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Abstract 

Motivated by the engagement of the second author of this study, Hiroaki Toh, in the Mantle 
Electromagnetic and Tomography {MELT) Experiment in the East Pacific, we modified our original 
2-D magnetotelluric finite difference modelling procedure for generally anisotropic structures (Pek 
and Verner, 1997) to allow us to model MT data along topographic undulations as well as on the 
sea bottom. Both the topography and bathymetry are approximated by simple staircase functions. 
Introducing topography does not change the approximation procedure as compared to the flat earth 
model. The only difference is a variable bandwidth of the FD matrix in case of topography, which re­
quires a slight modification to the Gaussian elimination procedure for the solution of the approximate 
problem. Modelling with bathymetry fits exactly into the standard modelling scheme, the specific 
being that MT fields and functions are evaluated inside the conductive medium rather than on the 
earth's surface. Large conductivity contrasts involved at sea-earth interfaces require to pay special 
attention to FD gridding. Improved derivative formulas according to Weaver et al. {1985, 1986) have 
been generalized to anisotropic models , which allows us to circumvent the inconsistency in boundary 
conditions for derived MT fields in heterogeneous media, as well as to increase the accuracy of the 
numerical evaluation of secondary fields and MT functions. 

1 Introduction 

Large-scale electrical macro-anisotropy has been recently recognized a real factor in several regional 
interpretations of MT data, the KTB being perhaps one of the examples most referred to in this respect 
(e.g., Eisel and Haak, 1999). The particular study presented here has been initiated by the second 
co-author of this contribution, Hiroaki Toh, who has taken part in collecting and interpreting MT data 
within the Mantle Electromagnetic and Tomography (MELT) Experiment (Evans et al., 1999). The 
aim of the MT measurements within that project was to analyze the electrical resistivity structure of 
the mantle beneath the fast-spreading southern East Pacific ruse. Seismic data and some geoelectrical 
considerations indicate that the electrical anisotropy at mantle depths could be substantiated and might 
play a certain role in the electrical structure of the broader surrounding of the rift. As sea bottom 
MT measurements were employed in the experiment , a study on the influence of the anisotropy upon the 
deep sea MT data was encouraged. From a broader scope of aims of the related studies, we present here 
only the first results of a modified version of our 2-D MT modelling algorithm for anisotropic structures, 
which allows us to take into account both the topographic and bathymetric information available. 

From the electrical point of view, the sea-land environment engenders some specific problems that are 
of particular relevance when modelling electromagnetic fields in this kind of setting , e.g., 

a) strong anomalous fields and currents can arise in the highly conductive sea water environment, 
which can produce severe distortions to the strongly attenuated primary fields, in particular on the 
sea bottom, 

b) if anisotropic domains are involved, the intermode coupling due to anisotropy can be enhanced 
by the highly conductive sea water layer, and large distortions can appear, particularly if strike­
perpendicular curren ts are transformed into strike-parallel currents, 

b) large conductivity contrasts can cause serious numerical difficulties, especially when computing the 
secondary, derived electric and magnetic fields. 
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2 MT modelling for 2-D anisotropic str uctures with topography 

In geophysical applications, finite element modelling codes are most often used to compute physical fields 
affected by general topographic features. High flexibility in choosing the particular shape of the finite 
elements, as well as easy accessibility to the gridding software for both the structured and unstructured 
meshes, make the finite elements much more suitable for dealing with complex geometries than the finite 
differences, where both serious theoretical and practical difficulties can arise when approximating fields 
in heterogeneous domains with complex geometrical boundaries . 

Within the scope of finite difference techniques , topography is mostly included by approximating the 
topographic undulations by simple staircase functions that coincide piecewise with the FD grid lines. 
Though this approach may be problematic when modelling data directly on the slopes, it can yield 
useful results on platforms formed by several mesh steps along the topographic profile. There are more 
advanced techniques of including topographic features within the FD approximation, e.g., modifications 
to the FD stencil for oblique interfaces (e.g., Cerv and Praus , 1972), or direct approximation procedures 
applied to general quadrilateral mesh cells, mostly based on mapping the approximate formulas for a 
rectangular cell onto a general tetragon (e.g., Hyman and Shishkov, 1999). In this paper, we still use the 
simplest staircase approximation to the surface undulations to estimate the topography effects. 

