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Satellite-based survey of extreme methane emissions 
in the Permian basin
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Yuzhong Zhang6,7, Apisada Chulakadabba3, Steven C. Wofsy3, Andrew K. Thorpe8, Riley M. Duren8,9, 
Christian Frankenberg8,10, David R. Lyon11, Benjamin Hmiel11, Daniel H. Cusworth8, 
Yongguang Zhang12, Karl Segl13, Javier Gorroño1, Elena Sánchez-García1, Melissa P. Sulprizio3, 
Kaiqin Cao2, Haijian Zhu2, Jian Liang2, Xun Li2, Ilse Aben5, Daniel J. Jacob3

Industrial emissions play a major role in the global methane budget. The Permian basin is thought to be respon-
sible for almost half of the methane emissions from all U.S. oil- and gas-producing regions, but little is known 
about individual contributors, a prerequisite for mitigation. We use a new class of satellite measurements ac-
quired during several days in 2019 and 2020 to perform the first regional-scale and high-resolution survey of 
methane sources in the Permian. We find an unexpectedly large number of extreme point sources (37 plumes 
with emission rates >500 kg hour−1), which account for a range between 31 and 53% of the estimated emissions 
in the sampled area. Our analysis reveals that new facilities are major emitters in the area, often due to inefficient 
flaring operations (20% of detections). These results put current practices into question and are relevant to guide 
emission reduction efforts.

INTRODUCTION
Methane (CH4) is the second most important anthropogenic green-
house gas and a precursor for tropospheric ozone, which acts as 
both greenhouse gas and air pollutant. Due to methane’s strong 
radiative forcing potential and its short lifetime in the atmosphere 
(9±1 years) (1), the reduction of methane emissions is being priori-
tized as an effective climate change mitigation measure on decadal 
time scales (2).

Methane levels in the atmosphere have almost tripled since pre-
industrial times (3). Along with agriculture, oil and natural gas 
(O&G) production operations are one of the primary causes for this 
increase, but the magnitude, dynamics, spatial distribution, and 
driving mechanisms of methane emissions from O&G produc-
tion remain poorly understood. This is especially concerning for the 
United States, which is the world leader in O&G production, owing 
to its rapid growth in the last two decades. Alvarez et al. (4) estimat-
ed that 13 Tg CH4 a−1 was emitted from the U.S. national O&G 
supply chain in 2015, which is 78% higher than the most recent es-
timates by the U.S. Environmental Protection Agency (EPA) for 
that year, and represents an important fraction of the 68- to 92-Tg 
CH4  a−1 range estimated globally for upstream and downstream 

O&G sectors in the 2008–2017 decade (5). This large share of methane 
emissions from the U.S. O&G sector is increasing. For example, 
Jackson et al. (6) reported that fossil fuel–related methane emissions 
in the United States increased between 3.4 and 4.0 Tg CH4 a−1 from 
2000–2006 to 2017, which is approximately 80% of the total in-
crease of methane emissions for North America in that period.

Methane emissions from O&G production originate mainly 
from point sources including wells, gathering stations, compressor 
stations, storage tanks, pipelines, processing plants, and flares. 
There may be thousands of these individual point sources in a typi-
cal O&G field (7). A small fraction of facilities are responsible for a 
large share of total emissions at any given time, which may be 
caused by intentional venting of wells and storage tanks, inefficient 
flaring, or leaks from malfunctioning equipment (7). O&G produc-
tion in the Permian basin, located in New Mexico and Texas, has 
been growing rapidly over the past decade, and the Permian is now 
the largest O&G-producing basin in the United States. This was 
covered by a recent study by Zhang et al. (8), which combined sat-
ellite observations from the Tropospheric Monitoring Instrument 
(TROPOMI) onboard the Sentinel-5P satellite with atmospheric 
modeling methods to find Permian methane emissions from O&G 
production to be 2.7±0.5 Tg CH4 a−1. This number represents the 
largest methane flux ever reported from a U.S. O&G-producing re-
gion; it is more than twice the bottom-up estimates for the Permian, 
and a factor of 4 higher than estimates for any other Unites States 
O&G basin.

