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A B S T R A C T   

Tropical forests uptake more atmospheric CO2 and transpire more water than any other forest in the world and 
are critical components of the global carbon and hydrological cycles. Both cycles depend to a great extent on the 
carbon and water balance of individual trees. Such adjustments are usually evaluated through well-established 
and newly-emerging traits but integrating them for a systemic understanding of trees’ responses to climate 
change can be challenging. We propose using complex correlation networks to integrate and understand how 
trees coordinate water- and carbon-related traits under changing climate conditions. We built a correlation 
network based on 20 traits measured in the wood of Hymenaea courbaril (Leguminosae) trees, a species known for 
its extreme anisohydric water-use strategy, sampled along a climate gradient in Southeastern Brazil. Intercellular 
to ambient CO2 concentrations ratio (ci/ca, estimated from tree-ring δ13C) is a central network trait for being 
coordinated with several hydraulic and carbon allocation traits. Trees of H. courbaril coordinate these traits along 
the climate gradient, favoring high ci/ca under warm and dry conditions. A high ci/ca is only possible through a 
consistent water supply provided by wider vessels together with the investment on soluble sugars, at the 
detriment of starch, likely for hydraulic maintenance. Trees also favor heat resistance by investing in cell-wall 
xylose, another central network trait, from xyloglucans and xylans, at the expense of mannose from gluco-
mannans. Such trade-offs within, and between, structural and non-structural carbon allocation reflect well- 
known metabolic pathways in plants. In summary, this systemic approach confirms previously reported pat-
terns on leaf physiology, stem hydraulics and carbon adjustments while bringing to light the previously unre-
ported role of cell-wall composition and its fine adjustments to cope with climate change.   

1. Introduction 

Tropical forests are central components in the global carbon and 
hydrological cycle (Zuidema et al., 2013; Brienen et al., 2017; Ellison 
et al., 2017) for exchanging more CO2 with the atmosphere than any 

other type of vegetation (Zuidema, 2015; Corlett, 2016) and transpiring 
more than twice the amount of water vapor in the atmosphere annually 
(Hetherington and Woodward, 2003). This role of tropical forests on the 
global carbon and water cycles is mediated by trees’ physiology, as they 
uptake atmospheric CO2 through stomata at the expense of water losses 
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(Tyree and Sperry, 1989; Tyree and Ewers, 1991). The fine tuning of 
photosynthesis and stomatal conductance in response to environmental 
changes must be coordinated with adjustments in internal carbon allo-
cation and hydraulic architecture of trees (Van Der Sleen et al., 2015; 
Brienen et al., 2017; Arco Molina et al., 2018). Long-term adjustments 
are usually assessed through well-established and newly emerging wood 
traits (Chave et al., 2006; Poorter et al., 2010; Powell et al., 2017; De 
Micco et al., 2019; Macieira et al., 2020) that represents physiological 
and metabolic mechanisms of the above- and below-ground organs 
responsible for trees’ carbon and water fluxes (Beeckman, 2016; 
Locosselli and Buckeridge, 2017). 

Internal carbon allocation in trees depends largely on stomatal 
conductance and assimilation rates. Both processes are responsible for 
the control of the intercellular to ambient CO2 concentrations ratio that 
is usually estimated through the carbon isotopes signature of the wood 
of mature trees (McCarroll and Loader, 2004; Lavergne et al., 2020). 
Once assimilated, carbon undergoes different fates in plants through 
distinct metabolic pathways. Specific pathways lead to the formation of 
structural carbohydrates used to synthetize cell-walls. Such structural 
carbon pools are often assessed by measuring radial growth and / or 
wood density of trees (Sakschewski et al., 2016; Locosselli and Buck-
eridge, 2017; Powell et al., 2017; Zuidema et al., 2018), but these ap-
proaches fail to give a comprehensive understanding of the fine-tuning 
of structural carbon pools (Le Gall et al., 2015). Trees may coordinate 
different carbon pathways for the synthesis of different cell-wall neutral 
monosaccharides (Fig. 1, Scheller and Ulvskov, 2010; Cosgrove, 2016) 
that are the building blocks of cell-wall’s mechanical stability (Carpita 
and Gibeaut, 1993; Buckeridge et al., 2008), plasticity (Cosgrove, 2000; 
Toledano-Thompson et al., 2005) and porosity (Hayashi, 1989; Carpita 
and Gibeaut, 1993; Cosgrove, 2005; Zykwinska et al., 2005). Carbon 
may undergo alternative pathways (Fig. 1, Verbančič et al., 2018; 
Pagliuso et al., 2018) for the synthesis of either short-term reserves in 
the form of soluble sugars or long-term reserves in the form of starch 
(Hoch, 2015; Hartmann and Trumbore, 2016; Hartmann et al., 2018). 
Trees then balance these pathways for structural and non-structural 
carbon allocation according to their growth strategies and their need 
to cope with environmental changes (Locosselli and Buckeridge, 2017; 
Hartmann et al., 2018; Macieira et al., 2020). 

