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Abstract
Permafrost thaw leads to thermokarst lake formation and talik growth tens of meters 
deep, enabling microbial decomposition of formerly frozen organic matter (OM). We 
analyzed two 17- m- long thermokarst lake sediment cores taken in Central Yakutia, 
Russia. One core was from an Alas lake in a Holocene thermokarst basin that under-
went multiple lake generations, and the second core from a young Yedoma upland lake 
(formed ~70 years ago) whose sediments have thawed for the first time since deposi-
tion. This comparison provides a glance into OM fate in thawing Yedoma deposits. 
We analyzed total organic carbon (TOC) and dissolved organic carbon (DOC) content, 
n- alkane concentrations, and bacterial and archaeal membrane markers. Furthermore, 
we conducted 1- year- long incubations (4°C, dark) and measured anaerobic carbon 
dioxide (CO2) and methane (CH4) production. The sediments from both cores con-
tained little TOC (0.7 ± 0.4 wt%), but DOC values were relatively high, with the 
highest values in the frozen Yedoma lake sediments (1620 mg L−1). Cumulative green-
house gas (GHG) production after 1 year was highest in the Yedoma lake sediments 
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1  |  INTRODUC TION

Rapid warming of the Arctic results in permafrost warming 
(Biskaborn et al., 2019) and thaw, enabling microbial decomposi-
tion of previously frozen organic matter (OM; Schuur et al., 2008; 
Walter Anthony et al., 2016). Soil organic carbon (OC) that has been 
stored for millennia could be released to the atmosphere as green-
house gases (GHGs). OC release from permafrost regions will con-
tinue gradually with ongoing warming, thereby accelerating warming 
(Schuur et al., 2015). Factors controlling GHG release from thawing 
permafrost are complex and therefore not fully considered by most 
climate models (Turetsky et al., 2020).

Thermokarst lake and talik formation is the most common expres-
sion of deep permafrost degradation (>10 m depth; Grosse et al., 2013). 
Ground subsidence following thawing of ice- rich ground beneath the 
lake leads to lake formation. A positive downward heat flux from the 
water further enhances thaw and leads to the formation of a talik. 
After lake drainage or desiccation, a subaerial thermokarst lake basin 
remains, which is called an alas (Soloviev, 1973). Consequently, the talik 
can refreeze and OC becomes freeze- locked again. Thermokarst and 
talik formation, especially in ice- rich Late Pleistocene Yedoma depos-
its, result in deep thaw and subsequent ground subsidence. Aside from 
being ice- rich and susceptible to ground subsidence, deep Yedoma 
deposits (>25 m depth) are an important pool of permafrost OM 
(Schirrmeister et al., 2013; Strauss et al., 2017). In contrast, gradual top- 
down thawing, such as active layer deepening, affects only centimeters 
per decade (Grosse et al., 2011; Turetsky et al., 2020). Turetsky et al. 
(2020) estimated that abrupt thaw processes, such as thermokarst lake 
development, could lead to an additional net OC release from perma-
frost regions of 80 ± 19 Pg by 2300 under RCP 8.5. Thermokarst de-
velopment in Yedoma regions, therefore, contributes globally relevant 
GHG emissions to the active carbon cycle (Turetsky et al., 2020).

The amount of OM that can be mobilized upon thaw is highly 
dependent on the state of OM degradation. Several studies have 
analyzed permafrost OM on a molecular level using lipid biomarkers 

to assess OM degradability (Jongejans et al., 2018; Sánchez- García 
et al., 2014; Stapel et al., 2018; Strauss et al., 2015). The ratio of odd 
to even chained n- alkanes, the carbon preference index (CPI), has 
been used as an indicator for OM degradability where high values 
suggest better preserved OM (Marzi et al., 1993). Other proxies can 
give insights into the source of OM, such as the average chain length 
(ACL; Killops & Killops, 2013; Poynter & Eglinton, 1990). Branched 
glycerol dialkyl glycerol tetraethers (GDGTs), as well as archaeol 
and isoprenoid GDGTs (isoGDGT- 0), are markers for past bacte-
rial and archaeal biomass, respectively (Stapel et al., 2016; Weijers 
et al., 2006). In their study of Siberian Yedoma deposits, Stapel et al. 
(2018) found that increased concentrations of archaeal biomarkers 
correlated to increased OM contents, suggesting microbial activity 
and methane (CH4) production during deposition.

Only a limited number of biogeochemical studies has been car-
ried out so far on talik sediments underneath thermokarst lakes 
(Heslop et al., 2015, 2019; Jongejans et al., 2020; Romankevich et al., 
2017; Ulyantsev et al., 2017). The study of talik sediments is however 
highly relevant for climate studies as it allows important insights into 
the pathways of previously frozen OM upon rapid thaw and thus the 
potential for GHG production below thermokarst lakes. While many 
studies suggested a higher biolability of old Yedoma OM upon thaw 
compared to Holocene thermokarst deposits (Dutta et al., 2006; 
Jongejans et al., 2018; Lee et al., 2012; Neubauer, 2016; Schuur 
et al., 2009; Strauss et al., 2015, 2017; Zimov et al., 2006), a few 
studies showed opposite findings (Kuhry et al., 2020; Schädel et al., 
2014). Furthermore, climatic conditions during permafrost formation 
were shown to play a crucial role for OM decomposition after thaw 
(Knoblauch et al., 2013; Walz et al., 2018). In addition, studies of bi-
olability of dissolved OC (DOC) showed that old OC was more biola-
bile compared to modern OC (Mann et al., 2015; Vonk et al., 2013).

Schädel et al. (2014, 2016) and Treat et al. (2015) compiled an 
overview of incubation studies of permafrost regions. Many of these 
incubation experiments included subsurface sediments (<1 m depth; 
e.g., Čapek et al., 2015; Diáková et al., 2016; Elberling et al., 2013; 

(226 ± 212 µg CO2- C g−1 dw, 28 ± 36 µg CH4- C g−1 dw) and 3 and 1.5 times lower in the 
Alas lake sediments, respectively (75 ± 76 µg CO2- C g−1 dw, 19 ± 29 µg CH4- C g−1 dw). 
The highest CO2 production in the frozen Yedoma lake sediments likely results from 
decomposition of readily bioavailable OM, while highest CH4 production in the non- 
frozen top sediments of this core suggests that methanogenic communities estab-
lished upon thaw. The lower GHG production in the non- frozen Alas lake sediments 
resulted from advanced OM decomposition during Holocene talik development. 
Furthermore, we found that drivers of CO2 and CH4 production differ following thaw. 
Our results suggest that GHG production from TOC- poor mineral deposits, which are 
widespread throughout the Arctic, can be substantial. Therefore, our novel data are 
relevant for vast ice- rich permafrost deposits vulnerable to thermokarst formation.

K E Y W O R D S
anaerobic, greenhouse gases, incubation experiments, lipid biomarkers, organic matter 
degradation, permafrost thaw, talik, Yakutia
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Estop- Aragonés & Blodau, 2012; Waldrop et al., 2010) and only few 
studies have incubated permafrost sediments from >10 m deep 
(Dutta et al., 2006; Knoblauch et al., 2013; Lee et al., 2012). Even 
though several studies showed that aerobic decomposition released 
more OC than anaerobic decomposition over short time scales 
(months– years; Knoblauch et al., 2013; Lee et al., 2012; Schädel 
et al., 2016), CH4 emissions from permafrost regions are projected to 
become more important on longer time scales (decades– centuries; 
Dean et al., 2018; Knoblauch et al., 2018). Furthermore, Knoblauch 
et al. (2018) showed that after multiple years, the production of car-
bon dioxide (CO2) carbon equivalents is higher under anaerobic con-
ditions when taking into account the much stronger global warming 
potential of CH4 compared to CO2 (28 over a 100- year timescale; 
Myhre et al., 2013). Moreover, increased thermokarst lake initiation, 
especially in the continuous permafrost zone (Nitze et al., 2017), 
might lead to a landscape- scale increase of anaerobic decomposi-
tion processes.

