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Repeating earthquakes and ground deformation
reveal the structure and triggering mechanisms
of the Pernicana fault, Mt. Etna

Andrea Cannata® "2® Adriana lozzia® "™, Salvatore AIparonez, Alessandro Bonforte® 2, Flavio Cannavo® 2,
Simone Cesca® 3, Stefano Gresta!, Eleonora Rivalta® 34 & Andrea Ursino?

Structure and dynamics of fault systems can be investigated using repeating earthquakes as
repeatable seismic sources, alongside ground deformation measurements. Here we utilise a
dataset of repeating earthquakes which occurred between 2000 and 2019 along the trans-
tensive Pernicana fault system on the northeast flank of Mount Etna, Italy, to investigate the
fault structure, as well as the triggering mechanisms of the seismicity. By grouping the
repeating earthquakes into families and integrating the seismic data with GPS measurements
of ground deformation, we identify four distinct portions of the fault. Each portion shows a
different behaviour in terms of seismicity, repeating earthquakes and ground deformation,
which we attribute to structural differences including a segmentation of the fault plane at
depth. The recurrence intervals of repeating earthquake families display a low degree of
regularity which suggests an episodic triggering mechanism, such as magma intrusion, rather
than displacement under a constant stress.
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and earthquake families!:2, are earthquakes characterized

by the same location and fault geometry, but with different
occurrence times®. Hence, repeating earthquakes affect the same
fault area, exhibit the same slip, and share the same waveforms,
provided that the medium interposed between source and
seismometer has not changed’. Repeating earthquakes can be
triggered by repeated ruptures of a fault patch driven to failure by
aseismic creep on the surrounding fault plane*. They can be
identified by constraining the source areas and/or analyzing the
waveform characteristics®. Repeating earthquakes have been
identified in different settings, such as plate boundary zones*7,
active volcanoes®?, and glaciers!®11.

Repeating earthquakes have many seismological applications,
such as detecting temporal changes in the Earth’s structure due to
earthquakes>!2 and volcanic activity®!3 by coda wave inter-
ferometry, reconstructing the fault geometries by accurate hypo-
center determinations'*-17, measuring the cumulative slip
associated with the repeaters activity®'® and characterizing the
seismic source through the empirical Green’s Function approach!®.

At Mt. Etna volcano, repeating waveforms have often been
observed both for long period/very long period (LP and VLP)
events and volcano-tectonic (VT) earthquakes?%2!. Concerning
the VTs, most of them are shallow (focal depth <7km b.s.l.),
located in the eastern flank??-24, and have a magnitude <2.0%3.
The VT spatial distribution is closely linked to the complex
structural framework of the volcano. In fact, Mt. Etna is located
on the structural domain of the Gela—Catania Foredeep, at the
intersection between the front of the Apennine-Maghrebian
Chain and the NNW-SSE Hyblean-Maltese Escarpment fault
belt?>26 (Fig. 1a). The eastern and southern flanks of Mt. Etna are
dominated by instability, causing sliding of these volcano sectors
to the east and south, respectively?’-2”. Numerous hypotheses
have been proposed to explain the causes of this instability, such
as increases in magma pressure in the plumbing system/magma
intrusions and/or gravitational spreading and
reorganization?’-30-32. In addition, it has been suggested that
flank sliding can facilitate the passive rise of magma3.

To the north, the ~E-W-trending 18-km-long transtensive Per-
nicana Fault System (hereafter referred to as PF), mainly character-
ized by left lateral-normal motion, confines the instability of the Mt.
Etna eastern flank?® (Fig. 1a). PF extends from the NE Rift, affected
by magma intrusion and formation of eruptive fissures (such as
during the 2001 and 2002-2003 eruptions>*3), downslope to the
sea?’. PF accommodates the seaward sliding of the Etna’s eastern
flank with an average velocity of 1-2cm/y3°. PF has generated
intense seismicity instrumentally recorded at least since the 1980s%7,
and the earthquakes associated with its activity are mainly located in
the western and central portions, while they are nearly absent in the
eastern portion®8. Depths of the foci are very shallow, mainly
between the surface and about 3 km b.s.138. From 1999 to 2009, a
large number of earthquake multiplets with very long repeatability
over time affected the PF21, It is worth noting that observations of
repeating earthquakes generated by PF date back to 1990%°.