A net positive carbon gain presupposes that water is uptaken from 
the soil, transported in the xylem vessels and transpired through stomata 
(Tyree and Ewers, 1991, Hoch, 2015; Beeckman, 2016; Hartmann and 
Trumbore, 2016). Since water is transported against gravity and under 
tension in the xylem, trees manage the risk of embolism, or hydraulic 
failure, by co-regulating stomatal conductance and xylem anatomical 
plasticity (e.g., Tyree and Sperry, 1989; Locosselli and Ceccantini, 
2012). Wider vessel elements in lower density can promote carbon gain 
at the expense of hydraulic safety (Choat et al., 2008; Poorter et al., 
2010; Li et al., 2016; Powell et al., 2017), or alternatively trees may 

invest in safer hydraulics, with narrower vessels at higher density, at the 
expense of growth. These adjustments in hydraulic traits have been 
demonstrated before (e.g., Baas et al., 2004; Amaral and Ceccantini, 
2011; Jono et al., 2013), but few attempts have been made to integrate 
water- and carbon-related traits responsible for trees growth and sur-
vival under climate change (e.g. Pappas et al. 2016). 

Such multi-trait analyses may fail to provide a holistic understanding 
of plant’s mechanisms in response to ongoing climate change partially 
because of limitations related to frequently used statistical methods, 
such as Principal Component Analyses (Albert et al., 2010; Lourenço 
et al., 2020; Macieira et al., 2020) and Path Diagrams (Chapman and 
McEwan, 2018; Kotowska et al., 2021). Alternative computational 
methods are now being employed in plant sciences (e.g., Gholami et al., 
2017; Kaab et al., 2019; Zhou et al., 2019) and the complex correlation- 
network is an approach not yet fully explored in the field of plant 
ecology (He et al., 2020). This approach considers systems not only as a 
sum of parts but as an accumulation of interconnected subsystems 
(Barabási and Oltvai, 2004; Koskinen, 2013), such as tree’s carbon pools 
and hydraulics. Graphs are used to represent the networks’ topology that 
consists of a series of nodes, plant traits in this case, and links repre-
senting their linear associations (Barabási and Oltvai, 2004; Yamada and 
Bork, 2009; Cohen and Havlin, 2010). The network properties can be 
characterized according to the number of links held by each node, the 
degree centrality, and also by the relative position of a node in the 
communication of different modules, or subnetworks, the betweenness 
centrality (Cohen and Havlin, 2010; Toubiana et al., 2013; Jardim et al., 
2019). Nodes that combine high values of different centralities may turn 
out to be more integrative traits that represent most of the network 
variability. Such structural properties of the networks allow an adequate 
understanding of multi-trait datasets and further drawing systemic 
conclusions from their behavior (Yamada and Bork, 2009; Toubiana 
et al., 2013; Palacios et al., 2019). 

To better understand trees’ complex responses to ongoing climate 
change, we studied trees of Hymenaea courbaril L., a widely distributed 
species in the Neotropical lowland forests (Lee and Langenheim, 1975) 
known for its extreme anisohydric water-use strategy (Werden et al., 
2017) characterized by a high stomatal conductance even in the most 
demanding conditions. This species produces distinct annual tree rings 
(Luchi, 1998; Westbrook et al., 2006; Lisi et al., 2008) with proven 
potential to understand environmental variability on trees development, 
plasticity and growth (e.g., Locosselli et al., 2013; 2016;; Souza et al., 
2018; Tiwari et al., 2020). Despite its potential, this target species has 
not been evaluated before in terms of multi-traits’ performance under 
changing climate conditions. In this study, we analyzed four populations 
of H. courbaril along a climate gradient in Southeastern Brazil that re-
flects the fundamental expectations of warming and higher precipitation 
seasonality in the tropics (IPCC, 2014; 2018). Based on the mechanisms 
described above, we tested the following hypotheses: I) the ratio 

