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1  |  INTRODUC TION

Northern permafrost soils represent the largest terrestrial organic 
carbon pool, and a major fraction of this carbon is stored in the 
near surface (the upper 3 m) that is vulnerable to warming (Hugelius 

et al., 2014). The Arctic region is warming at about twice the global 
average rate, with an increase of ~0.29°C in arctic permafrost soil 
between 2007 and 2016 (Biskaborn et al., 2019). Disproportionate 
near- surface warming has made permafrost soil carbon increasingly 
vulnerable to decomposition into carbon dioxide (CO2) and methane 
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Abstract
Temperature is an important factor governing microbe- mediated carbon feedback 
from permafrost soils. The link between taxonomic and functional microbial re-
sponses to temperature change remains elusive due to the lack of studies assessing 
both aspects of microbial ecology. Our previous study reported microbial metabolic 
and trophic shifts in response to short- term temperature increases in Arctic peat soil, 
and linked these shifts to higher CH4 and CO2 production rates (Proceedings of the 
National Academy of Sciences of the United States of America, 112, E2507– E2516). Here, 
we studied the taxonomic composition and functional potential of samples from the 
same experiment. We see that along a high- resolution temperature gradient (1– 30°C), 
microbial communities change discretely, but not continuously or stochastically, in 
response to rising temperatures. The taxonomic variability may thus in part reflect 
the varied temperature responses of individual taxa and the competition between 
these taxa for resources. These taxonomic responses contrast the stable functional 
potential (metagenomic- based) across all temperatures or the previously observed 
metabolic or trophic shifts at key temperatures. Furthermore, with rising tempera-
tures we observed a progressive decrease in species diversity (Shannon Index) and 
increased dispersion of greenhouse gas (GHG) production rates. We conclude that the 
taxonomic variation is decoupled from both the functional potential of the community 
and the previously observed temperature- dependent changes in microbial function. 
However, the reduced diversity at higher temperatures might help explain the higher 
variability in GHG production at higher temperatures.
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(CH4) by microorganisms (Schuur et al., 2015). An important concern 
is whether such microbial feedbacks can in turn accelerate climate 
change (Mackelprang et al., 2011; Prater et al., 2007; Schuur et al., 
2015). The response of microbial communities in arctic soils to global 
warming has important implications for the permafrost carbon feed-
back. The critical question centers on how microbial communities 
will respond to warming and how taxonomic and functional changes 
can influence GHG emissions. This key information is necessary to 
predict future carbon fluxes in permafrost soils (Graham et al., 2012).

Warming- induced microbial taxonomic shifts were frequently 
observed in incubation experiments (Barcenas- Moreno et al., 2009; 
Chen et al., 2015; Oliverio et al., 2017; Sheik et al., 2011) or tempera-
ture gradient analogues represented by latitudinal and altitudinal 
transects or stratigraphic profiles (Ganzert et al., 2007; Radujković 
et al., 2018; Wang et al., 2015; Wu et al., 2009). An increasing num-
ber of transcriptomic, metabolic, and isotopic experiments suggest 
that rising temperatures regulate microbial activities and community 
structures on different time- scales (Frey et al., 2013; Karhu et al., 
2014; Mackelprang et al., 2011; Stone et al., 2012; Tveit et al., 2015; 
Yvon- Durocher et al., 2014). Additionally, in a recent study of mul-
tiple sites across north America, some particularly temperature- 
responsive taxonomic lineages were identified (Oliverio et al., 2017). 
Arctic peat microbiota can rapidly adapt to increased temperature 
through taxonomic shifts on the transcriptional level, within func-
tional guilds, to maintain high levels of CH4 production. For instance, 
Bacteroidetes replaced Firmicutes for syntrophic propionate oxida-
tion above a threshold temperature of 7°C (Tveit et al., 2015). More 
broadly, increasing temperatures was shown to result in diversity 
loss (Garcia et al., 2018). Diversity changes can further influence 
ecosystem function through selection and complementarity effects 
(Loreau & Hector, 2001). Hence, changes in community structure 
and the shift pattern are likely to provide possible linkages between 
taxonomy and functional potential.