While ground deformation studies have investigated the
dynamics of PF?8:3640, earthquake data have never been used to
characterize the behavior of PF in terms of cumulative slip, as well
as to provide insights into the segmentation of the different PF
portions. Moreover, it is not clear whether the fault activity is
influenced by magma pressurization in the volcano plumbing
system and/or by gravitational forces. Hence, we analyzed the
repeating earthquakes taking place on the north-eastern sector of
Mt. Etna during 2000-2019 to shed light on these aspects. To
reconcile seismic and ground deformation information, the
dynamics constrained by repeating earthquake analysis has been
compared with the results from the analysis of GPS data.

Repeating earthquakes, or repeaters, also called multiplets

Results

An intense and almost continuous seismic activity occurred
during 2000-2019 in the north-eastern sector of Mt. Etna
(Figs. 1b, 2a, b and Supplementary Fig. 1). The number of
repeating earthquake families identified was equal to 172, among
which 61 PF-related families, composed of 225 events, have been
extracted (Supplementary Figs. 2 and 3). The number of earth-
quakes making up these families ranges from 2 to 14 (36 out of 61
families are simply doublets), and the lifetime, defined as the time
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Fig. 1 Seismic and GPS networks, earthquake data. a Digital elevation
model of Mt. Etna’4 with the locations of the seismic stations belonging to
the permanent seismic network (triangles), periodic GPS stations (called
NSO1 and Crisimo; black squares) and permanent GPS stations (blue
diamonds), run by INGV-OE and used in this work, and the Pernicana Fault
(black thick line29€1). The white triangles indicate the seismic stations,
whose signals were used to identify the repeating earthquake families
(EMNR, EZPO, and ECBD). The inset in the bottom left corner of a shows a
map of Sicily with some structural features (AMC: Apennine-Maghrebian
Chain; HME: Hyblean-Maltese Escarpment; CC: Calabride Chain; HP:
Hyblean Plateau’®). The red star indicates the location of Voragine (one of
the summit craters). b Digital elevation model of Mt. Etna’4 with the VT
earthquake locations (colored dots) and the Pernicana Fault (black thick
line2% 61), The size of the dots depends on the VT earthquake magnitude
(see black dots in the lower right corner) and the color on the focal depth
(see the colorbar). The dashed rectangle in b indicates the area
investigated in this work.
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Fig. 2 Time series of seismicity and ground deformation during 2000-2019. a Histogram showing the daily number of the earthquakes located within the
north-eastern sector of Mt. Etna (see dashed rectangle in Fig. 1b). b Area plot showing the cumulative strain release of the earthquakes in (a). ¢ Cumulative
displacement measured by Crisimo and NSOT1 stations, belonging to the periodic GPS network.

between the first and the last earthquakes in a family, ranges from
less than 1 h to the duration of the entire analyzed catalog, that is
almost 20 years (Figs. 3a, ¢ and 4a, b). On the basis of the defi-
nitions given by Igarashi et al.!, most of the PF families (47 out
of 61) are “nonburst-type”, with a lifetime longer than 3 years.

In addition, we calculated the coefficient of variation (hereafter
referred to as COV), defined as the standard deviation divided by the
mean and showing the probabilistic behavior of a random variable, to
quantify the variability within the repeating earthquake families*. The
COV computed on magnitude shows low values, ranging between
0.1 and 0.4, suggesting relatively constant magnitude values within
each family (Fig. 4c). On the other hand, the COV computed on
inter-event times (defined as the time span between successive
events) shows higher values of ~0.6-1.3 (Fig. 4d), as well as a wider
range suggestive of a broad variability in the occurrence behavior of
the earthquakes belonging to the families. COV values close to 0
indicate periodicity or quasi-periodicity, COV equal to 1 Poissonian
recurrence, and COV greater than 1 temporal clustering (e.g., ref. 42).
It is worth noting that we did not calculate COV on inter-event times
in case of doublets. We ruled out the possibility of “artificially high”
COV values for small inter-event times by examining the relationship
between COV computed on inter-event times and the mean inter-
event times values (Supplementary Fig. 4).

