Finite element modelling of magnetotelluric fields in 2-D structures with arbitrary anisotropy

Yuguo Li
Institut für Geophysik, Universität Göttingen

We consider 2-D models with anisotropic sections using the finite element ($F E$) technique. Part 1 gives the boundary value problem, Part 2 describes the numerical realization of the $F E$ algorithm, Part 3 compares results from the FE algorithm with the finite difference solution of Pek \& Verner (1997). Part 4 presents modelling results for various types of anisotropy: horizontal, vertical and dipping anisotropy.

1 The boundary value problem

The two basic second-order differential equations for the field components E_{x} and H_{x} in strike direction (Fig. 1) are

$$
\begin{align*}
\frac{1}{i \omega \mu_{0}} \nabla^{2} E_{x}+C E_{x}+A \frac{\partial H_{x}}{\partial y}-B \frac{\partial H_{x}}{\partial z} & =0 \tag{1}\\
\nabla \cdot\left(\underline{\underline{\tau}} \nabla H_{x}\right)+i \omega \mu_{0} H_{x}-\frac{\partial\left(A E_{x}\right)}{\partial y}+\frac{\partial\left(B E_{x}\right)}{\partial z} & =0 \tag{2}
\end{align*}
$$

where

$$
\begin{array}{cl}
D=\sigma_{y y} \sigma_{z z}-\sigma_{y z} \sigma_{z y}, & A=\left(\sigma_{y x} \sigma_{z y}-\sigma_{z x} \sigma_{y y}\right) / D \\
B=\left(\sigma_{z x} \sigma_{y z}-\sigma_{y x} \sigma_{z z}\right) / D, & C=\sigma_{x x}+\sigma_{x y} B+\sigma_{x z} A \\
\underline{\underline{\tau}}=\frac{1}{D}\left(\begin{array}{cc}
\sigma_{y y} & \sigma_{y z} \\
\sigma_{z y} & \sigma_{z z}
\end{array}\right) .
\end{array}
$$

Because of the anisotropy, the equations for E_{x} and H_{x} are coupled through the first-order partial derivatives. Consequently, there are no separate $T E$ and $T M$-modes in the general anisotropic case. Hence, equations (1) and (2) must be solved jointly towards E_{x} and H_{x}.

The boundary conditions for electric and magnetic fields are as follows: On the outer boundary of the model, Dirichlet boundary conditions are set, constructed from 1-D solutions for the corresponding layered Earth at the left and right hand side of the model. On inner boundaries (layer boundaries and section boundaries), the tangential components of both electric and magnetic fields, E_{t} and H_{t}, must be continuous.

2 The finite element method

The numerical evaluation of the problem, posed by eqs. (1) and (2), is based on the finite element approach. The approximation is performed on a model area Ω that entirely embraces the zone of the 2-D inhomogeneities, and extends far enough in all directions for the anomalous fields to fade out to sufficient smallness on the external boundary of Ω. To avoid the singularity of (2) due to vanishing conductivity within the insulating air layer above the earth, we assume that the air has a very small, but non-zero conductivity.

Fig. 12 D anisotropic inhomogeneity in an N layered earth, which can be in general anisotropic and different for either hand side of the model.

The method of weighted residuals is used to derive the integral equations from the differential equations (1) and (2). Eq. (1) is multiplied by an arbitrary variation of the electric field δE_{x} and integrated over the model area Ω :

$$
\begin{equation*}
\int_{\Omega}\left(\frac{1}{i \omega \mu_{0}} \nabla^{2} E_{x}+C E_{x}+A \frac{\partial H_{x}}{\partial y}-B \frac{\partial H_{x}}{\partial z}\right) \delta E_{x} d \Omega=0 . \tag{3}
\end{equation*}
$$

In this equation, the first term of the integrand contains second-order partial derivatives, and can be simplified by using Green's formula

$$
\int_{\Omega} \Delta u v d \Omega=\int_{\Gamma} \frac{\partial u}{\partial n} v d \Gamma-\int_{\Omega} \nabla u \cdot \nabla v d \Omega
$$