2.1 Model and basic equations 

A detailed description of the theory of the 2-D MT mod~lling for generally anisotropic structures has been 
given in (Pek and Verner, 1997). Here, we will only recapitulate the basic features of the mathematical 
model of the problem and the fundamental equations relevant to our further explanations. 

In our model (Fig. 1), the conductive earth is approxi­
mated by a 2-D horizontally inhomogeneous halfspace, with 
the structural strike parallel to the x axis of the coordi­
nate system. The z axis is directed down into the earth. 
A generally non-flat surface of the earth is assumed , with 
the topographic undulations conforming to the 2-D symme­
try of the model. As modelling of sea-bottom experiments is 
considered, we explicitely assume that a part of the earth's 
surface is covered by a highly conductive sea water layer. 
The 2-D conductivity distribution within the earth can be 
generally anisotropic , specified by a symmetric and posi-
tive definite conductivity tensor u( y, z). We often factor 
the conductivity tensor by means of the diagonal matrix of 
the principal conductivities and three successive elementary 

•

omogeneous, time-harmonic 
electromagnetic plane wave r•structural strike 

y topography 

z 

anisotropic conductive earth 

Figure 1: Sketch of the MT model. 

Euler rotations (Verner and Pek , 1999), with a straightforward physical interpetation . 
The primary electromagnetic field is assumed to be a homogeneous, t ime-harmonic plane wave (time 

factor exp( -iwt)) propagating from sources at z • -oo towards the earth's surface. Slow enough 
electromagnetic processes are assumed for the quasi-steady state approximation of Maxwell's equations 
to be applicable . 

For the MT model described above, the general Maxwell's equations can be reduced into two second­
order partial differential equations for the basic, strike-parallel field components Ex and Hz, 

~ (Cfyy OH:,;)+~ (CTzz OH:,;)+~ (CTyz OH:,;) + ~ (CTyz OH:,;)+ 
8y D 8y oz D 8z oy D 8z 8z D oz 

+ iwµoHx - :y (AEx) + :z (BEx) = 0, (2) 

where 
D = CfyyCTzz - cr;z, A= (azyUyz - CTzzCTyy)/D, B = (azzCTyz - CT:,;yUzz)/D. 

Though coupled, we conventially call eqs. (1) and {2) the E-mode equation and H -mode equation , 
respectively. The secondary, derived components of the electromagnetic field are obtained by simply 
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spatially differentiating the basic fields, 

H = _ l_ 8E.,, 
Y iwµo 8z 

H __ _ 1_8E., 
z - iwµo 8y ' 

(3) 

E _ Uyz 8H., Uz;z 8H., BE 
y - D 8y + D 8z + :i:, 

E = _ ayy 8H., _ ayz 8H., AE 
z D 8y D 8z + :i:• 

Standard conditions on the contacts of domains with different conductivities , i.e., the continuity of the 
magnetic components, continuity of the tangential electric fields and of the normal current densities, as 
well as suitable conditions at infinite boundaries , complete the mathematical formulation of the model. 

2.1.1 Finite volume FD approximation at topography nodes 

The finite difference solution of the coupled system (1) and (2) by using the finite volume procedure 
consists in approximating the integral form of Maxwell's equations in a certain vicinity of the FD mesh 
nodes, rather than approximating directly the local, differential form of the field equations at respective 
nodes . By the finite volume approach, equations with spatially variable material parameters can be dealt 
with particularly easily as compared with the classical FD approaches. 

The finite volume approximation to (1), (2) was described 

h(_y) h(y) in (Pek and Verner, 1997) in detail . The underlying physical 
j+l >---'---< >- -- < r - k _ 1 model is covered by a non-uniform rectangular grid. The inter-

Uj,k Uj+l,k 

r--+---------t - -u-- k 

!lj,k 

nal boundaries of domains with different conductivities are as­
sumed to piecewise coincide with the grid lines of the FD mesh. 
Next, a dual mesh is constructed , with cells spanned over the 
centers of the primary FD mesh cells. The finite volume ap­
proximation to the basic equations (1), (2) is then carried out 
by integrating these equations over the cells of the dual mesh, 
surrounding the respective mesh nodes (see Fig. 2). 

