
1.  Introduction
The plasmasphere is a region of cold (<10 eV) and dense (10 − 104 cm−3) plasma encircling the Earth and 
corotating with it (Lemaire & Gringauz, 1998). It is located in the inner magnetosphere and extends several 
Earth radii (RE) into space out to a boundary known as the plasmapause (Carpenter, 1963; Gringauz, 1963). 
At this boundary, the plasma density decreases drastically by several orders of magnitude. The plasmas-
phere is a very dynamic region, and its shape and size are strongly dependent on solar and geomagnetic con-
ditions (Chappell et al., 1970a; O'Brien & Moldwin, 2003). The size and shape of the plasmasphere are con-
trolled by two regimes: sunward convection and corotation with the Earth (Darrouzet et al., 2009; A. ; Singh 
et al., 2011). The corotation regime dominates during quiet geomagnetic times, and the plasma trapped 
inside the closed magnetic field lines corotates with the Earth (Carpenter, 1966). At the same time, the 
plasmasphere is refilled from the dayside ionosphere (Goldstein, Sandel, Hairston, 2003; Krall et al., 2008; 
N. Singh & Horwitz, 1992). It has a nearly circular shape with a dusk side bulge (Nishida, 1966). Contrast-
ingly, the sunward magnetospheric convection begins to dominate during intervals of high geomagnetic 
activity (Carpenter, 1970; Chappell et al., 1970b; Goldstein, Sandel, Hairston, et al., 2003) and erodes the 
plasmasphere. The stronger the geomagnetic disturbance, the more severely the plasmasphere is eroded (as 
far as 2 RE during severe disturbances). The combination of convection and corotation electric fields causes 
the development of a plasmaspheric plume in the dusk local time sector (e.g., Grebowsky, 1970; Spasojević 
et al., 2003).

The plasmasphere is important for a number of physical processes. Its size and shape control the propa-
gation and growth of plasma waves, and affect wave-particle interactions, thus greatly influencing distri-
butions of energetic ions and electrons across a broad range of energies (e.g., Horne et al., 2005; Orlova 
et al., 2016; Y. Y. Shprits et al., 2016; Spasojević et al., 2004). The plasmaspheric material eroded during pe-
riods of strong convection is transported sunward and is observed near the dayside magnetopause regularly 
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(e.g., Chen & Moore, 2006; Lee et al., 2016). The enhanced plasma density at the dayside magnetopause can 
limit the rate of reconnection, thus affecting the global convection pattern (e.g., André et al., 2016; Borovsky 
& Denton, 2006). The plasma density is also a crucial parameter in a variety of applications in the field of 
space weather, such as spacecraft anomaly analysis due to spacecraft charging (e.g., Reeves et al., 2013) and 
GPS navigation (e.g., Mazzella, 2009; Xiong et al., 2016). It is therefore important to model the dynamics of 
the plasmasphere accurately in order to be able to reliably predict the aforementioned processes.

A number of physics-based and empirical models have been developed in recent decades. The most com-
monly used empirical models are the Carpenter and Anderson (1992), D. L. Gallagher et al. (2000), and 
Sheeley et  al.  (2001) models. The Carpenter and Anderson  (1992) model is based on measurements of 
electron density derived from radio measurements made with the sweep frequency receiver (SFR) on board 
the International Sun-Earth Explorer (ISEE-1) spacecraft and ground-based whistler measurements. It is 
a model of saturated density and, thus, represents the distribution of density after several days of refilling. 
The model covers the range from 2.25 to 8 in L-shell, and the interval of 0–15 MLT (magnetic local time). 
The model provides the mean value of density at different L-shells. D. L. Gallagher et al. (2000) developed 
the Global Core Plasma Model (GCPM), which combined several previously developed models (such as 
Carpenter & Anderson, 1992 and D. Gallagher et al., 1998) by means of transition equations, in order to pro-
vide a more comprehensive description of the inner-magnetospheric plasma. The models of plasmasphere 
and plasma trough developed by Sheeley et al. (2001) provide statistical averages of density based on density 
measurements obtained from the swept frequency receiver onboard the Combined Release and Radiation 
Effects Satellite (CRRES) by identifying the upper hybrid resonance frequency. The models cover all local 
times and 3 ≤ L ≤ 7. Moreover, Sheeley et al. (2001) also provide the standard deviation of density for both 
the plasmasphere and trough models to describe depleted and saturated density levels for various L-shells 
and MLT sectors for the trough.

Despite the extensive use of these empirical density models for the inner-magnetospheric simulations, 
they provide statistically averaged values and do not account for the changing geomagnetic conditions, and 
therefore, cannot produce reliable estimates of density during extreme geomagnetic events. The models 
described above do not include the dynamic dependence of plasma density on geomagnetic and solar wind 
conditions, and density is known to vary substantially during periods of strong geomagnetic activity (e.g., 
Moldwin et al., 1995; Park, 1974; Park & Carpenter, 1970).

This fact motivated the development of time-dependent models of plasma density. In recent years, a num-
ber of models utilizing neural networks and taking into account solar or geomagnetic conditions have been 
developed (Bortnik et al.,  2016; Chu, Bortnik, Li, Ma, Angelopoulos, et  al.,  2017; Chu, Bortnik, Li, Ma, 
Denton, et al., 2017; I. Zhelavskaya et al., 2017). In all these studies, the authors used feedforward neural 
networks with different architectures to model the plasma density in the equatorial plane or in 3D (in Chu, 
Bortnik, Li, Ma, Denton, et al., 2017). Feedforward neural networks are a powerful mathematical tool for 
finding nonlinear multivariate mappings from input to output variables, if such a mapping exists (J. A. 
Anderson, 1995; C. M. Bishop, 1995; Haykin et al., 2009). Bortnik et al. (2016) used density measurements 
inferred from the spacecraft potential (Li et al., 2010) on board the Time History of Events and Macroscale 
Interactions during Substorms (THEMIS) mission (Angelopoulos, 2009) to train their neural network mod-
el. They used a 5-h time history of Sym-H index and location as an input to the model. The Chu, Bortnik, 
Li, Ma, Angelopoulos, et al. (2017) model is based on the same density measurements. The inputs to the 
model were location and the time histories of Sym-H for the preceding 3 days, AL for 2 h, and F10.7 for 
3 days. Chu, Bortnik, Li, Ma, Denton, et al. (2017) built up on those two studies and developed a three-di-
mensional electron density (DEN3D) model based on density measurements from the plasma wave exper-
iment on board ISEE (D. A. Gurnett et al., 1978), the plasma wave experiment on board the CRRES (R. R. 
Anderson et al., 1992), the plasma wave instrument on board Polar (D. Gurnett et al., 1995), and the radio 
plasma imager (RPI) on board the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE). They 
used location and the time histories of Sym-H for the preceding 3 days, AL for 5 h, and F10.7 for 3 days as 
inputs to their model. The model of I. Zhelavskaya et al. (2017), Plasma density in the Inner magnetosphere 
Neural network-based Empirical (PINE) model, is based on the density measurements obtained from the 
upper-hybrid resonance frequency measured with the EMFISIS instrument on board the Van Allen Probes. 
This technique is known to be one of the most reliable methods for obtaining plasma density (Mosier 
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et al., 1973). The inputs to the model were the 96-h time history of Kp, 
AE, Sym-H, and F10.7 indices and the location given by L and MLT. They 
showed that neural networks-based models can accurately reproduce the 
dynamics of the plasmasphere (with correlation coefficient ≈ 0.95), and 
can successfully reproduce the asymmetric shape of the plasmasphere, 
including plume formation and erosion on the nightside.

Neural networks learn from data and are very powerful when data are 
abundant. However, when the data are limited or lacking, their perfor-
mance may significantly decrease (Priddy & Keller, 2005). This implies 
that neural networks can be difficult to apply to highly unbalanced re-
gression problems and to predict rare events. Extreme geomagnetic 
storms are an example of such events. Figure 1 shows the distribution of 
the Kp index over the training period of the PINE model (October 2012–
July 2016, I. Zhelavskaya et al. (2017)). As can be seen from the figure, its 
distribution is highly skewed. Observations for Kp > 7 are limited. In fact, 
there is not a single example of Kp = 9 during this period and, hence, in 
the training data set. That implies that NNs may not be reliable during pe-
riods of high geomagnetic activity, which are the most interesting events.

One possible way to overcome this limitation is to employ a different approach to model the plasmasphere 
dynamics during disturbed geomagnetic conditions. In particular, physics-based modeling is a more stable 
approach than neural network-based modeling for high Kp, since it does not depend on data availability. 
A number of physics-based models have been developed in recent years. Pierrard and Stegen (2008) used 
the kinetic exospheric approach to model the dynamics of the plasmasphere. V. Jordanova et al.  (2006) 
coupled their ring current-atmosphere interactions model (RAM) with a 3-D equilibrium code (SCB) and a 
cold plasma model (CPL). The RAM-SCB-CPL model calculates the cold electron density in the equatorial 
plane by following the motion of individual flux tubes, using a model of electric field which includes a coro-
tation potential and a convection potential that is chosen from either semi-empirical models (Stern, 1975; 
Volland, 1973; Weimer, 2005), or self-consistently calculated electric potential (Yu et al., 2015), mapped to 
the equatorial plane along the SCB field lines. Krall et al. (2016) coupled this model with SAMI3 (Sami3 
is Also a Model of the Ionosphere) to model the plasmasphere dynamics during two events in 2001. De 
Pascuale et al. (2018) used RAM-CPL to simulate equatorial plasmaspheric electron densities during two 
storm events in 2013, and compared them to in-situ measurements from the Van Allen Probes (Radiation 
Belt Storm Probes). Huba and Krall (2013) used the first-principles physics-based model SAMI3 to model 
the plasmasphere in 3D. They incorporated the neutral wind dynamo potential, the corotation potential, 
and a time-dependent potential from Volland (1973) and Maynard and Chen (1975) to model the convection 
potential for an idealized magnetic storm. An overview of various other physics-based models of the plas-
masphere based on the fluid and the kinetic approaches is given in Pierrard et al. (2009).

