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S U M M A R Y
Earthquakes are major hazards to humans, buildings and infrastructure. Early warning methods
aim to provide advance note of incoming strong shaking to enable preventive action and
mitigate seismic risk. Their usefulness depends on accuracy, the relation between true, missed
and false alerts and timeliness, the time between a warning and the arrival of strong shaking.
Current approaches suffer from apparent aleatoric uncertainties due to simplified modelling or
short warning times. Here we propose a novel early warning method, the deep-learning based
transformer earthquake alerting model (TEAM), to mitigate these limitations. TEAM analyses
raw, strong motion waveforms of an arbitrary number of stations at arbitrary locations in real-
time, making it easily adaptable to changing seismic networks and warning targets. We evaluate
TEAM on two regions with high seismic hazard, Japan and Italy, that are complementary
in their seismicity. On both data sets TEAM outperforms existing early warning methods
considerably, offering accurate and timely warnings. Using domain adaptation, TEAM even
provides reliable alerts for events larger than any in the training data, a property of highest
importance as records from very large events are rare in many regions.

Key words: Neural networks, fuzzy logic; Probability distributions; Earthquake early warn-
ing.

1 I N T RO D U C T I O N

The concept of earthquake early warning has been around for
over a century, but the necessary instrumentation and methodolo-
gies have only been developed in the last three decades (Allen
et al. 2009; Allen & Melgar 2019). Early warning systems aim
to raise alerts if shaking levels likely to cause damage are go-
ing to occur. Existing methods split into two main classes: source
estimation based and propagation based. The former, like EPIC
(Chung et al. 2019) or FINDER (Böse et al. 2018), estimate the
source properties of an event, that is, its location or fault extent
and magnitude, and then use a ground motion prediction equa-
tion (GMPE) to infer shaking at target sites. They provide long
warning times, but incur a large apparent aleatoric uncertainty
due to simplified assumptions in the source estimation and in
the GMPE (Kodera et al. 2018). Propagation based methods, like
PLUM (Kodera et al. 2018), infer the shaking at a given loca-
tion from measurements at nearby seismic stations. Predictions are
more accurate, but warning times are reduced, as warnings require
measurements of strong shaking at nearby stations (Meier et al.
2020).

Recently, machine learning methods, particularly deep learning
methods, have emerged as a tool for fast assessment of earthquakes.

Under certain circumstances, they led to improvements in vari-
ous tasks, for example, estimation of magnitude (Lomax et al.
2019; Mousavi & Beroza 2020), location (Kriegerowski et al. 2019;
Mousavi & Beroza 2019) or peak ground acceleration (PGA, Jozi-
nović et al. 2020). Nonetheless, no existing method is applicable
to early warning because they lack real-time capabilities, instead
requiring fixed waveform windows after the P arrival. Furthermore,
the existing methods are restricted in terms of their input stations, as
they use either a single seismic station as input (Lomax et al. 2019;
Mousavi & Beroza 2020) or a fixed set of seismic stations, that needs
to be defined at training time (Kriegerowski et al. 2019; Jozinović
et al. 2020; Otake et al. 2020). While single station approaches miss
out on a considerable amount of information obtainable from com-
bining waveforms from different sources, fixed stations approaches
have limited adaptability to changing networks. The latter is of par-
ticular concern as for large, dense networks the stations of interest,
that is, the stations closest to an event, will change on a per-event
basis. Finally, existing methods systematically underestimate the
strongest shaking and the highest magnitudes, as these are rare and
therefore underrepresented in the training data [figs 6, 8 in Jozinović
et al. (2020), figs 3, 4 in Mousavi & Beroza (2020)]. However, early
warning systems must also be able to provide reliable warnings for
earthquakes larger than any previously seen in a region.
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Here, we present the transformer earthquake alerting model
(TEAM), a deep learning method for early warning, combining the
advantages of both classical early warning strategies while avoid-
ing the deficiencies of prior deep learning approaches. We evaluate
TEAM on two data sets from regions with high seismic hazard,
namely Japan and Italy. Due to their complementary seismicity, this
allows to evaluate the capabilities of TEAM across scenarios. We
compare TEAM to two state-of-the-art warning methods, of which
one is prototypical for source based warning and one for propaga-
tion based warning.

