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1.  Introduction
Landslides pose a constant threat to human life, individual property, and infrastructure in rugged terrains 
globally. Thus, algorithms that can learn patterns from past landslides and provide early-warning signals are 
highly sought-after (Osanai et al., 2010). However, the performance of such algorithms critically depends on 
the quality of the existing landslide inventories. Some of these inventories are compiled by mapping land-
slides that cause damages, e.g., along roads (Pittore et al., 2018) and merging these mappings with existing 
data sets to create a knowledge base (Havenith et al., 2015). More contemporary mapping includes repeated 
satellite monitoring of landslide-prone regions to create complete landslide databases (Behling et al., 2014; 
Tanyas et al., 2017). Although event-based inventories include clear traces of the triggering mechanisms of 
landslides (von Specht et al., 2019), many other inventories, such as satellite-based, lack crucial information 
linking a given landslide to a specific triggering mechanism (Behling et al., 2014). The missing information 
about triggering mechanisms decreases the efficacy of these inventories in landslide hazard analyses, as this 
could introduce biases, for instance, inadvertently using earthquake-triggered landslides to assess landslide 
hazard for extreme rainfall (Ozturk et al., 2020). Hence, there is a need to identify triggers of landslides in 
exiting databases to make them usable in hazard models. Furthermore, as the trigger mechanisms get en-
graved into the landslide polygons' geometry (e.g., the outline of debris field), identifying geometric features 
that best classify a particular landslide will provide physical insights into the trigger mechanisms.

Geometric features of landslide polygons are suspected to reflect their trigger (Varnes, 1996). Coseismic land-
slides tend to have a lower length-to-width ratio than the rainfall-induced landslides due to their extended 
accumulation zone (Taylor et al., 2018). Topographic site effects amplify seismic signals at higher altitudes 

Abstract  Electronic databases of landslides seldom include the triggering mechanisms, rendering 
these inventories unusable for landslide hazard modeling. We present a method for classifying the 
triggering mechanisms of landslides in existing inventories, thus, allowing these inventories to aid 
in landslide hazard modeling corresponding to the correct event chain. Our method uses various 
geometric characteristics of landslides as the feature space for the machine-learning classifier random 
forest, resulting in accurate and robust classifications of landslide triggers. We applied the method to 
six landslide inventories spread over the Japanese archipelago in several different tests and training 
configurations to demonstrate the effectiveness of our approach. We achieved mean accuracy ranging 
from 67% to 92%. We also provide an illustrative example of a real-world usage scenario for our method 
using an additional inventory with unknown ground truth. Furthermore, our feature importance analysis 
indicates that landslides having identical trigger mechanisms exhibit similar geometric properties.

Plain Language Summary  There is a general shortage of high-quality spatiotemporal data 
sets on landslides. Even the existing inventories often lack critical information, such as the absence of 
details about the landslide-triggering mechanisms. These missing pieces of information render these 
databases useless for landslide modeling and analysis. Here, we propose a method that can estimate the 
likely triggering mechanism of landslides using the geometric properties of landslides' physical outlines 
provided in the existing inventories. Our method uses a machine-learning algorithm known as random 
forest, which is computationally simple to implement but, at the same time, highly robust and accurate. 
Our method's success indicates that landslides with similar triggers display similar geometric properties. A 
long-suspected fact that we anticipate landslide modelers will find useful.
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causing coseismic landslides to cluster around mountain ridges (Meunier et al., 2008; Rault et al., 2019). 
On the contrary, rainfall-induced landslides happen to connect to the local drainage network, which could 
be deceptive considering their extended accumulation (Marc et al., 2018; Ozturk et al., 2018). Accordingly, 
existing studies try to categorize landslide based on their triggers using (a) perimeter area indices (Pourgha-
semi et al., 2014); (b) similarity of a landslide planform to a circle or an ellipsoid (Samia et al., 2017; Taylor 
et al., 2018); and (c) scaling relationships between landslide dimensions and area (Milledge et al., 2014). 
However, it is challenging to apply these metrics for automatic classification of landslides due to the irreg-
ularities in landslide polygons and amalgamation of several types of landslides in the databases (e.g., Marc 
& Hovius, 2015).