Here, we studied GHG production, long- chain n- alkanes, 
branched GDGTs, and archaeal microbial markers in talik sediments 
to determine the OM characteristics of Yedoma sediments thawed 
under subaquatic conditions underneath two different thermokarst 
lakes. We focused on the following research questions: (1) can we 
characterize the OM degradability of thawed Yedoma deposits using 
biomarker analyses and (2) how much GHG is produced in these de-
posits after thaw? For the first time, to the best of our knowledge, 
we present OC turnover data from Siberian Yedoma talik sediments. 
Furthermore, the combination of biomarker degradation proxies and 
incubation data from >10 m deep permafrost sediments that are 
thawed underneath a thermokarst lake is unique so far.

2  |  MATERIAL S AND METHODS

2.1  |  Study area

The study site is located in Central Yakutia (Sakha Republic), East 
Siberia, about 80 km southeast from the city of Yakutsk (Figure 1a). 
The region is part of the continuous permafrost zone with per-
mafrost reaching several hundred meters in depth. The Yukechi 
study site (61.76495°N, 130.46664°E) includes drained lake basins 
(alases) and thermokarst lakes formed in Yedoma uplands with ice- 
rich deposits tens of meters thick that cover about two thirds of 
the study area (Soloviev, 1973; Ulrich et al., 2019; Windirsch et al., 
2020).

Taiga vegetation, predominantly larch trees and sparse pine 
and birch communities, dominate the region. Underneath the for-
est, the active layer reaches a thickness of ~1 m (Fedorov et al., 
2014). The drained lake basins are covered by a steppe- like grass 
vegetation and are characterized by an active layer reaching >2 m 
thickness (Soloviev, 1959). The region is characterized by a strong 
continental climate with a mean annual air temperature of −10.7°C 
(mean January: −41°C, mean July: 18.5°C) and a mean annual pre-
cipitation of 246 mm (period: 1982– 2012; Yakutsk Weather Station: 
RSM00024959; Climate- data.org, 2020).

Two different types of thermokarst lakes were selected for this 
study: an Alas lake and a Yedoma lake (Figure 1b). The Alas lake is 
located within the Yukechi Alas, which is a Holocene thermokarst 
basin of ~300– 500 m in diameter and ~10– 15 m lower compared to 
surrounding Yedoma uplands (Ulrich et al., 2019). The Alas lake has a 
diameter of ~57 m, a surface area of 1 ha and an average water depth 

F I G U R E  1  Location of study sites. 
(a) Location of study area (pink square) in 
Central Yakutia close to Yakutsk in Siberia 
(globe in lower left corner). (b) Close- up 
of study area with coring location: YU- L7 
below Alas lake (yellow circle) and YU- L15 
below Yedoma lake (orange circle). (c) 
Digital elevation model of study area with 
core locations indicated. Source of (a) 
and (b): Sentinel- 2 (ESA) 2018- 08- 03, (c): 
Ulrich et al. (2017) 
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of 1.9 m (measured in summer 2014). The Yedoma thermokarst lake 
is a younger lake and is located on the Yedoma uplands. Its lake level 
lies approximately 18 m higher than the Alas lake level (Figure 1c). 
With a diameter of ~43 m and surface area of 0.6 ha, the Yedoma 
lake is smaller than the Alas lake but deeper (average water depth 
of 3.7 m). Using historical aerial imagery, this lake was estimated to 
be about 70 years old and developed in a small forest- free grassland 
area (Ulrich et al., 2017).

Thermokarst lake development in the Yukechi Alas has been 
monitored by the Melnikov Permafrost Institute in Yakutsk since 
1992 (Fedorov & Konstantinov, 2003). Previous research by 
Ulrich et al. (2017) included remote sensing as well as field and 
statistical analysis of thermokarst lake change in the Yukechi Alas. 
In addition, Windirsch et al. (2020) assessed the local sediment 
genesis and its effect on permafrost carbon storage by analyzing 
sediment cores taken from Yedoma upland sediments in the close 
vicinity of the studied Yedoma lake YU- L15 (140 m SSW) and Alas 
deposits adjacent to Alas lake YU- L7 (110 m NNE; Figure S1).

2.2  |  Field work

During the field campaign to Yukechi in March 2015, we re-
trieved two sediment cores from the bottom of two thermokarst 
lakes (Figure 1b). Drilling was carried out from the lake ice using 
a URB2- 4T drilling rig mounted on a truck. The cores were drilled 
with 15.7 cm diameter for the uppermost parts and 8 cm in diame-
ter in the lower parts. The sediment cores were removed from the 
core barrel using compressed air. Sediment core YU- L7 was 17.7 m 
long and retrieved from the Alas lake (61.76397°N, 130.46442°E). 
At the sampling position, the Alas lake had an ice cover of 70 cm 
and a water depth of 2.3 m on March 23, 2015. The sediment core 
consisted entirely of unfrozen sediments, which are part of the 
talik underneath the thermokarst lake. Sediment core YU- L15 was 
17.2 m long and taken from the Yedoma upland lake (61.76086°N, 
130.47466°E). This lake had a 71- cm thick ice cover and a water 
depth of 4.3 m at the sampling position on March 23, 2015. The 
sediment core consisted of unfrozen talik sediments down to a 
depth of 8.1 m followed by frozen sediments below. The cores 
were described visually in the field, packed in plastic core wrap-
per, and kept frozen.

In both lakes, the ice was covered by ~35 cm snow. Directly un-
derneath the ice cover, the pH and electrical conductivity of the lake 
water were respectively 8.0 and 2.45 mS cm−1 for the Alas lake and 
8.3 and 2.29 mS cm−1 for the Yedoma lake.

2.3  |  Laboratory analyses

We cut the sediment cores into halves with a band saw and cleaned 
the cutting surfaces by removing the material that was superficially 
thawed during the saw process. Then, we subsampled the cores 
for different biogeochemical laboratory analyses (Figure 2). Ten 

sediment samples were taken from each core (every 1– 2 m according 
to the stratigraphy) and analyzed for total OC (TOC) content, lipid 
biomarkers, and anaerobic GHG production. Radiocarbon ages from 
both sediment cores were published separately (Jongejans et al., 
2019). Sedimentological and geochemical data are being prepared 
for publication in an additional study.

2.3.1  |  Organic carbon content

Sediment samples (n = 20) were analyzed for total carbon (TC) and 
total nitrogen (TN) content with an elemental analyzer (VarioMAX 
Elementar Analyser). The total inorganic carbon (TIC) content was 
quantified from the amount of CO2 that was released after sample 
treatment with phosphoric acid. The TOC content was calculated 
by subtracting the TIC from the TC and is expressed in weight per-
centage (wt%). We calculated the TOC to TN weight ratio, which 
will be referred to as the C/N ratio. This ratio can be used as OM 

F I G U R E  2  Schematic overview of sediment cores beneath 
Alas lake YU- L7 (left) and Yedoma lake YU- L15 (right). Subsamples 
were analyzed for lipid biomarkers (yellow squares) and incubation 
experiments (red squares)
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degradation proxy where the C/N ratio decreases with decomposi-
tion (e.g., Gundelwein et al., 2007).

