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ABSTRACT

End-member modelling analysis (EMMA) is a statistical approach to unmix-

ing multimodal grain-size distributions to identify and quantify processes of

sediment generation, transport and deposition. While the different computa-

tional implementations have been extensively benchmarked and show simi-

larly high reliability characteristics, there is a series of unknowns regarding

the applicability, quality and limitations of the method from a practical

point of view. This study explores these important unknowns using both

empirical and synthetic samples along with Monte Carlo tests. Under ideal

conditions (all available samples, randomly mixed components, 116 grain-

size classes), EMMA is able to model the grain-size distributions of input

end-members (loadings) with R2 between 0.63 and 0.98 and their relative

contributions to each sample (scores) with R2 between 0.71 and 0.81, thus

setting the baseline for model quality. Inappropriate model parameter set-

tings cause severe drops in R2. EMMA is able to detect an end-member even

if it is present in only one sample or when it contributes less than 10 vol.-

%. With 20 to 40 samples or more, stable, high quality model results are

possible. With 15 or more grain-size classes, model results also reach such

stable high reproducibility levels. EMMA can depict originally multimodal

end-members (R2 between 0.78 and 0.99). End-members with identical rela-

tive grain-size distribution shape can overlap significantly without causing

quality drops; R2 of identical distributions are invariantly high until mode

positions are less than three grain-size classes apart from each other. Gradu-

ally widening end-member distributions do not affect the results signifi-

cantly. However, shifting mode positions have a severe impact. Post-

depositional mixing causes drastic deviations of the modelled scores,

whereas the loadings are virtually unaffected. In light of these tests, EMMA

is a reliable, mostly unbiased tool to identify and quantify sediment genera-

tion/transport/deposition regimes from mixed sediment deposits, given that

it is used in a geoscientifically meaningful context.

Keywords End-member modelling analysis, grain-size modelling, sensitiv-
ity test, synthetic data, validation.
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INTRODUCTION

End-member modelling analysis (EMMA) of
grain-size data is an established way to identify
and quantify the grain-size imprint of distinct
sediment sources, transport processes and path-
ways from the mixed, multimodal grain-size dis-
tributions of deposited sediments (Flemming,
2007; Hartmann, 2007; Weltje & Prins, 2007;
Dietze et al., 2012, 2014; Vandenberghe, 2013;
van Hateren et al., 2018). EMMA uses a mea-
sured data set (X), consisting of m grain-size dis-
tributions, each described by n grain-size
classes, and produces a modelled data set (X 0)
as linear combination of end-member loadings
(V ) and end-member scores (M ) that equals the
input data set plus an error matrix (E), i.e.
X 0 ¼MVT ¼X�E. Thereby, E is usually very
small so that the R2 between X and X 0 is at the
order of 0.9 and higher. Loadings are the indi-
vidual grain-size distributions that form a mixed
sample and scores are the contribution of each
loading to each sample. For a more elaborated
introduction and background discussion see
Dietze et al. (2012) and Dietze & Dietze (2019).
While EMMA is most commonly used for grain-
size data analysis, the method is more generic
and in principle allows to model a wide range
of categorical data.
Despite the increasing popularity of EMMA

since its introduction almost 25 years ago
(Weltje, 1997) there is still notable hesitation in
its application. This may be partly due to the
‘black box’ impression but can also be explained
by the lack of a profound validation with natural
data, including questions of practical applicabil-
ity. The most obvious question is certainly how
‘well’ EMMA reproduces original end-members
as well as their contribution to each sample. To
test this, Weltje & Prins (2007) used two to four
artificial grain-size distributions, defined by nor-
mal and Weibull distributions, which were
mixed in known proportions. They found in
general good agreement but also underestima-
tion and overestimation by several percent.
Dietze & Dietze (2019) compared all available
EMMA implementations and found overall simi-
lar results among these, with each implementa-
tion having its particular minor strengths and
weaknesses. The comparison used four distinct
empirical grain-size end-members, which were
randomly mixed to create a reference data set.
While this approach was suitable for EMMA
implementation benchmarking, it did not
account for further sources of uncertainty and

model performance, which arise from an appli-
cation point of view.
Uncertainty not only arises from model-

inherent constraints. One primary source con-
tributes even before that: variability of a sam-
ple’s grain-size distribution due to bulk sample
heterogeneity and measurement device effects.
The effects of these two sources of uncertainty
are typically addressed by measuring subsequent
aliquots of the same bulk sample (accounting for
sample heterogeneity) and repeat measurements
of the same aliquot (accounting for measurement
device effects). However, the analytical accuracy
is essentially impossible to determine for sam-
ples of natural sediment because the actual size
of a particle cannot be expressed by a single
number (Pye & Blott, 2004; Roberson & Weltje,
2014). Roberson & Weltje (2014) used ten ali-
quots of four natural sediment samples, respec-
tively, to estimate the analytical precision of ten
different instruments. Differences occur between
all particle-size analyzers, even between instru-
ments using the same technique but by different
manufacturers. Scatter also varies depending on
the size distribution of the analyzed material.
Based on quadruple measurements of 1485 silty
to loamy samples, Miller & Schaetzl (2012)
found a relative precision maximum for silt-
dominated samples, and thus higher scatter in
the clay and sand fraction. Similarly, measure-
ment precision is higher for better sorted sam-
ples, mostly due to smaller deviations from the
original sample composition when taking ali-
quots (Pye & Blott, 2004; Schulte et al., 2016).
Hence, in order to properly address uncertain-
ties arising from EMMA, the uncertainty due to
sample heterogeneity and the measurement
approach need to be considered, as well. How-
ever, such a test cannot include the question
concerning the representativeness of a sample
regarding the depositional dynamics.
With respect to model uncertainty due to

parameterization, robust EMMA (Dietze &
Dietze, 2019) inherits a statistically optimal
parameter estimation. The routine creates as
many model scenarios as possible based on the
ranges of input parameters and identifies only
those that occur persistently. However, espe-
cially the determination of the final number of
end-members (q) is a crucial step that requires a
researcher to understand the depositional envi-
ronment of the analyzed samples. This subjec-
tive decision on the supposed number of end-
members, but also further parameters of the
individual approach implementations (for an
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overview see Dietze & Dietze, 2019), is espe-
cially important for all deterministic
approaches. A simple empiric test of model runs
using the correct and incorrect number of end-
members can provide insight to the effects of
inappropriate parameter settings, at least for the
specific data set under consideration.
The number of grain-size classes that are used

to describe the grain-size distribution is a fur-
ther factor of uncertainty. This number is of
course determined by the measurement tech-
nique. Laser diffraction data sets may easily
reach between 40 and 116 classes, while optical
imaging approaches yield up to 300 classes, dis-
tributed over arbitrarily narrow grain-size limits.
At the other end of the spectrum, sieve-
sedimentation approaches provide as little as
seven classes. Mathematically or computation-
ally, one needs at least as many grain-size
classes as there are end-members contributing to
the data set, but beyond that, the end-member’s
grain-size distributions must also be described
with sufficient distinctness by the number of
grain-size classes to be successfully identified.
This discretization problem arises because grain-
size data measurements essentially contain
binned data and the bins must be narrow
enough to adequately represent the structure of
the data. Previous EMMA tests (Weltje & Prins,
2007; van Hateren et al., 2018; Dietze & Dietze,
2019) have always used decisively high numbers
of grain-size classes to suppress effects of this
source of uncertainty, and to focus on other
questions of interest.
In a similar way, the number of samples – and