Eq. (3) can then be written in the equivalent form

$$
\begin{align*}
\frac{1}{i \omega \mu_{0}} \int_{\Omega} \nabla E_{x} & \cdot \nabla \delta E_{x} d \Omega-\int_{\Omega} C E_{x} \delta E_{x} d \Omega-\int_{\Omega} A \frac{\partial H_{x}}{\partial y} \delta E_{x} d \Omega \\
& +\int_{\Omega} B \frac{\partial H_{x}}{\partial z} \delta E_{x} d \Omega-\frac{1}{i \omega \mu_{0}} \int_{\Gamma} \frac{\partial E_{x}}{\partial n} \delta E_{x} d \Gamma=0 \tag{4}
\end{align*}
$$

Similarly, equation (2) is multiplied by an arbitrary variation of the magnetic component δH_{x} and integrated over the region Ω, and, subsequently, modified by using the following formula

$$
\int_{\Omega} \nabla \cdot \mathbf{u} v d \Omega=\int_{\Gamma} \mathbf{u} \cdot \mathbf{n} v d \Gamma-\int_{\Omega} \mathbf{u} \cdot \nabla v d \Omega
$$

which eventually leads to the following integral equation

$$
\begin{array}{r}
\int_{\Omega} \nabla \delta H_{x} \cdot\left(\underline{\underline{\tau}} \nabla H_{x}\right) d \Omega-\int_{\Omega} i \omega \mu_{0} H_{x} \delta H_{x} d \Omega+\int_{\Omega} \mathbf{p} \cdot \nabla \delta H_{x} d \Omega \\
-\int_{\Gamma}\left(\underline{\underline{\tau}} \frac{\partial H_{x}}{\partial n}+\mathbf{p} \cdot \mathbf{n}\right) \delta H_{x} d \Gamma=0 \tag{5}
\end{array}
$$

where $\mathrm{p}=-A E_{x} \mathrm{e}_{\mathbf{y}}+B E_{x} \mathrm{e}_{\mathrm{z}}, \mathrm{e}_{\mathrm{y}}$ and e_{z} are the unit vectors along the y - and z-axis, respectively. The model area Ω is subdivided into rectangular elements. Within the $F E$ approximation, we assume

Fig. 2 Sub-element (a) and parent element (b).
that the electric field E_{x} and the magnetic field H_{x} are linear functions of y and z in each of the elements, and can be approximated by

$$
\begin{equation*}
E_{x}=\sum_{i=1}^{4} N_{i} E_{x_{i}}, \quad H_{x}=\sum_{i=1}^{4} N_{i} H_{x_{i}} . \tag{6}
\end{equation*}
$$

where $E_{x_{i}}$ and $H_{x_{i}}$ are the electric and magnetic fields at the corner point $i, i=1, \cdots, 4$, of the sub-element (Fig. 2(a)), and N_{i} are linear shape functions defined as

$$
\begin{equation*}
N_{i}=\frac{1}{4}\left(1+\xi_{i} \xi\right)\left(1+\eta_{i} \eta\right), \quad i=1, \cdots, 4, \tag{7}
\end{equation*}
$$

where ξ_{i} and η_{i} are the coordinates of the corner point $i, i=1, \cdots, 4$, of the parent element (Fig. 2(b)). The coordinate transformation between the parent element and a particular sub-element is

$$
y=y_{0}+\frac{a}{2} \xi, \quad z=z_{0}+\frac{b}{2} \eta,
$$

where y_{0} and z_{0} are the coordinates of the center of the sub-element, and a and b are the width and height of the rectangular element respectively.