In addition, we extracted 3– 10 ml pore water from sediment 
samples from both cores (n = 57) that were thawed overnight at 20°C 
using rhizon samplers (membrane pore size: 0.12– 0.18 µm). These 
samples were taken from different depths than the samples for lipid 
biomarkers and incubations but from same stratigraphic zones. The 
samples were acidified with 20 µl hydrochloric acid (35%) to pH 2 
and kept cool at 4°C. The dissolved OC (DOC) content was mea-
sured as non- purgeable OC fraction using a Total Organic Carbon 
Analyzer TOC- VCPH/CPN (Shimadzu) and is expressed in mg L−1.

2.3.2  |  Lipid biomarkers

Extraction and measurement
Sediment samples (n = 20) from the main stratigraphic units were an-
alyzed for n- alkanes and lipid biomarkers (Figure 2). Approximately 
8 g of dried, ground sediments were extracted using accelerated 
solvent extractions (ASE) with dichloromethane/methanol (DCM/
MeOH; 99:1 v/v) using a Dionex 200 ASE Extractor. Each sample 
was held in a static phase (5 min heating) for 20 min (75°C, 5 MPa). 
Afterward, the samples were concentrated using a TurboVap500 at 
42°C. We removed asphaltenes by dissolving the extracts in DCM/
MeOH (99:1 v/v) and adding a 40× excess of n- hexane, leading to 
precipitation of n- hexane- insoluble substances. Four internal stand-
ards were added for compound quantification: 5α- androstane, eth-
ylpyrene, 5α- androstan- 17- one, and erucic acid. We separated the 
maltene fraction (n- hexane soluble compounds) by medium pressure 
liquid chromatography (Radke et al., 1980) into an aliphatic, aromatic 
and NSO (nitrogen, sulfur, and oxygen containing) fraction using 
n- hexane.

The n- alkanes were measured in the aliphatic fraction by gas 
chromatography- mass spectrometry (GC- MS) using a Trace GC Ultra 
coupled to a DSQ MS (Thermo Electron Corporation) with helium as 
carrier gas (1 ml min−1). The GC was equipped with a cold injection 
system and a BPX5 (SGE) column (50 m × 0.22 mm × 0.25 µm). The 
injector temperature was programmed from 50°C to 300°C at a rate 
of 10°C s−1. The oven was heated from its initial temperature of 50°C 
(1 min isothermal) to 310°C with a heating rate of 3°C min−1 (30 min 
isothermal). The MS was operated in the electron impact ionization 
mode at 50 eV. Full- scan mass spectra were obtained from m/z 50 to 
600 Da with a scan rate of 2.5 scans s−1. Compounds were identified 
and quantified using the software Xcalibur™.

The branched and isoprenoid GDGTs, as well as the dialkyl glyc-
erol diether lipid (archaeol; Figure S2) were measured in the NSO 
fraction using a Shimadzu LC- 10AD high- performance liquid chro-
matograph coupled to a Finnigan TSQ 7000 mass spectrometer via an 
atmospheric pressure chemical ionization interface (corona current 
of 5 mA [5 kV], vaporizer T of 350°C, capillary T of 200°C, nitrogen 
sheath gas at 60 psi, no auxiliary gas). The sample was separated at 
30°C in a column oven using a Prevail Cyano column (2.1 × 150 mm, 
3 μm; Alltech) equipped with a pre- column filter. Compounds were 

eluted isocratically with n- hexane (99%) and isopropanol (1%) for 
5 min, followed by a linear gradient to 1.8% isopropanol in 40 min 
and in 1 min to 10% isopropanol. It was held for 5 min to clean the 
column, set back to initial conditions in 1 min, and held for 16 min 
for equilibration. The flow rate was set to 200 μl min−1. Mass spectra 
were obtained by selected ion monitoring in the positive ion mode 
and at a scan rate of 0.33 scans s−1. Compounds were identified 
using the software Xcalibur™ and quantified using a daily- measured 
external archaeol standard. Here, we present the concentration of 
branched GDGTs, isoGDGT- 0, and archaeol.

From both sediment cores, we selected five samples for open- 
system pyrolysis after Horsfield et al. (1989) and Stapel et al. (2018). 
The bitumen- free ASE residues were pyrolyzed (temperatures: 
300– 600°C) and the pyrolysates, which were trapped with liquid 
N2, were measured on a pyrolysis gas chromatograph (Agilent GC 
6890A chromatograph) equipped with a flame ionization detector 
(Py- GC- FID). The compounds were identified and quantified rela-
tive to an n- butane external standard using the Agilent ChemStation 
software. We integrated short (C1– C5), intermediate (C6– C14), and 
longer (≥C15) n- alkanes and n- alk- 1- enes. In immature OM, these ali-
phatic compounds represent aliphatic side chains as well as alcohols 
and fatty acids formerly covalently linked via ether or ester bonds to 
the complex organic matrix.

Lipid biomarker indices
From the n- alkane concentrations, we calculated two indices. The 
ACL of n- alkanes is a measure of the chain length distribution 
(Poynter & Eglinton, 1990), and indicates the OM source. It was 
calculated according to Equation (1) where i is the carbon number. 
We focus on long- chain n- alkanes, which are produced by terrestrial 
higher plants, for example in mosses (n- C23 and n- C25), in leaf waxes 
(n- C27 and n- C29), and in grasses (n- C31 and n- C33; e.g., Ficken et al., 
1998; Zech et al., 2009).

The CPI is an index for OM degradability. Higher values typically 
indicate better preserved OM and the ratio decreases with degrada-
tion (Bray & Evans, 1961; Marzi et al., 1993). The CPI was calculated 
according to Equation (2).

2.3.3  |  Incubations

From the 20 sediment samples, 17 samples were used in the incuba-
tion experiments to estimate GHG production from degrading OM. 
From each sample, we prepared three replicates for quality control. 
The frozen samples were thawed at 4°C overnight under an oxygen 
free atmosphere in a glovebox. After homogenization, approximately 
10 g of sediment was weighed into 120 ml glass bottles and 10 ml 

(1)ACL23−33 =

∑

i ⋅ Ci
∑

Ci

.

(2)CPI23−33 =

∑

oddC23−31 +
∑

oddC25−33

2 ⋅

∑

evenC24−32

.
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of autoclaved tap water added to each bottle with sediment. The 51 
bottles were sealed with rubber stoppers and the headspace gas was 
exchanged with pure nitrogen to create an anaerobic atmosphere, 
comparable to the ambient conditions in the talik sediments below 
the thermokarst lakes. Samples were incubated anaerobically at 4°C 
for 1 year. CO2 and CH4 concentrations were measured biweekly in 
a 250- µl subsample using gas chromatography with an Agilent GC 
7890A equipped with an Agilent HP- PLOT Q column. We used a ther-
mal conductivity detector and flame ionization detector for measur-
ing CO2 and CH4 concentrations, respectively, helium as a carrier gas, 
and an oven temperature of 100°C. From the concentrations, we cal-
culated the average CH4 and CO2 production of the three replicates, 
which are expressed in µg CH4- C and CO2- C g−1 dry weight and g−1 
TOC (an explanation of the calculations is provided in Supplement S1).