Fig. 1. Simplified carbon metabolic pathways of cell- 
wall monosaccharides and non-structural carbohy-
drates synthesis. Glc = Glucose, Fru = Fructose, Suc 
= Sucrose, GlcA = Glucuronic acid, Xyl = Xylose and 
Man = Mannose. Black = Precursors of sugars; Red 
= Non-structural carbohydrates; Blue = Cell-wall 
monosaccharides. Modified from Verbančič et al. 
(2017) and Pagliuso et al. (2018). (For interpretation 
of the references to colour in this figure legend, the 
reader is referred to the web version of this article.)   
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between CO2 concentration in the leaf’s mesophyll and in the atmo-
sphere (ci/ca) has a central role in the carbon and water balance and, 
therefore, presents a high degree centrality in the network; II) given the 
different carbon metabolic pathways, trees would display a trade-off 
between the starch and soluble sugars pools, and a trade-off between 
non-structural and structural carbon pools; III) traits related to the 
structural carbon pool may also present a high centrality in the network 
as it consists in the largest carbon sink and it has a central role on trees’ 
growth and survival; IV) trees of H. courbaril coordinate ci/ca and carbon 
allocation with vessel features to guarantee the water flux necessary for 
a positive net carbon gain; V) H. courbaril trees coordinate the main 
traits, or those with the highest centrality values, to cope with the 
environmental conditions along a climate gradient. 

2. Material and methods 

2.1. Species and sampling sites 

Hymenaea courbaril L. is usually found in moist broadleaved forests 
from Northern Mexico to Southeastern Brazil. It belongs to the Legu-
minosae family, one of the most representative families in the tropical 
vegetation (Lee and Langenheim, 1975). Trees of Hymenaea courbaril 
reach more than 25 m in height and up to 1.5 m of diameter at breast 
height (DBH), and are considered emergent trees for growing above the 
forest canopy. The stem is cylindrical with the rare presence of but-
tresses. It is a brevi-deciduous species for changing leaves shortly during 
the dry season (Crankshaw and Langenheim, 1981; Kuhn et al., 2004). 

We sampled trees in four Protected Areas from the Atlantic Rain 
Forest domain along a gradient of climate conditions (Fig. 2, Table S1). 
Temperature, precipitation, vapor pressure deficit (VPD) and wind 
speed vary along the gradient towards more demanding atmospheric 
conditions in the inland. This variability in the climate conditions favors 
the interactions among different traits supporting the development of 
the correlation networks (Table S1, Fig. 2). Populations from the four 
sites are probably from the same phylogeographic group (Ramos et al., 
2008), and therefore trait variations are expected to be mostly depen-
dent on environmental conditions. 

We sampled 65 trees in these four areas, from two to four increment 
cores per tree, using a low friction increment borer coupled with a motor 
drill (Krottenthaler et al., 2015). We carefully chose healthy and 
emergent trees with no visible signs of injury, decay, or senescence. Out 
of the sampled trees, we selected four trees from Carlos Botelho State 
Park, and five trees from the other three sites, based on age above 80 
years old, and DBH higher than 55 cm, to avoid ontogenetic biases and 
the effect of light competition on leaf physiology in the understory 

(Brienen et al., 2017). 

2.2. Studied variables 

2.2.1. Tree-ring measurements 
All samples were left to dry for a couple of weeks. Samples were 

polished using sandpapers with grits from 50 to 2,000. All samples were 
cleaned with pressurized water to remove wood dust from vessel lumen. 
Tree rings were identified using a stereomicroscope and measured using 
the Lintab™ 6 system (Rinntech, Heidelberg, Germany). Since we 
missed the pith in some sampled increment cores, we estimated the 
number of missing rings to the pith using a modified method from Hietz 
(2011). False and wedging rings were identified, and tree-ring series 
synchronized using TSAP-Win™ software (Rinntech, Heidelberg, Ger-
many). Trees from Vassununga State Park and Morro do Diabo State 
Park, were correctly dated using standard dendrochronological methods 
(Locosselli et al., 2019). For the other two populations, we crossdated 
the tree rings among the radii from the same trees. With the tree-ring 
measurements, we calculated tree’s age and basal area increment 
(BAI, Fig. 3). Because growth may present both short- and long-term 
trends due to various factors, we calculated mean basal area incre-
ment for the last 10, 20, 30, 40, and 50 years (Fig. S1) and we chose the 
one with the highest correlation values with all other measured traits. 
We also calculated the number of tree rings in the sapwood (SWr, Fig. 3) 
and the proportion of sapwood area per total cross-section area (% SWA, 
Fig. 3). 

2.2.2. Wood density 
For wood specific gravity analysis, sapwood and heartwood were 

visually identified and sampled in each specimen (Fig. 3). Samples 
including multiple tree rings had their wood density measured by the 
water displacement method (Williamson et al., 2012). All samples were 
oven-dried at 105 ◦C for 48 h and reweighed to calculate the initial 
water content, to estimate the basic specific wood gravity – dry mass/ 
green volume (Chave et al., 2006; see more details in Supplementary 
Material). 

