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Abstract

A Bayesian Belief Network, validated using past observational data, is applied to conceptu-

alize the ecological response of Lake Maninjau, a tropical lake ecosystem in Indonesia, to

tilapia cage farms operating on the lake and to quantify its impacts to assist decision making.

The model captures ecosystem services trade-offs between cage farming and native fish

loss. It is used to appraise options for lake management related to the minimization of the

impacts of the cage farms. The constructed model overcomes difficulties with limited data

availability to illustrate the complex physical and biogeochemical interactions contributing to

triggering mass fish kills due to upwelling and the loss in the production of native fish related

to the operation of cage farming. The model highlights existing information gaps in the

research related to the management of the farms in the study area, which is applicable to

other tropical lakes in general. Model results suggest that internal phosphorous loading

(IPL) should be recognized as one of the primary targets of the deep eutrophic tropical lake

restoration efforts. Theoretical and practical contributions of the model and model expan-

sions are discussed. Short- and longer-term actions to contribute to a more sustainable

management are recommended and include epilimnion aeration and sediment capping.

Introduction

Inland water cage culture farms (IWCCF) operate at a range of spatial scales, from traditional

households to corporate modern farms. IWCCF is rapidly growing around the globe as an

answer to the increasing demand for aquatic products [1]. In Asia, cage culture is one of the

most widely practised aquaculture systems in terms of both production and value [2, 3]. The

rapid development of cage culture in the region is often attributed to the necessity to provide
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fish as an affordable nutritional source and to generate employment opportunity, both in sup-

port of poverty alleviation efforts [4–6].

Despite their benefits, there are increasing concerns about the negative impacts of IWCCF

on the aquatic environment. One of the widely identified effects is eutrophication [2, 7, 8].

Eutrophication leads to blooming algae and the degradation process of the algae consumes dis-

solved oxygen (DO). This process then leads to DO depletion causing mass fish kills (MFK) [9,

10]. Other impacts are changes in macro and microbenthic population, and effects on fish bio-

diversity [11, 12].

MFK events have been long reported from various lakes, rivers, and reservoirs in Indonesia

and many other countries (see [13–17]) and they have caused huge financial loss [18]. This

raises the need to provide a model that can predict MFK to mitigate the loss. However, data

limitations can sometimes hinder the development of mechanistic models. Thus, engaging

with approaches such as Bayesian Belief Networks (BBN) becomes an interesting alternative.

Two papers have used BBN to predict algal blooms related to several nutrient input scenarios

(see [19, 20]). Both studies were conducted in temperate lakes in high income countries where

monitoring data of nutrient inputs are reasonably adequate. They use a relatively low number

of nodes (maximum of nine) to account for the principal drivers of algal blooms. However, we

are not aware of any studies that use BBN to predict the MFK in deep tropical lakes with com-

plex and specific ecological characteristics [21, 22].

In this study, we apply BBN to generate information on the ecological response to IWCCF

that can underpin appraisals of IWCCF management scenarios of Lake Maninjau, Indonesia.

We specifically aim to answer the research question: to what extent can BBN be used to con-

ceptualize the lake’s complex ecological system related to IWCCF management and quantify

its impacts to assist decision making? We surmise that BBN is particularly suited to investigate

the impacts of IWCCF on the occurrence of MFK incidents due to upwelling processes in loca-

tions where data is scarce. The developed model can then help improve our understanding of

both the economy-environment trade-offs of IWCCF expansion and the effects of IWCCF and

upwelling processes on a native fish species, Gobiopterus sp. This species is the only finfish spe-

cies reported by the fishers to diminish during and after major upwelling events; thus, it is cho-

sen as the indicator of IWCCF impacts on the native biota.

This study differs from previous BBN applications [19, 20] because it includes more com-

plex relationships between physical, biological, and chemical components of the lake ecology,

in addition to human activities–IWCCF management. Thus, it better illustrates the complexity

of the ecosystem. Moreover, this study emphasizes the advantage of BBN in overcoming lim-

ited data, which is a common problem in the Global South. Through the development and test-

ing of the BBN in our case study, we are able to identify important gaps in data in the studied

lake and beyond that should be addressed to improve model accuracy and facilitate develop-

ment of mechanistic models. We apply the BBN to investigate a range of management inter-

vention scenarios. This provides important information to inform sustainable lake

management.

Beyond the applied perspective, the paper makes several contributions to the academic lit-

erature. First, we develop an integrated model to predict the probability of MFK incidents in a

complex tropical lake system. To the best of our knowledge, this is the first such modelling

effort. In line with this, [23] identified that BBN application in tropical region is limited. Sec-

ond, this paper contributes to the growing literature on the use of BBN to assess ecosystem ser-

vice (ES) trade-offs; this paper specifically investigates trade-offs between two provisioning

services: fish provided by aquaculture and a native species capture fishery. There are few BBN

case studies that aim to simulate ES trade-offs especially in complex-spatial systems [23–25].

More importantly, this study rigorously applies a variable correlation table to build the direct
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acyclic diagram (DAG), which is rarely conducted by previous BBN studies [26]. The applied

and methodological contributions highlighted above carry insights that may be used in differ-

ent lakes across the tropics that are subject to planned or ongoing IWCCF.

The paper is organised as follows: first, a brief overview of the history of IWCCF in Lake

Maninjau and of the lake’s current ecological condition. An introduction of the BBN approach

follows this. The third section will present the methodology applied to build and validate the

model. In the fourth section, the developed model is shown and the results of several IWCCF

management scenarios are presented. A concluding section then follows a discussion of model

performance and scenario results.