the variance in end-member mixing expressed
by them – should have a significant impact on
the modelling result. Again, from a mathemati-
cal perspective one needs at least as many sam-
ples as end-members to be modelled, but the
samples must also reflect sufficient variability of
end-member contribution to the entire data set
(Dietze et al., 2012). According to Weltje & Prins
(2007) it is important to evaluate how much an
end-member must contribute to a sample to
identify it properly by EMMA. However, this
suggestion has not been quantitatively tested.
It has been repeatedly reported that the differ-

ent EMMA implementations tend to underesti-
mate low and overestimate high end-member
abundances (Paterson & Heslop, 2015; Dietze &
Dietze, 2019). However, a quantification of this
tendency has not yet been attempted, despite
the fact that ultimately scientists will use end-
member contributions (scores) as proxy for

palaeoenvironmental interpretations and will
thus inevitably need to know the size of this
bias.
Post-depositional mixing may introduce blur-

ring of end-member properties. Essentially, one
of the fundamental assumptions of EMMA is
that the measured grain-size distributions are
not affected by any post-depositional alteration,
i.e. that the measured data only reflects the
underlying transport and depositional dynamics,
and not any subsequent modifications. There-
fore, it crucially depends on the scientist’s
judgement to decide whether or not EMMA can
be applied to a case study or not. Nevertheless,
it is relevant to investigate the actual effect of
post-depositional mixing on the model out-
comes. Major effects may be rather obvious for
the sample composition (scores) but not so obvi-
ous for the model results concerning the
inferred end-member shapes (loadings). Apart
from pure mixing, post-depositional processes
can also alter the grain-size of sediments, for
example through neoformation of clay minerals
or physical weathering. While subsequent addi-
tion of neoformation products with a specific
grain-size distribution can actually be included
in EMMA and utimately enhance the interpreta-
tion of a data set (Dietze et al., 2016), this is not
the case for a gradually (for example, down-
core) increasing impact of weathering, which
results in a shift of affected grain-size distribu-
tions. Such a non-stationarity in the properties
of the end-members contributing to a sample
violates the fundamental assumption of EMMA
(Weltje, 1997; Dietze et al., 2012). In a similar
way, non-stationarity can also arise from gradu-
ally changing transport pathways (shifting dis-
tance to source), transport processes (wind or
flowing water velocity) or source area conditions
(gradual winnowing of selected grain-size
classes), but regardless of the cause, the actual
impact on modelling results has not been
explored, yet.
From a process view, end-members should be

unimodal in grain-size distribution, since a
given transport regime tends to move (winnow)
and deposit (concentrate) a specific grain size.
Yet, there are cases when multimodal distribu-
tions are indeed characteristic for one end-
member, for example reworked loess (Meszner et
al., 2013), desert dust (Sweeny et al., 2013) and
far travelled dust groups (Vandenberghe, 2013).
Weltje & Prins (2003) discuss this possibility
and propose that multimodal end-members may
not necessarily be decomposed into elementary
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sub-populations. However, a quantitative assess-
ment of the ability of EMMA to reproduce pri-
marily multimodal end-members is still lacking.
It should be emphasized though that EMMA is
not sensitive to the order of the data’s classes
because it does, by definition, handle the data as
categorical. Literally, one could randomly
change the order of grain-size classes before
unmixing and then re-establish the initial order
without any difference of the results. Hence, one
would expect that multimodal end-members
must be unmixed by EMMA. That said, the test
of EMMA to handle multimodal data remains an
interesting and relevant one from a geoscientific
application perspective.
It is straightforward to identify different con-

tributing end-members as long as they have very
distinct grain-size distributions (for example,
mixtures of loess and fluvial sediment) that
overlap only marginally. However, as the distri-
butions of contributing components become
more and more similar to one another, the visual
impression of their existence becomes less and
less obvious. EMMA has been used decisively to
unmix samples with such highly overlapping
end-members of a similar shape (e.g. Vanden-
berghe, 2013) but a systematic evaluation of the
reliability of the model results is still pending.
In essence, this topic is comparable to the issue
of data discretization due to grain-size class bin
width, which has been discussed above. How-
ever, most grain-size measurement devices come
with a fixed maximum number of grain-size
classes and boundaries. Thus, to gain insight for
practical application cases, this discretization
problem needs to be assessed.
In summary, despite successful applications

of existing EMMA implementations across many
different sediment transport systems, there is a
series of open questions regarding constraints
that come along with many real world data sets.
Currently, these constraints are implicitly
assumed to have negligible effects on the model
results, however without robust empirical sup-
port. This study uses EMMA as available
through the R package EMMAgeo (M. Dietze &
Dietze, 2016) to address the following list of
research questions, especially relevant for prati-
cal applications of the method in general:

• How much uncertainty in grain-size distribu-
tions is caused by the measurement?

• What is the effect of inappropriate model
parameter settings?

• How does the number of grain-size classes
affect model results?

• How does the number of samples affect
model results?

• How does the relative contribution of an
end-member to a sample affect the success of
EMMA to identify it?

• How does post-depositional mixing affect
end-member properties?

• How do gradually widening distributions of
the contributing grain-size distributions affect
model results?

• How do gradually shifting distribution
modes of the contributing grain-size distribu-
tions affect model results?

• To which extent is EMMA capable of identi-
fying multimodal end-members?

• How does similarity of end-members affect
the model results?

These questions are approached here with
empirical measurements and synthetic data, and
Monte Carlo methods are utilized to robustly
explore effects especially for small sample sizes.
The Appendix S1 contains all data sets neces-
sary to reproduce the results reported in this
article, as well as the R-scripts used to perform
all calculations and generate the corresponding
figures.

MATERIALS AND METHODS

Sampling, preparation and measurement

The reference data set provided by Dietze &
Dietze (2019), which is composed of four natural
end-members collected at deposits in the area
around Dresden, Germany, is used in this study.
Each deposit has been formed by one distinct
sediment transport process. North of Dresden, a
large Pleistocene alluvial fan covers an area of
approximately 2 km2. This EMnat1 has been sam-
pled in an open sand pit where the original bed-
ding structures were still visible. Strong winds
blew out fine particles of the alluvial landform
and deposited them to the east where they have
formed the barchan dunes of the Dresdener
Heide. EMnat2 has been taken from one of these
dunes at a depth of 30 cm, above the illuvial
horizons of the Podzol developed in the med-
ium coarse sands. EMnat3 has been taken from a
loess section near Ostrau, 50 km north-west of
Dresden (Meszner et al., 2013). EMnat4 was taken
from an oxbow segment of the River Elbe in the
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eastern part of the city of Dresden. The loamy
floodplain deposit contained abundant fine
roots, which were removed by hand. From each
deposit about 2 to 3 kg of sediment have been
sampled, air-dried, dry sieved to <2000 µm and
homogenized.
From each of the four natural end-members,

150 g material has been sampled. Calcium car-
bonate and organic material has been removed
with hydrochloric acid (10%) and hydrogen per-
oxide (15%). From each sample, three parallel
samples (0.3 to 2.0 g) have been separated for
natural end-member grain-size distribution mea-
surements. To keep particles dispersed, the sam-
ples were treated with 1.25 mL Na4P207 for 12 h
in an overhead shaker (ISO 11277, 2002; Pye &
Blott, 2004). Particle size distributions have
been measured with a Laser Diffraction Particle
Size Analyzer (Beckman Coulter LS 13 320;
Beckman Coulter, Brea, CA, USA) at RWTH
Aachen, delivering 116 classes within a size
range of 0.04 to 2000 µm. Between 7 and 16 ali-
quots per sample have been investigated in trip-
licate by an ‘auto-prep’ station enabling equal
measuring conditions. Each aliquot has been
measured twice while in the measuring bath. To
calculate the grain-size distribution the Mie the-
ory has been used with the following parame-
ters: Fluid RI: 1.33; Sample RI: 1.55; Imaginary
RI: 0.1 (Buurman et al., 1997; Özer et al., 2010;
ISO 13320, 2009). Proportions of the natural
end-members were mixed by weight, whereas
the particle size distributions measured with
laser diffraction are expressed as volume per-
cent. However, assuming that the predominant
particle densities of the different natural end-
members are similar, the respective weight per-
centages were considered as equivalent to vol-
ume percentage.

