
1.  Introduction
Signatures of ocean tidal dynamics are omnipresent in oceanographic and geodetic observations taken ei-
ther on the ground or from space. This includes periodic variations in ocean currents registered by moored 
instruments or acoustic tomography (Dushaw et al., 1997; Luyten & Stommel, 1991; Ray, 2001) as well as 
by induced secondary magnetic fields (Maus & Kuvshinov, 2004; Saynisch et al., 2018), sea surface height 
changes measured from tide gauges and satellite altimetry (Doodson,  1928; Schrama & Ray,  1994), and 
global bottom pressure variations from pelagic pressure recorders and gravimetric satellite missions (Wiese 
et al., 2016). More recently, even tiny variations in sea surface temperature (Hsu et al., 2020) and tropical 
precipitation observations (Kohyama & Wallace, 2016) were related to ocean tidal dynamics.

Separating tidal and transient signals in satellite records is not trivial due to the complicated spatio-
temporal sampling of observations taken from satellites in non-geostationary orbits. The repeat orbit 
of the TOPEX/Poseidon (T/P) satellite altimetry mission (Fu & Cazenave,  2000) has been carefully 
selected in a way that aliases the major ocean tidal constituents into periods that are well distinct from 
naturally occurring periodicities, thereby providing tidal charts based on observations that cover the 
open ocean in a regular spatial pattern (Shum et al., 1997). After assimilating tidal elevations from T/P 
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Plain Language Summary  We introduce the upgraded computer model TiME, that simulates 
ocean tides originating from the gravitational attraction of the sun and moon. The model relies on the 
physics of relevant processes without incorporating actual observations of water level variations. Formerly 
unconsidered effects that strongly impact tidal dynamics are now included. We discuss the individual 
impact of these effects on the model accuracy, which is estimated relatively to local measurements from 
tide gauges. We further compare our results to external tidal models, that employ satellite observations 
for increased accuracy. Here we find that the upgraded model performs well in the open ocean, and has 
a reduced accuracy in shallow and coastal waters. The final model setting can simulate tides that recur 
once or twice per day at a similar level of accuracy. This weak dependence on the excitation amplitude 
renders TiME especially suited for studying minor tides. Due to their low amplitudes, these tides make 
up a smaller part of tidal dynamics and are hard to determine with satellite data, thus rendering solutions 
by our model being free of data constraints valuable. Comparing our solutions with routinely used, 
empirically motivated estimates of minor tides we show that an increased accuracy is obtained.
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and other altimetry missions into hydrodynamic models (Carrere et al., 2015; Egbert & Erofeeva, 2002; 
Taguchi et al., 2014) or using these data to construct empirical corrections to an adopted model (Cheng 
& Andersen, 2011; Fok, 2012; Ray, 1999; Savcenko et al., 2012), those models are extensively used for 
the processing of unrelated observations, as e.g., satellite gravimetry missions. Presently, all 34 tidal 
constituents given by the FES14 tidal atlas (Carrere et al., 2015; Lyard et al., 2006) are directly removed 
from Gravity Recovery And Climate Experiment (GRACE) and GRACE Follow-on (GRACE-FO) data, 
and more than 300 additional minor constituents inferred by admittance methods are also subtracted 
(Kvas et al., 2019). The existing weaknesses in present-day admittance methods, however, have been 
discussed extensively in the past (Ray, 2017), so that explicit tidal simulations with unconstrained nu-
merical ocean tide models provide potentially valuable information on tidal lines less well constrained 
by satellite altimetry.

The sensitivity of satellite gravimetry to periodic mass re-distributions in the Earth system is expected 
to increase even further when the full potential of the satellite-to-satellite tracking by means of laser 
ranging interferometry (Ghobadi-Far et al., 2020) is also used for gravity field processing. Employing end-
to-end satellite simulations, Flechtner et al. (2016) found that ocean tide errors are among the top three 
factors that limit the accuracy of global mass distribution estimates from GRACE-FO. Various concepts 
of multi-satellite constellations are currently being evaluated by space agencies in Europe, the US, and 
China for possible implementation as a next-generation gravity mission (e.g., Hauk and Wiese [2020]). 
Scientific requirements and user demands for such new missions almost always request higher spatial 
resolution and greater accuracy (see Pail et al., 2015). Equivalently, in order to re-process the already ex-
isting data record from GRACE and GRACE-FO into more precise time-series of terrestrial water storage 
and ocean bottom pressure suited for climate monitoring (Tapley et al., 2019), better ocean tide models 
are critically important.

While data-constrained tidal models provide highly accurate estimates of tidal constituents in regions 
where altimetry data is dense (open ocean residuals below 1 cm), model accuracy decreases as the data 
quality decreases (minor tides, polar, and shelf areas). In effect, the ratio of model uncertainty to signal 
typically increases considerably for tidal excitations with smaller amplitudes (Stammer et al., 2014). Even 
more, additional errors can be introduced, when estimating minor tidal excitations with admittance meth-
ods. These deviations might be reduced by the explicit numerical modeling of minor tides.

In this contribution, we present efforts toward extending a hydrodynamic model of ocean tidal dynamics 
particularly suited to study minor and compound tides. Our work is based on the Tidal Model forced by 
Ephemerides (TiME; Weis et al., 2008) introduced in Section 2. We describe various improvements to the 
numerics of the model including the rotation of the poles (Section 3), an extension of the physical model 
by implementing explicitly the effects of self-attraction and loading (Section 4) and the incorporation of 
topographic wave drag as a new dissipation mechanism (Section 5). Exemplary for the principal semi-
diurnal lunar tide M2, we will report about the accuracy of the simulated tidal heights both with respect 
to tide gauge data and the state-of-the-art global tide solution FES14 that is constrained by observations. 
Various sensitivity experiments are presented documenting the individual contributions of the various 
changes made to TiME in terms of achieved accuracy (Section 6). The paper is augmented with an as-
sessment of energy dissipation patterns of the model and additional simulations of partial tides in the 
diurnal and semidiurnal tidal bands (Section 7). Building on the results of previous chapters, we focus in 
Section 8 on selected minor tides that can be simulated with higher accuracy than solutions constructed 
from linear admittance estimates on data-constrained models. Finally, the article is closed with a sum-
mary (Section 9).

2.  Tidal Model Forced by Ephemerides (TiME)
The barotropic ocean model presented in this contribution is based on decade-long work to simulate 
global ocean tides in Hamburg, Germany. Starting from the fundamental work of Wilfried Zahel (Za-
hel, 1977, 1978), unconstrained hydrodynamic models were used to quantify the contributions of ocean 
tides to Earth rotation (Seiler, 1991), the evolution of tides since the last glacial maximum, and its conse-
quences for oceanic torques acting on the solid Earth (Thomas & Sündermann, 1999), interactions among 
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ocean tides and the general circulation (Thomas et al., 2001), and the identification of free barotropic nor-
mal modes in the world’s ocean under the influence of friction and sea-bottom deformations caused by 
surface loading (Zahel & Müller, 2005).