Uj ,k +_l 

j- 1 -
Yi 

j 

C1j+1,k+l 

Yj j+l 

In (Pek and Verner, 1997), the corresponding FD stencils are 
k + 1 given and their particular form is discussed for different posi­

tions of the mesh nodes with respect to the conductive medium 
and the non-conductive air for the case of a flat-earth model. 

Figure 2: (j, k)-th mesh node and ·its 
vicinity. n;,k is the (j, k)-th cell of a 
dual mesh with nodes defined by the 
centers of the basic FD mesh cells. 

Generally, equation (1) for E:i: is approximated everywhere 
throughout the model, while eq. (2) is approximated at internal 
earth's nodes only, in virtue of the condition H:i: = const in 
the air that is assumed a perfect insulator. Introducing a gen­
eral topography , approximated by a staircase function of the 
surface undulations conforming the underlying FD mesh, does 

not affect the finite volume approximation to (1), (2) at any position of the central mesh node. As the 
number of the internal mesh nodes within the conductor varies, however, in dependence on the topogra­
phy, the number of H:i: variables differs for different mesh columns. As a consequence, the band-width 
of the resulting FD matrix is variable-broader beneath topography elevations and narrower beneath 
topography depressions, as shown by a schematic example in Fig. 3. This is the only change to the 
algorithm that must be taken into account when dealing with structures with general topography. It 
affects slightly the Gaussian elimination procedure used for solving the FD equation system in that the 
maximum band-width of the FD matrix must be considered when storage is allocated for the elimination 
procedure . 

3 Improved derivative formulas 

In 2-D magnetotelluric models, both isotropic and anisotropic, the basic second order PDE's yield the 
primary, strike-parallel field components E:i:(y,z,w) and H.,(y,z,w). The complete magnetotelluric field 
must be then constructe d by evaluating the derived, secondary field components by differentiating the 
basic components with respect to the spatial coordinates y and z according to (3). The simplest way to 
do so is to interpolate the basic field components by a simple polynomial function and use the spatial 
derivatives of the interpolating polynom as approximations to the respective derivatives of the fields. This 
approach is widely used, e.g., with various kind of spline interpolators or, as in the original version of our 
anisotropic modelling code (Pek and Verner, 1997), with a three-point parabolic interpo lation of the basic 
field values taken at three successive nodes of the numerical mesh in they or z direction. In the latter case, 
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Figure 3: Structure of the FD matrix for the approximate solution of the 2-D MT problem with general 
anisotropy. Left pane l: FD matrix for a flat earth model. Right panel : FD matrix for a model with 
general topography. The light gray zone shows the half-band width of the FD matrix that must be stored 
in the memory for solving the FD equations by the Gaussian elimination . Symbols used: full squares­
coefficients for the electric field E.,, empty squares-coefficients for the magnetic field H.,. Symbols used 
in the insets: full circles-mesh nodes with only the electric field considered (air and surface nodes), 
empty circles- mesh nodes with both the electric and magnetic field considered (internal nodes within 
the conductive earth). 

one-sided vertical derivatives of the magnetic field are used for the H-mode on the air-earth interface , 
obtained by fitting the interpolating parabola through the surface node and two nearest sub-surface nodes. 
Our experience with the simple parabolic interpolatio n shows that (i) for the E-polarization mode , the 
accuracy of the respective spatial derivatives decreases rapidly with increas ing mesh steps, in particular 
at internal nodes surrounded by cells with large conductivity contrasts (see Fig. 4 for illustration), (ii) for 
the H -polarization mode , the accuracy of the derivatives is stable and sufficiently high for a broad range 
of mesh steps surrounding the 'derivative ' node , mainly due to essentially a calmer spatial behaviour of 
the magnetic field. Nonetheless , using the one-sided parabolic interpolation in the H-mode case requires 
us to ensure that a sufficiently wide·zone of uniform conductivity exists around the 'derivative' node so 
that the smoothness of the spatial derivatives conforms with the quadratic interpo lation. Moreover, in 
the H-mode we have to face the inherent inconsistency of the classical solution to the field equations at 
joints where several blocks with different conductivities make contact: unless C1j,kCTj+1,k+1 = C1j+1,kC1j,k+1 