The physics-based models rely on a number of physical processes, which are usually parameterized em-
pirically in the model (e.g., refilling, electric and magnetic fields, etc.). Such parameterizations tend to 
be simplified as they are based on statistical averages over certain parameters (such as L-shell, MLT, or 
others). This can lead to inaccuracies in the physics-based model associated with such simplified assump-
tions. Therefore, it would be ideal to develop an optimal approach combining the advantages of both neu-
ral network- and physics-based models, namely the stability of physics-based models during geomagnetic 
storms, and the ability of neural networks to reproduce realistic density distributions for various events as 
they are independent of other parameterizations, such as refilling, magnetic and electric field models, etc\
enleadertwodots

One possible way to combine the models is to employ data assimilation. Data assimilation is a mathematical 
tool designed for combining a model with typically sparse observations in an optimal way (Kalman, 1960). 
In data assimilation, the information provided by both the physical model and the available observations is 
used to find the most likely estimate of the unknown true state of a dynamic system, while taking into ac-
count their uncertainties. The sequential Kalman filter (Kalman, 1960) is one popular algorithm of data as-
similation. It uses predictions and observations in a recursive manner to improve the system measurements. 
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Figure 1.  Distribution of Kp over October 2012–June 2016 (the training 
time interval for the PINE model). The cadence of bins is 1/3, that is, the 
same as the cadence of the Kp index. PINE, Plasma density in the Inner 
magnetosphere Neural network-based Empirical.
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It has numerous applications in technology, including the navigational system on Global Positioning Sys-
tem devices and the Apollo mission (Grewal & Andrews, 2010), image processing (Bresson et al., 2015; 
Salti et al., 2014), ocean modeling, operational weather forecasting (Kalnay, 2003; Lahoz et al., 2010; Soren-
son, 1985), and reconstruction of the global state of the radiation belts (e.g., Y. Shprits et al., 2007, 2013).

In this study, we adjust the Kalman filter technique of data assimilation to combine a neural network- and 
physics-based models in an optimal way. We use a version of the four-dimensional physics-based Versatile 
Electron Radiation Belt code (Aseev et al., 2016; Y. Y. Shprits et al., 2015), VERB-CS code (CS stands for 
“Convection Simplified”), to model the plasmasphere dynamics in the equatorial plane. The physics-based 
VERB-CS code (Aseev & Shprits, 2019) was initially developed to model the dynamics of the ring current, 
but can be adjusted to model the plasmasphere dynamics as well, which is done in this study. We treat the 
output of the neural network model PINE (I. Zhelavskaya et al., 2017) as “observations” of plasma density 
in the data assimilation setup. PINE is purely data-driven and produces realistic density reconstructions 
that have a remarkably similar distribution to actual density measurements and reproduces the shape of 
the plasmasphere bulge and plumes. To ensure that the models perform well quantitatively and reproduce 
point satellite measurements accurately, we compare their output to in-situ electron density measurements 
obtained from the Van Allen Probes for an 18-month out-of-sample interval from June 30, 2016 to January 
01, 2018. Additionally, we compare the global evolution of plasma density predicted by the models with the 
global He+ images obtained from the IMAGE EUV to validate the models qualitatively and ensure that they 
reproduce the global dynamics of the plasmasphere correctly.

The paper is structured as follows: In Section 2, we describe the data used for training and validation of 
the models, that is, in situ density measurements from the Van Allen Probes and the plasmapause position 
derived from the IMAGE EUV. We describe the neural network, the physics-based VERB-CS code, the Kal-
man filter and its modification that is used to develop the assimilative model in Section 3. In Section 4, we 
present the results obtained with the models for the Halloween storm in 2003 and several events from 2001, 
and also for a long-term density reconstruction. Finally, in Sections 5 and 6, we discuss implications and 
possible improvements to the models developed in this study.

2.  Data
All magnetic field, solar wind data, and geomagnetic indices have been downloaded from the OMNIWeb 
data service. We have used the density data set obtained with the NURD (Neural-network-based Upper 
hybrid Resonance Determination) algorithm (I. Zhelavskaya et al., 2016) for the period from October 01, 
2012 to July 01, 2016, to train the neural networks. I. Zhelavskaya et al. (2016) employed feedforward neural 
networks to identify the upper hybrid resonance bands in the dynamic spectrograms made with the Electric 
and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) suite (Kletzing et al., 2013) onboard 
the Van Allen Probes satellites and calculated the plasma density from the upper-hybrid resonance frequen-
cy. The electron density data set is publicly available at the GFZ Data Services (I. Zhelavskaya et al., 2020). 
The Van Allen Probes provide electron density measurements for all local time sectors and L ∼ 2–6 RE. We 
use density measurements for a period of June 30, 2016–January 1, 2018 (obtained with the same method) 
to quantify the performance of all the models developed in this study in Section 4.3.

To validate the global output of our models, we use the plasmapause locations derived from the EUV instru-
ment on board the IMAGE satellite (Sandel et al., 2000). The IMAGE EUV instrument provided the global 
images of the plasmasphere for the first time. These images can be used to derive the location of the plas-
mapause by considering the outermost sharp edge of He+ (Goldstein, Spasojević, et al., 2003). Goldstein, 
Sandel, Forrester, et al. (2003) showed that the sharp edge of He+ in the EUV images corresponds to the 
actual location of plasmapause. We use the density threshold of 40 ± 10 cm−3 as an approximation of the 
plasmapause position in the global reconstructions of density produced by the models, which corresponds 
to the lower sensitivity threshold of the IMAGE EUV instrument (Goldstein, Sandel, Forrester, et al., 2003). 
It is worth noting that the IMAGE mission operated in 2000–2005, which was a different solar cycle com-
pared to the one we used in the training of the neural network. Therefore, the IMAGE EUV images are the 
best available data source for validating the global evolution of the shape of the plasmasphere produced by 
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the models developed in this study. The plasmapause database derived from the IMAGE EUV instrument 
was obtained from http://enarc.space.swri.edu/EUV/.

3.  Methodology
3.1.  The Neural Network-Based Model of Plasma Density PINE

We utilize the output of the PINE model (I. Zhelavskaya et al., 2017) as “observations,” which we combine 
with the physics-based VERB-CS code modeling the evolution of plasma density in the data assimilation 
setup. I. Zhelavskaya et  al.  (2017) used feedforward neural networks to model the global plasmasphere 
dynamics in the equatorial plane. They used geomagnetic parameters, their time histories, and the loca-
tion given by L and MLT as input variables to the model. The plasma density in the equatorial plane of the 
Earth was the only output. The neural networks were trained on a 4-year plasma density data set obtained 
from the Van Allen Probes plasma wave measurements. These density measurements were derived using 
the Neural-network-based Upper hybrid Resonance Determination (NURD) algorithm for automatic in-
ference of the electron number density from plasma wave measurements made by the Van Allen Probes 
(I. Zhelavskaya et al., 2016). The model was extensively validated by means of K-fold cross validation to 
ensure that it does not overfit and generalizes well on unseen data. Furthermore, its global output was 
compared to the collection of global images of the He+ distribution in the plasmasphere obtained with the 
EUV instrument of NASA's IMAGE mission to ensure that the model produces reasonable global density 
reconstructions (e.g., Figures 4, 8, and 9 in I. Zhelavskaya et al. (2017)). The model works well for quiet and 
moderately disturbed events (Kp < 7), but its performance is limited during strong geomagnetic storms due 
to the lack of such examples in the training data set.

In the original study, the authors used K-fold cross validation with K = 5 to train and validate the model. 
They used this procedure also to find the optimal inputs to the model (for more details, please see Appen-
dix A). The training and validation datasets were constructed by randomly dividing the whole data set into 
K = 5 subsets, where in each iteration, one subset was left aside and used to validate the model (not used 
for training), while the rest of the K – 1 subsets were used to train a neural network. It should be noted 
that while the division of data into training, validation, and test sets is carried out in a random fashion in 
that study, the more secure way to perform splitting for the time series is to divide data sequentially. The 
sequential division guarantees independence of all three subsets, while random division may produce op-
timistic evaluations on the validation and test sets for the events outside of the time period of the data set. 
Nonetheless, the network resulting from training conducted using the random division would still have a 
good performance when reconstructing the past events.

In this study, we expand the analysis performed in I. Zhelavskaya et al. (2017) by conducting the K-fold cross 
validation procedure using sequential division of data into training and validation sets. We use an approach 
similar to the one implemented in I. S. Zhelavskaya et al. (2019). In that study, the authors implemented 
an approach incorporating both sequentiality and randomness in splitting the data into training and vali-
dation sets. The motivation behind that is that, as discussed above, random division into folds may lead to 
optimistic evaluations on the validation set, since such splitting causes a correlation between the training 
and validation sets. The sequential splitting, in turn, may lead to a significantly different distribution of the 
target variable in the training and validation sets. For example, it may occur that the validation or training 
set does not contain periods of high geomagnetic activity due to the way the data were split. Therefore, I. S. 
Zhelavskaya et al. (2019) implemented an intermediate solution. They first split the data into 35-day blocks 
sequential in time, and then assigned these 35-day blocks randomly to the cross-validation folds for either 
training or validation. The reason for using blocks of a 35-day length is to avoid the possible effect of the 
27-day recurrence caused by the solar rotation.