We start our work with the Tidal Model forced by Ephemerides (TiME) as described by Weis et al. (2008), 
which simulates global barotropic tidal dynamics by solving the nonlinear shallow water equations (e.g., 
Pekeris, 1974)

                 | | ˆ
t SAL eq

rg
H

v f v v v v v Rv� (1)

     ( )t H v� (2)

determining     3( , , ) ( , )t vζ  , with sea surface elevation ζ tidal flow velocity v, latitude ϕ and longi-
tude λ. Here, f = 2Ω sin ϕ evert is the Coriolis vector, 




2Ω
1d

 (d = 1 sidereal day) and  29.80665 mg
s
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the surface gravity, H describes the depth from undisturbed surface to sea-bottom, r denotes the quadratic 
bottom friction coefficient and
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parametrizes horizontal turbulence as eddy viscosity. Here the horizontal eddy-viscosity coefficient Ah and 
the earth-radius Rearth = 6,371 km were introduced. The principal forcing term g∇ ζeq = ∇Vtid can either 
be an individual partial tide excitation or the full luni-solar tidal potential as quantified by the ephemeri-
dies of sun and moon (Bartels, 1957). Since TiME considers nonlinear accelerations arising mainly from 
bottom-friction (−r/H|v|v), advection (−(v·∇)v) and the wave-drift-term (−∇·(ζv)), full ephemeridic forc-
ing enables interactions between individual partial tides (compare also Einšpigel and Martinec  [2017]). 
Time-variable surface loading from ocean tidal elevations causes elastic deformation of the sea-bottom that 
induces a secondary gravity potential (Hendershott, 1972). Weis et al. (2008) approximated the effect as a 
fraction ϵ of the local tidal elevation, setting ζSAL = ϵζ as introduced before by Accad and Pekeris (1978). 
Typical values for ϵ are between 0.08 and 0.12.

When considering forcing by a single tidal constituent of frequency ω, the tidal solution converges to
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where   3( )n xζ   describes the part of the field oscillating at frequency nω, comprised of in-phase n
cosζ  

and quadrature component n
sinζ . The vast majority of tidal dynamics is hereby described by the part of the 

field oscillating at frequency ω. The residual tidal circulation 
constζ , consequence of tidal rectification (e.g., 

Pérenne & Pichon, 1999), as well as the overtides with n ≥ 2 are the result of said nonlinear interaction, 
representing minor contributions to the tidal flow field. Equations 1 and 2 are solved on a global, regular lat-

itude-longitude grid at a resolution of 
1

12
 employing a semi-implicit finite-difference algorithm as described 

in Backhaus (1983) and Backhaus (1985). Since the smallest zonal grid-cell size limits the time-step, the 
zonal resolution is reduced at two certain latitude circles toward the North Pole and finalized by a spherical 
cap to avoid a polar coordinate singularity. Numerical experiments were based on global Gebco (GEBCO 
Compilation Group,  2019) and Etopo1 (NOAA,  1988) bathymetries, where the best results presented in 
Weis et al. (2008) were obtained with Gebco data. Results from this model configuration will be presented 
in Section 6 in comparison to the latest results that incorporate various extensions to the model physics as 
outlined in the following.
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3.  Pole Rotation Scheme and Tide-Raising Potential
Positioning a pole of the numerical grid in the middle of the Arctic ocean requires the application of a 
spherical cap in order to work around the singularity. This can be avoided by shifting the pole locations 
to dry grid cells that are ignored by the solver. In order to adapt the numerical scheme to the rotated pole 
location, we transform the explicitly space-dependent parts of the shallow water Equations 1 and 2, com-
prising bathymetric function H(ϕ, λ), tide-raising potential Vtid = gζeq(ϕ, λ) and Coriolis vector f(ϕ, λ) into 
a new coordinate system which is spanned by the rotated coordinates ϕ′(ϕ, λ), λ′(ϕ, λ). This coordinate 
transformation

        sin cos cos cos( ) sin sinp p� (6)

 
   




 
 

sin( )tan( ) ,
sin cos( ) cos tanp

p p
� (7)

where ϕp, λp is the location of the new North Pole on the unrotated grid, can immediately be used to trans-
form the Coriolis factor f(ϕ) = f sin(ϕ). Due to the different local definitions of north and east on a rotated 
grid, special attention has to be spent when transforming vectorial quantities (e.g., the tidal velocity field v).

In total, 4 different pole locations (see Figure 1) are implemented for experiments: The original latitude-lon-
gitude grid with the pole in the Arctic at 90° N (following denoted Arc), and two realizations with land-cov-
ered poles at Argentina and China (Chi) and Antarctica and Greenland (Gre), with dry areas around the 
poles having a radius of at least 4°. An additional configuration with the South Pole in Australia and the 
North Pole in the North Atlantic (Aus) was also implemented to highlight the potential errors that might be 
introduced from a poorly selected grid configuration. In the following, the consequences of the pole rotation 
scheme for bathymetry and tide-raising potential are discussed.

Previously, TiME was run with Gebco and Etopo1 bathymetries. More recently, the high-resolution Rtopo2 
data (Schaffer et al., 2016) became also available. Based on Gebco data, the Rtopo2 grid uses additional data 
sources in polar latitudes with a special focus on accurately representing sub-ice-shelf cavities as the posi-
tion of the ice-shelf grounding line is known to have a strong effect on tidal oscillations (Arbic, Karsten, & 
Garrett, 2009; Wilmes & Green, 2014). We included these areas by considering the water-column height as 
the difference between the ice base and bedrock depth. Since the resolution of our tidal model (5 arc min-
utes) is well below the resolution of the available bathymetric data (30 arc seconds), special attention has 
been paid to how the necessary resolution reduction is optimally performed. We employ an interpolation 
strategy motivated by perturbation theory, that uses conservative interpolation of inverse depth (1/H), to 
directly derive bathymetric maps for the respective pole-orientations (Arc/Chi/Gre/Aus) from high-resolu-
tion data (see supporting information). The minimum water depth was set to 15 m as by Weis et al. (2008), 
while values of 10 or even 5 m have a negligibly small influence on tidal dynamics. The Caspian Sea Level 
(CSL) that is subject to climatic rapid changes compared to the open ocean (Chen et al., 2017; Naderi Beni 
et al., 2013) has been fixed to −26.5 m.

The luni-solar tide-raising potential acting on the oceans at epoch t
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Figure 1.  Selected numerical grids used for experiments with TiME, defined by the position of their numerical North Pole on a standard lat-lon grid. The poles 
of grid (a), labeled (Aus), are positioned in Australia (dry pole) and the North Atlantic (wet pole) at ϕ, λ = (24°N, 45°W). Grid (b), having its poles in Greenland/
Antarctica (Gre) at (75°N, 40°W) and grid (c), with poles in China/Argentina (Chi) at (28.5°N, 114.5°E) do not have wet numerical poles and thus do not require 
a pole cap.
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can be decomposed into orthonormal, real-valued spherical harmonics Ylm with time-dependent coeffi-
cients. These coefficients can further be decomposed into temporally harmonic constituents at discrete 
frequencies ωi with amplitudes ,lm lm

i is c  (Hartmann & Wenzel,  1995). Here lmP  are orthonormal Legen-
dre-Functions (e.g., Heiskanen & Moritz, 1967) and     ( ) 1 ( ) ( )b b b

l i l i l ia k h  is a combination of Love 
numbers (Love, 1909) that encrypts the action of (elastic) body tides of the solid Earth on oceanic tides. The 
frequency dependence of ( )b

l ia  originates from a coupling of tidal motions to the near diurnal free wobble 
(NDFW), one of the fundamental eigenmodes of the solid Earth (Wahr, 1981; Wahr & Sasao, 1980), which 
has prominent effects on admittances in the K1 tidal group (Ray, 2017).

