Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Pressure Solution Compaction During Creep Deformation of Tournemire Shale: Implications for Temporal Sealing in Shales

Urheber*innen

Geng,  Zhi
External Organizations;

/persons/resource/bonnelye

Bonnelye,  A.
4.2 Geomechanics and Scientific Drilling, 4.0 Geosystems, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

David,  Christian
External Organizations;

Dick,  Pierre
External Organizations;

Wang,  Yanfei
External Organizations;

Schubnel,  Alexandre
External Organizations;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (frei zugänglich)

5006394.pdf
(Verlagsversion), 3MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Geng, Z., Bonnelye, A., David, C., Dick, P., Wang, Y., Schubnel, A. (2021): Pressure Solution Compaction During Creep Deformation of Tournemire Shale: Implications for Temporal Sealing in Shales. - Journal of Geophysical Research: Solid Earth, 126, 3, e2020JB021370.
https://doi.org/10.1029/2020JB021370


Zitierlink: https://gfzpublic.gfz-potsdam.de/pubman/item/item_5006394
Zusammenfassung
The temporal evolution of gouge compaction determines fluid transfer and rock rupture dynamics. Thus, studies on the time‐dependent creep compaction processes of shale materials may elucidate the chemo‐mechanical behavior of shallow clay‐rich zones. We investigated this problem by combining creep experiments conducted in triaxial compression under upper crustal conditions with modeled pressure solution processes in Tournemire shale. The shale samples were deformed parallel and perpendicular to the bedding at low (10 MPa, 26°C, this study) and high (80 MPa, 26°C, published by Geng et al., 2018, https://doi.org/10.1029/2018JB016169) pressures. We monitored the deformation during stepping creep experiments until sample failure. Our results differ from those of traditional creep experiments and show that the creep failure strength of Tournemire shale samples increased significantly (by ∼64%) at both pressures. Our experiments suggest that at appropriate temperatures, the pressure solution is highly active and is the dominant temporal sealing mechanism in the shale. Using our experimental data and the statistical rock physics method, we modeled the temporal reduction of effective porosity in terms of depth and temperature. Our thermal‐stress coupled modeling results suggest that the pressure solution induced sealing is the most active at middle‐shallow depths (∼3.8 km). We believe that the sealing capacity and creep failure strength of dolomite‐rich shales may change significantly at middle‐shallow depths, indicating an important influence on reservoir fluids transfer and fault gouge strength.