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Abstract: In a series of three articles, spline approximation is presented from a geodetic point of 

view. In part 1, an introduction to spline approximation of 2D curves was given and the basic 

methodology of spline approximation was demonstrated using splines constructed from ordinary 

polynomials. In this article (part 2), the notion of B-spline is explained by means of the transition 

from a representation of a polynomial in the monomial basis (ordinary polynomial) to the Lagran-

gian form, and from it to the Bernstein form, which finally yields the B-spline representation. 

Moreover, the direct relation between the B-spline parameters and the parameters of a polynomial 

in the monomial basis is derived. The numerical stability of the spline approximation approaches 

discussed in part 1 and in this paper, as well as the potential of splines in deformation detection, 

will be investigated on numerical examples in the forthcoming part 3. 

Keywords: spline; B-spline; polynomial; monomial; basis change; Lagrange; Bernstein; interpola-

tion; approximation; least squares adjustment 

 

1. Introduction 

In engineering geodesy, the use of point clouds derived from areal measurement 

methods, such as terrestrial laser scanning or photogrammetry, results in the necessity to 

approximate them by a curve or surface that can be described using a continuous 

mathematical function, often by means of splines. In part 1 of a three-part series of arti-

cles, presented by Ezhov et al. [1], the basic methodology of spline approximation was 

shown by means of ordinary cubic polynomials concatenated under constraints for con-

tinuity, smoothness, and continuous curvature. The resulting linear adjustment problem 

can be solved within the Gauss-Markov model with constraints for the unknowns. 

However, a starting point for advanced considerations in engineering geodesy are 

almost always the formulas for B-spline curves and B-spline surfaces given in the text-

book by Piegl and Tiller [2] (pp. 81 and 100), where the functional values of the B-spline 

basis functions are recursively computed according to the formulas by de Boor [3] and 

Cox [4]. As these formulas have a very complex mathematical derivation, but are still 

very easy to use, they are mostly used like a given recipe. Attempts to explain B-splines 

in an illustrative way often only include explanations of the application of the de Boor’s 

algorithm, as, for example, in the contribution by Lowther and Shene [5]. A derivation of 

the B-spline with the help of quadratic Bézier spline curves was presented by Berkhahn 

[6] (p. 73 ff.). 

In this paper, we take the spline representation presented by Ezhov et al. [1] as a 

starting point to derive the B-spline form by means of basis changes. This is to show the 

user that the de Boor’s algorithm can be interpreted as another, very elegant and nu-

merically stable, representation of the simple and intuitive representation based on or-
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dinary polynomials. 

A brief overview of the historical development of the B-spline can be found, for 

example, in the textbook by Farin [7] (p. 119). He explains that the forerunner of the 

B-spline first appeared in a publication on approximation theory by the mathematician 

Lobatschewsky [8]. It was constructed as a convolution of certain probability distribu-

tions. However, at that time the term “spline” has not been introduced yet. Subsequently, 

in 1946, Schoenberg used B-splines in his seminal publications [9,10] for data approxi-

mation. It is commonly accepted that, with these articles, the modern representation of 

spline approximation began and the term “spline” was used for the first time, see the 

historical notes in the textbook by Schumaker [11] (p. 10). Further on, many authors dealt 

with the utilization and the development of the B-splines. Farin [7] (p. 119) points out that 

one of the most important developments in this theory was the introduction of the re-

currence relations, discovered by de Boor [3], Cox [4], and Mansfield. The contribution of 

Mansfield to this development is mentioned by de Boor in [3]. However, the recurrence 

relation had already appeared in contributions by Popoviciu and Chakalov in the 1930s, 

see the article by de Boor and Pinkus [12] and the literature cited therein. 

B-splines were later fully exploited in computer graphics. Consequently, most pa-

pers about B-splines were published in this field, see for example, the contributions by 

the authors Piegl and Tiller [2], Szilvasi-Nagy [13], Farin [7], and Zheng et al. [14]. 

However, there are several publications where B-splines were used for statistical data 

analysis, e.g., the contributions by Wold [15] or Anderson and Turner [16]. 

Applications of (B)-splines in geodesy can be traced back to 1975, when Sünkel be-

gan using them for various problems. In [17], bicubic spline functions were used for the 

reconstruction of functions from discrete data. In [18], the representation of geodetic in-

tegral formulas by bicubic spline functions was shown using splines constructed from 

ordinary cubic polynomials, see [18] (p. 10 ff.), similar to the representation used later by 

Ezhov et al. [1]. In [19], the local interpolation of gravity data by spline functions was 

derived, and in [20] (p. 18 ff.) B-splines were used for smooth surface representation. As 

references for the B-spline functions, the publications of Schoenberg [21], Schumaker [22], 

and Späth [23] are listed by Sünkel [20]. 

On the basis of B-splines on the line, Jekeli [24] (p. 7 ff.) showed the use of spherical 

B-splines for representations of functions on a sphere for geopotential modeling. Mautz 

et al. [25] used B-splines to develop a representation of global ionosphere maps based on 

B-spline wavelets. The local improvement of the International Reference Ionosphere (IRI) 

by means of an N-dimensional B-spline surface was developed by Koch and Schmidt 

[26]. 

The application of (B)-splines in engineering geodesy can be traced back to 1985, 

when Dzapo et al. [27] used cubic splines for the determination of the lengths of railroad 

tracks. A recent application of B-spline curves and B-spline surfaces is the approximation 

of 3D point cloud data, as shown e.g. by Bureick et al. [28]. Kermarrec et al. [29] applied 

hierarchical B-splines for the approximation of 3D point cloud data obtained from 

measurements with a terrestrial laser scanner. Furthermore, B-spline models play an 

important role in spatio-temporal deformation analysis as shown by Harmening [30]. 

The main goal of this paper is to present an alternative derivation of the B-spline 

function to the purely mathematical derivation presented by Schoenberg [9] and the re-

cursion formulas for the B-spline function developed by de Boor [3]. This derivation is 

based on the transition from the representation of a polynomial in the monomial basis 

(ordinary polynomial) to the Lagrangian form and, from there, to the Bernstein form, 

which finally results in the B-spline representation. In all investigations, univariate 

splines are used in form of a spline function ( )y f x . For the derivation of the formulas, 

we first consider the case of interpolation. The developed formulas are then used for 

spline approximation using least squares adjustment. 
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The general interpolation problem is, to find for 1n   given data points 0 0( , )x y , 

1 1( , )x y , …, ( , )n nx y , with 0 1 nx x x    a function :f    in such a way that the 

interpolation condition 

( ) , 0,1, ,i if x y i n    (1)

is fulfilled. The choice of a suitable function f  depends on the properties of the data, 

e.g., its smoothness or periodicity. Furthermore, the choice of f  is influenced by com-

putational aspects, i.e., the computational effort for the determination of the coefficients 

and numerical stability of the resulting equation system. Functions that are commonly 

used for interpolation are: 

 Polynomials; 

 Trigonometric functions; 

 Exponential functions; 

 Logarithmic functions; 

 Rational functions. 

Ezhov et al. [1] elaborated a spline approximation using piecewise ordinary cubic 

polynomials. In the following, we will take a closer look at the interpolation using poly-

nomials in different representations to bridge the gap to the B-spline representation. 