We use the tidal catalog published by Hartmann and Wenzel (1995) considering contributions up to degree 
l = 3, so that minor ocean tides even of third degree origin (e.g., M3) can be simulated. ( )b

l ia  up to degree-3 
has been taken from Spiridonov (2018) (model 9), where diurnal Love numbers are calculated by linear 
interpolation from neighboring data-points (linear Admittance, see Table 1). Please note that due to the 
frequency-dispersion and degree dependence introduced by ( )b

l ia , the ocean tide-raising potential differs 
from the initial gravitational potential created solely by sun and moon.

Since Vtid is composed of few low-degree spherical harmonics, transformation to rotated-pole grids can be 
performed efficiently by utilizing Wigner-D-functions initially derived in the framework of quantum theory 
of angular momentum (e.g., Warschalowitsch et al., 1988). Dependent on ϕp and λp a single component lm

ic / lm
is   

of Vtid(ϕ, λ, t) transforms into a combination of spherical harmonics of the same degree. The rotation is 
therefore entirely described by a transformation   )ˆ( ,p pT  of coefficients lm

ic / lm
is  to the new set of coefficients 

lm
ic / lm

is  valid in the rotated frame, reading
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Here ( )lm lm
i ic s  describes a set of 2l  +  1 coefficients of the same degree. This transformation is imple-

mented by using the rotation algorithm by Gooding and Wagner (2010) following routines published by 
Risbo (1996).

The maximum dry radius around the North and the South Pole of 4° defines the smallest zonal resolution 
on this equally distributed lat-lon grid. Since this distance restricts the minimum possible time-step, it was 
necessary to introduce additional zones of reduced zonal resolution to the Southern Hemisphere. In Weis 
et al. (2008), this was solely implemented for the Northern Hemisphere since former bathymetries provided 
a much bigger dry radius around the South Pole (compare Figure 5). This modification allows the enlarge-
ment of the time-step by the factor of 4 and thus provides a considerable speed up. For all experiments 
shown in this paper, zonal resolution is first halved at ϕ = ±60° and afterward at ϕ = ±75° ensuring that 
zonal resolution varies between the margins of 

1
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 and  
 

1 14sin(4 )
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 on chi). The 
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Tide σQ1 Q1 ρ1 O1 P1 K1 Ψ1 ϕ1 OO1 d2 d3

b
lh 0.602 0.601 0.601 0.600 0.578 0.519 1.079 0.666 0.606 0.606 0.290

b
lk 0.296 0.296 0.296 0.296 0.284 0.255 0.536 0.329 0.299 0.299 0.091

b
la 0.694 0.695 0.695 0.696 0.706 0.736 0.457 0.663 0.693 0.693 0.801

Note. Coupling to Earth’s NDFW-resonance renders Love numbers in the diurnal band dispersive. Strong deviations 
from d2 are plotted bold.

Table 1 
Love Number Used in TiME Taken From Spiridonov (2018) for the Diurnal Partial Tide Spectrum (Degree 2) and for 
Semidiurnal and Terdiurnal Partial Tides of Degree l = 2 (d2) and Degree l = 3 (d3)
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model time-step was set to 
1

240
 
 
 
 

1
480

 of the respective tidal period for semidiurnal (diurnal) tides, yielding 

numerical values close to 180 s. All subsequent simulations have been initialized for at least 60 (30) com-
plete periods for semidiurnal (diurnal) tides before harmonic constituents are estimated.

4.  Self Attraction and Loading
The elastic deformation of the sea-bottom in response to a water load induces a secondary gravity potential 
that itself excites a response in ocean dynamics. The inclusion of this so-called self attraction and loading 
(SAL) potential VSAL = gζSAL has been found to be important many years ago (Hendershott, 1972). Since the 
additional local forcing depends on the entire global distribution of tidal elevations, it can be computed by a 
convolution integral. Such computations are rather costly, so that local parametrization of SAL (e.g., Accad 
& Pekeris, 1978) were often applied. However, present-day accuracy demands on global ocean tide models 
make a rigorous consideration of SAL indispensable (Ray, 1998). We consider SAL in the spectral domain, 
where the computation translates to a set of algebraic operations on spherical harmonic coefficients ζnm, 
reading








SAL

sw

sel m l

l

lm lm
l

Y( ) ( ) ,
,| |

x x



3

2 1
� (10)

where ζ(x) = ∑l,|m|≤lζlmYlm(x),   31024sw
kg
m

 and   35510se
kg
m

 being the mean density of sea water and 

solid Earth, respectively.

Here, αl = 1 + kl − hl is a combination of degree dependent Load-Love numbers (LLNs) (Munk & MacDon-
ald, 1960) that encode the effects of additional gravitation (1), as well as seafloor deformation (hl) and potential 
shift (kl) caused by the varying water mass. The factor αl/(2l + 1) decreases with rising degree l, within ensuring 
slow but steady convergence, thus avoiding Gibbs Phenomenon at coastal load discontinuities (Agnew, 2007; 
Hewitt & Hewitt, 1979). We employ LLNs of Wang et al. (2012) (PREM Earth model) with a correction to rep-
resent low degree LLNs in the frame of figure (Blewitt, 2003). Further we set lmax, the maximum considered 
degree in Equation 10, to 1024, thereby guaranteeing sub-mm accuracy in SAL-representation apart from 
some shelf areas and estuaries as also incorporated and discussed before by Schindelegger et al. (2018). The 
computational burden is thereby shifted to repeated transformations between the spectral and the spatial do-
main, which are efficiently handled with the highly optimized SHTNS-package by (Schaeffer, 2013).

5.  Topographic Wave Drag
A realistic representation of dissipative forces is critically important for modeling the system’s resonant 
coupling to oceanic normal modes and has been the main issue in numerical tidal modeling for a long time. 
Besides turbulent friction of the bottom boundary-layer, which is strongest in shallow water, the inversion 
of satellite altimetry data indicated that significant dissipation is happening in the deep ocean located at 
prominent topographic features (Egbert & Ray, 2000, 2001). The reason for this energy loss from barotrop-
ic tides is the excitation of baroclinic tidal motion, known as internal tides (e.g., St. Laurent et al., 2012; 
Wunsch, 1975). This phenomenon is hard to observe with remote sensing techniques since the induced 
changes in the ocean state are nearly entirely internal. However, it was possible to detect the minuscule 
ocean surface fingerprint of internal tides with space-geodetic techniques (e.g., Zhao, Alford, Girton, John-
ston, & Carter, 2011; Zhao, Alford, Girton, Rainville, & Simmons, 2016). Further dissipation is expected 
from shallow water processes, horizontal turbulent friction and friction at ice-water boundaries in polar 
latitudes.