2 DATA A N D M E T H O D S

2.1 Data

For our study we use two nation scale data sets from highly seis-
mically active regions with dense seismic networks, namely Japan
(13 512 events, years 1997–2018, Fig. 1) and Italy (7055 events,
years 2008–2019, Fig. 2). Their seismicity is complementary, with
predominantly subduction plate interface or Wadati-Benioff zone
events for Japan, many of them offshore, and shallow, crustal events
for Italy. We split both data sets into training, development and test
sets with ratios of 60:10:30. We employ an event-wise split, that
is, all records for a particular event will be assigned to the same
subset. We do not explicitly split station-wise but due to temporary
deployments there are a few stations in the test set which have no
records in the training set (Fig. 2). We use the training set for model
training, the development set for model selection, and the test set
only for the final evaluation. We split the Japan data set chronologi-
cally, yielding the events between August 2013 and December 2018
as test set. For Italy, we test on all events in 2016, as these are of
particular interest, encompassing most of the central Italy sequence
with the Mw = 6.2 and Mw = 6.5 Norcia events (Dolce & Di Bucci
2018). Especially the latter event is notably larger than any in the
training set (Mw = 6.1 L’Aquila event in 2007), thereby challenging
the extrapolation capabilities of TEAM.

Both data sets consist of strong motion waveforms. For Japan
each station comprises two sensors, one at the surface and one
borehole sensor, while for Italy only surface recordings are available.
As the instrument response in the frequency band of interest is flat,
we do not restitute the waveforms, but only apply a gain correction.
This has the advantage that it can trivially be done in real-time. The
data and pre-processing are further described in the supplement
text S1.

2.2 TEAM

The early warning workflow with TEAM encompasses three sepa-
rate steps (Fig. 3): event detection, PGA estimation and threshold-
ing. We do not further consider the event detection task here, as
it forms the base of all methods discussed and affects them simi-
larly. The PGA estimation, resulting in PGA probability densities
for a given set of target locations, is the heart of TEAM and de-
scribed in detail below. In the last step, thresholding, TEAM issues
warnings for each target locations where the predicted exceedance
probability p for fixed PGA thresholds surpasses a predefined
probability α.

TEAM conducts end-to-end PGA estimation: its input are raw
waveforms, its output predicted PGA probability densities. There
are no intermediate representations in TEAM that warrant an im-
mediate geophysical interpretation. The PGA assessment can be

subdivided into three components: feature extraction, feature com-
bination, and density estimation (Fig. S1). Input to TEAM are
three, respectively six (three surface, three borehole), component
waveforms at 100 Hz sampling rate from multiple stations and the
corresponding station coordinates. Furthermore, the model is pro-
vided with a set of output locations, at which the PGA should be
predicted. These can be anywhere within the spatial domain of the
model and need not be identical with station locations in the training
set.

TEAM extracts features from input waveforms using a convo-
lutional neural network (CNN). The feature extraction is applied
separately to each station, but is identical for all stations. CNNs are
well established for feature extraction from seismic waveforms, as
they are able to recognize complex features independent of their
position in the trace. On the other hand, CNN based feature ex-
traction usually requires a fixed input length, inhibiting real-time
processing. We allow real-time processing through the alignment of
the waveforms and zero-padding: we align all input waveforms in
time, that is, all start at the same time t0 and end at the same time t1.
We define t0 to be 5 s before the first P-wave arrival at any station,
allowing the model to understand the noise characteristics. For t1

we use the current time, that is, the amount of available waveforms.
We obtain constant length input, by padding all waveforms after
t1 with zeros up to a total length of 30 s. The feature extraction is
described in more detail in supplementary text S2.

TEAM combines the feature vectors and maps them to repre-
sentations at the targets using a transformer (Vaswani et al. 2017).
Transformers are attention-based neural networks for combining
information from a flexible number of input vectors in a learnable
way. To encode the location of the recording stations as well as of
the prediction targets, we use sinusoidal vector representations. For
input stations, we add these representations component-wise to the
feature vectors, for target stations we directly use them as inputs
to the transformer. This architecture, processing a varying num-
ber of inputs, together with the explicitly encoded locations, allows
TEAM to handle dynamically varying sets of stations and targets.
The transformer returns one vector for each target representing pre-
dictions at this target. Details on the feature combinations can be
found in supplementary text S3.

From each of the vectors returned by the transformer, TEAM
calculates the PGA predictions at one target. Similar to the fea-
ture extraction, the PGA prediction network is applied separately
to each target, but is identical for all targets. TEAM uses mixture
density networks (Bishop 1994) returning Gaussian mixtures, to
computes PGA densities. Gaussian mixtures allow TEAM to pre-
dict more complex distributions and better capture realistic uncer-
tainties than a point estimate or a single Gaussian. The full specifi-
cations for the final PGA estimation are provided in supplementary
text S4.

