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S U M M A R Y
Precise real time estimates of earthquake magnitude and location are essential for early warning
and rapid response. While recently multiple deep learning approaches for fast assessment of
earthquakes have been proposed, they usually rely on either seismic records from a single
station or from a fixed set of seismic stations. Here we introduce a new model for real-
time magnitude and location estimation using the attention based transformer networks. Our
approach incorporates waveforms from a dynamically varying set of stations and outperforms
deep learning baselines in both magnitude and location estimation performance. Furthermore,
it outperforms a classical magnitude estimation algorithm considerably and shows promising
performance in comparison to a classical localization algorithm. Our model is applicable
to real-time prediction and provides realistic uncertainty estimates based on probabilistic
inference. In this work, we furthermore conduct a comprehensive study of the requirements
on training data, the training procedures and the typical failure modes. Using three diverse
and large scale data sets, we conduct targeted experiments and a qualitative error analysis.
Our analysis gives several key insights. First, we can precisely pinpoint the effect of large
training data; for example, a four times larger training set reduces average errors for both
magnitude and location prediction by more than half, and reduces the required time for real
time assessment by a factor of four. Secondly, the basic model systematically underestimates
large magnitude events. This issue can be mitigated, and in some cases completely resolved,
by incorporating events from other regions into the training through transfer learning. Thirdly,
location estimation is highly precise in areas with sufficient training data, but is strongly
degraded for events outside the training distribution, sometimes producing massive outliers.
Our analysis suggests that these characteristics are not only present for our model, but for
most deep learning models for fast assessment published so far. They result from the black
box modeling and their mitigation will likely require imposing physics derived constraints
on the neural network. These characteristics need to be taken into consideration for practical
applications.

Key words: Neural networks, fuzzy logic; Probability distributions; Earthquake early warn-
ing.

1 I N T RO D U C T I O N

Recently, multiple studies investigated deep learning on raw seismic
waveforms for the fast assessment of earthquake parameters, such
as magnitude (e.g. Lomax et al. 2019; Mousavi & Beroza 2020;
van den Ende & Ampuero 2020), location (e.g. Kriegerowski et al.
2019; Mousavi & Beroza 2019; van den Ende & Ampuero 2020)
and peak ground acceleration (e.g. Jozinović et al. 2020). Deep
learning is well suited for these tasks, as it does not rely on manually
selected features, but can learn to extract relevant information from

the raw input data. This property allows the models to use the
full information contained in the waveforms of an event. However,
the models published so far use fixed time windows and can not
be applied to data of varying length without retraining. Similarly,
except the model by van den Ende & Ampuero (2020), all models
process either waveforms from only a single seismic station or rely
on a fixed set of seismic stations defined at training time. The model
by van den Ende & Ampuero (2020) enables the use of a variable
station set, but combines measurements from multiple stations using
a simple pooling mechanism. While it has not been studied so far in
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a seismological context, it has been shown in the general domain that
set pooling architectures are in practice limited in the complexity
of functions they can model (Lee et al. 2019).

Here we introduce a new model for magnitude and location
estimation based on the architecture recently introduced for the
transformer earthquake alerting model (TEAM, Münchmeyer et al.
2021), a deep learning based earthquake early warning model.
While TEAM estimated PGA at target locations, our model esti-
mates magnitude and hypocentral location of the event. We call
our adaptation TEAM-LM, TEAM for location and magnitude es-
timation. We use TEAM as a basis due to its flexible multistation
approach and its ability to process incoming data effectively in real-
time, issuing updated estimates as additional data become available.
Similar to TEAM, TEAM-LM uses mixture density networks to pro-
vided probability distributions rather than merely point estimates as
predictions. For magnitude estimation, our model outperforms two
state of the art baselines, one using deep learning (van den Ende &
Ampuero 2020) and one classical approach (Kuyuk & Allen 2013).
For location estimation, our model outperforms a deep learning
baseline (van den Ende & Ampuero 2020) and shows promising
performance in comparison to a classical localization algorithm.

We note a further deficiency of previous studies for deep learning
in seismology. Many of these pioneering studies focused their anal-
ysis on the average performance of the proposed models. Therefore,
little is known about the conditions under which these models fail,
the impact of training data characteristics, the possibility of sharing
knowledge across world regions, and of specific training strategies.
All of these are of particular interest when considering practical
application of the models.

To address these issues and provide guidance for practitioners, we
perform a comprehensive evaluation of TEAM-LM on three large
and diverse data sets: a regional broad-band data set from Northern
Chile, a strong motion data set from Japan and another strong mo-
tion data set from Italy. These data sets differ in their seismotectonic
environment (North Chile and Japan: subduction zones; Italy: dom-
inated by both convergent and divergent continental deformation),
their spatial extent (North Chile: regional scale; Italy and Japan: na-
tional catalogues), and the instrument type (North Chile: broadband,
Italy and Japan: strong motion). All three data sets contain hundreds
of thousands of waveforms. North Chile is characterized by a rela-
tively sparse station distribution, but a large number of events and a
low magnitude of completeness. There are far more stations in the
Italy and Japan data sets, but a smaller number of earthquakes. This
selection of diverse data sets allows for a comprehensive analysis,
giving insights for different use cases. Our targeted experiments
show that the characteristics are rooted in the principle structure
used by TEAM-LM, that is the black box approach of learning a
very flexible model from data, without imposing any physical con-
straints. As this black box approach is common to all current fast
assessment models using deep learning, they can be transferred to
these models. This finding is further backed by comparison to the
results from previous studies.

2 DATA A N D M E T H O D S

2.1 Data sets

For this study we use three data sets (Table 1, Fig. 1): one from
Northern Chile, one from Italy and one from Japan. The Chile data
set is based on the catalogue by Sippl et al. (2018) with the mag-
nitude values from Münchmeyer et al. (2020b). While there were

minor changes in the seismic network configuration during the time
covered by the catalogue, the station set used in the construction of
this catalogue had been selected to provide a high degree of stability
of the locations accuracy throughout the observational period (Sippl
et al. 2018). Similarly, the magnitude scale has been carefully cali-
brated to achieve a high degree of consistency in spite of significant
variations of attenuation (Münchmeyer et al. 2020b). This data set
therefore contains the highest quality labels among the data sets in
this study. For the Chile data set, we use broad-band seismogramms
from the fixed set of 24 stations used for the creation of the original
catalogue and magnitude scale. Although the Chile data set has the
smallest number of stations of the three data sets, it comprises three
to four times as many waveforms as the other two due to the large
number of events.

The data sets for Italy and Japan are more focused on early warn-
ing, containing fewer events and only strong motion waveforms.
They are based on catalogues from the INGV (ISIDe Working
Group 2007) and the NIED KiKNet (National Research Institute
For Earth Science And Disaster Resilience 2019), respectively. The
data sets each encompass a larger area than the Chile data set and
include waveforms from significantly more stations. In contrast to
the Chile data sets, the station coverage differs strongly between
different events, as only stations recording the event are considered.
In particular, KiKNet stations do not record continuous waveforms,
but operate in trigger mode, only saving waveforms if an event trig-
gered at the station. For Japan each station comprises two sensors,
one at the surface and one borehole sensor. Therefore for Japan we
have six component recordings (three surface, three borehole) avail-
able instead of the three component recordings for Italy and Chile.
A full list of seismic networks used in this study can be found in the
appendix (Table A1).

For each data set we use the magnitude scale provided in the
catalogue. For the Chile catalogue, this is MA, a peak displacement
based scale, but without the Wood-Anderson response and there-
fore saturation-free for large events (Münchmeyer et al. 2020b;
Deichmann 2018). For Japan MJMA is used. MJMA combines differ-
ent magnitude scales, but similarly to MA primarily uses horizontal
peak displacement (Doi 2014). For Italy the catalogue provides dif-
ferent magnitude types approximately dependent on the size of the
event: ML (>90 per cent of the events), MW (<10 per cent) and mb

(<1 per cent). We note that while the primary magnitude scales for
all data sets are peak-displacement based, the precision of the mag-
nitudes vary, with the highest precision for Chile. This might lead
to slightly worse magnitude estimation performance for Italy and
Japan.