Site description

Lake Maninjau (Fig 1) is one of the big volcanic lakes in Sumatra Island, Indonesia. Its total

surface area is 97.37 km2, and its catchment area is approximately 132.6 km2 with a full water

volume of 10 million m3 [27]. Its geographical positions are 100o 08’5384” E to 100o 14’02.39”

E and 0o 14’ 52.50” S to 0o 24’ 12.17” S.

It is selected as the case study as it represents many Indonesian lakes formed by a volcanic

and or tectonic processes in complex tropical systems [28]. Because of its geological formation,

the lake has a specific character. It is naturally rich in sulphur, which may be deposited in sedi-

ment [29] and drives its ecological process [10, 29]. Therefore, it has a natural sulphur purifica-

tion activity locally named as tubo belerang [30]. Thus, these type of lakes are generally

considered to be inappropriate for IWCCF practices from an ecological perspective [31].

The sulphur cycle interrelated with organic material is the primary key to balance this lake’s

ecosystem and should be preserved to prevent severe consequences such as MFK. The balance

is produced by an oxidation process depending on oxygen level and phototropic sulphur bac-

teria activities. Sulphide, which is a reductive form of useful sulphate or elemental sulphur,

actually can be easily oxidized to elemental sulphur if there is oxygen or the mentioned

Fig 1. Study site. (Source: Authors’ creation based on maps provided by http://www.naturalearthdata.com/, retrieved on 2 March 2021.) The

world map is similar to but not identical to the original image and is therefore for illustrative purposes only.

https://doi.org/10.1371/journal.pone.0250365.g001
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bacterial activity [29]. In sufficient DO condition, the sulphide will react with reactive iron

ions (Fe2+) creating FeS compounds. FeS will the react to form pyrite sulphide (FeS2), a stable

structure which can sink to the sediment. However, in the condition when Fe2+ is limited,

more hydrogen sulphide (H2S) is unbounded and accumulated in pore waters [32]. Further,

reactive Fe (Fe2+) is oxidised into Fe3+, which will bind phosphate ions (PO4
3-) to form FePO4

compounds. However, [10] and [29] elucidated that high H2S can be produced in the hypolim-

nion if there is a high rate of organic material degradation. In this circumstance, limitation of

free reactive Fe will boost reduction of Fe3+ to Fe2+ to form FeS, but it will unbind the phos-

phate ions with the help of sulphate reduction microbes. As a result, the phosphate ions are

released back into the hypolimnion, which is then diffused to the metalimnion and epilimnion,

where the phosphate ions contribute to eutrophication.

As for many lakes in Indonesia (and in the Global South in general), there is limited (time

series) data available for Lake Maninjau concerning important biogeochemical indicators and

general lake condition. The Research Centre for Limnology, Indonesian Institute of Sciences

(RCL-IIOS), has collected data on selected limnological aspects over the years. However, the

data was sporadically collected due to financial constraints and is therefore patchy [33].

Because these data gaps exist, a mechanistic model illustrating the connection between

IWCCF management and its results on the water quality improvement has not yet been devel-

oped. We consider a BBN to be a suitable alternative to fill this gap.

Biologically, the lake is the habitat for 18 types of finfish, which become the target of capture

fishery [34]. Among the identified species, Rasbora maninjau and Gobiopterus sp. are the most

economically important. Importantly, [35] described Rasbora maninjau as an endemic species

living only in this lake.

IWCCF in the lake, introduced in 1992, has become the main source of livelihood for the

locals. By 2015, reportedly 23,566 cages were operated in the lake [36]. In 2016 there were

1,636 registered IWCCF owners, 146 cage operators, 1,383 feed producers, and 26 feed distrib-

utors [37]. IWCCF has been estimated to generate a financial value of 12 million USD per year

[38].

However, IWCCF operation in the lake has also been reported to be the cause of a severe

decrease in water quality, which is indicated by eutrophication and more frequent MFK inci-

dents [15, 39–41]. An MFK taking place in 2018 was estimated to result in a financial loss in

excess of 8.7 million USD [42].

Excessive nutrient input from accumulated feed waste correlated with the use of DO for

decomposition is further related to the DO depletion. This process is associated with widening

anoxic layer which becomes the catalyst for more frequent MFK events. The thermocline was

observed in the depth of 4–20 m [43]. They recognized that the anoxic layer was found at this

depth. As a consequence, a strong wind can trigger the mixing and bring the chemical sub-

stances in the anoxic layer to surface layer. The combination of DO deprivation and H2S

released during the upwelling process are lethal to the fish [10]. Furthermore, data collected by

the authors in 2019 also shows that Gobiopterus sp. could not be found for months after the

MFK incidents [44]. The implication of this situation is income loss for local fishers and forgo-

ing one of the affordable protein sources for the locals.

Bayesian Belief Networks (BBN)

A BBN is a graphical interface presenting a joint probability of various variables which can

link actions to outcomes [45–48]. Mostly, it is used in Decision Support System (DSS) imple-

menting Bayes’ rule on probability (Eq 1) [49]. Increasing applications in environmental risk

assessment is also documented [50–52]. Other applications as a tool for understanding
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complex (socio-ecological) systems, habitat suitability, management evaluation, and modelling

ES are well reported [23, 25, 53–57]. Further, BBN are also increasingly applied in environ-

mental studies to connect management actions and environmental impacts in complex envi-

ronments using interdisciplinary knowledge (i.e., [57–59]).

P HjEð Þ ¼
PðHÞ � PðEjHÞ

R
PðHÞ � PðEjHÞdE

ð1Þ

Note: P(H) = the probability of event H will be in a particular state

P(EjH) = the conditional probability of E given H

P(HjE) = the updated probability of event H will be in a particular state given that evidence

E is happening

The use of BBN as a modelling tool in interdisciplinary research is related to its flexibility to

effectively combine various multidisciplinary perspectives [48]. Further, BBN as a modelling

tool allows connecting a data learning process and expert knowledge. This flexibility makes it

very useful to address research questions considering existing gaps in empirical data [46, 60].

