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A B S T R A C T   

Optical images of the Earth at very high spatial resolutions (VHR, typically < 5 m) are seeing rapid growth in 
volumes over the past 5 years, due in part to the fast-expanding constellations of CubeSats. Special preprocessing 
of these VHR images is required to ensure their geometric and radiometric consistency for quantitative analyses 
for a wide range of Earth and environmental sciences and applications. Here we describe a hierarchical 
normalization framework (HiNF) to achieve and evaluate geometric and radiometric normalization of these VHR 
images towards producing analysis ready data (ARD) of optical CubeSat images. We demonstrated HiNF at a 
spatially heterogeneous and temporally dynamic wetland site in northeastern Germany by generating a stack of 
temporally consistent ~ biweekly 5-m images over 8 years (2013–2020) at visible and near infrared bands 
(VNIR). The HiNF combined images from rigorously calibrated multispectral sensors onboard large satellites 
(Landsat-7/8 and Sentinel-2) and less well calibrated sensors onboard RapidEye (SmallSats) and PlanetScope 
(CubeSats). A two-stage radiometric normalization procedure produced two levels of image normalization and 
resulted in more normalized images that passed the quality control in time series compared to common one-stage 
procedures. The outcome of this novel procedure allows for downstream applications to balance between the 
quality and the quantity of available normalized CubeSat images in a time series. The HiNF provides a new 
approach to quantitative evaluations of radiometric normalizations using daily MODIS imagery as bridging 
benchmark data. The quantitative evaluations showed the HiNF resulted in greater normalization efficacy in the 
visible bands than in the NIR over the predominantly wetland area. The two normalization levels yielded sta
tistically similar efficacy for the NIR band and the widely-used normalized difference vegetation index according 
to the Chow test (at significance level of 0.05) but less so for the visible bands. The HiNF facilitates generating 
ARD of optical CubeSat images and assuring their qualities through its demonstrated efficacy and its quantitative 
evaluation approach. Such ARD-quality time series of VHR images from CubeSats allow for improved analyses 
and quantitative applications of this new stream of multispectral images at spatial scales that are better related to 
ground measurements and environmental management in terrestrial ecosystems.   

1. Introduction 

CubeSats are low-cost and miniaturized satellites made of commer
cial off-the-shelf components (Lee et al., 2020). The low costs and 
miniature sizes allow them to be launched in bulk into low Earth orbits 
(Puig-Suari et al., 2001), which facilitate the establishment of constel
lations comprising large numbers of satellites. Such constellations pro
vide multipoint sensing of the earth and thus enhance observational 
coverages, enabling Earth observations (EO) at unprecedented spatial 

and temporal resolutions that are impractical for traditional large sat
ellites to achieve (Poghosyan and Golkar, 2017). A key example is the 
fast-expanding constellations of CubeSats carrying optical multispectral 
sensors, one of the most used sensor types in remote sensing of terrestrial 
ecosystems (Dash and Ogutu, 2016). For example, as one of the most 
recognized operators of CubeSat constellations, Planet (also known as 
Planet Labs, Inc.) currently provides optical images of the entire globe in 
the visible and near-infrared (VNIR) bands at a spatial resolution of 
~3.7 m and a daily and even sub-daily revisit through its PlanetScope 
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constellation of 130 + CubeSats called “Doves” (Planet Labs Inc., 
2021a). 

Compared to large EO satellite missions at decameter resolutions 
such as Landsat and Sentinel-2, the higher spatial and temporal reso
lutions from CubeSat constellations offer extra spatiotemporal details 
about the land surface and better chances to relate satellite observations 
to ground data at relevant scales of field surveys and land management 
such as cropland farming and forest inventories. Some recent studies 
have demonstrated the opportunities to advance a wide range of earth 
and environmental sciences and applications via optical CubeSat images 
at very high resolutions (VHR, typically < 5 m) despite their limited 
spectral bands and spectral resolutions, such as in hydrology (Cooley 
et al., 2019; McCabe et al., 2017), ecology (Riihimäki et al., 2019), 
agriculture (Aragon et al., 2018; Cai et al., 2019), and disaster man
agement (Santilli et al., 2018). 

However, there are several concerns about the quality of optical 
CubeSat images for quantitative analyses in scientific investigations and 
monitoring applications (Dash and Ogutu, 2016; Houborg and McCabe, 
2016; Selva and Krejci, 2012). First, operational onboard radiometric 
calibration of CubeSats is lacking or limited, making it difficult to ensure 
radiometric consistency through time, a prerequisite for long-term 
monitoring (Chander et al., 2010), both within and among sensors on
board many CubeSats. Second, large numbers of optical CubeSats in a 
constellation also imply possibly quite different atmospheric and illu
mination conditions in CubeSat images as a result of wide-ranging 
overpass time, and hence additional difficulties to spatially mosaic 
and/or temporally stack these CubeSat images for large-area time series 
analysis of EO images. 

The requirements and benefits for large-area time series analysis of 
EO images have been well proven by recent applications of long-term 
Landsat imagery archive (Wulder et al., 2019) and the ongoing efforts 
towards analysis ready data (ARD) of Landsat (CEOS, 2021; Dwyer et al., 
2018; Frantz, 2019). The generation of ARD data provides observations 
that are geometrically and radiometrically consistent and have non- 
target/poor-quality observations flagged. As such, ARD allow immedi
ate large-scale analysis and interoperability through space and time with 
a minimum of additional user effort. Generating ARD from optical 
CubeSat images, however, faces greater challenges due to their afore
mentioned problems. Studies are emerging to push towards ARD of 
optical CubeSat images by leveraging existing or developing new algo
rithms of geometric co-registration and radiometric normalization of 
optical images (Houborg and McCabe, 2018; Kimm et al., 2020; Leach 
et al., 2019; Wang et al., 2020; Wegmueller et al., 2021; Wu et al., 2021). 
In general, these emerging studies generate temporally-consistent im
agery stacks by normalizing CubeSat images to some reference images 
that are usually multispectral images from rigorously-calibrated sensors 
onboard large satellites. 

To achieve ARD of optical CubeSat images, different normalization 
approaches, more sources of reference images, and additional process
ing steps need to be further tested and assessed. Here we present a hi
erarchical normalization framework (HiNF) that allows for flexible 
accommodations of different algorithms of geometric co-registration 
and radiometric normalization as well as for quantitative evaluation of 
normalization efficacy. The aim of the study is to layout major re
quirements on data, processing, and algorithms regarding the afore
mentioned needs towards ARD of optical CubeSat images through an 
example of demonstration. In the demonstration, we brought together 
some selected existing automatic algorithms for most processing needs. 
When a processing need is not yet well addressed by automatic algo
rithms, we used a manual approach for demonstration purpose and 
discuss the algorithm development needs. Below after describing the 
study area for the demonstration, we explain the requirements on data, 
processing, and algorithms in the HiNF by walking through the 
demonstration example. Then we present the results of the demonstra
tion before discussing the potential and limitation of the HiNF and the 
future work to achieve ARD of optical CubeSat images. 