Here, we present a machine-learning-based approach that uses the geometric features of landslide polygons 
to identify the underlying triggering mechanisms of landslides. To illustrate the effectiveness and accuracy 
of our approach, we apply it to several inventories spread over the Japanese archipelago with known trig-
gers. We anticipate that our robust yet straightforward approach will be transferable to build a landslide 
knowledge base. For future practical deployment of the approach, we also demonstrate the applicability 
of our method on a landslide inventory without any triggering information. Apart from providing a useful 
technique for landslide-trigger classification, our study also highlights that the information of triggering 
mechanisms is embedded in the geometric features of landslides.

2.  Data
In this work, we analyze seven landslide inventories that belong to six different regions of Japan (see Fig-
ure 1). We know the trigger mechanisms in six of the seven inventories, and we employ these invento-
ries with known triggers to test the efficiency of our method. For the seventh inventory, the triggering 
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Figure 1.  The map of Japan shows the geographical locations of the seven landslide inventories used in this work. (a)–(g) The Digital Elevation Model (DEM) 
of these inventories, and the adjoining panels list the region, trigger type, the origin of the event, and the number of landslides. The red color overlays on the 
DEM are a subset of landslide polygons of each inventory. Japanese Geospatial Information Authority (GSI) is the source of data in (a), (d), and (e); National 
Research Institute for Earth Science and Disaster Resilience (NIED) is the source of (f) and (g) and data in (c) and (b) is from Schmitt et al. (2018).
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mechanism is unknown, and we use it to demonstrate the practical implementation of the method as this 
scenario represents the most probable real-world usage of our method. We used the coseismic landslides 
associated with following earthquakes: the 2018 Hokkaido Eastern Iburi (MW 6.6); the 2008 Iwate-Miyagi 
Nairiku (MW 6.9), and the 2004 Niigata (MW 6.6). The Geospatial Information Authority of Japan (GSI) is 
the source of landslide inventory from the Hokkaido Eastern Iburi earthquake, while the source of the other 
two coseismic inventory is the repository created by Schmitt et al. (2017). GSI also provides rainfall-induced 
landslide inventories of the Fukuoka (July 2017) and Saka (July 2018) regions. We employ two more in-
ventories from the Kumamoto region provided by the National Research Institute for Earth Science and 
Disaster Resilience (NIED) of Japan. In one of these inventories, the underlying trigger is documented as 
rainfall; however, the second inventory lacks any triggering information. We will refer to this second inven-
tory as “unspecified.”

3.  Method
The landslide planforms (polygons) are one of the primary information in landslide inventories, and ge-
ometric features of these polygons are a rich source for understanding physical mechanisms underly-
ing a particular landslide (Kasai & Yamada, 2019; Milledge et al., 2014; Pourghasemi et al., 2014; Samia 
et al., 2017; Taylor et al., 2018). Therefore, we explored various geometric properties of landslide polygons 
and identified a subset to form the feature space for machine-learning-based automatized classification of 
landslides into two categories: earthquake-induced and rainfall-induced landslides.

We started by exploring a broad set of measures to quantify the geometric shapes of two-dimensional pol-
ygons extracted from the landslide planforms. In Table S1, we provide a complete list of these geometric 
measures. Using a combination of feature selection approaches (described in detail in Sections S2 and S3 of 
the Supporting Information), we were able to select seven features that lead to the best classification accura-
cy (Ambroise & McLachlan, 2002; Chandrashekar & Sahin, 2014; Friedman et al., 2009; Scott, 1992). These 

seven geometric features were area A, perimeter P, convex hull-based measure h
c

AC
A

 (Ac is the area of 

the convex hull fitted to the polygon and hereafter, we will refer Ch as convex hull measure), the ratio of area 

and perimeter 
A
P

, width of the minimum area bounding box W, minor axis sm, and eccentricity of the fitted 

ellipse e (Figure 2). As each feature has a different range of measurement values, we standardized the data 
by calculating z-scores of each feature.

For classifying landslides, we employ random forest, an ensemble-based learning method, which is known to 
be a highly robust and accurate for tasks such as classification and regression (Barnett et al., 2019; Biau, 2012; 
Biau & Scornet, 2016; Breiman, 2001; Kursa, 2014; Liaw et al., 2002; Rodriguez-Galiano et al., 2012; Roy & 
Larocque, 2012). Unlike the standard tree-based methods, where all the attributes are used for the best split 
of a node, in a random forest, only a random subset are used, and each decision tree is constructed using 
different bootstrap samples of the data (Breiman, 2001; Liaw et al., 2002). For the testing sample, each tree 
predicts the class independently, and the class having the majority vote is the class prediction of the sample. 
Below we briefly describe the steps in implementing random forest for our binary classification problem 
(Breiman, 2001; Friedman et al., 2009; Liaw et al., 2002; Zhang & Ma, 2012).