We apply the K-fold cross validation procedure described above to the density measurements from the Van 
Allen Probes. The obtained results are described in detail in Appendix A. In summary, we confirm the find-
ings of the original study of I. Zhelavskaya et al. (2017). The models based on the geomagnetic indices yield 
the best performance, compared to the models based only on solar wind or on both solar wind and geomag-
netic indices. As discussed in the original study, the models based on the solar wind inputs are less accurate 
than models based on geomagnetic indices. At the same time, the models based on both data sources tend 
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to overfit the training data. We find that the optimal model is based on the 48-h time history of geomagnetic 
indices AE, Kp, Sym-H, and also F10.7. The model also includes the location input given by L and MLT. 
This updated version of the PINE model is used in this study. Further in the paper, we apply the model to 
the out-of-sample period from June 30, 2016 to January 01, 2018 (which was not used neither in training or 
validation) and test the model performance during that interval.

3.2.  The Physics-Based Model of Plasma Density VERB-CS

The evolution of the plasmasphere density in the equatorial plane can be described by the following 
equation:

 
  

   
  R
n n nv v S L
t R� (1)

where n denotes the plasma density; ϕ is the MLT; R is the radial distance in the equatorial plane; vϕ and 
vR are drift velocities in MLT and radial distance, respectively; S is the source of charged particles; and L 
includes loss processes. The second and third terms describe the transport of the plasmaspheric particles 
due to the E × B drift. Refilling is taken into account by the source term S, and the loss term L accounts for 
the loss of the particles into the interplanetary medium.

We calculate E × B drift velocities using the dipole magnetic field approximation and assuming that the 
electric field is a superposition of co-rotation, convection, and subauroral polarization stream (SAPS)-driv-
en electric fields. The co-rotation electric field is calculated from the electrostatic potential:

   CR
CR CR E, 92kV / RA A

r
� (2)

To calculate the convection electric field, we use the Kp-dependent Volland-Stern electric field model (May-
nard & Chen, 1975; Stern, 1975; Volland, 1973):

    
 

VS MC MC 2
0.045sin ,

1 0.159Kp 0.0093Kp
A r A� (3)

We use a shielding parameter γ = 1.8 instead of standard γ = 2, as our experiments show that using γ = 1.8 
agrees better with observations (more details are provided in the Results and Discussion sections). We in-
clude the effect of SAPS in the model by using the Kp-dependent model of the SAPS electric field developed 
by Goldstein et al. (2005). This model quantitatively includes the average properties of SAPS reported in 
Foster and Vo (2002). The SAPS has an effect on the location of the dusk side plasmapause and influences 
the shape and location of plasmaspheric plumes.

To account for refilling, we use long-term refilling rates of equatorial electron density from Denton 
et al. (2012). These rates were inferred from passive radio emissions measured by the IMAGE RPI instru-
ment during quiet geomagnetic times and are valid for the range L = 2 to 9. The model provides median, 
mean, first and third quartiles of the refilling rates. In our study, we have used the median refilling rate: 

 
    

 

e,eq 2
10log 2.22 0.006 0.0347

dn
L L

dt
 (in cm−3/day). Our experiments show that VERB-CS achieves a 

better performance when refilling rates are multiplied by a factor of 1.75. The model without such increased 
refilling rates showed significant underestimation of density values on the night side. The increased refill-
ing rates improved that aspect of the model and therefore in this study we use refilling rates from Denton 
et al. (2012) multiplied by a factor of 1.75. Additional experiments are shown in supporting information 
(Figures S12–S15 and description therein).

The escape of particles from the plasmasphere into the interplanetary medium through the magnetopause 
can be described by the loss term L of the form




nL� (4)
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where τ is a lifetime parameter. To model magnetopause loss, we set τ close to 0 outside of the magneto-
sphere, and to a very large number inside the magnetosphere. The boundary of the magnetosphere, the 
magnetopause, is calculated using the Shue et al. (1998) model.

To solve Equation 1 numerically, we employ the VERB-CS code (Aseev & Shprits, 2019). The VERB-CS code 
models electron transport in ambient electric and magnetic fields and loss due to interaction with plasma 
waves. The VERB-CS code solves the two-dimensional advection equation that describes the particle drift, 
and we have extended the code to solve Equation 1 by introducing losses to the magnetopause and the 
source term S.

Equation 1 must be complemented by initial and boundary conditions. To specify the initial conditions, 
we use the empirical density model of Sheeley et al. (2001) and the model of plasmapause by Carpenter 
and Anderson (1992). The models by Sheeley et al. (2001) provide the mean and the standard deviation of 
measurements for the plasmasphere and trough, and are valid for 3 ≤ L ≤ 7 and all local times. To extend the 
density to lower L-shells, we use the density at L = 3 for L < 3. We start our simulations using the VERB-CS 
code during geomagnetically quiet intervals (Kp ≤ 2) and therefore assume that the plasmasphere is sym-
metric in MLT at the beginning of each simulation.

The boundary conditions are periodic in MLT and constant in R. They are set at R0 = 1.75 and 10 RE with 
0.2-RE and 0.5-h grid steps in radial distance and MLT, respectively. We use the Sheeley et al. (2001) model 
to set the inner boundary conditions at 1.75 RE. We use a statistical model of electron plasma sheet density 
developed by Dubyagin et al. (2016) to set the outer boundary conditions at 10 RE. The model is valid for the 
nightside MLT sectors and distances between 6 and 11 RE and is based on ∼ 400 h of particle measurements 
from the THEMIS mission. The model is parameterized by the average of the solar wind proton density over 
4 h and the average of the southward component of interplanetary magnetic field (IMF BS) over 6 h. We 
assume that the electrons at 10 RE reside on the open drift paths at 10 RE on the dayside and set the outer 
boundary conditions to 0 from 6 to 18 MLT.

The plasmasphere is known to reach saturation after prolonged periods of quiet geomagnetic conditions 
(Lawrence et al., 1999; Park, 1974; Su et al., 2001; Xiao-Ting et al., 1988). To account for this effect, we have 
imposed a saturation upper limit of density on the code output. We have used the saturated density model 
of Carpenter and Anderson (1992). It is worth noting that this model provides an average of plasmasphere 
density observed after periods of relatively quiet geomagnetic conditions for at least 62 h, rather than a 
theoretical upper limit. However, the ease of use of this model makes it a good choice for the purposes of 
this study, namely to illustrate the application of data assimilation to combining neural network and phys-
ics-based models together in an optimal way.

3.3.  The Assimilative Model

In this section, we outline the standard Kalman filter technique and then describe our modifications to it 
and the application of the modified method to the fusion of the physics-based and empirical models of the 
plasmasphere.

The Kalman filter is a popular technique for data assimilation. It is commonly used to adjust model predic-
tions in accordance with available, typically sparse, observations, while taking into account uncertainties 
of both the model and observations (Kalman, 1960). In this study, we adapt the Kalman filter technique 
to combine the predictions of two models, namely the physics-based VERB-CS code and the neural net-
work-based PINE model. For this purpose, we consider the VERB-CS code as a model that propagates a 
state of the system in time. The output of the data-driven PINE model, in turn, is used as observations. A 
description of the Kalman filter technique is given in Section 3.3.1 and the assumptions and modifications 
that we made to the standard Kalman filter approach are described in Section 3.3.2. Additional details of the 
implementation of the method are given in Section 3.3.3.

3.3.1.  The Kalman Filter

The Kalman filter consists of two steps: the prediction step and the update step. These steps are repeated 
in cycles. In the prediction step, the model is used to issue predictions at the current time step tk, using the 
previous state of the system, if available. The output of this step is called the forecast of the system. In the 
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update step, this forecast is updated in an optimal way, given the observations at time tk. The output of this 
step is called the analysis. At this point, the cycle of the Kalman filter is complete and the next iteration can 
start at time tk+1. Before describing each of the steps in more detail, several notations need to be introduced.

Let us denote the model forecast of the density at time tk by f
kn . Hereinafter, subscript k is an index of time 

tk, bold lowercase letters denote vectors that are obtained after discretization of a physical quantity, and 
bold upper-case letters denote matrices. Please note that all discretized variables are assumed to be vectors.

If Equation 1 is linear, its discretized version can generally be written as

  1 1M ,f a
k k kn n� (5)

where superscripts f and a denote forecast and analysis, respectively, and Mk−1 is a matrix, also referred to 
as the model matrix or the model operator. This matrix can be obtained, for example, by applying a finite 
difference method to (1). At a given time tk−1, the model matrix Mk−1 propagates the current state of the 

system 1
a
kn  to the next state in time f

kn . The analysis 1
a
kn  is the best estimate of the state vector at time tk−1, 

based on the model and the available observations. The evolution of plasma density can be modeled by 
sequentially solving Equation 5 for k = 1, 2, ….

If applied to a real (“true”) state 1
t
kn  of the system, the model matrix propagates 1

t
kn  with some error M

kε . 
This error can originate from the uncertainties of the model, such as errors due to missing physical process-
es in the model or numerical errors due to discretization of the continuous Equation 1. It is also referred to 
as the model error:

  1 1M .t t M
k k k kn n ε� (6)

The vector M
kε  is usually assumed to be a Gaussian white-noise random variable with zero mean and 

covariance matrix Qk, which is referred to as the model error covariance matrix (i.e.,    0M
k  and 

   M MT
k k kQ , where  is the expectation operator). To correct the model error   M

kE , we can exploit 

the information that observations provide. Given a true state of the system t
kn , that is defined on the same 

grid as the forecast f
kn , the measurements obs

kn  can be represented as follows:

  ,obs t obs
k k k kn H n ε� (7)

where Hk is referred to as the observation operator and obs
kε  is the observation error. The role of the observa-

tion operator is to convert the true state from the model grid onto the grid of observations (these two grids 

are generally different). The observation error obs
kε  can be associated with the measurement technique. Note 

that when we treat the output of the data-driven PINE model as observations, the error obs
kε  includes errors 

of the PINE model predictions. The typical assumption is that vector obs
kε  is a Gaussian white-noise random 

variable with zero mean and covariance matrix Rk, also referred to as the observation error covariance ma-

trix (i.e.,    0obs
k  and    obs obsT

k k kR ).