For all data sets the data were not subselected based on the type
of seismicity but only based on the location (for Chile and Italy)
or depending if they triggered (Japan). This guarantees that, even
though we made use of a catalogue to assemble our training data, the
resulting data sets are suitable for training and assessing methods
geared at real-time applications without any prior knowledge about
the earthquakes. We focus on earthquake characterization and do
not discuss event detection or separation from noise; we refer the
interested reader to Perol et al. (2018) and Mousavi et al. (2019).

We split each data set into training, development and test set.
For Chile and Japan we apply a simple chronological split with
approximate ratios of 60:10:30 between training, development and
test set, with the most recent events in the test set. As the last
30 per cent of the Italy data set consist of less interesting events for
early warning, we instead use all events from 2016 as test set and the
remaining events as training and development sets. We reserve all
of 2016 for testing, as it contains a long seismic sequence in central
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Table 1. Overview of the data sets. The lower boundary of the magnitude category is the 5th percentile of the
magnitude; this limit is chosen as each data set contains a small number of unrepresentative very small events.
The upper boundary is the maximum magnitude. Magnitudes are given with two digit precision for Chile, as the
precision of the underlying catalogue is higher than for Italy and Japan. The Italy data set uses different magnitudes
for different events, which are ML (>90 per cent of the events), MW (<10 per cent) and mb (<1 per cent). For
depth and distance minimum, median and maximum are stated. Distance refers to the epicentral distance between
stations and events. Note that the count of traces refers to the number of waveform-triplets (for three components,
or group of six waveforms for the Japanese stations). The sensor types are broadband (BB) and strong motion
(SM).

Chile Italy Japan

Years 2007–2014 2008–2019 1997–2018
Training 01/2007–08/2011 01/2008–12/2015 01/1997–03/2012

& 01/2017–12/2019
Test 08/2012–12/2014 01/2016–12/2016 08/2013–12/2018
Magnitudes 1.21–8.27 2.7–6.5 2.7–9.0
Magnitude scale MA ML, MW, mb MJMA

Depth [km] 0–102–183 0–10–617 0–19–682
Distance [km] 0.1–180–640 0.1–180–630 0.2–120–3190
Events 96 133 7055 13 512
Unique stations 24 1,080 697
Traces 1 605 983 494 183 372 661
Traces per event 16.7 70.3 27.6
Sensor type BB SM SM & SM-borehole
Catalogue source Münchmeyer et al. (2020b) INGV NIED

Italy with two main shocks in August (MW = 6.5) and October (MW

= 6.0). Notably, the largest event in the test set is significantly larger
than the largest event in the training set (MW = 6.1 L’Aquila event
in 2007), representing a challenging test case. For Italy, we assign
the remaining events to training and development set randomly with
a 6:1 ratio.

2.2 The TEAM for magnitude and location

We build a model for real time earthquake magnitude and location
estimation based on the core ideas of the TEAM, as published in
Münchmeyer et al. (2021). TEAM is an end-to-end peak ground
acceleration (PGA) model calculating probabilistic PGA estimates
based on incoming waveforms from a flexible set of stations. It uses
the transformer network method (Vaswani et al. 2017), an attention
based neural network which was developed in the context of natural
language processing (NLP), at the core of its algorithm. Here, we
adapt TEAM to calculate real time probabilistic estimates of event
magnitude and hypocentral location. As our model closely follows
the architecture and key ideas of TEAM, we use the name TEAM-
LM to refer to the location and magnitude estimation model.

Similar to TEAM, TEAM-LM consists of three major compo-
nents (Fig. 2): a feature extraction, which generates features from
raw waveforms at single stations, a feature combination, which ag-
gregates features across multiple stations, and an output estimation.
Here, we briefly discuss the core ideas of the TEAM architecture
and training and put a further focus on the necessary changes for
magnitude and location estimation. For a more detailed account
of TEAM and TEAM-LM we refer to Münchmeyer et al. (2021),
Tables S1–S3 and the published implementation.

The input to TEAM consists of three component seismogramms
from multiple stations and their locations. TEAM aligns all seis-
mogramms to start and end at the same times t0 and t1. We choose
t0 to be 5 s before the first P arrival at any station. This allows the
model to understand the noise conditions at all stations. We limit t1

to be at latest t0 + 30 s. In a real-time scenario t1 is the current time,
that is the available amount of waveforms, and we use the same

approach to imitate real-time waveforms in training and evaluation.
The waveforms are padded with zeros to a length of 30 s to achieve
constant length input to the feature extraction.

TEAM uses a CNN architecture for feature extraction, which
is applied separately at each station. The architecture consists of
several convolution and pooling layers, followed by a multilayer
perceptron (Table S1). To avoid scaling issues, each input wave-
form is normalized through division by its peak amplitude. As the
amplitude is expected to be a key predictor for the event magnitude,
we provide the logarithm of the peak amplitude as a further input to
the multilayer perceptron inside the feature extraction network. We
ensure that this transformation does not introduce a knowledge leak
by calculating the peak amplitude only based on the waveforms un-
til t1. The full feature extraction returns one vector for each station,
representing the measurements at the station.

The feature vectors from multiple stations are combined using a
transformer network (Vaswani et al. 2017). Transformers are atten-
tion based neural networks, originally introduced for natural lan-
guage processing. A transformer takes a set of n vectors as input,
and outputs again n vectors which now incorporate the context of
each other. The attention mechanism allows the transformer to put
special emphasis on inputs that it considers particularly relevant and
thereby model complex interstation dependencies. Importantly, the
parameters of the transformer are independent of the number of in-
put vectors n, allowing to train and apply a transformer on variable
station sets. To give the transformer a notion of the position of the
stations, TEAM encodes the latitude, longitude and elevation of the
stations using a sinusoidal embedding and adds this embedding to
the feature vectors.

TEAM adds the position embeddings of the PGA targets as ad-
ditional inputs to the transformer. In TEAM-LM, we aim to extract
information about the event itself, where we do not know the posi-
tion in advance. To achieve this, we add an event token, which is
a vector with the same dimensionality as the positional embedding
of a station location, and which can be thought of as a query vector.
This approach is inspired by the so-called sentence tokens in NLP
that are used to extract holistic information on a sentence (Devlin
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Figure 1. Overview of the data sets. The top row shows the spatial station distribution, the second tow the spatial event distribution. The event depth is encoded
using colour. Higher resolution versions of the maps can be found in the supplementary material (Figs S1, S2 and S3). The bottom row shows the distributions
of the event magnitudes. The magnitude scales are the peak displacement based MA, local magnitude ML, moment magnitude MW, body wave magnitude mb

and MJMA, a magnitude primarily using peak displacement.

et al. 2018). The elements of this event query vector are learned
during the training procedure.

From the transformer output, we only use the output correspond-
ing to the event token, which we term event embedding and which
is passed through another multi-layer perceptron predicting the pa-
rameters and weights of a mixture of Gaussians (Bishop 1994).
We use N = 5 Gaussians for magnitude and N = 15 Gaussians
for location estimation. For computational and stability reasons,
we constrain the covariance matrix of the individual Gaussians for
location estimation to a diagonal matrix to reduce the output di-
mensionality. Even though uncertainties in latitude, longitude and
depth are known to generally be correlated, this correlation can be
modeled with diagonal covariance matrices by using the mixture.

The model is trained end-to-end using a log-likelihood loss with
the Adam optimizer (Kingma & Ba 2014). We train separate models
for magnitude and for location. As we observed difficulties in the
onset of the optimization when starting from a fully random initial-
ization, we pretrain the feature extraction network. To this end we
add a mixture density network directly after the feature extraction
and train the resulting network to predict magnitudes from single
station waveforms. We then discard the mixture density network
and use the weights of the feature extraction as initialization for
the end-to-end training. We use this pretraining method for both
magnitude and localization networks.

Similarly to the training procedure for TEAM we make exten-
sive use of data augmentation during training. First, we randomly
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1090 J. Münchmeyer et al.

