DLA-5 (NF = 3), as the 
sampling range for d allowed for both positive (extension) and negative (compression) values. This is re-
flected also in the spread of the individual distributions (Table 1). The two main maxima are here close to 
the box center and show good agreement with ,obs F

ix . Considering the three individual distributions sepa-
rately, the distances ,Δ obs F

ix  between the three ,obs F
ix  and the medians ,med F

ix  are well within  ,obs F
ix  of the 

respective distributions. In 2DLA-6&7 (NF = 6), three clear maxima are observed in the combined forecast 
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distribution, showing again good agreement with the ,obs F
ix , which are ≤4 mm away from the medians of the 

respective individual distributions (Table 1).

In all extensional experiments with NF = 1, the observed arrivals ,obs F
ix  are always within 2 mm from the 

medians (Table 1).
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Experiments Measured parameters Results Forecasts

# Exp. Picture h d R hmed dmed Rmed ,med F
ix  F

ix Δ F
ix

±1 ±0.1 (×10−3) (×10−3)

mm mm mm mm mm mm mm

2DLA-1 50 2.5 63 ± 4 51 4.9 100 67 7 2

Extension

2DLA-2 44 −2.5 −57 ± 4 73 −3.5 −55 115 39 11

Compression

2DLA-3 21 2.5 120 ± 10 63 3.9 69 75 9 1

Extension

Layered

2DLA-4 24 2.5 104 ± 8 59 5.8 102 −85 6 1

Extension

Layered

2DLA-5 24 0 0 ± 10−2 64 0.4 8 × 10−3 −54 43 1

Updated 2.5 104 ± 8 66 36 6

Extension 77 34 10

2DLA-6 58(65) 2.5(2.5) (39 ± 2) 64 2.5 39 63 10 3

Extension 28(35) (71 ± 7) 76 7 1

Refilled 84 6 2

102 4 1

2DLA-7 72(65) 2.5(2.5) (39 ± 2) −84 8 4

Extension 32(35) (71 ± 7) −73 6 0

Refilled

Note. Blue markers in the pictures indicate the arrivals used for the forecast (see Figure 2b): in 2DLA-5, 2DLA-6, and 2DLA-7 these coincide with the injections 
following the stress update (differently colored trajectories in pictures of 2DLA-5 and 2DLA-7 stand for preupdate and postupdate). Arithmetic means assumed 
for h and R in 2DLA-6&7 are indicated in parentheses (Section 2.3). Updated d and h (Section 2.5) are in boldface. hmed, dmed, Rmed: medians of the respective 
PPDs (Section 3.2). ,med F

ix ,  F
ix , and Δ F

ix  are defined in Section 2.5 and refer to forecasts for individual ,obs F
ix . For further information, see the supporting 

information, Tables S2–S4 (measured quantities) and S5 (inversion results).
Abbreviation: PPD, posterior probability distribution.

Table 1 
Experiments, Measured Parameters, and Results
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Figure 2. Summary of inversion and forecast results. (a) PPDs for parameters d, h and R and joint PPD for (R, (h). Red lines show the measured values; green 
lines the medians (Table 1). The Beta functions used to fit and update the distributions in 2DLA-5 and 2DLA-6&7 are plotted in magenta. Last column from left: 
the starting guess, measured and median values are represented, respectively, by a blue, red and yellow star. The color palette shows the value of S (Equation 2) 
for every sampled point in the parameters' space, from dark red (higher S) to blue (lower S). (b) countings of forecast arrivals displayed on a scheme of the box 
(the surface topography shown is before the refilling in 2DLA-6&7). Red lines: positions of ,obs F

ix ; green lines: medians of the forecasts for individual ,obs F
ix  (see 

also Tables 1 and S3). PPD, posterior probability distribution.
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4. Discussion
While the inversion algorithm generally failed to retrieve the imposed values of the parameters d and h (Fig-
ure 2a), the forecast strategy proved very effective in identifying high-probability regions for crack arrivals 
on the surface (Table 1 and Figure 2). This apparent contradiction arises from the fact that the inversions 
effectively recover the imposed value of R = d/h. Physically, this is because the curvature of the trajectories 
is controlled by R, rather than d or h individually, as also found by Roman and Jaupart (2014).