Model test approaches

The flowchart in Fig. 1 provides a summary of
the involved natural and artificial end-members
along with their combinations using different
mixing ratios to generate grain-size distribution
data sets to pursue the different research ques-
tions. Artificial end-members were created and
used when either very large data sets (>100 sam-
ples) or data sets with specific needs (for exam-
ple, bimodal end-members) were required.
For the hand-mixed data set Xnat, mixing

ratios were defined by random numbers gener-
ated from a uniform distribution and their sums
were normalized to 10 g. According to these

numbers, the respective sediments were amalga-
mated and dry-mixed by overhead shaking for
24 h. In general, three sets were created: (i) 50
samples with all four end-members; (ii) 25 sam-
ples without EMnat1; and (iii) 25 samples with-
out EMnat4. This approach accounted for more
than just random mixing. It ensured that in a
significant part of the data set at least one end-
member was not present by definition. This
strategy of sample mixing allowed testing
EMMA with a more variable data set, especially
when drawing random subsamples. It also
allowed testing EMMA on essentially three dif-
ferent data sets. The reader may perform further
tests of own interest with these data sets. To
assess the reproducibility of the hand-mixing
approach, three parallel sample sets with identi-
cal mixing ratios were included, i.e. groups of
sample IDs 7–23–37–42, 51–63 and 84–90.
Parallel to the hand-made mixing and mea-

surements to generate Xnat, numeric mixing was
performed. Therefore, all four EMnat were multi-
plied with the respective mixing ratios and
classwise summed to create Xnum. This allowed
to estimate the uncertainty related to laboratory
mixing and subsequent measurement.
To investigate the relevance of correct model

settings in terms of number of end-members q, a
deterministic EMMA (Dietze & Dietze, 2019)
was run with the subsample of Xnat that only
contained EMnat1, EMnat2 and EMnat3. There, q
was set to 3 and 4. A further test aimed at the
effect of a presence of an additional end-
member in only one sample. For this test, one
sample containing four EM (i.e. sample 71) was
added to the previous data set and EMMA was
run again, with q¼ 3 and q¼ 4.
To test the influence of sample size, Xnat was

subsampled (random sampling without replace-
ment) with stepwise increasing sample sizes.
This would in principle yield 97 data sets con-
taining between 4 and 100 samples. To account
for the effect of different scenarios, each of the
97 potential data sets was created 1001 times by
drawing different random samples from Xnat.
To all of these 97 097 data sets, deterministic
EMMA was applied with q¼ 4 and the weight
transformation limit set to zero (i.e. l¼ 0). The
minimum sample size 4 was determined by the
number of q. Robust EMMA (Diatze & Dietze,
2019) was not feasible because of the large num-
ber of the data sets and non-automatic determi-
nation of some parameters.
To account for the influence of the number of

grain-size classes, Xnat was iteratively re-
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interpolated to wider, equally spaced classes (in
ϕ-scale). This resulted in data sets ranging from
4 to 116 grain-size classes. Grain-size distribu-
tions were obtained by linear interpolation using
the EMMAgeo function interpolate.classes.
Deterministic EMMA was applied with q¼ 4
and l¼ 0.
The effect of relative end-member abundance

was tested by iteratively increasing the relative
contribution of EMnat1 (from 0% to 100% in
1001 equally spaced steps) while assigning ran-
dom numbers to the remaining end-members.
This was done for EMnat1 and EMnat2 (2-EM sce-
nario, Xnat1�2), for EMnat1, EMnat2 and EMnat4 (3-
EM scenario, Xnat1�2�4) as well as for all four
end-members (4-EM scenario, Xnat1�2�3�4). The
EMMAgeo function mix.EM was used with a
noise level of 0.002 and an autocorrelation value
of 5 (i.e. a running mean filter of size 5 is used
to smoothen the resulting mixed samples). The
noise introduction was necessary to avoid ‘per-
fect’ mixing and thus unrealistic results, espe-
cially for the 2-EM scenario. Deterministic
EMMA was applied with q according to the
respective scenario and l¼ 0.
To simulate post-depositional mixing, an arti-

ficial data set (Xmix) with 1001 randomly mixed
samples was generated and row-wise averaging
rectangular filters were applied to the grain-size
distributions of adjacent samples. Filter width
was increased from 1 to 99. This setting can be
regarded as an accreting sediment section,
which has been sampled at equal depth inter-
vals 901 times and which has experienced post-
depositional mixing of different vertical dimen-
sion during accretion. For EMMA, the resulting
data sets were truncated to samples 50 to 950 to
avoid filter boundary effects. Deterministic
EMMA was applied with q¼ 4 and l¼ 0.
Non-stationarity in the grain-size distribution

of end-members was explored by end-members,
which were defined by normal distributions:
EM const1 with a mean of 4 ϕ and a standard
deviation of 0.5 and EM const2 with a mean of 11
ϕ and a standard deviation of 0.5. To these two
stable end-members a third end-member was
added, in two scenarios. The scenario with non-
stationary end-member EMvar1 implies an end-
member with a stable mode at 7 ϕ and a chang-
ing standard deviation, illustrating a gradually
widening distribution due to for example a
decreasing sorting efficiency. The degree of
change was ranged between zero and factor 3
(standard deviation grading from 0.5 to 1.5). The
scenario with non-stationary end-member

EMvar1 included a stable standard deviation of
0.5 but a running mean, a case which is repre-
sentative of a changing transport energy or
source distance case. Here, the modal class posi-
tion, hence the mean, was allowed to glide by a
range from zero (mean constant at 6 ϕ) to two
(mean gliding from 5 to 7 ϕ). For each of the
100 realizations of the two scenarios, 1001 data
sets were computed and EMMA has been per-
formed with q¼ 4 and l¼ 0.
Multimodality is already visible in the natural

end-members EMnat3 and EMnat4 (cf. Fig. 2).
However, for consistent tests two clearly bimo-
dal artificial end-members were created. EM art1

was defined by summing two normal

−1 1 3 5 7 9 11 13 15

Grain size [ ]

0
2

4
6

8

C
on

tr
ib

ut
io

n 
to

 g
ra

in
-s

iz
e 

cl
as

s 
(v

ol
.-

%
)

Alluvial fan
Dune sand
Loess
Floodplain

Measured
−

4
−

2
0

1000 100 10 1 0.1

Grain size (µm)

Averaged
Modelled

D
iff

er
en

ce
 (

vo
l.-

%
)