Despite many previous works documenting the community re-
sponse to warming, some studies demonstrated slight or insignifi-
cant community dynamics as a result of temperature treatment 
(Barcenas- Moreno et al., 2009; Juottonen et al., 2008; Metje & 
Frenzel, 2007; Schindlbacher et al., 2011; Selmants et al., 2016). 
Many of these studies focused generally on samples from different 
sites or temperature analogues such as natural transects that differ 
in ecological history or environmental characteristics across sites. 
With that heterogeneous benchmark, direct comparison of the sam-
ple communities can lead to irrelevant correlations. Furthermore, a 
temperature gradient analogue that contains spatial heterogeneity 
is usually coaffected by many factors, making it difficult to separate 
the temperature influence from other influences. In contrast, com-
parison of the community structure before and after temperature 
treatment would typically suggest positive temperature dependen-
cies (Frey et al., 2013; Karhu et al., 2014; Mackelprang et al., 2011; 
Stone et al., 2012; Tveit et al., 2015; Yvon- Durocher et al., 2014). In 
general, these incubation experiments were conducted for differ-
ent durations of time at limited sets of temperatures and sometimes 
covering large temperature intervals. Detailed information remains 

limited regarding how samples with high initial homogeneity re-
spond to a wide and fine- resolution temperature gradient.

In our previous work on anoxic microcosms, we integrated meta-
trancriptomics and targeted metabolomics to reveal clear successive 
shifts in microbial function and metabolic activities between three 
temperature windows 3– 5°C, 14– 16°C and 24– 26°C (Tveit et al., 
2015). We identified critical temperatures at which microbial accli-
matization cause changes in the metabolic bottlenecks of anaero-
bic carbon- degradation pathways. Our overall conclusion from this 
work was that the functional dynamics at different levels of the car-
bon degradation cascade enable fast adjustments of the microbial 
system resulting in high CH4 production rates over a wide tempera-
ture range (Tveit et al., 2015). However, microbial responses to ele-
vated temperatures at the population (DNA) level remains a missing 
piece of the puzzle. Based on the inconsistent community responses 
to temperature seen in recent literature, we propose that elevated 
temperature will result in community shifts, but that these shifts will 
be minor. Thus, the community structure shifts may not reflect the 
functional temperature responses. Knowledge of the magnitude and 
patterns of both the active layer microbial community dynamics and 
their function can ultimately provide complementary insights for 
better understanding and predicting the consequences of soil tem-
perature changes for these important soil ecosystems in the Arctic. 
Here, we have used DNA extracted from experiment samples har-
vested for the 2015 study (Tveit et al., 2015) to sequence 16S rRNA 
genes and mcrA genes (encoding the alpha subunit of Methyl coen-
zyme M reductase, marker gene for methanogens). Combining this 
new data with reanalyses of metagenomes, metatranscriptomes and 
methane and CO2 accumulation data from the 2015 study, we have 
shown that temperature- driven shifts in the DNA- based microbial 
community composition are uncoupled from the functional potential 
of the community. Furthermore, we show that both the community 
composition and functional potential (metagenomic- based) are un-
coupled from the temperature- driven functional shifts described in 
2015 (Tveit et al., 2015).

2  |  MATERIAL S AND METHODS

2.1  |  Sampling and incubation

The sample separation, preincubation and temperature gradient 
experiments have previously been described in detail (Tveit et al., 
2015). Here follows a brief description. Samples (peat blocks) were 
obtained from active layers at 10– 20 cm depth of a High Arctic peat 
soil from Knudsenheia, Svalbard (78°56 N, 11°49 E) in August 2010. 
The active layer depth was about 40 cm at the study site. The domi-
nant peat- forming species at this site is the moss Calliergon richard-
sonii. The upper 4 cm of the vegetation was removed before peat 
blocks were placed in plastic boxes and covered with water from 
the site to prevent oxygen access. After homogenization of peat and 
water to make a slurry under anoxic conditions, the slurry was dis-
tributed in bottles and pre- incubated for 171 days at 4°C to allow the 
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slurry to equilibrate. The incubations were conducted in the dark to 
prevent photosynthesis. After the preincubation, the bottles were 
distributed along a temperature gradient ranging from 1– 30°C in 
single degree steps, with four bottles at each temperature, and in-
cubated for approximately one month (1– 10°C for 39 days, 11– 20°C 
for 35 days, and 21– 30°C for 26 days). Per temperature, only three 
of these bottles (a total of 90) are relevant for the current study. 
Method used for the gas measurements were previously described in 
detail (Tveit et al., 2015). Here follows a brief summary. CH4 and CO2 
were measured with gas chromatograph in two of these bottles per 
temperature, on day zero and at intervals varying between two and 
four days, until the termination of the experiment. Moles of gas were 
calculated using the ideal gas law and by comparison with standards 
of known concentration under defined pressure, temperature, and 
volume, yielding the masses of the measured gases in the headspace 
mixture. Rates, corresponding to the difference between the initial 
and last measurements, divided by the number of days were finally 
normalized to the dry weight of the soil slurry within each bottle, 
respectively. Here, we have used samples collected from the one 
remaining bottle per temperature for DNA extractions and sequenc-
ing. These samples were stored at – 80°C until being processed for 
DNA extraction in summer 2015. In this study, we have analysed 
both these DNA samples and data that was already published in the 
spring of 2015 (Tveit et al., 2015).

