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Abstract
Information provided by satellite data is becoming increasingly important in the field of 
agriculture. Estimating biomass, nitrogen content or crop yield can improve farm manage-
ment and optimize precision agriculture applications. A vast amount of data is made avail-
able both as map material and from space. However, it is up to the user to select the appro-
priate data for a particular problem. Without the appropriate knowledge, this may even 
entail an economic risk. This study therefore investigates the direct relationship between 
satellite data from six different optical sensors as well as different soil and relief parameters 
and yield data from cereal and canola recorded by the thresher in the field. A time series 
of 13 years is considered, with 947 yield data sets consisting of dense point data sets and 
755 satellite images. To answer the question of how well the relationship between remote 
sensing data and yield is, the correlation coefficient r per field is calculated and interpreted 
in terms of crop type, phenology, and sensor characteristics. The correlation value r is par-
ticularly high when a field and its crop are spatially heterogeneous and when the correct 
phenological time of the crop is reached at the time of satellite imaging. Satellite images 
with higher resolution, such as RapidEye and Sentinel-2 performed better in comparison 
with lower resolution sensors of the Landsat series. The additional Red Edge spectral band 
also has advantage, especially for cereal yield estimation. The study concludes that there 
are high correlation values between yield data and satellite data, but several conditions 
must be met which are presented and discussed here.
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Introduction

Modern agriculture is increasingly primarily a digital agriculture and solutions to major 
challenges can hardly do without data. In precision farming, geographic information sys-
tems (GIS) and increasingly satellite data serve as a basis for the management. The flood 
of data from space is both a curse and a blessing. With the launch of the Sentinel satellite 
series of the European Space Agency (ESA), highly relevant data for agriculture due to 
their spectral, spatial, and temporal resolution are now freely available. In cloud-free con-
ditions, a data set can provide information on the growth and condition of the crop up to 
once a week, allowing conclusions to be drawn on parameters such as biomass (Campos 
et al., 2019; Punalekar et al., 2018), plant density (Clevers et al., 2017; Pasqualotto et al., 
2019) and yield (Battude et al., 2016; Hunt et al., 2019). Yield as a parameter is important 
for the farmer and the authorities, historically and during the season.

The derivation of yield from satellite, soil and relief data is not trivial because the yield 
formation of each plant species depends on complex factors and is different for every crop 
type (Geisler, 1988). The final yield of a field is mainly dependent on the number of seeds, 
soil type and therefore soil fertility, water and nutrient supply, and duration of sunshine 
throughout the season (Evans & Fischer, 1999; Geisler, 1988). The grain yield of cereals, 
for example, cannot be measured directly from satellite data, which is why those methods 
are based on proxies such as biomass (Babar et al., 2006; Ren et al., 2008), leaf area index 
(LAI) (Gaso et al., 2019; Peng et al., 2019) or chlorophyll content (Guo et al., 2018; Ser-
rano et al., 2000). These proxies are often modelled using vegetation indices such as the 
Normalized Difference Vegetation Index (NDVI) (Bognár et al., 2017; Marti et al., 2007), 
which is considered to be reliable. Besides the NDVI, there are a number of further vegeta-
tion indices that correlate with plant parameters such as biomass, LAI or chlorophyll con-
tent, which can thus be related to yield (Barnes et al., 2000; Viña et al., 2011).

A meaningful correlation is not only a question of the right vegetation index, but also 
of the time of acquisition. The correlation between a vegetation index and the crop yield is 
not congruent in every phenological stage. For wheat, the phenological growth stages stem 
elongation (BBCH-Code 31), heading (BBCH-Code 51) and development of fruit until 
early ripening (BBCH-Code 75-83) of the BBCH scale (BBCH Working Group, 2001; 
Hack et  al., 1992) are stated to be suitable to derive spatial yield patterns from satellite 
data (Knoblauch et al., 2017; Marti et al., 2007). One limiting factor, however, is the spatial 
resolution of the products of many publications. This is because yield models on a (sub)
national or regional basis (Baruth et al., 2008; Ren et al., 2007, 2008) with spatial resolu-
tions of 250 m (MODIS) to 1000 m (SPOT VEGETATION) can only be used to a limited 
extent in agricultural practice. In European countries, the average farm size of around 56 
hectares (Statistische Ämter des Bundes und der Länder, 2011) is many times smaller than, 
for example, in the USA with around 447 hectares (Macdonald et al., 2013). Since preci-
sion farming commonly addresses variable conditions within the field (Finch et al., 2014), 
information at field level and particularly at within-field level is needed.

So far, correlation analyses between vegetation indices, soil data, relief data and yield 
data were mainly conducted for single crop types and years, or for specific sensors and a 
limited number of vegetation indices (Ali et  al., 2019; Gómez et  al., 2017; Panek et  al., 
2020; Zhao et al., 2020). A common application of correlation analysis is, for example, to 
find optimal hyperspectral bands correlating with yield data (Prey et al., 2020; Thenkabail 
et al., 2000; Zhang et al., 2018b). An extensive correlation analysis using multiple multi-
spectral sensors and data of a large time period of over 10 years does not exist yet.
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The hypothesis of this study is that there are optimal combinations of sensors, vegeta-
tion indices and time periods to achieve best possible yield estimations. These combina-
tions are valid for various years and various agricultural fields of a certain crop type in a 
certain region. To test this hypothesis, this study analyzes the statistical correlation of high-
resolution yield data and satellite data of various spatial and spectral resolutions and aims 
to answer the following questions: Which satellite sensor with which spatial, spectral, and 
temporal resolution is best suited for yield estimation of the individual crop? At what point 
in time do satellite data have to be acquired to obtain a robust estimate and can soil data 
like soil type, soil quality, and wetness as well as relief data do the same?

This study aims to provide a guideline for future approaches of yield prediction. Its aim 
is not to reach best possible correlations, but to give an objective overview about suitable 
sensors, vegetation indices, soil and relief data, time periods and further factors that should 
be considered or could be neglected for a successful yield prediction.

For this purpose, 947 yield data sets from wheat, barley, rye, and canola fields collected 
between 2006 and 2018 are analyzed. In total, 755 satellite images are available in this 
period, from which 15 different indices were calculated. Furthermore, soil data such as soil 
type, soil quality, and wetness index as well as relief data were also included in the analy-
sis. The study evaluates for which crop type and which phenological stage yield estimation 
is mostly suited and which sensors with which spatial and spectral resolution are necessary.