Figure 2. Overview of the adapted transformer earthquake alerting model, showing the input, the feature extraction, the feature combination, the magni-
tude/location estimation and the output. For simplicity, not all layers are shown, but only their order and combination is visualized schematically. For the exact
number of layers and the size of each layer please refer to Tables S1 to S3. Please note that the number of input stations is variable, due to the self-attention
mechanism in the feature combination.

select a subset of up to 25 stations from the available station set.
We limit the maximum number to 25 for computational reasons.
Secondly, we apply temporal blinding, by zeroing waveforms after
a random time t1. This type of augmentation allows TEAM-LM
to be applied to real time data. We note that this type of temporal
blinding to enable real time predictions would most likely work for
the previously published CNN approaches as well. To avoid knowl-
edge leaks for Italy and Japan, we only use stations as inputs that
triggered before time t1 for these data sets. This is not necessary for
Chile, as there the maximum number of stations per event is below
25 and waveforms for all events are available for all stations active
at that time, irrespective of whether the station actually recorded the
event. Thirdly, we oversample large magnitude events, as they are
strongly underrepresented in the training data set. We discuss the
effect of this augmentation in further detail in the Results section.
In contrast to the station selection during training, in evaluation
we always use the 25 stations picking first. Again, we only use
stations and their waveforms as input once they triggered, thereby

ensuring that the station selection does not introduce a knowledge
leak.

2.3 Baseline methods

Recently, van den Ende & Ampuero (2020) suggested a deep learn-
ing method capable of incorporating waveforms from a flexible set
of stations. Their architecture uses a similar CNN based feature
extraction as TEAM-LM. In contrast to TEAM-LM, for feature
combination it uses maximum pooling to aggregate the feature vec-
tors from all stations instead of a transformer. In addition they do
not add predefined position embeddings, but concatenate the fea-
ture vector for each station with the location coordinates and apply
a multilayer perceptron to get the final feature vectors for each sta-
tion. The model of van den Ende & Ampuero (2020) is both trained
and evaluated on 100 s long waveforms. In its original form it is
therefore not suitable for real time processing, although the real
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time processing could be added with the same zero-padding ap-
proach used for TEAM and TEAM-LM. The detail differences in
the CNN structure and the real-time processing capability make a
comparison of the exact model of van den Ende & Ampuero (2020)
to TEAM-LM difficult.

To still compare TEAM-LM to the techniques introduced in this
approach, we implemented a model based on the key concepts of
van den Ende & Ampuero (2020). As we aim to evaluate the perfor-
mance differences from the conceptual changes, rather than differ-
ent hyperparameters, for example the exact size and number of the
convolutional layers, we use the same architecture as TEAM-LM
for the feature extraction and the mixture density output. Addition-
ally we train the model for real time processing using zero padding.
In comparison to TEAM-LM we replace the transformer with a
maximum pooling operation and remove the event token.

We evaluate two different representations for the position encod-
ing. In the first, we concatenated the positions to the feature vectors
as proposed by van den Ende & Ampuero (2020). In the second, we
add the position embeddings element-wise to the feature vectors as
for TEAM-LM. In both cases, we run a three-layer perceptron over
the combined feature and position vector for each station, before
applying the pooling operation.

We use the fast magnitude estimation approach (Kuyuk & Allen
2013) as a classical, that is non-deep-learning, baseline for magni-
tude. The magnitude is estimated from the horizontal peak displace-
ment in the first seconds of the P wave. As this approach needs to
know the hypocentral distance, it requires knowledge of the event
location. We simply provide the method with the catalogue hypocen-
tre. While this would not be possible in real time, and therefore gives
the method an unfair advantage over the deep learning approaches,
it allows us to focus on the magnitude estimation capabilities. Fur-
thermore, in particular for Italy and Japan, the high station density
usually allows for sufficiently well constrained location estimates at
early times. For a full description of this baseline, see supplement
section SM 1.

As a classical location baseline we use NonLinLoc (Lomax et al.
2000) with the 1-D velocity models from Graeber & Asch (1999)
(Chile), Ueno et al. (2002) (Japan) and Matrullo et al. (2013) (Italy).
For the earliest times after the event detection usually only few picks
are available. Therefore, we apply two heuristics. Until at least 3/5/5
(Chile/Japan/Italy) picks are available, the epicentre is estimated as
the arithmetic mean of the stations with picked arrivals so far, while
the depth is set to the median depth in the training data set. Until
at least 4/7/7 picks are available, we apply NonLinLoc, but fix
the depth to the median depth in the data set. We require higher
numbers of picks for Italy and Japan, as the pick quality is lower
than in Chile but the station density is higher. This leads to worse
early NonLinLoc estimates in Italy and Japan compared to Chile,
but improves the performance of the heuristics.

3 R E S U LT S

3.1 Magnitude estimation performance

We first compare the estimation capabilities of TEAM-LM to the
baselines in terms of magnitude (Fig. 3). We evaluate the models at
fixed times t = 0.5, 1, 2, 4, 8, 16 and 25 s after the first P arrival at
any station in the network. In addition to presenting selected results
here, we provide tables with the results of further experiments in
the supplementary material (Tables S5–S15).

TEAM-LM outperforms the classical magnitude baseline con-
sistently. On two data sets, Chile and Italy, the performance of
TEAM-LM with only 0.5 s of data is superior to the baseline with
25 s of data. Even on the third data set, Japan, TEAM-LM requires
only approximately a quarter of the time to reach the same precision
as the classical baseline and achieves significantly higher precision
after 25 s. The RMSE for TEAM-LM stabilizes after 16 s for all
data sets with final values of 0.08 m.u. for Chile, 0.20 m.u. for
Italy and 0.22 m.u. for Japan. The performance differences between
TEAM-LM and the classical baseline result from the simplified
modelling assumptions for the baseline. While the relationship be-
tween early peak displacement and magnitude only holds approx-
imately, TEAM-LM can extract more nuanced features from the
waveform. In addition, the relationship for the baseline was origi-
nally calibrated for a moment magnitude scale. While all magnitude
scales have an approximate 1:1 relationship with moment magni-
tude, this might introduce further errors.

We further note that the performance of the classical baseline for
Italy are consistent with the results reported by Festa et al. (2018).
They analysed early warning performance in a slightly different
setting, looking only at the nine largest events in the 2016 Cen-
tral Italy sequence. However, they report a RMSE of 0.28 m.u. for
the PRESTO system 4 s after the first alert, which matches ap-
proximately the 8 s value in our analysis. Similarly, Leyton et al.
(2018) analyse how fast magnitudes can be estimated in subductions
zones, and obtain values of 0.01 ± 0.28 across all events and −0.70
± 0.30 for the largest events (MW > 7.5) at 30 s after origin time.
This matches the observed performance of the classical baseline
for Japan. For Chile, our classical baseline performs considerably
worse, likely caused by the many small events with bad SNR com-
pared to the event set considered by Leyton et al. (2018). However,
TEAM-LM still outperforms the performance numbers reported by
Leyton et al. (2018) by a factor of more than 2.

Improvements for TEAM-LM in comparison to the deep learning
baseline variants are much smaller than to the classical approach.
Still, for the Japan data set at late times, TEAM-LM offers im-
provements of up to 27 per cent for magnitude. For the Italy data
set, the baseline variants are on par with TEAM-LM. For Chile, only
the baseline with position embeddings is on par with TEAM-LM.
Notably, for the Italy and Japan data sets, the standard deviation
between multiple runs with different random model initialization is
considerably higher for the baselines than for TEAM-LM (Fig. 3,
error bars). This indicates that the training of TEAM-LM is more
stable with regard to model initialization.

The gains of TEAM-LM can be attributed to two differences: the
transformer for station aggregation and the position embeddings.
In our experiments we ruled out further differences, for example
size and structure of the feature extraction CNN, by using identical
network architectures for all parts except the feature combination
across stations. Regarding the impact of position embeddings, the
results do not show a consistent pattern. Gains for Chile seem to be
solely caused by the position embeddings; gains for Italy are gener-
ally lowest, but again the model with position embeddings performs
better; for Japan the concatenation model performs slightly better,
although the variance in the predictions makes the differences non-
significant. We suspect these different patterns to be caused by the
different catalogue and network sizes as well as the station spacing.