Fig. 2. Comparison of natural and modelled robust
end-member loadings. The upper part shows an
overlay of natural and modelled grain-size distribu-
tions. Individual measurement data (grey lines) and
natural end-members (bold dashed lines) are rescaled
to 80% for better visual comparison. Modelled end-
members are shown as median (solid thin lines) and
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deviation of modelled from natural end-members
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distributions (relative amounts of 70% and
30%) with means of 1.5 ϕ and 5.4 ϕ and stan-
dard deviations of 0.4 ϕ and 0.8 ϕ, respectively.
EM art2 was created in a similar way with relative
amounts of 45% and 55%, means of 4.6 ϕ and
8.2 ϕ and standard deviations of 0.6 ϕ and 1.1
ϕ, respectively. The function create.EM from the
EMMAgeo-package (Dietze & Dietze, 2019) was
used. These two end-members were randomly
mixed to create a data set (Xpoly) composed of
100 samples. Again, the function mix.EM was
used with a noise level of 0.002 and an autocor-
relation value of 5. Deterministic EMMA was
applied with q¼ 2 and l¼ 0.
The effect of end-member similarity was sys-

tematically tested by generating two ‘stable’ end-
members as normal distribution functions
(means of 4 ϕ and 11 ϕ and standard deviations
of 0.5 ϕ in both cases). Then, another end-
member was added with the same standard
deviation, but its mean was changed from 1.15
to 13.13 ϕ along the size classes as defined by
the laser diffraction device. A natural analogue
for this test might be the attempt to decipher the
contribution of two very similar dune sands to a
deposit, simply based on their similar grain-size
distribution. All end-members were mixed with
random proportions. This resulted in 89 end-
member scenarios (X similar), in which two end-
members approach each other twice, overlap
and then divert again from one another. Each
scenario was used for the Monte Carlo approach
as described above, using deterministic EMMA
with q¼ 3 and l¼ 0.

Evaluation of EMMA tests

Comparison of grain-size distributions should
ideally be based on robust statistics. This
includes the centred log-ratio transform for com-
positional data (Aitchison, 1986). However, this
transform can only be applied to zero-free data. In
our case, especially for the natural end-members
and modelled loadings there are many classes
that contain zeros, which precluded application
of the centred log-ratio transform. Accordingly,
being aware of this bias, analysis remained with
the untransformed data. The measured variability
of the four natural end-members and the parallel
mixed samples was described by the average
classwise 5 to 95 percentile range.
Tests of further parameter influences were

based on the comparison of the natural with
modelled data sets. Paterson & Heslop (2015)
used angular difference as a measure of

deviation. However, this value is not really intu-
itive and strongly depends on the size of the
absolute values of the tested data, which is why
the authors decided not to use it. Rather, two
other measures of model quality were used:
average variance explained by the model (repre-
sented by R2) and average model error (~E, i.e.
median of the absolute difference between
model and input data). Both measures were cal-
culated for EMnat versus modelled end-member
loadings (R2

l and ~El) and mixing ratios versus
modelled end-member scores (R2

s and ~Es). The
explained variance R2

l mainly reacts to shifts in
mode positions and provides an easily inter-
pretable measure that can be compared among
different samples and data sets. Note, however,
that while this correlation based method may
represent classwise patterns adequately, the final
interpretation of the vol-% values in a geoscien-
tific sense may remain biased for high abun-
dances of fine grain-size classes due to the
logarithmically scaled class boundaries of many
devices. ~El reacts to both shifts in the modes of
individual grain-size distributions and differ-
ences in the volume percentages per class. It is
well-suited to characterize the relationships of
distributions that cover many classes but
reaches limitations for narrow distributions (for
example, single end-members). To provide a
quantitative description of this behaviour the
test variable value was indicated (for example,
number of samples) when 95% of the maximum
of R2 and 5% of the minimum of ~E were
reached. Note that R2 and ~E as introduced above
are different from R2 and E as delivered by the
function EMMA from the R-package EMMAgeo
(Dietze & Dietze, 2016) as standard output by
comparing the input data set X with the mod-
elled data set X 0. The measures introduced
above can only be used when the natural end-
members and their mixing ratios are known.

RESULTS

Natural end-members and their mixtures

The four natural end-members show distinct,
characteristic distributions (Fig. 2). Clearly uni-
modal are the first two deposits, alluvial fan
(EMnat1) with a mode at 1.3 ϕ and dune (EMnat2)
with a mode at 1.6 ϕ. The loess sample (EMnat3)
shows a primary mode in the silt fraction (4.8 ϕ)
and a secondary one in the clay fraction (10 ϕ).
The floodplain deposit (EMnat4) is multimodal
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with two dominant modes in the silt fraction
(5.1 ϕ and 5.7 ϕ) and suppressed modes in the
sand (2.8 ϕ) and clay (11 ϕ) fraction. Average
classwise 5 to 95 percentile range in the individ-
ual measurements is 0.002, 0.010, 0.030 and
0.100% for EMnat1 to EMnat4, respectively.
The numerically mixed data set Xnum, com-

posed of the four natural end-members, showed
an overall high similarity to the hand-mixed and
measured data set Xnat (Fig. 3). The average R2 is
above 0.96 and average classwise deviation ~E is
below 0.06 vol.-%. Further analyses were only
performed with data from which outliers were
removed. The latter were defined as being below
the 5 percentile threshold of R2 or above the 95
percentile of ~E (blue and orange horizontal lines
in Fig. 3). This resulted in rejection of five sam-
ples (IDs 29, 39, 53, 56 and 88). Mixed parallel
samples yielded an average classwise 5 to 95 per-
centile range of 0.159 (IDs 7, 23, 37, 42), 0.074
(IDs 51, 63) and 0.004 (IDs 84, 90) %, respec-
tively. Without an obvious outlier (ID 7), vari-
ablility of the first parallel set reduced to 0.033.

Modelled end-members

Using the deterministic EMMA protocol with
four end-members and no weight limit

transformation, EMnat1 and EMnat2 show a minor
shift of the mode position to coarser sizes by
one grain-size class (Fig. 2, Appendix S1).
EMnat4 shows a mode deviation of 0.3 ϕ (i.e. two
grain-size classes). The average model R2 is 0.93.
As can be already seen from the shapes of the
grain-size data (Fig. 2), EMnat1 to EMnat3 are
reproduced well whereas EMnat4 shows obvious
deviation from its original shape. All modelled
end-members show artificial secondary modes,
preferentially below primary modes of other
end-members. This results in underestimation of
the volume percentage of respective primary
modes by up to 3.2 vol.-% (cf. lower part of
Fig. 2).

Model parameterization

The effects of different choices of the number
of end-members to model q (Fig. 4) are diverse.
In the case of three existing components, which
are modelled by three end-members, the result-
ing loadings are nearly identical with the
EMMA results of the full data set (Fig. 2). How-
ever, if the same data set is modelled with four
end-members (Fig. 4C) the additional end-
member shows three individual modes (−0.2,
2.1, 4.7 ϕ) with relevant scores in only two

1−2−3−4 1−2−3 2−3−4
End−member mixing scenario

0.
6

0.
7

0.
8

0.
9

1.
0

R
2

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

0.
0

0.
1

0.
2

0.
3

0.
4

Av
er

ag
e 

cl
as

s−
w

is
e 

de
vi

at
io

n

Fig. 3. Comparison of manually
and numerically mixed samples.
For all three subsets (Xnat1�2�3�4,
Xnat2�3�4, Xnat1�2�3) the explained
variance (blue) and average
classwise deviation (orange) is
shown. Blue and orange horizontal
lines show 5 and 95 percentile
thresholds.