In general, the set of functions for interpolating given data points consists of coeffi-

cients ia  and so-called basis functions 0 ( ), , ( )nx x   and the interpolating function is 

defined as a linear combination 

0

( ) ( )
n

i i
i

f x a x


  (2)

of these basis functions. Considering the interpolation condition (1), we obtain 

0

( ) ( ) , 0,1, ,
n

i i i i i
i

f x a x y i n


    . (3)

The simplest and most common type of interpolation uses polynomials. These pol-

ynomials can be represented in different ways, as shown by Gander [31], but all of them 

will give the same result for the interpolation. 

To avoid excessive formula derivations and to illustrate the geometric relationships 

in the formula derivations, quadratic splines that consist of piecewise parabola segments 

are considered in the following. The generalization to splines of a higher degree is rela-

tively straightforward. 

Using the example of a parabola, we start with the representation of a polynomial in 

the monomial basis (ordinary polynomial) and perform the following transitions: 

(i) From ordinary polynomial to Lagrangian form (Section 2); 

(ii) From Lagrangian form to Bernstein form (Section 3); 

(iii) From Bernstein form to B-spline representation (Section 4). 

The reason for the representation of a polynomial in a different basis than the 

well-known monomial basis applied by Ezhov et al. [1] often lies in the fact that for the 

computation of the polynomial coefficients equation systems result, whose solution re-

quires less computational effort and is numerically more stable. However, it is important 

to understand that the change of the basis functions still results in the same interpolating 

polynomial for the given data, and only the representation of the polynomial changes. 

After the derivation of the B-spline representation, this form is used for spline approxi-

mation using least squares adjustment (Section 5). The interesting fact that the deter-

mined spline parameters can be used for a transition “backwards” from B-spline to or-

dinary polynomial is shown in Appendix A. The transition “forwards” from ordinary 

polynomial to B-spline is shown in Appendix B. 
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2. Transition from Ordinary Polynomial to Lagrangian Form 

With the monomial basis functions 

( ) , 0,1, ,i
i x x i n    , (4)

we obtain for the parabola with 2n   from (3) 

2
2 0 1 2( )P x a a x a x   . (5)

A polynomial in the monomial basis is often referred to as standard form or ordi-

nary polynomial. Arranging the monomials in a vector 
2 T( ) [1, , ]x x xm  and the coeffi-

cients in a vector 
T

0 1 2[ , , ]a a aa , we obtain 

T
2 ( ) ( )P x x a m . (6)

A visualization of the monomial functions for the parabola is shown in Figure 1. 

 

Figure 1. Monomial basis functions for a parabola in the interval [0, 1]. 

Considering the interpolation condition (1), the coefficients can be determined from 

the solution of the linear equation system 

y Va , (7)

with T
0 1 2[ , , ]y y yy  and the Vandermonde matrix 

2
0 0

2
1 1

2
2 2

1

1

1

x x

x x

x x

 
 

  
 
 

V , (8)

cf. the textbook by Farin [7] (p. 100). Using a numerical example with three points that 

define a parabola from the handbook by Bronshtein et al. [32] (p. 918), see Table 1, the 

determination of the coefficients will be demonstrated. 

Table 1. Numerical example for interpolating a parabola. 

i xi yi 

0 0 1 

1 1 3 

2 3 2 

From Equation (7), we obtain for this numerical example 
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0

1

2

1 1 0 0

3 1 1 1

2 1 3 9

a

a

a

     
          
          

. (9)

This system of equations can be solved with, for example, the Gaussian elimination 

method and the numerical result is 0 1a  , 1

17

6
a  , 2

5

6
a   . Thus, the equation of the 

parabola reads 

2
2

17 5
( ) 1

6 6
P x x x   . (10)

It can be stated that, when using the monomial basis, the numerical effort to deter-

mine the coefficients requires roughly 3n  operations using direct methods for solving 

systems of linear equations, as stated e.g., by Farin [7] (p. 102), and is therefore compa-

rably high. It can be reduced by employing iterative methods. In addition, the matrix of 

the equation system is increasingly ill-conditioned as the degree of the polynomial in-

creases. Both the conditioning of the resulting linear equation system and the computa-

tional effort for determining the coefficients can be improved by using other basis func-

tions. The result is the same interpolating polynomial, but in a different representation. 

In the following subsections we will illustrate two ways how to perform a transition 

from the monomial basis to a representation with Lagrange polynomials. 

2.1. Transition by Means of Basis Transformation 

We want to solve the problem of basis transformation between two different sets of 

coefficients ia  and ib  fulfilling 

2 2

2
0 0

( ) ( ) ( )i i i i
i i

P x a x b x 
 

   , (11)

where ( )i x  and ( )i x  are two different sets of basis functions. Using the monomial 

basis function (4) in the first summation formula, we obtain 

 
2

2
2 0 1 2 0 1 2

0 2

1

( ) ( )i i
i

P x a x a a x a x a a a x

x




 
     
 
  

 , (12)

as already shown in (5) and (6). Multiplying out the second summation formula in (11) 

yields 

 
02

2 0 0 1 1 2 2 0 1 2 1
0

2

( )

( ) ( ) ( ) ( ) ( ) ( )

( )
i i

i

x

P x b x b x b x b x b b b x

x



    




 
       
  

  (13)

and, according to (11), we can write 

   
0

0 1 2 0 1 2 1

2
2

1 ( )

( )

( )

x

a a a x b b b x

x x







   
      
      

. (14)

In the case of monomial basis, we selected basis functions and obtained the coeffi-

cients, see (7), while here we do the opposite. We select 0 1b y , 1 2b y , 2 3b y  for the 

coefficients to obtain corresponding basis functions for which we introduce the new no-

tation ( )il x  with 0,1, 2i  . Furthermore, for 0 1 2, ,a a a  we introduce the solution ac-

cording to (7) and we obtain 
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   

1

0

0 1 2 0 1 2 0 1 2 1

2 2 2 2
0 1 2 2

1 1 1 1 ( )

( )

( )

l x

y y y x x x x y y y l x

x x x x l x


     
          
          

. (15)

By comparing the coefficients of the vectors 0 1 2[ ]y y y , we see that the basis 

functions ( )il x  can be computed from 

1

0

1 0 1 2

2 2 2 2
2 0 1 2

( ) 1 1 1 1

( )

( )

l x

l x x x x x

l x x x x x


     
          
          

. (16)

Introducing the vector  
T

0 1 2( ) ( ) ( ) ( )x l x l x l xl  yields 

T 1( ) ( ) ( )x xl V m . (17)

The same formula can also be obtained taking the basis transformation from La-

grange to monomials 
T ( ) ( )x xV l m , as presented by Gander [31], and solving it for ( )xl . 

From (17), we obtain the result 

T

0 2 0 11 2

0 1 0 2 1 0 1 2 2 0 2 1

( )( ) ( )( )( )( )
( )

( )( ) ( )( ) ( )( )

x x x x x x x xx x x x
x

x x x x x x x x x x x x

     
  

      
l , (18)

which is called the Lagrange basis. A visualization of the Lagrange basis functions for the 

parabola is shown in Figure 2. 

 

Figure 2. Lagrange basis functions for a parabola in the interval [0, 3] for the example 
0 0x  , 

1 1x  and 
2 3x  . 

Finally, the resulting polynomial reads 

0 2 0 11 2
2 0 1 2

0 1 0 2 1 0 1 2 2 0 2 1

( )( ) ( )( )( )( )
( )

( )( ) ( )( ) ( )( )

x x x x x x x xx x x x
P x y y y

x x x x x x x x x x x x

    
  

     
. (19)

An alternative derivation of the Lagrange representation of a polynomial is pre-

sented in the following subsection. 