2.2  |  DNA extraction, PCR and sequencing

Originally, 30 soil slurry samples, corresponding to 1°C increments 
from 1– 30°C were available from the experiment described above. 
When we decided to work further on these samples and extract 
DNA from all temperatures, the samples from 1 and 17°C were not 
available. Samples from all the remaining 28 temperatures between 
1 and 30°C were used for DNA extraction. We extracted the total 
genomic DNA in technical triplicates for each temperature (three 
subsamples of soil slurry) by using the protocol described by Tveit 
et al. (2015). Briefly, a cetrimonium bromide- containing lysis buffer 
and phenol:chloroform:isoamylalcohol (25:24:1) were added to all 
peat samples in lysis matrix E tubes (MP Biomedicals) containing sil-
ica beads and exposed to 30 s of vigorous shaking in a FastPrep ma-
chine (MP Biomedicals) for the extraction of nucleic acids. After PEG 
precipitation, ethanol washing and dissolution of pellets in nuclease- 
free water, nucleic acids were treated with DNase or RNase before 
metatranscriptome and metagenome generation, respectively. Total 
RNA was amplified using the MessageAmp II- Bacteria Kit (Ambion 
Life Technologies) following the kit protocol, except that the linear 
amplification step was carried out for 14 h. Paired- end sequences 
were generated by the Illumina HighSeq2000 sequencer at the 
Norwegian Sequencing Centre (University of Oslo, Oslo, Norway). 
Amplicon libraries were amplified from a template of total nu-
cleic acids. DNA concentrations were double- checked by using a 
NanoDrop spectrophotometer and Qubit Fluorometric Quantitation 
(Thermo Fisher Scientific).

The primer set of 341f (5’-  CCTACGGGNGGCWGCAG) and 
805R (5’- GACTACHVGGGTATCTAATCC) was used to amplify the 
V3– V4 region of bacterial 16S rRNA gene (Herlemann et al., 2011). 
The methanogenic population was profiled by mcrA gene primer set 
mlas/mcrA- rev (Steinberg & Regan, 2008). For multiplexing sequenc-
ing, sample- specific barcodes were tagged both forward and reverse 
primers at the 5′ end. All PCR reactions were performed in triplicate 
50 µl reactions containing 1.0 µl DNA template (5– 10 ng/µl), 0.1 µM 
of each primer and 1.0 U Opti Taq DNA Polymerase (Roboklo). The 
thermal cycle programme consisted of an initial denaturation at 95°C 
for 3 min, 30 cycles at 94°C for 30 s, 55°C for 30 s, and 72°C for 45 s, 
and a final extension at 72°C for 5 min. Afterwards, three parallel 
PCR products for each sample were pooled and then purified with 
the MiniElute PCR purification kit (Qiagen). The purified PCR prod-
ucts were equilibrated after quantification with Qubit Fluorometric 
Quantitation (ThermoFisher). Sequencing was completed by using 
the Genome Sequencer Illumina MiSeq (300 bp, paired- end) at 
GATC Biotech (now Eurofins Scientific).

2.3  |  Data preprocessing

The data was preprocessed by combining mothur (version 1.39.0; 
Schloss et al., 2009) and QIIME (version 1.8; Caporaso et al., 2010). 
The paired- end reads were processed into contigs in mothur by 
using the make.contigs function (parameter checkorient=t, pdiffs=2, 
bdiffs=1). The output report and groups files from the mothur plat-
form were parsed with a custom python script to discard the poor 
quality contigs which have minimum overlap length of less than 25, 
any ambiguous base (“N”) or over 5 mismatch bases. Then, the fil-
tered contig sequences were checked to remove chimeras by using 
chimera.uchime function in Mothur. Afterwards, valid sequences 
were fed to QIIME for OTU clustering and taxonomical assignment 
at sequence identity of 97% of bacterial 16S rDNA sequence by 
referring to the database of SILVA138 (released on Dec 16 2019) 
(Quast et al., 2013). The mcrA nucleotide sequences were clustered 
at 84% similarity by referring to the results and reference database 
(Yang et al., 2014).

