
1. Introduction
Fluctuations in the magnetic and electric fields result in diffusive motion of radiation belt electrons across 
Roederer's L* parameter (Fälthammar, 1965; Roederer, 1970), a version of the third adiabatic invariant. L* 
diffusion (henceforth referred to as radial diffusion) occurs at constant first and second adiabatic invariants, 
and the electron's energy is increased (reduced) with diffusion into regions of stronger (weaker) magnetic 
field. Much of the dynamics of the radiation belts can be attributed to radial diffusion and the subsequent 
energy change of the electron populations (Shprits et al., 2008), so understanding the rate of the diffusion is 
a vital factor for accurately predicting and reconstructing the evolution of electron populations.

The primary origin of electric and magnetic fluctuations, driving radial diffusion, is widely accepted to be 
ultra-low frequency (ULF) wave activity (Elkington et al., 1999) in the Pc-5 band (1.67–6.67 mHz (Jacobs 
et  al.,  1964)). Wave-particle interactions between these ULF waves and radiation belt electrons are par-
ticularly effective when the wave frequency is a multiple of the electron drift frequency, constituting a 
drift-resonant interaction. If interactions with Pc-5 waves continue over a broad frequency range, then the 
displacement of a particle in L* may evolve stochastically, following continuous interactions with multiple 
waves, and be described as a diffusive process (Ukhorskiy & Sitnov, 2013; Ukhorskiy et al., 2009). In this 
diffusive regime, the radial diffusion coefficient, LLD , quantifies the mean square displacement of electrons 
across L*, and is a measure of the radial diffusion rate.
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Analytic expressions describing rates of radial diffusion differ depending on whether the waves can be 
characterized as electromagnetic or electrostatic in nature. In the former case, the magnetic field varia-
tions perturbing particle drifts are accompanied by induced electric fields satisfying Faraday's law, and may 
be exemplified by Alfvénic fluctuations in the magnetosphere (e.g., Fälthammar, 1965). In the latter case, 
large-scale variations in the dawn-dusk potential electric field resulting from reconnection processes may 
drive electrostatic variations (e.g., Cornwall, 1968), similarly perturbing particle orbits based on the effect of 
the electric field alone. In both cases, expressions may be derived based either on a description of the effect 
of the perturbing waves on the drift motion of a trapped particle (Fälthammar, 1968; Schulz & Eviatar, 1969; 
Schulz & Lanzerotti,  1974; Ukhorskiy et  al.,  2005), or beginning with a Hamiltonian description of the 
wave-particle interaction (Brizard & Chan, 2001). In the case of electrostatic variations, the appropriate 
diffusion coefficient may be written as

 6
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1 , .

8
ES E
LL m d

mE E
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  (1)

Here, a particle drifting about the Earth with frequency d  will resonantly interact with waves matching the 
drift resonant condition dm  , where m describes the global azimuthal structure of the waves. In Equa-
tion 1, EB  is the Earth's dipole moment, ER  is Earth's radius, and E

mP  is the power spectral density (PSD) of 
the perturbing electric fields at the resonant frequency. The electrostatic diffusion coefficient (Equation 1) 
has an explicit 6L  dependence, in addition to any L dependence in the PSD, E

mP .

If, on the other hand, the particles are interacting with electromagnetic Alfvénic fluctuations (where mag-
netic and electric perturbations are related by Faraday's law), the radial diffusion coefficient takes the form
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In this expression, B
mP  is the PSD of the compressional wave magnetic field at frequency dm , and   and 

 are the relativistic Lorentz factor and first adiabatic invariant, respectively. The L dependence of the 
electromagnetic diffusion coefficient (Equation 2) is more complicated since   also depends on L. In the 
ultra-relativistic limit 2 3L  , so for radiation belt electrons, 4 2/L   is approximately proportional to 7L , 
not including the L dependence implicit in B

mP  (Elkington et al., 2003).

We note that in the classic “electromagnetic” diffusion formulas given by Fälthammar (1965), the particle 
perturbations leading to diffusion result from two effects: variations in the magnetic field along the drift 
orbit, as well as the electric field induced by these magnetic field fluctuations. That is, the particle motion is 
a result of the Faraday-coupled electric and magnetic field variations along a trajectory. In practice, howev-
er, it is difficult to distinguish between the electrostatic variations implied in Equation 1 from the induced 
electric fields measured in space, leading to the Fei et al. (2006) expression in Equation 2. Perry et al. (2005) 
showed that the magnetic field phase and the induced electric field phase are not independent. The Fara-
day-coupled fields, including correct phase, will generally lead to reduced rates of radial diffusion from that 
given in Equations 1 and 2.

A number of studies have calculated LLD  coefficients based on the PSD of ULF waves (e.g., Ali et al., 2015, 
2016; Barani et al., 2019; Brautigam & Albert, 2000; Lejosne et al., 2013; Liu et al., 2016; Olifer et al., 2019; 
Ozeke et al., 2012, 2014), using different data sets and formulations. Several options for LLD  coefficients are 
therefore available. However, a full comparison of how well each available LLD  parameterization performs 
in a diffusion model, both in respect to observations, and to the results from other LLD  coefficients, has yet to 
be determined. This paper is an extension of a previous study (Drozdov, Shprits, Aseev, et al., 2017) in which 
the sensitivity of long-term simulations, performed with the Versatile Electron Radiation Belt (VERB) code, 
to both the Brautigam and Albert (2000) and Ozeke et al. (2014) radial diffusion coefficients ( LLD ), was in-
vestigated. Here we consider more recent parameterizations of LLD  (Ali et al., 2015, 2016; Liu et al., 2016) 
and an additional LLD  by Brautigam et al. (2005), contrasting the results achieved using these parameteriza-
tions to the widely used Brautigam and Albert (2000) and Ozeke et al. (2014) diffusion coefficients.
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1.1. Parameterizations of Radial Diffusion Coefficients

The radial diffusion coefficients given by Brautigam and Albert (2000) consist of both an electromagnetic 
and electrostatic term (denoted here as BAEM

LLD  and BAES
LLD , respectively), following the formalism present-

ed by Fälthammar (1965). A month of in-situ measurements at L = 6.6 (Lanzerotti & Morgan, 1973) and 
18 days of ground magnetometer measurements at L = 4 (Lanzerotti & Morgan, 1973) were used to con-
struct a Kp parameterized BAEM

LLD  coefficient. Brautigam and Albert (2000) then calculated the electrostatic 
BAES
LLD  term following Cornwall (1968), as a linear function of Kp, defined for 1  Kp  6. Subsequent work 

has demonstrated that using BAES
LLD  alongside BAEM

LLD  in radiation belt models results in an over-estimation 
of the electron content in the slot region (K.-C. Kim et al., 2011; Ozeke et al., 2012). We therefore follow 
the standard convention here (e.g., Glauert et al., 2014) and exclude BAES

LLD  from this study, using only the 
electromagnetic component

,BA BAEM
LL LLD D (3)

where
10 0.506 9.32510BAEM Kp

LLD L   (4)

in units of 1day .