2.2. Transition by Linear Combinations 

In this subsection, we present an alternative derivation of the polynomial in the La-

grange representation. We use the fact that each parabola can be represented as a com-

bination of two lines. In fact, if we take a look at (5), we find that it can be rearranged into 

the form 0 1 2( ) ( )f x a a a x x   , which represents a combination (product) of two lines 
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plus some constant value 0a . By using this idea, the Lagrange representation of a quad-

ratic polynomial can be derived, which results in a linear combination of three quadratic 

functions ( )p x  and the respective 
i
y  coordinates. 

We consider the points 0 0 1 1 2 2( , ), ( , ), ( , )x y x y x y , where 0 1 2x x x  . Now two lines 

0,1 0 1( )f x a a x   (20)

within the interval 0 1[ , )x x  and 

1,1 0 1( )f x b b x   (21)

within the interval 1 2[ , ]x x  are defined, see Figure 3. The subscripts i  and d  in ,i df  

represent the number of the polynomial i  for a given degree d . 

 

Figure 3. Line interpolation. 

From two given points, the slope of the line (20) can be written as 

1 0
1

1 0

y y
a

x x





. (22)

The y-intercept can be computed from 

1 0
0 0 0

1 0

y y
a y x

x x


 


  or  1 0

0 1 1

1 0

y y
a y x

x x


 


. (23)

Inserting (22) and (23) into (20) yields, after some rearrangement, for the first line 

01
0,1 0 1

1 0 1 0

( )
x xx x

f x y y
x x x x


 

 
. (24)

Analogously, the equation for the second line can be written as 

2 1
1,1 1 2

2 1 2 1

( )
x x x x

f x y y
x x x x

 
 

 
. (25)

By taking a combination of these two line equations, where x  varies within the in-

terval 
0 2[ , ]x x , the expression 

02
0,2 0,1 1,1

2 0 2 0

( ) ( ) ( )
x xx x

f x f x f x
x x x x


 

 
 (26)

for the parabola is derived, which represents a linear combination of three quadratic 

polynomial functions and the coordinates 
0
y , 

1
y  and 

2
y . 

To explain how the factors in front of the terms 0,1( )f x  and 1,1( )f x  in (26) are de-

rived, the idea behind the Lagrange polynomials has to be explained. Lagrange was 
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looking for an interpolation polynomial that could be constructed without solving a 

system of equations, e.g., with Vandermonde matrix as design matrix, see (7). There is a 

widely accepted assumption that his idea for the solution was to find a function that, at 

each given data point 0 0( , )x y , 1 1( , )x y , …, ( , )n nx y , gives 1 and, at the rest of the other 

given points gives 0. For a mathematician, this type of polynomials was, presumably, 

relatively easy to find. We will take the case of a parabola into consideration. Therefore, 

for each given 
i
x , the following polynomials 

0

1 2

0 1 0 2

( ) ( )
( )

( ) ( )
x

x x x x
p x

x x x x

 


 
, (27)

1

0 2

1 0 1 2

( ) ( )
( )

( ) ( )
x

x x x x
p x

x x x x

 


 
, (28)

2

0 1

2 0 2 1

( ) ( )
( )

( ) ( )
x

x x x x
p x

x x x x

 


 
 (29)

can be created. 

As previously mentioned, these functions ( )
ix
p x  are equal to 1 when the variable 

x  is equal to the corresponding coordinate 
i
x  of the given point and 0 at all other given 

points. Therefore, by multiplying each of these functions ( )
ix
p x  with their correspond-

ing values 
i
y  ensures that, at the particular given point 

i
x , the result will be 

i
y  and 0 

at all other given points. The summation of all these functions ( )
ix
p x , multiplied by their 

corresponding values 
i
y , results in a Lagrangian interpolation polynomial 

0 2 0 11 2
0 1 2

0 1 0 2 1 0 1 2 2 0 2 1

( )( ) ( )( )( )( )
( )

( )( ) ( )( ) ( )( )

x x x x x x x xx x x x
f x y y y

x x x x x x x x x x x x

    
  

     
. (30)

The quadratic polynomial (30) represents a linear combination of the Lagrangian 

basis polynomials with the constants 
0
y , 

1
y  and 

2
y  as coefficients. A general formula 

for the definition of the Lagrange interpolation polynomials can be found e.g., in the 

handbook by Bronshtein et al. [32] (p. 918). 

As previously explained, a quadratic polynomial can be represented as a combina-

tion of two lines. Using the Lagrangian form for a polynomial of first order, the following 

two line equations 

01
0,1 0 1

0 1 1 0

( )
x xx x

f x y y
x x x x


 

 
, (31)

2 1
1,1 1 2

1 2 2 1

( )
x x x x

f x y y
x x x x

 
 

 
 (32)

are derived. If we follow the already described Lagrange’s idea to obtain a quadratic 

polynomial, the following multiplications 

02
0,2 0,1 1,1

0 2 2 0

( ) ( ) ( )
x xx x

f x f x f x
x x x x


 

 
 (33)

must be performed. 

Consequently, Equation (33) results in a Lagrangian polynomial of second order. 

Looking at (33), the factors 2 0 2( ) / ( )x x x x   and 0 2 0( ) / ( )x x x x   are those that appear 

in front of the terms 0,1( )f x  and 1,1( )f x  in (26). However, if we compare the Lagrange 

polynomials in (31), (32), (33) with the expressions in (24), (25), (26), the only difference is 

that (31), (32) and (33) have negative denominators and numerators at some points in the 
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Lagrange polynomials, e.g. 2 0 2( ) / ( )x x x x  . In (24), (25) and (26) there are no negative 

denominators or numerators, although the equations are the same as in (31), (32) and 

(33). This is for reasons of better analogy with the B-spline form. 

After the origin of the factors in front of 0,1( )f x  and 1,1( )f x  in (26) is explained, in-

serting (24) and (25) into (26) finally yields 

0 2 0 11 2
0,2 0 1 2

1 0 2 0 1 0 2 1 2 0 2 1

( )( ) ( )( )( )( )
( )

( )( ) ( )( ) ( )( )

x x x x x x x xx x x x
f x y y y

x x x x x x x x x x x x

    
  

     
. (34)

This form coincides with (19) and represents a second degree Lagrange interpolating 

polynomial through three points, see the handbook by Bronshtein et al. [32] (p. 918). The 

plot of the parabola is depicted in Figure 4. 

 

Figure 4. Lagrange interpolation by lines (black) and by a parabola (red). 

Inserting the values of the numerical example from Table 1 into (34) yields the La-

grangian form 

0,2

(1 ) (3 ) ( 0) (3 ) ( 0)( 1)
( ) 1 3 2

(1 0) (3 0) (1 0) (3 1) (3 0)(3 1)

x x x x x x
f x

     
     

     
, (35)

which can be “simplified” to the monomial basis form 

2
0,2

17 5
( ) 1

6 6
f x x x   . (36)

The result is the same as in (10), but the values of the parameters 0a , 1a , 2a  are 

now derived with the advantage of not explicitly solving a linear equation system. A 

disadvantage of Lagrange interpolation in practical application is directly visible from 

(19), resp. (34), namely that each time a value x  changes, the Lagrange basis polynomi-

als must be recalculated. Further general limits of Lagrange interpolation, e.g., that pol-

ynomial interpolants may oscillate, are explained by Farin [7] (p. 101 ff.). 