We think that gains from using a transformer can be explained
with its attention mechanism. The attention allows the transformer
to focus on specific stations, for example the stations which have
recorded the longest waveforms so far. In contrast, the maximum
pooling operation is less flexible. We suspect that the high gains
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1092 J. Münchmeyer et al.

Figure 3. RMSE of the mean magnitude predictions from TEAM-LM, the pooling model with sinusoidal location embeddings (POOL-E), the pooling model
with concatenated positions (POOL-C) and the classical baseline method. The time indicates the time since the first P arrival at any station, the RMSE is
provided in magnitude units [m.u.]. Error bars indicate ±1 standard deviation when training the model with different random initializations. For better visibility
error bars are provided with a small x-offset. Standard deviations were obtained from six realizations. Note that the uncertainty of the provided means is by a
factor

√
6 smaller than the given standard deviation, due to the number of samples. We provide no standard deviation for the baseline, as it does not depend on

a model initialization.

for Japan result from the wide spatial distribution of seismicity
and therefore very variable station distribution. While in Italy most
events are in Central Italy and in Chile the number of stations are
limited, the seismicity in Japan occurs along the whole subduction
zone with additional onshore events. This complexity can likely be
handled better with the flexibility of the transformer than using a
pooling operation. This indicates that the gains from using a trans-
former compared to pooling with position embeddings are likely
modest for small sets of stations, and highest for large heteroge-
neous networks.

In many use cases, the performance of magnitude estimation al-
gorithms for large magnitude events is of particular importance. In
Fig. 4, we compare the RMSE of TEAM-LM and the classical base-
lines binned by catalogue magnitude into small, medium and large
events. For Chile/Italy/Japan we count events as small if their mag-
nitude is below 3.5/3.5/4 and as large if their magnitude is at least
5.5/5/6. We observe a clear dependence on the event magnitude. For
all data sets the RMSE for large events is higher than for intermedi-
ate sized events, which is again higher than for small events. On the
other hand the decrease in RMSE over time is strongest for larger
events. This general pattern can also be observed for the classical
baseline, even though the difference in RMSE between magnitude
buckets is smaller. As both variants of the deep learning baseline
show very similar trends to TEAM-LM, we omit them from this
discussion.

We discuss two possible causes for these effects: (i) the magnitude
distribution in the training set restricts the quality of the model
optimization, (ii) inherent characteristics of large events. Cause (i)
arise from the Gutenberg-Richter distribution of magnitudes. As
large magnitudes are rare, the model has significantly less examples
to learn from for large magnitudes than for small ones. This should
impact the deep learning models the strongest, due to their high
number of parameters. Cause (ii) has a geophysical origin. As large
events have longer rupture durations, the information gain from
longer waveform recordings is larger for large events. At which point
during the rupture the final rupture size can be accurately predicted
is a point of open discussion (e.g. Meier et al. 2017; Colombelli
et al. 2020). We probe the likely individual contributions of these
causes in the following.

Estimations for large events not only show lower precision, but
are also biased (Fig. 5, middle column). For Chile and Italy a clear

saturation sets in for large events. Interestingly the saturation starts
at different magnitudes, which are around 5.5 for Italy and 6.0 for
Chile. For Japan, events up to magnitude 7 are predicted with-
out obvious bias. This saturation behavior is not only visible for
TEAM-LM, but has also been observed in prior studies, for ex-
ample in Mousavi & Beroza (2020, their figs 3, 4). In their work,
with a network trained on significantly smaller events, the saturation
already set in around magnitude 3. The different saturation thresh-
olds indicate that the primary cause for saturation is not the longer
rupture duration of large events or other inherent event properties,
as in cause (ii), but is instead likely related to the low number of
training examples for large events, rendering it nearly impossible
to learn their general characteristics, as in cause (i). This explana-
tion is consistent with the much higher saturation threshold for the
Japanese data set, where the training data set contains a comparably
large number of large events, encompassing the year 2011 with the
Tohoku event and its aftershocks.

As a further check of cause (i), we trained models without up-
sampling large magnitude events during training, thereby reducing
the occurrence of large magnitude events to the natural distribution
observed in the catalogue (Fig. 5, left-hand column). While the over-
all performance stays similar, the performance for large events is
degraded on each of the data sets. Large events are on average under-
estimated even more strongly. We tried different upsampling rates,
but were not able to achieve significantly better performance for
large events than the configuration of the preferred model presented
in the paper. This shows that upsampling yields improvements, but
can not solve the issue completely, as it does not introduce actual
additional data. On the other hand, the performance gains for large
events from upsampling seem to cause no observable performance
drop for smaller event. As the magnitude distribution in most re-
gions approximately follows a Gutenberg–Richter law with b ≈ 1,
upsampling rates similar to the ones used in this paper will likely
work for other regions as well.

The expected effects of cause (ii), inherent limitations to the pre-
dictability of rupture evolutions, can be approximated with physical
models. To this end, we look at the model from Trugman et al.
(2019), which suggests a weak rupture predictability, that is pre-
dictability after 50 per cent of the rupture duration. Trugman et al.
(2019) discuss the saturation of early peak displacement and the
effects for magnitude predictions based on peak displacements.
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Figure 4. RMSE comparison of the TEAM-LM mean magnitude predictions for different magnitude buckets. Linestyles indicate the model type: trained only
on the target data (solid line), using transfer learning (dashed), classical baseline (dotted). For Chile/Italy/Japan we count events as small if their magnitude is
below 3.5/3.5/4 and as large if their magnitude is at least 5.5/5/6. The time indicates the time since the first P arrival at any station, the RMSE is provided in
magnitude units [m.u.].

Following their model, we would expect magnitude saturation at
approximately magnitude 5.7 after 1 s; 6.4 after 2 s; 7.0 after 4 s;
7.4 after 8 s. Comparing these results to Fig. 5, the saturation for
Chile and Italy clearly occurs below these thresholds, and even for
Japan the saturation is slightly below the modeled threshold. As
we assumed a model with only weak rupture predictability, this
makes it unlikely that the observed saturation is caused by limi-
tations of rupture predictability. This implies that our result does
not allow any inference on rupture predictability, as the possible
effects of rupture predictability are masked by the data sparsity
effects.

3.2 Location estimation performance

We evaluate the epicentral error distributions in terms of the 50th,
90th, 95th and 99th error percentiles (Fig. 6). In terms of the median
epicentral error, TEAM-LM outperforms all baselines in all cases,
except for the classical baseline at late times in Italy. For all data
sets, TEAM-LM shows a clear decrease in median epicentral error
over time. The decrease is strongest for Chile, going from 19 km
at 0.5 s to 2 km at 25 s. For Italy the decrease is from 7 to 2 km,
for Japan from 22 to 14 km. For all data sets the error distributions
are heavy tailed. While for Chile even the errors at high quantiles
decrease considerably over time, these quantiles stay nearly constant
for Italy and Japan.

Similar to the difficulties for large magnitudes, the characteristics
of the location estimation point to insufficient training data as source
of errors. The Chile data set covers the smallest region and has by
far the lowest magnitude of completeness, leading to the highest
event density. Consequently the location estimation performance is
best and outliers are very rare. For the Italy and Japan data sets,
significantly more events occurred in regions with only few training
events, causing strong outliers. The errors for the Japanese data
set are highest, presumably related to the large number of offshore
events with consequently poor azimuthal coverage.

We expect a further difference from the number of unique sta-
tions. While for a small number of unique stations, as in the Chile
data set, the network can mostly learn to identify the stations us-
ing their position embeddings, it might be unable to do so for a
larger number of stations with fewer training examples per station.
Therefore the task is significantly more complicated for Italy and

Japan, where the concept of station locations has to be learned si-
multaneously to the localization task. This holds true even though
we encode the station locations using continuously varying position
embeddings. Furthermore, whereas for moderate and large events
waveforms from all stations of the Chilean network will show the
earthquake and can contribute information, the limitation to 25 sta-
tions of the current TEAM-LM implementation does not allow a
full exploitation of the information contained in the hundreds of
recordings of larger events in the Japanese and Italian data sets.
This will matter in particular for out-of-network events, where the
wavefront curvature and thus event distance can only be estimated
properly by considering stations with later arrivals.