Repeating earthquake analysis allowed identifying four PF
portions with different features (Fig. 3), called eastern portion

(longitude comprised between 512 and 520 km UTM; hereafter
referred to as EP), central portion (longitude 508-512 km UTM;
CP), western portion (longitude 503-508 km UTM; WPI1) and
westernmost end of the fault (longitude 501-503km UTM;
WP2). All the repeating earthquake families are located along CP,
WP1, and WP2 (Fig. 3), while EP exhibits no repeating earth-
quakes at all. This was expected, as the area where the eastern
portion of the PF is located appears to be almost unaffected by
shallow (focal depth <5km b.s.l.) seismicity, which characterizes
the CP, WP1 and WP2 (Fig. 1b). Regarding the temporal dis-
tribution of the PF repeating earthquakes, there are three main
periods characterized by intense activity (Supplementary Fig. 5):
(i) during and after the dike intrusion that led to the Mt. Etna
2002-2003 eruption, when mostly WP1 and CP gave rise to
repeating earthquakes; (ii) in April 2010, when a seismic swarm
affected WP2, WP1, and CP; (iii) in December 2015, a few days
after the lava fountain sequences at Voragine (one of the Mt. Etna
summit craters; see Fig. 1a), when mainly WP2 and WP1 gen-
erated repeating earthquakes.

We divided the time series of cumulative slips of each PF-
related family (calculated by Eq. 2) into groups according to the
longitude of the family centroid (Supplementary Fig. 6). Succes-
sively, per each 1-km-long longitude range, we selected the family
with the highest value of total cumulative slip during the analyzed
period (Fig. 5b and Supplementary Fig. 6). The part of the PF
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Fig. 3 Spatial variation of the features of the PF repeating earthquake families. Digital elevation model of Mt. Etna north-eastern sector’4 with PF (thick
black line) and locations of the centroids of the repeating earthquake families located along PF (colored dots). The color of the dots indicates family lifetime
(@), cumulative slip calculated per each family (b), number of earthquakes composing each family (¢) and the average magnitude of each family (d). The
red bar at the top of each plot shows the portions of PF, characterized by different features. EP eastern portion, CP central portion, WP1 western portion,

WP2 westernmost portion.
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Fig. 4 Main features of the PF repeating earthquake families. Histogram showing the number of families located along PF with a given number of
earthquakes (a), lifetime (b), COV computed on magnitude (¢) and COV computed on inter-event times (d).

with the maximum cumulative slip (~130-180 cm at longitude of
509-511 km UTM) is the CP, while the WP2 shows much lower
cumulative slip, ranging from ~15 to ~20 cm (Fig. 5). Moreover,
CP is also characterized by the most populous families and the
highest magnitude values (Fig. 3¢, d). On the other hand, it must
be noted that WP1 (at longitude of 503-506 km UTM) shows a
much higher number of earthquake families (12-19) compared to
CP (6) (Supplementary Fig. 6).

Changes over longitude of the cumulative strain release, the
maximum cumulative slip by repeating earthquakes and the GPS
ground deformation data were plotted in Fig. 6 to show the spatial
variability of the PF. In particular, we estimated the first parameter by
considering all the earthquakes of the catalog (not just the repeating
earthquakes) falling within 2-km distance from the PF and grouped
into 1-km-long longitude intervals, as well as only the PF repeating
earthquakes. We computed the second one as the maximum
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Fig. 5 Slip histories of the main PF repeating earthquake families. a Digital elevation model of the north-eastern sector of Mt. Etna’4 showing the PF
(colored line). The color of the segments of PF are the same as the stairs plot in (b). b Stairs plots showing the cumulative slip histories of repeating
earthquake families. In particular, only the families showing the maximum total cumulative slip, in each 1-km-long longitude range, are shown. The total
cumulative slip of each time series is shown at the top of (b). The red bar at the top of a shows three of the four portions of PF, characterized by different
features. CP central portion, WP1 western portion, WP2 westernmost portion.

cumulative slip calculated based on the repeating earthquake families
again grouped into 1-km-long longitude intervals (Fig. 5b and the
thick black line in Supplementary Fig. 6). Concerning the GPS
results, the stations Crisimo and NS01, belonging to the GPS periodic
network, provided East-West displacement data for the whole ana-
lyzed period 2000-2019 (Fig. 2c). In addition, the GPS permanent
network supplied information only for the most recent time span
(2012-2019) but with higher spatial resolution, that allowed con-
straining both slip and opening variations along PF, modeled as
composed of four linear segments (Fig. 7a, b).