Materials and methods

Study area

The study area is located in the north-eastern lowlands of Germany (Fig. 1). The analyzed 
fields are located within the DEMMIN test site, which is part of the TERENO project 
(Terrestrial Environmental Observatories) (Heinrich et  al., 2018) as well as of the Joint 

Fig. 1  Study area and location in Germany. Satellite image of Sentinel-2 satellite (ESA)
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Experiment of Crop Assessment and Monitoring (JECAM) (Spengler et  al., 2018). The 
test site is operated by Helmholtz Centre Potsdam – GFZ German Research Centre for 
Geosciences (GFZ). The central point of the study is around 53.948 N, 13.186 E. Geologi-
cally, the region was characterized by repeated glacial processes during the last glaciation 
and transformed into a young moraine landscape with representative glacier characteristics 
such as extensive, flat sand regions, hills and sinks as well as numerous lakes and bogs. The 
region is extensively used for agriculture today and sparsely populated. Agricultural fields 
in the study area are characterized by young moraine soil types, which are basically sandy 
and loamy, and mainly cultivated with cereals such as wheat, rye, and barley, but also with 
corn and canola. The average field size of the analyzed fields in this study is 43 ha.

The mean annual temperature is 8.8  °C according to the reference period 1981–2010 
at the weather station Demmin operated by the German National Meteorological Service 
(Deutscher Wetterdienst (DWD) 2020). The yearly precipitation amount is around 600 mm.

Satellite remote sensing data

All available optical satellite images recorded by Landsat 5, Landsat 7, Landsat 8, Rapi-
dEye, Sentinel-2 and Planetscope covering the study area between 2006 and 2018 were 
obtained (Fig. 2; Table 1). If possible, all data were obtained with radiometric and geomet-
ric corrections already applied to the data, namely as level L1TP (Landsat), 3A (Rapid Eye 
and Planetscope) or 1C (Sentinel-2). RapidEye data at level 1B has no geometric correc-
tion, whereas Sentinel-2 data at level 2A is already atmospherically corrected and provides 
Bottom of Atmosphere (BOA) reflectance data.

Landsat images were downloaded at Level L1TP from the Earth Explorer provided by 
NASA. RapidEye images were downloaded from the RESA Archive (Planet Team 2020) at 
level 1B or 3A depending on availability. They are acquired with 6.5 m spatial resolution 
and resampled to 5 m by default. Planetscope data at Level 3A were downloaded from the 
Planet API (Planet Team 2020). Sentinel-2 data were provided by the Copernicus Open 
Access Hub and were downloaded at level 1C and 2A depending on availability.

Atmospheric correction was performed on all data sets except for Sentinel-2 data using 
the ATCOR (Atmospheric and Topographic CORrection) software (Richter & Schläp-
fer, 2005). Atmospheric correction for Sentinel-2 data at level 1C was performed by the 
SICOR algorithm (Hollstein et al., 2016). The georeferencing of RapidEye and Sentinel-2 

Fig. 2  Satellite data availability for each sensor in each year
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data were partly not exact and additionally corrected with the software AROSICS (Auto-
mated and Robust Open-Source Image Co-Registration Software) (Scheffler et al., 2017) 
and manually by using the ArcMap software.

At the beginning of the period, only data from Landsat 5 and 7 are available, the number 
of sensors increases to five in 2017 (Fig. 2). For some years (e.g., 2013) only few data sets 
are available for the study area, mainly due to frequent cloud cover. The different spatial 
and spectral resolutions of the sensors (Table 1) are examined in the study for their correla-
tion quality with yield data.

Soil and relief data

Soil type

Soil information is based on the German “Bodenschätzung” (BS) (1:10.000), which con-
tains soil polygons with information about parent material, integrated soil texture to a depth 
of 1 m, and the soil development stage (AG Boden, 2005). Dobers et al. (2010) elaborate 
on the development and characteristics of the BS. The parameters “Bodenzahl” (BZ) and 
“Ackerzahl” (AZ) are quantitative assessments of soil fertility and indicators for potential 
agricultural productivity. They are given in integers from 0 to 100, where 100 is the refer-
ence for the most fertile soil in Germany. The BZ is based on soil type and therefore repre-
sents productivity only, while the AZ takes other factors such as morphology and climatic 
characteristics into account as well.

Organic carbon  (Corg)

A map of soil organic carbon  (Corg) was also correlated with yield data. This map repre-
sents the distribution of organic carbon at the surface and was developed by Blasch et al., 
(2015a, b). They used a multispectral RapidEye time series from 2009 to 2014 to derive 
soil organic carbon content based on a regression between spectral reflectance pattern and 
soil sampling data.

Apparent electrical conductivity  (ECa)

Maps of apparent electrical conductivity  (ECa) from 2009 are available for Farm 1. These 
measurements of the soil sensor EM38 vary depending on soil type and condition. Conse-
quently, soil properties such as the presence of soil organic matter,  CaCO3, clay, and gleyic 
horizons can be derived from the measurements, among others (Kühn et al., 2008). The use 
of apparent electrical conductivity maps is common in precision agriculture (Corwin & 
Plant, 2005; Moral et al., 2010), therefore EM38 data serves as an input parameter for the 
correlation analysis as well. However, this parameter is highly variable as it depends on the 
current soil moisture during the measurement. The data are available as point data with a 
partly large point distance. Therefore, a 25 m buffer around the points was created and cor-
related with yield data located inside these buffers.

Digital elevation model

The digital elevation model (DEM) used in this study has a resolution of 5  m and is 
based on airborne LIDAR measurements (Amt für Geoinformation Vermessungs- und 
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Katasterwesen, 2011). The height data was used to calculate the Topographic Positioning 
Index (TPI) (Weiss, 2001) using the GIS software SAGA (Conrad et al., 2015). The TPI 
has generally six classes describing land forms such as hilltop, upper slope, etc. and is sen-
sitive to the scales used in the calculation and classification process. The shape of classes 
changes if the outer radius of annulus in cells according to Weiss (2001) is changed. There-
fore, two variations of the TPI were calculated: TPI fine with a radius of 25 m and TPI 
coarse with a radius of 50 m. The DEM was also used to calculate the Topographic Wet-
ness Index (TWI) (Beven & Kirkby, 1979), which is a steady state wetness index and is a 
function of slope and the upstream contribution area.

Yield data

Field boundaries, information about crop types per field and year as well as yield data were 
provided by two farms located in the study area. The yield data was taken during harvest 
by a GPS controlled harvester. Yield measure was taken approximately every 1 m (Farm 1) 
or approximately every 10 m (Farm 2) within a tram line. Farm 1 provided yield data from 
315 fields between 2006 and 2018, Farm 2 provided yield data from five large farm-wide 
data sets from 2012 and between 2014 and 2017. Yield data were cropped to individual 
field-based yield data sets using field boundaries. This resulted in 632 data sets of various 
density. The data quality of the yield data from Farm 1 is considered better because of the 
higher density and the more evenly distribution in the fields. Furthermore, processing and 
calibration steps of Farm 2 are unknown.