BBN may encourage communication between scientists and decision-makers, who may

have a limited background in the specific science knowledge [61]. Another merit is the possi-

bility to relate BBNs to a participatory decision-making process [62, 63] to combine both

empirical data and expert knowledge to address challenges associated with data and evidence

gaps [45, 64]. However, [65] advised to carefully validate the constructed model if it is built

based on expert domains solely.

Despite the advantages of BBN, one of the limitations is that they cannot incorporate and

model feedback loops [66]. Another limitation is the difficulty to capture dynamic processes

[23, 60]. Further details about the advantages and limitations of the model are discussed by

[24].

Materials and methods

Ethical clearance

The research has been granted an ethical clearance from the ethic committee of the School of

Geosciences, University of Edinburgh.

Conceptual model development

The key variables influencing upwelling events and MFK were determined by referring to

peer-reviewed literature (S1 Table in S1 File). This approach was also used by [67]. Thirty-five

selected variables comprising physical, chemical, biological, and anthropogenic aspects were

selected. An initial version of a variable correlation table was created to avoid over-complexity.

The collaborators from RCL-IIOS then reviewed the table. The use of the variable correlation

table made the process of incorporating the contributors’ advice become much easier. The

final influence table is shown in S2 Table in S1 File. An acyclic graph was built referring to this

final correlation table. Prior corresponding conditions were used as the principal design, refer-

ring to expert knowledge and literature as presented in the table.

Software and data availability

a. Netica software 6.05 (Norsys Software Corp, 2019). First available: 1995. Cost: Educational/

personal: 285 USD. Contact: info@norsys.com

b. R-lake analyser 1.11.4.1 (GLEON.org, 2019). First available: 2011. Cost: free
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c. Stata 15 (Timberlake Consultant Limited, 2018). First available. Cost: 355 USD

d. Data availability: Data used in this paper is available in the S2 and S4 Tables in S1 File.

Other data are available online at https://github.com/ivanayuniarti/BBN.

BBN construction and model parameterisation

The directed acyclic graph (DAG) was used to construct the model in Netica software (Norsys

Software Corp, 2019). The states were set based on literature described in Table 1 and limited

to not more than five states to keep the model simple. In cases where there were more than five

states, such as for the wind speed node and for wind direction, these were reduced to a maxi-

mum of five states (see [65]). A loop problem occurred when defining the network. The loop

comprised light intensity, water transparency, DO epilimnion, and Chlo-a epilimnion. Actu-

ally, light intensity is directly correlated to photosynthesis capacity and reproductive ability of

the algae before it is further related to the production of oxygen. As a solution to the problem,

light intensity was connected directly to DO epilimnion instead of Chlo-a epilimnion to repre-

sent photosynthesis process.

A mix of data and expert domains were engaged to fill Conditional Probability Tables

(CPT) referring to the work of [64]. The data to set prior probabilities were obtained from

Table 1. Engaged methods in BBN construction and parameterisation.

Parameters Node Type of

Node

Method to

fill CPT

Tables

Data Source (s) Discretization

methodology

States

Physic nodes Season Parent Data BMKG data (2000–2010) Classification in BMKG Dry; Wet

Rainfall intensity Child Data BMKG data (2000–2010) (n = 3,650) Classification in BMKG No rain:0–1mm; Light rain:1–

1mm; Moderate rain:5–10mm;

Heavy rain:>10mm

Cloudy Child Data BMKG data (2000–2010) Classification in BMKG Yes, No

Light intensity Child Data Based on solar radiation data from

BMKG (2000–2010)

Expert knowledge Low; medium; high

Windspeed Child Data BMKG data (2000–2010) (n = 3,650) Simplified Beaufort wind

speed scale

Calm:0–19 km/hour;

Moderate:20–29 km/hour;

Strong: 30–50 km/hour; Gale–

Storm:>50 km/hour

Mixing Child Expert

knowledge

Based on criteria of environmental

condition to trigger upwelling from

Ministry of Marine and Fisheries

verified with data from Fisheries

Agency and RCL-IIOS

Expert knowledge

recalibrated with

sensitivity to parameter

(to MFK)

Yes, No

Wind Direction Parent Data RCL-IIOS data (2018) (n = 10,926) Beaufort scale North; North East; East; South

East; Other directions

Water

transparency

Child Data RCL-IIOS and [33] [69] Low:� 2 m; High:> 2 m

Anoxic layer Child Expert

knowledge

Based on data RCL-IIOS’s dissolved

oxygen data (2001–2014)

Expert knowledge Wide; Narrow

Epilimnion zone

after mixing

Child Expert

knowledge

[70] Not sufficient DO:0–1.5 mg/l;

Sufficient DO:>1.5 mg/l

SSI Child Expert

knowledge

Based on trend of calculated SSI from

high frequency measurement data by

RCL-IIOS (2014–2017) (n = 540)

[68] High; Medium; Low

Water current

velocity

Child Data RCL-IIOS combined with data from

BMKG

Fast; medium; Slow

Anoxic

hypolimnion

Child Expert

knowledge

Based on [10, 71] [10] Yes, No

(Continued)
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Table 1. (Continued)

Parameters Node Type of

Node

Method to

fill CPT

Tables

Data Source (s) Discretization

methodology

States

Chemical and

biological

nodes

BOD epilimnion Child Expert

knowledge

Based on patchy data from [72, 73]] [69] High:�3 mg/l; Low: <3 mg/l

PO4

Concentration

Epilimnion

Child Expert

knowledge

Based on patchy data of Total

Phosphate data from RCL-IIOS (2001–

2014)