2.4  |  Quantitative, statistical data analysis and 
visualization

The taxonomic composition was collapsed and summarized at dif-
ferent taxonomic levels by the R package otuSummary (Yang, 2020). 
This package was also used to partition the contribution of a group 
of taxa to the total beta diversity (Bray- Curtis dissimilarity). In this 
study, the abundances of metatranscriptomic small subunit rRNA 
(SSU rRNA) and mRNA, which were retrieved from our previous 
metatranscriptomic data sets (Tveit et al., 2015), were incorporated 
into the analysis to compare the fluctuation of microbial abundances 
at DNA and RNA levels. As our previous metatranscriptomic data, 
including mRNA and SSU rRNA were limited to three representative 
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temperature windows (3– 5°C, 14– 16°C and 24– 26°C), we com-
pared the 16S rRNA gene data within these temperature sections. 
The integrated signals should present valuable insights about the 
varying trend between phylogenetic profiles and functional profiles 
(SSU rRNA and mRNA). Additionally, the 16S rRNA gene sequenc-
ing profiles were used to predict the functional potential of the 
bacterial communities by using picrust2 (Phylogenetic Investigation 
of Communities by Reconstruction of Unobserved States) (Langille 
et al., 2013). The functional potential over the temperature sections 
was compared to the metagenomic and metatranscriptomic pro-
files which were re- processed with the raw data from our previous 
work (Tveit et al., 2015). Both metagenomic and metatranscriptomic 
data, covering three temperature windows (i.e., 3– 5°C, 14– 16°C and 
24– 26°C) were processed by using the metagenome atlas package 
(Kieser et al., 2020). Within this pipeline, assembly was done using 
MEGAHIT and functional annotation was performed with eggNOG- 
mapper. All parameters were set to default. For further details 
about this pipeline and default parameter settings, please refer to 
Kieser et al. (2020). The metagenomic, metatranscriptomic and the 
PICRUSt2- predicted data sets were merged by EC numbers (enzyme 
committee number) for three temperature windows (9 temperature 
points in total for each EC) and were then compared by using coef-
ficient of variation (also known as relative standard deviation, which 
takes account of both standard deviation and mean) in R (R Core 
Team, 2019). Data were visualized with the R environment (R Core 
Team, 2019). Heatmaps were implemented in the ggplot2 package 
(Wickham, 2009). For the variation of the major bacterial phyla and 
methanogenic OTU phylotypes, the bacterial abundances were nor-
malized by the total counts of the corresponding phylum, since the 
relative abundances vary within different bacterial phyla and large 
variability makes it difficult to distinguish the differences between 
color shades.

The species diversity was compared with the Shannon index 
across the temperature gradient, and the coefficient of variation 
was employed to show the extent of variability in relation to the 
mean of the population at each temperature. The resultant one- 
dimensional array was visualized with a scatter plot over tempera-
tures. We also studied to which extent the taxonomic groups at the 
OTU level varied in relative abundance within three different tem-
perature ranges (1– 10°C, 11– 20°C and 21– 30°C). These tempera-
ture ranges were the same as previously applied (Tveit et al., 2015). 
The main rationale for selecting them were to distinguish common 
summer soil temperatures (1– 10°C), uncommonly observed high 
range soil temperatures expected to be more frequently encoun-
tered in the future (11– 20°C) and above the range expected to be 
observed the high- Arctic (21– 30°C). These ranges are based on the 
available temperature data for sites (Bender et al., 2021; Rainer 
et al., 2020; Tveit et al., 2013; Westermann et al., 2009) close to 
the one sampled for the current study. The Bray- Curtis dissimi-
larity matrix, which was calculated based on the whole taxonomic 
composition, was used to identify the multivariate homogeneity 
of group dispersions (variances) at three temperature windows by 
using the betadisper function from the r package vegan (Oksanen 

et al., 2019). The dispersions (variances) between groups were 
tested by permutational ANOVA and classical Tukey's honest sig-
nificant differences (Tukey HSD) with vegan (Oksanen et al., 2019). 
In addition, the OTU table were collapsed at the phylum level in 
the three above- mentioned temperature windows (i.e., 1– 10°C, 11– 
20°C and 21– 30°C) which reflect the temperature windows used 
in our previous study (Tveit et al., 2015) as well as allowing bal-
anced sample sets for robust statistic. A pairwise t test was used 
to compare the relative abundance of top abundant six phyla be-
tween these temperature windows using ggpubr package (v0.4.0) 
(Kassambara, 2020).