TEAM is trained end-to-end using a negative log-likelihood loss.
To increase the flexibility of TEAM and allow for real-time pro-
cessing, we use training data augmentation. We randomly select
the stations used as inputs and targets in each training iteration. In
addition, again in each training iteration, we randomly replace all
waveforms after a time t with zeros, matching the input representa-
tion of real time data, to train TEAM for real-time application. These
data augmentations as well as the complete training procedure are
further described in supplementary text S5.

To mitigate the systematic underestimation of high PGA values
observed in previous machine learning models, TEAM oversam-
ples large events and PGA targets close to the epicentre during
training, which reduces the inherent bias in data towards smaller
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648 J. Münchmeyer et al.

Figure 1. Map of the station (left-hand panel) and event (right-hand panel) distribution in the Japan data set. Stations are shown as black triangles, events as
dots. The event colour encodes the event magnitude. There are ∼20 additional events far offshore, which are outside the displayed map region in the catalogue.

Figure 2. Map of the station (left-hand panel) and event (right-hand panel) distribution in the Italy data set. Stations present in the training set are shown as
black triangles, while stations only present in the test set are shown as yellow triangles. Events are shown as dots with the colour encoding the event magnitude.
All events with magnitudes above 5.5 are shown as stars. The red stars indicate large training events, while the yellow stars indicate large test events. The inset
shows the central Italy region with intense seismicity and high station density in the test set. Moment magnitudes for the largest test events are given in the
inset.

PGAs. When learning from small catalogues or when applied to re-
gions where events substantially larger than all training events can
be expected, for example, because of known locked fault patches
or historic records, TEAM additionally can use domain adapta-
tion. To this end the training procedure is modified to include
large events from other regions that are similar to the expected
events in the target region. While records from those events will
differ in certain aspects, for example, site responses or the exact
propagation patterns, other aspects, for example, the average ex-
tent of strong shaking or the duration of events of a certain size,
will mostly be independent of the region in question. The domain
adaptation aims to enable the model to transfer the region imma-
nent aspects of large events, at the cost of a certain blurring of
the specific regional aspects of the target region. TEAM aims to
mitigate the blurring of regional aspects by the choice of training
procedure.

Our Italy data set is an example of this situation. Accordingly,
TEAM applies domain adaptation to this case: It first trains a joint
model using data from Japan and from Italy, which is then fine-
tuned using the Italy data on its own, except for the addition of
a few large, shallow, onshore events from Japan. We chose these
events, as for Italy one also expects large, shallow, crustal events
due to its tectonic setting and earthquake history. As we use events
from Italy in both training steps and in particular in the second step
the overwhelming number of events are from Italy, we expect that
this scheme only results in a small degradation in the modelling of
the regional specifics of the Italy region.

2.3 Baselines

We compare TEAM to two state-of-the-art early warning methods,
one using source estimation and one propagation based. As source
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Figure 3. Schematic view of TEAM’s early warning workflow for the October 2016 Norcia event (Mw = 6.5) 2.5 s after the first P-wave pick (∼3.5 s after
origin time). (a) An event is detected through triggering at multiple seismic stations. The waveform colours correspond to the stations highlighted with orange
to magenta outlines. The circles indicate the approximate current position of P (dashed) and S (solid) wave fronts. (b) TEAM’s input are raw waveforms and
station coordinates; it estimates probability densities for the PGA at a target set. A more detailed TEAM overview is given in Fig. S1. (c) The exceedance
probabilities for a fixed set of PGA thresholds are calculated based on the estimated PGA probability densities. If the probability exceeds a threshold α, a
warning is issued. The figure visualizes a 10 per cent g PGA level with α = 0.4, resulting in warnings for the stations highlighted. The colours correspond to
the stations with green outlines in (a). (d) The real-time shake map shows the highest PGA levels for which a warning is issued. Stations are coloured according
to their current warning level. The table lists all stations for which warnings have already been issued.