[69] High: >0.2 mg/l; Low:� 0.2 mg/

l

Chlo-a

epilimnion

Child Data RCL-IIOS (2001–2014), [10] [74] High:�3 mg/l; Low: 0–3 mg/l

Respiration rate

epilimnion

Child Expert

knowledge

Based on one-time data measurement

from RCL-IIOS

Expert knowledge

recalibrated with

sensitivity to parameter

(to DO epilimnion)

High; Low

Respiration rate

metalimnion

Child Expert

knowledge

Based on one-time data measurement

from RCL-IIOS

Expert knowledge High; Low

BOD

metalimnion

Child Expert

knowledge

Based on [72, 73, 75]] [69] High:�3 mg/l; Low: <3 mg/l

PO4 Released

from

hypolimnion

Child Expert

knowledge

Based on [10, 76] [10] High; Low

Reactive Fe (Fe2+)

Concentration

Parent Expert

knowledge

Based on [10] [10] Low

Chlo-a

metalimnion

Child Expert

knowledge

Based on [10] [74] High:�3 mg/l; Low: 0–3 mg/l

H2S Child Data [77] High:>0.002 mg/l; Low:� 0.002

mg/l

GPP epilimnion Child Expert

knowledge

Based on one-time data measurement

from RCL-IIOS

Expert knowledge

recalibrated with

sensitivity to parameter

(to Anoxic layer)

High; Low

GPP metalimnion Child Expert

knowledge

Based on one-time data measurement

from RCL-IIOS

Expert knowledge

recalibrated with

sensitivity to parameter

(to Anoxic layer)

High; Low

DO epilimnion Child Data RCL-IIOS (2005–2018) [70] High:>3.5–6 mg/l; Low�3.5mg/

l

DO metalimnion Child Data RCL-IIOS (2005–2018) [70] High:> 3.5–6 mg/l; Low

�3.5mg/l

Human

dimension

(input nodes)

Stocking density Child Expert

knowledge

Interview with IWCC farmers and staffs

of Fisheries Agency

[73] Low:� 200 seeds/m2; Medium:

200–500 seeds/ m2; high: 500–

800 seeds/ m2

Number of active

cages

Child Expert

knowledge

Interview with staffs of Fisheries

Agency and data from Fisheries Agency

Expert knowledge Zero; Low: <2,000 units;

Medium: <2,000–6,000 units;

High:�6,000 units

Feeding

management

Parent Expert

knowledge

Interview with IWCC farmers and [73] [73] None; Once-Floating; Twice-

Floating; Once-Emerge; Twice-

Emerge

Organic sediment

run off

Child Expert

knowledge

Validated with [72, 78] [72] Low:0–60 tonnes/ha/year;

Medium:61–180 tonnes/ha/year;

High: >180 tonnes/ha/year

Feed Child Expert

knowledge

Based on [73] evaluated with interview

results with IWCC farmers

Expert knowledge High:�2500 kg/unit/farming

cycle, Medium:1,500–2,500 kg/

unit/farming cycle, Low:500–

1,500 kg/unit/farming cycle

Accumulated fish

feed

Child Expert

knowledge

Based on [75] Expert knowledge High; Low

(Continued)
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various sources (Table 1). Most ecological data (i.e., DO, Chlo-a) were obtained from measure-

ment data of the Research Centre for Limnology-Indonesian Institute of Sciences (RCL-IIOS).

Meanwhile, most daily climatic data (rainfall intensity, wind speed, wind direction, cloudy)

were collected from Meteorology, Climatology, and Geophysical Agency (BMKG). The data

presented in high-frequency measurement data (measured every 2 to 10 minutes) were pro-

cessed into the most frequent occurrence data (i.e., wind direction, wind speed) and maximum

value data (rainfall intensity).

Other CPTs (i.e., H2S, DO-metalimnion, phosphate released from sediment) were set by

using expert knowledge referring to peer-reviewed publications and reports from Government

Institutions. They were calibrated after conducting repeated sensitivity to parameters tests (to

mixing, MFK, and Gobiopterus disappearance). Schmidt Stability Index (SSI), which shows the

lake’s resistance to mechanical mixing [68] was calculated by using R-lake analyser from high-

frequency measurement data from RCL-IIOS (2014–2017). The trend of SSI related to light

intensity was used as the basis to fill the CPT. Detail of the method used to fill CPT of each

node is presented in Table 1 and S3 Table in S1 File.

Model evaluation

Sensitivity to findings. Sensitivity to findings helps to identify errors in either the net-

work or the CPTs [46, 64]. First, the analysis was conducted to MFK and Gobiopterus disap-

pearance node. The analysis results show that mixing and epilimnion zone after mixing nodes

are the most influencing factors for both output modes. These results are consistent with the

model as these two nodes are the direct nodes connected to the output nodes. Next, the sensi-

tivity to findings was applied to find the most influenced factors to mixing and epilimnion

zone after mixing. The sensitivity to findings is illustrated in Mutual Information Value.

Mutual Information Value is the subtraction of entropy/ H(X) and the probability of distribu-

tion of the entropy given prior condition (H (XjY)). This value is used to rank the most influ-

encing factors to the output nodes, please refer to [64] for details.

Model accuracy evaluation. A goodness of fit procedure using past field observation data

of MFK events was used to measure model accuracy [46, 60, 64]. Three indicators used to

show the model accuracy is the error rate, true skill statistics, and Area Under Curve (AUC).

Unfortunately, there is no record data of the abundance of Gobiopterus; thus, model accuracy

evaluation cannot be performed to ‘Gobiopterus disappearance’ node.