Raw yield data may contain errors due to unknown harvester characteristics, filling and 
emptying times of the harvester, time delay of the grain through the harvester, positional 
errors, and rapid speed changes, among others (Sudduth & Drummond, 2007). After acqui-
sition, unreliable yield measurements were removed for the most part by applying filters 
on harvester speed (discarding of values < 2% of all values and > 99% of all values) and 
swath width (discarding of values < 4 m and > 9 m). Furthermore, statistical outliers were 
removed by grouping 50 point values and discarding of yield values with a difference of 
more than 2.5 times the standard deviation of this group. The threshold was tested itera-
tively to find the right balance between group size and number of outliers to ensure that 
real outliers are dismissed. Usually only single points and not whole zones are omitted, 
whereas the distance between the individual points is already smaller than the smallest 
pixel size of the satellite data used in this study.

Farm 1 operated precision farming over the entire time series with the aim of achieving 
homogeneous yields and applied fertilization by considering within-field variability. Farm 
2, to the authors’ knowledge, did not operate any precision farming during the analyzed 
period.

Phenology

Phenological data was provided by the German National Meteorological Service (DWD) 
and by GFZ according to the BBCH-Codes (Hack et al., 1992), which is a decimal code 
system to identify phenological development stages of a plant and the standard phenol-
ogy-scale in Germany (Table 2). Phenological data of the DWD are part of a long-term 
observation series and report entry dates of selected phenological growth stages for various 
crop types at numerous observation points in Germany. They are daily updated by trained 
volunteers. For the years 2012 to 2018, field observations of BBCH collected by GFZ are 
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available in the study area (Harfenmeister et al., 2019). The source of the used phenological 
information was chosen depending on the existence and on the distance of the phenologi-
cal observation to the respective field. Table 2 lists the BBCH stages and their description.

Method

To understand the relationship between remote sensing data and soil and relief data with 
yield data, a large number of data sets from 13 years were used for the correlation analysis. 
The correlation was performed on a field basis. The underlying value of satellite data and 
soil and relief data was extracted per yield point and the correlation per field was calcu-
lated (Fig. 3). Images covered by clouds were excluded beforehand by using a threshold 
for the blue band within the extent of each field. If the standard deviation of the blue band 
within the field extent exceeded 150, cloud coverage was likely, and the corresponding sat-
ellite data was neglected.

For the correlation analysis, 15 indices that are frequently used both in research and 
in precision farming practice, were selected (Lilienthal, 2014; Siegmann et al., 2012). In 

Table 2  Description of BBCH principal growth stages for Cereal and Canola according to Hack et  al. 
(1992)

Principal 
growth 
stage

Cereal Oilseed 
rape 
(Canola)

BBCH Description BBCH Description

0 00–09 Germination 00–09 Germination
1 10–19 Leaf development 10–19 Leaf development
2 20–29 Tillering 20–29 Formation of side shoots
3 30–39 Stem elongation 30–39 Stem elongation
4 41–49 Booting –
5 51–59 Inflorescence emergence, heading 50–59 Inflorescence emergence
6 61,65,69 Flowering, anthesis 60–69 Flowering
7 71, 73, 75, 77 Development of fruit 71–79 Development of fruit
8 83, 85, 87, 89 Ripening 80–89 Ripening
9 92, 93, 97, 99 Senescence 97, 99 Senescence

Fig. 3  Extraction method of 
satellite data and soil and relief 
data (raster) per yield point per 
field to get data pairs for the cor-
relation analysis
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accordance with the studies of Georgi et al. (2017) and Vallentin et al. (2019), which are 
based on the same satellite and yield data sets, the choice of indices was narrowed down 
to yield-relevant spectral indices (Table 3). The indices were calculated from appropriate 
spectral bands of the different sensors, which are varying in number and wavelength range. 
Therefore, 10 of the 15 indices could be calculated with the data from all sensors, whereas 
five indices could only be calculated from RapidEye and/or Sentinel-2. The collection of 
vegetation indices does not claim exhaustiveness and could be extended in future studies.

The correlation result is given as Spearman Correlation Coefficient r (Daniel, 1990), 
also called “Spearman’s Rho”, and always refers to the correlation between the yield data 
and the respective data source to be analyzed.. Earlier studies (Georgi et al., 2017; Vallen-
tin et al., 2019) showed a monotonous but non-linear correlation between satellite data and 
yield data, which would rule out correlation methods based on linear correlation assump-
tions. One reason for the non-linearity is the saturation of vegetation indices (Esau et al., 
2016; Haboudane, 2004), which in high ranges do not correlate as strongly with the yield 
as in the lower and middle ranges.

It will be investigated how individual data sets correlate with yield data to find out 
which data sets are most suitable for potential yield modelling. Because each data set 
relates to the vitality of the crop in a different way and at least the satellite data are not 
mutually dependent, a bivariate analysis was chosen. This way, the relevance of individual 
data sets can be highlighted and examined. The correlation values were therefore calcu-
lated as absolute values to enable a ranking.

The resulting correlation coefficients were evaluated in terms of crop, phenology, field 
heterogeneity, yield amount choice of data source and indices, and extraction method. To 
compare the results of the various correlation analyses, the median of the correlation coef-
ficients of the analyzed group is used in the following exploration of the results. Neverthe-
less, outliers are also evaluated to give an assessment of which parameters correlate most 
with each other.

The analysis and visualisation was done by using R (R Core Team, 2020) with the use 
of the packages ‘raster’ (Hijmans, 2020), ‘rgdal’ (Bivand et al., 2021), ‘stringr’ (Wickham, 
2019), ‘data.table’ (Dowle & Srinivasan, 2021), ‘ggplot2’ (Wickham, 2016), ‘gridExtra’ 
(Auguie, 2017) and ‘automap’ (Hiemstra et al., 2008).

Results and discussion

The average correlation values of all sensors, all crops, and all satellite data sets are shown 
in Fig. 4. Correlation coefficients show a broad spectrum: from no correlation up to cor-
relation values of r = 0.94. However, high correlation values above 0.75 are more outliers 
than standard. The median of all correlation values is 0.19 with a standard deviation of 
0.16. Mild outliers appear as straight lines outside the box and extreme outliers as points 
above these lines. Differences between years and crops become apparent. Whereas cor-
relation values in 2018 are comparatively high with median correlation coefficients higher 
than 0.25 for all crop types, years such as 2012 or 2013 show remarkably lower correlation 
values around 0.15. Only single crops could be analyzed in 2010 and 2011 due to missing 
satellite or yield data. All four crops have in general similar correlation results, whereas 
wheat outperforms the other crop types from 2006 to 2009.