2. Study area 

Our study area is centered on the FLUXNET (FLUXNET Network, 
2021) site Zarnekow (DE-Zrk) in northeastern Germany, an ecosystem- 
atmosphere heat and carbon flux monitoring site located within a 
rewetted minerotrophic peatland in the Peene River Valley (53◦52.5′ N, 
12◦53.3′ E) (Fig. 1). The area has been subject to drainage for agricul
tural purposes since the 18th century, which was strongly intensified 
starting in the 1960s. In the winter of 2004/2005, the area was rewetted 
resulting in permanent inundation and the development of an open 
water surface surrounded by emergent vegetation dominated by Typha 
latifolia. Temporary drying of the shallow water body in the summer of 
2016 triggered an expansion of the surrounding vegetation, which 
accelerated during and after a longer drought period in 2018. The highly 
dynamic vegetation development in recent years along with the dy
namic hydrological conditions requires a temporally and spatially 
highly-resolved quantitative analysis in support of ongoing in
vestigations of heat and carbon flux at the site (Franz et al., 2016; 
Koebsch et al., 2020). 

3. Description of the HiNF 

The goal of the HiNF is to generate stacks of temporally-consistent 
optical CubeSat images at or near the quality level of ARD. The design 
of the HiNF considers the following three issues, (1) flexibility of ac
commodating different algorithms for common processing steps in 
generating optical imagery ARD, namely, geometric registration, 
radiometric normalization, and cloud/cloud shadow detection; (2) 
applicability to different extents of region of interests; (3) objectivity in 
evaluating normalization efficacy. The first consideration on algo
rithmic flexibility is driven by the fact that the best algorithms may 
change for different applications. The second consideration on extent 
applicability recognizes the current reality that most CubeSat images are 
not open data, and the areal coverages of available CubeSat images vary 
from case to case. The third consideration on evaluation objectivity 
emphasizes quantifying normalization efficacy for downstream analyses 
and algorithm intercomparisons. 

The HiNF (Fig. 2) has four stages of processing, each consisting of 
required processing steps. The Stage 1 & 2 ask for algorithms to adjust 
input CubeSat images for radiometric consistency while accounting for 
geometric misalignment. The Stage 3 asks for algorithms to flag non- 
target/poor-quality pixels, co-register CubeSat images and furnish the 
final stack of CubeSat images. The Stage 4 asks for algorithms to 
quantitatively evaluate normalization efficacy. We describe the required 
imagery data inputs by the HiNF in the Section 3.1, then Stage 1 & 2 in 
the Section 3.2 and Stage 3 & 4 in the Section 3.3. Although we focus on 
detailing the algorithms used in our demonstration example, other al
gorithms of similar types can be fit into the HiNF according to users’ 
resources and needs. 

3.1. Imagery data inputs in the HiNF 

The HiNF (Fig. 2) combines three types of input images, (1) pre
liminary surface reflectance (SR) images at very high resolutions from 
CubeSats (referred as CubeSat images); (2) ARD-level SR images at 
decameter resolutions acquired by near-nadir observing and narrow-/ 
medium-swath sensors onboard large satellite constellations, such as 
Landsat and Sentinel-2 (referred as Landsat-like images); (3) ARD-level 
daily SR images at hectometer resolutions acquired by wide-swath 
sensors onboard large satellite constellations, such as MODIS on 
Aqua/Terra and VIIRS on Suomi-NPP (referred as MODIS-like images). 
Although it is more likely to pair MODIS-like images of daily resolutions 
with CubeSat images on the same day, the wide disparity in the spatial 
resolutions of the two imagery sources are disadvantageous to geometric 
co-registration and radiometric normalizations. Alternatively, Landsat- 
like images are available at least every 16 days (acquisition by one 
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Landsat satellite) or as short as every 3 days (combined acquisition by 
Landsat-8 and two Sentinel-2 satellites). Potential changes between the 
acquisition dates in paired CubeSat and Landsat-like images can be dealt 

with by adapting some existing algorithms originally designed for 
multitemporal image normalization (Canty et al., 2004; Canty and 
Nielsen, 2008; Du et al., 2002; Zhang et al., 2014). Therefore, we choose 

Fig. 1. Overview of the study area, Zarnekow, a wetland site in northeast Germany.  

Fig. 2. A diagram to illustrate Hierarchical Normalization Framework (HiNF).  

Z. Li et al.                                                                                                                                                                                                                                        



International Journal of Applied Earth Observation and Geoinformation 103 (2021) 102502

4

to rely on decameter Landsat-like SR images that are available every few 
days for the generation of temporally-consistent CubeSat images while 
relying on daily MODIS-like SR images at hectometer resolutions for 
quantitative evaluation of normalization efficacy. 

In our demonstration example, we generated an 8-year temporal 
stack of normalized VHR images from two satellite constellations, 
RapidEye (year 2013 to 2016) and PlanetScope (year 2016–2020) 
(Planet Labs Inc., 2021a). Although RapidEye satellites are not strictly 
CubeSats but SmallSats (larger and heavier than CubeSats, (Sandau, 
2010)), the processing needs for generating ARD of RapidEye images are 
essentially the same as for images from the CubeSats PlanetScope. 
Therefore, we used images from both constellations together to 
construct a longer time series than using PlanetScope images alone. 
Hereafter we shall refer to images from both constellations as CubeSat 
images for convenience. Limited by the total imagery volume available 
to this study, each acquired CubeSat image was restricted to a relatively 
small areal coverage of 5 × 5 km2. In total, we collected RapidEye im
ages on 38 dates from 2013 May to 2016 November and PlanetScope 
images on 80 dates from 2016 October to 2020 August. The acquisition 
time of these images ranged from 7:11 to 11:21 UTC. The solar zenith 
angle ranged from 30.2 to 79.0◦. As to the Landsat-like images for the 
normalization, we used the SR images at 30-m resolution from the 
Harmonized Landsat Sentinel-2 (HLS, version 1.4) products that 
combine images from Landat-8 and Sentinel-2 satellites under common 
geometric gridding, spectral bandpass and view geometry (Claverie 
et al., 2018). As to the MODIS-like images for the evaluation of 
normalization, we used the daily SR images gridded at 500-m resolution 
from the MCD43A4 V006 product, the Nadir-BRDF (bidirectional 
reflectance distribution function) Adjusted Reflectance (NBAR), that is 
MODIS data corrected to a common nadir view geometry at the local 
solar noon zenith angle (Schaaf and Wang, 2015). 

3.2. Processing Stage 1 & 2 in the HiNF 

The Stage 1 & 2 match the radiometry of input target images 
(CubeSat images) to that of given reference images in similar processing 
steps but use different sources as reference images, which results in two 
levels of normalized CubeSat images. Both stages contain the same al
gorithms for radiometric normalization along with a quality control 
(QC) test. The QC test sorts normalized images in each stage into QC- 
compliant and QC-failed results. In the Stage 1, with Landsat-like SR 
images being the reference, the QC-compliant results are exported as 
level-1 normalized images. QC-failed results in the Stage 1 are largely 
caused by the failure of establishing a reliable radiometric trans
formation between CubeSat and Landsat-like images when clear corre
sponding pixels between two paired images are insufficient at the 

coarser resolution of Landsat-like images. This insufficiency could be 
caused by contaminations of cloud/cloud shadow, limited areal cover
ages of available images, changes in landscapes, and a combination of 
these issues. All the normalized CubeSat images at level-1 from the 
Stage-1, with improved radiometric quality and much higher resolutions 
than Landsat-like images, serve as intermediate reference images in the 
Stage 2 to increase the chances of finding clear corresponding pixels 
between target and reference images for the normalization of the 
remaining CubeSat images with QC-failed results from the Stage 1. The 
QC-compliant results from the Stage 2 are exported as level-2 normal
ized images. The radiometric normalization procedure and the QC test in 
both stages are explained below. 