2.4  |  Statistical analysis

We identified the stratigraphical units of the two sediment cores by 
constrained hierarchical clustering of all measured parameters. We 
carried out this statistical clustering in R v. 3.6.1 using the “chclust” 
function in the package “rioja” with the method “coniss” (Juggins, 
2020). We calculated the correlation (Pearson) between all param-
eters and reported the statistically significant correlations (p < 0.05). 
Also, we compared the two sediment cores and the units using 
Kruskal– Wallis and Mann– Whitney Wilcoxon nonparametric tests. 
Using a forward- selection stepwise multiple regression, we tried to 
identify what parameters explained the most variance in the cumu-
lative CH4 and CO2 production. We carried out the regression in R 
using the package “MASS” with the function “stepAIC” (Venables 
& Ripley, 2002) and direction “forward”. This method iterates the 
Akaike information criteria (AIC) for the regression model when tak-
ing out one parameter at the time. The AIC statistic is a method to 
evaluate how well the model fits. We calculated the relative impor-
tance of the significant variables with the function “calc.relimp” from 
the package “relaimpo” (Groemping, 2006).

3  |  RESULTS

3.1  |  Organic matter characteristics

3.1.1  |  Alas lake sediment core YU- L7

Core YU- L7 was divided into a bottom unit including sediments from 
1769 to 1331 cm below the sediment surface (bss), a middle unit from 
1125 to 518 cm bss and a top unit from 362 to 290 cm bss (Figure 3). 
This division was based on constrained hierarchical clustering of all 
measured parameters (Figure S3). The TOC ranged between 0.3 and 
1.6 wt% (median: 0.8 wt%; Figure 3a) and was lowest in the middle 
unit. The C/N had a median of 8.3 and was highest in the bottom 
unit with the maximum of 10.7 at 1516 cm bss (Figure 3b). DOC 
values showed little variation and were between 97 and 242 mg L−1 

(median: 169 mg L−1; Figure 3c). The n- alkane concentration per gram 
dry weight (g−1 dw) was highest at 362 cm bss with 20.1 µg g−1 dw 
and lowest at 518 cm bss with 3.1 µg g−1 dw (median: 8.24 µg g−1 dw; 
Figure 3d). The n- alkane concentration per gram TOC varied between 
599 and 2048 µg and was especially high at 1048 and 362 cm bss 
(median: 993 µg g−1 TOC). The ACL showed little variation over depth 
between 29.0 and 29.9 (Figure 3e). Long chain (n- C29 and n- C31) al-
kanes dominated all samples. The CPI ranged between 7.1 and 10.4 
and did not show substantial variation between the units (Figure 3f). 
The brGDGT concentration ranged from 2.1 and 79.1 ng g−1 dw and 
was highest at 1516 and 1446 cm bss (median: 40.0 ng g−1 dw; 
Figure 3g). The brGDGT concentration per gram TOC varied between 
2674 and 5455 ng (median: 2.9 µg g−1 TOC). The archaeol concen-
tration showed quite some variation between 0 and 38.7 ng g−1 dw 
with relatively high values at 1331, 1516, and 290 cm bss (Figure 3h). 
Per gram TOC, the archaeol concentration was highest at 591 cm bss 
(3755 ng g−1). The isoGDGT- 0 concentration showed a similar pattern 
to the brGDGT concentration and ranged from 0 to 15.8 ng g−1 dw, 
and from 0 to 1084 ng g−1 TOC (Figure 3i). The results from the open- 
system pyrolysis (Figure 5) suggested a more aliphatic character for 
samples with higher TOC values (at 1331 cm bss, followed by 1561 
and 362 cm bss). All results were published in the PANGAEA research 
data repository, specifically the biogeochemical parameters, n- alkane 
and brGDGT concentrations, cumulative GHG production, and DOC 
content (Jongejans et al., 2021a, 2021b, 2021c, 2021d, 2021e).

3.1.2  |  Yedoma lake sediment core YU- L15

Core YU- L15 was divided into two parts: the bottom unit included 
the sediments from 1713 to 778 cm bss and the top unit from 353 to 
170 cm bss (Figure 4; Figure S3). The TOC varied between 0.2 and 
1.4 wt% (median: 0.5 wt%; Figure 4a). The TOC was slightly higher 
in the lowermost three samples (1713– 1488 cm bss) and those at 
the top compared to the intermediate samples between 1315 and 
778 cm bss. The C/N ratio had its maximum (13.2) as well as its mini-
mum (8.9) in the top unit (Figure 4b). In the bottom unit, the C/N 
varied between 9.1 and 11.0 (core median: 9.7). The DOC concentra-
tion showed a lot of variation ranging from 51 to 1620 mg L−1 with 
highest concentrations at the base of the core (1694– 1185 cm bss; 
median: 448 mg L−1; Figure 4c). In the top unit of YU- L15, DOC val-
ues were between 437 and 615 mg L−1. The n- alkane concentration 
was lowest in the upper sample at 170 cm bss (2.2 µg g−1 dw) and 
highest at 353 cm bss (median: 8.8 µg g−1 dw; Figure 4d). Per gram 
TOC, the n- alkane concentration was between 346 and 2456 µg 
and especially high between 1516 and 1076 cm bss. The ACL was 
higher than 28.8 in all samples (median: 29.0; Figure 4e). All samples 
were dominated by n- C29 and n- C31. The CPI varied between 6.3 
and 10.7 (Figure 4f). The brGDGT concentration was highest in the 
upper sample (58.7 ng g−1 dw) and lowest at 1315 cm bss (median: 
7.9 ng g−1 dw; Figure 4g). The brGDGT concentration per gram TOC 
was up to 8744 ng g−1. The archaeol (Figure 4h) and isoGDGT- 0 con-
centration (Figure 4i) showed a very similar pattern with the highest 
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concentration at 353 cm bss (26.1 and 6.1 ng g−1 dw, respectively) 
and a median of 2.8 and 1.1 ng g−1 dw, respectively. Per gram TOC, 
the maxima were 1861 and 433 ng g−1 for archaeol and isoGDGT- 0, 

respectively. Following pyrolysis, samples with the highest TOC val-
ues (353– 1488 cm bss) are also among those with the highest ali-
phatic character (Figure 5).

F I G U R E  3  Biogeochemical 
parameters of Alas lake sediment core   
YU- L7. (a) Total organic carbon (TOC) 
content, (b) ratio of carbon to nitrogen 
content (C/N), (c) dissolved organic 
carbon (DOC) content of original pore 
water samples, (d) n- alkane concentration 
per gram dry weight (g−1 dw) and per 
gram TOC (orange triangles), (e) n- alkane 
average chain length, (f) n- alkane carbon 
preference index (CPI), (g) branched 
glycerol dialkyl glycerol tetraether 
(brGDGT) concentration g−1 dw and 
g−1 TOC (orange triangles), (h) archaeol 
concentration g−1 dw and g−1 TOC (orange 
triangles), and (i) isoGDGT- 0 concentration 
g−1 dw and g−1 TOC (orange triangles). 
Units indicated on right: top (T), middle (M; 
gray area), and bottom (B)
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F I G U R E  4  Biogeochemical parameters 
of Yedoma lake sediment core YU- L15. 
(a) Total organic carbon (TOC) content, 
(b) ratio of carbon to nitrogen content 
(C/N), (c) dissolved organic carbon (DOC) 
content of original pore water samples, 
(d) n- alkane concentration per gram dry 
weight (g−1 dw) and per gram TOC (orange 
triangles), (e) n- alkane average chain 
length, (f) n- alkane carbon preference 
index (CPI), (g) branched glycerol 
dialkyl glycerol tetraether (brGDGT) 
concentration g−1 dw and g−1 TOC (orange 
triangles), (h) archaeol concentration 
g−1 dw and g−1 TOC (orange triangles), and 
(i) isoGDGT- 0 concentration g−1 dw and 
g−1 TOC (orange triangles). Units indicated 
on right: top (T) and bottom (B; gray 
area), boundary talik to permafrost (PF) 
indicated with gray dashed line
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3.2  |  Greenhouse gas production