The correlation values between soil and relief data and yield are low in most cases 
(mean r = 0.12, median r = 0.09, max r = 0.71) (Fig. 5). The maximum r value of 0.71 is 



61Precision Agriculture (2022) 23:52–82 

1 3

Ta
bl

e 
3 

 O
ve

rv
ie

w
 o

f t
he

 c
al

cu
la

te
d 

ve
ge

ta
tio

n 
in

di
ce

s, 
th

ei
r f

or
m

ul
a,

 th
ei

r o
rig

in
, a

nd
 w

hi
ch

 se
ns

or
 is

 av
ai

la
bl

e 
fo

r t
he

 c
al

cu
la

tio
n

In
de

x
N

am
e

Fo
rm

ul
a

Re
fe

re
nc

e
Se

ns
or

s

N
D

V
I

N
or

m
al

iz
ed

 D
iff

er
en

ce
 V

eg
et

at
io

n 
In

de
x

N
D
V
I
=

N
IR
−
R
e
d

N
IR
+
R
e
d

Ro
us

e 
et

 a
l. 

(1
97

4)
A

ll

G
N

D
V

I
G

re
en

 N
or

m
al

iz
ed

 D
iff

er
en

ce
 V

eg
et

at
io

n 
In

de
x

G
N
D
V
I
=

N
IR
−
G
re
en

N
IR
+
G
re
en

G
ite

ls
on

 e
t a

l. 
(1

99
6)

A
ll

SA
V

I
So

il 
A

dj
us

te
d 

Ve
ge

ta
tio

n 
In

de
x

S
A
V
I
=

N
IR
−
R
e
d

(N
IR
+
R
e
d
)+

0
.5
∗
(1

+
0
.5
)

A
.. 

H
ue

te
 (1

98
8)

A
ll

N
IR

A
bs

ol
ut

e 
re

fle
ct

an
ce

 v
al

ue
s o

f t
he

 N
IR

 b
an

d
N
IR

–
A

ll
SR

Si
m

pl
e 

R
at

io
N
IR
∕
R
e
d

Jo
rd

an
 (1

96
9)

A
ll

IR
/G

R
at

io
 N

IR
 a

nd
 G

re
en

 b
an

d 
(s

im
pl

e 
ra

tio
)

N
IR
∕
G
re
en

Jo
rd

an
 (1

96
9)

A
ll

EV
I

En
ha

nc
ed

 V
eg

et
at

io
n 

In
de

x
E
V
I
=

N
IR
−
R
e
d

(N
IR
+
6
∗
R
e
d
−
7
.5
∗
B
lu
e
)+

1

A
. H

ue
te

 e
t a

l. 
(1

99
9)

A
ll

C
V

I
C

hl
or

op
hy

ll 
Ve

ge
ta

tio
n 

In
de

x
C
V
I
=

N
IR

∗
R
e
d

G
re
en

2

V
in

ci
ni

 e
t a

l. 
(2

00
8)

A
ll

G
LI

G
re

en
 L

ea
f I

nd
ex

G
L
I
=

2
∗
G
re
en
−
R
e
d
−
B
lu
e

2
∗
G
re
en
+
R
e
d
+
B
lu
e

V
iñ

a 
et

 a
l. 

(2
01

1)
A

ll

N
D

W
I

N
or

m
al

iz
ed

 D
iff

er
en

ce
 W

at
er

 In
de

x
N
D
W
I
=

R
e
d
−

N
IR

R
e
d
+

N
IR

G
ao

 (1
99

6)
A

ll

M
CA

R
I

M
od

ifi
ed

 C
hl

or
op

hy
ll 

A
bs

or
pt

io
n 

in
 R

efl
ec

ta
nc

e 
In

de
x

M
C
A
R
I
=

((
N
IR

−
R
e
d
E
d
g
e
)
−
0
.2

∗

(N
IR

−
G
re
en
))
∗
(

N
IR

R
e
d
E
d
g
e

)

D
au

gh
try

 e
t a

l. 
(2

00
0)

R
ap

id
Ey

e 
&

 S
en

tin
el

-2

N
D

R
E

N
or

m
al

iz
ed

 D
iff

er
en

ce
 R

ed
 E

dg
e 

In
de

x
N
D
R
E
=

N
IR
−
R
e
d
E
d
g
e

N
IR
+
R
e
d
E
d
g
e

B
ar

ne
s e

t a
l. 

(2
00

0)
R

ap
id

Ey
e 

&
 S

en
tin

el
-2

N
D

R
E 

/ N
D

V
I

R
at

io
 o

f N
D

R
E 

an
d 

N
D

V
I

N
D
R
E
∕
N
D
V
I

Se
e 

ab
ov

e
R

ap
id

Ey
e 

&
 S

en
tin

el
-2

C
C

C
I

C
an

op
y 

C
hl

or
op

hy
ll 

C
on

te
nt

 In
de

x
C
C
C
I
=

N
IR
−
R
e
d

E
d
g
e

N
IR
+
R
e
d

E
d
g
e

N
IR
−
R
e
d

N
IR
+
R
e
d

B
ar

ne
s e

t a
l. 

(2
00

0)
R

ap
id

Ey
e 

&
 S

en
tin

el
-2

R
EI

P
Re

d 
Ed

ge
 In

fle
ct

io
n 

Po
in

t
R
E
IP

=
7
0
0
+
4
0
∗

(
(

R
e
d
+
R
e
d

E
d
g
e3

2

)

−
R
e
d
E
d
g
e1

R
e
d
E
d
g
e2
−
R
e
d
E
d
g
e1

)

G
uy

ot
 (1

99
0)

Se
nt

in
el

-2



62 Precision Agriculture (2022) 23:52–82

1 3

attributed to the map of organic carbon, which is a derivation of satellite images itself. 
The performance difference between soil and relief data (brown boxplots) and satellite 
data (grey boxplots) can be clearly distinguished.

A reason for the low correlation between soil and relief data and yield might be that 
the fields in this study are mostly located in regions with flat topography and rather 
fertile soil compared to other regions. Consequently, the investigated soil and relief 
parameters often do not vary remarkably within the fields. Furthermore, Farm 1 has 
been operating precision agriculture for more than a decade, aiming to homogenize the 
fields despite the heterogeneous inventory.