3. Transition from Lagrangian Form to Bernstein Form 

The Bernstein form, named after S. N. Bernstein, was used to prove the Weierstrass 

approximation theorem; see the explanation by Farin [7] (p. 90 ff.). The coefficients of a 

Bernstein polynomial over the interval  are all non-negative and sum up to 1, as 

Farin [7] (p. 57 ff.) showed, which is called a convex combination; see the textbook by 

Rockafellar [33] (p. 11). Therefore, by using the Bernstein form, numerical instabilities are 

avoided. 

Looking at Figure 3, the interpolating parts of the line segments can be extended to 

both ends of the interval 
0 2[ , ]x x  in which the polynomial is defined. At the end of the 

extended line segments, two additional y-coordinates for the values 
0
x  and 

2
x  are 

[0, 1]
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computed, as seen in Figure 5. To distinguish these two y-coordinates from the given 

values, a different notation, 0y  and 2y , is used (not to be confused with the derivation 

of a function). In a general case, all five points have different coordinates which implies 

that the coordinate 
1
x  is not necessarily in the middle of the interval 

0 2[ , ]x x . Therefore, 

in general 1 0 2( ) / 2x x x  . 

 

Figure 5. Extended line segments from Lagrangian form. 

From Figure 5, as explained previously, the line equations 

02
0,1 0 2

2 0 2 0

( )
x xx x

f x y y
x x x x


 

 
, 02

1,1 0 2

2 0 2 0

( )
x xx x

f x y y
x x x x


 

 
 (37)

are derived. By taking combinations of these two lines, it follows 

2 2

0 0 02 2 2
0,2 0 2 0 2

2 0 2 0 2 0 2 0 2 0 2 0

( )
x x x x x xx x x x x x

f x y y y y
x x x x x x x x x x x x

       
       

        
, (38)

which can be brought into the form 

2 2

0 2 0 02 2
0,2 0 2

2 0 2 0 2 0 2 0

( ) 2
2

x x y y x xx x x x
f x y y

x x x x x x x x

         
             

. (39)

A geometrical interpretation of the term 2 0( ) / 2y y   is depicted in Figure 6. 

 

Figure 6. Geometrical interpretation of the term 
2 0( ) / 2y y  . 

Equation (39) is a more general representation of the Bernstein form, independent of 

the limits of the interval 
0 2[ , ]x x , which means that x  can vary between any two real 

values. For proving the Weierstrass approximation theorem, Bernstein used a special in-

terval of length 1, i.e., 
0 2

0 1[ , ] [ , ]x x  . Using this interval simplifies the equations, which 

were later used by Bézier and de Casteljau. Therefore, when using 
0 2

0 1[ , ] [ , ]x x  , Equa-

tion (37) results in 
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0,1 0 2( ) (1 )f x x y xy   , 1,1 0 2( ) (1 )f x x y xy    (40)

and (39) obtains the form 

2 22 0
0,2 0 2( ) (1 ) 2 (1 )

2

y y
f x x y x x x y

  
     

 
, (41)

in which 
2(1 )x , 2 (1 )x x  and 2x  are the Bernstein basis polynomials and 0y , 

2 0( ) / 2y y   and 2y  are the Bernstein coefficients. In general, a polynomial in Bernstein 

form of degree n  can be written as 

,
0

( ) ( )
n

n i i n
i

P x B x


 , (42)

where i  are the Bernstein coefficients and 

, ( ) (1 ) , 0,1, ,i n i
i n

n
B x x x i n

i
 

   
 

  (43)

are the Bernstein basis polynomials; see e.g., the handbook by Bronshtein et al. [32] (p. 

935). For a parabola, we obtain 2
0,2 (1 )B x  , 1,2 2 (1 )B x x   and 2

2,2B x , cf. (41). 

These basis polynomials for a parabola are depicted in Figure 7. 

 

Figure 7. Bernstein basis polynomials for a parabola in the interval [0, 1]. 

In (39), the term 2 0( ) / 2y y  , see Figure 6, reveals one fundamental property of the 

quadratic polynomial that, to the best of our knowledge, is not described in the literature 

so far. It can be stated as: 

All pairs of line segments that have one end fixed at the beginning or at the end 

of the parabola and the other end at the opposite sides of the interval, and in-

tersect themselves on the parabola, have an equal average of the coordinates at 

the ends that are not fixed. Moreover, the extremum of the parabola lies on the 

intersection of those line segments that have equal values at the opposite ends 

of the interval. 

The proof of this statement is straightforward. A parabola is uniquely defined by 

three points. If we retain end points 0 0( , )x y  and 2 2( , )x y , replacing the point 1 1( , )x y  

by any other point on the same parabola, we will again obtain the equation of the form 

(39). The equation of the parabola remains unchanged although 0y  and 2y  have 

changed, since the only term depending on the new point is 0 2( ) / 2y y  . A parabola is 

described by a differentiable function. By computing its derivative, equating it with zero 

and solving the resulting equation for x , we obtain the coordinate of the extremum ex . 

Consequently, the resulting equation for the coordinate of the extremum ey  can be 
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solved. By substituting these two values for ex  and ey  in a line equation constructed 

for 0y  and 2y , where 0x x  and 2x x  respectively, it can be shown that 0 2 yy y C  

. Therefore, 0 2y y   implies 0 2( ) / 2yC y y   . This proves the above statement, which is 

illustrated in Figure 8. M  and N  represent the fixed points at the beginning and at the 

end of the parabola, with 
1 6, ,m m  and 

1 6, ,n n  as end points at the opposite sides of 

the interval. Every pair of line segments is defined as  0 ,M n NM ,  1 1,M n N m , 

 2 2,M n Nm , …,  6,M N Nm  and depicted in light blue color. Figure 8 illustrates that all 

these pairs of line segments intersect on the parabola. 

 

Figure 8. Construction of a Bernstein polynomial. The extremum of the parabola is marked with a 

red dot and the control point with a blue dot. Green dots indicate points on the parabola, resp. 

points resulting from extension of straight lines between these points to the boundaries of the in-

terval
0 2
x x[ , ]. The convex hull formed by the control points 

0 0( , )x y , ( , )x yC C  and 
2 2( , )x y  is 

highlighted in grey. 

Considering the above, there are an infinite number of combinations defining the 

term 2 0( ) / 2y y   depending on the position of the point 1 1( , )x y , between M  and N , 

that defines the parabola, cf. Figure 6. All of these pairs of line segments, as previously 

explained, have an equal average of the y-coordinates at the end points. Therefore, the 

term that uniquely represents all these averages is written more generally in the form 

2
m n

y

y y
C

 
 , (44)

where my  and ny  represent any pair of y -coordinates from the mentioned line seg-

ments that intersect on the parabola. Correspondingly, the coordinate 
x
C  is defined as 

1

2
i i

x

x x
C 

 , (45)

where 
i
x  and 

1i
x


 define the ends of the interval in which the parabola varies. Hence, 

x
C  is always in the middle of the interval. 

There is an additional property of the line segments 0M n  and 6N m . They inter-

sect at the point ( , )x yC C  and are tangential to the curve. This can be easily proven. We 

can compute the first derivative and solve for my  and ny  from (44), then construct two 

line equations for 0 0 2( , ) ( , )nx y x y  and 0 2 2( , ) ( , )mx y x y  and solve for their intersection. 
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In the context of geometric modelling, the point defined by ( , )x yC C  is called control 

point and, concerning basis splines (B-splines), it is named de-Boor-point. In Figure 8, this 

point is marked with a blue dot. Moreover, the first and the last point of the parabola are 

also referred to as control points, see e.g., the textbook by Piegl and Tiller [2] (pp. 389–

390). 