The integrals in (4) and (5) are evaluated in the parent element by using equations (6) and (7). Finally, we get a system of $2 n_{d}$ linear equations

$$
\begin{equation*}
\mathbf{K U}=0, \tag{8}
\end{equation*}
$$

where

$$
\mathbf{K}=\left(\begin{array}{ll}
\mathbf{K}_{11} & \mathbf{K}_{12} \\
\mathbf{K}_{21} & \mathbf{K}_{22}
\end{array}\right), \quad \mathrm{U}=\binom{\mathbf{E}_{\mathbf{x}}}{\mathbf{H}_{\mathbf{x}}},
$$

in which \mathbf{K}_{11} and $\mathbf{K}_{\mathbf{2 2}}$ are symmetric square matrices of the order n_{d} (n_{d} is the total number of nodal points in the entire model area Ω), and \mathbf{K}_{12} and \mathbf{K}_{21} are non-symmetric square matrices of the order n_{d} that, however, satisfy the symmetry relation $\mathbf{K}_{\mathbf{1 2}}=\mathbf{K}_{\mathbf{2 1}}{ }^{\mathbf{T}}$. Hence, the $2 n_{d} \times 2 n_{d}$ matrix \mathbf{K} is symmetric and sparsely occupied.

Substituting the boundary condition on the outer boundary into the equations (8), these equations can be solved for the field components E_{x} and H_{x} at the internal mesh nodes. The derived field components E_{y}, E_{z}, H_{y} and H_{z} are computed according to these forms:

$$
\begin{aligned}
& H_{y}=\frac{1}{i \omega \mu_{0}} \frac{\partial E_{x}}{\partial z}, \quad H_{z}=-\frac{1}{i \omega \mu_{0}} \frac{\partial E_{x}}{\partial y}, \\
& E_{y}=\frac{\sigma_{y z}}{D} \frac{\partial H_{x}}{\partial y}+\frac{\sigma_{z z}}{D} \frac{\partial H_{x}}{\partial z}+B E_{x}, \\
& E_{z}=-\frac{\sigma_{y y}}{D} \frac{\partial H_{x}}{\partial y}-\frac{\sigma_{z y}}{D} \frac{\partial H_{x}}{\partial z}+A E_{x} .
\end{aligned}
$$

Fig. 3 Test model for comparison of FD and FE solutions: Outcropping anisotropic block underlain by an anisotropic layer.

The appropriate derivatives are evaluated numerically by the spline interpolation in our algorithm. The apparent resistivity and impedance phases are:

$$
\begin{aligned}
& \rho_{i j}=\frac{1}{\omega \mu_{0}}\left|Z_{i j}\right|^{2} \\
& \phi_{i j}=\tan ^{-1} \frac{\operatorname{Im}\left(Z_{i j}\right)}{\operatorname{Re}\left(Z_{i j}\right)}, \quad i, j=x, y .
\end{aligned}
$$

3 Numerical test

In order to test our theory and program, the computed $F E$ results for a test model were compared with those obtained by the finite difference method ($F D$).

Figure 3 shows the test model presented by Pek \& Verner (1997). A horizontally anisotropic layer underlies an outcropping horizontally anisotropic 2-D block. The anisotropy strikes of the two structures involved are perpendicular to one another, and unaligned with the structural strike of the 2-D model. The model was chosen in order to demonstrate serious distortions of the $M T$ data caused by a complicated anisotropic situation. In Fig. 4, the computed $F E$ results for the period of 30 s are compared with those of Pek \& Verner (1997). The results show an excellent agreement.

4 Effects of the anisotropy

A 2-D anisotropic slab model is embedded into an isotropic homogeneous halfspace with $\rho_{0}=1000 \Omega \mathrm{~m}$. The following basic forms of ansiotropy are distinguished:

Fig. 4 Apparent resistivities (top) and phases (bottom) for the model in Fig. 3. Diamonds - results of the FD algorithm (Pek \& Verner 1997); solid line - results of here presented FE algorithm.