Better characterizing the nature, intensity, and dynamics of 
methane point emissions from the world’s O&G basins, and in par-
ticular from the Permian, is not only critical to close the gap be-
tween bottom-up and top-down anthropogenic emission estimates 
but also to facilitate emission reductions. Better emission character-
ization is also crucial for understanding the contribution of the 
O&G production sector to the acceleration of the methane growth 
rate in the atmosphere. Airborne measurement methods, through 
either mass balance (9, 10) or imaging spectroscopy (11–16), are a 
powerful approach to detect and monitor methane point sources 

1Research Institute of Water and Environmental Engineering (IIAMA), Universitat 
Politècnica de València (UPV), Valencia, Spain. 2CAS Key Laboratory of Infrared Sys-
tem Detection and Imaging Technology, Shanghai Institute of Technical Physics, 
Shanghai, China. 3School of Engineering and Applied Sciences, Harvard University, 
Cambridge, MA, USA. 4GHGSat Inc., Montréal, Quebec, Canada. 5SRON Netherlands 
Institute for Space Research, Utrecht, Netherlands. 6Key Laboratory of Coastal Envi-
ronment and Resources of Zhejiang Province (KLaCER), School of Engineering, 
Westlake University, Hangzhou, Zhejiang, China. 7Institute of Advanced Technology, 
Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China. 8Jet Propulsion 
Laboratory, California Institute of Technology, Pasadena, CA, USA. 9University of 
Arizona, Tucson, AZ, USA. 10California Institute of Technology, Pasadena, CA, USA. 
11Environmental Defense Fund, Austin, TX, USA. 12International Institute for Earth 
System Sciences, Nanjing University, Nanjing, China. 13Helmholtz Center Potsdam, 
GFZ German Research Center for Geosciences, Potsdam, Germany.
*Corresponding author. Email: lguanter@fis.upv.es (L.G.); ynliu@mail.sitp.ac.cn 
(Y.-N.L.)
†These authors contributed equally to this work.

Copyright © 2021 
The Authors, some 
rights reserved; 
exclusive licensee 
American Association 
for the Advancement 
of Science. No claim to 
original U.S. Government 
Works. Distributed 
under a Creative 
Commons Attribution 
NonCommercial 
License 4.0 (CC BY-NC).

 on July 7, 2021
http://advances.sciencem

ag.org/
D

ow
nloaded from

 

mailto:lguanter@fis.upv.es
mailto:ynliu@mail.sitp.ac.cn
http://advances.sciencemag.org/


Irakulis-Loitxate et al., Sci. Adv. 2021; 7 : eabf4507     30 June 2021

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

2 of 8

over large O&G regions. In particular, so-called imaging spectrom-
eters offer a unique observational configuration to map methane 
point emissions with simultaneously high accuracy and spatial sam-
pling. These instruments produce images of the solar radiation 
reflected by the Earth surface at hundreds of wavelengths, including 
those in the shortwave infrared region of the electromagnetic spec-
trum sampling the strong methane absorption band around 
2300 nm (see fig. S1). High-resolution maps of methane plumes (up 
to 3 to 4 m for airborne instruments) can be inferred from these 
observed spectra using atmospheric retrieval techniques (see 
Materials and Methods).

Satellite remote sensing represents a critical means for systematic 
monitoring of point emissions from O&G-producing regions around 
the world (17). The Sentinel-5P/TROPOMI mission, launched in 
2017, is a crucial step toward the monitoring of methane emissions 
from space (18–21), but its 7-km pixel size does not generally allow 
sampling of individual point sources (22). Instead, high-resolution 
(~30-m) methane retrievals can be performed using satellite imag-
ing spectrometers (23), which trade TROPOMI’s fine spectral reso-
lution for fine spatial resolution. This trade-off does not allow 
retrieval of small methane sources but is ideal for detecting large 
point sources, as demonstrated with the EO-1/Hyperion during the 
Aliso Canyon methane blowout (24). The GHGSat-D private satel-
lite has also shown capability of retrieving large methane sources at 
50-m spatial resolution (25, 26).