The explicit simulation of internal tides requires a depth-resolving, baroclinic ocean general circulation 
model (Arbic et al., 2012) and is hence much more complex than barotropic tidal modeling as pursued 
here. Nonetheless, parametrizations for baroclinic processes are available from theoretical considerations 
and have shown to be able to capture the dissipation patterns accurately (Buijsman et al., 2015; Green & 
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Nycander, 2013). We implement a parametrization proposed by (Nycander, 2005) that builds on previous 
considerations of Bell (1975) and Llewellyn Smith and Young (2003). It is based on linear wave theory and 
produces dissipation patterns that closely match available observations. The wave drag information is de-
scribed by the second rank tensor . The drag then enters the tidal partial differential equation (PDE) as an 
additional dampening acceleration

  
1 .
Hiwa v� (11)

We use depth-resolved hydrographic data from the World Ocean Database for salinity (Zweng et al., 2018) 
and temperature (Locarnini et al., 2019) with the TEOS-10 equation of state (McDougall & Barker, 2011) to 
compute a global map of the buoyancy-frequency N(ϕ, λ, z), where z is a depth coordinate. The excitation 
of internal waves is a strongly frequency-dependent process that differs for diurnal (ωd = Ω), semidiurnal 


 

 
 

Ω
2sd  and terdiurnal 

 
 

 

Ω
3td  tidal species resulting in different wave drag tensors for each species 

( / /d sd td ). As Buijsman et al. (2015), we follow the approach introduced and developed by Nikurashin and 
Ferrari (2011), Melet et al. (2013), and Scott et al. (2011) to reduce potentially overestimated wave drag-
strength at supercritical slopes. To achieve this, the drag strength is normalized at supercritical slopes by its 
criticality squared to compensate for overestimated dissipation. Further, we allow for a tuning parameter κ 
to adjust the overall dissipation strength and introduce a cutoff depth of 150 m below which shelf oceans 
are assumed to be well-mixed. For more detail about calculation and properties of  consider the supporting 
information.

With the discussed wave drag-parametrization, TiME now includes three dominant dissipation mecha-
nisms comprised in the dissipation operator . This further encompasses parameterized turbulent horizon-
tal eddy-viscosity R̂ (Zahel, 1977) and quadratic bottom friction. Alltogether, Equation 1 can be rewritten as

             
  

t SAL eqg

r

H H

v f v v v

v v Rv v

  




 

,

.with
� (12)

By tuning the parameters κ, Ah and r model dissipation channels can be weighted individually.

6.  Tidal Elevations for M2 from TiME
In order to highlight the importance of individual model changes to TiME as given in the previous sections, 
we now report results from a number of sensitivity experiments for the principal lunar tide M2 as outlined 
in Table 2. The model performance will be benchmarked against a data set comprised of 151 tide gauge sta-
tions compiled by Ray (2013) as well as the global state-of-the-art tidal atlas FES2014 (Carrere et al., 2015; 
Lyard et al., 2006), that was produced by Noveltis, Legos and CLS and distributed by Aviso +, with support 
from CNES(https://www.aviso.altimetry.fr/). Misfits will be reported in terms of time averaged rms

     
  

      
2 2

1 2 1 2,1 2 0

1 1rms ( ) Re ( , ) ( , ) ( ) ( ) ,
2

T
dt t t

T
x x x x x� (13)

that can be further averaged over a certain ocean domain Do with area Ao yielding the space-averaged 

rms  
 1 2

1

1 2

2

,
,

( ) 








A A rms

o
ij Do

ij ijx x . We calculate averages for shallow water if the ocean depth is 

smaller than H = 1,000 m (10.4% ocean surface) or open ocean if the depth exceeds this limit (83.0% ocean 
surface). Both areas are restricted to latitudes with |ϕ| < 66° as altimetry data in these region is dense and 
guarantees a high quality of derived tidal atlases. When mentioned in the following sections, the results for 
rms a b ( , ) are relating to validations with FES2014 (a) and pelagic tide gauges (b), where TG-results for 
Equation 13 are quadratically averaged over all stations.
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As an additional benchmark for our model we monitor planetary dissipation conducted by the M2 tide. Be-
ing laid out by Platzman (1984), the theory of planetary dissipation was employed by Egbert and Ray (2000) 
and Egbert and Ray (2001) to derive estimates of M2-tidal dissipation utilizing altimetry data-constrained 
tidal models. Herein, the planetary dissipation field d was derived by evaluating the relation

   ,d w p� (14)

that uses the mean tidal energy consumption field w  =  ρsw〈ac·v H〉 (work done by tidal forces) and 
the energy flux field ∇p  =  ρswg∇〈ζHv〉. These studies revealed that 25%–30% of global M2 dissipation 

  2 2.45M SD dA d TW is located in the deep ocean. Monitoring these properties can give further insight 
into the quality of a numerical model. Within this study, individual contributions to the planetary dissipa-
tion field d = ∑idi can be directly computed from the model, with di = ρsw〈ai·vH〉 ([di] = W/m2), where ai 
are individual dissipation accelerations mentioned in Equation 12. Globally integrating the individual fields 
di yields the corresponding planetary dissipation rates Di ([Di] = W). Since temporal averages of dissipation 

terms originating from linear forces can be calculated easily (  2sin 0.5t ) we calculate the nonlinear dissi-
pation by bottom friction as the residual dissipation evaluating Dbf = (W − Dwd − Ded), where W is the tidal 
power consumption w caused by     


( )c SAL eqa g . This does not introduce a bias into the estimates as 

the imbalance between tidal energy consumption and dissipation is far below 21 % MD  after initializing the 
simulation. The following subsections present the results obtained from tuning and sensitivity experiments 
and relate to the experiments summarized in Table 2.
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ID Grid Pole Bath. SAL κ[%]
Ah 

 
 
  

2m
s rmsa [cm] Dissipationb [TW]

RE 1°/12° Chi Rtopo2 d/o = 1024 125 2 × 104 3.39/4.83 2.70 (0.90/0.91/0.88)

P1 1°/12° Arc Rtopo2 d/o = 1024 125 2 × 104 4.08/5.19 2.61 (0.88/0.82/0.91)

P2 1°/12° Gre Rtopo2 d/o = 1024 125 2 × 104 3.6/5.21 2.76 (0.95/0.87/0.94)

P2b 1°/12° Gre Rtopo2 d/o = 1024 160 1.6 × 104 3.63/5.00 2.69 (0.88/1.00/0.78)

P3 1°/12° Aus Rtopo2 d/o = 1024 125 2 × 104 4.75/5.57 2.59 (0.70/1.01/0.82)c

B1 1°/12° Chi Gebcod d/o = 1024 125 2 × 104 6.49/7.35 2.84 (0.95/0.94/0.95)

B2 1°/12° Chi Etopo1d d/o = 1024 125 2 × 104 7.86/9.75 3.06 (1.07/1.03/0.97)

S1 1°/12° Chi Rtopo2 d/o = 100 125 2 × 104 3.38/4.82 2.69 (0.90/0.91/0.89)

S2 1°/12° Chi Rtopo2 d/o = 10 125 2 × 104 3.99/5.63 2.69 (0.90/0.90/0.89)

S3 1°/12° Chi Rtopo2 ϵ = 0.1 125 2 × 104 5.41/6.69 2.94 (0.96/1.03/0.95)

S4 1°/12° Chi Rtopo2 None 125 2 × 104 22.91/27.02 3.30 (1.22/1.09/0.99)

W0 1°/12° Chi Rtopo2 d/o = 1024 150 5 × 102 4.03/6.54 2.57 (1.57/0.94/0.06)

W1 1°/12° Chi Rtopo2 d/o = 1024 100 2.5 × 104 3.75/5.03 2.75 (0.91/0.79/1.04)

W2 1°/12° Chi Rtopo2 d/o = 1024 175 1 × 104 4.18/5.39 2.58 (0.92/1.09/0.56)

W3 1°/12° Chi Rtopo2 d/o = 1024 None 4.5 × 104 8.03/9.74 2.96 (1.14/0/1.82)

R1 1°/3° Chi Rtopo2 d/o = 256 100 5.5 × 104 7.95/8.07 2.52 (0.80/0.95/0.77)

R2 1°/6° Chi Rtopo2 d/o = 512 100 3 × 104 5.21/5.95 2.58 (1.00/0.85/0.72)

WE 1°/12° Arc Gebcod ϵ = 0.1 None 4.5 × 104 15.39/17.85 3.50 (1.26/0/2.24)

Note. The individual experiments highlight the impact of several updated tidal processes and parameters on the achieved accuracy (P: pole-position; B: 
bathymetric map; S: SAL-scheme; W: topographic wave drag; R: resolution). Balances sometimes do not check out due to individual rounding.
aopen ocean/tide gauge rms. bTidal power consumption W and dissipation by sinks (Dbf/Dwd/Ded, after Section 6). cDissipation might be diminished as dissipative 
processes in the pole cap remain unresolved. dFirst order conservative remapping.