estimation based method we use the estimated point source ap-
proach (EPS), which estimates magnitudes from peak displacement
during the P-wave onset (Kuyuk & Allen 2013) and then applies
a GMPE (Cua & Heaton 2009) to predict the PGA. For simplicity,
our implementation assumes knowledge of the final catalogue epi-
centre, which is impossible in real-time, leading to overoptimistic
results for EPS. As propagation based method we chose an adap-
tation of PLUM (Kodera et al. 2018), which issues warnings if a
station within a radius r of the target exceeds the level of shaking.
In contrast to the original PLUM, which operates on the Japanese
seismic intensity scale, IJMA (Shabestari & Yamazaki 2001), our
adaptation applies the concept of PLUM to PGA, thereby making
it comparable to the other approaches. Whereas IJMA is also a mea-
sure of the strongest acceleration and is thus strongly correlated
with PGA, it considers a narrower frequency band and imposes a
minimum duration of strong shaking. As such, although the perfor-
mance might vary slightly for our PLUM-like approach compared
to the original PLUM, it still exhibits its key features, in particular
the effects of the localized warning strategy. Additionally we apply
the GMPE used in EPS to catalogue location and magnitude as
an approximate upper accuracy bound for point source algorithms
(Catalogue-GMPE or C-GMPE). C-CMPE is a theoretical bound
that can not be realized in real-time. It can be considered as an esti-
mate of the modeling error for point source approaches. A detailed
description of the baseline methods can be found in supplementary
text S6.

3 R E S U LT S

3.1 Alert performance

We compare the alert performance of all methods for PGA thresh-
olds from light (1 per cent g) to very strong (20 per cent g) shaking,
regarding precision, the fraction of alerts actually exceeding the
PGA threshold, and recall, the fraction of issued alerts among all
cases where the PGA threshold was exceeded (Meier 2017; Min-
son et al. 2019). Precision and recall trade-off against each other
depending on α. While the PGA predictions of TEAM, EPS and
the C-GMPE are probabilistic, the thresholding transforms the pre-
dictions into alerts or non-alerts. The probability distribution de-
scribes the uncertainty of the models, for example, for the GMPE
the apparent aleatoric uncertainty from aspects not accounted for,
which makes false and missed alerts inevitable. The threshold value
controls the trade-off between both types of errors, and its ap-
propriate value will depend on user needs, specifically the costs
associated with false and missed alerts. Therefore, to analyse the
performance of the models across different user requirements, we
look at the precision recall curves for different thresholds α. In
addition to precision and recall, we use two summary metrics: F1
score, the harmonic mean of precision and recall, and AUC, the
area under the precision recall curve. The evaluation metrics and
full setup of the evaluation are defined in detail in supplement
text S7.
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650 J. Münchmeyer et al.

Figure 4. Warning statistics for the three early-warning models (TEAM, EPS, PLUM) for the Japan and Italy data sets. In addition, statistics are provided
for C-GMPE, which can only be evaluated post-event due to its reliance on catalogue magnitude and location. (a) Precision and recall curves across different
thresholds α = 0.05, 0.1, 0.2, . . . , 0.8, 0.9, 0.95. As the PLUM-like approach has no tuning parameter, its performance is shown as a point. Enlarged markers
show the configurations yielding the highest F1 scores. Numbers in the corner give the area under the precision recall curve (AUC), a standard measure
quantifying the predictive performance across thresholds. (b) Precision, recall and F1 score at different PGA thresholds using the F1 optimal value α. Threshold
probabilities α were chosen independently for each method and PGA threshold. (c) Number of events and traces exceeding each PGA threshold for training
and test set. Training set numbers include development events and show the numbers before oversampling is applied. For Italy training and test event curve are
overlapping due to similar numbers of events.

TEAM outperforms both EPS and the PLUM-like approach for
both data sets and all PGA thresholds, indicated by the precision-
recall-curves of TEAM lying to the top-right of the baseline curves
(Fig. 4a). For any baseline method configuration, there is a TEAM
configuration surpassing it both in precision and in recall. Im-
provements are larger for Japan, but still substantial for Italy.
To compare the performance at fixed α, we selected α values
yielding the highest F1 score separately for each PGA thresh-
old and method. Again, TEAM outperforms both baselines on
both data sets, irrespective of the PGA level (Fig. 4b). Perfor-
mance statistics in numerical form are available in Tables S1
and S2.

All methods degrade with increasing PGA levels, particularly
for Japan. This degradation is intrinsic to early warning for high
thresholds due to the very low prior probability of strong shaking
(Meier 2017; Minson et al. 2019; Meier et al. 2020). Furthermore,

shortage of training data with high PGA values results in less well
constrained model parameters.