3.2.1  |  Alas lake sediment core YU- L7

In total, we measured anaerobic GHG production of 10 samples from 
the Alas lake sediment core YU- L7 (Figure 6). CH4 production after 
1 year was highest (81.3 ± 38.2 µg CH4- C g−1 dw; mean ± stand-
ard deviation) in the sample closest to the sediment surface in the 
top part at 290 cm bss (Figure 6a). Furthermore, CH4 production 
also exceeded 20 µg for the sediments at 1048 cm (54.5 ± 42.7 µg 
CH4- C g−1 dw) and 1769 cm bss (38.7 ± 66.3 µg CH4- C g−1 dw). 
When normalized to gram TOC, CH4 production was highest in the 
middle part of the core at 1048 cm bss (13.2 ± 10.4 mg CH4- C g−1 
TOC). There was no trend in depth observed. For the three samples 
with the highest CH4 production, the maximum production rates 

ranged from 0.62 to 0.91 µg CH4- C g−1 dw day−1 (Figure 6b). After 
~350 days, the rates of these samples decreased. In samples yielding 
higher CH4 concentrations, CH4 production started after ~200 days 
and increased exponentially. In 6 out of 10 samples, the CH4 rates 
increased over time. Cumulative GHG production and rates for all 
replicates are shown in the supplement (Figures S6– S22).

CO2 production was highest in the top part of the sediment core 
at 362 cm bss (227.15 ± 248.8 µg CO2- C g−1 dw), closely followed 
by the sample at 1446 cm bss in the bottom unit (197.6 ± 225.7 µg 
CO2- C g−1 dw; Figure 6c). In the middle unit, CO2 production was 
very low. The CO2 production per gram TOC was highest at 1446 cm 
bss (30.5 ± 34.8 mg CO2- C g−1 TOC). In contrast to CH4, CO2 was 
produced from the start of the incubation and after which the rates 
decreased (e.g., Figure S6). Maximum rates of all samples varied be-
tween 1.52 and 3.17 µg CO2- C g−1 dw day−1 (Figure 6d).

3.2.2  |  Yedoma lake sediment core YU- L15

Anaerobic GHG production was measured on seven samples from 
the Yedoma lake sediment core YU- L15 (Figure 7). CH4 produc-
tion in the Yedoma lake sediment core YU- L15 was highest in the 
top of the core (Figure 7a). The maximum was at 353 cm bss with 
87.0 ± 44.0 µg CH4- C g−1 dw. The sample at 170 and 966 cm bss also 
showed substantial CH4 production (64.1 ± 57.2 and 41.6 ± 26.9 µg 
CH4- C g−1 dw, respectively). The CH4 production normalized to 
gram TOC was highest in the sample at 966 cm bss (18.8 ± 12.2 mg 
CH4- C g−1 TOC). Like in the Alas lake core, CH4 production started 
after 200 days for most samples and increased exponentially (e.g., 
Figure S6). In five samples, the CH4 production rates increased over 
time and were highest at the end of the incubations from 300 days 
and onward. The three samples with the highest cumulative CH4 
production (353, 170, and 966 cm bss) also had the highest rates 
ranging from 0.56 to 1.15 µg CH4- C g−1 dw day−1 (Figure 7b).

The CO2 production was highest in the bottom of the core 
(Figure 7c). The maximum CO2 production was observed in the 
sample at 1488 cm bss (561.5 ± 527.4 µg CO2- C g−1 dw). In the 

F I G U R E  5  Horsfield diagram: Chain length distribution of short 
(C1– C5), intermediate (C6– C14), and long (C15+) n- alkanes and n- alk- 1- 
enes after pyrolysis of the bitumen- free macromolecular organic 
matrix after Horsfield et al. (1989). Symbols correspond to samples 
from Alas lake sediment core YU- L7 (circles) and Yedoma lake 
sediment core YU- L15 (triangles)
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F I G U R E  6  Greenhouse gas production 
after 1 year from Alas lake sediment 
core YU- L7. (a) Cumulative methane 
(CH4) production in per gram dry weight 
(g−1 dw; circles) and per gram TOC (orange 
triangles), (b) maximum CH4 rates g−1 dw 
(circles) and g−1 TOC (orange triangles), 
(c) cumulative carbon dioxide (CO2) 
production in g−1 dw (circles) and g−1 TOC 
(orange triangles), (d). maximum CO2 
rates g−1 dw (circles) and g−1 TOC (orange 
triangles). Units indicated on right: top (T), 
middle (M; gray area), and bottom (B)
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sample at 1076 cm (407.7 ± 680.1 µg CO2- C g−1 dw) and 170 cm bss 
(350.2 ± 346.9 µg CO2- C g−1 dw), CO2 production was also high. All 
samples produced more than 50 µg CO2- C, except for the sample 
at 1594 and 966 cm bss. The production per gram TOC was highest 
at 1076 cm bss (120.6 ± 201.2 mg CO2- C g−1 TOC). CO2 production 
started at the beginning of the incubation and increased gradually 
over time. Maximum CO2 production rates ranged from 1.05 to 
7.67 µg CO2- C g−1 dw day−1 (Figure 7d).

3.2.3  |  Carbon mineralization

Total anaerobic C production ranged from 0.02 to 0.23 mg g−1 dw 
in YU- L7 (max: 0.08 mg C g−1 dw as CH4) and from 0.02 to 
0.56 mg g−1 dw in YU- L15 (max: 0.09 mg C g−1 dw as CH4). 
After 1 year, on average, 2.3 ± 3.1% of the initial carbon was 
mineralized to CO2 and 0.4 ± 0.6% to CH4 (Figure S4). In the 
first 100 days, 10 ± 21% of the cumulative CH4 was produced. 
Production of CH4 commenced after 200 days and CH4 produc-
tion rates were highest after 300 days in most samples. In six 
samples (YU- L7: 1125, 1446, and 1652 cm bss; YU- L15: 778, 
1076 and 1488 cm bss; Figures S10, S12, S14, S18, S20, and S22), 
the CH4 production was higher in the first week compared to the 
following weeks.

The CO2 production rates were highest in the first 100 days in 
8 out of 17 samples. In four samples, the rates were highest after 
300 days. Within the first 100 days, 49 ± 28% of the cumulative CO2 
was produced. CO2 production was generally highest at the begin-
ning of the incubations and gradually decreased over time.

3.3  |  Statistical correlation and regression

Considering both cores, the TOC correlated positively with n- alkane, 
brGDGT, archaeol, and isoGDGT- 0 concentration (p < 0.01; Figure 
S5). The CO2 production was correlated with the ACL (R: −0.56, 
p < 0.05) and with the DOC content in adjacent samples (R: 0.58, 

p < 0.05). The CH4 production was negatively correlated with the 
depth (R: −0.58, p < 0.05).

Using the forward- selection stepwise multiple regression 
method, we found that the CH4 production could not be explained 
by our data; no fitting model was found. The cumulative CO2 pro-
duction can be explained by a generalized linear regression model as 
shown in Equation (3). This model describes 73.5% of the variance 
of the cumulative CO2 production, of which 58.5% is explained by 
the DOC content and the ACL alone. This clear relation of the CO2 
production with a high DOC and low ACL is also shown in Figure 8.