Another problem concerns the comparison between the point yield data and often 
polygon-based soil data, which are thus much more coarsely resolved. This is probably 

Fig. 4  Combined correlation results of all vegetation indices derived by all satellite data sets per year and 
per crop type. Crop types are distinguished by different boxplot colors (Color figure online)

Fig. 5  Spearman correlation values for cereals (light colours) and canola (dark colours) in all years versus 
vegetation indices (grey colours) and soil and relief data (brown colors) (Color figure online)
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unfavorable as an analytical approach. In future studies, it would be more advantageous 
to first calculate an average yield per polygon and only then calculate the correlation.

The median of the correlation coefficients summarized for all sensors, vegetation indi-
ces and phenological stages show rather low values and exceed 0.25 only in 2018 (Fig. 4). 
Subsetting the data set by type of satellite sensor, year, crop type, field, vegetation index or 
phenology and plotting those subsets reveals patterns, which indicate the significance of 
each of those and other factors. They show certain tendencies, which data sets and which 
band combinations do best correlate with yield at which phenological stage.

In the following, the correlation results are analyzed regarding differences between sen-
sors, vegetation indices, phenology, field and yield characteristics as well as extraction 
method. It must be considered that the various factors are influencing each other as well. 
Due to the low correlation of soil and relief data with yield data and because of their tem-
poral immutability and mono dimensionality, only vegetation indices calculated with satel-
lite images are considered in the following sections.

Sensor

Data from different sensors vary in spatial, spectral, and temporal resolution. All three 
factors might influence the result of the correlation analysis, which is explained in the 
following.

The general suitability of a sensor depends additionally on the temporal resolution. The 
more often an image is available, the higher is the probability to meet important phenologi-
cal phases in which a high correlation with yield is likely.

The spatial resolution of the six sensors used in this study varies between 30 m (Landsat 
sensors), 20 m/10 m (Sentinel-2), 5 m (RapidEye), and 3 m (Planetscope) and has differ-
ent effects on the correlation strength. The difference between sensors is exemplary shown 
for wheat in 2017 and 2018 (Fig. 6). In 2018, a year with above-average high median cor-
relation values, the high-resolution sensors (RapidEye, Planetscope) perform much better 
than the poorer resolved sensors (Landsat series) and better than the 10 m-resolved Sen-
tinel-2 sensor (Fig. 6b). The higher correlation coefficients of sensors with higher spatial 
resolution are also observable in 2017, but to a lower extent (Fig. 6a). Differences between 
sensors with high and low spatial resolution also appear when comparing correlation coef-
ficients in single BBCH-stages (Fig. 7). RapidEye and Planetscope data often show higher 
correlation values in more BBCH-stages compared to the other sensors, which is observ-
able for both cereals and canola.

Furthermore, the lower correlation coefficients of sensors with lower spatial resolution 
could also be a result of the extraction method. Yield data (points) were directly compared 
with the raster data (pixel) of the satellite data in the analysis. The raster of the Landsat 
sensors therefore includes several yield data points into one 30 m pixel, whereby the same 
vegetation index is collected for each yield data point. If the variance of the yield data in 
small areas is high, this effect can lead to uncertainty. Averaging the yield values per pixel 
would be possible but would also lead to data loss.

A further reason for the different performance of the sensors might be that their 
spectral bands (red, blue, green etc.) are covering different wavelength ranges and 
are consequently variously sensitive to certain wavelengths. The value and accuracy 
of a calculated vegetation index can differ in dependence of the covered wavelengths 
(Zhang et  al., 2018a) and the type of atmospheric correction model that was used in 
the preprocessing (Doxani et al., 2018). To answer this question, a correlation analysis 
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could be performed on Planetscope and RapidEye data with different resampled prod-
ucts, down to 30 m pixel size. This extra step was not accomplished within this study.

A main spectral difference between sensors is obviously the existence of red edge 
bands and consequently the suitability to calculate certain vegetation indices, which is 
explained in the next section.

Fig. 6  Correlation per vegetation index for wheat in 2017 (a) and 2018 (b), color-distinguished by remote 
sensing sensor (Color figure online)
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Vegetation index

The height of the correlation coefficients is certainly dependent on the calculated vegeta-
tion index. To figure out which indices are best correlating with yield data, the varying per-
formance of the calculated indices is analyzed. In general, vegetation indices incorporating 
both the red and the NIR band achieve highest correlation values when the whole veg-
etation period is considered (Figs. 5 and 6). This includes the NDVI, the SR, EVI, SAVI, 
among others.

Among the vegetation indices including red edge bands, only the NDRE of RapidEye 
images achieves high correlation values, whereas MCARI, CCCI, NDRE/NDVI and REIP 
are often among the poorer performing indices (Figs. 5 and 6). On the other hand, indices 
including the red edge band reach higher correlation coefficients at certain phenological 
stages. Furthermore, if the nitrogen content or the pure biomass or leaf chlorophyll content 
is modelled, indices working with red edge bands show good results (Barmeier et al., 2017; 
Cui et al., 2019). This study cannot replicate this for the yield parameter generally, but for 
certain phenological stages.

Figures  5 and 6 also show a great difference between the median values of NDRE 
acquired by Sentinel-2 (median r = 0.16 [Cereal], r = 0.12 [Canola]) and by RapidEye 
(median r = 0.25 [Cereal], r = 0.21 [Canola])). This might be due to the higher spatial reso-
lution of RapidEye (5 m) compared to Sentinel-2 (10/20 m) as well as to the larger number 
of available images of RapidEye (179) compared to Sentinel-2 (43). Another reason might 
be again the different wavelength coverage and width of the red edge and NIR bands of 
both sensors.

In the following, the correlation between the two indices NDVI and NDRE with cereal 
yield in single BBCH stages is compared to further investigate the importance of the red 
edge bands. The median correlation for cereal is r = 0.21 for the NDVI and r = 0.23 for 
the NDRE (taking all sensor types and all BBCH stages into account). The strength of 
the correlation depends on the cereal type and the respective BBCH stage and there are 
certainly times when the NDVI performs better (Fig. 8). In the early BBCH stages of bar-
ley, the NDVI performs better (BBCH 10, 11, 21, 30) or similarly compared to the NDRE 
(Fig.  8a). From BBCH 51 the NDRE achieves higher correlation values compared to 
NDVI. Towards the end of the vegetation phase from BBCH stage 87, both indices perform 
similarly. The change of the better performing index from heading to ripening might be due 

Fig. 7  Heatmap of all Spearman correlation values per sensor and per BBCH stage for cereal. Correlation 
values are combined for all vegetation indices
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to the structure of the barley spikes, which form long awns during the vegetation period. 
The spikes of barley lie down with increasing weight, so that the surface of a barley field 
has a completely different structure than, for example, a wheat field. Depending on the phe-
nology, this structural difference can be detected with radar satellite data (Harfenmeister 
et al., 2019).