With (44), the general form of (39) can be written as 

2 2

0 02 2
0,2 0 2

2 0 2 0 2 0 2 0

( ) 2 y

x x x xx x x x
f x y C y

x x x x x x x x

     
     

      
. (46)

As a more general representation of the Bernstein polynomial, (46) is a convex 

combination as well. The proof is obvious. Since 
0 2
x x , all functions in front of 

0
y , 

y
C  

and 
2
y  are non-negative and have a sum of 1. The control points 0 0( , )x y , ( , )x yC C  and 

2 2( , )x y  form a convex hull, highlighted in grey in Figure 8, that encloses all realizations 

of x  in (46), which means that all points of the parabola lie within the convex hull. A 

convex hull is the smallest convex set that contains a given set, with a convex set being a 

set wherein the straight line segment, connecting any two points of the set is completely 

contained within the set; see e.g., the textbook by Farin [7] (p. 439). The advantage of the 

general representation of the Bernstein polynomial is that it can be applied directly 

without scaling the data set to the interval 
0 2

0 1[ , ] [ , ]x x  . 

If we now consider the example from Table 1 once again, we get, with 0 3.5y   and 

2 7.0y  , from (44) the result 5.25yC   and therefore 

2 2

0,2

3 3 0 0
( ) 1 2 5.25 2

3 0 3 0 3 0 3 0

x x x x
f x

      
          

      
, (47)

which can be “simplified” to the monomial basis form 

2
0,2

17 5
( ) 1

6 6
f x x x   . (48)

This is of course the same as (10) and (36). 

For the case of the interpolation by a parabola, it can be concluded that both the 

Bernstein and the Lagrangian form yield the same result. However, the Bernstein form 

has the advantage that all points of the parabola lie in the convex hull defined by its pa-

rameters. 

4. Transition from Bernstein Form to B-spline 

In the previous section, the Bernstein form was derived with a more general ap-

proach, instead of the standard representation within the interval [0,1] . This form can be 

easily used for derivation of the B-spline. 

In this section, Equation (46) is used for further derivations. It is assumed that the 

line segments that define the quadratic polynomial intersect at the extremum of the pa-

rabola and have an identical coordinate 
iy

C . Since the notion of spline is to be explained, 

only the endpoints of two smoothly connected parabolas are considered, which are better 

known as knots 0 0( , )x y , 1 1( , )x y  and 2 2( , )x y . The problem of the constraints and how 

they are imposed on the spline, for spline interpolation, is not taken into consideration. It 

is presumed that the first parabola of the spline is already defined, e.g., by imposing a 

constraint for the direction of the tangent in point 0x  as boundary condition, and in this 

case, is identical with the one from the previous section, see Figure 8. 

The initial situation is depicted in Figure 9, where: 

 One parabola already exists between the knots 0 0( , )x y  and 1 1( , )x y ; and 
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 One knot 2 2( , )x y  is given that is to be interpolated. 

 

Figure 9. Initial situation before the construction of the second part of the spline. The extremum of 

the first parabola is marked with a red dot, the control point with a blue dot, and the green dots 

indicate points to be interpolated. 

The task is now to construct a second parabola between the knots 1 1( , )x y  and 

2 2( , )x y  which is tangential to the first one. 

The second parabola is constructed as follows: 

 The line segment 
10 1 1( , )( , )yx C x y  is extended from the end point 1 1( , )x y  of the pa-

rabola to the end of the interval 
1 2[ , ]x x , yielding the additional coordinates 

22( , )yx C  and therefore the new line segment 
21 1 2( , )( , )yx y x C , see Figure 10; 

 Between points 
21( , )yx C  and 2 2( , )x y , the line segment 

21 2 2( , )( , )yx C x y  can be con-

structed, see Figure 11; 

 By taking combinations of these two line segments, within the interval 
1 2[ , ]x x , an-

other parabola will be constructed, smoothly connected to the previous one. The 

whole function constructed from these two smoothly connected parabolas repre-

sents a spline. Both parabolas end tangentially at the point 1 1( , )x y  w.r.t the line 

segment, defined as 
1 1 2 2

( , )( , )x y x yC C C C , see Figure 12. 

 

Figure 10. Line segment 
21 1 2( , )( , )yx y x C . The extremum of the first parabola is marked with a red 

dot, the control point with a blue dot, and the green dots indicate points to be interpolated. 
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Figure 11. Line segment 
21 2 2( , )( , )yx C x y . The extrema of the parabolas are marked with a red dot, 

the control points with a blue dot, and the green dots indicate points to be interpolated. 

 

Figure 12. Second parabola within the interval 
1 2[ , ]x x , smoothly connected to the previous one. 

The extrema of the parabolas are marked with a red dot, the control points with a blue dot, and the 

green dots indicate points to be interpolated. 

Finally, this is a type of spline that is constructed by using convex combinations and 

it is exactly the same as the B-spline. This is shown by the equations derived further in the 

text. Algebraically, this derivation is similar to the one in the previous section. The first 

pair of line equations is written as 

1

01
0,1 0

1 0 1 0

( ) y

x xx x
f x y C

x x x x


 

 
, 

1 2

02
1,1

2 0 2 0

( ) y y

x xx x
f x C C

x x x x


 

 
. (49)

By taking a combination of these two lines within the interval 
0 1[ , ]x x , it follows 

1 2

2 2
0 0 01 1 2

0,2 0

1 0 1 0 1 0 1 0 2 0 2 0 1 0

( )
( )

( ) ( )
y y

x x x x x xx x x x x x
f x y C C

x x x x x x x x x x x x x x

       
      

         
.(50)

For the second parabola the same approach is applied. The second pair of line 

equations is defined in the same way as the previous one, yielding 

1 2

02
2,1

2 0 2 0

( ) y y

x xx x
f x C C

x x x x


 

 
, 

2

2 1
3,1 2

2 1 2 1

( ) y

x x x x
f x C y

x x x x

 
 

 
. (51)

Analogously to (50), but in this case within the interval 
1 2[ , ]x x , we obtain 
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1 2

2

02 2 2 1 2 1
1,2 2

2 1 2 0 2 1 2 0 2 1 2 1 2 1

( ) y y

x xx x x x x x x x x x x x
f x C C y

x x x x x x x x x x x x x x

        
      

        
. (52)

If the above derived expressions are compared to an explicit expression of a quad-

ratic B-spline it becomes clear that they are the same. However, for the sake of clarity we 

have used a particular notation that does not correspond to the usual B-spline notation. 

Looking at (50) and (52), the only unknowns are 
1y

C  and 
2y

C , all other values are 

given. It appears that a quadratic spline, constructed from two linear polynomials, can be 

estimated with only two equations. This type of reasoning would lead to a paradox. 

Therefore, for this type of a spline, since all constraints (smoothness and continuity) are 

hidden inside the equations, at least four observations are necessary for a solution. For 

comparison, a spline constructed from two polynomials of the form 2

0 1 2
a a x a x   re-

quires at least three observations and three constraints. 

The idea presented in this section can be used for constructing splines of higher de-

grees as well. In those cases, depending on the degree of the spline, one would need more 

knots and more control points for creating a spline segment, while the number of com-

binations increases. Moreover, the expressions became more complicated, which makes 

this approach unsuitable for practical applications. However, de Boor [3] developed an 

algorithm for computing the basis functions that, in our case, constructs the expressions 

in front of the coordinates of the control points in (50) and (52). 