2.2.3. Cell-wall monosaccharides 
We used the same samples of sapwood density for cell-wall analyses 

(Fig. 3). Wood samples were dried at 60 ◦C to constant weight, and then 
they were ground in a ball mill (Model TE-350, TECNAL, São Paulo, 
Brazil). We used 500 mg of the wood sample in four successive extrac-
tions with 25 mL of 80% (v/v) ethanol at 80 ◦C for 20 min and discarded 
the supernatants to remove the soluble sugars and other soluble com-
pounds. The alcohol-insoluble residue of these extractions was then 

Fig. 2. Sampled populations of Hymenaea courbaril 
(circles) in Southeastern Brazil and respective 
monthly variation of maximum temperature, pre-
cipitation, vapor pressure deficit (VPD) and wind 
speed. Shaded areas indicate the rainy season. 
Climate according to Köppen’s classification is also 
provided for each site (Af: tropical with dry season, 
Cfa: humid subtropical with hot summer, Cwa: 
humid subtropical with temperate summer, Aw: 
tropical without dry season). Climate data from 
Abatzoglou et al. (2018).   
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washed with distilled water and dried at 60 ◦C for 24 h. The cell walls 
were subjected to successive extractions to solubilize polysaccharide 
fractions (De Souza et al., 2013; see more details in Supplementary 
Material), and the fraction yields were obtained gravimetrically. 

The monosaccharide composition of the cell wall was obtained by 
hydrolysis of the alcohol-insoluble residue with 2 M trifluoroacetic acid 
(TFA) (Saeman et al., 1945; see more details in Supplementary Mate-
rial). An aliquot of 500 μL of the hydrolysate was analyzed for different 
monosaccharides by High-Performance Anion Exchange Chromatog-
raphy with Pulsed Amperometric Detection (HPAEC–PAD) in a Dionex® 
system (ICS 5000, USA, New Jersey, Manasquan) using a CarboPac PA1 
column. The separation was done during a 60 min run with Milli-Q ul-
trapure water, using a pulse in the first two minutes of 20 mM NaOH at a 
flow of 1 mL/min. Post-column was used with 500 mM NaOH and flow 
of 0.5 mL/min. We obtained the concentrations of seven mono-
saccharides (xylose, galactose, arabinose, mannose, glucose, rhamnose, 
and fucose) representing the neutral portion of hemicelluloses and 
pectins of the wood cell-walls. 

2.2.4. Non-structural carbohydrates 
We used only the heartwood to obtain the concentrations of soluble 

sugars and starch to avoid the bias of seasonal variation in non- 
structural carbohydrates (NSC) concentrations in the wood (Fig. 3, 
Locosselli and Buckeridge 2017). Soluble sugars and starch found in the 
heartwood are considered ‘sequestered’ and may represent a record of 
NSC’s concentrations in the wood (Locosselli and Buckeridge, 2017). 
Total soluble sugar concentrations (SS) were determined by the phe-
nol–sulfuric acid method (Dubois et al., 1956). The determination of 
starch followed the method by Amaral et al. (2007) and Arenque et al. 
(2014) through enzymatic extraction (see more details in Supplemen-
tary Material). 

2.2.5. Ratio of intercellular to ambient CO2 concentrations 
We analyzed the tree-ring carbon isotopes of the last fifty years for 

each sampled tree. For one tree from Carlos Botelho, data is only 
available for the last 30 years for technical issues during sample analysis. 
We used a diamond circular saw (Buehler IsoMet 5000) to produce thin 

sections of the increment cores. These thin sections were divided into 6 
cm segments and placed in Teflon sheets for cellulose extraction using 
the method by Kagawa et al. (2015) and Schollaen et al. (2017). The 
ratio values between concentrations of CO2 in the mesophyll and at-
mosphere (ci/ca, Fig. 3) were estimated using the equation (Farquhar 
et al., 1982):  

ci/ca = (δ13Cplant – δ13Cair + a) / (b – a)                                                    

where, a represents the fractionation during diffusion of CO2 through 
stomata (–4.4‰), and b represents the fractionation due to carboxyla-
tion (–27‰) (Farquhar et al., 1982). Due to the absence of locally 
measured CO2, the ca values were taken from Le Quéré et al. (2018). 
Because the stable isotopes are subject to short- and long-term trends 
due to various factors, we calculated mean ci/ca for the last 10, 20, 30, 
40, and 50 years (Fig. S1) and we chose the one with the highest cor-
relation values with all other traits. (Fig. S1; see more details in Sup-
plementary Material). 