Using domain adaptation techniques, TEAM copes well with
the Italy data, even though the largest test event (Mw = 6.5) is
significantly larger than the largest training event (Mw = 6.1), and
three further test events have Mw ≥ 5.8. To assess the impact of this
technique, we compared TEAM’s results to a model trained without
it (Figs S2 and S3). While for low PGA thresholds differences are
small, at high PGA levels they grow to more than 20 points F1
score. Interestingly, for large events, TEAM strongly outperforms
TEAM without domain adaptation even for low PGA thresholds.
This shows that domain adaptation does not only allow the model to
predict higher PGA values, but also to accurately assess the region
of lighter shaking for large events. Domain adaptation therefore
helps TEAM to remain accurate even for events quite far from the
training distribution.
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The transformer earthquake alerting model 651

Figure 5. Warning time statistics. (a) Area under the precision recall curve for different minimum warning times. All alerts with shorter warning times are
counted as false negatives. (b) Warning time histograms showing the distribution true alerts across distances for the different methods. Please note that the
total number of true alerts differs by method and is not shown in this subplot. Therefore the values of different methods cannot be directly compared, but only
the differences in the distributions. TEAM and EPS are shown at F1-optimal α, chosen separately for each threshold and method. Warning time dependence
on hypocentral distance is shown in Fig. S4.

3.2 Warning times

In application scenarios, a user will usually require a certain warn-
ing time, which is the time between issuing of the warning and
first exceedance of the level of shaking, as this time is necessary
for taking action. As the previous evaluation considered prediction
accuracy irrespective of the warning time, we now compare the
methods while imposing a certain minimum warning time. Actu-
ally, TEAM consistently outperforms both baselines across differ-
ent required warning times and irrespective of the PGA threshold
(Fig. 5a). While the margin for TEAM compared to the baselines is
smaller for Italy than for Japan, TEAM shows consistently strong
performance across different warning times. In contrast, EPS per-
forms clearly worse at short warning times, the PLUM-based ap-
proach at longer warning times. The latter is inherent to the key
idea of PLUM and makes the method only competitive at high PGA
thresholds, where potential maximum warning times are naturally
short due to the proximity between stations with strong shaking and
the epicentre (Minson et al. 2018). We further note that while the
PLUM-like approach shows slightly higher AUC than TEAM for
short warning times at 20 per cent g, this is only a hypothetical re-
sult. As PLUM does not have a tuning parameter between precision
and recall, this performance can actually only be realized for a spe-
cific precision/recall threshold, where it performs slightly superior
to TEAM (Fig. 4a bottom right-hand panel).

Warning times depend on α: a lower α value naturally leads to
longer warning times but also to more false positive warnings. At
F1-optimal thresholds α, EPS and TEAM have similar warning time
distributions (Fig. 5b, Table S3), but lowering α leads to stronger
increases in warning times for TEAM. For instance, at 10 per cent g,
lowering α from 0.5 to 0.2 increases average warning times of
TEAM by 2.3 s/1.2 s (Japan/Italy), but only by 1.1 s/0.1 s for EPS.
Short times as measured here are critical in real applications: First,
they reduce the time available for counter measures. Secondly, real
warning times will be shorter than reported here due to telemetry
and compute delays. However, compute delays for TEAM are very
mild: analysing the Norcia event (25 input stations, 246 target sites)
for one time step took only 0.15 s on a standard workstation using
non-optimized code.

4 D I S C U S S I O N

4.1 Calibration of probabilities

Even though TEAM and EPS give probabilistic predictions, it is
not clear whether these predictions are well-calibrated, that is, if
the predicted confidence values actually correspond to observed
probabilities. Calibrated probabilities are essential for threshold
selection, as they are required to balance expected costs of taking
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Figure 6. Scenario analysis of the 22 November 2016 MJ = 7.4 Fukushima earthquake, the largest test event located close to shore. Maps show the warning
levels for each method (top three rows) at different times (shown in the corner, t = 0 s corresponds to P arrival at closest station). Dots represent stations and
are coloured according to the PGA recorded during the full event, that is, the prediction target. The bottom row shows (left- to right-hand panels), the catalogue
based GMPE predictions, the warning time distributions, and the true positives (TP), false negatives (FN) and false positives (FP) for each method, both at a
2 per cent g PGA threshold. EPS and GMPE shake map predictions do not include station terms, but they are included for the bottom row histograms.

action versus expected costs of not taking action. We note that
while good calibration is a necessary condition for a good model,
it is not sufficient, as a model constantly predicting the marginal
distribution of the labels would be always perfectly calibrated, yet
not very useful.

To assess the calibration, we use calibration diagrams (Figs S9
and S10) for Japan and Italy at different times after the first P
arrival. These diagrams compare the predicted probabilities to the
actually observed fraction of occurrences. In general, both models
are well calibrated, with a slightly better calibration for TEAM.
Calibration is generally better for Japan, where only EPS is slightly
underconfident at earlier times for the highest PGA thresholds. For

Italy, EPS is generally slightly overconfident, while TEAM is well
calibrated, except for a certain overconfidence at 20 per cent g. We
suspect that the worse calibration for the largest events is caused by
the domain adaptation strategy, but the better performance in terms
of accuracy clearly weighs out this downside of domain adaptation.