In this study, we take advantage of the rapid development of 
spaceborne imaging spectroscopy technology and data processing 
methods to perform the first satellite-based large-scale and high- 
resolution survey of methane point emitters in the Permian basin. 
Our dataset was acquired by three satellite missions launched between 
2018 and 2019: two versions of the Advanced Hyperspectral Imager 
(AHSI) onboard China’s Gaofen-5 (GF5) and ZY1 satellites (27) 
and the imaging spectrometer onboard Italy’s PRISMA mission 
(see Materials and Methods). We cover a ~150 km–by–200 km area 
in the Delaware sub-basin of the Permian basin with a total of 30 
images acquired within several days, but mostly on four different 
dates: 15 May 2019, 1 November 2019, 29 December 2019, and 
8 February 2020 (see table S1 and fig. S2). We generate maps of 
methane concentration enhancements (CH4), from which we de-
tect methane plumes through visual inspection (fig. S3). We calcu-
late emission flux rates (Q) for each plume using the integrated methane 
enhancement (IME) method and large eddy simulations performed 
specifically for our satellite observations (fig. S4). See Materials and 
Methods for further information on the derivation of methane 
plumes and the conversion to emission rates. We evaluated the 
sensitivity of our satellite measurements to methane enhancements 
and the uncertainties in methane flux calculation by means of 
simulation-based studies (texts S1 and S2 and figs. S5 to S8). The 
30-m spatial sampling of our survey allows us to map individual 
methane plumes and to attribute emissions to specific infrastruc-
ture. Our core objective is to identify, characterize, and quantify the 
largest point emissions in the area, with the overarching motivation 
of assisting future emission reduction efforts.

RESULTS
Imaging extreme methane point sources
Figure 1 shows the location and intensity of the 37 methane plumes 
that we have detected over the Delaware sub-basin of the Permian 

after the processing of our satellite imaging spectroscopy dataset. 
The detected point emissions have Q typically between 500 kg hour−1 
(which we assume as both our detection limit and our definition of 
an “extreme emission”) and 6000 kg hour−1. Most plumes are located 
in the 31.0° to 32.5°N, 103.3° to 104.2∘W subregion. This matches 
the area of highest methane fluxes revealed by top-down estimates 
by Zhang et al. (8) but is less well aligned with the bottom-up emis-
sion inventory based on the U.S. EPA greenhouse gas inventory 
(28) updated to account for 2018 infrastructure using well-level in-
formation from Enverus DrillingInfo (fig. S9) (29).

Subpanels around the main panel of Fig. 1 show examples of indi-
vidual methane plumes (see table S1 and fig. S10 for details on plume 
locations, intensity, and type of emitting facility). There is a rela-
tively large variability in both emission rates and source types. For 
example, plume a corresponds to a large emission (Q = 3590±1220 kg 
hour−1) from an area devoid of visible infrastructure elements such 
as well pads and storage tanks; plume b (Q = 2119±608 kg hour−1) 
is associated with the incomplete combustion of a flare from a tank 
battery; plume f is a strong emission (Q = 4385±1296 kg hour−1) 
that we attribute to the venting of a gas well; plumes g and j are two 
very large emissions (Q of 5952±2556 and 5472±2159 kg hour−1, 
respectively) from compression stations. Last, plume c is a special 
case. It corresponds to an emission of an abnormally high magni-
tude (Q = 18,492±6570 kg hour−1) from an unknown source. The 
absence of correlation between the spatial distribution of the meth-
ane enhancement and surface brightness and composition indicates 
that this is a real methane plume and not the result of a processing 
artifact (see fig. S11 for maps of the surface and its mineralogy) (30). 
We attribute it to a large transient release, potentially from one of 
the large natural gas gathering pipelines in the area. A strong meth-
ane enhancement is seen by TROPOMI at the same location in the 
days around this event (fig. S12), but we are not able to determine 
what fraction of the enhancement is actually due to this particular 
emission.

We do not find multiple plume detections from any of the meth-
ane sources in our satellite dataset, which may be due to the rela-
tively high detection limit of our measurements (∼500 kg hour−1, 
see text S1) and the limited temporal sampling of our data: 32 of 37 
plumes are derived from four different overpasses between 15 May 
2019 and 8 February 2020, with 19 of them corresponding to the 
same GF5-AHSI overpass (see table S1 and fig. S2). However, we do 
find correspondence between our detections and highly accurate 
CH4 maps from an independent airborne AVIRIS-NG imaging 
spectrometer campaign sampling over some areas in the Permian 
included in our large-scale satellite survey (see fig. S13 for examples).