The past observation data include wind speed, wind direction data, and the dates when

MFK events happened. The data were obtained from mixed data from RCL-IIOS online moni-

toring device and observation data from Agam Fisheries Agency. The data from the RCL-IIOS

were recorded in a high-frequency observation from mid of July to early August 2019, Decem-

ber 2019, and January-February 2020 (n = 8,331 data sets). These data were then processed

into frequent wind speed and wind direction data resulting in 100 observation points. Mean-

while, among 20 MFK event dates only nine dates can be used, because there were no climato-

logical data for the other 11 dates. The data is then inputted to the model to obtain the

Table 1. (Continued)

Parameters Node Type of

Node

Method to

fill CPT

Tables

Data Source (s) Discretization

methodology

States

Output nodes Gobiopterus
disappearance

Child - - -

Mass fish kills Child - - -

https://doi.org/10.1371/journal.pone.0250365.t001
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prediction of MFK probabilities, coded as predicted MFK. Meanwhile, the actual MFK events

were coded as observed MFK.

The predicted MFK probability was coded as Yes = 1 or No = 0 using various cut-off points

(1% to 96%). Then the predicted probability distribution is compared with actual MFK event

occurrence to calculate the sensitivity and specificity of the model. The obtained sensitivity

and 1-specificity were plotted to form a receiving operating curve (ROC) (see [67, 79]). A non-

parametric ROC was generated by using Stata 15 software following the methodology pro-

posed by [80]. A Non-parametric ROC curve was selected as it does not require assumptions

of a normal distribution of specificity and sensitivity [81]. The area under the ROC curve

(AUC) is used as the indicator of model accuracy.

The next step is the calculation of an error rate following [65]. First, an optimum cut-off

point should be obtained to code the projected probabilities into MFK predicted occurrence

(Yes = 1 and No = 0). The optimum cut-off point was determined by engaging the minimum

P-value approach [82, 83]. The optimum cut-off value is the cut point resulting in maximum

χ2 value. Then, using this cut-off point, a 2x2 cross table of predicted MFK and observed MFK

was produced. Finally, the error rate is calculated by dividing the incorrect prediction with

total observation (n = 100). The true skill statistic (TSS) was also calculated at the obtained

cut-off point. This value of TSS was obtained using the equation suggested in [84, 85]:

TSS = Sensitivity +specifity-1.

Management scenarios

Several management scenarios are presented. These scenarios are grouped as short-term

(immediate response) and longer-term (up to 25 years) management actions. The short-term

management options include with and without complete removal of IWCCF to test the impli-

cations of complete removal of IWCCF such as suggested by the environmentalists, reduction

IWCCF of up to 6,000 cages (proposed by the Act of Bupati Agam No. 22 /2009), and reduc-

tion of internal phosphorous loading (IPL) (i.e., by sediment capping) and aeration recom-

mended by aquaculture practitioners. All the short-term scenarios are generated in the model

setting representing the current lake condition (i.e., high H2S and high IPL).

For longer-term management options, a continuation of current IWCFF situation and

present lake condition as the result of no management action, complete removal of IWCCF,

and reduction IWCCF up to 6,000 will be the proposed actions. A timeframe of maximum 25

years was chosen as this corresponds to the water retention time of Lake Maninjau [86]. The

best management scenarios are chosen based on their ability to reduce the probabilities of

MFK and Gobiopterus disappearance, while also considering social implications of the

scenarios.

Results

Constructed BBN

The built labelled box style of the model comprises physical, chemical, biological, and human

dimension (input) nodes related to IWCCF and lake ecosystem is shown in Fig 2A. An alterna-

tive form of model presentation, the belief bar style (the model completed with the CPT

tables), is shown in Fig 2B. The first three nodes are regarded as intermediate nodes, and the

human dimension is further referred to as input nodes. Details of the variables can be accessed

in Table 1. Interconnections of these parameters result in two targeted outputs (IWCCF Fish

MFK and Gobiopterus disappearance). These two outputs represent the criteria of interest

for informing decision-makers about trade-offs between IWCCF and the abundance of

Gobiopterus.
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Results of sensitivity to findings

Fig 3 presents the sensitivity to findings (presented as Mutual Information Value) of four most

influential parameters to changes in the nodes “mixing” and “epilimnion zone after mixing”.

The Figure also shows the results of sensitivity to findings to the output nodes. As it has been

explained in Sensitivity to Findings Section, “mixing” and “epilimnion zone after mixing”

nodes are the most influential factors of both output nodes. Thus, these two intermediate

nodes reflect the influence of other parameters towards the output nodes. In the Figure, the

horizontal axis shows the mutual information value, which is a measurement of influence of

one node on other nodes [64]. The sensitivity to findings of changes in other factors are not

presented here due to space limitations.

It can be seen in the Figure that wind speed, water current velocity, SSI, and rainfall inten-

sity are the most affecting parameters. Thus, it can be seen that physical factors especially wind

speed, are the principal drivers of MFK and Gobiopterus disappearance events. Further, it is

also suggested that the output nodes are insensitive to the current lake condition, controlling

external phosphate loading by regulating the number of cages, stocking density, and feed man-

agement (input nodes). Please refer to discussion section to read the detail explanation.

Fig 2. The constructed BBN model. (A) The conceptual model (B) The belief bar.

https://doi.org/10.1371/journal.pone.0250365.g002

Fig 3. Sensitivity to findings (presented in Mutual Information Value) of four most influential parameters to A. MFK; B.

Gobiopterus disappearance; C. Mixing; D. Epilimnion zone after mixing.

https://doi.org/10.1371/journal.pone.0250365.g003
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Results of model accuracy evaluation

An optimum cut-off value is presented to balance between the sensitivity (true positive) and

specificity (true negative) results. An optimum cut-off value of 26% was calculated (Table 2). A

high cut-off value (e.g. 50%) will increase the possibility of true negative results but will reduce

the possibility of true positive results. On the contrary, if the cut-off point is too low (e.g. 5%),

it will increase true positive results but reduce the true negative results. Imbalance between

sensitivity and specificity will eventually raise the model error rates.