Regarding the time-related families, we found 47 temporal
links among the families (see examples in Fig. 8). It is worth
noting that, although the maximum temporal difference among
the events was fixed to 5 days, the median lag value calculated
among the detected pairs of close events in time is 1.3 days.
Moreover, the median distance among the centroids of the time-
related families is 1.7 km. Hence, the events belonging to such
time-related families tend to occur closely in space and time,
suggesting how the mechanism temporally linking the different
families is quick and effective especially at very close distances.
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Discussion

We found numerous repeating earthquakes at PF, which have
allowed us to investigate its dynamics. It is possible to divide the
whole length of PF into four portions, characterized by different
behaviors in terms of VT seismicity and more specifically of
repeating earthquakes, which reflect important structural
differences.

Moving from East to West, EP not only lacks any family of
repeating earthquakes (Fig. 3), but it is almost completely devoid
of any shallow seismicity (Figs. 1b and 6a; highlighted also by
previous studies, e.g., refs. 2538) and is characterized by both
minimum slip and opening as measured by the GPS permanent
network (Fig. 7a, b). Such a PF portion appears as a complex
shear system made up of en échelon left-lateral faults?®, whose
location is suggested by surface evidence and damage caused to
edifices by creep phenomena2%3443,

Conversely, CP is characterized by intense seismicity (Fig. 1b)
and a few families with the highest number of events and mag-
nitude, as well as with the highest corresponding cumulative slip
(up to 174 cm at longitude 510-511 km UTM; Figs. 3, 5, 6b). This
repeating earthquake-derived slip roughly matches the slip mea-
sured by the E-W component of Crisimo GPS station during the
entire period analyzed (~200 cm; Fig. 2¢). In addition, CP is also
characterized by higher slip values as constrained by permanent
GPS data during 2012-2019 than EP (Fig. 7a). It is also worth

noting that for one segment of such a fault portion (longitude
510-511km UTM) the cumulative strain release, computed by
only repeating earthquakes, is similar to the cumulative strain
release by the whole seismicity in the area (Fig. 6a), suggesting
that most of the earthquakes taking place in this fault part are
multiplets. From the structural point of view, CP shows a sinistral
slip with an individual N110° trending steep fault escarpment?°.
All these features suggest that PF is here characterized in depth by
a single fault plane with asperities working as creep gauges,
allowing to measure the fault slip.

Moving westward (WP1), we find the portion of PF with the
highest strain release (Fig. 6a) and the highest number of
repeating earthquake families (up to 19 families at longitude of
~503-504 km UTM; Supplementary Fig. 6). Each of these families
is generally composed of fewer events and smaller magnitude
compared to the families in CP (Fig. 3). Hence, unlike the highest
slip values constrained by GPS data (Fig. 7a), the cumulative slip
computed by repeating earthquakes in WP1 is lower (~30-90 cm)
than the one computed for CP (Fig. 5), as well as than the one
measured by NSO1 GPS station (~220 cm; Fig. 2c). On the sur-
face, WP1 appears as an ENE-WSW trending fault defined by a
set of extensional fractures, directly, structurally, and kinemati-
cally connected to the NE Rift?%4445, All these features are likely
to be suggestive of a segmentation of the fault plane in depth.
Thus, each fault segment, exhibiting asperities and then giving
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rise to repeating earthquake families, probably accommodates
only part of the total fault slip. It is worth noting how most of the
strongest earthquakes occurring on PF (with magnitude ranging
from 3.6 to 4.3) take place along WP1 and CP at longitude
ranging from 503 to 510 km UTM, characterized by most of the
detected repeating earthquake families (50 out of 61; Supple-
mentary Fig. 7).