Table 2 
Open Ocean rms and Tidal Dissipation for an Ensemble of M2 Tidal Simulations
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6.1.  Model Tuning

The original experiments conducted by Weis et al. (2008) (experiment WE in Table 2) led to an open ocean 
rms of 15.39 cm. The dissipation-rate was overestimated by 43% (1,050 GW) and strong concentration of 
dissipation in shallow waters indicated missing or not optimally represented dissipation mechanisms.

Primarily the introduction of topographic wave drag and an improved bathymetric map allowed to decrease 
global M2 amplitudes and dissipation rates. Tuning experiments concentrated on finding an optimal ratio 
between damping by eddy viscosity and topographic wave drag, while the bottom friction was left constant 
at r = 0.003. Even though the original Nycander scheme does not contain a free, tunable parameter, exper-
iments with κ = 100% showed that additional dissipation is necessary to obtain optimum results as was 
also found by Buijsman et al. (2015). This can either be provided by increasing Ah or κ (altering r worsened 

the accuracy). Several tuning experiments with κ = 100…225% and   
2

25 350 10h
mA
s

 led to a minimum 

open ocean rms of 3.39 cm(experiment RE, tide-gauge rms: 4.83 cm, shallow water rms: 17.95 cm) with 
similar combinations of κ and Ah leading only to slightly higher rms-values (experiments W1,W2). While 
wavedrag dissipation amounts to 34% (910 GW) of the overall dissipation, the planetary dissipation rate 
decreased to 2.70 TW, which is still 10% (250 GW) too high compared to the expected result of 2.45 TW. The 
resulting mean tidal power consumption field w as well as the energy dissipation field by wavedrag-accel-
eration dwd (see Figure 2) match the results derived with altimetric data (compare Egbert and Ray [2001]).

While the achieved accuracy of experiment RE was the highest in our ensemble, this model setup lacks 
a solid physical foundation due to the excessive dissipation mediated by parameterized eddy-viscosity. A 
physically more reasonable setting can be obtained when minimizing the dissipation by eddy-viscosity as 
pursued by most modern barotropic models (e.g., Egbert et al., 2004; Schindelegger et al., 2018). The ob-
tained open ocean rms-values of 4.03/6.54 cm for W0 increase with respect to setting RE, while the dissipa-
tion-overshoot is reduced to 120 GW (5%). On the other hand, the shallow-water accuracy is not altered con-
siderably to 17.86 cm. This can be seen as a trade-off between maximized model accuracy and well-founded 
model physics that will be beneficial with respect to sensitivity studies (e.g., paleo simulations, climatic 
impacts). On the other hand, this trade-off is undesirable for high-precision applications such as satellite 
gravimetry. As the accuracy that has to be sacrificed with setting W0 increases for minor tides (see Sec-
tion 7), we decide to favor setting RE for the present study.

The amphidromic system and global rms-data for experiment RE is shown in Figure 3. In comparison to 
FES2014-data, M2 oscillation systems are predicted precisely with exception of some features around Antarc-
tica (compare Figure 5, top). It is worth noting that the reproduction of large-scale features (e.g., tidal phas-
es defining amphidromic systems) was also possible on a similar level of detail by experiment WE. Excep-
tions were mainly constituted of bathymetry-induced aberrations around Antarctica (compare Section 6.3). 
The principal accuracy gain is attributed to a more realistic representation of dissipation, bathymetry, and 
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Figure 2.  (a) Mean tidal power consumption field w overlayed with the tidal energy flux vector field p and (b) corresponding wavedrag dissipation field dwd 

in 2
mW
m

. Red areas in subfigure (a) indicate regions, where water masses experience a net slow down by tidal forces. While energy fluxes are similar to those 

obtained by assimilating models (compare e.g., Egbert & Ray, 2001), deep ocean dissipation is concentrated at strong bathymetric slopes. Note that the scale was 

truncated at  2
60 mW

m
 and extended pseudologarithmically for values smaller than  2

0.001 mW
m

 to emphasize the underlying fine structured dissipation patterns.
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SAL effects. The remaining critical regions are shelf and coastal areas and especially concentrated around 
Antarctica and in the North Atlantic shelf areas. This suggests possible origins for these discrepancies in 
tide-ice interaction as well as in possible bathymetric inaccuracies or insufficient representation of (nonlin-
ear) shallow water effects. With respect to similar modern barotropic tidal models, TiME produces solutions 
on the same level of accuracy, while the shallow water accuracy is moderately decreased (e.g., +4.4 cm to 
Schindelegger et al. (2018).

6.2.  Impact of Pole Location

As a first finding we note similarly accurate results when performing experiments on alternative grids with 
land-covered poles (compare experiment P2 in Table 2). The accuracy obtained on the Gre-grid could be 
increased further to 3.63/5.00 cm open ocean rms, when additional tuning was applied (experiment P2b). 
Since the zonal model-resolution increases toward the numerical poles, the bathymetric information con-
tained in two differently oriented grids differs slightly. This also impacts the wave drag tensor that depends 
on H(ϕ, λ). Together, this induces deviations between otherwise identical experiments performed on differ-
ent grids (P2 vs. RE) that become more prominent when choosing coarser resolutions. Directly comparing 
the tidal elevations obtained by experiments RE and P2b (land covered poles), yields an open ocean rms 
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Figure 3.  (a) TiME M2 co-tidal chart in cm (experiment RE) augmented with tidal amplitudes at tide gauge stations 
(151 stations, small circles), where lines indicate the tidal phases in increments of 60° (Thick: 0°, Thick, Dashed: 60°). 
Further, validation results, expressed as rms (cm) between TiME and tidal constituents at tide gauge stations and 
FES2014-data are shown (b).
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of 0.90 cm, while only 5.35 cm are obtained in shallow waters (entire ocean: 1.97 cm) (compare Figure 4). 
These values estimate the effective precision level, that can be obtained when running experiments at the 

present resolution of 
1

12
. We conclude that optimized parameters vary for experiments on differently orient-

ed grids, but similar accuracy is achievable.

Overall, the rotated pole scheme did not improve the global accuracy level of present-day tides significantly, 
since tidal elevations in the Arctic (near to the former pole cap) are diminutive (experiment P1). Neverthe-
less, deviations induced by a pole cap situated in an area of presumably high tidal elevation are a source of 
imprecision (P3) and should be avoided. The non-optimally placed pole cap on the “Aus”-grid resulted in 
altered and diminished dissipation as well as in an increased rms  4 75 5 57. / . cm.

An additional benefit of the implemented pole-rotation scheme lays in its versatility: The mitigation of 
the large pole-cap grid cell allows the unbiased study of historical situations in which tidal elevations in 
the Arctic might have been significant, as proposed by Griffiths and Peltier (2008) and more recently by  
Velay-Vitow et al. (2020) for the Last Glacial Maximum. Additionally, alternative grid orientations can be 
used to guarantee approximately equal aspect ratios for grid-cells in the Arctic (e.g., when using the Chi-
grid), further recommending TiME to be used for studies of Arctic tides.