Ozeke et al. (2014), following the work by Fei et al. (2006), separated the radial diffusion coefficients into 
two terms: one accounting for the azimuthal electric field OE

LLD  of the ULF waves, and the other for the 
waves' compressional magnetic field OM

LLD . Collectively, they provide the O
LLD  coefficient:

.O OM OE
LL LL LLD D D  (5)

In recent studies, there has been some discussion as to whether it is valid to assume that the azimuthal 
electric field and the compressional magnetic field are uncorrelated (Lejosne & Kollmann, 2019; Lejosne 
et al., 2013), a necessary assumption to treat OE

LLD  and OM
LLD  separately. However, we do not consider this 

question further here, and instead focus on how well the Ozeke et al. (2014) LLD  is able to reproduce obser-
vations. Both OM

LLD  and OE
LLD  are parameterized by the Kp index, where the azimuthal electric field PSD val-

ues used to determine OE
LLD  were given by 15 years of ground magnetometer measurements at 7 different L 

shells. The resulting expression for the electric OE
LLD  coefficient is

2 28 13 0.0327 0.625 0.0108 0.4996.62 10 10OE L L Kp Kp
LLD L         (6)

in units of 1day . The OM
LLD  parameterization was determined from GOES, AMPTE, and THEMIS satellite 

measurements, and is given as
6 8 0.217 0.4612.6 10 10OM L Kp

LLD L      (7)

again, in units of 1day . Similar to the Brautigam and Albert (2000) radial diffusion coefficients, the Ozeke 
et al. (2014) coefficients are also determined for Kp  6.

More recently, Ali et al.  (2016) also used the approach of separating the radial diffusion coefficient into 
terms for the azimuthal electric field and the compressional magnetic field (Brizard & Chan,  2001; Fei 
et al., 2006)

.A AM AE
LL LL LLD D D  (8)

The diffusion coefficients given by Ali et al.  (2016) were determined using three years of the Van Allen 
Probe data set, utilizing the Electric Fields and Waves instrument and the Electric and Magnetic Field 
Instrument Suite. The Kp index was again used to parameterize the magnetic AM

LLD  and electric AE
LLD  coeffi-

cients, resulting in
* *exp( 16.253 0.225 )AM

LLD Kp L L      (9)

and
* *exp( 16.951 0.181 1.982 )AE

LLD Kp L L       (10)
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both in given units of 1days  for 0  Kp  5. Notice that, while the Brautigam and Albert (2000) and Ozeke 
et al. (2014) parameterizations are in terms of L, the McIlwain L value (McIlwain, 1961), A

LLD  is explicitly 
given in terms of L*.

Previously, Ali et al. (2015) constructed a parameterization for the magnetic component of LLD  using obser-
vations from the magnetometer on board the Combined Release and Radiation Effects Satellite (CRRES). 
Magnetic wave power was analyzed to derive a fit for the magnetic diffusion coefficient (Ali et al., 2015, 
Equation 15). The coefficients for this fit were provided in a form of lookup table for different levels of ge-
omagnetic activity. In his postdoctoral thesis, Ali (2016) continued the construction of M

LLD  as a function of 
L, Kp, and , based on the same data set as Ali et al. (2015), resulting in:

( ) exp( 16.618 0.00060104 0.10003 )AM CRRES
LLD Kp L L        (11)

where the units of ( )AM CRRES
LLD  and  are 1days  and MeV/G, respectively. Equation  11 is applicable for 

4.0 6.5L  , 1 7Kp  , 500 5000   MeV/G, and is similar to Equation 9; however, it provides explic-
it dependence on  and is based on observations taken during the previous solar cycle.

Assuming a purely electrostatic field, a parameterization of the electrostatic component of LLD  based on 
CRRES measurements was given by Brautigam et al. (2005). The Electric Field Instrument on board CRRES 
was used to derive a fit of electric field power spectral as a function L, Kp, and frequency. Based on the for-
malism presented by Fälthammar (1965), the radial diffusion coefficient can be written as

2 2
( , , )

8
E d
LL

E eq

P f L KpD
R B


  (12)

where P is an electric PSD, df  is drift frequency, ER  is the Earth radius, and eqB  is equatorial magnetic field 
at the corresponding L. Using the azimuthal component of the global electric field from Holzworth and 
Mozer (1979), Brautigam et al. (2005) derived an expression for P:

( , , ) exp( )b
dP f L Kp a L c Kp    (13)

where P is in 2(mV / m) /mHz, and coefficients a, b, and c are given in a lookup table for different values of 
the drift frequency df  (Brautigam et al., 2005, Table 3). Following the drift frequency df  (in mHz) equation 
from Brautigam et al. (2005), we assume a dipole magnetic field model to obtain the drift frequency formula:

4

0.1183

1.2133
df

L L








   
 (14)

where  is in units of MeV/G. The electrostatic component of radial diffusion coefficient, ( )BE CRRES
LLD , is then 

given as
( ) 4 62.7818 10 ( , , )BE CRRES

LL dD L P f L Kp    (15)

in units of 1days .

The final radial diffusion coefficient considered in this study is given by Liu et al. (2016). Unlike the studies 
discussed above, Liu et al.  (2016) determine only the electric field component from the Fei et al.  (2006) 
approach, arguing that, since the electric component is greater than the magnetic by orders of magnitude, 
radial diffusion is primarily controlled by the electric component of the ULF wave.

.L LE
LL LLD D (16)

A similar argument was also discussed by Ozeke et al. (2014) and Ali et al. (2016). Seven years of measure-
ments from the Time History of Events and Macroscale Interactions during Substorms (THEMIS) satellites 
were used to determine a Kp and -dependent expression for LE

LLD ,
6 0.281 8.184 0.6081.115 10 10LE Kp

LLD L        (17)

in units of 1day . Previously, Ozeke et al. (2014) and Ali et al. (2016) had not identified a  dependence in the 
LE
LLD  coefficient. Brautigam and Albert (2000) did include a  dependence in BAES

LLD ; however, the convention 
to omit BAES

LLD  and use only BAEM
LLD  for the Brautigam and Albert (2000) parameterization means that, for the 
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work presented in this paper, only the coefficients provided by Liu et al. (2016), Ali (2016), and Brautigam 
et al. (2005) vary with .

1.2. Various Assumptions for Derived Radial Diffusion Coefficients

When considering the variety of the available radial diffusion coefficients, it is worth noting the assump-
tions made and data used for their evaluation. The measurements used by Brautigam and Albert (2000) are 
very limited, both spatially and temporally. The continuous function for BAEM

LLD , extending over 3 6.6L   ,  
is constructed based on measurements from one month of data at two locations: 4L   and 6.6L  . 
Both Brautigam et al. (2005) and Ali et al. (2016) use several months of CRRES observations. Brautigam 
et al. (2005) considered the period from January through October 1991, while Ali et al. (2016) utilized a year 
of measurements, extending from October 1990 until October 1991.