in a setting according to Fig. 2, we principally fail in meeting all the boundary conditions at interfaces 
surrounding the (j , k)-th node (i.e., the continuity of normal currents and continuity of tangential electric 
intensities) . To circumvent this conflict requires a certain smooth ing procedure to be applied locally to 
the conductivity distribution around the mesh node considered . 

Weaver et al. (1985, 1986) recognized the above mentioned difficulties and gave a consistent solution 
to the problem of spatially differentiating the basic field components at a mesh node with the most 
general position possible within a rectangular mesh, i.e,, at a mesh node surrounded by four mesh cells 
with generally different conductivities . Their approach to computing the spatial derivatives of the basic 
field components is based on the ideas of (i) re-shaping locally the electrical conductivity around the 
selected mesh node into a smooth conducti vity distribution, wit hout affecting the FD approximation of 
the underlying PDE, and, (ii) using the same approximation procedure to evaluate the derivati ves as that 
they had used earlier in approximating the original PDE at the node considered. 

The original procedure of Weaver et al. (1985, 1986) was based on the standard FD approximation 
approach which utilized the concept of fictitious, or virtual points to manage heterogeneous conductivity 
distributions around the mesh nodes. For anisotropic structures , however, that approac h does not seem 
feasible. We will show here , however, that exactly the same derivative formulas can be obtained by using 
a much simpler finite volume approximation approach. 
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Figure 4: Comparison of 1-D apparent resistivities and phases computed from exact electric components 
and approximate magnetic components . (a) 1-D model with a sea layer (1 km thick, 0.3 Orn) and a 
resistive basement (10000 Orn). (b) Apparent resistivities (left panels) and phases (right panels) on the 
surface ( top panels) and on the sea bottom (bottom panels) for different mesh steps around the central 
node. The exact MT functions (full line) are compared with corresponding functions computed from 
approximate magnetic fields obtained by a parabolic interpolation of the electric components through 
three nodes (empty circles) and by using improved derivative formulas by Weaver et al. (1986) (full 
circles). 

3.1 Improved derivative formulas for anisotropic 2-D models 

3.1.1 Spat ial derivatives of Ez at in ternal mesh nodes 

After FD approximating the second order coupled equations (1) and (2), we can solve the FD linear 
system for the approximation to Ez and Hz throughout the model. To compute the derived magnetic 
fields, Hy and Hz , according to corresponding formulas in (3), the basic idea of Weaver et al. (1986) was 
(i) to use Taylor 's expansion , into the second order in the respective mesh step, of the basic field Ez in 
two oposite directions from the central node, (ii) substitute the second derivatives in those expansions 
for their equivalents from the original second order equation, and, after (iii) properly averaging the 
conductivities at either side of the central node, (iv) eliminate the remaining second derivative of Ez by 
subtracting the suitably scaled equations from the previous steps. In the anisotropic case, the influence of 
the magnetic field H:,; must be considered as well, which may affect essentially the conductivity averaging 
procedure. Most of the discussion on averaging the conductivities or resistivities over the integration 
cell O;,k can be repeated, with only slight modifications, for the anisotropic case as well. The most 
significant change is that the individiual components of the current densities are not given by simply 
multiplying the corresponding electric fields by the scalar conductivity, but depend generally on all the 
electric components via a conductivity tensor multiplication . The boundary conditions at the interfaces 
that divide domains with different conductivity tensors must be modified appropriately. 