2.2.6. Vessel features 
Vessels were measured in two groups of ten tree rings representing 

the decades of the 1950′s and 2000′s to account for vessel tapering in the 
sampled trees during the analyzed period for BAI and ci/ca (Fig. 3). 
Vessel lumens were highlighted on GIMP software (version 2.10.8, GNU 
General Public License) to enhance the contrast for the automated 
detection on ROXAS (version 1.2.0.68, G. von Arx, Birmensdorf, 
Switzerland). About 10,000 vessels were measured to calculate mean 
vessel area (MVA), total vessel area (VTA), and vessel density (VD). 

2.3. Statistical analyses 

We analyzed a total of 20 traits in trees of H. courbaril (Table 1, 
Fig. 3). First, we evaluated the distribution of the values of each trait 
using histograms (Fig. S2). Then, we calculated the Pearson’s correla-
tion (Pearson, 1920) matrix to assess the linear association among the 
measured continuous variables (Fig. S1) and used this matrix to build 
complex networks and understand how trees coordinate the measured 
traits. 

Fig. 3. Traits measured in the wood of four populations of Hymenaea courbaril from Southeastern Brazil. Scale bar = 10 mm.  
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In the complex networks, the measured traits are depicted as nodes, 
while edges (links) indicate pairwise correlations between component 
levels. All edges are equally weighed, and represent Pearson’s correla-
tion coefficient between component pairs for α = 0.05. The importance 
of the variables in the network structure were estimated based on the 
centrality analysis. The degree centrality of a given node is proportional 
to the total number of edges it establishes with other nodes (Barabási 
and Oltvai, 2004), while the betweenness centrality is a measure of the 
importance of a node in the connectivity (communication) of different 
clusters in the network (Freeman, 1978). Networks were built using the 
BioNetStat package (Jardim et al., 2019; R-Core Team, 2018) that allows 
a fast and convenient construction of the adjacency matrix from the data 
table. 

Traits were then compared among the study sites. The values of these 
traits were plotted as boxplots for each sampling site and then compared 
using Kruskal-Wallis and Dunn tests, for not meeting the criteria of 
normality and homoscedasticity. The results for the traits representing 

the main centralities are displayed here, while the results for all other 
traits are shown in the Supplementary Material. 

3. Results 

The 20 measured traits showed substantial variation among the 
sampled trees within our sampling design (Table 1, Fig. S2). The asso-
ciation among the studied traits consisted in a favorable condition to 
build the final correlation network (Table 1, Fig. 4) that exhibited 33 
edges or links that are statistically significant (α = 0.05). The main 
network comprises: ci/ca, xylose, mannose, age, mean vessel area, 
glucose, basal area increment, total vessel area, vessel density, sapwood 
rings, starch, and soluble sugars. The network also has three additional 
modules, or sub-networks, one formed by cell-wall monosaccharides 
(arabinose, galactose, fucose, and rhamnose) that mainly comprise 
pectins in the wood (0.37% of Hymenaea courbaril wood cell wall, 
Table 2), another comprising wood densities (sapwood and heartwood), 
and a third comprising percentage of sapwood area and DBH. 

The variable ci/ca is one of the main degree centralities in the 
network (Table 1, Fig. 4), indicating that it is correlated to a large 
number of traits in the studied system. This variable shows positive 
correlations with sapwood and heartwood densities and cell-wall xylose, 
but negatively correlated with mannose. In turn, xylose is negatively 
associated with the concentrations of starch in the heartwood, while 
mannose is negatively associated with the soluble sugars in the heart-
wood. These monosaccharides mainly represent hemicelluloses, 
comprising 38.99% of the dry weight of the wood of H. courbaril 
(Table 2). Soluble sugars and starch also show a negative association 
between themselves. In addition, ci/ca is also positively associated with 
the mean vessel area, but it shows no correlations with vessel density 
and vessel total area. 

Xylose is also a high degree centrality, and it is positively associated 
with basal area increment, but negatively associated with age and cell- 
wall glucose. The number of tree rings in the sapwood is also a high 
degree and betweenness centralities (Table 1, Fig. 4) in the network, and 

Table 1 
Minimum, maximum, mean, standard deviation, and respective degree and 
betweenness centralities of the traits measured in Hymenaea courbaril trees from 
Southeastern Brazil.  