4.2 Insights into TEAM

We analyse differences between the methods using one example
event from each data set (Japan: Fig. 6, Italy: Fig. S5). All meth-
ods underestimate the shaking in the first seconds (left-hand column
Figs 6 and S5). However, TEAM is the quickest to detect the correct
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Figure 7. Precision recall curves for the Japanese data set using the chronological split (top panel) and using the events in 2011 as test set (bottom panel). The
year 2011 contains the Mw = 9.1 Tohoku event as well as its aftershocks.

extent of the shaking. Additionally, it estimates even fine-grained re-
gional shaking details in real-time (middle and right-hand columns).
In contrast, shake maps for EPS remain overly simplified due to the
assumptions inherent to GMPEs (right-hand column and bottom
left-hand panel). For the Japan example, even late predictions of
EPS underestimate the shaking, due to an underestimation of the
magnitude. The PLUM-based approach produces very good PGA
estimates, but exhibits the worst warning times.

Notably, TEAM predictions at later times correspond even bet-
ter to the measured PGA than C-GMPE estimates, although these
are based on the final magnitude (top right- and bottom left-hand
panels). For the Japan data, this is not only the case for the exam-
ple at hand, but also visible in Fig. 4, showing higher accuracy of
TEAM’s prediction compared to C-GMPE for all thresholds except
20 per cent g on the full Japan data set. We assume TEAM’s supe-
rior performance is rooted in both global and local aspects. Global
aspects are the abilities to exploit variations in the waveforms, for
example, frequency content, to model complex event characteristics,
such as stress drop, radiation pattern or directivity, and to compare
to events in the training set. Local aspects include understanding
regional effects, for example, frequency dependent site responses,
and the ability to consider shaking at proximal stations. We note that
for our Italy experiments, the modelling of local aspects resulting
from regional characteristics might be slightly degraded by the do-
main adaptation. However, the first-order propagation effects such
as, for example, amplitude decay due to geometric spreading, are
similar between regions and therefore not negatively affected by the
domain adaptation. In conclusion, combining a global event view
with propagation aspects, TEAM can be seen as a hybrid model
between source estimation and propagation.

4.3 TEAM performance on the Tohoku sequence

We evaluated TEAM for Japan on a chronological train/dev/test
split, as this split ensures the evaluation closest to the actual ap-
plication scenario. On the other hand, this split put the M = 9.1
Tohoku event in March 2011 into the training set. To evaluate the
performance for this very large event and its aftershocks, we trained
another TEAM instance using the year 2011 as test set and the re-
mainder of the data for training and validation. Fig. 7 shows the

precision recall curves for the chronological split and the year 2011
as test set. In general, the performance of all models stays similar
when evaluated on the alternative split. A key difference between
the curves is, that TEAM, in particular for high PGA thresholds,
does not reach similar levels of recall for 2011 as for the chrono-
logical split, while achieving higher precision. As we will describe
in the next paragraph, this trend probably results from a tendency
to underestimate true PGA amplitudes, which will naturally re-
duce recall and boost precision. Nevertheless, the performance of
TEAM as quantified by the AUC actually improves, and signifi-
cantly so for the highest thresholds. We suspect that this tendency
for underestimation is either caused by the higher number of large
events in the 2011 test set compared to the chronological split, or
by the lower number of high PGA events in the training set without
2011.

Fig. S6 presents a scenario analysis for the Tohoku event. All
models underestimate the event considerably, with the strongest
underestimation for the EPS method. Even 20 s after the first
P wave arrival, all methods underestimate both the severity and
the extent of shaking. Due to its localized approach, the PLUM-
based model achieves the highest number of true warnings, albeit
at short warning times and a certain number of false positives,
which due to the underestimation are totally absent from TEAM
and EPS predictions. The performance of both EPS and TEAM is
likely degraded by the slow onset of the Tohoku event as described
by Koketsu et al. (2011). According to Koketsu et al. (2011) the
main subevent with a displacement of 36 m only initiated 20 s
after the onset of the Tohoku event. Therefore only the first P
waves for EPS or at most the first 25 s of waveforms for TEAM is
most likely insufficient to correctly estimate the size of the Tohoku
event.