We build a decision tree Tb for each bootstrap sample b of the training set; let  1[ ]p
i ij jxX  represent a p-di-

mensional feature vector for data point i. Next, we recursively repeat the following two steps for each node 
of the tree: (a) select m variables among p and (b) split the node into daughter nodes that best separate the 
classes. As we carry out binary classification, i.e., classifying landslides into earthquake or rainfall triggered, 
the parent node q is split into two daughter nodes left l and right r. For this splitting, we employ the Gini 
index method, where Gini index for l and r are   2 2

1 21l l lG p p  and   2 2
1 21r r rG p p  respectively. Note plj 

is the probability of data points of class j in node l. For each split of a node, the Gini index of the subnodes 
should be less than the parent node, and can be achieved for a split sq of node q if we maximize the de-
crease in the quantity Δθ(sq) = Gq − ρrqGr − ρlqGl; where ρrq (ρlq) are the ratio of the number of data points 
in daughter nodes r (l) to the total number of points in the parent node q (Kuhn & Johnson, 2013; Zhang & 
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Ma, 2012). The two recursive steps (a) and (b) continue until a predefined criterion is satisfied. For example, 
we are left with one data point each in the daughter nodes, and no further splitting is possible.

Now if Cb(Yi) is the class prediction of the bth random forest tree for Yi point in the training set, then the 
class prediction of Yi is given by the majority vote in the set 1{ ( )}B

b iC Y ; where B is the total number of boot-
strap samples. In this setting, the importance of the kth feature in predicting the training set is given by 

     : ( )
1( ) ( )T q T D s k q qb b qI k s
B

; where ρq is ratio of number of points in the qth node to total number of 

points in training data and D(sq) = k implies that the feature involved in the split sq is kth feature. The I(k) in 
above formulation measures the average of weighted impurity decrease ρqθ(sq) over all the splits in the ensem-

ble of random forest trees. As ∑kI(k) = 1, we express the feature importance in percentage as 


( ) 100
( )k

I k
I k

.

4.  Results
For the first numerical experiment, we constructed testing and training set by combining the six inventories 
with known triggers to validate our approach (Figure 3). In this experiment, the total number of samples in 
the combined data set were ntotal = 26,501, with nrainfall = 10,305 and nearthquake = 16,196. We randomly resa-
mple the data to take an equal number of the earthquake and rainfall samples (nrainfall = nearthquake = 10,305) 
to avoid any class imbalance. Thus, we apply the algorithm on n = 2 × 10,305 = 20,610 samples. We also 
employed 1,000 runs of 10-fold cross-validation to swap training and testing sets to avoid the likelihood 
of results influenced by overfitting and smaller standard deviation in each case indicate more stable class 
performances. Note that splitting 20,610 landslide samples into 10-folds with an equal number of landslide 
samples in each fold leads to uneven numbers of earthquake and rainfall samples (20,610/10 = 2,061; an odd 
number). To tackle this issue, the 5-folds out of 10-folds have 2,062 samples (both earthquake and rainfall 
have 1,031 samples), and the remaining 5-folds have 2,060 landslide samples (each earthquake and rainfall 
have 1,030 samples). Thus, each iteration of 10-fold cross-validation has either ntrain = 18,548, ntest = 2,062 
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Figure 2.  Sample landslide planforms from (a) Earthquake-triggered, (b) rainfall-triggered inventories, (c) geometric 
features (left to right): width (W) of minimum area bounding box fitted to the landslide polygon, area (A) and perimeter 
(P) of the landslide polygon, minor (sm) and major axis (SM) lengths of an ellipse fitted to the polygon and convex hull-

based measure h
c

AC
A

 where Ac is the area of convex hull fitted to the polygon.
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(1,031 each rainfall-induced and coseismic) or ntrain = 18,550, ntest = 2,060 (1,030 each rainfall-induced and 
coseismic). Here, ntrain and ntest are the number of training and testing samples.