Variables Range Mean Std Centrality values 

Degree Betweenness 

Age (years) 83 – 273 166 ± 60.2  1.54 04 
DBH (cm) 55 – 93 75 ± 12.8  1.39 18 
ci/ca 0.58 – 0.68 0.63 ± 0.03  3.26 48 
SWr 22 – 67 38 ± 12.3  3.54 12 
% SWA 23 – 54 38 ± 8.1  0.81 00 
VD (vessels/mm2) 1.4 – 3.9 2.8 ± 0.7  1.71 01 
VTA (mm2) 0.3 – 1.9 1.1 ± 0.5  2.70 05 
MVA (µm2 × 103) 14 – 39 24 ± 0.6  1.57 23 
BAI (cm2/year) 14 – 61 32 ± 13.9  3.01 39 
SWD (kg/m3) 0.75 – 1.02 0.87 ± 0.07  1.39 00 
HWD (kg/m3) 0.85 – 1.08 0.94 ± 0.06  1.29 00 
SS (mg/g DM) 1.1 – 3.2 1.9 ± 0.6  1.65 04 
Starch (mg/g DM) 1.3 – 2.3 1.7 ± 0.3  2.02 14 
Xyl (mg/g DM) 15.5 – 38.7 31.7 ± 5.6  3.29 41 
Gal (mg/g DM) 1.6 – 3.2 2.3 ± 0.4  1.96 34 
Ara (mg/g DM) 1.3 – 4.4 2.3 ± 0.8  1.36 48 
Man (mg/g DM) 0.9 – 4.4 2.5 ± 1.1  1.08 04 
Glu (mg/g DM) 3.2 – 6.8 4.9 ± 1.1  2.84 68 
Rha (mg/g DM) 0.8 – 1.5 1.1 ± 0.2  1.39 00 
Fuc (mg/g DM) 0.23 – 0.39 0.31 ± 0.04  1.11 00  

Fig. 4. Complex correlation networks built 
with 20 traits measured in the wood of 
Hymenaea courbaril trees from Southeastern 
Brazil. Node sizes are proportional to the 
values of respective trait centralities (refer to 
Table 1 for centrality values). The links only 
show statistically significant correlations 
between traits (α = 0.05), and the colors of 
the links indicate if correlations are positive 
(blue), or negative (red). (For interpretation 
of the references to colour in this figure 
legend, the reader is referred to the web 
version of this article.)   

Table 2 
Cell-wall fractions of Hymenaea courbaril trees from Southeastern Brazil.   

Pectins Lignin Hemicelluloses Cellulose 

Cell-wall composition (%)  0.37  22.54  38.99  38.09  
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it is negatively associated with basal area increment, total vessel area, 
and vessel density variables, but positively associated with age and 
starch. Cell-wall glucose and ci/ca stand out as the main betweenness 
centralities in the network (Table 1, Fig. 4). Glucose is the variable with 
the highest betweenness centrality for connecting the cluster of cell-wall 
monosaccharides with the main network. The variable ci/ca also stands 
out for having a high value of betweenness centrality for connecting tree 
density (sapwood and heartwood) with the main network. 

Varying environmental conditions lead to significantly different 
carbon allocation strategies and hydraulic architecture along the studied 
climate gradient (Fig. 5). Further statistical analysis (using Kruskal- 
Wallis and Dunn tests) was performed for the comparison of the main 
centralities’ traits among sampling sites. Thus, the network analysis 
results were extended in a comparative framework reflecting the con-
tinental gradient and likely anticipated future climate conditions. Sta-
tistically significant differences were particularly pronounced between 
the two contrasting locations, namely Carlos Botelho and Morro do 
Diabo State Parks. Higher water availability and lower temperature re-
gimes from Carlos Botelho S.P. are reflected by the lowest values of ci/ca 
ratios, mean vessel area, xylose, and heartwood-soluble sugars (Fig. 5). 
In contrast, mannose and heartwood-starch concentrations are the 
highest. In contrast, under the climate conditions of Morro do Diabo S. 
P., the ci/ca ratios, the mean vessel area, and the concentrations of 
xylose and heartwood-soluble sugars are the highest. On the other hand, 
mannose and heartwood-starch concentration are the lowest. For all 
other variables, differences among sites are less evident and often non- 
significant (Fig. S3). 

4. Discussion 

4.1. Association among carbon- and water-related traits in the network 

We investigated how trees coordinate leaf-level physiology with 
carbon allocation and stem hydraulics using complex correlation net-
works. Degree centrality values show that the ratio between the con-
centrations of CO2 in the mesophyll and the atmosphere (ci/ca) is one of 
the most integrative traits in the studied system. This central role in the 
network indicates that trees coordinate leaf-level physiology, namely 

assimilation and stomatal conductance, with several carbon and hy-
draulic traits in the wood of Hymenaea courbaril. 