Strength of point emissions in the Permian basin
The distribution of flux rates from all the detected emissions in the 
Permian is shown in Fig. 2. Of 37 detected plumes, 29 have fluxes 
larger than 1000 kg hour−1. To our knowledge, the Delaware sub-basin 
of the Permian therefore contains the highest number of extreme 
point emitters ever observed across a single O&G-producing basin. 
For example, the magnitude of the emission rates in the Permian is 
substantially higher than the one previously cataloged in the Barnett 
Shale basin, where only 5 of 17,400 well pads were found to emit 
more than 300 kg hour−1 (31, 32). Moreover, only seven emissions 
larger than 1000 kg hour−1 were found over the Four Corners natu-
ral gas–producing region from a total of 250 plumes identified 
during a comprehensive campaign using the AVIRIS-NG airborne 

 on July 7, 2021
http://advances.sciencem

ag.org/
D

ow
nloaded from

 

http://advances.sciencemag.org/


Irakulis-Loitxate et al., Sci. Adv. 2021; 7 : eabf4507     30 June 2021

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

3 of 8

imaging spectrometer, which is similar to the satellite instruments 
used in this study (14). It must be noted, though, that the area sam-
pled by airborne instruments in the Four Corners region was also 
smaller (~60 km by 50 km) than the one we have been able to cover 
in the Permian basin with satellite imaging spectrometers (~150 km 
by 200 km). This implies that it is the total number of extreme emit-
ters, and not the spatial density of sources, that makes the Permian 
to be such an outstanding case.

Despite the fact that some of the emissions detected at Four 
Corners are due to coal mine vents rather than to O&G extraction 
facilities, we consider the Four Corners dataset as the best reference 
for our Permian survey, as their use of airborne imaging spectrom-
eters to detect and quantify emissions inherently leads to a system-
atic survey of high point emitters. Integrated emission estimates for 
the two regions are shown in the inset of Fig. 2. The emission rate 
reported for Four Corners corresponds to the sum of all ∼250 
plumes detected from the dataset collected in the airborne cam-
paign, for which a detection limit of ∼2 to 5 kg hour−1 was estimated 

(14). In the case of the Permian basin, we consider only the 19 plumes 
detected from one single overpass of the GF5-AHSI system on 
8 February 2020, as GF5-AHSI has the highest sensitivity and measure-
ment accuracy (see text S1 and figs. S5 and S6). The flux rates esti-
mated for those 19 plumes are aggregated and scaled from per-hour 
to per-year units for direct comparison with the per-year amounts 
given by Frankenberg et al. (14) for Four Corners. The resulting 
integrated flux from the Permian plumes is 0.28 Tg a−1 (0.20 to 
0.35 Tg a−1 95% confidence interval), which is close to the 0.3 Tg a−1 
(0.23 to 0.39 Tg a−1 95% confidence interval) reported for Four Corners, 
despite the much smaller number of plumes detected from our satellite 
data. Although our total emission rate and its confidence interval 
are calculated from a small dataset, we estimate them to have a 1- 
uncertainty below 13% (see text S3 and fig. S14). This simple compari-
son with the Four Corners dataset illustrates the outstanding strength 
of the methane emissions currently occurring in the Permian basin. 
Measurement differences between the two datasets (most important, 
spatial resolution and detection limit) prevent a more detailed analysis.

A
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J

Fig. 1. Extreme methane emissions detected in the Permian basin from satellite imaging spectroscopy data. A map with the identified methane plumes is shown 
in the central panel. Emissions are coded according to their flux rate and to the source of data (GF5-AHSI, GF5; ZY1-AHSI, ZY1; PRISMA, PRS). The small panels (A to J) 
around the main figure show examples of the detected plumes.
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We have also compared our detected point emissions with area- 
integrated emission estimates generated through top-down inver-
sions of TROPOMI satellite concentrations using the method 
described by Zhang et al. (8). This comparison of single-point emis-
sions with area-integrated emissions is only intended to provide 
further context for the magnitude of the extreme point emissions 
that we have detected. Top-down area integrated emission esti-
mates give 0.73 Tg a−1 for the Permian area sampled by GF5-AHSI 
on 8 February 2020 on the basis of a February 2020 (monthly) in-
version run. The single point emissions sampled by GF5-AHSI on 
8 February 2020 represent then a 38% (31 to 53% confidence inter-
val) of that areal emission. This “tail-heavy” nature of O&G methane 
emission distributions has been previously reported (4, 33). For 
example, our numbers are roughly consistent with a 2015 Barnet 
Shale inventory, which found that fat-tailed emissions made up 
19% of regional O&G emissions (31), whereas >500–kg hour−1 
emissions represented about 50% of the total 2015 Four Corners 
emission rate from point sources (14). Our plume detections only 
represent snapshots in time of those emissions with an intensity 
higher than 500 kg hour−1 at the time of the satellite overpass, and 
our scaling from per-hour to per-year units is done for comparison 
on a common basis. Because most of the emissions are intermittent, 
we assume that the detected sources provide a statistical sampling of 
large emitters on the regional level to scale up to a representative 
annual estimate.