Forecasts are successful in spite of scarce data sets and when layering of the medium is neglected. If data 
sets are larger (5 data points for 2 parameters), the state of stress is recovered more accurately. In principle, 
our procedure could be used also to constrain the elastic parameters, but information on the stress state 
would be necessary as they trade off. To test this possibility, we ran an inversion for E on the NF data set of 
2DLA-5, and we found the sampled E distribution peaks very close to the measured value (results are shown 
in Figure S4b).

The forecast strategy applied in experiments 2DLA-5 and 2DLA-6&7 also proved effective in accounting 
for the modification of the stress field over time, validating the evolving-stress forecast method by Rivalta 
et al. (2019).

Several factors may contribute to the failure of the approach in compressional settings, even though there 
is inherently no difference in the σ3-perpendicular propagation of cracks under remote compression rather 
than extension. Both unloading and compression lead to more horizontal σ1 directions within the medium. 
Thus, the mismatch between the crack orientation and σ1 right after the injection is larger and they need 
more space to align. Moreover, a horizontal σ1 may encourage cracks to propagate toward the back or the 
front walls of the box, whose effect on the gelatin may undermine the plane strain assumption (in compres-
sional cases, these walls prevent the gelatin to expand along the y-axis, thus inducing compression also in 
this direction). Furthermore, side plate insertion and the nonfrictionless contact between gelatin and box 
walls induced local stress concentrations at the box corners, affecting nearby trajectories (Figure S3). Such 
effects may arise from the size of our box and could be reduced by employing a larger tank. However, as 
σ3-perpendicular trajectories tend to diverge in compressional settings (including nature), simulations are 
more sensitive to any variability of initial and boundary conditions or model parameters, and forecasts are 
therefore more challenging.

A further limitation arises from the limited number of experiments we carried out. In spite of this, we did 
observe clear common patterns in experiments with similar settings (Section 3.1). Our experimental setup 
allowed for several factors, including variable starting crack length and orientation, elastic heterogenei-
ties and possible interactions between successive injections, to play a role. This is reflected in the fact that 
observed and modeled trajectories do not coincide in general (Section 3.1), though the forecasts are fairly 
good. This is not contradictory, as our forecast strategy includes a stochastic model to treat such variability.

Another remarkable issue is the nearly uniform trend observed in the PPDs for h (Figure 2a), which ap-
pears to be systematic even when larger data sets are available (as opposed to the PPDs of d, cfr 2DLA-1, 
and 2DLA-5). This arises from the fact that very shallow or very deep surface unloads, for the same d and 
starting points, lead to similar arrivals. We surmise that this effect, observed both in the numerical simu-
lations and in a separate experiment (Figure S4a), is due to the relaxation of the surface excavation's walls 
under gravity.

5. Conclusive Remarks
We conclude that a mixed deterministic-stochastic strategy is effective in constraining the ratio of different 
stress-generating mechanisms and forecasting the arrival points of air-filled cracks in gelatin blocks. The 
strategy performs well on small data sets and may be, therefore, suitable for applications to volcanic regions 
where few vent locations are available. Future developments may focus on relaxing some of the limitations 
in our current numerical simulations, such as upgrading to 3D, including the viscous flow in the cracks, or 
addressing rheologies different from elastic. This will facilitate direct application to producing probabilistic 
maps of vent location for volcanic systems in nature.
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Data Availability Statement
All data employed in this work are available at the GFZ Data Services repository: GFZ.2.1.2021.001 https://
doi.org/10.5880/GFZ.2.1.2021.001 (Mantiloni et al., 2021). The numerical model is based on the open source 
code at https://doi.org/10.5281/zenodo.3694164.
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