3.2.1. Multi-date radiometric normalization 
In both stages, per each target image on the date Ti we used reference 

images on multiple dates (Rj, j = 1,2…n, and n ≤ 4 in our demonstra
tion) closest to Ti to generate a normalized CubeSat image on Ti. This 
multi-date radiometric normalization (Fig. 3) applies to both Stage 1 and 
2. In the Stage 1, each target image out of all input CubeSat images was 
paired with multiple reference images on different dates from the HLS 
images. In the Stage 2, each of the remaining QC-failed CubeSat images 
from the Stage 1 was paired with multiple reference images from the 
level-1 normalized CubeSat images. The temporal difference between Ti 
and Rj was restricted under an upper limit (90 days in our demonstra
tion) to avoid/reduce the impact of potential significant changes in land 
surface and differences in solar illumination angles. We chose the upper 
limit of 90 days for a good chance of cloud-free HLS images as reference 
images considering its longest repeat cycles in our study period (i.e., 16 
days before 2015 by Landsat-8 alone) and reduced cloud-free revisits 
due to cloud coverages. The median number of days between the dates of 
one target and one reference images in our case was 20 days for the 
Stage 1 and 37 days for the Stage 2. Using the n reference images, we 
established multiple candidates of radiometric transformations using 
Iteratively Reweighted Multivariate Alteration Detection (IR-MAD) 
(Canty and Nielsen, 2008) to generate multiple candidates of normal
ized images per each target image. The IR-MAD detects invariant pixels 
between two images by applying canonical correlation analysis in iter
ations that place increasing focus on pixels whose change status is un
certain (Nielsen, 2007). We found invariant pixels between a target and 
a reference image by setting a threshold of 0.98 on the no-change 
probability given by the IR-MAD. The detected invariant pixels are 
then used in an orthogonal regression to establish the radiometric 
transformation from a target image to a reference. 

Among multiple candidates of normalized images for each target 
image, we selected the best normalized image as the output for this 
target image using some predefined criteria. These criteria were the 

Fig. 3. Multi-date radiometric normalization approach that applies to both Stage 1 and Stage 2 in Fig. 2.  
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same as those in the quality control test and are described in the Section 
3.2.2. To account for potential geometric misalignments between target 
and reference images, we co-registered a target image to each reference 
image using an algorithm called AROSICS (described in detail in the 
Section 3.3.2) before establishing radiometric transformations (Fig. 3). 
However, we generated normalized images by applying these trans
formations to the original (i.e., pre-registration) target image rather 
than a co-registered image. We chose this processing setup because the 
final geometric co-registration may be better achieved through images 
of greater radiometric consistency after Stage 1 & 2. In addition, 
resampling after radiometric normalization is needed to construct im
agery time series in a common raster grid. To avoid resampling images 
twice, we did not resample images in Stage 1 & 2 for the co-registration 
purpose but used normalized images as inputs to the final co-registration 
in a two-step procedure in the Stage 3 as described later (Section 3.3.2). 

The algorithm to establish radiometric transformations is the key in 
the Stage 1 & 2. The HiNF asks for an invariant-pixel-based algorithm 
(Du et al., 2002; Houborg and McCabe, 2018; Zhang et al., 2014) rather 
than the other commonly-used type of full-image-based algorithms such 
as the histogram matching (HM) (Wang et al., 2020). Invariant-pixel- 
based algorithms overcome possible changes (including contamination 
by cloud and cloud shadows) between target and reference images. 
Furthermore, it is relatively straightforward to design QC tests for such 
algorithms compared to full-image-based algorithms. Full-image-based 
algorithms usually require minimal changes between target and refer
ence images (Hong and Zhang, 2008) and do not offer straightforward 
internal QC tests. In contrast, the QC tests for invariant-pixel-based al
gorithms can be readily achieved via the cross-validation technique by 
dividing detected invariant pixels into training and testing sets (Canty 
and Nielsen, 2008; Houborg and McCabe, 2018; Leach et al., 2019) as 
demonstrated in the next Section. While we chose the IR-MAD in our 
demonstration example because of its robustness against differing at
mospheric conditions and its proven performances in our current and 
previous studies (Leach et al., 2019), future studies may test other 
existing and even develop new algorithms that detect invariant pixels in 
different ways and use one that best suits a user’s region of interests and 
resources. 

3.2.2. Quality control test in radiometric normalization 
For the QC tests, we used two-thirds of detected invariant pixels to 

train an orthogonal regression and the remaining to test the normali
zation result. In case of different resolutions between target and refer
ence images, target images were first resampled into the resolution of 
reference images using area-weighted average sampling. In the QC tests, 
post-normalization values of testing pixels in the target image were 
compared with pixel values of the reference image according to the 
following two statistical criteria, (1) the variance of testing pixel values 
in a CubeSat image after normalization was statistically comparable to 
that in the corresponding reference image for every band according to 
an F-test at a p-value of 0.1; (2) the linear correlation of testing pixel 
values between the post-normalization CubeSat image and the reference 
image was larger than 0.98 for every band. The normalization result for 
a pair of target and reference images was accepted if the comparison 
passed the above two criteria and otherwise was rejected. For each 
target image, we used the same two criteria to filter the multiple 
normalization candidates from using multiple reference images on 
different dates (Fig. 3). In case of more than one eligible candidate after 
passing through the two criteria, for each reference image candidate we 
calculated the ranges (maximum minus minimum) of reference surface 
reflectance values of training invariant pixels that were used in the 
regression at each of the four bands. We checked which candidate has 
the widest range at each band. We selected the normalized image for a 
given target image from using the reference candidate that has the 
greatest count of widest-range bands. A more reliable regression was 
expected by using invariant pixels that have wider ranges of reference 
values and hence a better radiometric transformation. We found this 

criterion work well to select the best candidate after visually examining 
normalized candidate images and chose this criterion heuristically. In 
addition to the automatic QC test, one can optionally use visual in
spection to further ensure the quality of normalized images from Stage 1 
& 2. In our demonstration, the visual inspection removed one image 
from Stage-1 outputs and no image from Stage-2 outputs. 

The two statistical criteria, the F-test of variances and the linear 
correlation of testing pixels before and after normalizations, can be used 
in the quality control test of normalized images by any invariant-pixel- 
based radiometric normalization algorithms. 

3.3. Processing Stage 3 & 4 in the HiNF 

The processing Stage 3 includes the following tasks,  

(1) Flag non-target/poor-quality pixels by refining cloud masks 
(cloud and cloud shadows).  

(2) Align CubeSat images into a common raster grid by geometric co- 
registration.  

(3) Optionally generate daily mosaics for given regions of interests. 

The optional generation of daily mosaics can be achieved by com
mon algorithms implemented in many geospatial tools such as the GDAL 
programs (GDAL/OGR contributors, 2021) that is used in our demon
stration example. The final processing Stage 4 is to evaluate the 
normalization efficacy using daily MODIS-like SR images. Because 
radiometric consistency through time is the focus of the evaluation, we 
choose MODIS-like SR images here that provide good benchmark of 
temporal variations thanks to its daily temporal resolution. 