© 2021 The Authors. Sedimentology published by John Wiley & Sons Ltd on behalf of

International Association of Sedimentologists, Sedimentology, 69, 845–863

End-member modelling application tests 853



samples (IDs 74, 83, not shown). In the case of
four existing end-members this fourth end-
member is correctly identified by EMMA (Fig. 4
B), although it is present in only one sample.
However, the additional end-member exists not
only in the affected sample, but causes scores
up to 25% also in other samples (not shown).
Describing a data set consisting of four end-

members by a model with only three end-
members (Fig. 4D) introduces a bias to the
existing end-members; specifically to the one
end-member that is closest to the missing one
(i.e. EM 3, dark green line in Fig. 4D). This
end-member receives a broad shoulder between
6 ϕ and 8 ϕ and an elevated slope between 9 ϕ
and 14 ϕ.
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Data set dimensions

The influence of the number of samples, which
are used for EMMA (Fig. 5) is high for small
numbers but loses relevance as the size of the
data set increases. R2 and ~E as well as their
associated scatters converge towards stable val-
ues. These stable regions are typically reached,
when at least 20 to 40 samples are used for
EMMA (vertical lines in Fig. 5). Numeric insta-
bilities that were reported for an insufficient
sample-to-class-ratio (Dietze et al., 2012) were
not encountered with the R package EMMAgeo.
Performing the same test but using the numeri-
cally mixed data set Xnum (see Appendix S1)
reveals very similar patterns, except for very low
numbers of samples. The approach of iteratively
drawing more and more samples from a global
data set to create a subset that eventually con-
tains as many samples as the global data set

introduces a bias towards smaller scatter due to
iteratively less variability in the individual ele-
ments of the subset. However, this effect is hard
to quantify given that Xnum showed less devia-
tion overall and points at only marginal scatter
for numerically mixed data sets in general.
The number of grain-size classes does not

affect EMMA results in a dramatic way, except
for very small numbers (Fig. 6). Explained
model variance R2 (solid line) and average error
~E (dashed line) typically reach stable values
after less than 15 grain-size classes. This stabil-
ity does not increase any more after 30 to 40
classes. Only ~El decreases slightly with increas-
ing number of classes.

End-member abundance and mixing

The relative abundance of an end-member in a
sample (Fig. 7) mainly has an impact at very
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low or high contributions. As EMnat1 was sys-
tematically increased, the diagonal patterns and
the white linear trend line of model deviation
(scores) indicate that this end-member was
underestimated for low abundances and overes-
timated for high abundances. The quartile
ranges of modelled score errors (boxplots in
Fig. 7) are around �5% for the 2-EM scenario,
�9% for the 3-EM scenario and between �8%
and �15% for the 4-EM scenario, which is com-
parable with the overall scatter in scores for
Xnat.
Post-depositional mixing has no general influ-

ence on end-member loadings (Fig. 8A); R2
l and

~El do not change significantly with increasing
size of the mixing integral (i.e. the number of
randomly mixed samples). In contrast, scores
are severely affected. A mixture of only three
samples reduces R2

s already by approximately

50% and correlation of input data and model
result is virtually zero after not more than 15
mixed samples.

Non-stationarity of end-members

Gradual changes in the shape of one end-
member can be at first order in two ways (and
their combinations): distribution width and dis-
tribution mode position. Both tests revealed
effects on end-member loadings and scores. For
the width change range of EMvar1 from 100 to
300%, loadings (Fig. 9A) are affected only mar-
ginally in terms of Rl (>0.97 throughout) and to
some extent in terms of ~El which showed a
gradual increase in grain-size classwise devia-
tion with increasing range of the widths that
EMvar1 was allowed to receive throughout the
data set. A similar pattern is also visible for
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end-member scores (Fig. 9B), with similar stable
Rs values throughout and also gently increasing
~El values for all three end-members.

Non-stationarity in terms of mode position
(Fig. 10) has more prominent consequences for
the model results. For the two stable end-
members EM const1 and EM const2 the effects are
similar to the case above, although the decrease
in Rl is more prominent, from 0.99 to 0.89. How-
ever, EMvar2 decreases severely, from an Rl>
0.99 to values around 0.23, in combination with
a systematically rising ~El evolution. Almost the
same general behaviour applies to the evolution
of end-member scores (Fig. 10B), as well.

End-member shape identification

Modelling of multimodal end-members using
Xpoly (Fig. 11) yielded nearly optimal results
regarding mode recovery and R2

s .
~El is lower

than for the mixed natural samples, whereas ~Es

and R2
l are comparable to natural samples. Draw-

backs occur for the modelling of the secondary
modes; while the primary mode position is esti-
mated well, the secondary modes deviate from
the defined shapes especially where the grain-
size curves of EM art1 and EM art2 overlap (i.e. 3.5
to 7 ϕ).
End-member similarity test results (Fig. 12)

show that, as the shifting end-member
approaches the mode position of stable end-
members (4 ϕ and 11 ϕ), R2

l decreases by up to
35%, both for the shifting and the respective
stable end-member. R2

s shows similar behaviour,
although the decrease is more severe. The
decrease is gradual, becoming significant for dis-
tances of less than three grain-size classes. ~El

and ~Es are more than one order smaller than in
other tests.

DISCUSSION

Levels of certainty

The representation of sediment transport pro-
cesses in measured data sets can be assessed by
comparing the natural end-members, the mixed
samples generated from them and the mixed
parallel samples. Given that the errors intro-
duced by amalgamating the samples in the labo-
ratory and the influence of weight-percent
versus volume-percent are negligible, all devia-
tions of Xnat from Xnum can be assigned to the
measurement uncertainty, resulting from mea-
surements of the natural end-member samples
and the mixed samples. Natural end-members
were reproduced with overall classwise scatter
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3 EM scenario
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Relative abundance of EM 1 (%)

C

0 10 20 30 40 50 60 70 80 90 100

−3
0

30
0

30
0

30
0

30

−3
0

30
0

30
0

30
0

30

A
bs

ol
ut

e 
m

od
el

 e
rr

or
 (%

)

●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●
●
●●●●●●●●●
●
●●●●●●●●●●●●●●●

●
●●●●●●●●●●

●
●●●●●●●●●●
●
●●●●●
●
●●●●●●
●
●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●
●
●●●●●●