The Kalman filter then combines the model forecast f
kn  with observations obs

kn  to obtain a prediction that is 
closest to the truth in the least squares sense, given the information about the model and observation error 
covariance matrices Qk and Rk. The optimal combination of the forecast and observations is referred to as 

analysis, a
kn , as mentioned above. The analysis a

kn  at time tk can be obtained from the analysis 1
a
kn  at the 

previous time step by sequentially solving the equations that constitute the Kalman filter described below.

3.3.1.1.  Prediction Step

The prediction step advances the forecast and the forecast error covariance. First, the analysis 1
a
kn  obtained 

at time tk−1 is propagated to the next time tk using the model matrix Mk−1:
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  1 1.f a
k k kn M n� (8)

Then, the forecast error covariance matrix f
kP  is updated according to:

    1 1 1 1,f a T
k k k k kP M P M Q� (9)

where a
kP  is the analysis error covariance matrix. The matrices f

kP  and a
kP  are estimates of forecast and anal-

ysis errors, respectively. The forecast error covariance matrix f
kP  is used later in the update step.

3.3.1.2.  Update Step

In the update step, the forecast obtained in the previous step is updated according to observations:

    ,a f obs f
k k k k k kn n K n H n� (10)

where Kk is referred to as the Kalman gain. The Kalman gain is a matrix of optimal weights that is used to 
correct the forecast based on available observations. The last term in the equation represents the correction 
to the forecast given the observations, weighted by the Kalman gain. The Kalman gain Kk is updated at time 
tk as follows:

  
1
.f T f T

k k k k k k kK P H H P H R� (11)

Finally, the analysis error covariance matrix a
kP  is updated as follows:

  .a f f
k k k k kP P K H P� (12)

This finishes the iteration k of the Kalman filter.

3.3.2.  Adaptation of the Kalman Filter to This Study

In this section, we describe the modification of the Kalman filter that is done in this study and discuss its 
differences with the standard Kalman filter.

The nonlinear term S in Equation 1 does not allow us to write the discretization of the equation in the 
form 8. The nonlinearity of the equation requires the extension of the Kalman filter Equations 8 and 9 by 
linearizing the model operator. In order to simplify the implementation of the Kalman filter, we avoid the 
linearization of the model operator by running one step of the VERB-CS code instead of solving Equation 8. 

In this step, we obtain the plasma density forecast f
kn  using a previous (optimal) state 1

a
kn  obtained in the 

update step (Equation 10) as initial condition for the VERB-CS code. The VERB-CS code solves the partial 
differential Equation 1 numerically by discretizing density n, drift velocities vφ and vR, sources S, losses L, 

and spatial and temporal derivatives 



v

, 

 Rv

, and 

 tv

. Discretization allows us to consider plasma density 

and other parameters at discrete times tk, where k is an integer, on the grid consisting of discrete values of 
MLT and R. Note that our approach is different from the standard Kalman filter because we use a nonlinear 
forward model instead of the linearized equation.

To update the forecast error covariance matrix f
kP  in Equation 9, we obtain the model matrix Mk−1 by dis-

cretizing Equation 1 without the source term S, which removes the nonlinearity from Equation 1. For this, 
we use the first-order explicit upwind finite difference scheme with a time step that automatically adapts to 
changing drift velocities to satisfy the Courant stability condition. The forward model includes the re-filling, 
therefore the refilling is not accounted for only in the calculation of the forecast error covariance matrix. In 
other words, we use a model with a source term in the prediction step and a model without the source term 

in the covariance matrices calculation step. Such an implementation, in which the forecast values f
kn  are 

obtained using the forward model with the refilling and a covariance matrix is calculated without taking the 
refilling into account, may introduce bias into the physics-based model and change the error distributions, 
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making it suboptimal. As compared to our modification, the standard Kalman filter uses the same model 
in the prediction step and in the covariance matrices calculation step. It is worth noting, however, that 

neglecting the refilling rates in the update of the forecast error covariance matrix f
kP  may not significantly 

affect the optimality of the Kalman filter, if the step of data assimilation is chosen to be much smaller than 
the characteristic time of the refilling (that is on the order of days, Denton et al., 2012 and references there-
in). As described in the next section, the assimilation is performed every 4 h in this study, which is a much 
smaller time step than the characteristic time of the refilling.

The primary goal of this study is to demonstrate whether data assimilation can be used to combine a neural 
network and a physics-based model of the plasmasphere and what limitations it has, and therefore, we do 
not aim at the most accurate implementation of the Kalman filter here but make some assumptions. In 
particular, the main motivation for using different versions of the model in the prediction and covariance 
matrices calculation was that the usage of a linearized forward model may introduce additional bias since it 
is not accurate due to the absence of the source term. Therefore, we do not use the linearized version of the 
forward model in order not to introduce additional errors into the model. Furthermore, the distributions of 
the model and “observations” (neural network output) are not Gaussian in the problem at hand. The under-
lying assumption of the standard Kalman filter is that both the model and observational errors obey Gaussi-
an distribution and are unbiased. Since the approach we used is suboptimal in that sense, we do not want to 
introduce additional bias in the prediction step by using linearization. In the future, we will consider filters 
that account for non-Gaussian distributions, such as variational methods (Courtier et al., 1993, 1994) or 
ensemble Kalman filters (Evensen, 1994, 2009). We will also test if the usage of the extended Kalman filter 
(Goodwin & Sin, 1984; Ide et al., 1997) leads to improvements, as it accounts for nonlinearities in the model.

3.3.3.  Further Details of Implementation

In this study, the assimilation of the VERB-CS and the PINE model output is performed every 4 h. This 
time allows the physics-based code to evolve the state of the system starting from the initial “blended” 
state. We note that this time was chosen empirically. Comparison with other times (3 and 5 h, not shown 
here) showed that using 4 h provides a slightly better performance. The assimilation is not performed when 
Kp > 6 and for one day after the storm, that is, only the output of the VERB-CS code is taken into account 
during the storm times and shortly after them, and the PINE output is not considered. This is done in or-
der to avoid possible errors that can be propagated from the neural network model, as it is not reliable for 
Kp > 6.

Another aspect that should be noted is the implementation of the observation operator Hk. This operator 

transforms the forecast of the model f
kn  from the model grid onto the grid of observations (see Equation 7). 

In our case, the model grid is that of VERB-CS, and the observations grid is that of the PINE model. As 
discussed in the previous section, the spatial grid of VERB-CS ranges from 0 to 24 h with 0.5-h grid step in 
MLT and from 1.75 to 10 RE with 0.2 RE grid step in radial distance. In order to obtain the global output using 
the PINE model (i.e., on the whole equatorial plane and not just at specific L and MLT), we need to assume 
a spatial grid, on which the output is produced. The PINE model is valid for all MLT sectors and from 1.75 
to 6.15 RE in radial distance due to the use of density measurements from Van Allen Probes for training. 
Therefore, the lower and upper boundaries of the PINE grid are set at 1.75 and 6.15 RE in radial distance, 
respectively. In order to simplify the implementation of the modified Kalman filter, we use a spatial grid of 
the same resolution as the VERB-CS, namely with 0.5-h and 0.2-RE grid steps in MLT and radial distance, 
respectively. Thus, the spatial grid of PINE is a subset of the VERB-CS grid, which makes it easier to assim-
ilate the PINE output. Hk is then defined as a matrix consisting of zeros and ones, where 1 corresponds to 
an element of this matrix when the model's (VERB-CS′) grid point coincides with the observation (PINE's) 
grid point and 0 otherwise. The number of rows in Hk is the number of grid points of PINE, and the number 
of columns is the number of grid points of VERB-CS.

In the standard formulation of the Kalman filter, the model and observation error covariance matrices are 
assumed to be known. That is rarely the case in practice, and simple approximations are typically made. 
One approach is to set up the model and observation covariance matrices Qk and Rk as diagonal matrices 
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with elements  
2m fn  and  

2obs obsn , respectively (Kondrashov et al., 2011). αm and αobs are referred 

to as model and observation errors, respectively, and are usually empirically chosen constants. If they are 
chosen to be equal to each other, both model and data contribute equally to the result of data assimilation, 
otherwise the result is dominated by either data or model. This approach is used in a number of studies in 
space physics, in particular for the radiation belt reanalysis (Cervantes et al., 2020; Daae et al., 2011; Keller-
man et al., 2014; Y. Shprits et al., 2013). In this study, we employ an approach that builds on and extends this 
methodology. We use the same form of the model and observation covariance matrices Qk and Rk, namely, 

diagonal matrices with elements  
2m fn  and  

2obs obsn , respectively. However, we choose the model and 

observation errors, αm and αobs, to depend on the plasmapause position (instead of just being constant). 
Specifically, we assign different values to αm and αobs depending on whether nf and nobs are located inside 
or outside the plasmapause. The plasmapause is calculated according to a fixed density threshold of 40 cm−3 
(the densities larger than the threshold are assumed to be inside the plasmasphere, otherwise, outside). We 

assign the model error inside the plasmapause  inside 0.397m , the model error outside the plasmapause 
 outside 0.463m , the observation error inside the plasmapause  inside 0.335obs , and the observation error out-
side the plasmapause  outside 0.333obs . The description of how these values were obtained is presented in 
Appendix B) Using such an approach, we obtain a better agreement between the assimilative model and 

observations, compared to using single constants for  
2m fn  and  

2obs obsn , respectively. However, we 

choose the model and observation errors, αm and αobs.