Breakdown of emission sources
The high spatial resolution of our data allows us to directly attribute 
the detected plumes to specific infrastructure (see Materials and 
Methods and fig. S15). A breakdown of the characteristics of the 
34 plumes for which information on the emitting infrastructure 
could be found is presented in Fig. 3 (see table S1 for more details). 
We classify emissions in terms of the emission source (flaring, com-
pressor station, tank battery, or wellheads) and the age of the emit-
ting infrastructure.

The first important result from this analysis is that we detect 
more extreme emissions from facilities starting production in 2018 
or later than from older ones, irrespective of whether we base the 
calculation on the number of detected plumes (59 to 41%) or on the 
amount of methane emitted by them (51 to 49%). This is unexpected 
if we take into consideration that the number of wells producing 
before 2018 represents 65% of active wells in our study area (see 
Materials and Methods). According to these numbers, extreme 
emissions occur 2.6 times more frequently for new facilities (those 
from 2018 or after) than from old facilities, and the amount of 
methane emitted by new facilities is twice the one emitted from the 
older ones. This finding agrees with the results from a large helicop-
ter-based emission survey over seven U.S. basins, which found that 
well pads in their first 2 months of production were five times more 
likely to have detected emissions (7). This result supports the spec-
ulation that recently developed wells and infrastructure associated 
with these wells are the major methane emitters in the Permian 
basin (8), which is likely due to a faster development of gas ex-
traction methods than of storage and processing capabilities. We do 
not rule out the possible contribution of exploratory drilling to 
these large emissions from new facilities, as uncontrolled methane 
emissions during the drilling of new wells can be large.

Second, we find a surprisingly high share of emissions (21%, in 
terms of both number of plumes and amount of emitted methane) 
from active flaring processes (see fig. S15 for an example of a large 
methane plume being emitted during flaring). The flux rates of the 
detected emissions from flaring are between 1640 and 2640  kg 
hour−1 (see table S1). Although this range is in the lower half of our 
emission distribution (Fig. 2), such high emission rates can only be 
explained by inefficient or malfunctioning flaring operations (7, 34). 
This finding agrees with a study in the Bakken Shale, which estimated 
that incomplete combustion from flares contributed almost 20% of 
the total field emissions of methane, most of which was due to a 
small number of low-efficiency flares (35). We note that all seven 
detected flaring-related emissions are from new well pads and 

Fig. 3. Breakdown of satellite-detected extreme methane emissions (>500 kg 
hour−1) over the Permian basin. Emissions are classified in terms of the year 
in which the infrastructure started production (left) and of the emission source 
(right). The data represent the percentage of plumes detected in each category 
as a function of the total number of plumes for which source information was 
available.

Fig. 2. Distribution of emission rates for the 37 methane plumes detected 
over the Permian basin with satellite imaging spectroscopy. The last bar corre-
sponds to the massive emission displayed in Fig. 1C, whose flux rate exceeds the 
plot range. The inset plot shows a comparison of area-wide flux estimates from the 
integration of single emissions detected over the Permian on 8 February 2020 by 
the GF5-AHSI system (emissions marked as red circles in the main plot) and over 
the Four Corners region during the April 2015 AVIRIS-NG airborne campaign de-
scribed in (14). Vertical error bars correspond to 1- precision errors in flux rate 
calculations, and horizontal error bars correspond to the 95% confidence interval 
in areal flux estimates calculated through bootstrapping for the two datasets.
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tanks, namely, one infrastructure element from 2017, four from 
2018, and two from 2019 (see table S1). This reinforces the hypoth-
esis that the higher extraction potential of new infrastructure might 
not be matched by an equal development in gathering, processing, 
and transportation facilities.

DISCUSSION
Our space-based high-resolution mapping approach has enabled a 
first large-scale survey of methane point emitters in the Permian 
basin, one of the top O&G-producing regions of the world. The 
30-m resolution and wide area coverage of the newly developed sat-
ellite technology used in this work has proven to be an effective 
means to detect, quantify, and classify strong methane point emis-
sions. From satellite data acquired during several days in 2019 and 
2020, we find a large number of extreme point sources, with flux 
rates typically ranging from 500 to 6000 kg hour−1 and a recent mas-
sive emission of >18,000 kg hour−1. Our analysis of emission sources 
reveals that new facilities (starting production in 2018 or later) are 
major emitters, which could be caused by a limited ability of stor-
age, processing, and transportation facilities to cope with the high 
production of unconventional wells. This is supported by the high 
fraction of emissions from flaring (21%, all of them from new wells), 
as it has recently been reported in mass media (36). This finding has 
strong implications for the design and regulation of O&G produc-
tion activities in the Permian basin, and could be extrapolated to 
other O&G-producing regions.