●

●●●●
●●
●
●
●●
●
●●
●●●
●●●●●●●
●
●●●
●
●●
●
●●●●

●

●●●
●●●
●●●
●●
●
●
●●●
●●
●
●
●
●●
●
●

●●
●
●
●
●
●
●
●●
●
●
●
●
●

●

●
●●
●

●●●
●●
●●
●
●

●
●
●●

●
●●
●

●
●

●●
●
●

●
●

●
●●
●
●●●●●●
●●
●

●●

●
●

●

●
●
●

●
●

●
●
●

●

●
●●
●

●●

●
●
●
●●●
●●●●
●
●
●●

●
●
●
●
●
●●
●
●●
●

●

●●

●

●●●
●

●
●●

●

●●
●
●●
●●
●

●

●
●
●●●●●
●●●●●●
●
●
●

●●●
●

●
●
●●●

●●
●
●

●

●
●●●
●
●
●
●●●●
●

●

●

●●

●
●
●
●●
●●●

●●
●●●
●●
●
●●●
●

●

●

●
●●

●●●

●●
●●
●
●●
●
●●
●
●
●●
●
●
●●●
●

●

●
●
●●

●●●
●

●

●

●●
●
●●
●
●●
●●
●
●●●●
●●

●
●●
●
●
●●●
●

●●
●
●
●
●
●●●●
●

●

●
●●
●

●
●●
●
●●

●
●●
●

●
●
●
●
●
●
●
●
●●
●

●●●●●
●●
●●
●●
●●
●●●
●
●
●

●

●

●●

●
●
●
●●●
●
●
●

●

●
●

●

●
●
●●●
●●●●
●
●●
●
●●●●●●
●●●
●
●
●●●

●●
●
●●
●●●
●
●●●
●
●●
●●
●
●●●●
●●●●●●●●●
●●●●●●
●
●
●
●●
●●●
●
●●●●●
●●●●●
●●

●●
●

●
●●
●
●●●
●●●●●●●●●●
●●●●●●
●
●
●
●●
●
●
●●●●
●
●●●●●●●●●●●●●●●●

●●
●
●●●●●●
●
●
●
●●●●●●
●
●●●●●●●●
●
●
●●●●●
●●●●
●
●●●●●●●●●●●●●●●●●●

●●●●●
●●●●●●●●
●●●●●●●●●●●

●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●
●●
●
●
●
●
●
●
●
●

●

●

●
●
●●
●

●
●

●●
●

●●●●●
●
●

●
●

●●●

●●
●

●

●

●●●

●●●●●
●●
●●●●
●

●

●
●
●●
●
●●
●●●

●
●

●●
●
●

●

●
●
●●

●
●●●●●

●
●

●●
●
●
●
●

●

●●
●
●

●●●●
●●

●●

●●●●
●●●●
●●●●●
●
●

●

●
●●●●●●
●

●●
●
●
●●
●

●
●●
●

●●

●●
●

●●●●●●●●●●●
●
●
●

●●●●●
●

●●
●●●●●
●●
●●

●
●●●●●●
●
●
●
●●
●
●
●●●
●
●
●●●
●
●
●
●
●
●
●

●

●
●●
●

●●●●●●
●●●
●
●●●

●
●●
●

●●
●●
●
●

●
●

●
●●●

●●
●●●●
●●
●
●●

●
●
●
●
●
●

●
●

●
●
●

●

●
●●
●

●●

●
●
●
●●●
●●●●
●
●
●●

●
●
●
●
●●
●
●●
●●
●
●●

●
●●●
●

●
●●
●
●●
●
●●●●●

●

●
●
●●●●●
●●●●●
●
●●●

●●●
●

●

●
●●
●

●●
●
●

●

●
●
●●
●
●
●●●
●●
●

●

●

●●

●
●●
●●
●●●
●●
●●●
●●●
●●●
●

●

●
●
●●
●●●

●●
●●
●●●●
●●
●
●
●●
●●●
●
●●

●

●
●
●●
●●●
●
●

●
●●
●
●●
●
●●
●●
●
●●●●
●●

●
●●
●
●
●●●
●

●●
●
●
●
●●●●●
●

●
●
●●●

●●●
●
●●
●●●
●

●
●
●
●
●
●
●
●
●●
●
●
●
●●●
●●
●●
●●
●●
●●
●●●●
●

●

●
●
●
●
●
●●●
●●
●
●
●
●

●

●
●
●
●●●●●●
●
●
●
●●●●●●●
●
●●●●●
●
●
●
●
●
●●●●●●●●●●●●

●●
●
●●●●
●●●●●●●●●●
●
●●●●●●
●
●
●
●●●
●
●●●●●●●●●●
●
●●●●●
●●●●●●
●●●●●●●
●●●●●
●●●●
●
●
●
●●
●
●●
●
●
●
●
●●
●●●
●
●●●
●
●●●●●●●●●
●
●●
●●●
●
●
●
●●●●●●●●●●●●●●●

●
●●
●●●●
●●
●●
●●●●●●●●●●●●●

●●●●●●
●●
●
●●
●
●
●●●
●●●●
●
●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●
●●●●
●
●
●●●
●
●●●●
●●●●
●●●●●●
●
●●
●
●
●
●●
●
●●●●●●●
●
●●●●●●●
●●●●●●●●
●●
●
●●●●●●
●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●
●
●●●●

●●
●

●●
●
●
●●●
●●
●
●
●
●

●●

●
●
●
●
●

●
●
●●●

●●●

●●
●

●●●
●
●●
●●

●●
●●
●●●

●

●
●●
●

●●

●
●
●●

●

●●
●●●
●
●
●●

●
●●●●

●●

●

●●●
●

●
●●
●

●
●●●
●●
●

●●●
●
●
●
●
●●

●

●●
●
●
●●
●

●●
●

●

●

●
●
●
●●

●

●

●
●
●●

●

●
●

●●
●
●

●

●●

●●

●
●
●●
●
●

●
●●
●●●●●●
●
●

●
●

●

●
●●●
●●
●

●●
●●
●●

●
●

●

●●●●●
●●●
●

●
●

●
●●
●
●●●
●
●
●●
●
●

●
●●
●●
●●●
●●
●
●

●

●

●
●

●●

●
●
●●
●
●
●
●●

●

●●
●●
●
●●●●
●●
●
●
●
●●●
●
●●
●
●●
●●
●
●
●
●
●
●●

●

●●

●●
●

●●●●
●
●●
●●●
●

●●●
●
●

●●
●●●
●

●

●●
●
●
●
●●●
●
●

●

●●●
●
●●●●

●

●●●●

●
●
●●●
●

●
●●
●
●●
●●●●●●●
●●

●●●●

●

●●
●
●
●●
●
●●●●
●

●
●
●●

●●
●●●
●●
●

●
●●
●●●●
●●●
●●
●

●

●●●
●
●●
●
●
●●
●
●
●
●
●●

●●●
●
●

●
●●
●
●

●
●

●
●
●

●●●
●
●
●
●●
●
●
●
●●
●

●
●●●
●
●●
●
●
●●
●
●
●
●
●●
●

●
●
●●●
●
●●●
●●
●

●
●●●●
●●●
●●
●●
●
●●
●
●
●

●
●●●●●●

●

●
●

●●
●●
●●
●●
●●●●●

●
●
●
●
●●●

●

●

●

●●●●●
●

●

●

●
●●
●

●●
●●●●
●
●
●●

●●
●
●●●●●
●
●

●
●●●●
●●
●
●●●
●●
●
●●
●●●●●●
●●
●
●●●●●●●●
●●●
●●
●●
●●●
●
●●
●●●●
●
●
●
●
●●
●●
●●●
●●

●
●
●

●
●●
●

●●●●●
●
●
●●●
●
●●●●●●●●●
●●●●
●
●
●●●●
●●
●●●
●●●●●●
●
●
●●●●●●
●●●
●●●●
●
●
●
●●●
●●●
●

●●
●●●●●
●
●●●
●
●
●●●●●●
●●
●●●
●
●●
●●●●●●●●
●●
●●●●
●●
●●●
●
●●●●●

●●
●●●●
●●
●

●
●●●●●●●●●
●●
●●
●●
●
●●●●●●●●●●●●

●●●
●●
●●●●●●

●
●●
●●
●●●
●
●●
●●
●●
●
●
●●
●●●
●
●●●●
●●●●●●●
●●●
●
●●●●
●●
●
●
●
●●●●●●
●
●
●●●●●●
●●●
●
●●●●●●
●●●●●●●●
●●●
●●●
●●
●●●●●●●●
●●●●●
●●●●●●●●
●
●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●
●
●●