Ozeke et al. (2014) used the longest and most extensive data set. The ground-based measurements included 
CARISMA (Canadian Array for Real-time Investigations of Magnetic Activity) observations from January 
1990 to May 2005, and SAMNET (Sub-Auroral Magnetometer NETwork) observations from 1987 to 2002. 
These observations involved mapping ULF wave power observed on the ground to a corresponding electric 
field in space, making a number of assumptions about the spatial structure of the waves, and characteriz-
ing all fluctuations observed on the ground as guided Alfvén waves in a pure dipole field. In situ satellite 
measurements used by Ozeke et al. (2014) included GOES observations from 1996 to 2005, and measure-
ments from 5 THEMIS spacecraft in the range L = 5–7 from 2007 to 2011. The authors also indirectly in-
cluded measurements from AMPTE (Active Magnetospheric Particle Tracers Explorers) by using the figure 
of PSD presented by Takahashi and Anderson  (1992). Liu et  al.  (2016) also used THEMIS data, taking 
THEMIS-D measurements from January 2008 to December 2014. The most recent satellite data was used by 
Ali et al. (2016), who took Van Allen Probes measurements from September 2012 to August 2015.

Observational platforms can themselves influence the calculated PSD. As noted in Ozeke et al. (2014), the 
high apogee of the THEMIS spacecraft leads to extreme Doppler effects in the inner magnetosphere, caus-
ing an over-estimation of the power spectral densities at low-L. For this reason, Ozeke et al. (2014) only con-
sidered THEMIS measurements in the L = 5–7 range in the validation of their method. THEMIS also suffers 
from “shorting effects” as it moves into the plasmasphere, causing large DC offsets that can potentially pol-
lute the PSD in the inner magnetosphere unless properly accounted for and removed (Califf & Cully, 2016). 
Similarly, DC offsets are often observed on THEMIS (which may be attributable to photoelectrons) that vary 
with spacecraft position; these shifting errors may also contribute to an overestimation of observed power 
at ULF frequencies (Califf et al., 2014). Additionally, rotational eclipses on THEMIS at dawn and dusk make 
observations of the azimuthal electric field at these local times difficult, and the lack of information along 
the THEMIS spin axis affects measurements, when the local magnetic field differs from the mean field-
aligned system (Malaspina et al., 2015), can similarly cause significant errors in THEMIS-estimated electric 
fields used by Liu et al. (2016) if these effects were not properly accounted for.

Ozeke et al. (2014) make assumptions regarding the azimuthal spatial structure of the wave activity, result-
ing in a potential factor of 4 difference in the PSD mapped from the ground into space. Of particular concern 
may be the misidentification of Alfvénic waves driven by drift-bounce (Mager & Klimushkin, 2005; Ozeke & 
Mann, 2001) and other plasma instabilities, which will cause overestimation of the PSD causing diffusion.

Finally, single-point measurements, of necessity, require some assumptions about the azimuthal mode 
structure of the observed waves. For the LLD  estimates provided in all the works under examination here, 
an 1m   assumption is uniformly made. However, modeling (Elkington et al., 2012; Z. Li et al., 2017; Tu 
et al., 2012) and observational (Barani et al., 2019; Sarris et al., 2013) studies indicate that significant power 
may be attributable to larger azimuthal m numbers, causing an overestimation of the power in the 1m   
mode.

1.3. Comparison of the Radial Diffusion Coefficients

Figure 1 shows a comparison between different radial diffusion coefficients. Two values of Kp are consid-
ered: Kp = 1 for low activity (left panel) and Kp = 5 for active conditions (right panel). For the Ali (2016) 
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and Brautigam et al. (2005) coefficients, a range of  values are shown, [500;5000]   MeV/G, signified by 
shaded areas. For the Liu et al. (2016) coefficient, the range is [400;8000]   MeV/G. The range of  shown 
is either explicitly prescribed by the model or matches that shown in the associated study. Sudden changes 
in the Brautigam et al. (2005) coefficient at 4.2L   are due to the use of the lookup table in Equation 13.

At both levels of activity, the Ozeke et al. (2014) OM
LLD , Ali et al. (2016) AM

LLD , and Ali (2016) ( )AM CRRES
LLD  are 

considerably lower than the E
LLD  coefficients, indicating that the rate of radial diffusion is primarily governed 

by the azimuthal electric fields when considered in the Fei et al. (2006) approach. As mentioned above, this 
observation has been discussed in a number of studies (e.g., Ali et al., 2015, 2016; Z. Li et al., 2016; Ozeke 
et al., 2014). The coefficients from Brautigam and Albert (2000) BA

LLD , Brautigam et al. (2005) ( )BE CRRES
LLD , 

Ozeke et al. (2014) O
LLD , and Liu et al. (2016) L

LLD  are in close agreement for L = 3–5.5 at Kp = 1. However, 
at Kp = 5, while BA

LLD  and O
LLD  are still comparable, L

LLD  and ( )BE CRRES
LLD  have not increased as readily. The 

L
LLD  and ( )BE CRRES

LLD  coefficients increase with decreasing , suggesting that lower energy electrons undergo 
faster radial diffusion. At Kp = 1, the L

LLD  values for 400  MeV/G are the largest of all shown, but for 
Kp = 5, L

LLD  is less than BA
LLD  and O

LLD  over all L and . The magnetic radial diffusion coefficient of Ali (2016), 
( )AM CRRES

LLD , increases with increasing . However, the largest values of the magnetic diffusion coefficient are 
still lower than the electric diffusion coefficients, given the limits of the fitted domain ( 5000   MeV/G).

While a comparison of LLD  values is instructive, a better test of the different parameterizations is use in a 
radiation belt model followed by comparison with observations. In this study, we use the parameterizations 
of radial diffusion described above in long-term runs of the VERB model and compare results with the Van 
Allen Probes observations.

2. Methodology
2.1. Data

In this study, we considered two periods. A period nearly from the start of the Van Allen Probes mission 
(Stratton et al., 2013), spanning from October 1, 2012 to October 1, 2013, and a period from January 2015 to 
January 1, 2016.
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Figure 1. A comparison of various radial diffusion coefficients. We show the electromagnetic D
LL

 from Brautigam 
and Albert (2000) (dark blue line); magnetic LLD  from Ozeke et al. (2014) (green dashed); electric LLD  from Ozeke 
et al. (2014) (green solid line); electric LLD  at 1000   MeV/G from Liu et al. (2016) (solid magenta line), as well as 
the variation of this coefficient for [400,8000]   (magenta area); electric LLD  from Ali et al. (2016) (red solid line); 
magnetic LLD  from Ali et al. (2016) (red dashed line); magnetic LLD  at 1000   MeV/G from Ali (2016) (cyan line), 
as well as the variation of this coefficient for [500,5000]   MeV/G (cyan area); electric LLD  at 1000   MeV/G from 
Brautigam et al. (2005) (orange line), as well as the variation of this coefficient for [500,5000]   MeV/G (orange area). 
When a  range is given, dashed lines indicate left (lower) boundary of  range. Left panel corresponds to Kp = 1 and 
right panel to Kp = 5.
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Initial and boundary conditions for the VERB model runs are formed from measurements from Van Al-
len Probe satellites RBSP-A and RBSP-B, using the Relativistic Electron Proton Telescope (REPT: Baker 
et al., 2013) and the Magnetic Electron Ion Spectrometer (MagEIS: Blake et al., 2013) instruments. MagEIS 
measurements are used for 2.1 MeV and REPT for energies 2.1 MeV. The twin Van Allen Probes have 
an orbital period of ∼9 h, regularly sampling * 1.2 5.5L   . Across MagEIS and REPT, electron energies 
from 30 keV to 8  MeV can be measured, and the spinning satellite is capable of sampling several pitch 
angle sectors. To formulate the data-driven boundaries, the measured flux values were binned into 8 hour 
bins, and by *L  from *L  = 1–5.5 in steps of 0.1 *L . The electron flux is linearly interpolated onto an equatorial 
pitch angle grid, in steps of 5, from 0 to 90.