We have demonstrated that spaceborne high-resolution imaging 
spectroscopy has a great potential for both operational surveillance 
of fugitive or unpermitted emissions from O&G activities and for 
the improvement of bottom-up emissions inventories. However, 
further work is needed on both spaceborne imaging spectrometer 
technology and data processing methods to lower the 500 kg hour−1 
detection limit that we estimate for our data and to improve spatial 
and temporal coverage. A number of satellite high-resolution imag-
ing spectroscopy missions with similar characteristics to the ones 
used in this work will be launched in the next years. These include, 
first, a new version of the GF5-AHSI system, the German EnMAP 
mission (37), and NASA’s EMIT, planned for launch in the next 
couple of years, and, later, European Space Agency’s (ESA’s) CHIME 
and NASA’s SBG missions in the 2025–2030 time frame. The latter 
two will combine a high measurement sensitivity, a global coverage at 
30-m sampling, a 2- to 3-week revisit time, and an open data policy. 
In combination with TROPOMI’s daily revisit and high-accuracy mea-
surements, to be soon complemented by the upcoming MethaneSAT 
mission, high-resolution imaging spectroscopy missions have a 
strong promise for operational, unbiased, open-access, and cost- 
effective monitoring of methane point sources. It can be anticipated 
that this global scenario for high-resolution methane mapping will 
be complemented by private satellite missions, of which the GHG-
Sat-D mission is currently the best example, and by multispectral 
missions with spectral coverage of the 2300-nm spectral feature 
such as Sentinel-2, sensitive to large methane emissions over spa-
tially homogeneous targets (38).

Our results suggest that the rapid installation of new O&G pro-
duction facilities in the Permian basin might not be counterbalanced 
by sufficient parallel development of gas gathering and processing 
infrastructure, which would lead to a high concentration of extreme 
emissions in the region due to issues such as unlit associated gas 

flares (39). This situation could be affected by environmental regu-
lations, which have been recently weakened at the federal level (40). 
We argue that satellite-based methods are valuable to detect and 
monitor potential changes in methane point emissions in O&G- 
producing regions, which will also enable the industry to efficiently 
reduce emissions by identifying and repairing problems causing 
extreme, but sometimes intermittent, emissions that are often 
unnoticed by traditional leak detection approaches.

MATERIALS AND METHODS
Satellite imaging spectroscopy data
Imaging spectroscopy, also known as hyperspectral imaging, is a 
remote sensing technique in which images of the solar radiation 
reflected by the Earth are produced in hundreds of spectral channels 
between the visible and the shortwave infrared part of the electro-
magnetic spectrum (roughly 400 to 2500 nm). This dense spectral 
sampling enables the use of spectroscopic techniques to detect and 
quantify the Earth’s surface and atmosphere constituents based on 
their spectral signatures.

We use data from three new hyperspectral satellite missions, 
each one carrying an imaging spectrometer as payload. These are 
two versions of the AHSI onboard the GF5 and ZY1 platforms (China, 
launched in May 2018 and September 2019, respectively) (27) and 
the core instrument onboard PRISMA (Italy, launched in March 
2019). These instruments sample the 400- to 2500-nm spectral win-
dow with a pixel size of 30 m. AHSI images cover an area of 60 km 
by 60 km, whereas PRISMA images cover areas of 30 km by 30 km. 
Measurements in the short-wave infrared spectral region from 2000 to 
2500 nm sample absorption features from water vapor, carbon 
dioxide, and methane. The 2100- to 2450-nm window is especially 
sensitive to methane (see fig. S1) and is therefore the one we use for 
our methane retrievals.

In our study, we have combined a total of 30 images acquired 
from all three systems to cover a 150 km–by–200 km area in the 
Permian basin (see fig. S2). These missions are operated through 
sporadic pointing at selected targets, so they do not acquire data 
systematically over every single point on Earth (as opposed to global 
coverage missions such as TROPOMI). The acquisitions used in 
this work were mostly taken between May 2019 and August 2020, 
and most of the detections are from images acquired on four differ-
ent days (15 May 2019 and 8 February 2020 for GF5-AHSI, and 
1 November 2019 and 29 December 2019 for ZY1 AHSI) (see table 
S1). In particular, 19 plumes were detected from a single overpass of 
GF5-AHSI on 8 February 2020.