In the case of rye (Fig. 8b), the NDRE almost always performs better than the NDVI, 
except for BBCH stages 57 and 61, and at the end of the vegetation phase from BBCH 
stage 87. Looking at the correlation values of wheat (Fig. 8c), the NDVI performed better 
than the NDRE at the beginning of the vegetation period from BBCH 10 to 23, and at the 

Fig. 8  Spearman correlation of NDRE (purple) and NDVI (green) per BBCH stage for barley (a), rye (b), 
and wheat (c) (Color figure online)
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end from BBCH 77. In the phenological phases between (BBCH stages 30–75), NDRE 
performs better, but differences between NDVI and NDRE are not as strong as for rye and 
barley.

For wheat and barley, the NDRE performs better than NDVI during BBCH stages con-
nected with a strong increase of biomass and LAI, namely from stem elongation until fruit 
development. In these growth stages, the influence of the soil decreases, and plants are 
highly photosynthetically active. Some indices, especially the NDVI, tend to saturate at a 
certain LAI and are no longer sensitive in the high-density range, which might be a reason 
for the better performance of NDRE in the respective BBCH stages.

This example indicates that the BBCH stage might have a higher influence on the cor-
relation results than the choice of the index, because many indices perform equally well or 
similarly, if the optimal BBCH stages are met.

Phenology

Not every phenological phase is suitable for yield prognosis, because the correlation val-
ues differ remarkably between different BBCH stages. For both cereals and canola, there 
are certain phenological phases with consistently high correlation values, mostly regardless 
of the chosen index (Figs. 9 and 11). Despite the reliable data basis of the phenological 
data, no weekly recordings of the BBCH stages were available for this study, neither cloud-
free satellite images in this frequency. Therefore, this study presents the best correlation 
values at the times and with the data available for this purpose and does not claim to be 
exhaustive.

For cereals, particularly BBCH stages 54, 61, 65, and 83 stand out with correlation 
coefficients around 0.5 for most vegetation indices (Fig. 9). BBCH stages 58 and 75 still 
reach correlation values around 0.4. In contrast, most of the early BBCH stages from 10 to 
23, the late BBCH stages from 85 to 97 as well as BBCH stages 56 and 57 have the lowest 
correlation values. Best performing BBCH stages can thus be found during flowering (61 
and 65), during fruit development at the medium milk stage (75), and at the beginning of 

Fig. 9  Heatmap of all Spearman correlation values per vegetation index and BBCH stage for all cereal 
types based on all satellite sensors
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ripening during the early dough stage (83). Furthermore, single BBCH stages during head-
ing (54 and 58) show good results, but also very bad results (56 and 57). The only differ-
ence between these stages is their percentage of emerged inflorescence, therefore no causal 
relationship can be identified here. Consequently, the reason for the different correlation 
quality must be found elsewhere and is for instance caused by data availability and qual-
ity (see section “Uncertainties”). During stem elongation and until the beginning of head-
ing, correlation values reach values around 0.3. Early BBCH stages in which no significant 
growth takes place (leaf development and early tillering) show low correlation with yield. 
Furthermore, correlation values are low when cereals are fully dense (BBCH stages 69 to 
73, end of flowering to early milk) because some vegetation indices are saturating at very 
high biomass and LAI values. During ripening and senescence (BBCH stages 85 to 97), 
the correlation with final yield is also low. From this time, yield formation takes place in 
grains, which is not captured by satellite data. The grain yield cannot be measured directly 
with remote sensing. But the grain yield is closely related to the vegetative components of 
the cereal plant. The yield itself is produced during the grain filling phase. But the pho-
tosynthetically active plant parts such as stem, leaves and roots form the synthetic capac-
ity to enrich the grains. It therefore makes sense that the correlation between vegetation 
index and final yield in the early stages of the grain filling phase shows a high correlation 
(Fig. 9), as already discussed by Shanahan et al., 2001 and Marti et al., 2007. The distribu-
tion of biomass, which can be indicated by vegetation indices, can also be recorded before 
the ripening phase, which is why correlation values between satellite image and yield are 
already present during stem elongation (Fig. 9). However, the uncertainty of a yield predic-
tion depends on the further development of the plant under the given weather conditions 
and the management.

Differences between phenological stages are more pronounced than differences between 
vegetation indices. In most cases, vegetation indices perform similarly well. Surprisingly, 
most indices using the red edge bands (REIP, NDRE (sen), CCI) do not have as high cor-
relation values as the other indices in the best performing BBCH stages 61 or 83. On the 
other hand, there are BBCH stages (e.g., 21 and 58), when indices using red edge bands 
perform best.

So that remote sensing sensors provide meaningful values, the crop must be present but 
not too homogeneous in appearance, particularly in spectral characteristics. In the context 
of this study, certain phenological phases for yield prediction have proven to be favorable 
for specific crop species, which also coincides with existing literature (Babar et al., 2006; 
Gaso et al., 2019; Guo et al., 2018; Peng et al., 2019).

In addition to Fig.  9, Fig.  10 shows the variance of the correlation values within the 
phenological stages exemplary for NDVI and NDRE. The comparison of NDVI and NDRE 
(Fig. 10) also shows that the NDRE performs better than or equal as NDVI when the three 
cereals are taken together. Nevertheless, the NDVI correlation values are also acceptably 
high in similar phenological phases (except 58 and 65).

Regarding canola, highest correlation values up to around 0.6 are reached in BBCH 
stages 71 and 77 during fruit development (Fig. 11). BBCH stages 11 (first leaf unfolded) 
as well as 31 to 64, which corresponds to the beginning of stem elongation to mid flower-
ing, have correlation values around 0.3. Indices in BBCH stages 10, 13 to 16 (leaf devel-
opment), 65 and 67 (mid flowering), 75 (mid fruit development), as well as 78 to 87 (end 
of fruit development until end of ripening) correlate worst with yield. In the two best per-
forming BBCH stages 71 and 77, the NDRE of RapidEye, the MCARI as well as the NIR 
band reach highest correlation values. Furthermore, the NDRE of Sentinel-2 reaches a cor-
relation of 0.55 during BBCH stage 61 (begin flowering), but this is not observable for the 
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remaining indices and must therefore be considered an exception. The higher correlation 
values in BBCH stage 11 compared to the remaining BBCH stages during leaf develop-
ment might be the result of the low data availability in this stage (six fields of only one 
date) and can therefore not be generalized. A reason for the worse correlation values of 
BBCH stage 75 compared to the good performing stages 71 and 77 cannot be clearly iden-
tified. There are, for instance, a higher number of data sets for BBCH stage 75 which lead 
to more variation between fields.