As the fictitious points FD approximation procedure is difficult to use in the anisotropic case, we will 
demonstrate that Weaver's et al. (1986) derivative formulas, and their generalized versions for anisotropic 
conductivities, can be easily obtained by applying the principles of the finite volume approximation, which 
we used earlier to approximate the anisotropic 2-D problem in (Pek and Verner, 1987). For evaluating , 
e.g., the vertical derivative , oEz(Y;,zk)/oz, the idea is to apply the volume integration of (1) separately 
to the upper (i.e. z > zk) and lower (i.e. z < zk) sub-cell of the original integration cell n;,k (Fig. 2), 
and to subtract the resulting integrals in order to eliminate the horizontal field derivatives involved. Let 
us integrate 
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hiz) ExU + 1, k) - E.,(j, k) hiz) Ex(j , k) - ExU - 1, k) h;y) + h;~l 8ExU, k) 
~ - - -----;- ---,---- - - _...::...;,.__:_ __ ;;;..._ _ ____;_ + ~- ~- -~- + 

2 hJ~i 2 ht) 2 8z 

_ hJYl+hJ~1 Ex(j,k) - Ex(j , k-1) + iwµoh (z)(h(.Y)+h<.Y)) -(· k)E (" k)+ 
2 (z) 4 k J J+l 0- J, X J, 

hk 

+ iw;o hf> {A;+1,k [Hx(j + 1, k) - H.,(j, k)] + Ai,k [H.,(j, k) - Hx(j - 1, k)]} -

- iw:o (h;y) Bj,k + hJ~1B;+1,k) [Hx(j, k) - H.,(j , k - 1)] = 0, 

where 
h(y)~ h(y) I: 

o-- (. k) = j Llj,k + j+l j+l,k 
J, (y) (y) ' 

hj + hj+l 

and a short notation, e.g., Ex(Y1, zk) = Ex(j , k), has been used. The steps used in approximating the 
above integral are identical with those applied earlier to the finite volume approximation of (1) in (Pek 
and Verner, 1997). Similarly, we can also approximate the complementary integral lE(Dj,k, zk+) over 
the upper half-cell of Dj,k, i.e. , over the domain (y1 ,Yj) x (zk, zt). 

To eliminate the approximate expressions for the horizontal derivatives and extract the vertical deriva­
tive 8Ex(j , k)/8z, we evaluate the expression 2hith(Dj,k , Zk-)-2hiz) IE(Dj,k, Zk+ ), and finally obtain, 
after some algebra, the following approximation 

. h(z) h(z) 
iwµo k k+l [ +(. k) - (. k)]E (. k) + - 2- (z) (z) ~ J, - 0- J, x J, + 

hk + hk+l 
. h(z)h(z) 
iw µo k k+l { [ ( · · + - 2- (y) (y) )( (z) (z) ) (Aj+l,k+l - A1+1,k) Hx J + 1, k) - Hx(J, k)] + 

(hj + hj+l hk + hk+l 
(4) 

+ (A;,k+i -A;,k)[Hx(j,k) - Hx(j -1,k)]} -

(z) l {z) { hiz) B+(j , k)[Hx(j , k + 1) - H.,(j , k)] - hit B-(j, k)[Hx(j, k) - Hx(j, k - 1)]}, 
hk + hk+l . 

iwµo ---
2 

with 
h(y) B· + h(y) B· 

B-(. k) - j J,k j+l J+l,k 
J, - h(y) + h(y) 

j j+l 

h(y)B · +h(y)B · 
B+( . k) - j .7,k+l j+l J+l,k+l 

J, - h(y) + h(y) 
j j+l 

The first two terms of ( 4) contain the Ex field only, and are identical with the corresponding Weaver's 
et al. (1986) improved derivative formula derived for the isotropic case (except for the reversed sign of 
iwµ0 , resulting from our using the exp(-iwµo) time-harmonic factor) . The first term in (4) represents a 
derivative as it would result from a simple parabolic interpolation of Ex through the mesh nodes (j , k - 1), 
(j , k), and (j, k + 1). The second term is a correction that results from considering the original PDE in 
expressing the second-order derivative 82 Exf 8z 2

• This correction is directly proportional to the difference 
of avarage conductivities below and above the central mesh node, and , for large conductivity contrasts, 
neglecting this correction term can result in a fatal drop of the accuracy of the derived fields, even if 
the basic field component Ex is available exactly, or with a very high precision. Fig. 4 illustrates that 
for a sea layer 1 km thick, a sea/ basement resistivity contrast of 0.3/ 10000, and the period of 100 s, the 
vert ical mesh step would have to be less then 1 meter at the sea bottom to provide sufficiently accurate 
MT functions by using the parabolic interpolation formula alone. Considering standard gridding rules 
used in the MT modelling, this would result in enormous mesh dimensions, hardly tractable in practice 
even for the simplest models . 