For Italy, we showed that underestimation for large events can
be mitigated using transfer learning. However, the Tohoku event
clearly shows the limitations of this strategy, as nearly no training
data for events of comparable size are available, even when using
events across the globe. Therefore, for the largest events alternative
strategies need to be developed, for example, training using sim-
ulated data. Furthermore, the 25 s of waveforms used by TEAM
in the current implementation may, for a very large event, not cap-
ture the largest subevent. While we decided to use only 25 s of
event waveforms, as there is only insufficient training data of longer
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events, this window could be extended when developing training
strategies and models for the largest events.

5 C O N C LU S I O N

In this study we presented TEAM. TEAM outperforms existing
early warning methods in terms of both alert performance and
warning time. Using a flexible machine learning model, TEAM
is able to extract information about an event from raw wave-
forms and leverage the information to model the complex de-
pendencies of ground motion. We point out two further aspects
that make TEAM appealing to users. First, TEAM can adapt to
various user requirements by combining two thresholds, one for
shake level and one for the exceedance probability. As TEAM out-
puts probability density functions over the PGA, these thresholds
can easily be adjusted by individual users on the fly, for exam-
ple, by setting sliders in an early warning system. Secondly, deep
learning models typically exhibit large performance improvements
from larger training data sets (Sun et al. 2017) due to the high
number of model parameters. In our study this reflects in the bet-
ter performance on the twofold larger Japan data set. This indi-
cates that TEAM’s performance can be improved just by collecting
more comprehensive catalogues, which happens automatically over
time.
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S U P P O RT I N G I N F O R M AT I O N

Supplementary data are available at GJI online.

Figure S1: Overview of the transformer earthquake alerting model,
showing the input, the feature extraction, the feature combination,
the PGA estimation and the output. For simplicity, not all layers are
shown, but only their order and combination is visualized schemat-
ically. For the exact number of layers and the size of each layer
please refer to tables S5 and S6. Please note that the number of
input stations and the number of targets are both variable, due to
the self-attention mechanism in the feature combination. Ten in-
stances of this network are trained independently and the results
ensemble-averaged.
Figure S2: True positives (TP), false negatives (FN) and false posi-
tives (FP) for the events in the Italy test sets causing the largest shak-
ing. The methods are the transformer earthquake alerting model
without domain adaptation (TEAM base), the transformer earth-
quake alerting model (TEAM), the estimated point source algo-
rithm (EPS) and PLUM-based approach. In addition, a GMPE with
full catalogue information is included for reference. Values α were
chosen separately for each threshold and method to yield the high-
est F1 score for the whole test set, but are kept constant across all
events. TEAM with domain adaptation outperforms TEAM without
domain adaptation consistently across all thresholds. This indicates
that the domain adaptation not only allows TEAM to better predict
higher levels of shaking, but also to better assess large events in
general.
Figure S3: Precision, recall and F1 score at different PGA
thresholds for Italy including TEAM without domain adaptation.
Threshold values α were chosen independently for each method
and PGA threshold to yield the highest F1 score. The meth-
ods are the transformer earthquake alerting model without do-
main adaptation (TEAM Base), the transformer earthquake alert-
ing model (TEAM), the estimated point source (EPS) model and
the PLUM-based model. In addition the graph shows the perfor-
mance of C-GMPE, a GMPE with full catalogue information for
reference.
Figure S4: Warning time and hypocentral distance between sta-
tion and event for each true alert at F1-optimal α. The white area
corresponds roughly to the range of possible warning times and is
bounded by the 90th percentile of the times between first detection
of an event (i.e. arrival of P wave at the closest station) and first
exceedance of the PGA threshold in recordings at that approximate
distance.
Figure S5: Scenario analysis of the 30 October 2016 Mw = 6.5
Norcia earthquake, the largest event in the Italy test set. See Fig. 4
in the main paper for further explanations. The bottom row diagrams
for this scenario analysis use a 10 per cent g PGA threshold.
Figure S6: Scenario analysis of the 11 March 2011 Mw = 9.1
Tohoku earthquake, the largest event in the Japan data set. See
Fig. 4 in the main paper for further explanations. The bottom
row diagrams for this scenario analysis use a 2 per cent g PGA
threshold.
Figure S7: Training and validation loss curves for the Japan TEAM
model and the fine-tuning step of the Italy TEAM model. Each
line shows the loss curve for one ensemble member with colours
matching between training and validation curves. The models used
are determined by the minimum validation loss and are denoted by
black crosses. The models were evaluated after the training epoch
indicated on the x-axis, that is, the leftmost point of each curve
already includes one epoch of training.
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Figure S8: Predictions and residuals of the GMPEs derived in this
study. All PGA values are given as log units using m s–2. Every point
refers to one recording. Solid lines indicate running means, dashed
lines denote the running standard deviation around the running
mean. Orange crosses denote mean and standard deviations for
magnitude ranges with insufficient data to infer a continuous line.
Window sizes are 0.24 m.u./10 km (Italy) and 0.44 m.u./53 km
(Japan). Overall σ is 0.29 for Italy and 0.33 for Japan. The plotted
magnitude values have been offset by random values between –0.05
and 0.05 m.u. for increased visibility.
Figure S9: Calibration diagrams for Japan at different times after
the first P detection and different PGA thresholds. The confidence
is defined as the probability of exceeding the PGA threshold as pre-
dicted by the model. Each bar represents the traces with a confidence
value inside the limits of the bar. Its height is given by the accuracy,
the fraction of traces actually exceeding the threshold among all
traces in the bar. For a perfectly calibrated model, the confidence
equals the accuracy. This is indicated by the dashed line. We note
that accuracy estimations for the high PGA thresholds are strongly
impacted by stochasticity due to the small number of samples.
Figure S10: Calibration diagrams for Italy at different times after
the first P detection and different PGA thresholds. For a further
description see the caption of figure S9.
Table S1: Performance statistics for Japan. Probability thresholds
α were chosen to maximize F1 scores and are shown in the last
column. The AUC value does not depend on the threshold α. PGA
indicates the used PGA threshold.
Table S2: Performance statistics for Italy. Probability thresholds
α were chosen to maximize F1 scores and are shown in the last
column. The AUC value does not depend on the threshold α. PGA
indicates the used PGA threshold.
Table S3: Relative warning times of the algorithms in seconds.
Positive values indicate longer average warning times for the second
method, negative values shorter warning times. The difference in
average warning times is calculated from all event station pairs,
where both methods issued correct warnings. No value is reported
if this set is empty. We set α for TEAM and EPS to the optimal
value in terms of F1 score.
Table S4: Data set statistics for the full data set and the test set. The
lower boundary of the magnitude category is the 5th percentile of
the magnitude; this limit is chosen as each data set contains a small
number of unrepresentative very small events. The upper boundary
is the maximum magnitude. The lower part of the table shows how
often each PGA threshold was exceeded. An event is counted as