6.3.  Impact of Bathymetry

Additional experiments were performed with bathymetries constructed from Etopo1 (Amante & 
Eakins, 2009) and Gebco data (GEBCO Compilation Group, 2019) treating sub-ice-shelf cavities as dry grid-
cells. This configuration resembles the bathymetric maps used in Weis et al. (2008). Interpolation to the 
model’s resolution was done using first-order conservative interpolation.

The results (experiment B1, B2) show that ignoring the effects of Antarctic sub-shelf cavities on ocean tide 
resonances leads to large scale deviations of the displayed amphidromic systems, especially in the southern 
ocean (Wilmes & Green, 2014) (compare Figure 5). The most striking deviation hereby occurs in the Wed-
dell-Sea. As the Rtopo2-bathymetry is mainly based on Gebco-data, the model setup for experiment B1 can 
be seen as a blocking experiment for the Antarctic shelf regions. Blocking experiments are useful to inves-
tigate the back-action of shelf-tides on open ocean tides. Arbic, Karsten, and Garrett (2009) conducted such 
simulations for a number of shelf areas (e.g., Patagonian Shelf, Hudson Bay) and also considered analytical 
solutions. Both approaches predict that blocking a near-resonant shelf-region enhances the amplitude of 
the open ocean tide, as it is shown in Figures 5a and 5c for the Southern Ocean. As the shelf-blocking in-
creases the open ocean amplitudes, tidal dissipation is also increased and contributes to the overestimated 
dissipation in experiment WE (B1: +150 GW, B2: +350 GW). It is possible to reduce this overestimation 
slightly by enhancing the dampening forces. However, this only leads to minor improvements and cannot 
rectify the imprecisely represented oscillation systems as depicted in Figure 5, it is therefore not further 
investigated.
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Figure 4.  Rms-values obtained by intercomparing experiment RE to P2 (a), an experiment run with identical parameters on a different grid, versus a 
comparison between RE and P2b (b), where parameters have been readjusted. The open ocean rms amounts to 1.18/0.9 cm (a/b), while the shallow water rms is 
5.46/5.35 cm. Note the different structures of shallow water residuals in comparison to Figure 3b, and the reduced scale.
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In summary, the conducted experiments highlight the irreplaceability of constructing a realistic bathym-
etric map. Further, the results point out that poorly represented areas can have strong near- and far-field 
effects on tidal dynamics even if they have only a small spatial extent.

6.4.  Impact of SAL

In this section, we discuss the impact of a number of SAL representations on the simulation results. When 
evaluating Equation 10 up to lmax = 100 we find that the open ocean rms does not increase indicating suffi-
cient handling of this effect with regard to open ocean tidal dynamics (experiment S1). The shallow water 
rms is also not altered considerably, which might be due to a generally less precise model performance in 
shallow waters. When further decreasing the maximum degree to lmax = 10 the open ocean rms increases 
to 3.99/5.63 cm (S2) which is still a significantly more precise result than S3, that was obtained by the local 
SAL-parametrization by (Accad & Pekeris, 1978) (5.41/6.69 cm). However, this result can be seen as a val-
uable improvement when comparing it to completely neglecting the effect (experiment S4). This leads to 
profound misrepresentation of tidal phases and strongly increased misfit. Overall, the estimated planetary 
dissipation increases with a less precise SAL representation (S3: +240 GW, S4: +500 GW). Thus, the local 
SAL-parametrization contributes significantly to the overestimated dissipation in experiment WE.

As discussed by Müller (2007) the inclusion of SAL primarily leads to a phase-shift of oscillation systems by 
altering properties of the underlying normal modes. This phase shift is well approximated in first order by 
applying an effectively reduced gravity factor (S3). However, to represent the precise far-field effects of the 
SAL a treatment in terms of spherical harmonics with lmax ≥ 100 is necessary. To precisely represent near 
field effects the maximum degree l has to be extended to higher values (Schindelegger et al., 2018). Since the 
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Figure 5.  M2-Tidal elevations (cm) and phase-lags (compare Figure 3) around Antarctica obtained from TiME-simulations with different bathymetric 
charts: (a) Rtopo2 (experiment RE), (c) Gebco (experiment B1), and (d) Etopo1 (experiment B2). As a reference (b) shows FES2014 tidal elevations. Note the 
hydrodynamically blocked sub-shelf cavities for the bottom experiments.
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efficient handling of SAL-transformation by the SHTNS-package (Schaeffer, 2013) does not considerably 
increase computation time we treat the SAL effect up to degree lmax = 1,024 in our experiments.

6.5.  Impact of Topographic Wave Drag

The only dissipation channel that leads to considerable deep ocean dissipation included in the model is the 
excitation of internal tides by topographic effects. Since deep ocean dissipation is an experimental matter of 
fact, it does not surprise that complete neglection of this effect has severe impacts on the achievable accura-
cy (experiment W3) causing an rms increase of +4.64/+4.91 cm and a surplus dissipation of an additional 
260  GW. Finding an optimum interplay between the present dissipation channels on the other hand is 
more complicated. When abstaining from tuning wave drag-strength, e.g., setting κ = 100%, best results are 
achieved by allowing significant dissipation by eddy-viscosity (W1). If one instead decides to increase wave 
drag substantially (W2), as for example, done by Buijsman et al. (2015), the open ocean results slightly wors-
ened in comparison to experiment RE, without improving shallow water rms. As discussed in Section 6.1 
a minimization of the obtained wavedrag dissipation leads to the physically well-founded model setting 
W0 while the open ocean accuracy moderately deteriorates (+0.64/1.71 cm). This setting should always be 
favorable with respect to sensitivity experiments that benefit from realistically represented tidal physics.

Overall the tuning of the dissipation channels suggested that best results are obtained when wavedrag dis-
sipation contributes about 900 GW to planetary dissipation, which is close to the expected value. The slight 
tuning of the wave drag tensor (factor 1.25 to the original Nycander-tensor) stresses that it is based on a re-
liable theoretical basis and can be expected to provide ad-hoc precise results. This is a valuable result when 
it comes to adapting the model to other tidal groups or paleo settings.

6.6.  Impact of Spatial Resolution

Experiments R1 
 
 
 

1at
3

) and R2 
 
 
 

1at
6

 were designed to represent a similar physical situation as chosen for 

experiment RE. Therefore, dissipation channels were tuned to achieve comparable dissipation ratios lead-
ing to an effective increase in Ah. We emphasize, that altering the model resolution renders repeated model 
tuning necessary. Parameters cannot be transferred directly without altering tidal dynamics.

We observe that, while overall dissipation decreases, open ocean rms-values are considerably increased to 
5.21/7.95 cm for R2/R1 (compare Egbert et al. [2004]). The cause for this might originate from the model-in-
herent resonant behavior of oceanic tides. With reduced spatial resolution, the geometry of the ocean basins 
determining oceanic normal-modes cannot be properly represented. The resulting slight shifts in resonance 
frequencies then strongly impact tidal dynamics, especially in shallow waters, where oscillation systems 
reside on smaller spatial scales. Thus, to further increase the precision and accuracy of TiME, an increased 

resolution beyond 
1

12
 should be considered.