Looking at the classical baseline, we see that it performs consid-
erably worse than TEAM-LM in the Chile data set in all location
quantiles, better than TEAM-LM in all but the highest quantiles at
late times in the Italy data set, and worse than TEAM-LM at late
times in the Japan data set. This strongly different behavior can
largely be explained with the pick quality and the station density in
the different data sets. While the Chile data set contains high quality
automatic picks, obtained using the MPX picker (Aldersons 2004),
the Italy data set uses a simple STA/LTA and the Japan data set uses
triggers from KiKNet. This reduces location quality for Italy and
Japan, in particular in the case of a low number of picks available
for location. On the other hand, the very good median performance
of the classical approach for Italy can be explained from the very
high station density, giving a strong prior on the location. An epi-
central error of around 2 km after 8 s is furthermore consistent with
the results from Festa et al. (2018). Considering the reduction in
error due to the high station density in Italy, we note that the wide
station spacing in Chile likely caused higher location errors than
would be achievable with a denser seismic network designed for
early warning.

In addition to the pick quality, the assumption of a 1-D veloc-
ity model for NonLinLoc introduces a systematic error into the
localization, in particular for the subduction regions in Japan and
Chile where the 3-D structure deviates considerably from the 1-D
model. Because of these limitations the classical baseline could be
improved by using more proficient pickers or fine-tuned velocity
models. Nonetheless, in particular the results from Chile, where the
classical baseline has access to high quality P-picks, suggest that
TEAM-LM can, given sufficient training data, outperform classical
real-time localization algorithms.
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Figure 5. True and predicted magnitudes without upsampling or transfer learning (left-hand column), with upsampling but without transfer learning (middle
column) and with upsampling and transfer learning (right-hand column). All plots show predictions after 8 s. In the transfer column for Chile and Japan we
show results after fine-tuning on the target data set; for Italy we show results from the model without fine-tuning as this model performed better. For the largest
events in Italy (M > 4.5) we additionally show the results after fine-tuning with pale blue dots. We suspect the degraded performance in the fine tuned model
results from the fact, that the largest training event (MW = 6.1) is considerably smaller than the largest test event (MW = 6.5). Vertical lines indicate the
borders between small, medium and large events as defined in Fig. 4. The orange lines show the running 5th, 50th and 95th percentile in 0.2 m.u. buckets.
Percentile lines are only shown if sufficiently many data points are available. The very strong outlier for Japan (true ∼7.3, predicted ∼3.3) is an event far
offshore (>2000 km).

For magnitude estimation no consistent performance differences
between the baseline approach with position embeddings and the
approach with concatenated coordinates, as originally proposed by
van den Ende & Ampuero (2020), are visible. In contrast, for lo-
cation estimation, the approach with embeddings consistently out-
performs the approach with concatenated coordinates. The absolute
performance gains between the baseline with concatenation and the

baseline with embeddings is even higher than the gains from adding
the transformer to the embedding model. We speculate that the po-
sitional embeddings might show better performance because they
explicity encode information on how to interpolate between loca-
tions at different scales, enabling an improved exploitation of the
information from stations with few or no training examples. This
is more important for location estimation, where an explicit notion
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Figure 6. Violin plots and error quantiles of the distributions of the epicen-
tral errors for TEAM-LM, the pooling baseline with position embeddings
(POOL-E), the pooling baseline with concatenated position (POOL-C),
TEAM-LM with transfer learning (TEAM-TRA) and a classical baseline.
Vertical lines mark the 50th, 90th, 95th and 99th error percentiles, with
smaller markers indicating higher quantiles. The time indicates the time
since the first P arrival at any station. We compute errors based on the mean
location predictions. A similar plot for hypocentral errors is available in the
supplementary material (Fig. S4).

of relative position is required. In contrast, magnitude estimation
can use further information, like frequency content, which is less
position dependent.

3.3 Transfer learning

A common strategy for mitigating data sparsity is the injection
of additional information from related data sets through transfer

learning (Pan & Yang 2009), in our use case waveforms from other
source regions. This way the model is supposed to be taught the
properties of earthquakes that are consistent across regions, for
example attenuation due to geometric spreading or the magnitude
dependence of source spectra. Note that a similar knowledge transfer
implicitly is part of the classical baseline, as it was calibrated using
records from multiple regions.

Here, we conduct a transfer learning experiment inspired by the
transfer learning used for TEAM. We first train a model jointly on all
data sets and then fine-tune it to each of the target data sets. This way,
the model has more training examples, which is of special relevance
for the rare large events, but still is adapted specifically to the target
data set. As the Japan and Italy data sets contain acceleration traces,
while the Chile data set contains velocity traces, we first integrate
the Japan and Italy waveforms to obtain velocity traces. This does
not have a significant impact on the model performance, as visible
in the full results tables (Tables S5–S8).

Transfer learning reduces the saturation for large magnitudes
(Fig. 5, right-hand column). For Italy the saturation is even com-
pletely eliminated. For Chile, while the largest magnitudes are still
underestimated, we see a clearly lower level of underestimation
than without transfer learning. Results for Japan for the largest
events show nearly no difference, which is expected as the Japan
data set contains the majority of large events and therefore does
not gain significant additional large training examples using trans-
fer learning. The positive impact of transfer learning is also re-
flected in the lower RMSE for large and intermediate events for
Italy and Chile (Fig. 4). These results do not only offer a way
of mitigating saturation for large events, but also represent fur-
ther evidence for data sparsity as the reason for the underestima-
tion.

We tried the same transfer learning scheme for mitigating mis-
locations (Fig. 6). For this experiment we shifted the coordinates
of stations and events such that the data sets spatially overlap. We
note that this shifting is not expected to have any influence on
the single data set performance, as the relative locations of events
and stations within a data set stay unchanged and nowhere the
model uses absolute locations. The transfer learning approach is
reasonable, as mislocations might result from data sparsity, simi-
larly to the underestimation of large magnitudes. However, none
of the models shows significantly better performance than the
preferred models, and in some instances performance even de-
grades. We conducted additional experiments where shifts were
applied separately for each event, but observed even worse perfor-
mance.

We hypothesize that this behaviour indicates that the TEAM-
LM localization does not primarily rely on traveltime analysis, but
rather uses some form of fingerprinting of earthquakes. These fin-
gerprints could be specific scattering patterns for certain source
regions and receivers. Note that similar fingerprints are exploited
in the traditional template matching approaches (e.g. Shelly et al.
2007). While the traveltime analysis should be mostly invariant
to shifts and therefore be transferable between data sets, the fin-
gerprinting is not invariant to shifts. This would also explain why
the transfer learning, where all training samples were already in
the pretraining data set and therefore their fingerprints could be
extracted, outperforms the shifting of single events, where finger-
prints do not relate to earthquake locations. Similar fingerprinting
is presumably also used by other deep learning methods for location
estimation, for example by Kriegerowski et al. (2019) or Perol et al.
(2018), however further experiments would be required to prove this
hypothesis.
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4 D I S C U S S I O N

4.1 Multitask learning

Another common method to improve the quality of machine learn-
ing systems in face of data sparsity is multitask learning (Ruder
2017), that is having a network with multiple outputs for differ-
ent objectives and training it simultaneously on all objectives. This
approach has previously been used for seismic source characteriza-
tion (Lomax et al. 2019), but without an empirical analysis on the
specific effects of multitask learning.

We perform an experiment, in which we train TEAM-LM to
predict magnitude and location concurrently. The feature extraction
and the transformer parts are shared and only the final MLPs and
the mixture density networks are specific to the task. This method is
known as hard parameter sharing. The intuition is that the individual
tasks share some similarity, for example in our case the correct
estimation of the magnitude likely requires an assessment of the
attenuation and geometric spreading of the waves and therefore
some understanding of the source location. This similarity is then
expected to drive the model towards learning a solution for the
problem that is more general, rather than specific to the training data.
The reduced number of free parameters implied by hard parameter
sharing is also expected to improve the generality of the derived
model, if the remaining degrees of freedom are still sufficient to
extract the relevant information from the training data for each
subtask.