Leaf-level physiology represented by ci/ca is positively associated 
with xylose content in the cell-walls, another high degree centrality 
trait, and negatively associated with mannose. Both monosaccharides 
are part of different hemicellulose classes (xylans and mannans (Hoch, 
2007; Schädel et al., 2010a; 2010b) that together represents 39% of the 
cell wall of H. courbaril. Xylans are mostly related to secondary walls, 
and xyloglucans are mostly related to primary walls of hardwood spe-
cies, while glucomannans is common to both primary and secondary 
walls (Buckeridge et al., 2008; Scheller and Ulvskov, 2010). All other 
cell-wall neutral monosaccharides (galactose, arabinose and rhamnose) 
form a specific sub-network related to pectins that comprise only 0.37% 
of H. courbaril cell-walls. This sub-network connects to the main network 
through cell-wall glucose, the highest betweenness centrality in the 
network, which is a common subunit to cell-wall pectins and hemi-
celluloses. The observed contrasting association between ci/ca, and 
hemicellulose monosaccharides reflects the metabolic pathways of car-
bon, in which mannose is produced directly from the uridine diphos-
phate (UDP) glucose pathway, while xylose is produced via the UDP- 
Glucuronic acid pathway (Fig. 1). 

This association with the carbon metabolic pathways is also evident 
when evaluating the dynamics of the non-structural carbon reserves. In 
the present study, we evaluated the concentration of total soluble sugars 
and starch in the heartwood of trees as a record of their surplus in the 
sapwood (Würth et al., 2005; Hoch, 2007; Locosselli and Buckeridge, 
2017). The concentrations of soluble sugars and starch are negatively 
associated with mannose and xylose, respectively, showing a trade-off 
between the deposition of specific structural and non-structural carbo-
hydrates in the wood (Figs. 1 and 4). These trade-offs reflect again the 
contrasting pathways of carbohydrate metabolism in plants. Whereas 
the UDP-Glucose (Glc) pyrophosphorylase (UGPase) pathway leads to 
the allocation of structural carbohydrates and soluble sugars during 
plant development and growth, the adenosine diphosphate (ADP)-Glc 
pyrophosphorylase (AGPase) pathway results in the formation of starch 
as carbon reserves (Horacio and Martinez-Noel, 2013; Janse van 
Rensburg and Van den Ende, 2018; Pagliuso et al., 2018). 

It is also expected that trees coordinate both ci/ca and carbon 

Fig. 5. Comparison of the variables comprising key centralities in the complex networks, namely: intercellular to ambient CO2 concentrations ratio (ci/ca), cell-wall 
xyloses in the sapwood (SW Xyl), soluble sugars in the heartwood (HW Sugars), mean vessel area (MVA), cell-wall mannoses in the sapwood (SW Man), and starch in 
the heartwood (HW starch), among four different cities across a climate gradient. * significant for α = 0.05, ns for non-significant. 
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allocation with tree’s hydraulic traits (Choat et al., 2008; Powell et al., 
2017). Wider vessels are positively associated with high ci/ca for an 
efficient water transport (Poorter et al., 2010; Zanne et al., 2010) 
together with the investment in cell-wall xylose at the expense of cell- 
wall glucose and pectin-related monosaccharides. Vessel total area, on 
the other hand, is not associated with ci/ca, but it strongly contributes to 
the basal area increment of trees for the high volumetric expansion of 
vessels during wood development (Poorter et al., 2010; Beeckman, 
2016; Tng et al., 2018). Although wood hydraulic traits are at the 
network periphery, these associations further confirm the coordination 
of leaf physiology not only with carbon allocation but also with the 
water transport in trees. 

Other traits commonly used in the literature like the percentage of 
sapwood area and DBH form a second sub-network. This is an intriguing 
result because the percentage of sapwood area is a critical trait in 
functional ecology (e.g., Westoby and Wright, 2006; Sterck et al., 2011; 
Beyer et al., 2018). This is also true for wood density, a highly regarded 
wood trait (Chave et al., 2006), that forms a third subnetwork. The poor 
connection of these two sub-networks to the main network points to 
possible limitations of the choice of traits in the present study and might 
be explained by other developmental mechanisms within the stem that 
have not been considered here. Alternatively, the number of tree rings in 
the sapwood stands out as the highest degree centrality in the network. 
This highly integrative trait points to a more conservative strategy as 
trees grow older, like the reduction in hydraulic conductivity and 
growth, and a higher investment in long-term reserves in old living 
parenchyma cells (Richardson et al., 2013; 2015;; Beeckman, 2016; 
Hartmann and Trumbore, 2016; Tng et al., 2018). 