3.3.1. Refinement of cloud mask 
While some optical CubeSat imagery products now come with cloud 

mask layers to help users mask out cloud and cloud shadows, these cloud 
masks may be insufficient for some downstream applications as was the 
case for this study. For example, Planet Labs Inc. provides a raster layer 
called Unusable Data Mask (UDM) and/or Usable Data Mask (UDM2) 
that can be used to flag cloud/cloud shadows in a CubeSat image (Planet 
Labs Inc., 2021a). However, UDM has been found unable to detect all 
cloud/cloud shadows as was the case for our demonstration example, 
necessitating extra processing by users to carry out appropriate time 
series analysis (Wang et al., 2020). The cloud/cloud shadows in UDM2 
are detected by supervised machine learning techniques and the detec
tion is believed to be better than UDM. However, UDM2 is only available 
back to the year 2018 and unavailable for a large amount of CubeSat 
images from the Planet Lab before 2018 (Planet Labs Inc., 2021b). Due 
to the complexity of cloud/cloud shadow detection, automatic detection 
of cloud/cloud shadows requires dedicated separate studies beyond the 
scope of this demonstration study. Here in addition to using the cloud 
mask from the UDM layer in the CubeSat images from the Planet Labs 
Inc., we manually masked out all the clouds and cloud shadows via vi
sual inspection of the composites of CubeSat images in true color (red, 
green, blue bands as RGB channels) and false color (NIR, red, green 
bands as RGB channels) according to the characteristics of cloud/cloud 
shadows at the four bands given by Zhu and Woodcock (2012). 

3.3.2. Two-step geometric co-registration 
A two-step procedure of geometric co-registration is designed in the 

HiNF to align normalized CubeSat images into a common raster grid. In 
Step 1, cloud-free Landsat-like images are used as reference images to 
co-register same-day cloud-free CubeSat images. These Step-1 co-regis
tered CubeSat images are then used in the Step 2 as the reference to co- 
register remaining CubeSat images. Each remaining CubeSat image is 
paired with a reference image that has the closest solar illumination 
angle and is acquired within ±90 days from the acquisition date of the 
image to be registered. 

In our demonstration example, we identified 23 cloud-free pairs of 
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same-day CubeSat and HLS images for the geometric co-registration in 
Step 1. We chose an algorithm of geometric co-registration implemented 
as a Python-based package called AROSICS (Automated and Robust 
Open-Source Image Co-Registration Software; (Scheffler et al., 2017; 
Scheffler, 2021)) that provides out-of-the-box compatibility to multi- 
sensor and multi-temporal satellite data such as those used in our 
demonstration. The AROSICS directly handles unequal spatial and 
spectral characteristics between reference and target images and sup
ports a wide range of projections and input data formats. Other ap
proaches such as AROP (Gao et al., 2009), ARRSI (Wong and Clausi, 
2007) or COSI-Corr (Leprince et al., 2007) have limitations in this re
gard, are more difficult to use or are not available as open-source soft
ware toolkits. Hence, they were less suited for our application. 
Additionally, AROSICS allows to customize output raster grids which 
enabled us to perform the resampling needed for correcting mis- 
registrations and aligning output images into a common raster grid in 
a single step. This way, we could avoid resampling twice which would 
otherwise lead to an unnecessary degradation of geometric and radio
metric quality. The underlying co-registration algorithm of AROSICS is 
based on phase correlation in the frequency domain, which makes it 
capable of sub-pixel alignment as well as robust against potential 
changes in images of different dates and also against interference of 
cloud/cloud shadows. This robustness was especially important in the 
context of our study area which covers a temporally dynamic wetland 
site with clear phenological and hydrological cycles. We used the local 
co-registration approach of AROSICS to compute around 25 tie-points 
per image pair. This allowed us to account for spatially varying mis- 
registrations while keeping the computational load low. Computing 
more tie points was not needed in our case due to the rather flat terrain 
and the acquisition geometries of the sensors where we did not expect 
very complex distortions. For both the reference and target image, we 
used the near-infrared (NIR) band for tie-point generation because it 
provides the best spatial contrast in our study area. Tie points at cloud 
and cloud shadow positions were effectively filtered out by the three- 
step outlier detection algorithm implemented in AROSICS. We config
ured AROSICS to output co-registered images directly into a common 
raster grid of 5-m resolution. 

To quantitatively assess the registration accuracy, we re-applied 
AROSICS to our co-registration results from the two steps of co- 
registration. We checked the residual errors and the overall RMSE 
value in the alignment between every pair of the CubeSat and HLS im
ages before and after co-registration in the Step 1, as well as between 
every pair of the CubeSat images in the Step 2. Larger reduction in the 
residual errors indicates greater efficacy of geometric co-registration 
and hence better geometric co-registration accuracy. 

3.3.3. Evaluation of normalization efficacy 
Here we aim to quantitatively evaluate how effective the normali

zation is to match CubeSat images to Landsat-like images. However, 
CubeSat and Landsat-like images are not always acquired on the same 
days and do not have one-to-one temporal correspondence for direct 
comparison. Therefore, we used MODIS-like daily images as the 
bridging benchmark data for the evaluation of normalization efficacy. 
To do so, we resampled both CubeSat and Landsat-like images into the 
coarser raster grid of MODIS-like images using area-weighted resam
pling. If resultant coarser pixels were not fully covered by clear CubeSat 
or Landsat-like pixels, we excluded them in the subsequent analyses. 

Given a band and a time period, we checked whether the similarity 
between CubeSat images and same-day MODIS-like benchmark images 
(here MCD43A4 products) gets closer to that between Landsat-like 
reference images (here HLS products) and same-day MODIS-like 
benchmark images after normalization compared to before normaliza
tion. We measured the MCD43A4-HLS and MCD43A4-CubeSat similar
ity in a time period at a band in two ways. In the first way, we used the 
slopes and intercepts from the linear regressions of MCD43A4 pixel 
values against coarsened HLS or CubeSat pixel values. If we see greater 

reduction of differences in slopes and intercepts between MCD43A4- 
CubeSat and MCD43A4-HLS regressions after normalization, it means 
the CubeSat images are matched closer to the HLS images in terms of 
radiometric quality and the greater normalization efficacy. In the second 
way, we measured the similarity by root mean squared difference 
(RMSD). As in the first way, we checked the reduction of RMSD differ
ences between MCD43A4-CubeSat and MCD43A4-HLS after normali
zation. We carried out the evaluation for the four spectral bands (B, G, R, 
NIR) as well as for the commonly-used normalized difference vegetation 
index (NDVI = NIR− R

NIR+R) (Tucker, 1979) by terrestrial ecosystem studies. 
For each band, we calculated the similarity measures for the entire study 
period of all the years and also for each year. Furthermore, to check 
whether the two levels of radiometric normalization from Stage 1 & 2 
yielded similar efficacy, we tested whether the linear regression of the 
level-1 normalized CubeSat images against the same-day MCD43A4 is 
statistically similar to that of the level-2 normalized images. To test 
whether two linear regressions are statistically similar, we used Chow 
test (Chow, 1960) that is implemented in an R package ‘gap’ (Zhao, 
2007). 

Furthermore, we qualitatively evaluated the time series of CubeSat 
images before and after normalization. We randomly selected ten 30 ×
30 m2 regions of interests (ROIs, equal to one HLS pixel) over the study 
area and visually inspected the time series of average spectral band 
values and NDVI values within the ROIs from the pre-normalization 
CubeSat images, normalized CubeSat images, and reference HLS im
ages. The calculation of an average is weighted by pixel fractions within 
a 30 × 30 m2 ROI. 