exceeding a threshold if at least one station exceeded this threshold
during the event. The number of exceedances in the test set for
Italy is disproportionally high compared to the number of events
in the test set. This is caused by the high seismic activity and the
higher station density in 2016. Traces for Japan always refer to six
component traces, while for Italy it refers to three component traces.
Table S5: Architecture of the feature extraction network. The input
dimensions of the waveform data are (time, channels). FC denotes
fully connected layers. As FC layers can be regarded as 0D convolu-
tions, we write the output dimensionality in the filters column. The
‘Concatenate scale’ layer concatenates the log of the peak ampli-
tude to the output of the convolutions. Depending on the existence
of borehole data the number of input filters for the first Conv1D
layer is 64 instead of 32 in the non-borehole case.
Table S6: Architecture of the transformer network. Please note that
even though the transformer in TEAM does not apply dropout,
we explicitly state this in the table, as transformers commonly use
dropout.

Please note: Oxford University Press is not responsible for the con-
tent or functionality of any supporting materials supplied by the
authors. Any queries (other than missing material) should be di-
rected to the corresponding author for the paper.

A P P E N D I X : DATA S O U RC E S

We obtained our Japan catalogue and waveforms from NIED and
the NIED KiK-net (National Research Institute For Earth Science
And Disaster Resilience 2019). For our Italy data set we use the
INGV catalogue and waveforms from the 3A (Istituto Nazionale
di Geofisica e Vulcanologia (INGV) 2018), BA (Universita della
Basilicata 2005), FR (RESIF - Réseau Sismologique et géodésique
Français 1995a), GU (University of Genova 1967), IT (Presidency
of Counsil of Ministers - Civil Protection Department 1972), IV
(Istituto Nazionale di Geofisica e Vulcanologia (INGV) 2006), IX
(Dipartimento di Fisica, Universitá degli studi di Napoli Federico
II 2005), MN (MedNet Project Partner Institutions 1990), NI (OGS
(Istituto Nazionale di Oceanografia e di Geofisica Sperimentale)
2002), OX (OGS (Istituto Nazionale di Oceanografia e di Ge-
ofisica Sperimentale) 2016), RA (RESIF - Réseau Sismologique
et géodésique Français 1995b), ST (Geological Survey-Provincia
Autonoma di Trento 1981), TV (Istituto Nazionale di Geofisica e
Vulcanologia (INGV) 2008) and XO (EMERSITO Working Group
2018) networks.
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