The remaining two terms in (4) involve the magnetic component Hx, and express the influence of 
the H-mode field upon Ex via the inter -mode coupling in the anisotropic case. These terms depend on 
the non-diagonal elements of the conductivity tensor via the aggregate parameters A and B and their 
averages B- and B+ . 

To get an analogous formula for the horizontal derivative 8Ex(j, k)/8y , it would be now easy to repeat 
the above procedure, with computing and subtracting the integrals IE(D;,k, y;-) and lE(D;,k , y1+) over 
the left-hand and right-hand sub-cells of the integration cell D;,k-
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3.1.2 Spatial derivatives of Hz at internal mesh nodes, derived electric fields Ey, E,. 

The procedure for evaluating the derived electrical components Ey and E,. from (3) is similar to that 
used in the previous section, only the finite volume integration is now applied to the basic equation (2). 
Contrary to the previous case, we must , however, realize that the conductivity averaging involved in the 
quasi-H-mode case is of a more principal nature: As for the setting in Fig. 2 it is not generally possible 
to find a consistent set of electric fields Ey and E,. and current densities jy and j,. within the cell nj,k, 
we have to re-shape the local conductivity distribution around the node (j, k) in such a way that we 
eliminate those sharp boundaries within n;,k that would lead to inconsistencies in the local boundary 
conditions. 

Without going into detail , the finite volume integration of (2) over the lower and upper half-cell 
of ni ,k, and subsequent subtraction of the properly scaled integrals all_9ws us to extract a mean tangential 
component of the electric field over the interval (y;, yt) x zk, i.e., Ey(j, k), and express it in a general 
symbolic form 

e;y(i , k)e;y(i, k) ~ ~ [CH H ( ) cE E ( )] 
~ (z) (z) . L...J L...J £,1< z L, K, + i,1< z L, K, , 

(hk + hk+1)f!yy(J, k) •=i-1 t<=k-1 
(5) 

where f!yy(j, k), e;y(j, k), and f!yy(i, k) are averaged yy-resistivities over the upper and lower half-cell and 
over the whole cell ni,k, respectively. The coefficients C!;,. and Cf,. in (5) are complex functions of the 
conductivities and mesh steps, and we are not going to give their explicit form here. 

It can be shown that the mean tangential component Ey(j, k) in (5) is generally given by both the 
electric and magnetic fields that enter the 9-point-H / 5-point-E FD stencil resulting from the approxi­
mation of (2) by the finite volume method (Pek and Verner, 1997). It can be proved that for an isotropic 
cell, the above formula reduces into Weaver's et al. (1985) expression for Ey(j, k). 

Similarly as above, we can also obtain an approximate formula for the mean vertical field Ez(j, k). 

3.2 Derivative formulas at topography nodes 

So far, the formulas for the spatial derivatives have been considered under the assumption that the nodal 
point (j, k) was an internal point of the medium, i.e., that it was fully surrounded by cells with non­
zero conductivity tensor elements. If some of the mesh cells that surround the mesh node (j, k) contain a 
perfect insulator , i.e., mostly air in our applications, the derivative formulas must be modified accordingly. 
Formally, we can get the modified formulas by taking the general expressions (4) or (5) and evaluating 
their limits for the conductivity, or resistivity, of the air cells approaching zero, or infinity, respectively. 
This approach leads to consistent formulas, except for few situations that cannot be dealt with in this 
way. In particular, evaluating E,. on a flat earth surface, or Ey on a vert ical wall leads to an indefinite 
limit 0/0. Those special situations are, however, of only limited interest for the MT practice. 

4 Examples of numerical simulations 

In this section, we will briefly discuss two simple numerical examples that were used as tests for the 
developed algorithm for the 2-D MT modelling for anisotropic models with topography and bathymet ry 
considered. Both models represent variants of a simple horst model; in the first example a horst as a 
topographic elevation, in the second example a horst as an undersea elevation or an island. 