The non-parametric ROC is presented in Fig 4, showing the AUC is 0.9. The AUC value

shows that the constructed BBN model is useful [87] with moderate to excellent discrimination

[79, 88]. The computed error of the model at the optimum cut-off point is 4% consisting of

four wrong predictions among 100 tested data points (Table 3). The information in the table

shows that there were two predicted MFKs that were not observed in actual observations. At

Table 2. Sensitivity, specificity, calculated χ2, and P value of several cut-off points.

Cut-off point (%) Sensitivity Specificity Calculated χ2 P-value

0 1.000 0.000 - -

1 0.157 1.000 5.297 0.021

4 0.155 1.000 5.048 0.025

7 0.159 1.000 5.553 0.018

10 0.375 0.974 22.652 0.000

13 0.440 1.000 37.079 0.000

15 0.450 0.975 29.520 0.000

18 0.474 0.975 31.691 0.000

20 0.429 0.975 27.556 0.000

23 0.474 0.975 31.691 0.000

26� 0.818 0.978 63.315 0.000

30 0.818 0.978 63.315 0.000

50 0.818 0.978 63.315 0.000

https://doi.org/10.1371/journal.pone.0250365.t002

Fig 4. Non-parametric Receiving Operating Curve (ROC). Area under ROC: 0.897.

https://doi.org/10.1371/journal.pone.0250365.g004
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the same time, there were also two MFK events that were not predicted by the model. This

result is relatively low compared to other BBN models (i.e., 9.62% for wildfire occurrence

[67]). However, the categorization of high and low error rate is somewhat different for each

subject of study.

The calculated TSS is 0.796. The TSS value has a range from -1 to 1, with the value below

zero indicating that model performance is based on chance alone (random) [84, 85]. This

means that the model can produce strong prediction of MFK with the available data and the

correct prediction are not based on random incidence; thus, it can be considered to be statisti-

cally robust.

Results of predicted probability of MFK and Gobiopterus disappearance for

several management scenarios

Figs 5 and 6 present the predicted probability of MFK and Gobiopterus disappearance with sev-

eral management scenarios. The summary of the data presented in those figures is shown in

Table 4, and the details can be seen in S4 Table in S1 File. The scenarios are categorized as the

short-term impacts of the available management options (Scenario 1a–1f) and the longer-term

effects (Scenario 2a–2d). The value in the table shows predicted probability which is translated

to yes (the events happen) and no (the events do not happen) by using the calculated optimum

cut-off value (see Model Accuracy Evaluation Section). As an example: for Scenario 1a, the

predicted probability of MFK in good weather condition is 1.8–17%; this means that no MFK

event is predicted as the value is lower than 26%. At the same time, in bad weather condition,

the predicted probability is 32–85.5%, which means it is highly likely that MFK will occur.

Table 3. Confusion matrix of observed and predicted MFK at cut-point 26%.

Observed MFK Predicted MFK

No Yes

No Specificity = 87 False positive = 2

Yes False Negative = 2 Sensitivity = 9

N = 100

https://doi.org/10.1371/journal.pone.0250365.t003

Fig 5. Predicted probability of several short-term management scenarios representing current condition. (A)

MFK, (B) Gobiopterus disappearance.

https://doi.org/10.1371/journal.pone.0250365.g005
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The predicted probability is shown in two contrasting weather conditions. The first one

(good weather condition characterized by dry season, calm wind, no heavy rain) represents

the optimum condition when MFK and Gobiopterus disappearance is the least likely to occur.

On the contrary, the second condition (poor weather condition associated with wet season,

gale-storm wind, heavy rain) represents the highest possibility of MFK and Gobiopterus disap-

pearance to happen.

Fig 6. Predicted probability of several longer-term management scenarios representing current condition. (A)

MFK, (B) Gobiopterus disappearance.

https://doi.org/10.1371/journal.pone.0250365.g006

Table 4. Predicted probability of MFK and Gobiopterus disappearance with several management scenarios.

Condition Management scenarios Expected Value of Predicted probability (%)

Cultured fish MFK Gobiopterus disappearance

Dry season (calm

wind, No rain-

moderate rain)

Wet season (Strong-

gale-storm wind,

moderate-heavy rain)

Dry season (calm

wind, No rain-

moderate rain)

Wet season (Strong-

gale-storm wind,

moderate-heavy rain)

Current condition (high

H2S, high internal P

release from sediment)

1a Business as usual NO (1.77–10.1) YES (32–85.5) NO (10.9–25.2) YES (54.0–89.0)

1b Without IWCCF NO 0a NO 0a NO (10.9–25.2) YES (54.0–89.0)

1c With 6,000 IWCCF NO (1.77–10.1) YES (32–85.5) NO (10.9–25.2) YES (54.0–89.0)

1d With IWCCF and reduction of

internal P loading

NO (1.6–13.9) YES (23.3–71.9) NO (4.56–18.8) YES (33.8–72.9)

1e With IWCCF and aeration NO (0.21–5.67) NO/YES (9.6–40.1) NO (9.53–11.9) NO/YES (20.1–54.5)

1f With IWCCF and reduction of

internal P loading and aeration

NO (0.42–2.52) NO (4.96–19.1) NO (3.23–5.61) NO (11.9–24.4)

Longer-term (up to 25

years)

2a Business as usual NO (2.02–14) YES (36.5–81.6) NO (12.2–25.3) YES 54–89.0

2bb Without IWCCF (no reduction

of internal P action)

NO 0a NO 0a NO (4.56–18.9) YES (47.5–82.5)