4. Results of the HiNF demonstration 

4.1. Residual errors of geometric co-registration 

By re-applying AROSICS to our co-registration results, we quantita
tively evaluated the geometric co-registration accuracy of all the pairs of 
images in the co-registration. We found that the average residual errors 
in the alignment between CubeSat and HLS images were reduced from 
9.99 m before the Step-1 co-registration to 4.80 m after the co- 
registration. This concurs with the findings of Scheffler et al. (2017) 
who obtained similar results in case of multi-sensor input images with 
large differences in spatial resolutions. The average residual errors in the 
alignment between two paired CubeSat images were reduced from 9.90 
m before the Step-2 co-registration to 2.16 m after the co-registration. 
We also visually inspected randomly-selected pairs of CubeSat and 
HLS images in the Step-1 of geometric co-registration as well as pairs of 
CubeSat images in the Step-2 of geometric co-registration. The image 
pairs showed good and improved correspondence after the co- 
registration, which corroborates the improved geometric co- 
registration accuracy as indicated by the reduction in residual errors. 

4.2. Time series of CubeSat images before and after normalization 

Of the randomly-selected ten 30 × 30 m2 ROIs to visualize time series 
of CubeSat images before and after normalization, we present the time 
series in two representative ROIs (Fig. 4 and Fig. 5) respectively over 
vegetation and water, two major surface cover types of interests at this 
wetland site. The other ROIs give us similar results regarding the simi
larity and differences in temporal variations of spectral band values and 
NDVI values. We see different temporal variations in the time series of 
pre-normalization CubeSat images and refence HLS images. The visible 
bands show larger differences in temporal variations between pre- 
normalization CubeSat images and reference HLS images than the NIR 
band. In contrast, the temporal variations in the time series of normal
ized CubeSat images and reference HLS images are better matched (see 
Section 4.3 for quantitative evaluation). In particular, we see two major 
improvements in the temporal consistency of imagery time series. First, 
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the temporal trajectories in pre-normalization PlanetScope images (or
ange dots in Fig. 4 and Fig. 5) show noticeable difference from those in 
reference HLS images, in particular at the blue band of the vegetation 
ROI and at all the visible bands of the water ROI. The normalized 
CubeSat images show comparable temporal trajectories at those bands 
with reference HLS images. Second, there is a clear discontinuity be
tween prenormalization RapidEye and PlanetScope images, which is 
caused by differences in both the spectral responses of the sensors (see 
Fig. 3 in Wilson et al., 2017) and the radiometric qualities. After the 
normalization, the RapidEye and PlanetScope appear consistent with 
each other. 

4.3. Quantitative evaluation of normalization efficacy 

In Fig. 6, we plot the spectral band and NDVI values (each row) from 
the bridging benchmark images of MCD43A4 against those from the 

CubeSat images (before and after normalization) as well as those from 
the reference HLS images over all the years. The scatter density plots 
between the MCD43A and the HLS images (the second column of Fig. 6) 
give the reference level of data distributions. The data distributions of 
MCD43A against pre-normalization CubeSat images (the first column of 
Fig. 6) deviate from those of MCD43A against HLS images. In particular, 
the visible bands show larger deviations than the NIR band, which 
agrees with what we see from the time series of spectral band values in 
the randomly selected ROIs. In contrast, the data distributions of 
MCD43A against normalized CubeSat images (the third to fifth columns 
of Fig. 6) appear similar to those of MCD43A against HLS images. 

We further compared the slopes and intercepts of the linear re
gressions of the MCD43A4 respectively against the CubeSat (before and 
after normalization) and the HLS (Table 1). The linear regression co
efficients of the HLS are the reference level. The normalized CubeSat 
images show coefficients much closer to the HLS than the pre- 

Fig. 4. Time series of the surface reflectance at the four spectral bands and the NDVI over a 30 × 30 m2 region of interest (ROI). The ROI is randomly selected and is 
an area of vegetation. The dots in the time series are average pixel values weighted by pixel fractions within the ROI. The error bars are standard deviation of pixel 
values weighted by pixel fractions within the ROI. The background image in the upper left is the true-color composite of an HLS image of July 6th, 2018. 

Fig. 5. Time series of the surface reflectance at the four spectral bands and the NDVI over a 30 × 30 m2 region of interest (ROI). The ROI is randomly selected and is 
an area of water. The dots in the time series are average pixel values weighted by pixel fractions within the ROI. The error bars are standard deviation of pixel values 
weighted by pixel fractions within the ROI. The background image in the upper left is the true-color composite of an HLS image of July 6th, 2018. 
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Fig. 6. Scatter density plots by comparing MCD43A images respectively (column-wise) against pre-normalization CubeSat images, HLS images, normalized CubeSat 
images of both processing levels, and normalized CubeSat images at normalization level-1 and level-2. Each row in the figure represents the four spectral bands and 
the NDVI. 

Table 1 
Equations of linear regressions with y being the benchmark MCD43A4 images and the x being respectively CubeSat (before and after normalization) and HLS images.   

Prenorm. CubeSat HLS Norm. CubeSatBoth levels Norm. CubeSatLevel-1 Norm. CubeSatLevel-2 
Image count 84 95 84 61 23 

Blue y = 0.35x + 0.02 y = 0.60x + 0.01 y = 0.58x + 0.01 y = 0.60x + 0.01 y = 0.51x + 0.01 
Green y = 0.62x + 0.02 y = 0.68x + 0.02 y = 0.66x + 0.03 y = 0.68x + 0.02 y = 0.60x + 0.03 
Red y = 0.73x + 0.01 y = 0.69x + 0.02 y = 0.68x + 0.02 y = 0.69x + 0.02 y = 0.63x + 0.02 
NIR y = 0.97x + 0.03 y = 0.92x + 0.04 y = 0.86x + 0.06 y = 0.85x + 0.06 y = 0.87x + 0.06 
NDVI y = 0.80x + 0.18 y = 0.75x + 0.17 y = 0.72x + 0.19 y = 0.72x + 0.19 y = 0.73x + 0.18  
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normalization CubeSat images do for all the spectral bands except the 
NIR band, indicating good normalization efficacy for the visible bands 
but less efficacy for the NIR band. The linear regressions of the level-1 
normalized CubeSat images against the MCD43A4 were statistically 
similar to those of the level-2 against the MCD43A4 for the NIR band and 
the NDVI but not so for the visible bands according to the Chow test (at 
significance level of 0.05). This result indicated similar normalization 
efficacy of the two normalization levels for the NIR band and the NDVI 
but less similar for the visible bands. 

The Table 2 lists the MCD43A4-HLS RMSD along with the MCD43A4- 
CubeSat RMSD before and after normalization using images of all the 
years. The relative differences between MCD43A4-CubeSat RMSD and 
MCD43A4-HLS RMSD (absolute differences divided by MCD43A4-HLS 
RMSD) are also given in Fig. 7 using images from all the years and 
also from each year before and after normalization. The MCD43A4-HLS 
RMSD is the reference level of image similarity that the HiNF is expected 
to achieve. The smaller the difference between MCD43A4-HLS RMSD 
and MCD43A4-CubeSat RMSD, the closer CubeSat images are to the 
reference HLS images in terms of radiometric quality. A larger reduction 
in the RMSD difference indicates better normalization efficacy. For im
ages of all the years, the normalized CubeSat images at the level-1 give 
RMSD closer to the HLS images than the pre-normalization CubeSat 
images do for all the bands and the NDVI. At the level-2, we see similar 
pattern except for the NIR band, indicating lower radiometric quality of 
normalized level-2 images. For images per each year, we generally see 
similar patterns of the reduction in RMSD differences in normalized 
CubeSat images at the two levels. Overall, the quantitative evaluation 
suggests stronger normalization efficacy at visible bands than the NIR 
band and the NDVI. 