●
●
●

●

●
●●

●
●
●
●
●
●
●

●
●
●●

●

●

●●
●

●●

●
●

●●
●

●●●

●

●

●
●●
●
●●
●●●●●
●●●
●●

●

●
●●

●
●

●

●●●

●●

●●
●
●
●
●●
●

●
●

●●●

●●●●
●●

●

●

●

●

●

●

●
●
●

●●●

●
●●

●

●

●●

●●
●

●●
●●●●●

●

●●

●●
●

●

●●●

●●

●
●

●
●●
●
●●
●●●

●

●

●

●
●

●
●
●●
●
●
●●
●●●
●

●
●

●●●
●

●●
●
●
●●●●●

●●

●●

●

●
●
●
●●
●

●

●

●
●
●

●
●
●●●

●

●
●●

●
●

●

●
●

●

●
●

●

●
●
●
●

●
●
●●
●●

●

●
●
●
●
●
●
●
●
●

●

●●

●

●

●●
●

●

●

●

●
●

●●

●●
●
●
●
●
●

●●

●●

●

●

●

●

●
●

●

●

●

●

●
●
●●

●●

●

●
●●●●●●
●●

●

●
●●

●

●

●

●●

●
●
●
●
●●
●

●
●

●
●●
●
●

●

●
●●
●
●

●

●●●●
●

●

●
●
●●
●
●
●

●●
●●
●
●
●
●
●

●●
●

●

●

●
●

●●

●●
●
●

●

●

●

●
●
●

●

●●●
●
●

●

●

●

●●

●

●●

●●
●●
●
●
●

●●
●
●●●
●●
●

●

●
●●

●●

●
●
●

●
●●●●●
●●
●●●

●

●●●
●●
●
●●

●

●
●

●
●
●●●

●

●

●

●●
●●●
●
●
●●
●

●
●●●●

●●

●

●●●

●
●●●●
●●●

●
●●●●●●

●

●
●
●●
●

●
●●●

●
●

●
●●
●

●
●
●
●
●
●

●
●
●●
●
●●●
●●
●●
●●
●●
●●
●
●
●●
●
●

●

●

●
●●
●●●●●
●
●
●
●
●
●

●

●
●
●●●
●●●●
●●
●
●
●●
●●●
●
●●●
●●
●
●

●

●●
●
●●
●
●●
●
●●●●
●●
●
●
●

●
●●●
●●●
●
●
●●●●●●●●●●●

●
●

●
●

●●
●
●
●
●●
●●
●
●●
●●
●
●●●●
●
●●
●●●●●
●
●
●●●
●●●
●
●
●●
●●●

●

●

●

●
●●
●●
●●●
●
●
●
●●●
●
●●●
●

●

●●
●
●●●●
●

●

●
●●●●
●
●
●
●●●●●
●●
●
●●●●●●●●
●●
●
●

●
●●●
●
●●
●●●●
●
●●●●●
●●●●●●
●●
●●
●
●
●
●
●
●●●●●●
●●
●
●●
●
●●●

●
●●●●
●
●●●●●●●
●●●
●
●●●●●●●●●●●●

●●●
●
●
●●●
●●●●

●
●●●
●●●●●●●●
●●●●●
●●●
●●
●
●
●●●●●●
●●●●●●●
●●
●
●●
●●●
●●●●
●
●
●●●●●●●
●●●●●●●
●●●
●●●●
●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●
●
●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●
●
●
●
●
●●
●●
●●●

●
●●●
●
●●●●●
●●
●●
●●

●

●
●

●
●
●●●

●

●

●

●●

●

●

●

●

●●

●
●●

●
●●
●
●
●
●
●●●●
●
●●●

Alluvial Fan Dune Loess Floodplain

Fig. 7. Influence of end-member abundance on scores
modelling. Boxplots provide a summary of all 1001
individual model runs. Lines through data clouds are
linear model fits.
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of 0.03%, although this value includes scatter in
specific grain-size classes one order of magni-
tude higher and lower. However, with an aver-
age classwise deviation of 0.04% the mixed data
sets are well in that range. Further insight into
the composition of this uncertainty is possible
through the parallel sets of mixed samples.
These show an overall scatter of 0.04% (exclud-
ing the obvious outlier, ID 7) and also point at
this apparent limit of certainty. All of these val-
ues are of the same magnitude as the measure-
ment uncertainty of the laser diffraction device
(2% relative error, applying to values of less
than 7 vol.-%) and point at the base level of
accuracy, which is passed to EMMA.
The apparently poor R2

l values of the model
results for the empirical data set can be attribu-
ted to the secondary modes introduced by
EMMA (Fig. 2). This implies that the heights of
primary modes are underestimated by roughly
20%, which needs to be taken into account
when comparing EMMA results with other

measurement data. Although it would be possi-
ble to remove the secondary modes in the
EMMA modelling protocol by manipulating the
unscaled loadings, (cf. Appendix S1 in Dietze &
Dietze, 2019) the model output has not been
changed here to be as generic, transparent and
conservative as possible. Likewise, further bias
due to logarithmically scaled grain-size class
boundaries inherent to many measurement
devices needs to be accounted for when inter-
preting both the modelled vol.-% values and
their geoscientific significance. Apart from
EMnat4 the coincidence of mode position and
shape of the end-members is obvious and points
at the general ability of EMMA to correctly
describe the grain-size distribution of end-
members that constitute a set of mixed samples.
Average classwise deviations of less than 0.52%
underline this.
Our tests show systematic differences in the ~E

values for loadings, depending on whether mea-
sured or synthetic end-members were used to
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create mixed data sets. Data sets based on mea-
sured end-members show an overall higher vari-
ability because end-members with a primarily

wider distribution were mixed, versus the nar-
row standard deviations of normal distributions
for the synthetic end-members. Accordingly, ~E
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values for loadings reflect the average behaviour
of systematically different numbers of grain-size
classes and the two categories of data sets can-
not be compared directly.

Model parameterization

Finding a meaningful number of end-members q
is crucial, although almost never a straightfor-
ward task. The limits from a mathematical point
of view are determined by the number of grain-
size samples and classes. EMMA delivers by
definition non-unique solutions. Hence, it
remains to the scientist to judge the validity of
the parameters and respective model outputs,
based on a thorough understanding of the sedi-
mentary and geomorphic system and reasonable
links between the shape of modelled end-
member loadings and supposed underlying
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processes. One rather obvious effect of a mis-
matching estimate of q is shown in Fig. 4C,
where the surplus end-member 4 exhibits a mul-
timodal distribution. This is meaningless in a
geoscientific context, because there is no process
that would tend to consistently generate such a
distribution, especially when the three other
end-members are already present in the data set.
Less obvious is the effect of an insufficient num-
ber of end-members for a data set (Fig. 4D), for
example when end-member 3 partly covers the
apparently necessary floodplain end-member by
showing a pronounced shoulder towards finer
grain-sizes. It might indeed be possible that the
multimodal end-member 3 represents a true pro-
cess end-member, for example when loess and
floodplain sediments are reworked and trans-
ported by overland flow to the sampled deposit
(Vandenberghe, 2013). The R package EMMAgeo
provides a series of tools to investigate such a
potential scenario (for example, qmin-plot, q-l-
image, mode histograms, robust EMMA; cf.
(Dietze & Dietze, 2019) and related Appendix
S1).