To illustrate comparisons of the model output with observations, measurements of 1  MeV electrons from 
the MagEIS detector at an equatorial pitch angle ( eq ) of 70 are used. In addition, comparisons at other 
energies ( 0.6  MeV from MagIES and 4.2 MeV from REPT) are presented in Supporting Information S1. 
All equatorial pitch angles and *L  values are calculated with the TS07D magnetic field model (Tsyganenko 
& Sitnov, 2007). We used the TS07D magnetic field model to obtain both the local and equatorial magnetic 
fields when calculating the equatorial pitch angles, assuming conservation of the first adiabatic invariant.

2.2. VERB Code

The evolution of electron phase space density in the radiation belts is described by the Fokker-Planck equa-
tion (Schulz & Lanzerotti, 1974). Using a single grid approach, the VERB code (Shprits et al., 2015; Subbotin 
& Shprits, 2009, 2012) computes a numerical solution of the equation:
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where V is adiabatic invariant, 2( 0.5)V K    and G B R m K LE   2 8 0 50

2

0

2 2  /( . ) /
*  is the Jaco-

bian of the transformation from an adiabatic invariant system ( , , )J  , 0B  is the field on the equator of 
the Earth's surface, 0m  is the electron's rest mass. Bounce-averaged diffusion coefficients are denoted by 

* * , ,VV KKL L
D D D  and VKD . A loss term of / lcf   is included to incorporate losses to the atmosphere and mag-
netopause, where lc  represents the electron's lifetime inside the loss cone or outside of the last closed drift 
shell (LCDS), which was calculated using the TS05 magnetic field model (Tsyganenko & Sitnov, 2005). The 
lifetime of the particles outside the LCDS is calculated based on their energy and pitch-angle dependent 
drift period.

V  and K  are convenient for numerical calculations, because K  is independent of particle energy, and V  
depends only weakly on particle pitch angle. We used the Full Diffusion Code (Ni et al., 2008; Orlova & 
Shprits, 2011; Shprits & Ni, 2009) to compute bounce-averaged diffusion coefficients in the manner de-
scribed in previous work by Drozdov, Shprits, Aseev, et al.  (2017). Plasmaspheric hiss is included inside 
the plasmapause using the wave model by Orlova et al. (2014), chorus waves are included on the day and 
night sides (Orlova et al., 2012), and VLF transmitters and lightning-generated whistlers are included, as 
described by Subbotin et al. (2011). To accurately simulate multi-MeV electrons, we also included electro-
magnetic ion cyclotron (EMIC) waves as described by Drozdov, Shprits, Usanova, et al. (2017) due to their 
defining role in the modeling of high-energy electrons (Drozdov et al., 2020). We used Carpenter and An-
derson (1992) to define the plasmapause location. All diffusion coefficients, corresponding to local scatter-
ing as well as radial diffusion, are dependent on the Kp-index (except EMIC waves, which are parameterized 
by solar wind dynamic pressure (see Drozdov, Shprits, Usanova, et al., 2017)). The radial diffusion parame-
terizations are all also Kp-dependent and are assumed to follow the described Kp trend for all values of Kp.
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The 3-D VERB code simulation domain extends from *L 1 to *L 5.5, and encompasses electron energies 
from 10 keV to 10 MeV at *L 5.5. Equatorial pitch angles from 0.7 to 89.3 are covered, and the grid in 
the *L , V , K  space has dimensions of 46  100  101. To define the calculation box, boundary conditions are 
required at the minimum and maximum values of these three variables. The lower V  boundary is defined 
as constant phase space density, representing the average source population, and the upper boundary is set 
to zero due to the absence of high-energy electrons. The lower K  boundary also set to zero, representing the 
losses to the atmosphere in the loss cone. The upper K  boundary is defined as zero derivative. For the inner 

*L  boundary, at *L 1, the phase space density is zero, capturing loss to the atmosphere. The outer *L  is set 
from the Van Allen Probes data, as described in Section 2.1, and is updated every 8 h during the run. During 
the times when LCDS crosses the simulation domain, the outer *L  boundary is updated every timestep and 
is modified to account for exponential loss of the electrons (on the scale of drift period) due to magneto-
pause shadowing. The Van Allen Probes flux is converted to phase space density, the logarithm of which 
is interpolated to the V and K simulation grid. However, Van Allen Probes measurements do not cover the 
full range of V and K. For V and K values not observed by the Van Allen Probes, we create a synthetic phase 
space density array, assuming a sine pitch angle distribution and an average energy spectra. This array is 
normalized to a valid measurement as close as possible to 1 MeV, eq  = 75. Thus, two 2D arrays are created: 
the interpolated phase space density from the Van Allen Probe observations and the synthetic normalized 
phase space density array. All data gaps in the first array are replaced with the values from the second. The 
initial condition is created from the Van Allen Probes data in a similar fashion, but for each *L  bin rather 
than for each time, using a steady-state solution for the synthetic array. All 2-D slices of the outer boundary 
condition and each *L  slice of the initial condition are visually inspected for interpolation artifacts.

The VERB code is used for both 1-D (VERB-1D) and 3-D (VERB-3D) simulations. In the case of the 1-D 
simulation, where energy and pitch angle diffusion are omitted, Equation 18 simplifies to:

* ** *
, ,

1
L L

V K V K

f f fGD
t G L L 
  

 
  

 (19)

where   has been modified to now be the lifetime of the electrons, representing the loss resulting from pitch 
angle diffusion. The electron lifetimes due to the hiss waves inside plasmasphere are calculated following 
Orlova et al. (2016), and due to the chorus waves outside of the plasmasphere following Gu et al. (2012). 
Both of those electron lifetime parameterizations are derived with limitation of the energy range. While the 
energy coverage is substantial, there are points with undefined electron lifetimes. We fill this energy gap 
by assuming lifetimes of 6/Kp outside the plasmasphere and 10 days inside, similar to the previous studies 
(e.g., Drozdov, Shprits, Aseev, et al., 2017; Ozeke et al., 2014; Shprits et al., 2006). VERB-1D requires bound-
ary conditions at the inner and outer *L  boundaries, again set at *L 1 and 5.5, respectively. As for VERB-
3D, the phase space density at *L 1 is set to zero, and at * 5.5L   is set by Van Allen Probe measurements. 
The initial condition is again set from Van Allen Probe observations.