To evaluate the pattern of community responses to increasing 
temperatures, the null model was used with a null hypothesis stating 
that such change is a stochastic process based on neutral theory. 
The observed ecological data were randomly shuffled for multiple 
times to test whether the observed pattern follows the simulated 
pattern by chance. If the randomized data resemble the observed 
data, it suggests that the process of interest follows a stochastic pat-
tern. This analysis was performed with the oecosimu function from 
r package vegan (Oksanen et al., 2019) by using binary matrix (i.e., 
converting OTU counts to presence- absence matrix). Abundance 
changes of individual taxa (OTUs) were also examined using Pearson 
correlation test with temperature in R. A total of 51 OTUs, with 
zero abundance occurring in less than four samples (i.e., <20% of 
a total of 28 samples), were fed to correlation test to identify those 
OTUs with correlation p < .05 and absolute values of coefficient 
>.6. An additional check was conducted to see whether the relative 
abundance of any OTU lineages monotonically changed (increased 
or decreased) along with the temperature gradient by sequen-
tially comparing the differences of all adjacent numbers. The rela-
tive abundance increased monotonically if all the differences were 
greater than zero, and vice versa. With respect to CH4 production 
at different temperatures, a linear model was fitted to evaluate the 
variability in CH4 production rates against temperatures; the spread 
of residuals around the linear model was visualized with a boxplot 
displaying the distribution of the residuals at different intervals of 
CH4 production and temperature using the r environment (R Core 
Team, 2019).

3  |  RESULTS

A total of 2,045,659 nonchimera sequences (min: 12,064, first quar-
tile: 41,604, median: 59,556, third quartile: 102,304, max 154,224) 
were classified into 900 bacterial OTUs. Across the temperature 
gradient, the bacterial communities were dominated by members 
from Actinobacteriota (average ± sd: 26.18 ± 6.44%), Firmicutes 
(18.98 ± 4.09%), Bacteroidota (16.87 ± 5.82%), Patescibacteria 
(13.52 ± 6.52%), Choloroflexi (7.27 ± 2.41%) and Proteobacteria 
(6.87 ± 2.43%). These top six bacterial phyla together contributed 
an average of 89.72% to the total abundance, and 81.9% to the total 
Bray- Curtis dissimilarity (Table S1). At OTU level, six predominat-
ing OTUs were identified to have mean relative abundance over 2% 
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across all samples, which together made up for, on average, 23.42% 
(min: 17.11%, first quartile: 20.15%, median 22.85%, third quartile: 
25.76%, max: 33.47%) of the community. Amongst them, the most 
abundant, OTU1 (7.81%) and OTU2 (5.9%), were affiliated with 
Firmicutes and Actinobacteriota, respectively.

Several major OTU phylotypes made up more than 5% of their 
respective phyla subsets (Figure S1). We found that five, three, five, 
three, five and six OTUs matched this criterium for Actinobacteriota, 
Firmicutes, Bacteroidota, Patescibacteria, Chloroflexi and 
Proteobacteria, respectively. These OTUs varied in abundance with 
elevated temperature, following each their individual pattern. For 
example, OTU1 and OTU2 remained abundant over the entire gra-
dient, while other OTUs were much more abundant at one or a few 
specific temperatures (Figure S1). For methanogenic archaea, a total 
of 1,746,463 sequences (min: 22,480, first quartile: 34,321, median: 
48,368, third quartile: 71,958, max: 169,767) could be assigned to 
only 16 OTUs. The three most dominant OTUs were affiliated to 
Methanosarcina, Methanomassiliicoccus and Methanobacterium. No 
methanogen OTUs responded monotonically to temperature and 
the abundance of several OTUs, including Methanosarcina (OTU1), 
varied substantially across the gradient, and not in synchrony with 
temperature (Figure S2). Due to the low number of OTUs identified 
we did not further assess their distribution quantitatively.

With all OTUs, a null model test indicated a very low probability 
(p < .01) that the community shifts observed across the tempera-
ture gradient would follow in a series of simulated random com-
munities. Therefore, the response of the community to increasing 
temperatures could not be categorized as a stochastic pattern. 
However, no lineages at the OTU level were found to respond 
monotonically to increasing temperature, despite of two OTUs (out 
of a total of 900 OTUs) which exhibited positive correlation with 
temperature (OTU9: p__Chloroflexi;g__Leptolinea, p < .05, r = .73, 
OTU14: p__Bacteroidota;g__WCHB1- 32, p < .05, r = .69) (Table 
S2, Figure S3). When the taxonomic composition was compared at 
higher taxonomic level (phylum), some indications for differences 
between temperature ranges could be observed (low: 1– 10°C, mid-
dle: 11– 20°C, high: 21– 30°C), but most of these differences were 
insignificant. Only Actinobacteriota and Patescibacteria showed 
statistically significant differences in relative abundance between 
temperature ranges, being most abundant in the low and high tem-
perature ranges, respectively (Figure 1). Permutational anova test 
(p = .81) and pairwise comparisons with TukeyHSD (Figure S4) on 
taxonomic variations at OTU level, did not demonstrate significant 
differences in community dispersion among the three tempera-
ture windows, suggesting that community differences were simi-
lar in magnitude across the entire temperature range. Despite the 
taxonomic variations, which sometimes amounted to more than 
20% difference in relative abundance within 10°C difference (see, 
Actinobacteria, Bacteroidia or Patesibacteria, Figure 1), prediction 
based on 16S rRNA gene data with PICRUSt2 suggested highly sim-
ilar predicted functional potential profiles over the entire tempera-
ture gradient (Figure 2). In fact, the largest differences in predicted 
relative abundances of the most abundant functions were much less 