F I G U R E  7  Greenhouse gas production 
after 1 year from Yedoma lake sediment 
core YU- L15. (a) Cumulative methane 
(CH4) production in per gram dry weight 
(g−1 dw; circles) and per gram TOC (orange 
triangles), (b) maximum CH4 rates g−1 dw 
(circles) and g−1 TOC (orange triangles), 
(c) cumulative carbon dioxide (CO2) 
production in g−1 dw (circles) and g−1 
TOC (orange triangles), (d) maximum CO2 
rates g−1 dw (circles) and g−1 TOC (orange 
triangles). Units indicated on right: top (T), 
middle (M; gray area), and bottom (B)
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4  |  DISCUSSION

4.1  |  Organic matter degradation potential

4.1.1  |  Organic carbon quantity

Sedimentary OC exists bound to the sediments or in the pore water. 
Total organic carbon (TOC) contains both the particulate (POC) and 
dissolved fractions of OC. In both Yukechi cores, the TOC was very 
low (median YU- L7: 0.8 wt% and median YU- L15: 0.5 wt%; Figures 3 
and 4). Windirsch et al. (2020) found similar low values in sediment 
cores drilled on dry land within the same Alas basin (median: <0.1 
wt%, max: 2.4 wt%) and on Yedoma upland nearby (median: <0.1 
wt%, max: 1.7 wt%). They reported that the Yedoma sediments are 
rather coarse- grained (i.e., fine sand dominated) at the Yukechi study 
site compared to other Yedoma sites such as the Kolyma upland re-
gion, where Yedoma is dominated by fine- grained silt- sized grain 
fractions (Schirrmeister et al., 2020). OM in the mineral fraction is 
mainly bound to silt and clay (Mueller et al., 2015). Fluvial deposi-
tion of the Yukechi sands may explain the lack of OM (Windirsch 
et al., 2020). In contrast to our study site, Yedoma deposits in other 
regions of Siberia are characterized by finer grained silty sediments 
with relatively high TOC values with a median of 1.9 wt% (Strauss 
et al., 2012, 2020).

In contrast to the TOC, the DOC values from the frozen Yedoma sed-
iments of YU- L15 are very high (median: 373 mg L−1, max: 1620 mg L−1; 
Figure 3), yet comparable to pore water from Yedoma deposits on Buor 
Khaya, northeastern Siberia (median: 317 mg L−1, max: 1371 mg L−1; 
Schirrmeister et al., 2017). In addition, Ewing et al. (2015) reported 
high maximum DOC values in Alaskan Yedoma pore water (median: 
618 mg L−1, max: 1551 mg L−1). For comparison, other studies from 
northeastern Siberia reported much lower pore water DOC values such 
as for early to middle Weichselian sediments on the Cape Mamontov 
Klyk, ranging from 4 to 305 mg L−1 (Mitzscherling et al., 2019), or for 
Samoylov Island, ranging from 57 to 288 mg L−1 (Liebner et al., 2008).

The rate and efficiency of hydrolysis from POC to DOC as well 
as the size and quality of the DOC pool are of utmost importance 
for GHG production since microbes mainly metabolize DOC size 
fractions (Battin et al., 2008). Therefore, DOC in pore water is 
readily bioavailable for microbial degradation upon talik forma-
tion and hence a very important OM fraction in GHG production 
process. Recent studies showed that DOC from thawing perma-
frost is highly biodegradable with the biolabile fractions compos-
ing ~20%– 53% for Alaskan sites (Drake et al., 2015; Ewing et al., 
2015) and 34%– 50% for Siberian sites (Spencer et al., 2015; Vonk 
et al., 2013). These studies found that the biolabile DOC fraction 
was lost mainly in the first 1– 2 weeks upon thaw. Furthermore, it 
was shown that ancient DOC originating from Pleistocene perma-
frost was more susceptible to decomposition than modern DOC   

(Mann et al., 2015; Vonk et al., 2013). The relatively high DOC 
contents in the Pleistocene Yedoma sediments in the bottom of 
core YU- L15 in combination with the generally high biolability of 
Yedoma OM could therefore be a reason for the substantial GHG 
production observed. The generally higher GHG production per 
gram TOC in contrast to unfrozen or Alas lake sediments (Figures 
3 and 4) supports the relatively high bioavailability of Yedoma OM. 
Whereas the decomposition of labile DOC seems to contribute to 
the GHG production upon initial talik formation, GHG production 
at later stages of talik formation is primarily driven by the break-
down of the POC fraction. Only very few studies focus on the 
breakdown of POC, and the interaction between POC and DOC 
decomposition is not well understood. Nevertheless, it was shown 
that POC turnover is relevant for DOC decomposition (Attermeyer 
et al., 2018; Richardson et al., 2013).

4.1.2  |  Organic matter preservation and 
talik formation

The characteristics of the sediments directly below alas lakes are 
often the result of several subsequent lake generations at a loca-
tion with sometimes lacustrine and subaerial deposition alternating 
(Katasonov et al., 1979; Lenz et al., 2016; Soloviev, 1959). In many 
thermokarst lake regions, multiple thermokarst lake generations 
over the past centuries to millennia led to repeated thawing and 
refreezing of the sediments (e.g., Jones et al., 2012) and therefore 
likely also recurring talik formation (Grosse et al., 2013). For the 
Yukechi Alas, the domination of long- chain alkanes (n- C29 and n- C31) 
throughout both cores, indicating OM from higher terrestrial plants, 
suggests that the Alas lake sediments are primarily thawed Yedoma 
sediments. However, dated macrofossils at 290 cm bss yielded a 
Holocene age (3.75 ± 0.12 cal kyr BP; Jongejans et al., 2019), sug-
gesting a recent productivity signal in these sediments. The sedi-
ments at 518 cm bss had an age of 13.53 ± 0.66 cal kyr BP and all 
dated sediments below yielded 14C ages >24 cal kyr BP.

In the uppermost sediments of the Yedoma lake core (170 cm 
bss), the OM is of recent origin (0.14 ± 0.05 cal kyr BP). This could be 
caused by sediment mixing during surface subsidence (Farquharson 
et al., 2016). Alternatively, active layer dynamics or cryoturbation 
could have played a role in the uppermost sediments during various 
sedimentation stages as well as the input of eroded material from 
the lakeshore. All other dated samples yielded 14C ages >24 cal kyr 
BP. Hence, we measured GHG production from samples containing 
old and recent OM but found no clear pattern between the amount 
of GHG produced and the age of the OM. Nevertheless, the high and 
constant ACL over depth in both cores suggests that the OM source 
was rather similar over time.

With thaw and talik formation at our Alas site, microbial decom-
position of OM led to GHG production. Furthermore, the drying of 
the basins could have favored aerobic conditions and OM cycling as 
well as potentially permafrost re- aggradation (Lee et al., 2012). This, 
in combination with the low TOC in the Yukechi Alas, could explain 

(3)

CO2=0.27 ⋅DOC−498.07 ⋅ACL+60.92 ⋅CPI

+13.46 ⋅n-alkaneconc.+14,026.43.
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the low DOC values in the Alas core. During phases of intensified 
lake formation, interactions between pore water and the mineral 
phase could have led to liberation of DOC and the microbial trans-
formation of the most biolabile fraction into GHG.

The sediments underneath the Yedoma lake have been thawed 
from the top down only for the last ~70 years for the first time since 
deposition (Ulrich et al., 2017), explaining the rather shallow talik 
compared to the Alas lake. The sediments at 778 cm bss of the 
Yedoma lake core, which was part of the talik, were attributed to the 
bottom cluster. This suggests that the studied OM characteristics in 
this sample are still more similar to the frozen sediments underneath 
than to the talik sediments above.