De Boor’s algorithm is based on the Cox-de Boor recursion formula that we will use 

for explaining the computation of a B-Spline. Recursion itself is non-intuitive, which 

makes this formula difficult to be explained analytically. The higher the degree of the 

spline, the more cumbersome and harder to follow the equations become. Therefore, in 

order to make a comparison with (50) and (52), we will use an explicit expression of a 

quadratic B-spline that is derived from the Cox-de Boor recursion formula. For this 

purpose, we use the knots and the naming convention from the previous example (49)–

(52). For this formula to work, we have to rename the parameters (control points) 
0
y  to 

0y
C  and 

2
y  to 

3y
C . The Cox-de Boor recursion requires additional knots at the begin-

ning and at the end of the spline based on the degree of the spline. If the spline degree is 

2d  , two additional knots are presumed to be both at the beginning and at the end of 

the spline. In our case, they are 

2 1,x x   and 3 4,x x , (53)

which is called knot multiplication. Additional knots with e.g., 

2 1 0 x x x    and 2 3 4 x x x   (54)

are especially used to gain endpoint interpolation. The additional knots do not neces-

sarily have to be equal to 
0
x  and 

2
x , they are just required to follow the order 

2 1 0 x x x
 
   and 

2 3 4 x x x  . However, in our example we follow the convention of the 

knot multiplication, and because of the knot multiplication, formula (56) has zero divi-

sions, and the solution for this problem is to declare that “anything divided by zero is 

equal to zero”. 

The base case of the recursion formula is 

1

,0

1, ,
( )

0, otherwise,
i i

i

x x x
B x  

 


 (55)

with a recursive step to compute the basis functions 
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1
, , 1 1, 1

1 1

( ) ( ) ( )i i d
i d i d i d

i d i i d i

x x x x
B x B x B x

x x x x
 

  

   

 
 

 
, (56)

which is summed over the k-th interval of the spline , ( )k df x , such as 

, ,( ) ( )
i d

k

k d y i d
i k d

f Cx B x


 

  . (57)

At the beginning of the recursion (56), index d  denotes the degree of the spline and 

i  is a computed index , ,i k d k   . In each recursive step, d  is lowered down for 1 

until it reaches 0. At 0d  , the recursion formula terminates and the base case (55) is 

evaluated. 

The index k  is the index of the interval 
1[ , ]k k

x x


 with 0,1, , 1k l  , where l  is 

the number of knots. Therefore, for 0k  , the recursion formula (56) is computed for 

every i  of the sum (57) and evaluated in (55). Afterwards, for 1k  , the same compu-

tation is performed, and so on, until the last interval. The parameters 
iy

C  in (57) corre-

spond to each basis function terminated by ,0 ( )iB x  in (55) at the end of the recursion. An 

example of quadratic basis functions using the knots 
0
0kx  , 

1
1kx   and 

2
3kx  , re-

sulting in two intervals 0k   and 1k  , and the knot sequence [0, 0, 0,1,3,3,3] , is shown 

in Figure 13. 

 

Figure 13. Quadratic B-Spline basis functions using the knots 
0
0kx  , 

1
1kx   and 

2
3kx  , result-

ing in two intervals 0k   and 1k  , and the knot sequence [0,0,0,1,3,3,3] . The knots are marked 

with black triangles on the x-axis. 

To compare this approach with (50) and (52), we use an explicit expression of a ge-

neric quadratic B-spline formula. For deriving it, we consider 2d   in (56), then we 

follow all recursive steps until 0d   for every , ( )i dB x , which yields the explicit ex-

pression of a generic quadratic B-spline formula 

2

,2 ,0

2 1

2
3

2,0

3 1 3 2

2 3 1
1,0

2 2 1 3 1 2 1

( )

( )

( ) ( )

( )

( ) ( )
( ) ( )

( )

( ) ( )
( )

( ) (

( )
  .
( ( )) )

i
i i

i i i i

i
i

i i i i

i i i i
i

i i i i i i i i

x x
B B

x x x x

x x
B

x x x x

x x x x x x x x
B

x x x x x x x

x

x

x
x

x
 




   

  


      




 




 

    
  

    

 (58)
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For clearer description, we treat each part of (57) separately and, for the computa-

tion, we use the knot sequence (53). At the interval 0k  , with index 2i   , the first 

element of the sum is 

0 0

2
2

2,2 2,0

0 2 1 2

2
1

0,0

1 1 1 0

2 0 1 1
1,0

0 2 0 1 1 1 0 1

( )
( ) ( )

( ) ( )

( )
( )

( )
( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )
  .

y y

x x
C B x C B x

x x x x

x x
B x

x x x x

x x x x x x x x
B

x x x x x x x x
x


 

  



 


   




 




 

    
   

    











 (59)

With 1i   , the second element of the sum is 

1 1

2
1

1,2 1,0

1 1 0 1

2
2

1,0

2 0 2 1

2 01 1
0,0

1 1 1 0 2 0 1 0

( )
( ) ( )

( )
(

(

)
( ) ( )

( ) ( ) 

( ) ( ) (

) ( )

( ) ( )

) ( )
( )

y y

x x
C B x C B x

x x x x

x x
B x

x x x x

x x x xx x x x
B

x x x x x x x x
x


 

 





 


 



 

   
  







      

 (60)

and, with 0i  , the last element of the sum is 

2 2

2
0

0,2 0,0

2 0 1 0

2
3

2,0

3 1 3 2

0 2 3 1
1,0

2 0 2 1 3 1 2 1

( )
( ) ( )

( ) ( )

( )
( )

( ) ( )

( ) ( ) ( ) ( )
( ) .

( ) ( ) ( ) ( )

y y

x x
C B x C B x

x x x x

x x
B x

x x x x

x x x x x x x x
B x

x x x x x x x x

 
 

 




 

    
   

      

 (61)

Taking the knot multiplications (53) and (54) into account for all elements of the 

sums (59)–(61) yields 

0 0

2
0

2,2 2,0

0 0 0 0

1
0,0

1 0 1 0

0 0 1 0
1,0

0 0 0 0 1 0 0 0

2

( )
( ) ( )

 
( )

( ) ( )

( ) ( ) ( ) ( )

( ) ( )

(

( ) ,
( ) ( ) ( )

)

( )

y y

x x
C B x C B x

x x x x

x x
B x

x x x x

x x x x x x x x
B x

x x x x x x x x

 



 


 



 

    
   

      




  (62)

1 1

2
0

1,2 1,0

1 0 0 0

2
2

1,0

2 0 2 1

0 1 2 0
0,0

1 0 1 0 2 0 1 0

( )
( ) ( )

( )
( )

( ) ( )

( ) ( )
(

( )

) ,
( ) (

( )

( ) ( )

( ( )) )

y y

x x
C B x C B x

x x x x

x x
B x

x x x x

x x x x x x x x
B x

x x x x x x x x

 




 



 









   
   

      

 (63)
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2 2

0
2

0,2 0,0

2 0 1 0

2
2,0

2 1

0 2 2 1
1,0

2 0 2

2

2

2 1 2 1

2

1

( )

( )

( )

( ) ( )

(

 
( ) ( )

( ) ( )

 
( )

( )

( ) ( )  
( ) .