Unfortunately, we actually experience a moderate degradation of
performance for either location or magnitude in any data set (Tables
S5–S11) when following a multitask learning strategy. The RMSE
of the mean epicentre estimate increases by at least one third for
all times and data sets, and the RMSE for magnitude stays nearly
unchanged for the Chile and Japan data sets, but increases by ∼20
per cent for the Italy data set. Our results therefore exhibit a case of
negative transfer.

While it is generally not known, under which circumstances mul-
titask learning shows positive or negative influence (Ruder 2017),
a negative transfer usually seems to be caused by insufficiently re-
lated tasks. In our case we suspect that while the tasks are related
in a sense of the underlying physics, the training data set is large
enough that similarities relevant for both tasks can be learned al-
ready from a single objective. At the same time, the particularities
of the two objectives can be learned less well. Furthermore, we ear-
lier discussed that both magnitude and location might not actually
use traveltime or attenuation based approaches, but rather frequency
characteristics for magnitude and a fingerprinting scheme for loca-
tion. These approaches would be less transferable between the two
tasks. We conclude that hard parameter sharing does not improve
magnitude and location estimation. Future work is required to see
if other multitask learning schemes can be applied beneficially.

4.2 Location outlier analysis

As all location error distributions are heavy tailed, we visually in-
spect the largest deviations between predicted and catalogue loca-
tions to understand the behavior of the localization mechanism of
TEAM-LM. We base this analysis on the Chile data set (Fig. 7),
as it has generally the best location estimation performance, but
observations are similar for the other data sets (Figs S5 and S6).

Nearly all mislocated events are outside the seismic network and
location predictions are generally biased towards the network. This
matches the expected errors for traditional localization algorithms.

In contrast to traditional algorithms, events are not only predicted
to be closer to the network, but they are also predicted as lying
in regions with a higher event density in the training set (Fig. 7,
inset). This suggests that not enough similar events were included
in the training data set. Similarly, Kriegerowski et al. (2019) ob-
served a clustering tendency when predicting the location of swarm
earthquakes with deep learning.

We investigated two subgroups of mislocated events: the Iquique
sequence, consisting of the Iquique main shock, foreshocks and
aftershocks, and mine blasts. The Iquique sequence is visible in
the north-western part of the study area. All events are predicted
approximately 0.5◦ too far east. The area is both outside the seis-
mic network and has no events in the training set. This systematic
mislocation may pose a serious threat in applications, such as early
warning, when confronted with a major change in the seismicity
pattern, as is common in the wake of major earthquakes or during
sudden swarm activity, which are also periods of heightened seismic
hazard.

For mine blasts, we see one mine in the northeast and one in the
southwest (marked by red circles in Fig. 7). While all events are
located close by, the location are both systematically mispredicted
in the direction of the network and exhibit scatter. Mine-blasts show
a generally lower location quality in the test set. While they make
up only ∼1.8 per cent of the test set, they make up 8 per cent of
the top 500 mislocated events. This is surprising as they occur not
only in the test set, but also in similar quantities in the training set.
We therefore suspect that the difficulties are caused by the strongly
different waveforms of mine blasts compared to earthquakes. One
waveform of each a mine blast and an earthquake, recorded at similar
distances are shown as inset in Fig. 7. While for the earthquake both
a P and S wave are visible, the S wave can not be identified for the
mine blast. In addition, the mine blast exhibits a strong surface wave,
which is not visible for the earthquake. The algorithm therefore can
not use the same features as for earthquakes to constrain the distance
to a mine blast event.

4.3 The impact of data set size and composition

Our analysis so far showed the importance of the amount of training
data. To quantify the impact of data availability on magnitude and
location estimation, we trained models only using fractions of the
training and validation data (Fig. 8). We use the Chile data set for
this analysis, as it contains by far the most events. We subsample
the events by only using each kth event in chronological order, with
k = 2, 4, 8, 16, 32, 64. This strategy approximately maintains the
magnitude and location distribution of the full set. We point out, that
TEAM-LM only uses information of the event under consideration
and does not take the events before or afterwards into account.
Therefore, the ‘gaps’ between events introduced by the subsampling
do not negatively influence TEAM-LM.

For all times after the first P arrival, we see a clear increase in the
magnitude-RMSE for a reduction in the number of training samples.
While the impact of reducing the data set by half is relatively small,
using only a quarter of the data already leads to a twofold increase
in RMSE at late times. Even more relevant in an early warning
context, a fourfold smaller data sets results in an approximately
fourfold increase in the time needed to reach the same precision as
with the full data. This relationship seems to hold approximately
across all subsampled data sets: reducing the data set k fold increases
the time to reach a certain precision by a factor of k.
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Figure 7. The 200 events with the highest location errors in the Chile data set overlayed on top of the spatial event density in the training data set. The location
estimations use 16 s of data. Each event is denoted by a yellow dot for the estimated location, a green cross for the true location and a line connecting both.
Stations are shown by black triangles. The event density is calculated using a Gaussian kernel density estimation and does not take into account the event
depth. The inset shows the event density at the true event location in comparison to the event density at the predicted event location for the 200 events. Red
circles mark locations of mine blast events. The inset waveforms show one example of a waveform from a mineblast (top) and an example waveform of an
earthquake (bottom, 26 km depth) of similar magnitude (MA = 2.5) at similar distance (60 km) on the transverse component. Similar plots for Italy and Japan
can be found in the supplementary material (Figs S5 and S6).

We make three further observations from comparing the pre-
dictions to the true values (Fig. S7). First, for nearly all models the
RMSE changes only marginally between 16 and 25 s, but the RMSE
of this plateau increases significantly with a decreasing number of
training events. Secondly, the lower the amount of training data, the
lower is the saturation threshold above which all events are strongly

underestimated. In addition, for 1/32 and 1/64 of the full data set, an
‘inverse saturation’ effect is noticeable for the smallest magnitudes.
Thirdly, while for the full data set and the largest subsets all large
events are estimated at approximately the saturation threshold, if
at most one quarter of the training data is used, the largest events
even fall significantly below the saturation threshold. For the mod-
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Figure 8. RMSE for magnitude and epicentral location at different times for models trained on differently sized subsets of the training set in Chile. The line
colour encodes the fraction of the training and validation set used in training. All models were evaluated on the full Chilean test set. We note that the variance
of the curves with fewer data is higher, due to the increased stochasticity from model training and initialization.

Figure 9. Magnitude predictions and uncertainties in the Chile data set as a function of time since the first P arrival. Solid lines indicate median predictions,
while dashed lines (left-hand panel only) show 20th and 80th quantiles of the prediction. The left-hand panel shows the predictions, while the right-hand
panel shows the differences between the predicted and true magnitude. The right-hand panel is focused on a shorter time frame to show the early prediction
development in more detail. In both plots, each colour represents a different magnitude bucket. For each magnitude bucket, we sampled 1000 events around
this magnitude and combined their predictions. If less than 1000 events were available within ±0.5 m.u. of the bucket centre, we use all events within this
range. We only use events from the test set. To ensure that the actual uncertainty distribution is visualized, rather than the distribution of magnitudes around
the bucket centre, each prediction is shifted by the magnitude difference between bucket centre and catalogue magnitude.

els trained on the smallest subsets (1/8 to 1/64), the higher the true
magnitude the lower the predicted magnitude becomes. We assume
that the larger the event is, the further away from the training distri-
bution it is and therefore it is estimated approximately at the most
dense region of the training label distribution. These observations
support the hypothesis that underestimations of large magnitudes
for the full data set are caused primarily by insufficient training
data.

While the RMSE for epicentre estimation shows a similar
behavior as the RMSE for magnitude, there are subtle dif-
ferences. If the amount of training data is halved, the per-
formance only degrades mildly and only at later times. How-
ever, the performance degradation is much more severe than
for magnitude if only a quarter or less of the training data

are available. This demonstrates that location estimation with
high accuracy requires catalogues with a high event den-
sity.