Finally, the westernmost end of the fault (WP2) is character-
ized by a decrease in the VT seismicity (Figs. 1b and 6a) and by a
few families (1-5) with a few events (2-3) composing each family,
as well as by the lowest cumulative slip (Figs. 3, 5 and Supple-
mentary Fig. 6). WP2 is connected to the NE Rift, and has been
affected in the past by magma intrusions and formation of
eruptive fissures3%. This is also confirmed by the highest
opening values, reached in this PF sector, constrained by data
from the permanent GPS network (Fig. 7b). For this reason, this
PF sector is probably not capable of effectively generating many
repeating earthquakes, as well as more generally VT seismicity. It
is also worth noting that the earthquakes taking place in
WP2 show low magnitude (mostly lower than 2; Fig. 3d). Hence,
we cannot exclude that some events generated by this fault sector
have been neglected, especially during the first part of the ana-
lyzed time interval, when one-component short-period seism-
ometers were used to monitor Mt. Etna seismicity.

Important differences among the portions of PF also concern
the shape of the slip histories, as shown in Fig. 5 and Supple-
mentary Fig. 6. Indeed, while WP1 and WP2 show slips tempo-
rally concentrated in particular time spans, CP is characterized by
slips spread over almost the entire period analyzed.

Moving from a spatial to temporal analysis, three periods showed
intense repeating earthquake activity along PF (Supplementary

Fig. 5), two of which (during and after the dike intrusion leading to
the 2002-2003 eruption and a few days after the 2015 lava fountains
at Voragine crater) are associated both with eruptions and with
activities in the magmatic system344%, while the third one (April
2010) is related to the tectonic loading due to the sliding of the
eastern flank?’. Hence, also the repeating earthquakes suggest how
different phenomena can affect the PF activity, first of all magma
intrusion/pressurization of the volcano plumbing system and grav-
itational forces?”-30-32, Tt is also worth pointing out that 11 out of the
13 strong earthquakes with M >3.5 took place during these three
time periods, suggesting that the link between intense seismicity and
repeating earthquakes is not only spatial but also temporal.

In this respect, the recurrence behavior of the events belonging
to the PF earthquake families can provide further evidence.
Indeed, COV values, ranging from ~0.6 to 1.3, indicate variable
inter-event times and lack of periodicity, and hence a low degree
of regularity (Fig. 4d). Thus, it is possible to infer that such events
do not derive from a constant stressing rate acting on the aspe-
rities, as obtained in some tectonic areas along plate boundaries,
where inter-event time COV values are much lower than 14248,
The observed variability in the inter-event times can be due to the
interactions of PF with other faults by static stress transfer or even
by dynamic stresses, in case of remote triggering from distant
earthquakes??->1, In addition, the occurrence times of the events
belonging to the families are influenced by the role played by PF
in accommodating the seaward sliding of the Etna’s eastern flank,
which as aforementioned is mainly driven by intrusion/pressur-
ization of the volcano plumbing system and gravitational forces.
Focusing on the westernmost part of the PF connected to the NE
Rift (WP2), intrusions and/or pressurization phenomena of the
central plumbing system could directly affect the occurrence
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Fig. 8 Repeating earthquake families time-related to each other. Examples of families time-related to family #2 (a, b) and #4 (¢, d), chosen as reference
families. a, ¢ Time distribution of the events belonging to the repeating earthquake families time-related to family #2 and #4, respectively. The black dots
represent the events belonging to the reference family, the colored dots the events belonging to the families time-related to the reference family (the

colored solid dots indicate the events with a time difference lower than 5 days with the events belonging to the reference family). b, d Digital elevation
model of the north-eastern sector of Mt. Etna’4 with the PF (black thick line) and locations of the centroids of the repeating earthquake families shown in

(a, ©), respectively.

times of the events. We also calculated the median value of the
inter-event time COV per each portion of the fault, except for EP
which does not show any repeating earthquake family. WP2 has
only one family with more than 2 events and then we calculated
only one COV value equal to 1.41, while WP1 and CP showed
0.93 and 0.75, respectively. Hence, no evident differences among
the PF portions were found.