4.  Results
In this section, we perform several tests to compare the performance of the PINE, VERB-CS, and assimila-
tive model, which is henceforth referred to as the Assimilative Magnetospheric Plasma density (AMP) mod-
el. We compare the outputs of the models during the 2003 Halloween storm and a number of events during 
March–June 2001. We validate the models by comparing the modeled and observed shape of the plasmas-
phere by using the plasmapause location obtained from the IMAGE EUV instrument. We also perform a 
long-term density reconstruction for the period of June 30, 2016–January 1, 2018, using all the models. For 
the long-term run, we validate the models by comparing their output to the in-situ density measurements 
from RBSP-A. This period was not used in the training of the PINE model. The setup of all the models used 
in these tests is described in Section 3.

4.1.  Test 1: Halloween Storm 2003

The first test we perform is to compare the performance of the models for the 2003 Halloween storm. 
The Halloween storm occurred from late October to early November 2003 and was one of the strongest 
solar storms observed during the satellite era. During this period, a series of energetic eruptions occurred, 
including two CMEs (coronal mass ejections), which struck the Earth, one shortly after another, with an 
extremely short (less than a day) Sun-Earth shock transit time (e.g., Gopalswamy, 2006). At the Earth, Kp 
reached 9 and Dst nearly −400 nT. Fortunately, the plasmapause locations derived from IMAGE EUV are 
available during some parts of the storm, which makes it an ideal event for testing the models for extreme 
geomagnetic conditions.

Figure 2 shows the global electron density reconstruction during the Halloween storm 2003 using the PINE 
(left column), VERB-CS (middle column), and assimilative (right column) models. The first four rows show 
the global snapshots of density, and the bottom row shows the Kp index during the event. The first four rows 
correspond to the specific times during the event when the plasmapause from the IMAGE EUV instrument 
was available. These times are marked with the red lines and labels ((a)–(d)) in the bottom panel.

In order to obtain a global output using the PINE model, it was applied to each point on its spatial grid in-
dependently (described in Section 3.3.2), and the smoothed global output shown in Figure 2 was obtained 
by interpolating between the points. The output of the VERB-CS code was obtained by running the model 
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Figure 2.  Comparison of the PINE (left), VERB-CS (middle), and assimilative model (right) outputs during the 2003 Halloween storm. The first four rows 
show the outputs of the models corresponding to the times marked with the red lines in the bottom panel showing the Kp index during the 2003 Halloween 
storm. The black-and-white dots show the location of the plasmapause derived from the IMAGE EUV images. The color in the first four rows indicates the 
logarithm of density (the scale of the colorbar is the same for all models and all times). The gray and black section of the colorbar indicates a density threshold 
of 40 ± 10 cm−3 and can be considered a rough approximation of the plasmapause location for the sake of comparison to the observed plasmapause position 
obtained from IMAGE EUV (more details on that are given in Section 2). The Sun is to the left. Row (a) corresponds to the time before the storm, (b) to the 
period during the storm (second CME), (c) and (d) to the recovery phase of the storm. IMAGE, Imager for Magnetopause-to-Aurora Global Exploration; PINE, 
Plasma density in the Inner magnetosphere Neural network-based Empirical.
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starting from quiet geomagnetic conditions (October 27, 2003 20:00 UT, Kp = 1.7) with the setup described 
in Section 3.2. The output of the assimilative model was obtained by running the model from the same time. 
Its setup is described in Section 3.3. The time step of the simulations is 15 min for all the models. The time 
of the IMAGE plasmapause location is chosen to be as close as possible to the temporal grid of the models, 
but not further than 14 min away. Therefore, the time of the IMAGE plasmapause may not exactly coincide 
with the time of the simulation and may deviate from it by 14 min maximum. Although it is possible to set 
the exact time of the simulation for the PINE model, we choose to select the same temporal grid as in the 
VERB-CS and assimilative AMP models to ensure an equal comparison between all the models.

As seen in Figure 2, the PINE model agrees well with the plasmapause derived from the IMAGE EUV be-
fore the storm (row (a)), but produces unrealistic global density reconstruction during the main phase of 
the storm. As discussed in the introduction, the reason for that is the absence of training examples during 
extreme geomagnetic events (there is no single Kp = 9 in the training data set of PINE). After the storm 
(row (c)), the size of the plasmasphere reproduced with PINE is in good agreement with the IMAGE obser-
vations. On the contrary, the VERB-CS model produces an overly extended plasmasphere during the quiet 
time before the storm, but reproduces the massive erosion of the plasmasphere (row (b)) observed in the 
IMAGE EUV observations as well. Several days after the storm (row (d)), VERB-CS produces lower densi-
ties inside the plasmasphere than those produced by PINE (this can be seen from the color in the density 
snapshots: yellow color in VERB-CS, compared to the red color in the PINE output).

The assimilative AMP model is in good agreement with IMAGE observations for all phases of the distur-
bance. The size of the plasmasphere before the storm is in better agreement with IMAGE plasmapause 
observations, compared to the VERB-CS output, and is closer to the size of the plasmasphere modeled with 
PINE. During the storm, the PINE output is not taken into account, and therefore, the assimilative model 
produces results similar to the physics-based VERB-CS model, successfully reproducing the massive ero-
sion of the plasmasphere. During the recovery phase, the PINE model is taken into account and therefore, 
the assimilative model produces densities closer to those obtained with PINE inside the plasmasphere (as 
can be seen from the color in the density snapshots), while the shape of the plasmapause is retained from 
both PINE and VERB-CS models. This example illustrates how a neural network-based and physics-based 
models can be combined in an optimal way to produce a more accurate global density reconstruction, than 
each of them separately. Such a result is a good indication that the assimilative methodology is useful to 
model the plasmasphere dynamics during extreme geomagnetic events.

4.2.  Test 2: Multiple Events (March–June 2001)

In the previous section, we showed that the assimilation of the neural network- and physics-based models 
demonstrated good agreement with the plasmapause observations during the 2003 Halloween storm, and 
performed better than either of the models separately. In this section, we test the models further by com-
paring their output for a number of events in March–June 2001. We have selected five events corresponding 
to different Kp levels, starting from quiet geomagnetic conditions (Kp = 2.7) and reaching disturbed ones 
(Kp = 8). The motivation behind this selection was to test how the models perform separately and when 
combined by means of data assimilation for different levels of geomagnetic disturbance. The output of the 
models throughout different phases of the selected events is provided and described in supporting informa-
tion (Figures S1–S7).

Figure 3 shows snapshots of global density reconstructions using the PINE, VERB-CS, and assimilative 
models for five different events in 2001. The format is similar to Figure 2. The columns correspond to mod-
els, as labeled in the top row. The rows correspond to events. The times of the density snapshots and the 
corresponding Kp values are labeled in each row on the left. The events are ordered by increasing Kp index, 
rather than by time. The format of the density snapshots is the same as in the top four rows of Figure 2.

The global density reconstructions are obtained in the same fashion, as described in the previous section. 
Spatial and temporal grids of the models and their setup are also the same as used there. We note again that 
the time grid step is 15 min, and therefore may not exactly coincide with the timing of the plasmapause 
observations derived from IMAGE EUV (but is not farther than 10 min away). The simulations were run 
separately for five different events, each starting from quiet geomagnetic conditions. The starting time and 
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Kp at the beginning of the events were: (a) April 10, 2001 03:00 UT (Kp = 1.7), (b) June 17, 2001 00:00 UT 
(Kp = 0.3), (c) May 08, 2001 03:00 UT (Kp = 0.7), (d) March 18, 2001 12:00 UT (Kp = 1), and (e) March 30, 
2001 11:00 UT (Kp = 2).

It can be seen that PINE performs well during low and moderate geomagnetic activity (rows (a)–(c)), that 
is, the modeled plasmapause agrees well with the one observed with IMAGE, similar to the results of the 
previous section. However, for a more disturbed event, such as in row (e), when Kp = 8, it produces an 
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Figure 3.  Comparison of the PINE (left), VERB-CS (middle), and assimilative model (right) outputs during a series of events in 2001, as indicated in the 
labels on the left in each row. The format of the density snapshots is the same as in Figure 2. CS, Convection Simplified; PINE, Plasma density in the Inner 
magnetosphere Neural network-based Empirical.
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abnormal artifact on the night side. On the contrary, the physics-based 
VERB-CS model performs very well for the disturbed times (rows (d) and 
(e)): the modeled plasmapause matches exactly the one observed with 
IMAGE. However, for the quiet event shown in row (a), it produces an 
overly expanded plasmasphere, compared to the observed plasmapause, 
as well as for the moderate disturbance event in row (b).

The assimilative model blends the outputs of both models in an opti-
mal way for all the tested events. Its output is closer to the output of the 
VERB-CS code during the disturbed intervals (rows (d)–(e)) and to the 
output of the PINE model for the quiet times (rows (a)–(b)). For the event 
(c), the output of the assimilation appears to be somewhat in between 
the outputs of the PINE and VERB-CS models. This test illustrates that 
the output of the combined model agrees better with the plasmapause 
observations from IMAGE than the output of each of the models used 
separately, not only for extreme geomagnetic storm, but also for quiet and 
moderately disturbed events.