2cb 6,000 IWCCF (no reduction of

internal P action, and current

feeding management)

NO (1.77–10.1) YES (20–75.3) NO (10.9–25.2) YES (47.4–79.5)

2d 6,000 IWCCF (better feeding

management and internal P

loading control)

NO (0.85–8.83) NO/YES (24.8–44.2) NO (0.85–8.83) NO/YES (24.8–44.2)

Note:
a No IWCCF in the scenario.
b see ‘Results of predicted probability of MFK and Gobiopterus disappearance for several management scenarios’ Section for the assumptions.

https://doi.org/10.1371/journal.pone.0250365.t004
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The short-term scenarios reflect the expected probabilities of occurrence of both MFK

events and Gobiopterus disappearance within the near future after the chosen management

actions are imposed. The management options can be seen in the management Scenarios Sec-

tion. The longer-term effect scenarios project the impacts of the management to the expected

probabilities of both output nodes up to 25 years. This time frame is chosen because it is the

water retention time of the lake water [86].

We set the ‘PO4 released from sediment’ and ‘Anoxic layer’ to the lower state to represent

the expected condition in longer term after the reduction and eradication of the cages making

the fulfilment of the assumption become vital.

There are two assumptions used to run scenario 2b (longer-term effects of complete

removal of IWCCF) and scenario 2c (longer-term effects of keeping 6,000 IWCCF). The first

assumption is that there are no other factors inhibiting lake self-purification (i.e., continuing

IPL and absence of stable macrophytes communities) (see [89, 90]). The second assumption is

that the rate of external organic sediment run-off (i.e., domestic waste) is unchanged.

The results show that in the short-term, removing IWCCF will not have a significant impact

on Gobiopterus disappearance, although the losses due to MFK can be mitigated (Scenario 1a

vs 1b). Meanwhile, keeping 6,000 IWCCF offers similar results as the business-as-usual sce-

nario (Scenario 1a vs 1c). More importantly, combating the IPL is expected to improve the

lake condition and may reduce the probability of MFK and Gobiopterus disappearance consid-

erably (Scenario 1a vs 1d). Overall, the suggested best short-term management option is by

conducting aeration alone or combine it with a reduction of IPL (Scenario 1e and 1f).

For the longer-term scenarios, removing all IWCCF may become the best option to avoid

MFK events and Gobiopterus disappearance as long as the assumptions above are fulfilled (Sce-

nario 2b). Further, limiting the number of IWCCF to a moderate amount (e.g. 6,000) may cut

probability of MFK and Gobiopterus disappearance by more than half, if it is complemented

with a reduction of IPL and better feeding management (Scenario 2a vs 2d). Without perform-

ing these efforts, a less significant improvement can result from reducing the cages to the 6,000

units (Scenario 2a vs 2c).

Discussion

The constructed BBN model can provide a relatively accurate prediction of MFK when

tested with only two explanatory variables (wind speed and wind direction). This finding

indicates that the developed model can perform well with limited data availability. The BBN’s

ability to incorporate both data learning and expert knowledge is the principal benefit in sup-

porting this feature. The model, therefore, can be useful to assist decision-making in the study

area.

Further, the model results show that weather conditions, especially wind speed, can be used

as a good predictor of the outputs. Therefore, in the current lake condition, forecasting wind

speed is crucial to minimize financial loss during MFK by harvesting the fish from cages before

stormy events. However, some loss is inevitable in such a strategy, because not all fish will have

reached the most profitable size. Interestingly, some local IWCCF farmers have adopted this

adaptation strategy in recent years [44]. They harvest the farmed fish one or two days before

strong wind is predicted by the weather forecast, and they reduce stocking rates and produc-

tion during the rainy season.

Our previous study [44] has correlated the farmers’ strategy with the prediction of more fre-

quently extreme weather such as La Niña which likely triggers more upwelling in the study

area. Thus, it gives us an insight that developing the model to take into account the climate

change impacts in the future is necessary aligning with the work of [91].
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In the developed model, the output nodes are not sensitive to the input nodes/human

dimension nodes. In BBN, the sensitivity of output nodes towards input nodes can be reduced

by a large number of intermediate nodes [23, 65]. Thus, [65] advised to limit the number of

nodes to not exceed 40. The model uses 35 nodes in line with their advice. This would suggest

that model over-complexity is unlikely to be the cause of the lack of output nodes sensitivity to

the input nodes. One possible explanation is that high rates of IPL and H2S mimic the current

condition of the lake (see Materials and Methods Section). This shows that even if the IWCCF

was eradicated, it will not immediately result in water quality improvement. In line with this

finding, [89, 90, 92] elucidated that chemical and biological resistance factors (i.e., IPL) can

delay water quality improvement in shallow lakes. IPL can endure for 10–15 years after the

external load is reduced [93, 94]. However, [95] mentioned that deep stratified lakes typically

have shorter longevity of internal sediment P released than the shallow lakes. Thus, limiting

IPL is one of the main actions that should be conducted to achieve desired results in terms of

reduced MFK frequency and presence of Gobiopterus. Further, it shows that longer-term result

of complete removal of IWCCF will be achieved if other factors inhibiting lake self-purification

such as IPL is controlled.

Thus, the necessity to recognize IPL as one of the primary causes of water quality deteriora-

tion and the needs of restoration actions to combat it becomes the main lesson learnt from the

application of the model. International literature recognizing the importance of acknowledg-

ing IPL and the significance to combat it in the deep tropical lakes is scarce. Until recently, IPL

control is not included in the priority list in most deep lake restoration programmes in tropical

countries (See [44, 96–98] for literature on national restoration plans of several lakes in India,

Thailand, and Indonesia). At the same time, most related research are case studies in shallow

temperate lakes (e.g., [95, 99–101]) and in shallow subtropical and tropical lakes (e.g., [102,

103]).