( ) ( ) ( ))

y y

x x
C B x C B x

x x x x

x x
B x

x x

x x x x x x x x
B x

x x x x x x x x

x x




 





    
   








      

 (64)

The base case (55) evaluates only the functions in front of 0,0 ( )B x , all other base 

functions are not taken into consideration nor are the fractions where division by zero 

occurred. Finally, by summing up all results (62), (63) and (64) for the first interval, as 

stated in (57), and evaluating by (55), we obtain 

2

0

1

2

0

0,2 ,2
2

2
1

1 0 1 0

0 1 2 0

1 0 1 0 2 0 1 0

0

2

2

0 1 0

( ) ( )

( )

( ) ( )

( ) ( )

( ) ( )

 

(

( ) ( )

(

) ( )

) ( )

( )
.

iy i
i

y

y

y

f x C B x

x x
C

x x x x

x x x x x x x x
C

x x x x x x x x

x x
C

x x x x





 
 






 

   


   




 

 



 (65)

If Equation (65) is compared to (50), it can be concluded that they are identical. It 

must just be taken into consideration, as stated previously, that 
0
y  is renamed to 

0y
C . If 

the same procedure is applied to 1k  , the result is identical to (52), considering that 
2
y  

is renamed to 
3y

C . 

Since spline functions ( )y f x  are considered, only the component 
iy

C  of a con-

trol point ( , )
i ix yC C  appears as a factor in front of the basis functions , ( )i dB x . Using a 

parametric spline curve, both components of a control point appear in front of the basis 

functions as e.g., applied by Bureick et al. [34]. 

The Cox-de Boor recursion Formulas (55) and (56) are the basis of the de Boor’s al-

gorithm. The presented functions in front of the parameters are called basis functions and 

the curve is called B-spline curve. 

5. B-spline Approximation 

As pointed out by Ezhov et al. [1], in engineering geodesy it is not appropriate to 

apply a spline interpolation due to the high point density and the fact that measurements 

are affected by random measurement errors. Observation errors and other abrupt 

changes in the data points would be modeled, resulting in a strongly oscillating spline. 

The solution to this is to divide the sequence of points into not so many intervals, deter-

mined by predefined knots. The distribution of the knots is a fundamental problem in 

spline approximation and different knot placement strategies can be applied to solve it, 

as explained by Ezhov et al. [1]. Within the resulting intervals, we consider an overde-

termined configuration and, hence, the parameters of a B-spline can be computed by least 

squares adjustment. 

Since the Cox-de Boor Formulas (55)–(57) manage the whole process of computing 

the coefficients of the unknowns, the approximation can be performed with a simple 

linear functional model. Here, we consider quadratic splines that consist of piecewise 

parabolic segments. A generalization to splines of higher degree is straightforward. 
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5.1. Definition of the Problem 

Let: 

 0 1, , , , ,j my y y y   be a sequence of observed values; 

 
2
0LL LLΣ Q  be the variance-covariance matrix of the observations 

j
y ; 

 0 1 j mx x x x       be a sequence of non-decreasing error-free values referring 

to the observations; 

 
0 1nk kx x


   be a non-decreasing sequence of user-defined values for the knots on 

the x-axis which are regarded as error-free. 

To determine: 

 
0 1
, , ,

ny y yC C C , which represent the y-component of the control “points” of the 

quadratic B-spline. 

After defining these quantities, we can create a spline approximation from an 

overdetermined configuration using the Gauss-Markov model. 

5.2. Formulation of the Adjustment Problem 

The observation equations are of the same form for each quadratic polynomial 

within a spline. This is a consequence of the Cox-de Boor recursion formula. This ap-

proach (55), (56) and (57) determines to which interval a value 
j
x  belongs. One has to 

consider that the knot sequence must be given in advance. 

Considering 
j
x  as fixed values, yields also , ( )i dB x , computed from (55), (56), and 

(57), as fixed values. Here, we assume that ,2 ( )iB x  corresponds to the given parameter 

iy
C . Explaining the observation equations explicitly by means of the Cox-de Boor’s 

formula is too cumbersome. Hence, with 
j
y  as observations, the observation equations 

0 0 ,2 0
1

1 1 ,2 1
1

,2
1

ˆ ( ) ,

ˆ ( ) ,

ˆ ( )

i

i

i

n

y i
i

n

y i
i

n

m m y i m
i

y v C B x

y v C B x

y v C B x







 

 

 









 (66)

can be set up. The observation vector 

 
T

0 1 2 my y y yL   (67)

contains all observations, while the vector of unknown parameters can be written as 

0 1

T
ˆ ˆ ˆˆ

ny y yC C C   X  . (68)

From the stochastic model 

2
0LL LLΣ Q , (69)

with 
2
0  as theoretical variance factor, the corresponding weight matrix is obtained from 

1
LL
P Q , (70)

supposing the cofactor matrix to be non-singular. By looking at the observation equations 

(66), it is obvious that this spline approximation problem is linear and, hence, can easily 

be written in matrix notation 
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ˆ L v AX , (71)

where A  is the design matrix that contains the coefficients of the unknowns. Equation 

(71), together with (69), is denoted as Gauss-Markov model; see e.g., the textbook by 

Niemeier [35] (p. 137). Considering the sequence of the unknowns in (68), the design 

matrix reads 

0,2 0 1,2 0 ,2 0

0,2 1 1,2 1 ,2 1

0,2 1,2 ,2

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

n

n

m m n m

B x B x B x

B x B x B x

B x B x B x

 
 
 
 
 
  

A





   



. (72)

Even though the construction of this matrix is quite trivial, the presence of the basis 

functions makes it rather unusual. However, with the derivations in Section 4, it is at least 

clear how these basis functions can be obtained. Looking at the notation in (72), one 

might be misled that A  is a full matrix, which is not the case. To put it simply, the 

Cox-de Boor formula evaluates only those 
j
x  that belong to a particular interval and 

everything else is equal to zero. 

5.3. Least Squares Adjustment 

One feature of the B-splines is that constraints for continuity, smoothness and con-

tinuity of curvature are accounted for implicitly in the functional model. Therefore, no 

additional constraints have to be introduced and the least squares solution for the un-

knowns can be obtained from 

T 1 Tˆ ( )X A PA A PL . (73)

With the residuals 

ˆ v AX L  (74)

from (71), the a posteriori estimate of the reference standard deviation 

T

0s
r


v Pv

 (75)

can be computed, where r  is the redundancy of the adjustment problem. Further details 

on the a posteriori analysis of adjustment results and on knot placement strategies can be 

found in the article by Ezhov et al. [1]. The fact that the solution for the unknowns (68) 

can be used for a transition “backwards” from B-spline to ordinary polynomial is shown 

in Appendix A. 

6. Conclusions and Outlook 

In engineering geodesy, point clouds derived from areal measurement methods, 

such as terrestrial laser scanning or photogrammetry, are often approximated by a con-

tinuous mathematical function for further analysis, such as deformation monitoring. In 

many cases, the formulas for B-spline curves and B-spline surfaces, given in the textbook 

by Piegl and Tiller [2] (pp. 81 and 100), are applied, where the functional values of the 

B-spline basis functions are recursively computed according to the formulas by de Boor 

[3] and Cox [4]. This approach is very easy to handle and results in a numerically stable 

solution for the unknowns to be determined. As these formulas have a very complex 

mathematical derivation, but are still very easy to use, they are mostly used like a given 

recipe without a deeper understanding of their derivation. 