Previous studies found a decreasing relationship between NDVI and yield with flower-
ing (Piekarczyk et al., 2011). This can also be found in this study: The reflection of the NIR 

Fig. 10  Spearman correlation values for NDVI (a) and NDRE (b) per BBCH stage for all cereals and all 
years
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band correlates much better for BBCH stage 61 (beginning of flowering) and later, whereas 
the NDVI yields better results before stage 61 (Fig. 12). Holzapfel et al. (2009) found that 
the NDVI data obtained between the six-leaf stage (BBCH 16) and the beginning of flow-
ering (BBCH 60) are correlated with the canola harvest. In this study, correlation results 
between BBCH 16 and 60 are moderate, but BBCH stages 71 and 77 perform even better.

A yield prognosis for canola is more challenging than for cereals because the vegeta-
tive parts of the plant are less significant in the formation of the grain yield (Sulik & Long, 
2016). It is assumed that the number of flowers is a suitable proxy, but due to their spec-
tral characteristics they are less sensitive to indices involving the red and infrared bands 

Fig. 11  Heatmap of all Spearman correlation values per vegetation index and BBCH stage for canola based 
on all satellite sensors

Fig. 12  Spearman correlation of NDRE (purple) and NDVI (green) per BBCH stage for canola (Color fig-
ure online)
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(Sulik & Long, 2016). Remote sensing indices such as NDVI record vegetative growth, 
for crops such as canola there is interest in the seed that belongs to reproductive growth. 
Indices such as NDVI are quite useful in the analysis of crops such as wheat and maize that 
have inconspicuous flowers and simply "green-up" and then "green-down" after entering 
the reproductive growth phases. Numerous Brassica oilseeds have "green-up", then "yel-
low-up" with striking yellow flowers and an overlap of "yellow-down" and "green-down" 
during ripening (Sulik & Long, 2016). For those reasons, the authors do not feel confident 
to make similar recommendations for the choice of the "right" satellite images as in the 
case of cereals. The fact that there are far fewer studies on the correlation of spatial data to 
canola yield compared to cereals indicates caution in the interpretation of the results of the 
canola yield analysis and suggests further studies.

Field heterogeneity and density

Even if an optimal index is selected for a suitable BBCH stage, the correlation often varies 
remarkable between fields. Reasons for this behavior are the within-field heterogeneity as 
well as the density of the crop and consequently the amount of yield. Comparing the years 
2015 to 2018, it is noticeably that mean and maximum correlation values between yield 
and NDVI achieved for 2015 and 2017 are both below those of 2016 and 2018 (Fig. 13). 
The availability of satellite data, particularly high-resolution data, of these years is com-
parable (Fig.  2). In years with high yields, the median correlation values between yield 
and satellite imagery are lower (median r = 0.19) compared to years with rather low yields 
(median r = 0.32).

The reason for lower correlation values in years with high yields ore fields with a high 
crop density is the proxy approach. Satellite sensors do not directly measure the grain yield 

Fig. 13  Spearman correlation per year for NDVI (a). Mean yield per field in tons per hectare for years 
2015–2018 (b)
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as recorded during yield mapping. Instead, vegetation indices are sensitive to variables such 
as biomass, vitality, LAI, density and chlorophyll content, which in turn are related to yield 
(Babar et al., 2006; Ren et al., 2008). If the crop is vital and near the maximum of plant 
density and has a high LAI and a high biomass, even a sensor from space can only detect 
few spatial patterns. In addition, saturation occurs in most indices above a certain thresh-
old value, so that nuances in the upper value range can no longer be detected (Haboudane 
et al., 2004). In contrast, fields with low and average yield perform better in the correlation 
analysis, because heterogenous crop cover is more likely and a lower crop density leads to 
less saturation of vegetation indices at field scale (Esau et  al., 2016; Haboudane, 2004). 
If the crop develops heterogeneously because soil or weather conditions are not in favor 
for growth, the probability of successfully recognizing yield patterns increases. These pat-
terns can be seen in satellite images (Fig. 14b) and, depending on the field, in the soil map 
(Fig. 14d). A quantitative indicator for heterogeneity is the histogram of vegetation indices 
within the field boundaries. If the spread of those values is particularly narrow (Fig. 14e), 
heterogeneity cannot be assumed. The higher correlation values of the more heterogeneous 
wheat field 320-01 and the lower correlation values of the more homogeneous wheat field 
300-01 are consistent between sensors (Fig. 14g).

Certainly, a maximum of homogeneity does not imply a maximum of yield in any case. 
For this data set it appears though, that high yields (2015, 2017) concur with more homo-
geneity of the fields, with more rainfall and increasing soil moisture and with lower cor-
relation values—compared to years with dryer conditions. These findings do not apply 
though, if the final yield is reduced by extreme weather events or damage caused by ani-
mals and diseases, which were not seen in satellite data or only occurred after the recording 
date.

Extraction method

A field-internal yield analysis is not always required and mean values for a field or regional 
trends are sufficient. The results discussed so far are based on the correlation values cal-
culated per field (Fig. 3). To test the influence of the extraction method on the correlation 
result, the correlation analysis was additional done for the mean values of each individual 
field as well as for the correlation of all data sets of a crop, independently of the fields 
(Fig. 15). The performance of the three extraction methods turned out to be quite different.

If only the mean values per field are considered, highest correlation values are achieved 
(Fig. 16). However, no field-internal patterns are considered using this method. Further-
more, depending on the size of the region, the analyzed crops might be not in the same 
phenological stage, which makes the selection of satellite images difficult. Nonetheless, 
a positive relationship can be observed when comparing mean yield values with mean 
NDRE values, for example for cereal in BBCH stages 21, 33, 75, and 83 (Fig. 17). In gen-
eral, the NDRE increases with increasing yield, but saturation effects are visible at very 
high index values, where a high index value covers the whole yield range.