7.  Additional Tidal Excitations
In this section, we present simulation results for additional partial tides. We selected partial tides that differ 
in excitation amplitude, frequency as well as in excitation pattern from M2 to test the sensitivity of the pre-
ferred model setting RE. The overall aim is to demonstrate model setting RE as robust for simulating partial 
tides of differing character on a comparable level of accuracy.

As discussed in Section 3, excitation patterns relate to the spatial dependence of the partial tide forcing 
that is proportional to the spherical harmonic functions Ylm. Within, l defines the degree, m the order of 
the spherical harmonic function, where m = 0, 1, 2, 3 further enumerates the tidal species (0: long period, 
1: diurnal, 2: semidiurnal, 3: terdiurnal). Since the tidal forcing strength spans several scales for different 
partial tides, the level of accuracy obtained for different partial tides cannot be compared directly to each 
other without considering the overall signal amplitude.
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To facilitate this comparison we introduce the admittance function

 



( )( , ,amp( )) ,

amp( )

i

lm i i
i

Z gx x
� (15)

that relates the tidal response, expressed by its elevation  i , to its g-normalized forcing amplitude 
  2 2amp( ) ( ) ( )lm lm

i i iS C (compare supporting information). Hereby, Zlm is only evaluated at discrete 
tidal frequencies for partial tides with forcing pattern Ylm. Since the tidal PDEs are only weakly non-linear 
and tidal frequencies within one tidal band only differ slightly, Zlm takes a related shape for each partial 
tide. Hence, it can be used to compare the response strength and especially the relative level of accuracy 
compared to the excitation strength for individual excitations by considering   ,Z ZTiME FES

rms x  (compare 

Equation 13). Please refer to the supporting information where the tidal potential catalog used for this study 
can be obtained.

7.1.  Semidiurnal Tides

The K2-excitation is a semidiurnal partial tide of second degree origin (l = 2), thus representing another 
evaluation point of admittance function Z22. However, its respective forcing strength is only approximately 

13% compared to M2. Since additionally its frequency differs from M2 by 
1.10
h

, admittance patterns are al-

tered in comparison to M2. The open ocean validation for K2 results in an rms of 0.39/0.43 cm. Compared to 
K2 signal strength, the obtained accuracy is on the same level of accuracy as results for M2. In other words, 
the uncertainty in Z22 is similar for both partial tides.

Further, we considered the tidal response to ν2 tide (approx. 4% M2-forcing) as a third evaluation point of 
Z22. Here, nonlinear effects will play an even more important role, due to the diminished excitation ampli-

tude, while frequency difference to M2 is reduced 
 

 
 

0.47
h

. The validation of ν2 resulted in a rms of 

0.19/0.18 cm, revealing a moderately enhanced level of inaccuracy compared to K2-results. The reason for 
this could be found in an imperfect representation of non-linearities in tidal dynamics. Nonetheless, the 
results demonstrate that TiME is able to perform simulations on a similar scale of accuracy within one tidal 
band (in this case Z22) without the need to adapt model parameters for each simulation. Results for these 
partial tides are shown in Figure 6.

On the other hand, monitoring tidal dissipation reveals increasingly altered weights for individual dissipa-
tion channels. While K2 dissipates 34.7 GW, partitioning as (Dbf, Dwd, Ded = 4.9/13.6/16.3 GW) the distribu-
tion for ν2 (Dbf, Dwd, Ded = 0.34/1.33/2.21 GW) is even more shifted toward a dominant eddy-dissipation. Not 
surprisingly, the dissipation by quadratic bottom friction ∼|v|3 is strongly reduced compared to dissipation 
by linear forces ∼|v|2. Remarkably, the overall dissipation lost by reduced bottom friction is transferred to 
Ded, while deep ocean dissipation by Dwd amounts to a comparable fraction (33.6/38.4/34.2% for M2/K2/ν2) 
of dissipation.

On the other hand, simulation results obtained with model setting W0 (compare Table 3) reveal decreas-
ingly accurate results for minor tides. While for M2 the decrease of open ocean accuracy was at a moderate 
level of 19% the toll for implementing setting W0 increases by 54 (84)% for the K2 (ν2) excitation. The reason 
for this could reside in a possible overestimation of quadratic (non-linear) shelf-dissipation mechanisms 
when adapting the setting W0 for the M2 tide. The importance of a nonlinear dissipation channel (quadratic 
bottom friction) reduces strongly for minor tides, which could result in distorted ratios between deep ocean 
and shelf-dissipation. As the accentuation of an alternative linear dissipation mechanism (eddy-viscosity) 
in model setting RE improves the results for minor tides drastically, it could be beneficial to consider novel 
linear shelf-dissipation mechanisms for the precise prediction of minor tides. In spite of the poor physical 
justification of dominant eddy-dissipation it might thus be its linear nature that benefits the accuracy of 
hydrodynamical tidal simulations.
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7.2.  Diurnal Tides

The K1 tide is the principal excitation in the diurnal band with a magnitude of 58% M2-forcing strength. It is 
important to note that the resulting forcing applied on ocean masses is enhanced by 6.2%, compared to an 
equivalent forcing at semidiurnal frequencies due to the NDFW-resonance (compare Table 1). In contrast to 
Z22, the tidal excitation pattern is proportional to Y21 and the strongly dispersive wave drag-parametrization 
is further limited to low latitudes with |Φ| <30°. This causes the admittance function Z21 to take a different 
shape compared to Z22. Tidal elevations are now concentrated in the North Pacific, Indian, and Southern 
Ocean. Validation performance yields an rms of 0.90/1.32 cm (compare Figure 7). A possible explanation for 
the overall higher accuracy might be the larger scales of diurnal oscillations systems, that are less sensitive 
to detailed bathymetric information. Moreover, the overall smaller admittance in the diurnal tidal band 
(Z21) indicates less resonant tidal behavior, and thus, less sensitivity to slight changes. We further display 
a second diurnal oscillation system (Q1) to demonstrate the achieved accuracy over multiple scales of ex-
citation amplitude. While the forcing-strength is reduced by 86.4% compared to K1, validation accuracy is 

on a similar level, yielding 0.19/0.25 cm open ocean rms. Due to the shift in excitation frequency by 
1.70
h

,  

the admittance-function Z21 changes notably. This also leads to an altered concentration of uncertainty in 
(shelf)-regions.

Concluding this chapter, we want to stress that the achieved high accuracy for 5 partial tides of diverse 
character proves the model setting RE as suitable and favorable over other settings for high accuracy 
applications.

8.  Tidal Solutions for Satellite Gravimetry
In the previous section, it was shown that with model setting RE it is 
possible to simulate minor tides at a similar level of relative accuracy for 
a wide range of tidal frequencies, excitation amplitudes, and excitation 
patterns. On the other hand, the precision of satellite data-constrained 
partial tide solutions depends on the available data quality. This quality is 
not constant but depends on the respective frequency and domain of tidal 
observations. Typically, polar tides are less accurately known since many 
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Figure 6.  Dimensionless admittance-function Z22 for K2- (a) and ν2 tide (b) and corresponding rms-values for Z22 (c + d). Note that the scales of the colorbars 
correspond to Figure 3, saying that Figure 3 can be read as Z22(M2). Rescaling Z22-amplitudes to real ocean elevation amounts to 19.10/5.50 cm for K2/ν2.