In part 1 of a series of three articles, Ezhov et al. [1] explained the basic methodology 

of spline approximation using splines constructed from ordinary polynomials. In this 
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paper (part 2) the goal was to develop an alternative derivation of the B-spline. To avoid 

excessive formula derivations and to illustrate the geometric relationships, quadratic 

splines were considered that consist of piecewise parabolic segments. Starting with the 

representation of a parabola in the monomial basis (ordinary polynomial) a transition to 

the Langrangian form was performed and, from there, to the Bernstein form, which fi-

nally resulted in the B-spline representation. In all investigations univariate splines were 

used, in the form of a spline function ( )y f x . 

For the derivation of the formulas, we first considered the case of interpolation. The 

developed formulas were then used for spline approximation by means of least squares 

adjustment. With the values iy  as observations and ix  as error-free values, the result-

ing linear adjustment problem could be solved within the Gauss-Markov model. Finally, 

in Appendix A it was shown that the determined spline parameters can be used for a 

transition “backwards” from B-spline to ordinary polynomial. The transition “forwards” 

from ordinary polynomial to B-spline was shown in Appendix B. 

The more general case, where both values iy  and ix  are introduced as observa-

tions into an approximation with a spline function, was already elaborated by Neitzel et 

al. [36]. Investigations of the numerical stability of the spline approximation approaches, 

based on ordinary polynomials and on truncated polynomials, discussed in part 1 and 

the B-splines explained in this article, as well as the potential of splines in deformation 

detection, will be presented in a forthcoming part 3 of this series of three articles. 
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Appendix A. Transition from B-spline to Ordinary Polynomial 

Through Sections 2–4, it was explained how a constituent part of the B-spline can be 

derived from an ordinary second-degree polynomial. In Appendix A, the parameters of 

an ordinary second-degree spline are to be expressed as functions of the B-spline pa-

rameters. We consider the following case, cf. Figure 12: 

 Three given points 0 0( , )x y , 1 1( , )x y ,  2 2( , )x y  are to be interpolated by a quadratic 

spline; 

 using the given B-spline parameters 
1y

C , 
2y

C , i.e., the y-component of the control 

points. 

Since the parameters of each polynomial of an ordinary second-degree spline are 

derived in the same way, in the text that follows, only the derivation of the first polyno-

mial that varies within the interval 
0 1
x x[ , ] is described. 

From the line segments 
10 0 1( , )( , )yx y x C  and 

1 20 2( , )( , )y yx C x C , see Figure 12, two line 

equations of the form 
0,1 0 1( )f x a a x   resp. 

1,1 0 1( )f x b b x   can be derived. From (49), 

the slope for the first line equation is 

1 0

1

1 0

yC y
a

x x





 (A1)

and the y-intercept is 
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1 0

0 0 0

1 0

yC y
a y x

x x


 


. (A2)

Analogously, the parameters for the second line equation are 

2 1

1

2 0

y yC C
b

x x





 (A3)

and 

2 1

10 0

2 0

y y

y

C C
b C x

x x


 


. (A4)

The spline segment of the form of a second degree polynomial is derived by taking a 

combination 

01
0,2 0 1 0 1

1 0 1 0

( ) ( ) ( )
x xx x

f x a a x b b x
x x x x


   

 
 (A5)

of these two lines in the same way as in (50). Since x  is the variable, after some rear-

rangement, the coefficients in front of the variable can be expressed as 

20 1 0 0 0 0 1 1 1 0 1 1
0,2

1 0 1 0 1 0

( )
a x b x b a a x b x b a

f x x x
x x x x x x

       
     

     
. (A6)

The derived coefficients of the polynomial that varies within the interval 
0 1
x x[ , ] 

read 

0 1 0 0 0 0 1 1 1 0 1 1
0 1 2

1 0 1 0 1 0

, ,
a x b x b a a x b x b a

A A A
x x x x x x

    
  

  
. (A7)

By inserting the terms from (A7) into (A6), we obtain the ordinary second-degree 

polynomial 

2
0,2 0 1 2( )f x A A x A x   . (A8)

Only the interval 
0 1
x x[ , ] is considered as the domain of the definition of the spline. 

The parameters of the ordinary second-degree polynomial, which varies within the in-

terval 
1 2
x x[ , ], can be derived analogously to the first one and would take the form 

2
1,2 0 1 2( )f x B B x B x   . (A9)

The spline function expressed by these two polynomials is identical with the one 

expressed by a B-spline. 

A more general derivation of the B-spline representation of polynomials was de-

veloped by Lyche et al. [37] (pp. 15–18), and it was shown that polynomials can be rep-

resented in terms of B-splines of at least the same degree. 

Appendix B. Transition from Ordinary Polynomial to B-spline 

In Appendix A, we showed how second-degree B-spline parameters can be used to 

derive the parameters for an equivalent representation in the form of ordinary sec-

ond-degree polynomials. In Appendix B, we explain the reverse procedure: how the or-

dinary quadratic spline parameters 0A , 1A , 2A , respectively 0B , 1B , 2B , can be used 

for derivation of the B-spline parameters 0y , 1C , 2C   and  2y . 

With Equation (A8), we can express each parameter of the ordinary cubic polyno-

mial as follows: 
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22
0 1 0 2 01

0 1 0 0 1 2

1 0 1 0 2 0 2 0

( )
x x x x xx

A x x y C C
x x x x x x x x

     
          

        
, (A10)

0 01 1
1 1 0 0 1 2

1 0 2 0 1 0 2 0

2 22 2
( )

x xx x
A x x y C C

x x x x x x x x

     
           

        
, (A11)

2 1 0 0 1 2

1 0 2 0 1 0 2 0

1 1 1 1
( )A x x y C C

x x x x x x x x

     
          

        
. (A12)

According to this approach, the parameters in (A9) can be expressed as: 

2 2
0 22 1 2 1

0 2 1 1 2 2

2 0 2 0 2 1 2 1

( )
x xx x x x

B x x C C y
x x x x x x x x

     
         

       
, (A13)

2 1 2 1
1 2 1 1 2 2

2 0 2 1 2 0 2 1

2 2 2 2
( )

x x x x
B x x C C y

x x x x x x x x

     
           

       
, (A14)

2 2 1 1 2 2

2 0 2 1 2 0 2 1

1 1 1 1
( )B x x C C y

x x x x x x x x

     
          

       
. (A15)

From Equations (A10)–(A15), two separate equation systems can be formed to solve 

for the B-spline parameters. Since the equations are linear, they can be solved by apply-

ing some of the methods from linear algebra, such as Gaussian elimination. 

Once the systems are solved, the results for the parameters of the system (A10)–

(A12) are 

2
0 0 1 0 2 0y A A x A x   , (A16)

0 1
1 0 1 2 0 1

2

x x
C A A A x x


   , (A17)

1 2
2 0 1 2 1 2

2

x x
C A A A x x


    (A18)

and for the system (A13)–(A15), the results are 

0 1
1 0 1 2 0 1

2

x x
C B B B x x


   , (A19)

1 2
2 0 1 2 1 2

2

x x
C B B B x x


   , (A20)

2 2 2
2

0 1 2y B B x B x   . (A21)

In the terms of B-spline, 0y  and 2y  are parameters and, in this derivation, they are 

treated as such. If 0y  and 2y  are considered as known values, we can also solve only 

for 1C  and 2C  as a system of two equations. However, in such case, the solutions for 1C  

and 2C  are not as elegant as those from the equations above. 
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