5. Discussion 

The areal coverage of CubeSat images available to this study was 
relatively small (5 × 5 km2) but covered a spatially heterogeneous and 
temporally dynamic wetland site. This study scenario motivated us to set 
up a framework called HiNF to generate long and consistent times series 
of 5-m CubeSat images and to quantitatively evaluate its normalization 
efficacy. The relatively small imagery area was more demanding on the 
spatial resolution of reference images than otherwise for image 
normalization to obtain sufficient corresponding pixels between paired 
CubeSat and reference images. To address this challenge in the HiNF, we 
used Landsat-like images (HLS dataset) as the reference images in the 
Stage-1 processing and additionally used normalized CubeSat images 
from the Stage-1 (i.e., level-1 normalized images) as reference images in 
the Stage-2 processing. The use of level-1 normalized CubeSat images in 
a second-stage normalization allowed the QC-compliant normalization 
results to increase from 61 images to 84 images out of total input 118 
images to be normalized. After visually checking the 34 CubeSat images 
that failed to produce QC-compliant normalization results, we found 
majority of them in particular poor quality that were better to be 
excluded from our imagery time series. The Chow test suggests similar 
normalization efficacies of the two normalization stages for the NIR 
band and the NDVI but less so for the visible bands. After the 

normalization at both levels, we generally see reduction in the differ
ences between MCD43A4-CubeSat RMSD and MCD43A4-HLS RMSD in 
most years though the level-1 usually shows greater reduction. How
ever, the RMSD differences in some years (e.g., 2016) remain larger after 
the level-2 normalization rather than reduced, which indicates partic
ularly low quality of the level-2 normalized images in these years. The 
explicit labelling of level-1 and level-2 allows downstream applications 
to balance the tradeoff between the quality and the quantity of available 
normalized CubeSat images in a time series. 

While the hectometer resolutions of MODIS-like images make them 
much less desirable as reference images to normalized CubeSat images, 
their daily availability allows us to use them in the quantitative evalu
ation of normalization efficacy as bridging benchmark images to pair 
with same-day CubeSat images as well as with same-day reference 
Landsat-like images. By pooling paired same-day imagery pixels over a 
period and a region at the resolution of MODIS-like images (here 
MCD43A4), we were able to measure the MCD43A4-HLS similarity in 
the form of linear regression coefficients and RMSD as the reference 
level of similarity that the MCD43A4-CubeSat similarity could be 
quantitatively compared against. Such similarity measures allow us to 
quantitatively evaluate normalization efficacies for different bands, 
different periods, and different regions. In our demonstration, we car
ried out the evaluation by pooling pixels over relatively long periods 
(each year and all the years) in the entire available imagery region (5 ×
5 km2). If the resources of a study permit larger coverages and denser 
time series of CubeSat images, finer-grained evaluations of normaliza
tion efficacy can be carried out at shorter periods (such as monthly, 
weekly or even daily) and smaller areal subsets (such per 1 × 1 km2 or 
even per MODIS pixel). With larger-area CubeSat images, we can further 
afford constraining evaluation areas to MODIS pixels that are spatially- 
homogenous according to same-day CubeSat and Landsat-like images. 
This additional constraint avoids spectrally-mixed pixels at the MODIS- 
like resolutions and likely improves the quantitative evaluation because 
the best normalization based on highly-mixed pixels at the MODIS res
olution may not necessarily indicate the best at the CubeSat resolutions. 
Furthermore, due to relatively small areal coverage of CubeSat images in 
our study, we did not have enough MODIS pixels to carry out robust co- 
registration between CubeSat and MODIS images before calculating 
their similarity. In case of sufficiently large areal coverages of CubeSat 
images, geometric co-registration between CubeSat (as well as Landsat- 
like) and MODIS images will improve the calculation of similarity 
measures and refine the results of the quantitative evaluation. We also 
note that the spatial effective resolution of MCD43A4 products may be 
larger than its nominal grid size of 500 m because this product combines 
observations from many different view angles that lead to varying 
ground sampling distances given the point spread function (PSF) of the 
MODIS sensors (Campagnolo et al., 2016; Campagnolo and Montaño, 
2014). A further refinement of the evaluation should consider the spatial 
effective resolution of the MCD43A4 products and convolve with the 
MODIS PSF when aggregating CubeSat/Landsat-like pixels. 

The quantitative evaluation using MODIS-like images as bridging 
benchmark data reveals that in our demonstration the normalization 
efficacies for the visible bands were higher than for the NIR band, which 
agreed with what we saw from the visual inspection of time series of 
spectral band and NDVI values in 30 × 30 m2 ROIs. The temporal con
sistency of the NDVI time series was thus restricted by the normalization 
quality of the NIR band. The current normalization probably over
corrected the NIR band. Land surface, especially with vegetation covers, 
has larger variations in reflectance values at the NIR band than the 
visible bands (e.g., Fig. 4), which may require more paired invariant 
pixels between CubeSat and reference images to establish reliable 
radiometric transformations. The relatively small areal coverage of 
available CubeSat images may have provided enough paired invariant 
pixels for the visible bands but not enough for the NIR band to cover its 
wider ranges of variations, which can partially explain the lower 
normalizing efficacy for the NIR band. Additionally, much of this 

Table 2 
The RMSD from comparing the benchmark MCD43A4 images respectively 
against the CubeSat images (before and after normalization) and the HLS 
images.   

Prenorm. 
CubeSat 

HLS Norm. 
CubeSat Both 
levels 

Norm. 
CubeSat 
Level-1 

Norm. 
CubeSat 
Level-2 

Blue  0.022  0.009  0.010  0.010  0.009 
Green  0.012  0.011  0.011  0.011  0.012 
Red  0.016  0.013  0.013  0.013  0.013 
NIR  0.039  0.043  0.045  0.043  0.051 
NDVI  0.091  0.066  0.073  0.071  0.077  

Z. Li et al.                                                                                                                                                                                                                                        



International Journal of Applied Earth Observation and Geoinformation 103 (2021) 102502

10

wetland site was flooded over several months every year. Water surfaces 
show more pronounced improvements of radiometric quality after 
normalization at visible bands than the NIR as indicated by Fig. 5. 
Collectively, we see greater normalization efficacy at the visible bands 
than the NIR in our study area. This finding is different from Leach et al. 
(2019) that suggests better normalization efficacy at longer wavelengths 
in a much larger and forest-dominated area. In that study, the haze from 
forest fires was the major issue that caused greater trouble in the 
normalization of shorter-wavelength bands. In contrast, there was no 
haze in the CubeSat images in our study, but rather the water-saturated 
area was the challenging issue for the normalization. Furthermore, a 
single radiometric transformation for entire images may not be suffi
cient for the NIR band because larger variations at the NIR band imply 
the relationship between pixels of CubeSat and reference images may 
vary more across different land surface types/conditions. More sophis
ticated algorithms of radiometric normalization are needed to improve 
the normalization efficacy at the NIR band. For example, an algorithm 
that uses radiometric transformations specific to land covers could be 
explored as recently done for the harmonization of Landsat-8 and 
Sentinel-2 data (Scheffler et al., 2020). 