We also highlighted temporal links among families (Fig. 8). In
particular, the mechanism linking the different families turned
out to be quick and effective especially at very close distances, as
testified by median lag and distance, among the detected linked
pairs of events, equal to 1.3 days and 1.7 km, respectively. As
suggested by Chen et al.#? who analyzed the repeating earthquake
sequences in the Parkfield region (California), such temporal
relationships among families can be due to: i) common triggering
by a local slow-slip transient spanning the clusters, or ii) short-
term triggering between very close-by events. GPS data show a
clear acceleration in the cumulative slip during the 2002-2003
eruption (Fig. 2c), and hence the detected pairs of close events in
time belonging to the different families, taking place during this
period, are likely to result from the acceleration in the eastern
flank sliding triggered by the magma intrusion (hence a phe-
nomenon similar to “i”). On the other hand, other event pairs did
not occur during periods with evident acceleration in cumulative
slip as measured by GPS data, suggesting that the phenomenon
(ii) can be also relevant.

Conclusions. The analysis of the catalog of VT earthquakes
occurring in the north-eastern flank of Mt. Etna during
2000-2019 allowed us to identify an extraordinary wealth of

8

families of repeating earthquakes generated by the PF, an ~E-W-
trending 18-km-long transtensive structure accommodating the
seaward sliding of the volcano’s eastern flank.

We identified four portions of PF, characterized by different
features of the repeating earthquake families. The eastern portion
of PF (EP), whose location is only suggested by surface evidence
and damage caused to edifices by creep phenomena, does not
show any family of repeating earthquakes. The central portion
(CP) shows few very populous families, whose corresponding
cumulative slip roughly matches the slip measured by GPS
stations, suggesting how here the repeating earthquakes work as
effective creep gauges allowing to measure the fault slip. On the
other hand, the western portion of PF (WP1) exhibits numerous
families with a low number of events and then a much smaller
cumulative slip compared to the slip measured by GPS stations.
This likely results from a segmentation of the fault plane in depth;
each fault segment, exhibiting asperities and then giving rise to
certain repeating earthquake families, accommodates only part of
the total fault slip. Finally, the westernmost tip of PF (WP2),
connected to the NE Rift and affected by magma intrusions, is
largely aseismic and characterized only by a few families with low
repeatability.

The events belonging to the PF earthquake families lack periodicity
and show a low degree of regularity. This suggests that the
earthquakes composing the families do not derive from a constant
stressing rate acting on the asperities, but rather from episodic
triggering phenomena, linked to the role played by PF in
accommodating the seaward sliding of the Etna’s eastern flank. Such
a sliding can be triggered by both magma intrusion/pressurization of
the volcano plumbing system and gravitational forces.
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Furthermore, temporal links among repeating earthquake
families have been identified. The mechanism behind such links
turned out to be quick and effective especially at very close
distances, and hence it consists of (i) common triggering by the
acceleration phenomenon in the eastern flank sliding, and
(ii) short-term triggering between very close-by events.

Finally, our study shows how the integration of repeating
earthquakes and ground deformation data can help investigate
the dynamics of a fault in detail, even in a complex volcanic
system as Mt. Etna, dominated by a complicated interplay of
eruptive and tectonic phenomena. The same approach could be
extended to other faults characterized by repeating earthquake
activity, to provide insights into their behavior and its changes
over time.

Methods
Data. The dataset comprises 1863 VT earthquakes (hereafter simply referred to as
earthquakes) with magnitude from 0.5 to 4.3 (average and median magnitude
values are equal to 1.6 and 1.5, respectively), located in the north-eastern sector of
Mt. Etna and recorded from 1 January 2000 to 31 May 2019 by the permanent
seismic network managed by the Istituto Nazionale di Geofisica e Vulcanologia-
Osservatorio Etneo (INGV-OE) (Fig. 1b and Supplementary Fig. 1°2-54). The
earthquakes were located using the Hypoellipse algorithm and a 1D crustal
velocity model, proposed for Mt. Etna by Hirn et al.>® and subsequently modified
by Patané et al.>’. In particular, the top of the crustal velocity model is set at 1600
m a.s.] and the altitude of the seismic stations was taken into account.