The frozen sediments in the bottom part have likely not been 
thawed since permafrost formation in the late Pleistocene. This 
suggests OM was better preserved in the permafrost sediments of 
the Yedoma lake compared to the top of the Alas lake sediments 
(Schuur et al., 2009). This was corroborated by a higher C/N ratio in 
the Yedoma lake sediments and in the bottom of the Alas lake sed-
iments compared to the top and middle of YU- L7 (p < 0.05; Figures 
3 and 4). However, we found no significant correlation between the 
OC loss (Figure S4) and the C/N ratio. This might be the result of the 
low TOC content in the Yukechi sediments; consequently, TOC and 
C/N are no reliable predictors of CO2 production. In the biomarker- 
based degradation indicators such as the CPIn- alkanes, we did not see 
the better preservation signal of the OM in the Yedoma lake core 
compared to the Alas lake core (Figures 3 and 4). Potentially, not 
enough time has passed since deposition for maturation (Bray & 
Evans, 1961). The CPI must hence be a result of the original signal 
and depositional environment of the OM rather than permafrost 
thaw history (Jongejans et al., 2020).

Stapel et al. (2018) showed that the OM from Yedoma deposits 
on Bol'shoy Lyakhovsky Island had a relatively high aliphatic propor-
tion, which suggests the OM is more easily degradable compared to 
more aromatic OM. Our pyrolysis experiments showed a clear con-
nection between the TOC content and the aliphatic character, which 
suggests that these samples might contain more biolabile OM.

4.1.3  |  Presence of methanogenic communities

Archaeol and isoGDGT- 0 concentrations were significantly higher 
in the Alas compared to the Yedoma lake sediments (p < 0.05 and 
p < 0.01, respectively; Figures 3 and 4). Archaeol and isoGDGT- 0 are 
breakdown products of intact polar membrane lipids and represent 
the past archaeal biomass as a degradation product (Bischoff et al., 
2013; Stapel et al., 2018). Archaeol, one of the main core membrane 
lipids of archaea, was used to infer methanogenic abundance spe-
cifically before (Bischoff et al., 2013; Pancost et al., 2011). Increased 
isoGDGT- 0 and archaeol concentrations in thawed sediments can 
indicate a mixture of past and present archaea including methano-
gens. The higher archaeal marker concentration in the Alas lake core 
suggests that the methanogenic communities were likely estab-
lished after talik formation.

In previous studies, a positive correlation was found between 
CH4 production in thawing permafrost and the presence of metha-
nogenic archaea (Carnevali et al., 2015; Holm et al., 2020; Knoblauch 
et al., 2018). In our study, the CH4 production was higher in the talik 
sediments of the Yedoma lake core. Lower CH4 and CO2 produc-
tion in YU- L7 compared to YU- L15 suggests that the biolabile frac-
tion of OM was already largely decomposed in a talik in previous 
thermokarst lake stages. This is corroborated by the lower C/N 
ratio in the Alas lake sediments. The moderate concentrations in the 
Yedoma lake core between 1161 and 966 cm bss might result from 
microbial activity during sedimentation (Bischoff et al., 2013). Holm 
et al. (2020) showed that microbial communities established prior to 
freezing could lead to an earlier start and stronger CH4 production 
compared to sediments where no prior communities were estab-
lished. Further research is needed to study the interactions between 
present and past microbial communities, and the factors controlling 
GHG production in thawing permafrost.

4.2  |  Greenhouse gas production

The 1- year- long incubation experiments showed distinct differences 
between the first- generation and multiple- generation thermokarst 
lake sediments. Both CH4 and CO2 production were higher in the 
Yedoma lake sediments compared to the Alas lake sediments (3 and 
1.5 times higher mean, respectively). The GHG production did nei-
ther correlate with the TOC content nor with the biomarker con-
centrations and indices. Previous incubation studies of permafrost 
sediments found a positive correlation between CO2 production and 
TOC (Knoblauch et al., 2013; Lee et al., 2012; Walter Anthony et al., 
2016). These studies, however, analyzed sediment samples with 
higher TOC contents compared to our study (median: 1.2, 5.0, and 
~4 wt%, respectively). Furthermore, we compared sediment sam-
ples that have undergone different depositional conditions and thaw 
legacy, which might explain the lack of correlation between TOC 
content and GHG production.

4.2.1  |  Carbon dioxide production

CO2 production was highest in the bottom of YU- L15 (Figure 4). This 
is likely because the sediments were thawed for the first time since 
deposition, and the presence of readily bioavailable DOC after thaw. 
The latter is corroborated by the positive correlation between the 
initial DOC values in samples adjacent to the incubation samples and 
the CO2 production, supporting the rapid turnover of biolabile DOC 
fractions (Vonk et al., 2013). The CO2 production from the still fro-
zen Yedoma sediments in our core (1713– 996 cm bss) is in the same 
order of magnitude as from Pleistocene sediments in the Lena Delta 
(0.13 ± 0.06 mg CO2- C g−1 dw; Knoblauch et al., 2013) and from 
mineral soils in Alaska and Siberia (0.34 ± 0.13 mg CO2- C g−1 dw; 
Lee et al., 2012). When expressed on a bulk carbon basis, however, 
the CO2 production in the permafrost sediments of the Yedoma lake 
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(50.6 ± 53.4 mg CO2- C g−1 TOC) is much higher than from other 
Yedoma sites as reported by Knoblauch et al. (2013; 4.9 ± 2.1 mg 
CO2- C g−1 TOC) and Lee et al. (2012; 11.3 ± 12.3 mg CO2- C g−1 TOC). 
This means that despite the low carbon content of these sediments, 
the overall mineral OM has a high potential for being degraded into 
CO2. Nevertheless, the percentage of initial C that was mineralized 
to CO2 (2.3 ± 3.1%) was low in comparison with - year- long incuba-
tion studies of organic- rich active layer sediments such as reported 
by Schädel et al. (2014; 6% loss) and Faucherre et al. (2018; 8% loss).

The median CO2 rates over time in the bottom unit of the Yedoma 
lake core was 50 µg CO2- C g−1 TOC day−1. While some anaero-
bic incubations studies with permafrost samples had much lower 
CO2 production rates (median: 1.6– 3.6 µg CO2- C g−1 TOC day−1; 
Knoblauch et al., 2013; Zona et al., 2012), other studies found rates 
in the same order of magnitude as our data such as Lupascu et al. 
(2012) and Santruckova et al. (unpublished data; median 37.8 and 
68.6 µg CO2- C g−1 TOC day−1, respectively). However, of these stud-
ies, only Knoblauch et al. (2013) reported CO2 production in sedi-
ments >1 m bss (i.e., down to 25 m depth).

The relatively high GHG production at the uppermost sample 
(290 cm bss) of the Alas lake sediment core might be explained by 
the input of Holocene OM (see Section 4.1.2) during a previous 
thermokarst lake stage where methanogenic communities were es-
tablished, which might have a priming effect on the older carbon in 
these sediments (Wild et al., 2014).

4.2.2  |  Methane production

In most of our samples, a significant start of CH4 production could be 
recognized only after 200 days (Figures S5 and S6). Previous incuba-
tion studies also observed this lag phase and explained it as the result 
of the low initial abundance of methanogens in the sediments, which 
increases with thaw (Knoblauch et al., 2013, 2018; Treat et al., 2014; 
Waldrop et al., 2010). Interestingly, the frozen sample below the talik 
boundary in the Yedoma lake core (996 cm bss), showed the high-
est maximum CH4 production rate (252.2 µg CH4- C g−1 TOC day−1). 
As these sediments were frozen continuously since deposition and 
permafrost incorporation, these findings suggest that methanogenic 
communities were established here prior or during deposition and 
survived while being freeze- locked (Holm et al., 2020). In this par-
ticular sample, methanogenic taxa were likely present that produce 
CH4 using very low substrate TOC concentrations as reported from 
low- temperature incubations of Arctic soils (Blake et al., 2015), but 
further detailed microbial analyses are required to substantiate this 
hypothesis.