The detection of cloud and cloud shadow is crucial for moving to
wards operational CubeSat ARD and another critical procedure of the 
HiNF that requires further studies. Two possible options may be prom
ising for an automatic detection. The first is to examine whether 
machine-learning-based approaches can be expanded to different opti
cal CubeSat images based on the generation of the UDM2 that is only 
available for post-2018 PlanetScope images (Planet Labs Inc., 2021b). 
Alternatively, further studies can examine whether time series infor
mation can be used to filter cloud/cloud shadow either before normal
ization or after normalization in a way similar to the Tmask approach 
that has improved cloud/cloud shadow detection in Landsat images 
(Zhu and Woodcock, 2014). 

The radiometric quality of optical CubeSat images will likely 
improve as commercial off-the-shelf optical sensors keep getting better 
and preprocessing methods by data providers prior to data distribution 
also improve. However, the reliance on large well-calibrated sun-syn
chronous optical satellite missions to normalize optical CubeSat images 
is likely to stay in the foreseeable future. The normalization using 

images from large well-calibrated satellites is not only to address dif
ferences in sensor performance but also to normalize sun-sensor geom
etry in many images acquired by so many CubeSats. Large numbers of 
satellites in CubeSat constellations imply quite different satellite over
pass times and hence quite different solar angles that need to be 
normalized into a common/similar sun-sensor geometry to produce ARD 
of optical CubeSat images. A few large well-calibrated sun-synchronous 
satellites (e.g., MODIS, Landsat, Sentinel-2) have similar overpass times 
and can be readily corrected to provide BRDF-normalized images (Roy 
et al., 2016, 2017) as the input data for the correction of sun-sensor 
geometry of CubeSat images. Furthermore, different solar illumination 
angles also cause varying target shadows and hence different texture in 
acquired images. Such shadow-induced differences in image texture are 
particularly noticeable in VHR CubeSat images, which causes anomalies 
in the frequency domain of images. Since AROSICS is based on the phase 
correlation in the frequency domain, a large difference in solar illumi
nation angles between reference and target images may decrease the co- 
registration accuracy. For better co-registration results, we chose to pair 
images in a way that respects the solar illumination angle (Section 
3.3.2). However, further research is needed to improve the co- 
registration performance for VHR images acquired with large differ
ences in sun-sensor geometries. 

6. Conclusion 

The HiNF was demonstrated at a spatially heterogeneous and 
temporally dynamic wetland site to generate temporally consistent stack 
of VHR optical CubeSat images at a ~ biweekly interval over 8 years. 
Given the relatively small areal coverages of images available to the 
demonstration study, a novel two-stage procedure in the HiNF suc
cessfully normalized more CubeSat images than using Landsat-like 
reference images (HLS products) in one stage alone did. The two-stage 
procedure explicitly flags normalized images with level-1 and level-2 
as a quality indicator. The two levels of normalized images allow 
downstream applications to balance the tradeoff between the quality 
and the quantity of available normalized CubeSat images in a time se
ries. A new quantitative approach to evaluating normalization efficacy 
was developed by using MODIS-like daily images at hectometer 

Fig. 7. Relative differences between MCD43A4-CubeSat RMSD and MCD43A4-HLS RMSD before and after the normalization of CubeSat images. Smaller differences 
(shorter bar) are better, indicating radiometric quality of CubeSat closer to the reference HLS. Note that the normalized CubeSat images in 2013 are all at level-1. 
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resolutions (MCD43A4 products) as the bridging benchmark data to pair 
same-day MCD43A4 images with both HLS and CubeSat images. By 
comparing quantitative measures of MCD43A4-HLS similarity against 
MCD43A4-CubeSat similarity before and after normalization, we were 
able to quantify the normalization efficacy at the two normalization 
levels for the four spectral bands and the NDVI. The evaluation results 
indicated similar normalization efficacy of the two normalization levels 
for the NIR band and the NDVI but less so for the visible bands. The 
visible bands showed greater normalization efficacy than the NIR band 
and the NDVI, which warrants further development of more sophisti
cated algorithms to improve the normalization of the NIR band for such 
wetland areas as our study site. As more applications try to take 
advantage of burgeoning optical CubeSat images, the HiNF, an effective 
and flexible framework for normalizing optical CubeSat images along 
with the presented quantitative evaluation approach, facilitates the 
generation and the quality assurance of analysis ready data of optical 
CubeSat images. 

CRediT authorship contribution statement 

Zhan Li: Conceptualization, Methodology, Software, Validation, 
Formal analysis, Resources, Writing – original draft, Writing – review & 
editing, Visualization. Daniel Scheffler: Software, Validation, Formal 
analysis, Writing – original draft, Writing – review & editing. Nicholas 
C. Coops: Resources, Writing – review & editing. Nicholas Leach: 
Software, Writing – review & editing. Torsten Sachs: Writing – original 
draft, Writing – review & editing, Funding acquisition. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgements 

Z.L. and T.S. acknowledge the Helmholtz Climate Initiative (HI- 
CAM) funded by the Helmholtz Association’s Initiative and Networking 
Fund. The authors thank Dr. Junchang Ju from NASA GSFC for his 
assistance of accessing the HLS data. The Planet Labs data are provided 
by the European Space Agency through a Third-Party Mission project 
61995. 

References 

Aragon, B., Houborg, R., Tu, K., Fisher, J.B., McCabe, M., 2018. CubeSats enable high 
spatiotemporal retrievals of crop-water use for precision agriculture. Remote Sensing 
10, 1867. https://doi.org/10.3390/rs10121867. 

Cai, Y., Guan, K., Nafziger, E., Chowdhary, G., Peng, B., Jin, Z., Wang, S., Wang, S., 2019. 
Detecting In-season crop nitrogen stress of corn for field trials using UAV- and 
CubeSat-based multispectral sensing. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 
12, 5153–5166. https://doi.org/10.1109/JSTARS.2019.2953489. 

Campagnolo, M.L., Montaño, E.L., 2014. Estimation of effective resolution for Daily 
MODIS gridded surface reflectance products. IEEE Trans. Geosci. Remote Sens. 52, 
5622–5632. https://doi.org/10.1109/TGRS.2013.2291496. 

Campagnolo, M.L., Sun, Q., Liu, Y., Schaaf, C., Wang, Z., Román, M.O., 2016. Estimating 
the effective spatial resolution of the operational BRDF, albedo, and nadir 
reflectance products from MODIS and VIIRS. Remote Sens. Environ. 175, 52–64. 
https://doi.org/10.1016/j.rse.2015.12.033. 

Canty, M.J., Nielsen, A.A., Schmidt, M., 2004. Automatic radiometric normalization of 
multitemporal satellite imagery. Remote Sens. Environ. 91, 441–451. https://doi. 
org/10.1016/j.rse.2003.10.024. 

Canty, M.J., Nielsen, A.A., 2008. Automatic radiometric normalization of multitemporal 
satellite imagery with the iteratively re-weighted MAD transformation. Remote Sens. 
Environ. 112, 1025–1036. https://doi.org/10.1016/j.rse.2007.07.013. 