than one percent. The PICRUSt2- predicted functional profiles were 
close to the actual functional potential represented by nine shot-
gun metagenomes available from the previous study (Tveit et al., 
2015), and reanalysed here to assess the validity of the PICRUSt2 
prediction. The metatranscriptomic profile, on the other hand, had 
a much higher relative standard deviation (coefficients of variation 
were 1.78, 1.15, and 1.04 for metatranscriptome, metagenome and 
PICRUSt2 prediction, respectively). In comparison, the 100 most 
abundant OTUs had a coefficient of variation of 1.55 within the 
three temperature windows (Figure S5), more akin to the variability 
of the metatranscriptomic data and much higher than the variabil-
ity within the functional potential profiles (i.e., metagenomes and 
PICRUSt2 predictions).

By comparing different types of fingerprints (16S rRNA genes, 
SSU rRNA and mRNA), we found that the taxonomic composi-
tion was consistent between the 16S rRNA gene-  and SSU rRNA 
transcripts- based results. In contrast, noticeable inconsistency oc-
curred between the DNA based community and the transcription-
ally active community, as shown by the rather scattered pattern 
between the mRNA-  and 16S rRNA gene- derived community struc-
tures (Figure S6).

Unlike the intricate taxonomic variation on gene and transcript 
levels, the species diversity analysis exhibited an overall decreasing 
Shannon index with increasing temperature (Figure 3). The species 
richness appeared slightly lower at high temperatures, suggesting 
that richness and not evenness was the driving factor behind the 
decreasing Shannon index. The CO2 and CH4 production rates cor-
related positively with increasing temperature, indicative of a sta-
ble and predictable temperature response. However, we observed 
higher dispersion in the rates above 15°C, as shown clearly in plots 
comparing the predicted rates to the residuals (Figure S7).

4  |  DISCUSSION

Higher microbial soil organic carbon (SOC) degradation rates in 
permafrost regions represent a potentially important feedback re-
sponse to climate change (Schuur et al., 2015). For modelling and 
prediction, it is necessary to improve our understanding of how 
climate change can modulate microbial systems. Focus on the in-
fluence of single variables such as temperature by minimizing the 
influence of other factors in experiments is important. This study 
investigated the responding pattern of microbial communities in 
high- Arctic anoxic peat soil to a high- resolution temperature gradi-
ent and revealed shifts in taxonomy and diversity. The link between 
community composition and its functionality and functional poten-
tial was then assessed.

We saw that the observed temperature responses of individ-
ual taxonomic lineages were not unimodal or linear, but rather dis-
crete. This is in line with many previous studies on taxonomic shifts 
(Barcenas- Moreno et al., 2009; Mackelprang et al., 2011; Oliverio 
et al., 2017) but it does not match the previously observed switch in 
metabolic functionality (transcript and metabolite based) occurring 
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between temperatures above and below the threshold temperature 
of 7°C (Tveit et al., 2015). The discrete response of individual lin-
eages to temperature may be associated with the thermal fitness of 
individual species which determines the performance (traits) of spe-
cies under changing thermal regimes (Garcia et al., 2018; Limberger 
et al., 2014) and generally declines much more rapidly after the 
optimal temperature (Angilletta et al., 2003; Huey et al., 2012). 
Alternatively, these discrete shifts might be signs of bottle- specific 
selection processes. After temperature change, substrate flows 
change (Tveit et al., 2015), leading to a situation where functional 
guild members must compete for their common substrate under a 
different set of circumstances. We suspect that during this competi-
tion, only a certain number of strains carry the properties to win and 
become the dominant member. This might help to explain the large 
community differences that seem to occur irrespective of tempera-
ture. Our results show that the community shifts are not random, al-
though they appear random. The reason for this might be that while 
a large number of theoretical possibilities for community change 
exist, only a restricted fraction of these are realistic due to biologi-
cal and physical constraints. The abundance shifts of the dominant 
phyla Firmicutes and Bacteroidota, although insignificant, may indi-
cate subtle differences in suitable temperature ranges. Each taxo-
nomic group constitutes various lineages with different preferences, 
possibly including different optimum temperatures for growth, and 