CH4 production was highest in the top of Yedoma lake core 
(Figure 7), which is corroborated by a negative correlation between 
CH4 production and the depth bss in this core. This fits well to 
thaw front migration with talik formation and subsequent gradual 
population of methanogenic communities. In their study of meth-
anogenesis response to permafrost thaw, Holm et al. (2020) found 
that CH4 production was not correlated to C content, but rather to 

paleoenvironmental conditions. They argued that CH4 production 
is more vulnerable to disturbance than anoxic CO2 production, be-
cause methanogenesis is restricted to a very small group of archaea 
whereas there are many different groups of microorganisms produc-
ing CO2 under anoxic conditions. Their findings show that anaerobic 
GHG release from thawing permafrost is complex and not yet well 
understood.

To our knowledge, Heslop et al. (2015) present the only other 
CH4 production rates from Yedoma deposits that were thawed in 
a talik. They measured C release rates as CH4 along a talik profile 
below an Alaskan first- generation thermokarst lake. In contrast to 
our data, Heslop et al. (2015) found highest CH4 production rates 
in the recently thawed sediments (59.6 ± 51.5 µg CH4- C g−1 TOC  
day−1) compared to the transitional permafrost (15.3 ± 9.1 µg CH4- C  
g−1 TOC day−1) and the thawed Yedoma sediments (17.9 ± 13.6 µg  
CH4- C g−1 TOC day−1). Our data did not show such a trend: sediments  
from the recently thawed permafrost (778 cm bss) had a low maxi-
mum CH4 production rate (2.5 µg CH4- C g−1 TOC day−1). However, the 
rates from the top of YU- L15 (81.8– 135.1 µg CH4- C g−1 TOC day−1) 
were much higher. Nevertheless, the CH4 production is not neces-
sarily directly linked to CH4 release, since a part of the produced CH4 
might be oxidized in the sediment column before being released into 
the atmosphere (Winkel et al., 2019).

The CH4 production rates in the bottom unit of the Yedoma lake 
core (median: 0.02 µg CH4- C g−1 TOC day−1) were much lower com-
pared to previously published CH4 rates in 4°C permafrost incuba-
tion studies (0.12– 0.56 µg CH4- C g−1 TOC day−1; Knoblauch et al., 
2013; Lupascu et al., 2012; Santruckova et al., unpublished data; 
Zona et al., 2012).

4.3  |  GHG links with other parameters and outlook

Using the generalized linear regression models, we found that CO2 
production was mainly explained by the ACL and the DOC content: 
sediments with the lowest ACL and highest DOC content produced 
the most CO2 (Figure 8). This suggests that these parameters de-
scribe the lability of the OM best for our study. While the DOC 
seems to indicate the abundance of bioavailable OM (see Section 
4.1), the ACL signal might represent a more labile OM source fraction 
from the respective surrounding ecosystem.

In some cases, we did find high archaeal markers or a strong al-
iphatic character corresponding to a higher CH4 production, but in 
other samples, this was the exact opposite. We did not find signifi-
cant correlations between biomarker distribution and CH4 produc-
tion (Figure S5). Therefore, we assume that the variation must be 
explained by a complex interplay of different external factors con-
trolling GHG production. The varying sedimentation history of the 
Yukechi sediments might play an important role in this, as different 
depositional mechanisms could have resulted in OM from different 
sources (e.g., transported vs. in situ, different types of plants) lead-
ing to a mixture of labile and recalcitrant OM. This could have led to 
an activation of OM in some (sub- )samples but not in others. For the 
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samples with increased bacterial and archaeal markers but low GHG 
production, the biomarkers might indicate past microbial activity 
rather than the presence of active methanogenic communities. The 
reactivation of such paleo- active horizons depends on factors which 
are not yet fully understood, but intense remineralization in the past 
as indicated by the high lipid biomarker concentrations might have 
strongly depleted labile organic compounds from the overall OM 
pool. Further research into intact polar lipids could help to quantify 
the interaction between present and past microorganisms (Bischoff 
et al., 2013; Stapel et al., 2018).

In contrast to our incubation experiment, external factors 
could influence the oxygen content of the sediments as well as the 
soil microbial communities under in situ conditions. Differences 
between the temperature used in our incubations (4°C) and the 
actual temperature in talik sediments, which varies seasonally 
depending on the depth and probably ranges from ~0°C to about 
4°C (Heslop et al., 2015), might lead to over-  or underestimation of 
GHG production. Earlier incubations (e.g., Tanski et al., 2019) and 
modeling research (e.g., Knoblauch et al., 2013) considered GHG 
production for 4 months per year, which represents the summer 
thaw season. GHG production in talik sediments, however, con-
tinues year- round, which is why we incubated our samples for one 
entire year.

Thermokarst lake initiation and expansion in a warming cli-
mate will continue to set free OM. Even though initially microbial 
abundances might be low in permafrost soils, long- term thawing 
of ice- rich sediments underneath thermokarst lakes will promote 
anaerobic conditions and activate methanogenic OM degradation, 
leading to substantial GHG production. Walter Anthony et al. (2016) 
showed that anaerobic carbon release from thermokarst lakes was 
directly proportional to the amount of carbon input by thawing of 
sediments. They calculated that, since the 1950s, 0.2– 2.5 Gt per-
mafrost carbon was released as GHG in thermokarst expansion 
zones of pan- Arctic lakes. Converted to annual release, they found 
a mean CH4 production of 0.50 ± 0.09 mg CH4- C g−1 TOC year−1, 
which is much lower than the mean of all our samples after 1 year 
(3.80 ± 5.66 mg CH4- C g−1 TOC). Our findings underline the vast 
potential of thermokarst lake formation and subsequent GHG re-
lease. Considering the importance of this input for the global climate 
system, this topic should receive continued attention.

5  |  CONCLUSION

In this study, we analyzed GHG production and lipid biomarker dis-
tributions in two 17- m- long thermokarst lake sediment cores taken 
in Central Yakutia, Russia. We found that the sediments in both 
cores were relatively OC poor, which is in agreement with previous 
research in the Yukechi region. We found substantial differences be-
tween the well- preserved sediments below a young Yedoma lake, 
and the heavily thermokarst- affected sediments below an Alas lake. 
Both CH4 and CO2 production were higher in the Yedoma lake de-
posits compared to Alas lake deposits. The highest CO2 production 

was measured in the deepest, in situ still frozen part of the Yedoma 
lake core, which shows that potential CO2 production in newly 
thawed sediments strongly depends on the decomposition of read-
ily available DOC. In contrast to previous research, we found no cor-
relation between CO2 production and TOC content. However, CO2 
production could mainly be explained by the ACL and DOC content, 
suggesting that OM source and quality is the main driver for CO2 
production. CH4 production showed a different pattern: most CH4 
was produced in the talik sediments below the Yedoma lake, sug-
gesting that methanogenic communities were established in the 
thawed sediments but not yet in the frozen sediments in the bot-
tom of the core. We assume that the variable depositional history 
of the Yukechi region led to the accumulation of OM from a differ-
ent source and quality in different sediment layers, which explains 
the variation in GHG production in the sediments. The lower GHG 
production in the Alas lake core is a result of a degradation legacy 
that led to OM decomposition during earlier thermokarst lake gen-
erations. GHG production from thawed permafrost was substan-
tial even from OC- poor sediments, highlighting the importance of 
thermokarst formation in general, and thaw of mineral permafrost 
in particular for the climate system. Therefore, our study presents 
novel insights that are relevant for mineral- dominated deposits with 
generally low TOC contents, which are widespread throughout the 
Arctic.
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