For the simulations using the L
LLD  parameterization for radial diffusion, we require the L

LLD  coefficient for 
  400 MeV/G, owing to the described grid setup for VERB. Liu et al. (2016) caution using L

LLD  for  
400 MeV/G, as they found that the LLD  data showed less agreement with their parameterization over this  
range. Here, we use the L

LLD  value at 400  MeV/G for 400  MeV/G, effectively holding L
LLD  constant 

with  for 400  MeV/G. In Section 4.2, we discuss the impact of this choice further and explore various 
other approaches.

2.3. Normalized Difference

To quantify the agreement between model output and Van Allen Probes observations, we use the normal-
ized difference (ND) of the electron flux ( j):

* *
*

* *

*

( , ) ( , )( , )
( , ) ( , )

max
2

obs model

obj model

over L at const t

j L t j L tND L t
j L t j L t




 (20)
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This metric has been used previously by Subbotin and Shprits (2009), Drozdov, Shprits, Aseev, et al. (2017) 
and Wang et al. (2020) and provides the difference between observations ( obsj ) and model output ( modelj ) 
at a particular energy, *L , eq , and time. The result is normalized by the maximum flux in the heart of the 
belt and is therefore particularly useful to determine how well the simulation reproduces the observed flux 
peaks, as well as the behavior around the maximum. To compute the normalized difference, the Van Allen 
Probes data is averaged over a 12-hour period and binned by *L  in steps of 0.1 *L . We exclude points at * 2L   
due to the negligible contribution of the radial diffusion on the electron flux dynamics at low *L .

3. Modeling and Comparison With Observation
3.1. 1-D Simulations With Realistic Boundary Conditions

Figure 2 shows 1.03 MeV, eq  = 70 MagEIS observations (panel a) alongside the corresponding output from 
four 1-D simulations with data-driven boundary conditions, each using different LLD  coefficients (panels 
b, d, f, h, and g). Normalized differences between each simulation and the observations are also included 
(c, e, g, and i), and the absolute mean of the normalized difference shown on each plot for reference. As 
seen in Figure 2j, the one-year period covers various Kp-index levels, incorporating a range of geomagnetic 
changes.
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Figure 2. (a) Measurements of electron flux at 1.03 MeV, at pitch angle eq  = 70 from Van Allen Probes Magnetic Electron Ion Spectrometer (MagEIS) 
instrument; (b, d, f, h, and j) 1-D Versatile Electron Radiation Belt (VERB) code simulation with ( , , , )BA O A L

LL LL LL LLD D D D , and ( ) ( )BE CRRES AM CRRES
LL LLD D  respectively; 

(c , e, g, i, and k) normalized difference between simulations and measurements, corresponding with the mean absolute value. (l) Kp-index.
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With an exception of the simulations with A
LLD , the 1-D modeled simulations flux generally reproduces the 

observed flux variation. In particular, the *L  location of the inner edge of the outer belt shows closest agree-
ment with data for the BA

LLD , O
LLD  or L

LLD  coefficients. However, the modeled 4.2 MeV flux (see Figure S2) indi-
cates noticeable underestimation. We attribute this to the absence of local acceleration from chorus waves, 
which has been shown to largely impact the dynamics of the  MeV population (e.g., Allison et al., 2021; 
Horne et al., 2005; Thorne et al., 2013).

When using the A
LLD  coefficient, VERB-1D shows a lower flux at 1.03 MeV than observed. Examining Fig-

ure 1, it can be seen that the electric component of A
LLD  is lower than the equivalent electric component 

from either O
LLD  or L

LLD  for both Kp  1 and Kp  5. This variation yields largely different behavior to the 
other VERB-1D runs, with the outer radiation belt remaining at *L 4 for the entirety of the October 2012 
to October 2013 period.

The final VERB-1D simulation, shown in Figure 2j, uses both the Ali (2016) and Brautigam et al. (2005) 
parameterizations. In doing so, LLD  coefficients are provided that are built solely on CRRES measurements, 
taken during the previous solar cycle. However, Ali (2016) follows the Fei et al. (2006) formalism, and ac-
counts for only the magnetic component of the ULF wave field, while Brautigam et al. (2005) provides the 
radial diffusion coefficient arising from electrostatic fluctuations. As a result, the electric component of the 
ULF waves is not explicitly included; however, ULF wave electric fields may be partially counted in the PSD 
measurements utilized by Brautigam et al. (2005) when deriving their electrostatic diffusion coefficients. A 
comparison between the model output, shown in panel j, and the Van Allen Probes observations reveals a 
larger underestimation in the 1 MeV electron flux than when the ,BA O

LL LLD D  and L
LLD  coefficients were used. 

The missing ULF wave electric component may help account for this discrepancy.

3.2. 3-D Simulations Including Local Diffusion Processes

Local acceleration from chorus waves can act to produce larger flux enhancements than radial diffusion 
alone. However, as the direction of radial diffusion and, in part, the rate of diffusion, are governed by the 
gradients in phase space density, to which local acceleration and scattering contribute, it is important to 
include these processes when evaluating the various radial diffusion coefficients. In this section, we use 
VERB-3D and include local diffusion processes, as described in Section 2.2.

Figure 3 takes the same format as Figure 2. The 3-D simulations for 1.03 MeV, eq  = 70, using each of the 
four radial diffusion coefficients, are shown (panels b, d, f, h, and j). Alongside each run, the respective nor-
malized difference between the model output and MagEIS observations has again been included (panels c, 
e, f, g, and k) and the absolute mean of the normalized difference is stated on each plot. In general, electron 
flux levels are higher for the VERB-3D runs than VERB-1D and show closer agreement with observations.

There is a tendency for the over- or underestimations of each of the model runs to occur across the same 
periods, albeit covering different *L  ranges. For example, regardless of the radial diffusion parameterization 
used, the model tends to overestimate the 1 MeV flux (for at least part of the outer radiation belt) between 
December 2012 and January 2013. Empirical models of LLD  can differ significantly from those derived using 
the event-specific values of the measured global ULF wave power (Murphy et al., 2016; Ozeke et al., 2020). 
As such, differences between the empirical Kp-dependent values and the real global ULF wave-power may 
have produced some of these over- or underestimations. Despite the over- and underestimations of the 
flux, when using BA

LLD , O
LLD , L

LLD , or ( ) ( )BE CRRES AM CRRES
LL LLD D , the structure of the outer radiation belt has 

been generally reproduced. In particular, as was the case in the 1-D simulations, the *L  extent of the outer 
belt largely agrees with observations for the runs using BA

LLD , O
LLD  or L

LLD . The inclusion of energy and pitch 
angle scattering has reduced the model flux in the observed slot region and, as a result, the inner edge of 
the outer belt in the 3-D model run using ( ) ( )BE CRRES AM CRRES

LL LLD D  shows a closer match with observations 
than the corresponding output from VERB-1D. Generally, radial diffusion smooth out peaks in phase space 
density created by energy diffusion (Shprits et al., 2008). This feedback mechanism can explain why 3-D 
simulations can reproduce long-term dynamics of the radiation belts, even if radial diffusion processes are 
quantified differently.
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However, as was the case in Figure 2, the simulation with A
LLD  significantly underestimates the observed 

fluxes for *L  4. Although the modeled flux is now higher than the 1-D case, the MagEIS flux is still higher 
than the model output. The inclusion of locally produced peaks in phase space density aids the simulation 
using A

LLD ; however, the additional diffusion is not sufficient to fully reproduce the radiation belt dynamics.