are thus likely to represent portfolios of thermal fitness, substrate 
affinities and other properties. These adaptations can further medi-
ate ecological dynamics and ecosystem functioning (Norberg et al., 
2001). Many members of Firmicutes and Bacteroidota are typical 
carbon fermenters (Fischbach & Sonnenburg, 2011; Huang et al., 
2018), and different functional performances of Bacteroidota and 
Firmicutes have been observed at low temperatures 3– 5°C com-
pared to higher temperatures (14– 16°C and 24– 26°C) (Tveit et al., 
2015). The shift in taxonomic composition at higher taxonomic ranks 
(Figure 1) may thus indicate possible exchanges or replacements of 
important ecosystem players, which can affect carbon degradation 
pathways and rates, contributing to the increasing GHG production 
rates (Figure S7). In addition, rising temperatures can indirectly reg-
ulate microbial community structure through modulating multiple 
habitat elements such as soil water content, nutrient pools, plant 
root properties and plant- microbe interaction (Classen et al., 2015). 
A recent study even suggested that indirect effects can prevail over 
direct impacts of temperature on soil microbial community structure 
(Deltedesco et al., 2020).

It should be noted that the taxonomic composition does not 
necessarily represent the active population as shown in the mRNA- 
derived data. Decoupling of microbial community composition and 
functioning under warming have been frequently observed (Frey 
et al., 2013; Karhu et al., 2014; Mackelprang et al., 2011). Communities 

F I G U R E  1  The relative abundance of top six abundant phyla at different temperature windows. The temperature windows followed 
and expanded our previous work (Tveit et al., 2015). All OTUs affiliated to the six phyla were collapsed by phylum level. The numbers of 
observations for each temperature window were 9, 9 and 10, respectively. ns, not significant. The phyla for which the relative abundances 
were significantly different (p < .05) from one temperature window to the two other were marked with an asterisk above the corresponding 
box
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typically exhibit high functional redundancy as multiple coexisting, 
taxonomically distinct organisms can perform the same metabolic 
function (Louca et al., 2018). For example, comparisons of gene 
pools for SOC degradation from geologically distant Arctic, temper-
ate and subtropical soils revealed similar metabolic potentials (Tveit 
et al., 2013). Even disparate phylogenetic responses to warming may 

still have similar functional consequences (Mackelprang et al., 2011). 
Consistent with previous studies, the predicted functional poten-
tial using our 16S marker gene data, and supported by our metag-
enomics analyses, implied relatively consistent functional potential 
at different temperatures (Figure 2). In our opinion this reflects a 
disconnection of functional potential and taxonomy with increasing 
temperatures, where the stability of functional guilds contrasts the 
variable taxonomy, both of these observations contrasting the previ-
ously observed functional shifts based on metatranscriptomics and 
targeted metabolomics (Tveit et al., 2015). We acknowledge that our 
prediction of the functional potential from 16S rRNA genes is not 
entirely equivalent to metagenomic profiles, but we could show that 
the approach is suitable for our environmental samples as shotgun 
metagenomes generated from nine of the same homogenized sam-
ples agreed with the PICRUSt2 prediction. While the difference in 
functional potential and taxonomic variation suggest that microbial 
communities are functionally redundant, even across large tem-
perature gradients, we consider that the clearest manifestation of 
a decoupling between taxonomy and function was the contrast be-
tween the discrete taxonomic changes and the linear temperature- 
dependence of GHG production (Figure 2 and Figure S7). Thus, we 
would propose that under changing thermal regimes, temperature 
may mediate the traits that influence the performance of different 
species, but taxonomic variations appear to be a poor predictor for 
functional performance.