The temporal distribution of these earthquakes, as well as their cumulative
seismic strain release, are plotted in Fig. 2a, b. The strain release of each earthquake

was calculated as the root square of the energy, calculated by using the equation:>3

log(E) = 9.9 + 1.9M — 0.024M* 1)

where E is the energy in erg and M the local magnitude.

To perform the cross-correlation analysis, we used three seismic stations located
on the north-eastern sector of Mt. Etna: EMNR, EZPO, ECBD (Fig. 1a). During the
20 years analyzed, the quality of the sensors equipping these stations improved over
time, from analog, one-component, short period (1) to digital, three-component,
broadband (40 s) seismometers. We selected these three stations because of their
locations, very close to the PF, the long-time recording period, and the good signal
to noise ratio.

Repeating earthquake detection. We band-pass filtered the signals between 1 and
20 Hz by a Butterworth 2-pole filter. The high-pass filter at 1 Hz was applied to
minimize the possible waveform differences at the lower frequency end due to the
distinct sensors (short-period and broad-band) installed during the considered 20
years. The low-pass filter at 20 Hz was implemented to reduce the anthropogenic
high frequency noise. Once the signals were filtered, 5-second-long signal windows,
starting 0.5 s before the P-wave arrival time, were extracted from the vertical
component of the seismic signals recorded by the three stations. Due to the short
distance between seismic sources and stations, 5-second-long windows comprise
both P- and S-phases. Successively, we computed a cross-correlation matrix for
each station, populated by the cross-correlation coefficients obtained by comparing
the waveforms of earthquake pairs recorded at the same station.

We applied the following method to extract the repeating earthquake families
from each cross-correlation matrix®® (see Supplementary Fig. 2 for a schematic
example of the repeating earthquake detection method). The earthquake with the
highest number of correlation values above the threshold (0.9, as also reported
below) was identified, and all the events well-correlated with it were stacked to find
an average family waveform. This stacked waveform was again cross correlated
with the original seismic record. All the earthquakes with a correlation greater than
the threshold were grouped into a family and removed from the matrix. The same
process was applied on the remainder matrix, until the entire matrix was organized
into distinct families. Unlike the “bridging technique”®, the algorithm described
guarantees that all the earthquakes belonging to a family are “similar” to a single
waveform, namely the stacked one. A cross-correlation threshold equal to 0.9 was
chosen to extract the families. Finally, we merged the results obtained by the three
stations:2! if the earthquake “a” belongs to the family “1” at the station “STA1” and
to the family “2” at the station “STA2”, the families “1” and “2” are unified into a
single family. Examples of waveforms of the repeating earthquakes belonging to a
family (named #3) and recorded by all the three used stations are shown in
Supplementary Fig. 3.

Successively, to extract the families related to the PF activity, firstly the centroid
location of each family was computed as the point having the average coordinates
among the earthquakes belonging to the family. Then, the families whose centroid
is located at a maximum horizontal distance of 2 km from the PF line (as indicated
by the literature; e.g., ref. 2%:61) shallower than 5 km b.s.l. were considered as related
to the PF activity (Fig. 3). The horizontal distance threshold of 2 km was chosen
based on the location horizontal errors of the earthquakes, particularly high (up to

3 km) in the first part of the catalog (2000 - 2003). In addition, such a threshold
should account for possible deviations from a perfect vertical dip of the fault in
depth. On the other hand, the 5 km depth threshold is typical for the PF seismicity,
as suggested by previous studies362.

Once the repeating earthquakes related to PF were identified, Supplementary
Fig. 5 was drawn to visualize their time-space variability, showing the longitude—
time distribution of all the repeating earthquakes belonging to the PF families.