Data set dimensions

Converging measures of model quality for
increasing numbers of samples underline the
necessity to apply EMMA only to data sets with
a sufficient sample size: 95% of the maximum
R2 and minimum ~E values are reached between
less than 10 and up to 47 samples. This indi-
cates that there is no universal threshold of a
minimum sample size that can be recom-
mended. Presumably, the number of necessary
samples depends on the number of inherent
end-members and on how well the samples rep-
resent different mixing proportions of these end-
members.
The number of available grain-size classes has

comparatively little influence. For the four sedi-
ment samples used in this study, less than 15
classes are sufficient to achieve stable results in
terms of R2, whereas the more classes that are
available the smaller the average absolute devia-
tion of end-member loadings becomes. End-
member scores are virtually unaffected. Hence,
for the samples used in this data set, classic
sieve-sedimentation analysis with perhaps a few
more than the seven standard classes would
already have been sufficient to successfully
apply EMMA. However, similar to the appropri-
ate number of samples, also the grain-size class
limits must resolve the grain-size ranges, where

the distributions of different end-members inter-
sect and overlap. For example, when primary
modes of EMnat1 and EMnat2 differ between 1 ϕ
and 2 ϕ, sieve intervals need to resolve this
range with greater detail.

End-member abundance and mixing

EMMA is able to detect an end-member if it is
present in only one sample (Fig. 4B). Further-
more, the presence of this end-member is
already sufficient to introduce a significant bias
to the model. Hence, any data set should be
inspected carefully for potential outliers in
terms of samples that include end-members,
which are not part of the sedimentary environ-
ment to be modelled. This task can be easily
performed by checking the end-member scores:
a suspicious end-member only appears in one or
very few samples and the explained variance of
each end-member for the data set (Mqsvar) of the
suspicious end-member is marginal. If it is rea-
sonable to assume that the outlier is part of the
sedimentary regime, the deposit should be
resampled (if possible) to increase sampling res-
olution. Otherwise, the sample should be
excluded from the data set.
End-members are identified by EMMA even if

they are present with only a few vol.-%. How-
ever, the model tends to underestimate it in
such cases (Fig. 7 left parts), whereas at the
other end, i.e. when the end-member dominates
a sample, EMMA overestimates its contribution.
Weltje & Prins (2007), Paterson & Heslop (2015)
and van Hateren et al. (2018) found similar ten-
dencies in their exercises with artificial end-
members.
Post-depositional mixing can introduce a sig-

nificant bias to end-member scores, even for low
mixing intensities (i.e. number of adjacent sam-
ples used for random mixing). Hence, if post-
depositional mixing can be expected, for example
based on descriptive field data such as ice
wedges, cryoturbation features or crotowina, any
process quantification based on end-member
scores may be flawed. On the other hand, end-
member loadings appear not to be seriously
affected by post-depositional mixing. Thus, inter-
pretation of the formerly involved sediment trans-
port and deposition processes is still possible.

Non-stationarity in end-member properties

End-member stationarity (i.e. stability in the dis-
tribution shape of all underlying end-members
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throughout) is one of the key assumptions of
EMMA (Dietze et al., 2012) and its validity
should therefore be considered in any real-world
data set. Our tests show that a gradual widening
of an end-member throughout the data set (i.e.
for example a gradual change in the efficiency of
a process to sort the grain-size of a given end-
member as the deposit is being formed) affects
the model results only marginally, most obvi-
ously expressed by ~E of loadings, which reflect
not only shifts in mode positions but also
changes in the overall shape (Fig. 9). Neverthe-
less, gradually widening distributions of con-
tributing components do not render the
interpretation of both loadings and scores flawed.
In contrast, non-stationary in the form of gradu-

ally shifting mode positions (Fig. 10) does have
significant consequences for model results, and
thus for the interpretation of the data in real
application scenarios. R2 decreases to values as
low as 0.23 for both loadings and scores as the
mode is allowed to change within a data set by as
much as 2 ϕ units, i.e. from 7.8 to 31.3 µm (15
measured grain-size classes). This range is cer-
tainly dramatic for archives such as loess deposits
and beyond the level of variability in transport
mechanisms one would expect (e.g. Vanden-
berghe, 2013). Nevertheless, other systems with
more variable transport mechanisms may be sub-
ject to such wide ranges in end-member modes.
Apart from these two fundamental cases, non-

stationarity can also arise from further mecha-
nisms, such as the emergence of secondary
modes due to increasing weathering and mineral
neoformation downcore. Their effects were how-
ever not tested here, but similar test scenarios
can be constructed and evaluated in order to
gain insight to more specific cases. See the
Appendix S1 for detailed information on how to
prepare such tests.

End-member shape identification

Originally multimodal end-members were mod-
elled by EMMA in the natural as well as in the
artificial data set (Figs 4B and 11). Both artificial
end-members were appropriately recognized and
modelled, apart from the mismatching range,
where the secondary modes overlap.
As original end-members become more and

more similar to one another, the chance to ade-
quately depict them and quantify their contribu-
tion to samples by EMMA decreases. However,
the effect is not relevant until the mode posi-
tions of end-members with the same shape are

less than three grain-size classes apart from each
other. Hence, EMMA is able to detect even small
changes in the sediment transport regime as
expressed by slightly changed grain-size distri-
butions.

CONCLUSIONS

End-member modelling analysis (EMMA) is a
robust, reliable tool to identify and quantify sed-
iment transport regimes from mixed sedimentary
deposits. Thereby, the number of parameters is
minimal. Virtually, the user will mainly adjust
the number of end-members q and the weight
transformation limit l. In this study, all tests
were based on four natural end-members, which
represent typical sediment types found in terres-
trial systems and which show extensively over-
lapping grain-size distributions. Nevertheless,
mathematically robust decomposition reassur-
ance does not replace the need for geoscientific
expert knowledge when it comes to interpreting
the meaningfulness of the results in the context
of source area, transport pathway and deposi-
tional environment.
EMMA can model end-member loadings at the

level of measurement uncertainty. The task of
appropriately defining the input parameters
remains in the responsibility of the scientist
who should make use of ample available tools
and tests. Although EMMA is able to deliver
results close to the optimum, well below the
dimensions of the original data set (100 samples,
represented by 116 grain-size classes), there is
no general recommendation regarding sample
size and resolution in terms of grain-size classes.
The emergence of secondary modes limits direct
comparison of modelled end-members with orig-
inal data (for example, sampled alluvial fan or
dune sediment samples) in terms of absolute
vol.-% per class, but these modes have a limited
effect on the estimates of end-member scores.
EMMA tends to underestimate low end-member
abundances and overestimate high abundances,
but detects an end-member even if it is present
in only one sample. Post-depositional mixing
has severe consequences for end-member scores
interpretation (process quantification) whereas
loadings (process identification) appear to be
nearly unaffected. EMMA is able to model pri-
marily multimodal end-members and decipher
end-members of identical shape as soon as their
modes are separated by more than three grain-
size classes.
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Appendix S1. EMMA evaluation.

© 2021 The Authors. Sedimentology published by John Wiley & Sons Ltd on behalf of

International Association of Sedimentologists, Sedimentology, 69, 845–863

End-member modelling application tests 863

https://doi.org/10.5880/GFZ.4.6.2019.002