CEOS, 2021. CEOS Analysis Ready Data [WWW Document]. URL https://ceos. 
org/ard/index.html#slide2 (accessed 2.22.21). 

Chander, G., Xiong, X. (J), Choi, T. (J), Angal, A., 2010. Monitoring on-orbit calibration 
stability of the Terra MODIS and Landsat 7 ETM+ sensors using pseudo-invariant 
test sites. Remote Sensing Environ. 114, 925–939. doi: 10.1016/j.rse.2009.12.003. 

Chow, G.C., 1960. Tests of equality between sets of coefficients in two linear regressions. 
Econometrica 28, 591–605. https://doi.org/10.2307/1910133. 

Claverie, M., Ju, J., Masek, J.G., Dungan, J.L., Vermote, E.F., Roger, J.-C., Skakun, S.V., 
Justice, C., 2018. The harmonized landsat and sentinel-2 surface reflectance data set. 
Remote Sens. Environ. 219, 145–161. https://doi.org/10.1016/j.rse.2018.09.002. 

Cooley, S.W., Smith, L.C., Ryan, J.C., Pitcher, L.H., Pavelsky, T.M., 2019. Arctic-Boreal 
lake dynamics revealed using CubeSat imagery. Geophys. Res. Lett. 46, 2111–2120. 
https://doi.org/10.1029/2018GL081584. 

Dash, J., Ogutu, B.O., 2016. Recent advances in space-borne optical remote sensing 
systems for monitoring global terrestrial ecosystems. Progress Phys. Geography: 
Earth Environ. 40, 322–351. https://doi.org/10.1177/0309133316639403. 

Du, Y., Teillet, P.M., Cihlar, J., 2002. Radiometric normalization of multitemporal high- 
resolution satellite images with quality control for land cover change detection. 
Remote Sens. Environ. 82, 123–134. https://doi.org/10.1016/S0034-4257(02) 
00029-9. 

Dwyer, J.L., Roy, D.P., Sauer, B., Jenkerson, C.B., Zhang, H.K., Lymburner, L., 2018. 
Analysis ready data: Enabling analysis of the landsat archive. Remote Sensing 10, 
1–19. https://doi.org/10.3390/rs10091363. 

FLUXNET Network, 2021. About the FLUXNET Network [WWW Document]. FLUXNET. 
URL https://fluxnet.org/about/ (accessed 5.4.21). 

Frantz, D., 2019. FORCE—Landsat + Sentinel-2 Analysis Ready Data and Beyond. 
Remote Sensing 11, 1124. https://doi.org/10.3390/rs11091124. 

Franz, D., Koebsch, F., Larmanou, E., Augustin, J., Sachs, T., 2016. High net CO 2 and CH 
4 release at a eutrophic shallow lake on a formerly drained fen. Biogeosciences 13, 
3051–3070. https://doi.org/10.5194/bg-13-3051-2016. 

Gao, F., Masek, J.G., Wolfe, R.E., 2009. Automated registration and orthorectification 
package for Landsat and Landsat-like data processing 3, 33515–33520. 

GDAL/OGR contributors, 2021. GDAL/OGR Geospatial Data Abstraction software 
Library. 

Hong, G., Zhang, Y., 2008. A comparative study on radiometric normalization using high 
resolution satellite images. Int. J. Remote Sens. 29, 425–438. https://doi.org/ 
10.1080/01431160601086019. 

Houborg, R., McCabe, M.F., 2018. A Cubesat enabled Spatio-Temporal Enhancement 
Method (CESTEM) utilizing Planet, Landsat and MODIS data. Remote Sens. Environ. 
209, 211–226. https://doi.org/10.1016/j.rse.2018.02.067. 

Houborg, R., McCabe, M.F., 2016. High-Resolution NDVI from Planet’s Constellation of 
Earth Observing Nano-Satellites: A New Data Source for Precision Agriculture. 
Remote Sensing 8, 768. https://doi.org/10.3390/rs8090768. 

Kimm, H., Guan, K., Jiang, C., Peng, B., Gentry, L.F., Wilkin, S.C., Wang, S., Cai, Y., 
Bernacchi, C.J., Peng, J., Luo, Y., 2020. Deriving high-spatiotemporal-resolution leaf 
area index for agroecosystems in the U.S. Corn Belt using Planet Labs CubeSat and 
STAIR fusion data. Remote Sens. Environ. 239, 111615. https://doi.org/10.1016/j. 
rse.2019.111615. 

Koebsch, F., Gottschalk, P., Beyer, F., Wille, C., Jurasinski, G., Sachs, T., 2020. The 
impact of occasional drought periods on vegetation spread and greenhouse gas 
exchange in rewetted fens. Philosoph. Trans. Roy. Soc. B: Biol. Sci. 375, 20190685. 
https://doi.org/10.1098/rstb.2019.0685. 

Leach, N., Coops, N.C., Obrknezev, N., 2019. Normalization method for multi-sensor 
high spatial and temporal resolution satellite imagery with radiometric 
inconsistencies. Comput. Electron. Agric. 164, 104893. https://doi.org/10.1016/j. 
compag.2019.104893. 

Lee, S., Hutputanasin, A., Toorian, A., Lan, W., Munakata, R., Carnahan, J., Pignatelli, D., 
Mehrparvar, A., Johnstone, A., 2020. CubeSat Design Specification Rev. 14 The 
CubeSat Program, Cal Poly SLO (No. CP-CDS-R14). Cal Poly, San Luis Obispo, CA. 

Leprince, S., Barbot, S., Ayoub, F., Avouac, J.-P., 2007. Automatic and Precise 
Orthorectification, Coregistration, and Subpixel Correlation of Satellite Images, 
Application to Ground Deformation Measurements. IEEE Trans. Geosci. Remote 
Sens. 45, 1529–1558. https://doi.org/10.1109/TGRS.2006.888937. 

McCabe, M.F., Rodell, M., Alsdorf, D.E., Miralles, D.G., Uijlenhoet, R., Wagner, W., 
Lucieer, A., Houborg, R., Verhoest, N.E.C., Franz, T.E., Shi, J., Gao, H., Wood, E.F., 
2017. The Future of Earth Observation in Hydrology. Hydrol. Earth Syst. Sci. 21, 
3879–3914. https://doi.org/10.5194/hess-21-3879-2017. 

Nielsen, A.A., 2007. The Regularized Iteratively Reweighted MAD Method for Change 
Detection in Multi- and Hyperspectral Data. IEEE Trans. Image Process. 16, 463–478. 
https://doi.org/10.1109/TIP.2006.888195. 

Planet Labs Inc., 2021a. Planet imagery product specifications. Planet Labs Inc., San 
Francisco, CA, USA. 

Planet Labs Inc., 2021b. UDM 2 [WWW Document]. URL https://developers.planet.com/ 
docs/data/udm-2/ (accessed 3.22.21). 

Poghosyan, A., Golkar, A., 2017. CubeSat evolution: Analyzing CubeSat capabilities for 
conducting science missions. Prog. Aerosp. Sci. 88, 59–83. https://doi.org/10.1016/ 
j.paerosci.2016.11.002. 

Puig-Suari, J., Turner, C., Twiggs, R., 2001. CubeSat: the development and launch 
support infrastructure for eighteen different satellite customers on one launch. In: 
Proceedings of the Small Satellite Conference. Utah State University, Logan, Utah, 
USA, pp. SSC01-VIIIb-5. 
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