Retrieval of methane concentration enhancements
We calculate methane concentration enhancements (i.e., incre-
ments above background levels in the amount of methane present 
in the atmospheric column, CH4) using a so-called matched filter 
image processing technique applied to spectra in the 2110- to 2450-nm 
spectral fitting window. Matched filter methods have been widely 
tested for methane retrieval from airborne imaging spectroscopy 
data (12, 41) and on one occasion with spaceborne data (24). These 
methods seek to detect a target spectrum (in our case, a methane 
absorption spectrum) across a hyperspectral image using statistics 
extracted from the data. We use radiative transfer simulations to 
generate a unit absorption spectrum, which represents the change 
in radiance for a 1-ppm (part per million) increase in methane 
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concentration over a pathlength of 1 m. The matched filter uses this 
unit absorption spectrum to convert changes in radiance into CH4 
in ppm·m units. Assuming a scale height of 8 km, 10,000 ppm·m 
translate to a CH4 of 1.25 ppm (24). The statistics needed by the 
matched filter (mean spectrum and covariances) are calculated on a 
per-column basis to account for across-track changes in the instru-
ment’s radiometric and spectral response usually occurring in 
imaging spectrometers. The retrieval is run for all pixels of the im-
age to produce CH4 maps with a 30-m sampling.

We have evaluated the performance of the matched filter retriev-
al with our satellite data through a simulation-based sensitivity 
analysis optimized for the Permian conditions. Details are provided 
in text S1. From this analysis, we conclude that the retrieval is not 
biased, that GF5-AHSI is substantially more sensitive to CH4 than 
ZY1-AHSI and PRISMA, and that representative CH4 1- preci-
sion errors are 63, 101, and 149 ppb (parts per billion) for GF5-AHSI, 
ZY1-AHSI, and PRISMA, respectively (figs. S5 and S6).

Estimation of emission rates from methane concentration 
enhancement maps
From the resulting CH4 maps, we detect emission plumes through 
visual inspection of the data. We search for methane enhancements 
within the image with the typical shape of a gas plume from a point 
emitter (i.e., higher concentrations at the source and progressive 
decrease downwind). We compare the plume direction with that of 
the wind as further evidence to conclude that the enhancement is 
from a real emission and not a retrieval artifact.

For each of the detected plumes, we apply a 200-ppm·m thresh-
old to define the background signal and manually define a polygon 
to mask it out from the background (see fig. S3). With the pixels 
included in the plume mask, we calculate an IME as the total mass 
of methane contained in the plume (14). The IME is typically ex-
pressed in kilograms and represents the total mass of excess meth-
ane within the plume structure. After Varon et al. (42), we link the 
IME to the emission flux rate Q as

  Q =    U  eff   ⋅ IME ─ L    (1)

where Ueff is an effective wind speed and L is the plume length scale 
(square root of the plume mask area). For the calculation of Ueff, we 
use large eddy simulations to establish the following empirical rela-
tionships between Ueff and the measurable 10-m wind speed U10 
(see fig. S4)

   U  eff   = 0.34 ⋅  U  10   + 0.44  (2)

These simulations were specifically performed for a spatial reso-
lution and measurement uncertainty compatible with our data us-
ing the methodology described by Varon et al. (42). Our processing 
takes U10 data from the GEOS-FP dataset for the time and location 
of each detected plume.

Assessment of uncertainties in the estimated emission rates
For the estimation of the associated flux rate uncertainties, we have 
implemented an uncertainty propagation formalism similar to the 
one proposed by Cusworth et al. (16). We assume errors in the in-
put 10-m wind speed U10 and the IME derived from the CH4 
maps. We choose a conservative 50% uncertainty estimate in 
GEOS-FP U10 data consistent with the ∼1.5-m/s error SD in wind 

speed given by Varon et al. (26). A random distribution of U10 values 
is generated around the actual GEOS-FP U10 value for each plume. 
A distribution of Q values is calculated for each plume from the U10 
distribution using Eqs. 1 and 2 with the actual values of IME and 
L. The SD of the resulting Q ensemble is taken as the precision error 
(1-) of the estimated flux for each plume.