4.3.  Test 3: Long-Term Reconstruction of Density

In the two previous sections, we have illustrated the performance of the 
assimilative, PINE, and VERB-CS models for different geomagnetic con-

ditions, including quiet, moderate, and extreme conditions. The assimilative model demonstrated a better 
performance compared to PINE and VERB-CS used separately for all considered events. In this section, 
we test the performance of all models further by performing a long-term reconstruction of plasma density 
using all the models. We compare the modeled density with the in-situ density measurements from RBSP-A 
during the period between June 30, 2016 and January 01, 2018. We choose this particular interval for test-
ing, as the density measurements during this time were mostly not used in the training of the PINE model. 
Therefore, this choice ensures a fair comparison between the performance of PINE, VERB-CS, and the as-
similative model. Furthermore, RBSP-A crosses all MLT sectors during this interval, as shown in Figure 4, 
which allows us to evaluate the performance of the models in different MLT sectors. The setup of all three 
models is the same as in the two previous sections. Summary plots demonstrating performance metrics 
calculated during this period for all three models are shown at the end of this section. It is worth noting that 
the PINE model was trained on the interval October 01, 2012–July 01, 2016 (I. Zhelavskaya et al., 2017), and 
therefore, we exclude the period June 30–July 01, 2016 when calculating the performance metrics here. We 
choose June 30, 2016 as the start time of the simulation as the Kp index was smaller than on July 02, 2016 
(0.3 vs. 0.7), and also since there was a minor disturbance (Kp = 3.3) between June 30 and July 02, which 
could negatively influence the initial conditions for VERB-CS.

Figure 5 presents a comparison of the output of the neural network density model in-situ density measure-
ments from RBSP-A from June 30, 2016 to January 01, 2018. Panel (a) shows the in-situ density observations 
from RBSP-A. Panel (b) shows the output of the PINE model. These two panels have the same format: the 
x-axis corresponds to time, the y-axis to the L-shell, and the color indicates the logarithm of electron density. 
The next two panels (c) and (d) show the difference between the observations and the output of the model. 
Panel (c) shows the absolute difference between logarithms of modeled and observed density. Panel (d) 
shows the difference itself. The blue color in this panel implies underestimation of density by the model (the 
modeled density is smaller than observed), the red color overestimation. We note the small data gaps that 
can be seen as white vertical stripes in these panels. These are gaps in density measurements and the model 
output is not shown during these times as well since there are no measurements to compare with. Panel (e) 
shows the location of RBSP-A's apogee during this interval. The gray shaded area implies that the apogee of 
RBSP-A was at the nightside (i.e., from 18 to 6 MLT). It is worth noting that the apogee of RBSP-A is located 
in the night sector during approximately the first half of the interval, and therefore, the densities on the 
farther L-shells are smaller (dark blue color), compared to the second half of the interval (where the color is 
light green on the farther L-shells). During the second half of the interval, RBSP-A's apogee was located on 
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Figure 4.  Coverage of RBSP-A during June 30, 2016–January 01, 2018.
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Figure 5.  Long-term comparison of the PINE model and the RBSP-A density measurements during July 2016–January 2018. Panels (a) and (b) show the 
RBSP-A density measurements and the output of the PINE model, respectively, where the L-shell is on the y-axis, time is on the x-axis, and the color indicates 
the log of density. Panels (c), (d), and (e) show the absolute difference, the sign of the difference, and the difference between log of the model and data, 
respectively. PINE, Plasma density in the Inner magnetosphere Neural network-based Empirical.
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the dayside, and therefore, the density is higher there due to plasmaspheric bulge and plume. The bottom 
panel shows the Kp index during this period.

To obtain the model output at the L- and MLT-coordinates of RBSP-A, the model was first applied to the 
full spatial grid of L and MLT. Then, a virtual satellite was flown through the model output at the coordi-
nates closest to the L- and MLT-coordinates of RBSP-A, and after that, the output was interpolated to these 
coordinates. Although the PINE model can be directly applied to specific L and MLT coordinates without 
the need to make a virtual flyby, such a procedure was nonetheless employed in order to obtain a consistent 
comparison with VERB-CS and the assimilative model.

It can be seen that the PINE model output is very similar to the observations. The model captures the 
expansion of the plasmasphere that occurs during periods of quiet geomagnetic conditions and erosion as-
sociated with geomagnetic disturbances. For example, the massive erosion of the plasmasphere during the 
September 2017 storm is captured by the model. Moreover, the positive and negative differences between 
the model output and observations (shown in panel (d)) are spread randomly over the duration of the sim-
ulation, which indicates that there is no systematic bias in the model. Overall, these results show that the 
PINE model performs well on the out-of-sample period (i.e., the period not used in the training).

Figure 6 shows the comparison between in-situ density from RBSP-A and the output of the physics-based 
VERB-CS code. The format of the figure is the same as in Figure 5, where panel (b) presents the output 
of VERB-CS, and panels (c) and (d) show the difference between the modeled and observed density in 
different formats. The model output at the coordinates of RBSP-A was obtained in the same fashion as in 
Figure 5: the model was first run on the full spatial grid, and then the virtual satellite was flown through the 
output at the L- and MLT-coordinates of RBSP-A.

It can be seen that the VERB-CS model captures the general dynamics of the plasmasphere, that is, its ero-
sion and expansion, well. Again, the model reproduces a massive erosion of the plasmasphere during the 
September 2017 storm. It can be seen, however, that the differences between observations and the output of 
VERB-CS shown in panel (c) are larger than those of the PINE model (shown in Figure 5). The positive and 
negative differences between the model output and observations (panel (d)) also seem to be spread random-
ly over the duration of the simulation, however, a slight overestimation can be seen during July–October 
2017, when RBSP-A's apogee was in the 12–17 MLT sector.

Finally, Figure  7 presents the comparison between in-situ density measurements from RBSP-A and the 
output of the assimilative model. The format is the same as in Figures 5 and 6, where panel (b) shows the 
output of the assimilative model and panels (c) and (d) show the difference between the model output and 
observations in different formats (as described below in Figure 5). The output of the model was obtained 
in the same manner as for the other models. The assimilative model was first run on the full spatial grid, 
and then a virtual satellite was flown through the global output of the assimilative model along the RBSP-A 
coordinates.

It can be seen from the figure that the assimilative model successfully captures the general dynamics of 
the plasmasphere, that is, erosion and expansion associated with corresponding geomagnetic conditions. 
Although, similarly to VERB-CS, it produces larger densities in the 12–17 MLT sector (in the second half 
of the interval), its output is in better agreement during the rest of the interval, compared to the VERB-CS 
model: the overestimation that was observed in the VERB-CS output is reduced. As can be seen from panel 
(c), the errors of the assimilative model are larger than those of PINE on the nightside but are comparable 
than those of PINE on the dayside. The densities inside the plasmasphere (at low L-shells) are lower com-
pared to the observations from RBSP-A, which is caused by the use of the saturation density model (Carpen-
ter & Anderson, 1992) in the assimilative model setup as well. Overall, the performance of the assimilative 
model improves on the dayside compared to VERB-CS and is similar to that of PINE. On the nightside, the 
assimilative model produces results closer to VERB-CS.

4.3.1.  Performance Metrics

To obtain a general overview of the performance of all the models, it is helpful to examine the perfor-
mance metrics calculated for each model over the whole time period under consideration. We use the 

ZHELAVSKAYA ET AL.

10.1029/2020JA028077

17 of 30



Journal of Geophysical Research: Space Physics

ZHELAVSKAYA ET AL.

10.1029/2020JA028077

18 of 30

Figure 6.  Long-term comparison of the physics-based model and the RBSP-A density measurements during July 2016–January 2018. Panels (a) and (b) show 
the RBSP-A density measurements and the output of the physics-based model, respectively, where the L-shell is on the y-axis, time is on the x-axis, and the color 
shows the log of density. Panels (c), (d), and (e) show the absolute difference, the sign of the difference, and the difference between log of the model and data, 
respectively.
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Figure 7.  Long-term comparison of the assimilative model and the RBSP-A density measurements during July 2016–January 2018. Panels (a) and (b) show 
the RBSP-A density measurements and the output of the assimilative model, respectively, where the L shell is on the y-axis, time is on the x-axis, and the color 
shows the log of density. Panels (c), (d), and (e) show the absolute difference, the sign of the difference, and the difference between log of the model and data, 
respectively.
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root-mean-square error (RMSE) and mean error (ME) or bias to analyze the performance of all the models 
in different L and MLT sectors.

Figure 8 shows the RMSE (top row) and ME/bias (bottom row) of the PINE (left column), assimilative (mid-
dle), and VERB-CS (right) models calculated over the period from July 02, 2016 to January 01, 2018, used 
in the long-term simulations shown in Figures 5–7. It is worth mentioning again that the PINE model was 
trained on the interval October 01, 2012–01 July 2016 (I. Zhelavskaya et al., 2017), and therefore, we exclude 
the period June 30–July 01, 2016, when calculating the performance metrics here. In order to calculate the 
metrics, the data are binned in L and MLT, and the performance metrics are computed separately for each 
bin. The bins in L range from 1.5 to 6.5 with 0.5 bin size, and in MLT from 0 to 24 with bin size 1.

It can be seen that all the models have lower errors closer to the Earth (inside the plasmasphere), and that 
the errors increase with L. The errors of the PINE model are the lowest out of all models in terms of both 
RMSE and bias in all bins. The errors of the physics-based model are larger on the nightside and smaller for 
6–14 MLT. The model has a larger bias in 12–18 MLT sector, however. On the nightside the bias is smaller 
and tends to be negative. This result is similar to the one shown in Figure 6 and implies that the VERB-CS 
model systematically produces slight overestimation of density in the 12–18 MLT sector than is observed. 
This may be caused by the use of increased refilling rates (by the factor of 1.75). Our experiments (not 
shown here) demonstrated that the model without such increased refilling rates produces significant un-
derestimation of density on the nightside, meaning that the code produces a more eroded plasmasphere on 
the nightside than is observed. After performing sensitivity tests to all the input parameters of the VERB-CS 
code (magnetic field, electric field, initial conditions, boundary conditions, etc.), we found that changes in 
the electric field have the most impact on this behavior (not shown here). Modifying the shielding param-
eter γ changes the extent of erosion significantly. From sensitivity tests (not shown), we found that using 
γ = 1.8 provides better agreement with observations than using the standard γ = 2 (Maynard & Chen, 1975). 
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Figure 8.  The root-mean-square error (top row) and the bias or mean error (bottom row) of the PINE, physics-based, and assimilative models for the July 02, 
2016–January 01, 2018 period. The Sun is to the left. The colorbar of each row shows the value of the corresponding metric (RMSE or ME). The colorbar limits 
are the same for all models in each row. ME, mean error; RMSE, root-mean-square error.
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Therefore, we use γ = 1.8 in these simulations. This aspect of the VERB-CS code requires further investiga-
tion and testing, which we discuss in more detail in Section 5.