Partial tide M2 K2 ν2

Rms (cm), RE 3.39/4.83 0.39/0.43 0.19/0.18

Rms (cm), W0 4.03/6.54 0.60/0.64 0.35/0.40

Table 3 
Model Accuracy as Measured by Open Ocean Rms/Tide Gauge Rms 
(Compare Section 6) for the Discussed Ensemble of Semidiurnal Partial 
Tides (M2, K2, ν2) as Obtained by the Default Setting RE and Setting W0
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satellite orbits are limited to |ϕ| < 66°. This leads to prominent GRACE residuals (Ray, Loomis, et al., 2019; 
Ray, Luthcke, & Boy, 2009; Wiese et al., 2016) in polar seas. The same is true for minor tidal constituents that 
are routinely considered for gravity field de-aliasing (Savcenko & Bosch, 2010), but are often not provided 
explicitly by data-constrained tidal atlases as the data quality is poor. As this might change at sometime 
with continuously extended altimeter time-series (Ray, 2020), minor tides are currently routinely derived 
by admittance assumptions (Gérard & Luzum, 2010), that are prone to reduced accuracy especially in shal-
low waters and ice shelf regions (e.g., Pedley et al., 1986) that are governed by nonlinear processes. In this 
framework, it is natural to ask if purely hydrodynamic solutions can perform more accurate than data-con-
strained solutions. While this is certainly not true for major constituents (M2, K1, …) we want to take a closer 
look at minor tidal constituents, that are yet relevant for gravity field de-aliasing.

Most promising results can be expected by tides at the edges of tidal bands, as these contain the potentially 
largest errors when utilizing linear admittance theory (Ray, Luthcke, & Boy, 2009). Thus, we choose the di-
urnal 2Q1 and OO1 tides (1.0%/1.8% M2-forcing strength) as first test cases. The validation is performed with 
a set of tide gauges stations of predominantly coastal character (TICON, Piccioni et al., 2019). Additionally, 
we probe Q1-results in the Antarctic region by validation with a data set of Antarctic tide gauges stations 
(Howard & Padman, 2020). The respective solutions are either directly included in the FES2014-atlas (Q1), 
or derived via linear admittance supported by Q1, O1- and K1 tide, where we consider perturbations in the 
tidal potential height by the NDFW-resonance (compare Tab. 1). Hereby we assume ∂ωZlm = c1 + c2ω (com-
pare Equation 15), evaluate the constants c1, c2 by the two closest supporting points and use the result to 
extrapolate the results linearly to 2Q1 (support Q1, O1) and OO1 (support O1, K1).

As the distribution of the respective rms-values is considerably askew, especially for the TICON-dataset 
(compare Figure 8), we decided to utilize the distribution median as an effective validation metric. The 
median will be listed in the following for the (TiME/FES2014)-distributions. TiME performs on a similar 
level of accuracy as FES2014 for Q1 in the Antarctic domain (1.04/0.83 cm). While this is already quite 
remarkable for an unconstrained model, it proposes that the local, nonlinear particularities of tides below 
ice shelves must be considered explicitly to obtain more accurate results. On the other hand, the accuracy 
for 2Q1 (0.07/0.11 cm) and even more for OO1 (0.17/0.34 cm) is clearly increased when TiME solutions are 
employed. From this improvement of validation accuracy with respect to linear admittance solutions, we 
draw the conclusion that the utilization of TiME-solutions for certain partial tides will result in a reduction 
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Figure 7.  Dimensionless admittance-function Z21 for K1- (a) and Q1 tide (b) and corresponding rms-values for Z21 (c + d). Rescaling Z21 to real ocean elevations 
amounts to 88.14/12.00 cm for K1/Q1. Note the overal lower response level compared to Z22 (Figures 3 and 6).
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of the aliased tidal signal in GRACE-data. This de-aliasing potential for GRACE-data exhibited by our mi-
nor tide solutions emerges from the integrated improvement of the model and its high accuracy over a wide 
range of partial tide.

9.  Summary and Outlook
In this paper, we introduced several modifications to the barotropic tidal model TiME (Weis et al., 2008), 
which resulted in a considerable increase of the open ocean accuracy.

First, we showed that the introduction of a comprehensive pole rotation scheme allows us to get rid of 
numerical artifacts potentially induced by the former pole cap handling. The realization of two “pari pas-
su” grid orientations with land-covered numerical poles further allowed to estimate resolution-connected 
model uncertainties.

Second, the introduction of a non-local online treatment of the effect of SAL (Ray, 1998) and the imple-
mentation of a wave drag-parametrization (Nycander, 2005) allowed for a substantial increase in the model 
accuracy. We further discussed the relevance of constructing optimized bathymetric maps from different 
available global data sets. The resulting update on TiME’s bathymetry evoked another significant increase 
in model accuracy, especially due to the inclusion of sub-ice-shelf cavities (Wilmes & Green, 2014). The 
individual contributions of these updates to model accuracy are summarized in Table 4.

Due to the removal of the numerical pole cap, TiME proved to be highly versatile in simulating arbitrary 
oceanic regions with the same level of accuracy. An open question is the correct representation of (nonlin-
ear) processes in shallow water, beneath ice shelves, and coastal areas, where the model accuracy consid-
erably drops. Though dissipation by eddy-viscosity (a linear dissipative force) increased the overall model 
accuracy considerably, the obtained high values for Ah are hard to justify. The question of shallow-water 
dissipation should be readdressed, also given the persistently overestimated M2-tidal dissipation.

Tuning experiments of the updated model resulted in a set of model parameters, that equally distributes 
M2 tidal dissipation to friction by wave drag, quadratic bottom-turbulence, and parametrized eddy-viscosity. 
The set of model parameters proved robust toward the simulation of diurnal tides and minor tidal excita-
tions, where results with comparable relative accuracy were obtained. On the other hand, parameters had 
to be adjusted slightly, when changing the model’s resolution. While the discussed setting is favorable for 

the gravimetric applications we are envisioning, a second, physically bet-
ter-founded setting was derived, that is favorable for sensitivity studies, 
or paleo experiments.

The achieved model performance qualifies TiME as a purely hydrody-
namic tidal model for simulation of modern-day tides. While absolute 
model deviations from tide gauge data are considerably bigger than re-
sults obtained by data-constrained tidal models for major tides, we could 
show that the accuracy for minor tides can be improved. The same might 
be possible for polar tides of major origin if crucial polar tidal process-
es as sea-ice-friction are considered. This potential arises from TiME’s 
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Figure 8.  Respective rms-distributions for the Q1 tide (Antarctic TGs, a), the 2Q1 tide (TICON, (b) and the OO1 tide 
(TICON, (c).

Setting No wave drag Bathymetrya Param. SAL Bad pole cap

Experiment W3 B1 S3 P3

rms [cm] +4.64/4.91 +3.10/2.52 +2.02/1.86 +1.36/0.74
aDeviations mainly due to blocked ice-shelf cavities.

Table 4 
Rms-Increase rms Measured by Open Ocean and Tide Gauge Metrics, 
When Diverging From the Default Setting (Experiment RE)
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independence off satellite data and allows for an almost constant relative model accuracy over multiple 
scales in tidal forcing strength. To fully benefit from the de-aliasing potential of the obtained solution a 
comprehensive study focusing on the accuracy improvement of all relevant minor tides by unconstrained 
simulations should be conducted and augmented with direct estimates of GRACE-gravity field solutions.

Data Availability Statement
The tidal data presented in this study can be obtained from https://doi.org/10.5880/GFZ.1.3.2021.001 in the 
form of Stokes coefficients including load-tide mass variations (Sulzbach et al., 2021).
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