3.3. Results of the Simulations at Different Energies

The VERB code simulations are performed for a range of energies. Similar to Figures 2 and 3, Figures S1–S4 
show the comparison between observations and various simulations at energies of 600 keV and 4.2 MeV. 
Figure 4 shows how the averaged absolute normalized difference changes with electron energy. Generally, 
the difference between simulations and observations is similar at different energies. The average ND  across 
all energies, presented in Figure 4, for the 3-D simulations with corresponding diffusion coefficients are 
32% ( BA

LLD ), 33% ( O
LLD ), 40% ( A

LLD ), 33% ( L
LLD ), and 36% ( ( ) ( )BE CRESS AM CRESS

LL LLD D ). The simulation with BA
LLD  

results in the smallest average normalized difference and typically provides the closest agreement with 
observations across different energies. Also, the difference between using various LLD  parameterizations 
in the simulations is less pronounced in 3-D case, in comparison to 1-D. We attribute this to the feedback 
between the wave-induced changes (additional acceleration and loss mechanisms) and radial transport 
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Figure 3. (a) Measurements of electron flux at 1.03 MeV, at pitch angle eq  =  70  from Van Allen Probes Magnetic Electron Ion Spectrometer (MagEIS) 
instrument; (b, d, f, h, and j) 3-D Versatile Electron Radiation Belt (VERB) code simulation with ( , , , )BA O A L

LL LL LL LLD D D D , and ( ) ( )BE CRRES AM CRRES
LL LLD D  respectively; 

(c, e, g, i, and k) normalized difference between simulations and measurements, and the corresponding mean absolute values. (l) Kp-index.
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that minimize the resulting differences in the VERB-3D code solution. Note that we also perform the sim-
ulations with and without EMIC waves to explore how the simulations with different radial diffusion pa-
rameterization perform at high multi-MeV energies, where the effect of the hiss and chorus waves could 
be less pronounced (e.g., Ripoll et al., 2016). The simulations without EMIC result in larger error for all 
simulations, except for the one with A

LLD , likely because A
LLD  provides insufficient radial diffusion, and the 

additional EMIC loss results in a worse comparison.

4. Discussion
4.1. Underestimation With D

LL

A

Our simulation results suggest that using A
LLD  in either VERB-1D or VERB-3D for the selected period signif-

icantly underestimates the observations due to insufficient radial diffusion. This parameterization employs 
the most recent Van Allen Probes observations. The Van Allen Probes mission has covered a relatively 
inactive period, with few large storms. Perhaps, as a result, the statistics for each Kp level are biased to-
ward lower ULF wave activity. Additionally, it is the only radial diffusion coefficient used here which is 
only constructed for Kp  5. The other radial diffusion parameterizations are defined up to at least Kp = 6. 
During quieter periods, radial diffusion rates are slower, and large changes in the *L  value of electron pop-
ulations are generally achieved during storm periods (e.g., Jaynes et al., 2018; Z. Li et al., 2016; Ukhorskiy 
et al., 2009). Underestimating the contribution of radial diffusion during high-Kp periods is therefore likely 
to also impact the difference between model and observations in the following quieter times. During the 
active time, the rapid high-energy injection may also contribute to the enhancement of the radiation belt 
flux (e.g., H.-J. Kim et al., 2021). However, the role of such injections in the radiation belt dynamics is yet 
to be determined.

Another possible reason for the lower radial diffusion rates is that Ali et al. (2016) used the geometric mean 
(which, in their case, is close to the median value) of PSD for both electric and magnetic field spectra (see 
Figure 2, Ali et al., 2016). This choice was made due to the nature of the data, since the mean value of PSD 
does not represent the central tendency in the log-normal distribution that characterizes ULF PSD distribu-
tions. An arithmetic mean (i.e., average) of a log-normal distribution, as was used by Ozeke et al. (2014) and 
Liu et al. (2016), will tend to overestimate the true central tendency. However, the influence of ULF waves 
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Figure 4. (a) Averaged absolute normalized difference between 3-D simulations and observations at different energies. Different solid colors correspond to 
different radial diffusion parameterizations according to the legend. Dashed lines correspond to the simulations without electromagnetic ion cyclotron (EMIC) 
waves. (b) Same as panel (a) but for 1-D simulations.
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on electrons is usually considered as the averaged effect of the wave-particle interaction. Also, the radial 
diffusion coefficient is lineally dependent on PSD (e.g., Equation 12). In an attempt to reproduce how the 
radial diffusion coefficient would have appeared if the mean of the PSD had instead been used, we employ a 
scaling factor. This approach is used purely as an illustrative estimate. As a scaling factor, we obtain the ratio 
between mean and median values presented in Figure 2 from Ali et al. (2016). Since the ratio between mean 
and median PSD varies over frequency, we simplify the factor by taking the average or maximum values of 
the ratio. The average ( meanfactor ) and maximum ( maxfactor ) values of the ratio are 3.8 and 5.0 for electric field 
spectra and 3.1 and 5.3 for magnetic field spectra, respectively.

Figures 5 and 6 show the result of 1-D and 3-D simulations with the scaled A
LLD  coefficients alongside simu-

lations with unchanged A
LLD  and BA

LLD , for reference. In both the 1-D and 3-D cases, the results of the simula-
tion with a scaling factor provide better agreement with observations. The lower boundary of the radiation 
belt propagates further inward in comparison to the simulation with the unmodified coefficient. In 3-D 
simulations, the electron flux in the heart of the radiation belts ( 4 5L   ) is within an order of magnitude 
of the observations. The mean absolute value of normalized difference also indicates an improvement in 
the agreement with observations. These results highlight the difficulties in formulating a statistical picture 
of the PSD for calculating radial diffusion coefficients, as the PSD of ULF waves, similar to whistler waves 
(e.g., Watt et al., 2017), does not obey a Gaussian nature (Bentley et al., 2018).