In the short-term, conducting aeration may significantly reduce the probability of MFK

and Gobiopterus disappearance (Scenario 1e). This action commonly practiced in pond aqua-

culture by infusing oxygen in the water column is aimed at reducing the probability of fish

death (see [104, 105]). In 2019, research related to the application of nano-bubble technology

epilimnion aeration was conducted in Lake Maninjau. The research was done by a collabora-

tive research team of RCL-IIOS and The Ministry of Environment and Forestry (see [44]). Fur-

ther, combining epilimnion aeration and other efforts to control IPL is considered as the best

option to reduce the probability of MFK and Gobiopterus disappearance events (Scenario 1f).

The aeration can be placed in the IWCCF area. In the future, development of spatial BBN is

necessary to advise which areas should be prioritized to be aerated.

The significance of spatial BBN has been demonstrated by [106–108]. They use the spatial

model to map the prioritize management intervention area, to incorporate stakeholders’ per-

spectives, and to map landscape vulnerability and concluded that spatial BBN is a practical

tool to achieve their objectives.

Although total cage removal can make the possibility of MFK and Gobiopterus disappear-

ance more unlikely in the longer-term, other considerations such as poverty alleviation and

significant potential to create social conflict (see [15, 42]) should also be thoroughly assessed.

It was reported that conflicts of interest between water users developed into riots in 2001

[103]. Thus, a balance between ecology and economy should be achieved considering these cir-

cumstances. This is particularly important if the impacts of actions such as cage removal are

not certain to alleviate MFK. One alternative that can be proposed from this model is the inte-

gration of efforts to reduce IPL while maintaining a moderate amount of IWCCF (Scenario

2d). Various alternatives of techniques to reduce IPL are available. Two promising methods

that can be applied are sediment interface aeration, and sediment capping [109–111].
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To provide a more comprehensive assessment of both ecology and economy impacts of the

scenarios, an endpoint such as a utility node defined in terms of effects on income/livelihood

from IWCCF can be a useful amendment to the current model. Towards this end, deriving

high quality time series data about the economic aspects of IWCCF and local residents’ liveli-

hood will be of high priority for future research. This would allow a more detailed quantifica-

tion of trade-offs between IWCCF and native fisheries in order to inform management

decisions [23]. There is a clear necessity of quantifying ES trade-offs using specific modelling

tools such as BBN [27]. In the study area, information of quantification of ES trade-off is very

useful to help the decision makers to allocate their limited financial budget on relatively more

sustainable management actions. However, monetary valuation of trade-offs between IWCCF

and native fisheries is beyond the scope of this paper.

The main limitation of the developed BBN model is the difficulty to integrate dynamic

observations to provide the exact point in time when the IPL starts taking place. In this case,

mechanistic models are required to complement the BBN model. Unfortunately, for the time

being, such models are not available yet in the study area, and their development may be chal-

lenging and time consuming due to the complexity of this tropical lake ecosystem. Some stud-

ies have demonstrated the use of BBN to complement other models [58, 112–114]. These

studies highlight that BBN generate results that were more user-friendly and more easily

understood by end users and decision makers; nevertheless, mechanistic models can provide

more detail and thus also help refining inputs for the BBN.

In this case study, the BBN points to a need for an improved understanding information

gaps which is applicable to the lake management in Indonesia and the Global South in general.

In short, the information gaps found by application of the constructed model are:

1. Absence of high-quality time series data on the limnological aspects of the lake to create a

mechanistic model to complement the built BBN model as the built BBN model has several

aforementioned limitations.

2. Lack of observational time series data on the impacts of phosphate reduction on water qual-

ity improvement which leads to poor understanding of the underlying mechanism that

may delay the effects of phosphorous reduction in tropical lakes.

3. Lack of high-quality time series data about the economic aspects of IWCCF and local resi-

dents’ livelihood.

4. Need to conduct an economic valuation of the management scenarios to assists the deci-

sion-making process.

Other studies aligning with these findings are for example [96] voicing the importance to

conduct economic valuation research to support lake management in India. Further, [115]

identified that inadequacy of basic limnological monitoring data hindered effective science-

based policy lake management in the Philippines.

Conclusion

The constructed BBN model can be used to capture the complexity of the ecological system in

a deep tropical lake. It was constructed by using both data and expert and stakeholder knowl-

edge approaches. However, careful model parameterisation and validation is required when

engaging in this approach. It overcomes limited data availability to overcome limitations

regarding data availability that often characterise such systems and is shown to be accurate

when tested with past field data observations (an error rate of 4%, TSS of 0.8, and AUC of 0.9).
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The model can assist decision making by highlighting the importance of wind speed forecasts

to reduce the loss of MFK. Other important factors that should be observed are related to lake sta-

bility (i.e., SSI and rainfall intensity). Further, it reflects that reducing external phosphorus loading

(in this case by reducing the number of cages used for fish farming on the lake) may not give

expected results within a short time and also in the longer-term, if IPL is not controlled. Thus, the

findings underline the necessity of actions to combat IPL in deep tropical lake systems.

In the short-term, combining control of internal phosphate released with aeration is consid-

ered the best option to reduce the probabilities of MFK and Gobiopterus disappearance. In the

longer-term, maintaining a moderate amount of the cages along with efforts to control IPL

may become an alternative solution to balance the lake’s ecological condition and to conserve

economic benefits. Together, this may also help alleviating social conflicts in the study area

and elsewhere.

The use of BBN does not undermine the importance of availability of adequate data to cre-

ate a mechanistic model. Rather, it should be complemented by such model to provide more

comprehensive decision making. Further, the identified data and knowledge gaps are relevant

to improving lake management in the tropical system in general.
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