It can be seen that the errors and bias of the assimilative model are significantly reduced in the day and dusk 
sectors, compared to the physics-based model but are still large on the nightside (21–7 MLT). This implies 
that the assimilative technique works well for blending the models on the dayside: the error of the assim-
ilative model is smaller than that of VERB-CS and is closer to the PINE error. However, on the nightside, 
the assimilative model performance is similar to that of VERB-CS rather than PINE. One reason for that 
could lie in the performance of VERB-CS and in the choice of model and observation errors αm and αobs in 
the modified Kalman filter. VERB-CS has considerably larger errors on the nightside than PINE does, and 
therefore, it is probable that αm and αobs used here do not account for such a difference in errors between 
VERB-CS (model) and PINE (used as observations). The VERB-CS code may not properly account for some 
physical processes on the night side, which leads to the increased error in the assimilative model. If the 
VERB-CS model is improved, the results of data assimilation will consequently be improved as well. We 
discuss this in more detail in the Discussion section.

This test still illustrates that the assimilative methodology provides quantitative improvement in perfor-
mance compared to the performance of the VERB-CS model (in particular, on the dayside). The perfor-
mance of the assimilative model is comparable to the PINE model performance on the dayside but is closer 
to the performance of VERB-CS on the night side. It is clear that further improvement in the physics-based 
model (VERB-CS), or using a more advanced model, will improve the performance of the assimilative 
model. We note that although the VERB-CS code and assimilative model reproduce the location of the 
plasmapause during storm times better than the PINE model (Figures 2 and 3), they show larger errors in 
low-density regions outside the plasmasphere compared to PINE (Figure 8). These are two different aspects 
of the models: (1) ability to predict plasmapause correctly and (2) ability to reproduce density accurately.

As discussed above and can be seen from the results obtained in all three tests, neural networks have a 
good performance in general (in terms of performance metrics), but their performance decreases during 
extreme geomagnetic storms. At the same time, the physics-based VERB-CS code reproduces the plasmas-
phere dynamics during geomagnetic storms well but tends to be less accurate quantitatively, compared to 
the neural network PINE model. The assimilative methodology employed here performs well at combining 
both models during different levels of geomagnetic disturbance and shows the best agreement with the 
plasmapause derived from the IMAGE EUV instrument out of all models. The comparison with the in-situ 
density from RBSP-A over a long-term reconstruction of plasma density shows that the assimilative model 
can reach the performance of PINE on the dayside, but at the moment, its errors are closer to the VERB-
CS model errors on the nightside and consequently are larger than PINE's. This aspect can be improved in 
the future by either improving the VERB-CS model and/or by adjusting model and observation errors in 
the assimilative model. Overall, the assimilative model developed in this study demonstrates a potential to 
combine the advantages of both neural network and physics-based models, namely to have a good quan-
titative performance on average and produce realistic global density reconstructions during the extreme 
geomagnetic events.

5.  Discussion
Our results show that the assimilative methodology employed in this study for combining the neural net-
work PINE model and the physics-based VERB-CS code demonstrates great potential for combining ad-
vantages of both models. Namely, the assimilative model demonstrated good performance on a series of 
test events from the IMAGE era for a variety of geomagnetic conditions: quiet, moderate, disturbed, and 
extreme geomagnetic storms. The output of the model showed better agreement with the plasmapause 
locations derived from IMAGE EUV than PINE or VERB-CS, when used separately (Figures 2 and 3). As 
discussed above, the performance of neural networks is limited by the training data. As there are no exam-
ples of extreme geomagnetic storms in the training data set of PINE, its performance is reduced during such 
events. The assimilative methodology helps eliminate this limitation. The assimilative model also demon-
strated good capabilities in combining quantitative advantages of models in terms of performance metrics. 
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Long-term simulations of plasma density using all the models show that the current setup of the assimila-
tive model allows for improving the performance of VERB-CS considerably in the dayside local time sector.

An advantageous feature of the assimilative model is that it can reconstruct the dynamics of the plasma 
density beyond the domain of the neural network-based model. The domain of the data assimilative model 
extends to 10 RE in radial distance (as in the physics-based VERB-CS model), compared to 6.15 RE of the 
PINE model. The PINE model is valid from ∼1.75 to 6.15 RE due to the use of density from the Van Allen 
Probes for training, and the domain of the assimilative model is the same as that of the physics-based mod-
el, VERB-CS. Therefore, the physics-based VERB-CS model can act as a “smart” extrapolator, extending the 
predictions further to the plasma sheet. It is worth noting that we have used in-situ density measurements 
from RBSP-A to validate the models. Therefore, all the models in this study were quantitatively validated 
up to 6.15 RE. The quantitative validation beyond this radial distance is outside the scope of this study, but 
including density measurements from other missions, such as THEMIS, will aid in the quantitative valida-
tion of both the VERB-CS and the assimilative models beyond 6.15 RE. Moreover, including such density 
measurements into the training data set of the neural network will also allow for extending it to larger radial 
distances.

An important aspect of the assimilative approach employed here is the choice of model and observation 
errors αm and αobs. In this study, we employed an approach similar to Kondrashov et al. (2011), which was 
adjusted to use different constant values for model and observation errors αm and αobs inside and outside of 
the plasmasphere. We have compared the results obtained using such an approach to using constant values 
of errors throughout all radial extent of models (not shown here). We found that using different values of 
errors for inside and outside the plasmapause works better in our case and provides better agreement with 
observations. It is worth noting that selecting the model and observation errors is one of the most difficult 
topics in data assimilation and is still an active area of research (e.g., Berry & Harlim, 2017; C. H. Bish-
op, 2019; Hamilton et al., 2019); the existing approaches to select them are mostly empirical. Investigating 
the selection of these errors in a systematic way and experimenting with the dependence of the errors on 
other parameters such as L, MLT, and/or geomagnetic activity should be the subject of future research.

As this is the first study in which a neural network model was combined with a physics-based model of the 
plasmasphere, it is focused on demonstrating the assimilative methodology and its potential rather than 
reaching the best possible accuracy for either of the models in this study. Consequently, we made a number 
of assumptions and simplifications, in particular regarding the electric field, refilling, and saturation den-
sity models used in the physics-based VERB-CS code. We discuss them below in the context of the results 
obtained in this study.

In this study, we have used the electric field model of Volland (1973) and Stern (1975) parameterized by 
Kp (Maynard & Chen, 1975). Since Kp is a 3-h index, the model inherently does not take into account the 
electric field variations on timescales less than 3 h, which may not be sufficient time to account for changes 
in the plasmasphere dynamics on shorter timescales (Goldstein et al., 2005). Using a realistic electric field 
from global magnetospheric models or different parameterization accounting for shorter timescales, such 
as the parameterization of Goldstein et al. (2005) based on solar wind and IMF parameters, can potentially 
improve the model and needs to be investigated further. It is also worth noting that our tests showed that 
using a smaller shielding parameter γ = 1.8 instead of standard γ = 2 with the Maynard and Chen (1975) 
parameterization provides better agreement with both the IMAGE plasmapause and in-situ density obser-
vations from RBSP-A. Changes in this parameter significantly influence the extent of the erosion of the 
plasmasphere on the nightside.

It can also be seen from the results that, in some cases, the plasmasphere produced by the VERB-CS is 
more extended than was observed, in particular during geomagnetically quiet times (e.g., first row of Fig-
ures 2 and 3). This could be attributed to the refilling rates used. We have used long-term median refilling 
rates from Denton et al. (2012) (without accounting for solar-cycle dependence). The model assumes that 
there is no significant dependence of the refilling rate on MLT. The same refilling rates are assumed for 
all geomagnetic conditions. At the moment, there still remain unsolved problems in the processes of plas-
masphere ion refilling from the ionosphere (D. L. Gallagher & Comfort, 2016). Therefore, this topic should 
be explored further in regard to the physics-based modeling of the plasmasphere, and other approaches 
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to parameterizing the refilling should be tested. For example, De Pascuale et al. (2018) used the approach 
of Rasmussen et al. (1993) to model the refilling using the Cold PLasma physics-based model CPL (V. K. 
Jordanova & Miyoshi, 2005; Jordanova, Thorne, et al., 2010; V. Jordanova, Zaharia, et al., 2010; V. V. K. 
Jordanova et al.,  2014), where the approach of equatorial plasma densities toward equilibrium depends 
on the variation from the saturation level and a timescale. The timescale of refilling depends on the local 
time in addition to L and was calculated from the differences in outgoing ion flux into the plasmasphere at 
hemispheric boundaries using empirical atmosphere models, including the MSIS-86 thermosphere model 
(Hedin, 1987), and IRI ionosphere model (Bilitza, 1986), in their study.

From long-term simulations (Figure 6), it can be seen that density inside the plasmasphere (on low L-shells) 
is slightly smaller on average than that of RBSP-A. This difference can be explained by the fact that the 
saturation model (Carpenter & Anderson, 1992) incorporated into the VERB-CS model provides lower sat-
uration density on average than observed, using density measurements from the Van Allen Probes. Further 
investigation of other saturation density models or constructing a new saturation model that includes den-
sity measurements from the Van Allen Probes is required to improve the VERB-CS model performance.