The strong degradation further suggests insights into the inner
working of TEAM-LM. Classically, localization should be a task
where interpolation leads to good results, i.e., the traveltimes for
an event in the middle of two others should be approximately the
average between the traveltimes for the other events. Following this
argument, if the network would be able to use interpolation, it should
not suffer such significant degradation when faced with fewer data.
This provides further evidence that the network does not actually
learn some form of triangulation, but only an elaborate fingerprint-
ing scheme, backing the finding from the qualitative analysis of
location errors.
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Figure 10. P-P plots of the CDFs of the empirical quantile of the magnitude
predictions compared to the expected uniform distribution. The P-P plot
shows (CDFui (z), CDFuniform(z)) for z ∈ [0, 1]. The expected uniform dis-
tribution is shown as the diagonal line, the misfit is indicated as shaded area.
The value in the upper corner provides d∞, the maximum distance between
the diagonal and the observed CDF. d∞ can be interpreted as the test statis-
tic for a Kolmogorov–Smirnov test. Curves consistently above the diagonal
indicate a bias to underestimation, and below the diagonal to overestima-
tion. Sigmoidal curves indicate overconfidence, mirrored sigmoids indicate
underconfidence. See supplementary section SM 2 for a further discussion
of the plotting methodology and its connection to the Kolmogorov–Smirnov
test.

4.4 Training TEAM-LM on large events only

Often, large events are of the greatest concerns, and as discussed,
generally showed poorer performance because they are not well
represented in the training data. It therefore appears plausible that
a model optimized for large events might perform better than a
model trained on both large and small events. In order to test this
hypothesis, we used an extreme version of the upscaling strategy
by training a set of models only on large events, which might avoid
tuning the model to seemingly irrelevant small events. In fact, these
models perform significantly worse than the models trained on the
full data set, even for the large events (Tables S5–S11). Therefore
even if the events of interest are only the large ones, training on
more complete catalogues is still beneficial, presumably by giv-
ing the network more comprehensive information on the regional
propagation characteristics and possibly site effects.

4.5 Interpretation of predicted uncertainties

So far we only analysed the mean predictions of TEAM-LM. As
for many application scenarios, for example early warning, quanti-
fied uncertainties are required, TEAM-LM outputs not only these
mean predictions, but a probability density. Fig. 9 shows the devel-
opment of magnitude uncertainties for events from different mag-
nitude classes in the Chile data set. The left-hand panel shows the
absolute predictions, while the right-hand panel shows the differ-
ence between prediction and true magnitude and focuses on the first
2 s. As we average over multiple events, each set of lines can be
seen as a prototype event of a certain magnitude.

For all magnitude classes the estimation shows a sharp jump at
t = 0, followed by a slow convergence to the final magnitude esti-
mate. We suspect that the magnitude estimation always converges
from below, as due to the Gutenberg–Richter distribution, lower
magnitudes are more likely a priori. The uncertainties are largest
directly after t = 0 and subsequently decrease, with the highest un-
certainties for the largest events. As we do not use transfer learning
in this approach, there is a consistent underestimation of the largest
magnitude events, visible from the incorrect median predictions for
magnitudes 5 and 6. We note that the predictions for magnitude
4 converge slightly faster than the ones for magnitude 3, while in
all other cases the magnitude convergence is faster the smaller the
events are. We suspect that this is caused by the accuracy of the
magnitude estimation being driven by both the number of available
events and by the signal to noise ratio. While magnitude 4 events
have significantly less training data than magnitude 3 events, they
have a better signal to noise ratio, which could explain their more
accurate early predictions.

While the Gaussian mixture model is designed to output uncer-
tainties, it cannot be assumed that the predicted uncertainties are
indeed well calibrated, that is, that they actually match the real er-
ror distribution. Having well calibrated uncertainties is crucial for
downstream tasks that rely on the uncertainties. Neural networks
trained with a log-likelihood loss generally tend to be overconfi-
dent (Snoek et al. 2019; Guo et al. 2017), that is underestimate the
uncertainties. This overconfidence is probably caused by the strong
overparametrization of neural network models. To assess the quality
of our uncertainty estimations for magnitude, we use the observation
that for a specific event i, the predicted Gaussian mixture implies a
cumulative distribution function Fi

pred : R → [0, 1]. Given the ob-
served magnitude yi

true, we can calculate ui = Fi
pred (yi

true). If yi
true is

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/226/2/1086/6223459 by Bibliothek des W

issenschaftsparks Albert Einstein user on 14 June 2021



1100 J. Münchmeyer et al.

Figure 11. The figure shows 90th per cent confidence areas for sample events around 5 example locations. For each location the 5 closest events are shown.
Confidence areas belonging to the same location are visualized using the same colour. Confidence areas were chosen as curves of constant likelihood, such
that the probability mass above the likelihood equals 0.9. To visualize the result in 2-D we marginalize out the depth. Triangles denote station locations for
orientation. The top row plots show results from a single model, while the bottom row plots show results from an ensemble of 10 models.

indeed distributed according to Fi
pred , then ui needs to be uniformly

distributed on [0,1]. We test this based on the ui of all events in
the test set using P-P plots (Fig. 10). Further details on the method
can be found in the supplementary material (Section SM 2). Note

that good calibration is a necessary but not sufficient condition for
a good probabilistic forecast. An example of a perfectly calibrated
but mostly useless probabilistic prediction would be the marginal
probability of the labels.
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Fig. 10 shows the P-P plots of u in comparison to a uniform
distribution. For all data sets and all times the model is signficantly
miscalibrated, as estimated using Kolmgorov–Smirnov test statis-
tics (Section SM 2). Miscalibration is considerably stronger for
Italy and Japan than for Chile. More precisely, the model is always
overconfident, that is estimates narrower confidence bands than the
actually observed errors. Further, in particular at later times, the
model is biased towards underestimating the magnitudes. This is
least visible for Chile. We speculate that this is a result of the large
training data set for Chile, which ensures that for most events the
density of training events in their magnitude range is high.

To mitigate the miscalibration, we trained ensembles (Hansen &
Salamon 1990), a classical method to improve calibration. Instead
of training a single neural network, a set of n neural networks, in our
case n = 10, are trained, which all have the same structure, but dif-
ferent initialization and batching in training. The networks therefore
represent a sample of size n from the posterior distribution of the
model parameters given the training data. For Italy and Japan, this
improves calibration considerably (Fig. 10). For Chile, the ensem-
ble model, in contrast to the single model, exhibits underconfidence,
that is estimates too broad uncertainty bands.

The maximum distance between the empirical cumulative distri-
bution function of u and a uniformly distributed variable d∞ is the
test statistic of the Kolmogorov–Smirnov test. While d∞ is reduced
by nearly half for some of the ensemble results, the Kolmogorov–
Smirnov test indicates, that even the distributions from the ensemble
models deviate highly significantly from a uniform distribution (p

 10−5). A table with d∞ for all experiments can be found in the
supplementary material (Table S8).

To evaluate the location uncertainties qualitatively, we plot con-
fidence ellipses for a set of events in Chile (Fig. 11). Again
we compare the predictions from a single model to the predic-
tions of an ensemble. At early times, the uncertainty regions
mirror the seismicity around the station with the first arrival,
showing that the model correctly learned the prior distribution.
Uncertainty ellipses at late times approximately match the ex-
pected uncertainty ellipses for classical methods, that is they are
small and fairly round for events inside the seismic network,
where there is good azimuthal coverage, and larger and ellipti-
cal for events outside the network. Location uncertainties are not
symmetric around the mean prediction, but show higher likeli-
hood towards the network than further outwards. Location errors
for the ensemble model are more smooth than from the single
model, but show the same features. The uncertainty ellipses are
slightly larger, suggesting that the single model is again overconfi-
dent.

In addition to improving calibration, ensembles also lead to slight
improvements regarding the accuracy of the mean predictions (Ta-
bles S5–S11). Improvements in terms of magnitude RMSE range up
to ∼10 per cent, for epicentral location error up to ∼20 per cent. Due
to the high computational demand of training ensembles, all other
results reported in this paper are calculated without ensembling. We
note that in addition to ensembles a variety of methods have been
developed to improve calibration or obtain calibrated uncertainties.
For a quantitative survey, see for example Snoek et al. (2019). One
of these methods, Monte Carlo Dropout, has already been used in
the context of fast assessment by van den Ende & Ampuero (2020).