The resulting absolute and relative 1- uncertainties for the 
37 plumes detected in this study are presented in fig. S7. Relative pre-
cision errors are in the range of 20 to 45% and are strongly dominated 
by the contribution of U10 uncertainties on the flux calculation (∼18 to 
40%), whereas uncertainties from retrieval noise in the IME cal-
culation are typically between 2 and 7%. The ranges for the un-
certainty contributions from wind and retrieval noise are roughly 
consistent with the study by Varon et al. (26) for the GHGSat-D 
satellite (16 to 27% for the wind contribution and 7% for the re-
trieval, for a total error of 40 to 45%) despite the much finer spectral 
resolution of GHGSat-D than the imaging spectroscopy mission 
used in this study. Uncertainties in flux rate estimation from satellite 
imaging spectroscopy data were also analyzed by Cusworth et al. (23). 
They estimated a relative random error in the range of 15 to 25% for 
bright surfaces such as in the Permian, although the absolute flux 
rates were underestimated by ∼35% in the case of a bright surface and 
900 kg hour−1 source, which is the closest scenario to the observa-
tion conditions of our Permian study. According to the authors, 
one of the causes for this underestimation could be the fact that the 
U10 − Ueff relationship was not explictly derived for the spatial reso-
lution and retrieval sensitivity of the imaging spectroscopy missions 
under evaluation, which is not the case in our study.

The magnitude of our estimated plume-level emission rates has 
been further assessed through a simulation-based study with the 
Weather Research Forecast model version 3.9.1 coupled with 
Chemistry in Large Eddy Simulation mode (WRF-Chem-LES) (43). 
Three of the observed plumes (k, l, and x) have been simulated with 
WRF-Chem-LES and wind data from National Oceanic and Atmo-
spheric Administration’s High-Resolution Rapid Refresh (HRRR) 
model. The results from this analysis confirm the extreme magni-
tude of the estimated Q as well as the validity of our precision error 
estimates derived from the propagation of wind uncertainties. On 
the other hand, this analysis has revealed that assumptions of the 
IME-based Q estimation model, not included in our precision error 
estimates, can also represent an important source of uncertainty. 
See text S2, fig. S8, and table S2 for further details.

Attribution of plumes to emitting infrastructure elements
The 30 m–by–30 m spatial sampling of our satellite imaging spec-
troscopy data enables the identification of methane point sources 
(see fig. S15), even within oil and gas extraction platforms, and stor-
age tank or compressor station platforms, which have a typical size 
between 60 and 600 m2 in the Permian. We use high-resolution 
Google Earth (GE) images co-registered with the methane enhance-
ment maps to attribute sources to emissions. Sentinel-2 10-m images were 
used instead of GE images in those cases in which the GE data were 
not available for the time and location of the detected methane plume.

Some details on platform type (oil or gas well or tank battery), 
extraction start year, and status (active/inactive) have been collect-
ed from the interactive PermianMAP (44) of the Environmental 
Defense Fund (EDF), which offers data generated by the Railroad 
Commission of Texas (45) and New Mexico’s Department of Energy, 
Minerals, and Natural Resources (46). Other data not available in 
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PermianMAP have been obtained through visual interpretation of 
the satellite images and the information provided by the Sentinel-2 
historical record. Using this information, we can identify the emis-
sion source of most of the detected plumes, being these compressor 
stations, tank batteries, wellheads, or emissions derived from flar-
ing. The latter are easily identified by the high signal emitted by the 
torch flame at ∼2300 nm (34) and by the location of the plume 
above the chimney (see fig. S15).

Regarding the information on well age, we extracted well infor-
mation from Enverus DrillingInfo (29) for all wells in New Mexico 
and Texas reporting production in 2020. We calculate statistics for 
wells in the region with most plume detections (31.0° to 32.5°N,103.3° 
to 104.2°W). In this count, the term “wells” refers to well pads that 
may contain multiple wells and infrastructure elements. To see 
when wells were finished, we use their month of first production as 
completion date. Because wells that have been active for a long time 
but hardly produce anymore (stripper wells) can skew the average, 
we also calculate mean well ages for the subset of wells with substan-
tial production (defined as 10% of the mean production per well). 
The count has resulted in a total number of wells of 6993, with 4516 
of them producing since before 2018 (65% of the total). The average 
year of start of production for these wells with substantial produc-
tion in the area of interest is 2015.35.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/27/eabf4507/DC1
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