In the experiment with combined data, using  [ , , , , , , ]h m
AA P C W s e
P

X  as the feature vector, we achieved the 
mean classification accuracy of 85.73 ± 0.16%, where 86.15 ± 0.22% coseismic and 85.29 ± 0.19% rainfall-in-
duced events were classified correctly (see Figure 3a). Among all the geometric features, minor axis length 
sm has the highest feature importance of 21.42%, followed by the convex hull measure Ch (18.58%) (see 
Figure 3b). In Section S5, we provide further detailed analysis of these results, including additional metrics 
evaluating the algorithm's performance. Also, see Figures S6 and S7 and Table S2 in the SI. During the fea-
ture selection process, we removed highly correlated features (see Section S2). However, there is still a pos-
sibility of bias in feature importance due to multicollinearity in the geometric predictors discussed above. 
In Section S6, we present some additional analysis of bias in feature importance, and it indicates that the 
presence of collinearities (if any) does not impact the relative order of features in terms of their importance.

In the second experiment, we applied to our approach to individual inventories; we train the algorithm on 
five of the six inventories and predict the trigger of landslides in the sixth inventory. Hence, the training 
data has no information on the test data inventory—a situation similar to the one we anticipate this method 
will be used in the real world. We use the same set of geometric features as in Figure 3, and to avoid class 
imbalance, we keep the number of rainfall and earthquake samples the same by resampling the data. The 
method achieved over 85% classification accuracy for the Saka (ntrain = 14,976, ntest = 2,817), and Niigata 
(ntrain = 14,832, ntest = 8,780) region. 83.63% accuracy for the Kumamoto region (ntrain = 9,482, ntest = 5,564), 
75.59% for the Iwata region (ntrain = 20,610, ntest = 4,160), and 66.62% for the Hokkaido (ntrain = 20,610, 
ntest = 3,256), and 69.40% for Fukuoka (ntrain = 16,762, ntest = 1,924) regions (see Figure 4). In this exper-
iment, the model performed better classifying the rainfall-triggered inventories than the earthquake-trig-
gered inventories. Performance drops as low as 67% (approximately) in the case of Hokkaido. We repeat the 
run 1,000 times with a random selection of an equal number of earthquake- and rainfall-triggered landslide 
samples for training. The results are stable to changes in training samples, as the standard error is small 
(<0.65%). For further analysis of this experiment (see Section S5).
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Figure 3.  (a) Earthquake- and rainfall-triggered class accuracies using random forest classifier on geometric features 
of landslide polygons. The underlying data are a concoction of all the six inventories with available ground truth, where 
the training set has 18,548 and the test set has 2,062 samples. Within the test set, 1,031 samples are earthquake driven 
and 1,031 are rainfall driven. Using 1,000 runs of 10-fold cross-validation, we identified 86.15 ± 0.22% earthquake-
triggered landslides and 85.29 ± 0.19% rainfall-triggered landslides correctly. The plot in (a) is the output from one 
of the runs of the random forest classifier. The class probability represents the proportion of votes for a class in the 
ensemble of trees. The x axis is the index of the sample in the test set. (b) The importance of geometric features used in 
(a). The percentage corresponding to each feature represents the mean decrease in the tree leaf impurity over the full 
random forest such that the total percentage sums to 100.

(a)

(b)
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In the third experiment, we applied our method to the unspecified trigger inventory from the Kumamoto re-
gion (inventory (g) in Figure 1). Out of 612 landslides in the test case, 604 were classified as earthquake-in-
duced and 8 as rainfall-induced. We present a detailed analysis and discussion on this inventory and our 
results in Section S4.

5.  Discussion
We showed that using the random forest algorithm in conjunction with geometric features of landslide 
planforms is a robust technique for classifying landslides trigger mechanisms, and it can achieve excellent 
classification rates in a variety of settings. For example, while using the aggregate data from different re-
gions of Japan with varied geology and topography, this scheme achieved an accuracy of 85%. Whereas in 
the individual analysis of different regions, the classification accuracy went up as high as 92%. Moreover, 
we identified seven geometric features of landslide polygons that appear to be the best predictors of the 
underlying trigger mechanisms. Our results indicate that although there is diversity in the physical mech-
anisms producing landslide events, there is also a universality in these mechanisms that get embedded in 
the geometry of landslide planforms.