It is also worth noting that in this study we inspect and compare the global outputs of the models and the 
observed and modeled plasmapause locations visually. It would be ideal to conduct a statistical analysis 
comparing the observed and modeled plasmapause locations. However, such analysis is a very challenging 
task. We discuss the challenges pertaining to it in detail in supporting information (please see Figures S8–
S11 and their discussion). Due to the challenges discussed there, we perform the visual inspection of the 
global outputs of the models in this study. However, we are planning to develop tools for such comparisons 
in order to analyze the plasmapause locations statistically in the future.

The results obtained in this study illustrate that the assimilative methodology can be applied to combine 
both the qualitative and quantitative advantages of the VERB-CS and PINE models. It is clear that further 
improvement of the mentioned models or use of more sophisticated models in the physics-based VERB-CS 
code will improve the performance of the assimilative model. The methodology developed in this study 
will be especially useful for modeling the plasmasphere dynamics during geomagnetic storms and extreme 
events, such as the Halloween storms, while also providing realistic density values during quiet and mod-
erate geomagnetic conditions. The combined data assimilative model is not computationally expensive and 
can be used as a part of global models of the magnetosphere or coupled with ring current and radiation belt 
codes. The current study is intended to be a demonstration of the potential of the assimilative methodology 
and should be considered more as an illustration of how the physics-based and neural network models can 
be combined, rather than as a tool.

6.  Summary and Conclusions
In this study, we demonstrate for the first time how a neural network and physics-based models of the 
plasmasphere electron density can be combined in an optimal way by using data assimilation. We use a 
modification of the Kalman filter technique to optimally blend the neural network PINE model developed 
by I. Zhelavskaya et al. (2017) and the physics-based VERB-CS code (Aseev & Shprits, 2019) adjusted to 
model the plasmasphere dynamics.

We conduct three tests to evaluate the performance of the PINE, VERB-CS, and the assimilative model 
developed in this study. In the first two tests, we compare the model-predicted global evolution of plasma 
density to the global images of the He+ distribution from IMAGE EUV; namely, we compare the modeled 
shape of the plasmasphere to the observed one using the plasmapause locations derived from the IMAGE 
EUV for the 2003 Halloween storm and for five events during March–June 2001. In the third test, we con-
duct a long-term reconstruction of electron density using all three models for an out-of-sample interval 
from June 30, 2016 to January 01, 2018. We compare the output of the models to the in-situ density obtained 
from RBSP-A and compute performance metrics.

The tests conducted in this study show that the neural network model PINE has a good quantitative perfor-
mance on average and reproduces the general dynamics of the plasmasphere well, such as erosion on the 
nightside and plume formation. Its performance is limited, however, for Kp > 7 due to the lack of training 
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data. The physics-based VERB-CS code also reproduces the dynamics of the plasmasphere well and is espe-
cially effective during high geomagnetic activity and extreme geomagnetic events. However, its quantitative 
performance is lower than PINE's. Using data assimilation, we were able to combine the advantageous 
features of both models. The assimilative model is capable of reproducing the dynamics of the plasmas-
phere well during both quiet and disturbed geomagnetic activity, including extreme geomagnetic events. Its 
quantitative performance is better than that of VERB-CS and is comparable to PINE's for the dayside local 
time sector.

Future work includes considering different and more realistic electric field, refilling, and saturation density 
models. More work should be done regarding the selection of model and observation error in the assimi-
lative setup. The assimilative model can be extended by assimilating in-situ density measurements in the 
model, as well (e.g., from Van Allen Probes, IMAGE RPI, or other sources, depending on the time period), 
in addition to the output of the neural network model PINE.

Appendix A:  The Updated Version of the PINE Model
As discussed in Section 3.1, I. Zhelavskaya et al. (2017) used K-fold cross validation with random splitting of 
data into training and validation folds to validate the models. They also used this procedure to select optimal 
input variables to the model. They considered several different combinations of solar wind parameters and 
geomagnetic indices as potential inputs to the neural network. In particular, they considered models based 
solely on geomagnetic indices (Kp, AE, Sym-H, and also F10.7), solely on solar wind data (solar wind speed, 
dynamic pressure, proton density, and the interplanetary magnetic field (IMF) Bz), and on a combination 
of both. As the time history of previous conditions is important for the plasmasphere dynamics, they also 
considered different durations of time history of these parameters as inputs, starting with simple models 
based only on instantaneous values of activity parameters and subsequently adding more time history of 
the corresponding parameters to the networks, up to 120 h of time history. The time history was represented 
as averages of the time histories of activity parameters integrated from hour 0 (e.g., 0–3, 0–6, 0–12 h, etc.). 
Every neural network also included a location input, as given by L and MLT.

In this study, we extend this analysis using the K-fold cross validation procedure described in Section 3.1. 
We consider the same combinations of input parameters to the neural networks. The neural networks are 
trained on the density measurements from both RBSP-A and RBSP-b during October 01, 2012–July 01, 2016. 
We use cross validation to obtain validation and training errors, and the standard deviations of errors. As 
described in Section 3.1, all available data for this time interval are split into 35-day blocks. At first, 10% 
of the data are left aside as a testing data set. Then the remaining 35-day blocks are randomly assigned to 
the training or validation sets. This type of data split allows the sequentiality of data to be preserved, and 
also introduces randomness and representation of different geomagnetic conditions in both validation and 
training sets. The rest of the methodology is identical to that of I. Zhelavskaya et al. (2017).

Figure A1 shows the root-mean-square error (RMSE) plotted against the number of hours of time history 
included into the model. The yellow color indicates the errors of models based on solar wind, the blue color 
is for the models based on geomagnetic indices, and red is for the models based on both of them combined. 
Solid lines show the validation errors and dashed lines the training errors. The error bars show the stand-
ard deviation of error obtained during the cross validation procedure. The validation error represents how 
well a model performs on the unseen data and is the error we aim to minimize. The difference between the 
training and validation errors indicates if a model overfits the data or not. When the difference is too large, 
this means that a model “learned” the training data too well, it memorized it essentially, and due to that 
performs poorly on the unseen data. As a consequence, it does not have good generalization capabilities.
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It can be seen that the models based only on solar wind have the largest errors. The errors of the models 
based only on geomagnetic indices are significantly lower. The validation errors of all models are large 
when no time history is included into them and decrease as more time history is included. After a certain 
point (around 48-h time history), however, the validation errors start to slightly increase again. At the same 
time, the training errors always decrease as more time history is included. The moment when the validation 
error starts increasing indicates that a model starts to overfit. That is not desirable in the models and needs 
to be avoided. In this case, the overfitting starts approximately after a 48-h time history (for all models). The 
inclusion of longer time history does not bring additional improvement. The models based on the combi-
nation of solar wind and geomagnetic indices have similar errors to the models based only on indices but 
overfit much more. This implies that the model based only on geomagnetic indices contains a sufficient 
amount of information to model the plasmasphere dynamics accurately. One of the reasons for overfitting 
could be the lack of training data. Therefore, once more training data are available, it is worthwhile to re-ex-
amine the models again. It is also worthwhile to conduct more detailed experiments regarding more optimal 
solar wind feature construction and use of deeper neural networks. In this case, the optimal model is based 
on the 48-h time history of geomagnetic indices since the validation error is the smallest for that particular 
combination, and the model does not overfit significantly. The inputs to the model are L, MLT, and averages 
of Kp, AE, Sym-H, and F10.7 over previous 3, 6, 12, 24, 36, and 48 h.

Appendix B:  The Model and Observation Error of the Modified Kalman Filter
The model and observation errors αm and αobs were obtained as outlined below. We use the results of the 
long-term density reconstruction obtained in Section 4.3. There, PINE and VERB-CS were run for the peri-
od of June 30, 2016–January 01, 2018, and their output was compared to the in-situ density measurements 
from RBSP-A during that period. The performance of both models was analyzed using the RMSE perfor-
mance metric. Here, we have also computed the RMSE of both models for locations inside and outside the 
plasmapause of the respective model separately for the period of July 02, 2016–January 01, 2018. The plas-
mapause was calculated using the density threshold of 40 cm−3, as described in Section 2. Figure B1 (panels 
(a)–(d)) shows the histograms of error distributions during this period for both models at different locations. 
The RMSEs are labeled inside the respective panels. We have employed the RMSE values obtained in this 
analysis as model and observation errors αm and αobs inside and outside the plasmapause of each model.
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Figure 9.  Root-mean-square error (RMSE) on the y-axis versus the hours of time history included in the models. The 
yellow color shows the errors of models based on solar wind, the blue color is for the models based on geomagnetic 
indices, and red is for the models based on both of them combined. Solid lines show validation errors and dashed lines 
show training errors. The error bars show the standard deviation of error on the validation set obtained during the cross 
validation procedure. RMSE, root-mean-square error.
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Figure B1.  Distribution of errors of PINE, VERB-CS, and the assimilative model inside and outside the plasmapause during the out-of-sample period of July 
02, 2016–January 01, 2018 (compared to density measurements from RBSP-A). The respective RMSE and ME are given inside each panel. CS, Convection 
Simplified; ME, mean error; PINE, Plasma density in the Inner magnetosphere Neural network-based Empirical; RMSE, root-mean-square error.
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The same analysis was performed for the output of the assimilative model. Its RMSEs inside and outside the 
plasmapause are shown in panels ((e)–(f)) of Figure B1. It can be seen that the RMSEs of the assimilative 
model are equal to approximately an average of those of PINE and VERB-CS RMSEs (and also MEs). After 
conducting a series of experiments with different values of αm and αobs including just constant values, that 
is, without dependence on the plasmapause location (not shown), we found that these values provide the 
best agreement between the assimilative model and in-situ density observations.

Data Availability Statement
The electron density data set was derived using the NURD algorithm and is available at the GFZ Data 
Services: https://dataservices.gfz-potsdam.de/panmetaworks/showshort.php?id=escidoc:5098892 (I. 
Zhelavskaya et al., 2020).
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