4.2. Coordination of traits along a climate gradient 

A significant share of the network’s variability reflects the coordi-
nation of the measured traits in the trees along a gradient of temperature 
and water availability. Trees of H. courbaril showed increased ci/ca along 
drying conditions, which seems in contradiction with the expected 
reduction of stomatal conductance (gs) under more evaporative demands 
(Tan et al., 2017; Dewar et al., 2018). Water deficit, however, may have 
no direct effect on gs according to species growth strategies up to certain 
thresholds (Lawlor and Tezara, 2009; Peri et al., 2009; Ashraf and 
Harris, 2013), and H. courbaril does have proven higher thermal toler-
ance of the leaves than other tropical tree species (Tiwari et al., 2020), 
sustaining high xylem and stomatal conductance at consistently low leaf 
water potentials (Brodribb et al., 2003; Klein, 2014). For these strate-
gies, H. courbaril is considered a drought tolerant species that adopts an 
extreme anisohydric water-use strategy (Werden et al., 2017). To keep 
pace with the increasing ci/ca, trees of H. courbaril rely on wider vessels 
to guarantee sustained water fluxes (Poorter et al., 2010; Zanne et al., 
2010, Fig. 6), but at the risk of frequent hydraulic failures. 

Sugar-mediated repair mechanisms are likely needed to guarantee a 
constant water flux in the more seasonal and warmer site. Under these 
conditions, soluble sugars are known to be used for embolism reversal by 
creating osmotic gradient (Brodersen et al., 2010), and contributing to 
the synthesis of surfactants for nanotubules stabilization in the pit 
membranes (De Baedemaeker et al., 2017). This increased investment 
on soluble sugar was observed before in seedlings of different tree spe-
cies under water stress, including seedlings of H. courbaril (Zhang et al., 
2015; Souza et al., 2018) and mature trees of this species in the present 
study. The studied trees also showed higher xylose in the wood, likely 
from xyloglucan a key polysaccharide in the wood (Hayashi and Kaida, 
2011; Seale, 2020), that is known to strengthen the connections between 
primary and secondary cell walls and increase the tolerance to heat 
stress (Le Gall et al., 2015). In the other extreme of the climate gradient, 
we observed that trees invest in cell-wall mannose, and on starch as a 
non-structural carbohydrate reserve. Such long-term reserves represent 
a more conservative strategy that may guarantee growth and survival of 
trees in the long run (Hartmann and Trumbore, 2016; Locosselli and 

Buckeridge, 2017). This high investment in long-term reserves together 
with lower metabolic rates and are indeed related to longer-lifespans 
(López et al., 2009; Camarero et al., 2015; Hartmann and Trumbore, 
2016; Brienen et al., 2020), that tends to increase towards the wet tro-
pics (Locosselli et al., 2020) as observed in the present study (Fig. S3). 
Altogether, these results consist in a strong evidence that trees modulate 
hydraulic architecture, non-structural carbohydrates reserves and cell- 
wall composition to couple with changing environmental conditions, 
which opens new avenues for studies of tree’ ecophysiology, particularly 
in the context of future climate change. 

5. Conclusions 

The present study brings novel insights about the balance between 
carbon- and water-related traits in the wood of tropical trees (Fig. 6) 
based on complex correlation networks. The results using this systemic 
approach indicate that trees’ strategy to cope with climate change re-
quires a fine-tuning in carbon uptake, carbon allocation pathways, and 
hydraulic architecture of trees. The expected associations among the 
measured traits, especially those representing trade-offs, were all clear 
in the graphs attesting the power of this approach in trait analyses. The 
centrality values then highlighted the relative role of the measured traits 
in the network. A significant part of the association among the high 
centrality traits, including leaf physiology, wood hydraulics, structural 
and non-structural carbon allocation, depend on the variability of the 
climate conditions. The observed changes in cell-wall composition, 
which may occur at the expense of both starch and soluble sugars, 
consist of a novel pattern not reported before in mature trees inhabiting 
their natural environment. Although the mechanisms behind the vari-
ability in cell-wall composition need to be further clarified in H. courbaril 
and other tree species, cell-wall monosaccharides emerge as valuable 
and integrative traits to be used in studies concerning trees’ responses to 
climate change. 

Fig. 6. Summary of the coordination among leaf-level physiology, stem hy-
draulics and carbon pools in trees of Hymenaea courbaril along a climate 
gradient in Southeastern Brazil. The white arrows indicate if the values increase 
or decrease under different climate conditions, the black arrows indicate trade- 
offs, and * indicates high degree centrality in the correlation networks. 
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