To reproduce the Van Allen Probes flux observations using the unmodified A
LLD  coefficients, additional local 

acceleration or reduced loss is required. We have assumed here that the loss rates and the pitch angle and 
energy diffusion coefficients fully capture the extent of the wave-particle interactions. Changes in the rate 
of local acceleration and scattering alters the gradients in phase space density and therefore also impact 
how the electron populations diffuse across *L . We argue that, given that the other LLD  parameterizations 
show better agreement with observations, the local wave particle interactions are adequately captured here.
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Figure 5. (a) Measurements of electron flux at 1.03 MeV, at pitch angle eq  =  70  from Van Allen Probes Magnetic Electron Ion Spectrometer (MagEIS) 
instrument; (b, d, f, and h) 1-D Versatile Electron Radiation Belt (VERB) code simulation with mean mean( , , factor , factor )BA A A A

LL LL LL LLD D D D   respectively; (c, e, g, 
and i) normalized difference between simulations and measurements, and corresponding with the mean absolute value.
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Recent work by Tu et al. (2019) has used the magnetic radial diffusion from the Ali et al. (2016) parameter-
ization, together with the electric radial diffusion coefficient from Liu et al. (2016) to study the June 2015 
dropout event. However, as can be seen in Figure 1, the magnetic component of LLD  from Ali et al. (2016) is 
more than an order of magnitude less than the Liu et al. (2016) electric diffusion coefficient. Therefore, the 
evolution of the radial structure of radiation belt is largely dominated by the Liu et al. (2016) LLD  alone. Tu 
et al. (2019) also compared to model results achieved using the Brautigam and Albert (2000) LLD  coefficient 
for this event and observed differences between the two simulation outputs, with the results from the com-
bined L

LLD  and AM
LLD  showing closer agreement with measurements. Their simulations used a larger value of 

*
maxL  than those shown in this paper, as they did not use a data-driven outer boundary condition. Including a 

broader *L  range in the model may also alter how the outputs using the different LLD  coefficients compare to 
one another, as each parameterization varies across *L  differently (see Figure 1). One should also be mindful 
of the *L  (or L) range over which the diffusion coefficient is defined.

4.2. “Energy” Dependence of D
LL

L

As discussed in Section  1.1, the Liu et  al.  (2016) electric parameterization and Brautigam et  al.  (2005) 
electic parameterization include a  dependence. In the other studies, the  dependence of the electric 
component of LLD  has not been included, as the drift-averaged PSD of the ULF waves was taken to be 
frequency-independent. In the case of the Brautigam and Albert (2000) coefficient, we have neglected the 
electrostatic term containing .

Liu et  al.  (2016) found that the root-mean-square errors of their fitted LLD  increased substantially for  
  400  MeV/G and, as a result, use of the resulting L

LLD  coefficients is therefore cautioned for  
  400  MeV/G. For VERB-3D, we hold the LLD  value constant at 400   MeV/G for 400  MeV/G. 

DROZDOV ET AL.

10.1029/2020JA028707

14 of 22

Figure 6. (a) Measurements of electron flux at 1.03 MeV, at pitch angle   =  70  from Van Allen Probes Magnetic Electron Ion Spectrometer (MagEIS) 
instrument; (b, d, f, and h) 3-D Versatile Electron Radiation Belt (VERB) code simulation with mean mean( , , factor , factor )BA A A A

LL LL LL LLD D D D   respectively; (c, e, g, 
and i) normalized difference between simulations and measurements, and corresponding with the mean absolute value.
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However, an alternative approach is to allow the L
LLD  to obey the given  dependence regardless of the  

value, ignoring the caution given. Figure 7b shows the result of this approach.

In contrast with the results from holding L
LLD  constant with  for   400 MeV/G (also shown in Figure 7f), 

the 3-D simulation using the unlimited L
LLD  produces higher flux peaks for *L 4, considering the normal-

ized difference (Figure 7c). Additionally, a remnant belt between 2 *L  2.5 has also been produced that 
is not observed by the Van Allen Probe. Overestimation of the electron flux now extends over a broader *L  
range than previously.

Another approach is to ignore the  dependence of L
LLD  entirely, and therefore bring the parameterization 

in line with the other radial diffusion coefficients considered in this paper. Here, we also explore this with 
the 3-D model. L

LLD  is set by   = 1000 MeV/G and then assumed to be -independent. Figure 7d shows the 
resulting flux at 1.03 MeV, eq  = 70. The modeled flux is lower than the output shown in both Figures 7b 
and 7f, and the outer radiation belt extends over a smaller *L  range. Examination of the normalized differ-
ence (Figure 7e) reveals larger underestimations in comparison to data.

Including the  dependence of L
LLD  improves the agreement between the VERB model output and observa-

tions. However, we reiterate the point made by Liu et al. (2016), that the L
LLD  for   400 MeV/G should be 

handled carefully, as our simulations show that this can significantly impact the model output, resulting in 
larger flux values and a remnant belt structure.

4.3. Pitch-Angle Dependence

Due to the electron azimuthal drift period depending on the its equatorial pitch angle, the radial diffusion 
coefficients may also show pitch angle dependence. Schulz and Lanzerotti (1974) explore the pitch-angle 
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Figure 7. (a) Measurements of electron flux at 1.03 MeV, at pitch angle 70eq   from Van Allen Probes Magnetic Electron Ion Spectrometer (MagEIS) 
instrument. (b) 3-D simulation with ( , )L

LLD Kp  , (d) with 0( , )L
LLD kp  , where 0 1000 /MeV G  , (f) with ( , )L

LL minD kp  , where 400 /min MeV G  . (c, e, and g) 
Normalized difference between simulations on panels (c, d, and f) and measurements, and corresponding to the mean absolute value.
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dependency of M
LLD  coefficient, considering the contribution of step-like impulses in the magnetic field. 

Schulz (1991) provides the dependence as
2

( )( , ) ( )
180 ( )

M M
LL LL

Q yD L y D L
D y

 
   

 
 (21)

where sin( )eqy  , ( )Q y  and ( )D y  are auxiliary functions that can be expressed as:
4 8( ) 27.12667 45.39913 5.88256Q y y y    (22)

 3/41( ) 5.520692 2.357194 1.279385
12

D y y y    (23)

Schulz and Lanzerotti (1974) also explore the pitch-angle dependency of the ES
LLD  coefficient, which repre-

sents the contribution from exponentially decaying impulses in the electrostatic field, and conclude that 
ES
LLD  is relatively insensitive to the equatorial pitch angle. For the diffusion coefficients considered in this 

paper, the pitch-angle scaling factor given by Equation 21 can be applied to BA
LLD , as its derivation follows 

the Fälthammar (1965) methodology, consistent with Schulz and Lanzerotti (1974). This approach is taken 
by Miyoshi et al. (2006) who modeled the October 2001 storm. W. Li et al. (2016) also used the pitch-angle 
dependence in Equation 21, applying the scaling to the sum of the magnetic OM

LLD  and electric OE
LLD  Ozeke 

et al. (2014) coefficients given by derived using the Fei et al. (2006) formalism. Whether Equation 21 is ap-
plicable to diffusion coefficients calculated with the Fei et al. (2006) formalism is unclear.

We explore the effect of pitch-angle dependence given by Equation 21 in the simulations with BA
LLD . Figure 8 

shows 1 MeV electron flux at different pitch angles ( 70 ,55 ,35eq    ) obtained for the observations, sim-
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Figure 8. (a–c) Measurements of electron flux at 1.03 MeV, at equatorial pitch angles 70 ,55 ,35eq     from Van Allen Probes Magnetic Electron Ion 
Spectrometer (MagEIS) instrument; (d, e, and f) 3-D simulation with BA

LLD  at the same energy and pitch angle as in panels (a–c); (g–i) Normalized difference 
between simulations on panels (d–f) and measurements, and corresponding to the mean absolute value; (j–l) Similar to panels (d–f) but for 3-D simulations 
with 2( ( ) / 180 ( ))BA

LLD Q y D y ; (g–i) Similar to panels (g–i) but for the simulations on panels (j–l) and measurements.
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ulations without pitch-angle dependence, and simulations with pitch-angle dependence and correspond-
ed normalized difference. The pitch-angle dependence alters the results of the 3-D simulations, slightly 
increasing the difference with observations. Figure 9 shows that a similar trend is also observed at other 
energies. For the 1-D simulations, imposing a pitch-angle dependence on the radial diffusion coefficient 
results in a larger increase in the mean normalized difference than for the 3-D simulations (see Figure S5). 
These results indicate that including a pitch-angle dependence in the simulations reduces the agreement 
with observations for the simulation window presented here. However, the influence of the a pitch-angle 
dependence is less pronounced in 3-D simulations.