4.1 Topography: effect of a horst on MT fields 

First, we consider a two-layer model with the following parameters: h1 = 125 km, fl1 = 1000 nm; 
fl2 = 200 nm. On the top of the upper layer, a block elevation is located with the width of 44 km and 
height of 1 km. The resistivity within the elevated block is equal to that of the undelying layer, i.e., 
1000 nm. In Fig. 5, top (panel ISO), a snapshot of the electric field E., for the E-mode and the magnetic 
field Hz for the H-mode is displayed for the period of 100 s. The plots show that there is only a weak 
influence of the elevation upon the magnetic component Hz , expressed by an almost uniform offset of the 
contours towards the elevated surface, with diminishing tendency towards greater depths. A very weak 
local concentartion of the Ez field occurs immediately above the horst. 
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Figure 5: Effect of a resistive horst , 44 km wide and 1 km high, upon the magnetotelluric fields Ex and 
Hx for the period of 100 s. Top panels (ISO): Snapshots of MT fields for an isotropic basement . Bottom 
panels (ANISO): MT fields for a model with a highly anisotropic crust and upper mantle. For the model 
specifications , see the text. 

As to the topography effect on the MT curves, both the apparent resistivities and phases show only 
a very weak effect of the elevation. Within the period range of 0.3 to 3000 s, the MT anisotropy does 
not exceed the value of 1.1, except points in the immediate vicinity of the edges of the horst , where the 
H-mode resistivities display a pronounced static shift effect due to the jump in topography. Above the 
elevation, a slight increase of the E -mode resistivity occurs, corresponding to the local thickening of the 
resistive layer. 

Next experiment involved a highly anisotropic upper crustal layer that interrupted the 1000 nm 
resistive layer from the previous model within the depth interval of 2 to 9 km. The principal resistivities 
of the anisotropic layer were 10/ 1000/ 10 nm and the anisotropy strike was 60 deg with respect to the 
structural strike. The bottom panel (ANISO) in Fig. 5 shows the snapshot of the Ex and Hz field 
distribution for the quasi-E and quasi-H field modes, i.e., for the primary magnetic field directed parallel 
to they and x axis, respectively. For the quasi-E-mode (left panels of ANISO), the Ex field is very similar 
to that obtained in the isotropic case, except for its size that is about a half of the respective isotropic 
field. A part of the energy is transformed into the perpendicular mode by the effect of anisotropy. The 
quasi-H-mode field distribution (right panels of ANISO) gives an idea about the size of the electric field 
arising due to the anisotropy coupling-in this case, Ex is comparable , as to the order of magnitude , with 
the electric field of primary origin in the quasi-E-mode. 

Similarly as in the isotropic case, the effect of the topographic elevation above a highly anisotropic 
basement on the MT curves is again very weak, and is most expressed by static shifts of apparent 
resistivities in the immediate vicinity of the edges of the horst. Similar behaviour has been observed for 
models with a rougher topography as well, though their practical significance is rather limited owing to 
a largely simplified staircase approximation of the topographic undulations. 

4.2 Bathymetry: effect of an undersea horst on sea-bottom 
MT measurements 

For numerical simulations of an MT experiment with bathymetry considered, we have used a similar 
model as in the above topography study, with the horst surrounded now by a higly conductive layer, 
simulating the sea water. An anisotropic layer has been placed into upper mantle depths. The structure 
of the model used is shown in Fig. 6. Various heights of the horst were chosen, from zero (flat sea bottom) 
up to 1 km (model ISLAND). MT functions have been evaluated along the surface of the model as well 
as along the bathymetry profile, i.e., along the sea bottom at those sections of the model covered by the 
sea water, and along the surface elsewhere. 
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As an example of modelling results, we present 
the MT profile curves across the ISLAND model 
for the period of 100 s in Fig. 7. For this period, • • 
the manifestation of the deep anisotropic layer is 
negligible, but we can observe some interesting 
phenomena related to the undersea topography . 