The correlation value extraction per field as well as collectively for all fields perform 
similar, whereas the field-independent method performs slightly better (Fig.  17). In this 
case, the pure mass of yield data compared with satellite and soil and relief data could 
compensate for individual noise within the fields. Following these observations, yield 
modelling could be promising per field zone to preserve within-field heterogeneity. This is 
also in line with most precision agriculture methods and has been found in previous studies 
(Filippi et al., 2020; Mavromatis, 2016).
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Uncertainties

The analysis holds uncertainties in some questions, mainly concerning data availability 
and data quality and consequently the transferability to other study areas and time periods. 
The data basis of this study is large, but not complete. The cloud-free coverage of satellite 
images for every field and every crop at every phenological stage varies and some observa-
tions can only be based on thin data density, while others benefit from a large data availa-
bility. However, no correlation was found between the number of analyzed data sets and the 

Fig. 14  Comparison of two wheat fields 300-01 (a, c, e) and 320-01(b, d, f). a and b false color image 
Planetscope, band combination NIR-Red-Green from 08.06.2018. c and d soil types. e and f histograms of 
the NDVI values of the fields at the time of recording with different spread. g variation of correlation values 
per field and data source (Color figure online)
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resulting correlation coefficients between yield and vegetation index. Nevertheless, very 
high correlation coefficients occurred nearly exclusively in cases with a low number of 
available data sets. This might be due to the compensating effect of many data sets. These 
data sets contain correlation coefficients of a wide range and there are single fields with 
very high or very low correlation coefficients. Consequently, the resulting median correla-
tions values found in this study are rather low because of the pure mass of data and their 
mutual balancing. In cases with only few available data sets, the chance to meet very good 
or very bad performing fields is higher, the resulting median values are more “extreme” 
and not as balanced as for a large amount of data.

Fig. 15  Additional extraction methods of satellite data and soil and relief data (raster) per yield point per 
field to get data pairs for the correlation analysis for mean values per field (left) as well as field-independent 
for all data sets (right)

Fig. 16  Comparison of extraction methods as a basis for correlation analysis. (a) extraction of yield and 
data values per field, (b) extraction of mean values of each individual field, and (c) extraction of yield and 
data values for all points per crop and year, independent of the fields



75Precision Agriculture (2022) 23:52–82 

1 3

In this context, also the occurrence of specific BBCH stages influences the amount of ana-
lyzed data and the different data availability between BBCH stages might also explain some 
unexpected behavior of the correlation results (e.g., strongly differing behavior of adjacent 
BBCH stages such as BBCH stage 77 for cereals or 75 for canola). This might be due to the 
reported BBCH stages. Some BBCH stages may only last for a few days and are not neces-
sarily captured in every year. Consequently, the data availability for these stages is signifi-
cantly lower. Furthermore, some successive BBCH stages are very similar, and some phases 
may not have been clearly identified by reporters. There is also often a temporal and spatial 
shift between reported BBCH stage on a field and the acquisition of the satellite image. Con-
sequently, a mixing between adjacent phases is likely to occur. Additionally, the DWD only 
reports specific BBCH stages, which are consequently overrepresented in the analysis. In 
future studies, the summarizing of principal growth stages might prevent confusions between 
single BBCH stages, but the temporal resolution would be reduced (Table 4).

Conclusions and outlook

This study examined the relation between remote sensing data, soil and relief data and 
agronomic crop yield data. Remote sensing in agriculture brings the advantage of wide 
spatial information, which is up to date, but also capable of analyzing the past. It has 

Fig. 17  Dependence of mean NDRE per field on mean yield per field for cereal in phenological BBCH 
phases 21 (tillering), 33 (stem elongation), 75 (medium milk), and 83 (early dough)
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shown that not every satellite image equally well correlates with yield data and is con-
sequently suitable for yield estimation. The hypothesis that an optimal combination 
of sensor, vegetation index and time period exists is confirmed by the analyses of this 
study and could be extended by further conditions, such as field heterogeneity, that have 
to be met for a successful yield estimation. A careful selection is necessary depending 
on the type of crop, the phenology of the crop, the resolution of the sensor and the spec-
tral bands considered in the index calculation.

The relevance of soil and relief data for yield modelling is considered negligible in 
this study. Since soil and relief data play a minor role in this study compared to satellite 
data for yield prediction, as they are almost always underperforming, it is important to 
recognize that up-to-date data sets are needed to map the actual condition of the plants. 
However, the crop growth system is complex, and soil and relief certainly influence 
yield. Therefore, it makes sense to use these data in addition to the satellite images for 
an extended yield prognosis using multiple predictors, possibly with a lower weight-
ing, as they usually do not show the actual condition of the crop and are changing only 
in space, not in time. Soil and relief data are certainly relevant for specific fields, but 
because this requires local knowledge, this study cannot give general recommendations.

Satellite images with higher spatial resolution such as RapidEye (5 m) or Planetscope 
(3  m) performed better than satellites with a lower spatial resolution such as Landsat 
(30  m) and even Sentinel-2 (10/20  m). RapidEye and Sentinel-2 have an advantage 
because of their spectral coverage in the red edge region. Working in Germany and in 
countries with similar average field size, the use of optical sensors with the spatial and 
spectral resolution of Sentinel-2, RapidEye and Planetscope satellites is recommended. 
Particularly the vegetation index NDRE achieved high correlation values for cereal 
between stem elongation and fruit development. Vegetation indices covering the NIR 
and red bands such as NDVI, SR, or EVI perform similarly well as long as suitable 
phenological growth stages are present. Therefore, phenology plays a more important 
role than the chosen vegetation index. The acquisition date and therefore the timing in 
the crops’ development is the most important of these factors. For cereals, particularly 
BBCH stages 54 (middle of heading), 61, 65 (flowering) and 83 (early dough) show 
highest correlations with yield. Consequently, the crop should be abundant, but not at 
the maximum of green biomass and density, also not completely ripe. For canola, BBCH 
stages 71 and 77 (fruit development) showed highest correlation values. When looking 
at canola in particular, further studies are useful because the correlation values are not 
yet quite clear in the literature. An analysis of the same data in other regions and natural 
habitats would provide a valuable basis for the use of satellite data in agriculture.

Additionally, the field heterogeneity influences the correlation between satellite 
image and yield. Fields with lower yields and consequently lower crop density often 
resulting in higher field heterogeneity showed higher correlation coefficients. If no pat-
terns are recognizable and the crop is homogeneous, the uncertainty in the yield estima-
tion within the field is high.

Extracting mean field values instead of taking all pixels of a field into account 
resulted in higher correlation, but on the other hand information about within-field het-
erogeneity for applying precision agriculture is lost. Therefore, future studies should 
evaluate yield modelling per field zone to preserve within-field heterogeneity. Further-
more, the analysis of principal growth stages instead of single BBCH stages prevents 
might be promising to account for differences in data availability and data quality.
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