Slip computation. We calculated the slip of each repeating earthquake with the
equation:#2

d= 10—2.36M00,17 (2)

where d is the slip in cm and M, the seismic moment in dyne cm. Successively, we
calculated the cumulative slip of each family by summing the slip values obtained
for all the repeating earthquakes belonging to the family. The Eq. (2) derives from
the analysis of 53 sequences of small-magnitude repeating earthquakes in the
Parkfield region (California), which took place from 1987 to 1996%2. This equation
was then applied to repeating earthquakes in other areas (e.g., eastern Taiwan®3;
north-eastern Japan®%; south-western Japan’). We computed the seismic moment
M, from the local magnitude values (M) as follows:>

log(M,) = (17.60 £0.37) + (1.12+0.10)M 3)

Families time-related to each other. Following the work by Chen et al.#, we
sought evidence of possible temporal “links” among the different PF families to
understand whether the earthquake families interact with each other in a way that
is observable in the relative occurrence times. In particular, we investigated the
temporal relationships among the events belonging to the PF families: (i) a given
family was taken into account as the reference family; (ii) the temporal differences
between the occurrence times of all the events belonging to the reference family
and the occurrence times of all the other events not belonging to the reference
family were calculated; (iii) all the families showing at least three events with a time
difference shorter than 5 days with the events of the reference family were con-
sidered “time-related” to the reference family. These steps were repeated as many
times as the number of PF families, each time considering a different family as
reference.

Ground deformation data. To study the ground deformation taking place in the
PF area, we used GPS stations belonging to both GPS permanent® and GPS
periodic®” networks, managed by INGV-OE. The permanent network performs a
continuous monitoring of the ground deformation, while the periodic network
consists of geodetic benchmarks measured by GPS in survey mode at least yearly,
to increase the spatial details needed for imaging the complex ground deformation
pattern of Mt. Etna volcano.

We used Crisimo and NSO01 stations belonging to the NE sector of the GPS periodic
network (Fig. 1a). These stations, used to monitor the deformation related to the PF
especially during seismic and volcanic crises®®%, provided ground deformation data for
the whole time interval (2000-2019). In particular, we considered the displacement
along the East-West direction, reflecting the slip along the PF (Fig. 2c).

In addition, we used eight GPS stations, spatially distributed on both sides of
the PF, belonging to the GPS permanent network to estimate the slip distribution
along the fault from ground deformation data (see blue diamond markers in
Fig. 1a). We processed the raw GPS observations using the GAMIT/GLOBK
software”? to produce time series of daily station positions. To ensure consistency
in the results, we processed the longest available period in which all stations were
regularly functioning (2012-2019).

To restrict the analysis to the differential deformation due only to the fault
kinematics, thus avoiding the definition of an outer reference system, we
considered the relative displacements measured along baselines. The baseline
variations were calculated from the position time series for all the pairs of stations
whose link crosses the fault. We used cumulated baseline horizontal variations in
the considered period to estimate the kinematic parameters along the PF. To this
end, the PF was divided into 4 segments and the predicted deformation field at the
surface was calculated as the superposition of 4 rectangular dislocation models”!
associated with fault segments. The dislocations are vertical, with top at 50 m and
bottom at 3000 m of depth. Since the PF mostly shows strike-slip and opening
components, we considered only these components of the source mechanisms of
the 4 dislocation models. For fixed model geometries, after computing the Green’s
functions for unit slip and opening, and for each model/segment, the relationship
between predicted deformation and segment kinematics (i.e., strike-slips and
openings) becomes linear. Thus, the strike-slip and opening parameters of the
4 segments can be simultaneously estimated from measurements by superimposing
their contributions and inverting a linear system of equations. Since the system was
overdetermined, we solved it in a least-squares sense. In order to suppress
unrealistic scattered solutions and guarantee a consistency of contiguity, a spatial
Laplacian constraint was introduced in the inverse problem formulation’2. The
Lagrange multiplier was obtained by the U-curve method”>.
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Data availability

The seismic and GPS data are available from the INGV but restrictions apply to the
availability of these data, which were used under license for the current study, and so are
not publicly available. Data are however available from the authors upon reasonable
request and with permission of the INGV (Salvatore Alparone, salvatore.alparone@ingv.
it; Andrea Ursino, andrea.ursino@ingyv.it). We provided an xls file as Supplementary
Data. 1 with the features of all the detected repeating earthquake families of PF (https://
doi.org/10.5281/zenodo.4727613). This file contains: a first sheet with the main features
of all the families; a sheet per each family with information about all the earthquakes
composing the family, as well as figures with waveforms and cross-correlation matrices.

Code availability
Codes used in this study are available from the authors upon request. Matlab version
2020a was used to generate all the figures.
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