F I G U R E  2  Boxplot showing the functional profiles of metatranscriptome, metagenome, as well as the PICRUSt2- predicted functional 
potential for the most abundant functions with mean relative abundance >0.25%. Here, each box displays the distribution of relative 
abundance of each EC item over nine temperatures (3– 5°C, 14– 16°C and 24– 26°C). The functional potential prediction was performed 
by PICRUSt2 (Phylogenetic Investigation of Communities by Reconstruction of Unobserved States) based on 16S rRNA gene profiling 
results. The functional profiles from metagenomes and metrascriptomes were reprocessed from previously generated datasets (Tveit 
et al., 2015). As we targeted the general signature of the functional potential, the rare lineages with total counts <10 across all samples 
were excluded from this analysis. The x- axis was placed according to the EC (enzyme committee numbers)
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F I G U R E  3  Changes of diversity in terms of Shannon index along 
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Unlike the intricate taxonomic variation, rising temperature re-
sulted in reduced species diversity, and increased GHG production 
rates (Figure 3 and Figure S7). Previously we have shown that the 
temperature dependence of CO2 and CH4 production rates (Figure 
S7) follow the square root model and not the Arrhenius equation, 
probably due to a combination of different temperature responses 
in multiple enzyme- catalyzed reactions and changes in the micro-
biota along the temperature gradient (Tveit et al., 2015). In line 
with our observations, diversity loss with increasing temperature 
was also observed in other studies (Garcia et al., 2018; MacLean 
et al., 2019; Parain et al., 2019). Biodiversity change can influence 
ecosystem function through selection effect and complementarity 
effect, that is, a dominance of species with particular traits that 
affect ecosystem processes while resource partitioning or positive 
interactions lead to increased total resource use (Loreau & Hector, 
2001). At lower temperatures, more diverse communities have a 
greater probability of including species with broad- spectrum ther-
mal traits that help maintain function. Conversely, higher tem-
peratures tend to favour those lineages that can tolerate higher 
temperatures and use resources at the relatively fast rates driven 
by higher temperatures. At higher temperatures, inter- species 
complementarity could partially compensate the influence of bio-
diversity loss on ecosystem function (Garcia et al., 2018). Owing to 
the above factors, increasing temperature is likely to support the 
fittest individuals at the cost of a decline in diversity and functional 
stability. This change may be a possible reason for the higher vari-
ability in GHG production rates above 15°C (Figure S7). In addition, 
our previous meta- omics study revealed higher abundances of 
predatory Cercozoa (unicellular eukaryotes) with increasing tem-
perature (Tveit et al., 2015). Predation may disproportionally scale 
the diversity through discriminant attacks on specific groups and 
limit the total biomass of prokaryotic population as shown by the 
reduced mass of DNA extract per gram of soil at higher tempera-
tures (Figure S8). Nevertheless, the response of the microbial com-
munity to increasing temperature is not a random process. Instead, 
the community have reacted to the increasing temperatures, re-
sulting in predictable system functionality although more variable 
GHG production rates.

This study attempted to focus on the impact of changing tem-
peratures on microbial communities in a closed system without any 
nutrient amendments, simplifying the process compared to natural 
ecosystems. In addition to direct effects, temperature can indi-
rectly regulate microbial GHG production through influencing for 
example, nutrient availability, soil moisture and plant root exudates 
(Barcenas- Moreno et al., 2009; Frindte et al., 2019; Heinze et al., 
2017). Further interaction among these factors could additionally 
complicate the response patterns under natural conditions. All 
samples in our experiment originated from one homogenous batch 
of soil slurry material to minimize the system heterogeneity, then 
split into multiple bottles prior to incubation. Although this design 
did not reach an ideal homogeneous condition, in part due to pre-
incubation in separate bottles, the simplicity of our approach at-
tempted to highlight the effects of temperature without becoming 

entangled in complex interactions of many variables. In fact, the 
preincubation itself may have facilitated parts of our approach, 
as it allowed for sufficient variation between bottles to enable a 
thorough evaluation of the link between temperature, the micro-
bial community, functional potential and functional shifts under 
boundary conditions.

5  |  CONCLUSIONS

We have previously shown how the temperature- induced effects 
of substrate availability cause taxonomic shifts within functional 
guilds and functional changes within taxa, leading to increased 
GHG production in Arctic peat soil (Tveit et al., 2015). The fol-
low- up study presented here utilizes samples from the same ex-
periment to demonstrate how broader, nonrandom, taxonomic 
responses to rising temperatures are not linked to the functional 
potential or any of the previously observed functional shifts. Such 
taxonomic changes clearly illustrated the flexibility and functional 
redundancy of the microbial community, suggesting that this fea-
ture is involved in sustaining the metabolic potential of the commu-
nity under change. The microbial communities also responded to 
increasing temperature by decreasing species diversity (Shannon 
index) matching a clearly reduced functional stability above 15°C. 
Thus, our observations also indicate that microbial community 
changes in Arctic peat soil can affect its functionality through a 
reduced species diversity that correlates with a higher variability in 
CH4 and CO2 production rates.
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