A possible reason for the emergence of this universality could be that both rainfall-induced and coseismic 
landslides in our databases consist of a mostly shallow landslide, e.g., debris flows (Kasai & Yamada, 2019; 
von Specht et al., 2019; Watakabe & Matsushi, 2019). Although coseismic rockslides tend to cut the moun-
tain ridge and slide through concave slopes likely on a lithological failure plain with relatively short accu-
mulation zones (Havenith, 2002), the number of such failures is limited in our databases. Shallow land-
slides, tend to flow through convex slopes, following the local morphology with extended accumulation 
that could increase the source area 10-fold (Hungr et al., 2014a; Uchida et al., 2013; Wang et al., 2015). 
Additionally, debris flows are prone to form concave planforms due to flow divergence along valley bottoms. 
Hence, more extended accumulation areas will result in elevated convex hull and area-perimeter ratio (Fig-
ure 2c) in our analyses. Although these shallow slope failures could be classified into the same landslide 
type (Hungr et al., 2014b; Varnes, 1996), our results indicate that the coseismic and rainfall-induced land-
slides form divergent planforms (Taylor et al., 2018). Hence convex hull based measure and area-perimeter 
ratios, together with the minor axis, contribute the most to the classification (see Figure 3), highlighting that 
rainfall and earthquake driven landslides have distinct geometry.
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Figure 4.  Predicting one of the six inventories while the random forest classifier was trained on the rest (five 
inventories), i.e., the classifier has no information on the data being predicted. The geometric features used are the 
same as in Figure 3. The deviation quoted in the accuracy percentage was calculated by running the classifier algorithm 
1,000 times (note cross-validation is not possible to implement in this configuration of testing and training data). For 
further analysis of these results see Figures S6 and S8.
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To further demonstrate the practical aspects of our approach, we also applied it to an unspecified trigger in-
ventory from the Kumamoto region (inventory (g) in Figure 1). The landslides in this inventory are mapped 
along the rims of the Aso Caldera; the active volcano Mount Aso shakes the surrounding area, frequently 
triggering landslides within its vicinity (Saito et al., 2018). Therefore, the majority of the unspecified land-
slides may be seismically triggered. Accordingly, our algorithm classified 604 as earthquake-induced and 8 
as rainfall-induced out of 612 landslides. Given that most of the landslides are classified as coseismic, we are 
confident in flagging this inventory as seismically triggered due to the volcanic activity.

The size of the databases we used is relatively small, i.e., it is challenging to apply more sophisticated image 
classification algorithms, such as the convolutional neural networks (CNN) to the problem at hand, as these 
algorithms require extensive training sets. In contrast, as illustrated above, the random forest achieved good 
enough accuracy to apply it to real-world settings even when training sets are relatively small. The ran-
dom forest is comparatively computationally inexpensive, its complexity in our case was ( log )n n , where 
n is the number of samples. Furthermore, the random forest is highly portable, as nowadays many ma-
chine-learning packages include an elaborate implementation of this algorithm (Pedregosa et al., 2011). 
Given these advantages, we anticipate that the landslide modeling community will find our scheme useful.

6.  Conclusion
Historic landslide inventories rarely include the triggering mechanisms of the observed landslides, a criti-
cal piece of information for landslide hazard and susceptibility models. We developed a method to fill this 
missing information by classifying existing landslides in digital databases of landslides. Our approach uses 
geometric characteristics of landslide polygons as features for the random forest classifier. The resulting 
algorithm is highly portable and accurate and can be applied to any region of interest with adequate training 
data from areas with similar tectonic and climatic features. We also identified seven geometric features of 
landslide planforms that appear to capture some universal patterns in the landslide-trigger mechanisms.

Furthermore, we applied our scheme to several different tests and training set configurations of the avail-
able data from Japan, and our results indicate this method is versatile, robust, and can classify landslide 
triggers with high accuracy. Envisioning that this method will be applied to individual inventories with un-
known triggers in practice, we prepared such a test application and demonstrated that the model classifies 
it as an earthquake driven inventory, a highly plausible classification based on the geographic location of 
the inventory.

Although our study is limited to the Japanese archipelago consisting of landslide samples triggered by 
either earthquake or rainfall, our method is computationally simple, portable, and robust enough to antici-
pate that the landslide research community will find it useful for classifying landslides in inventories from 
various other geographical regions and triggering mechanisms.
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