4.4. Simulations of Different Period

In addition to the results described above, we simulate a different period, ranging from January 1, 2015 un-
til January 1, 2016. The geomagnetic activity during 2015 is higher than during the 2012–2013 simulation 
window, with a median Kp-index of 2, reaching a maximum value of 8.3, compared to a median Kp of 1.3, 
reaching a maximum value of 7. Figure 10 is similar to Figure 3, and shows the results of 3-D simulations 
at an energy of 1.01 MeV. In general, we reach similar conclusions when comparing the simulations and 
observations, as discussed in Section 3.2. Simulations with different radial diffusion coefficients provide 
similar agreement with observations of the 1.01 MeV electron flux, with an exception of simulation with 

A
LLD . The average across all energies ND  with corresponding diffusion coefficients are 33% ( BA

LLD ), 33% ( O
LLD ),  

46% ( A
LLD ), 35% ( L

LLD ), and 37% ( ( ) ( )BE CRESS AM CRESS
LL LLD D ). Figures S9 and S10 complement Figure 10, dis-

playing results of 3-D simulations at energies of 596 keV and 4.2 MeV.

Similar to Figure 4, we show the comparison of the average normalized difference across multiple energies 
in Figure 11. The simulations with A

LLD  resulted in the largest error in both 1-D and 3-D simulations. The 
difference between 1-D simulations appears to be larger that in 3-D. The simulation flux modeled in 1-D, of  
 1 MeV electrons (Figure S7) is lower than the observations for much of the outer radiation belt, which 
illustrates the effect of the absence of local acceleration. The lowest average normalized difference is ob-
served in the simulations with BA

LLD . For the interested reader, Figures S6 and S8 show the electron flux 
obtained from 1-D simulations at energies 596 keV, and 4.2 MeV, in comparison to measurements.
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Figure 9. (a) Averaged absolute normalized difference between 3-D simulations and observations at different energies. Solid lines correspond to simulations 
with BA

LLD  and dashed lines to the simulation with 2( ( ) / 180 ( ))BA
LLD Q y D y . Different colors correspond to different pitch-angles according to the legend. (b) Same 

as panel (a) but for 1-D simulations.
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5. Conclusions
In this study, we have tested LLD  parameterizations (Ali, 2016; Ali et al., 2016; Brautigam & Albert, 2000; 
Brautigam et al., 2005; Liu et al., 2016; Ozeke et al., 2014), in 1-D and 3-D radiation belt long-term modeling, 
considering different periods of the 24th solar cycle. The simulation results have been compared, both to 
one another, and to observations. Our key findings are as follows:

1.  The difference between 3-D simulations with ( ) ( ), , ,BA O L BE CRRES AM CRRES
LL LL LL LL LLD D D D D  parameterizations 

is small. We suggest that the output from radiation belt models using any of these parameterizations will 
likely show a similar *L  structure to observations.

2.  3-D simulations are observed to be less sensitive to the assumed parameterization of the radial diffusion 
rates than 1-D simulations.

3.  Simulations using A
LLD  showed 1 MeV flux levels significantly lower than observations with an outer 

radiation belt that did not extend below *L 4.

4.  The simulation with -dependent L
LLD , not limited to   400 MeV/G, resulted in larger flux peaks and 

produced a remnant belt between 2 *L  2.5 that is absent in the measurements. Ignoring the  de-
pendence of the Liu et al. (2016) coefficients (assuming the value corresponding to 1000 /MeV G   
for all ) yielded less inward diffusion overall and reduced the agreement with MagEIS flux values. The 
best agreement is achieved by holding L

LLD  constant with 400   MeV/G for the lower values of .
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Figure 10. Same as Figure 3, but 3-D simulations are performed for the period from January 1, 2015 until January 1, 2016, and measurements (panel a) of 
electron flux at 1.01 MeV, from Magnetic Electron Ion Spectrometer (MagIES) instrument, are presented for the same period.
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5.  The mean absolute value of the normalized difference averaged across energies suggests that 3-D 
simulations using the Brautigam and Albert (2000) coefficient provide the smallest overall difference 
between simulation results and observations ( ND  32%–33%). However, this value was compara-
ble to that achieved in the model runs using the Ozeke et al. (2014) ( ND 33%) and Liu et al. (2016)  
( ND 33%–35% parameterizations. The simulation using a parameterization derived from the CR-
RES era (Ali, 2016; Brautigam et al., 2005) also gave comparable but marginally larger values ( ND  
36%–37%).

6.  We present an open question as to whether the pitch angle scaling of (Schulz, 1991) can be applied to 
LLD  coefficients derived using the Fei et al. (2006) formalism. Our results suggest that, for the Brautigam 

and Albert (2000) coefficient, the pitch angle scaling reduces the agreement with observations in the 1-D 
simulation and does not substantially influence the result of the 3-D simulation.

7.  For the simulation of the 2015 period, the 1-D simulations showed more dependence on the LLD  param-
eterization selected than was seen for the October 2012 to October 2013 period. We attribute this to the 
higher geomagnetic activity in 2015. The 3-D simulations during both periods were less sensitive to the 
selection of LLD .

A clear understanding of how various radial diffusion coefficients perform is vital, both from a modeling 
standpoint, but additionally for understanding the impact of using different formalisms, such as an elec-
tromagnetic diffusion coefficient, separate electric and magnetic components, or neglecting the magnetic 
component altogether (e.g., Brautigam & Albert, 2000; Fei et al., 2006). We suggest that, as new parameter-
izations for radial diffusion coefficients are developed, they should also be bench-marked against pre-exist-
ing values to monitor progression in performance.

Data Availability Statement
The authors used geomagnetic indices provided by OMNIWeb (https://omniweb.gsfc.nasa.gov/) 
and are grateful to the RBSP-ECT team for the provision of Van Allen Probes observations (https://
rbsp-ect.lanl.gov/). The data to reproduce the figures are available at UCLA dataverse repository 
(https://doi.org/10.25346/S6/U9WFPD).
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Figure 11. Same as Figure 4, but 1-D and 3-D simulations are performed for the period from January 1, 2015 until January 1, 2016. The dashed lines 
(simulations without electromagnetic ion cyclotron (EMIC) waves) are not presented.

https://omniweb.gsfc.nasa.gov/
https://rbsp-ect.lanl.gov/
https://rbsp-ect.lanl.gov/
https://doi.org/10.25346/S6/U9WFPD
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