The surface MT data (bottom panels in Fig. 7) 
show a standard course as observed along a shal-

..... J.;..i 
low highly conductive layer interrupted by a re-
sistive intrusion. The sea bottom MT curves 

44km 

1000Cm 

I... i.... J,-. 

anisotropic manue 
20/200 Cm, anis. strike 30 deg 

1km, depth of the sea 

125km 

show a more intricate behaviour , especially in 
the E-mode. The E-mode resistivit y (xy-curve) Figure 6: Model used for the sea bottom MT mod-
steeply increases away from the edge of the eleva- elling studies. 
tion , reaching a maximum at about 50 km from the 
verge of the horst. From this maximum , the resistivity decreases back to the corresponding 1-D boundary 
value for large distances from the horst . Near the resistivity maximum, the phase curves show a highly 
anomalous behaviour, and even leave locally their 'natural ' quadrant . To eliminate the possibility of 
numerical effects in this case, where large conductivity contrasts might lead to inaccuracies in evaluating 
especially the derived fields, we compared our modelling results with those obtained by independent cal­
culations carried out by Yuguo Li's FE algorithm (Li, 2000). The comparison tests have given practically 
identical results . Both sets of model curves are presented in Fig. 7. 

The above anomalous effect of the E-mode MT curves is observed for a broad range of elevation 
heights , and is not restricted to the ISLAND model only. The model tests with the field distributions 
across the sea layer indicate that anomalous current concentrations appear in the highly conductive sea 
along the edges of the elevation . The magnetic fields of these anomalous currents can locally reduce, or 
even revert , the total magnetic field on the sea bottom, which, in turn , results in an anomalous increase 
of the impedance and its anomalous phase shift along a certain portion of the sea bottom profile away 
from the elevation . 
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Figure 7: Apparent resistivities and phases for the model from Fig. 6, with the undersea elevation reaching 
up to the sea level (model ISLAND), for the period of 100 s. Top panels: MT functions along the sea 
bottom (except the island section, where the surface values are given). Bottom panels: MT functions 
along the surface. Symbols used: full circles-xy curves, empty circles--yx curves, full lines-xy curves 
computed by the FE algorithm of Yuguo Li (2000), dashed lines--y x curves computed by the same 
algorithm. The discrepancies between the phase curves produced by the two algorithms used along the 
sea bottom represent only 90 deg shifts, and result from different coding conventions for the evaluation 
of the MT phases in the codes compared . 
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5 Conclusion 

We have presented here a simple generalization of our 2-D MT modelling algorithm for anisotropic struc­
tures (Pek and Verner, 1997) to models with topography and bathymetry. If both the topographic and 
bathymetric undulations are approximated by simple staircase functions, conforming with the underlying 
FD mesh, no substantial modifications to the FD approximation procedure are required as compared 
with the flat-earth model. The only change concerns the variable band-width of the FD matrix in case 
of a variable topography in our algorithm, which requires us to slightly modify the Gaussian elimination 
procedure used for the solution of the FD equation system. 

A more serious point seems to be the question of evaluating the derived field components from the 
basic, strike-parallel fields Ex and H,,. Here, large numerical errors may be expected to occur at large 
conductivity contrasts, especially if traditional simple interpolation formulas are used to compute the 
spatial derivatives of the basic fields. The generalization of Weaver's et al. (1985, 1986) improved 
derivative formulas to anisotropic models seems to be a crucial point in extending the anisotropy modelling 
to the sea bottom MT simulations . 

Although only simple schematic simulation models have been chosen to illustrate the numerical tech­
nique developed, there is a lesson not to underestimate , particularly for the deep sea MT modelling. The 
simple undersea elevation model, presented in the last section, predicts a highly anomalous behaviour 
of the sea bottom MT data relatively far away from the edges of the horst. Although checked by two 
independent modelling procedures, that phenomenon has not yet been verified on practical data. Nev­
ertheless, the example shows that the high mobility of electric currents in the highly conductive sea 
environment, along with a strong attenuation of the primary field, can produce serious distortions to the 
deep sea MT fields. More extensive modelling and , in particular, a confrontation of the models with real 
MT data are, however, required to understand those phenomena more comprehensively. 
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