5 C O N C LU S I O N

In this study we adapted TEAM to build TEAM-LM, a real time
earthquake source characterization model, and used it to study the

pitfalls and particularities of deep learning for this task. We showed
that TEAM-LM achieves state of the art in magnitude estimation,
outperforming both a classical baseline and a deep learning baseline.
Given sufficiently large catalogues, magnitude can be assessed with
a standard deviation of ∼0.2 magnitude units within 2 s of the first P
arrival and a standard deviation of 0.07 m.u. within the first 25 s. For
location estimation, TEAM-LM outperforms a state of the art deep
learning baseline and compares favorably with a classical baseline.

Our analysis showed that the quality of model predictions de-
pends crucially on the training data. While performance in regions
with abundant data is excellent, in regions of data sparsity, predic-
tion quality degrades significantly. For magnitude estimation this
effect results in the underestimation of large magnitude events; for
location estimation events in regions with few or no training events
tend to be mislocated most severely. This results in a heavy tailed
error distribution for location estimation. Large deviations in both
magnitude and location estimation can have significant impact in
application scenarios, for example for early warning where large
magnitudes are of the biggest interest.

Following our analysis, we propose a set of best practices for
building models for fast earthquake source characterization:

(i)Build a comprehensive evaluation platform. Put a special focus
on outliers and rare or large events. Analyse which impact outliers
or out of distribution events will have for the proposed application.
(ii)Use very large training catalogues, spanning long time spans and
having a low magnitude of completeness. If possible, use transfer
learning. We hope the catalogues used in this study can give a
starting point for transfer learning.
(iii)Use training data augmentation, especially upsampling of large
events, which improves prediction performance in face of label
sparsity at virtually no cost.
(iv)If probabilistic estimates are required, use deep ensembles to
improve the model calibration.
(v)When using deep learning for location estimation, put special
emphasis on monitoring possible distribution shifts between train-
ing data and application.

While these points give guidance for training current models they
also point to further directions for methodological advances. First,
our transfer learning scheme is fairly simple. More refined and tar-
geted schemes could increase the amount of information sharable
across data sets considerably. We further expect major improve-
ments from training with simulated data, but are aware that gener-
ating realistic, synthetic seismogramms, especially for large events,
poses major challenges. Another promising alternative might be
to move away from the paradigm of black box modeling, that is
training algorithms that are built solely by fitting recorded data.
Instead, incorporation of physical knowledge and a move towards
physics informed deep learning methods seems promising (Raissi
et al. 2019). However, physics informed neural networks are still in
their infancy and the application to seismic tasks still needs to be
developed.
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S U P P O RT I N G I N F O R M AT I O N

Supplementary data are available at GJI online.

Table S1. Architecture of the feature extraction network. The input
shape of the waveform data is (time, channels). FC denotes fully
connected layers. As FC layers can be regarded as 0D convolutions,
we write the output dimensionality in the filters column. The ‘Con-
catenate scale’ layer concatenates the log of the peak amplitude to
the output of the convolutions. We want to mention that depending
on the existence of borehole data the number of input filters for the
first Conv1D varies.
Table S2. Architecture of the transformer network.
Table S3. Architecture of the mixture density network.
Table S4. Experiment names for the results tables
Table S5. Test set RMSE magnitude estimate across all magnitudes.
For some experiments we additionally provide standard deviation.
The standard deviations were obtained from six runs with different
random model initialization. In this case the provided mean value
is the mean over six runs. Note that the provided standard deviation
denotes the empirical standard deviation of a single run, therefore
the uncertainty of the mean expected to be smaller by a factor of√

6. Due to computational constraints we are only able to provide
standard deviations for a selected set of experiments.
Table S6. Test set mean absolute error (MAE) magnitude estimate
across all magnitudes
Table S7. Test set R2 score across all magnitudes
Table S8. Test set test statistic dα for the Kolmogorov–Smirnov test
across all magnitudes.
Table S9. Test set RMSE of magnitude estimate for large events
Table S10. Test set MAE of magnitude estimate for large events
Table S11. Test set R2 score of magnitude estimate for large events
Table S12. Test set root squared mean for hypocentral error. We
note that only 4 out of 10 models for the Italy location ensemble
converged. We used only the converged models for the ensemble
evaluation.
Table S13. Test set mean absolute hypocentral error. We note that
only 4 out of 10 models for the Italy location ensemble converged.
We used only the converged models for the ensemble evaluation.
Table S14. Test set root squared mean for epicentral error. We
note that only 4 out of 10 models for the Italy location ensemble
converged. We used only the converged models for the ensemble
evaluation.
Table S15. Test set mean absolute epicentral error. We note that
only 4 out of 10 models for the Italy location ensemble converged.
We used only the converged models for the ensemble evaluation.
Figure S1. Event and station distribution for Chile. In the map,
events are indicated by dots, stations by triangles. The event depth
is encoded using colour.
Figure S2. Event and station distribution for Italy. In the map,
events are indicated by dots, stations by triangles. The event depth
is encoded using colour.
Figure S3. Event and station distribution for Japan. In the map,
events are indicated by dots, stations by triangles. The event depth is
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encoded using colour. There are ∼20 additional events far offshore
in the catalogue, which are outside the displayed map region.
Figure S4. Distribution of the hypocentral errors for TEAM-LM,
the pooling baseline with position embeddings (POOL-E), the pool-
ing baseline with concatenated position (POOL-C), TEAM-LM
with transfer learning (TEAM-TRA) and a classical baseline. Ver-
tical lines mark the 50th, 90th, 95th and 99th error percentiles. The
time indicates the time since the first P arrival at any station. We
use the mean predictions.
Figure S5. The 100 events with the highest location error in the Italy
data set overlayed on top of the spatial event density in the training
data set. The estimations use 16 s of data. Each event is denoted
by a dot for the estimated location, a cross for the true location and
a line connecting both. Stations are not shown as station coverage
is dense. The event density is calculated using a Gaussian kernel
density estimation and does not take into account the event depth.
The inset shows the event density at the true event location in
comparison to the event density at the predicted event location.
Figure S6. The 200 events with the highest location error in the
Japan data set overlayed on top of the spatial event density in the

training data set. The estimations use 16 s of data. Each event
is denoted by a dot for the estimated location, a cross for the true
location and a line connecting both. Stations are not shown as station
coverage is dense. The event density is calculated using a Gaussian
kernel density estimation and does not take into account the event
depth. The inset shows the event density at the true event location
in comparison to the event density at the predicted event location.
Figure S7. True and predicted magnitudes after 8 s using only parts
of the data sets for training. All plots show the Chile data set. The
fraction in the corner indicates the amount of training and validation
data used for model training. All models were evaluated on the full
test data set.

Please note: Oxford University Press is not responsible for the con-
tent or functionality of any supporting materials supplied by the
authors. Any queries (other than missing material) should be di-
rected to the corresponding author for the paper.

A P P E N D I X : DATA S O U RC E S

Table A1. Seismic networks.

Region Network Reference

Chile GE GEOFON Data Center (1993)
C, C1 Universidad de Chile (2013)
8F Wigger et al. (2016)
IQ Cesca et al. (2009)
5E Asch et al. (2011)

Italy 3A Istituto Nazionale di Geofisica e Vulcanologia (INGV) (2018)
BA Universita della Basilicata (2005)
FR RESIF - Réseau Sismologique et géodésique Français (1995a)
GU University of Genova (1967)
IT Presidency of Counsil of Ministers - Civil Protection Department (1972)
IV Istituto Nazionale di Geofisica e Vulcanologia (INGV), Italy (2006)
IX Dipartimento di Fisica, Universitá degli studi di Napoli Federico II (2005)
MN MedNet Project Partner Institutions (1990)
NI OGS (Istituto Nazionale di Oceanografia e di Geofisica Sperimentale) and University of Trieste (2002)
OX OGS (Istituto Nazionale di Oceanografia e di Geofisica Sperimentale) (2016)
RA RESIF - Réseau Sismologique et géodésique Français (1995b)
ST Geological Survey-Provincia Autonoma di Trento (1981)
TV Istituto Nazionale di Geofisica e Vulcanologia (INGV) (2008)
XO EMERSITO Working Group (2018)

Japan KiK-Net National Research Institute For Earth Science And Disaster Resilience (2019)
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