Fig. 5 A 2D slab with dipping anisotropy in an isotropic homogeneous halfspace with $\rho_{0}=1000 \Omega m$. The conductivity tensor of the slab is givien by the principal resistivities $\rho_{x^{\prime}} / \rho_{y^{\prime}} / \rho_{z^{\prime}}=500 / 10 / 500 \Omega m$ and the dipping angles α_{d}.

Dipping anisotropy (Fig. 5) One principal axis x^{\prime} of the conductivity tensor is horizontal and parallel to the strike direction x, the remaining two principal axes y^{\prime} and z^{\prime} are in the vertical plane (y, z) with dipping angles α_{d} with respect to the y axis. The principal resistivities of the anisotropic inhomogeneity are $\rho_{x^{\prime}} / \rho_{y^{\prime}} / \rho_{z^{\prime}}=500 / 10 / 500$, in $\Omega \mathrm{m}$. Figure 6 shows the apparent resistivities for various dip angles α_{d} at the period of 10 s , when half space skindepth is 50 km . This figure indicates that:

1) the apparent resistivities $\rho_{x y}$ are independent of the dip angle α_{d}, as the magnetotelluric field depends solely on $\rho_{x x} \equiv \rho_{x^{\prime}}$ in this case and is not affected by the anisotropy;
2) the apparent resistivities $\rho_{y x}$ are affected considerably by α_{d}. The $\rho_{y x}$ curves are not symmetric with respect to the center of the model, the minimum of the curves is off-center and shifted to one side depending on the sign of the dip. This shift increases with increasing deviation of the dip from either the horizontal or vertial direction;
3) if $\alpha_{d}=0, \rho_{y x}$ corresponds to the apparent resistivity produced by a model with the resistivities $10 \Omega m$ along y direction and $500 \Omega \mathrm{~m}$ along the x and z directions. Similarly, if $\alpha_{d}=90^{\circ}, \rho_{y x}$ corresponds to that produced by a model with vertical anisotropy, with the resistivities $500 \Omega \mathrm{~m}$ along x and y directions and $10 \Omega \mathrm{~m}$ along z direction.

Horizontal anisotropy (Fig. 7) One principal axis z^{\prime} of the conductivity tensor is vertical, the remaining two principal axes x^{\prime} and y^{\prime} are in the horizontal plane (x, y) with strike angles α_{s} with respect to the x axis. The principal resistivities of the anisotropic inhomogeneity are $\rho_{x^{\prime}} / \rho_{y^{\prime}} / \rho_{z^{\prime}}=$ $100 / 10 / 100$, in $\Omega \mathrm{m}$. According to a procedure proposed by Siemon (Siemon 1997), the magnitudes of the rotated off-diagonal impedance elements, $\left|Z_{x^{\prime} y^{\prime}}\right|$ and $\left|Z_{y^{\prime} x^{\prime}}\right|$, are plotted along the coordinate axes, rotated into the Swift principal direction, and the diagonal impedances, $\left|Z_{x^{\prime} x^{\prime}}\right|$ and $\left|Z_{y^{\prime} y^{\prime}}\right|$ attached to them as cross-bars. Figure 8 shows the magnetotelluric impedances in Siemon's representation along a surface profile for various strike angles α_{s} at a period of 10 s. From Fig. 8 we can conclude that

1) immediately above the anisotropic block, the minimum and maximum axes indicate the direction of high and low conductivity, respectively;

Fig. 6 Apparent resistivities for various dipping angles α_{d} at $T=10 s$ from Fig. 5.

Vertical cross-section

Horizontal plane

Fig. 7 A 2D slab with horizontal anisotropy in an isotropic homogeneous halfspace with $\rho_{0}=1000 \Omega \mathrm{~m}$. The conductivity tensor of the slab is givien by the principal resistivities $\rho_{x^{\prime}} / \rho_{y^{\prime}} / \rho_{z^{\prime}}=500 / 10 / 500 \Omega m$ and the anisotropic strikes α_{s}.
2) significant diagonal elements of the impedance tensor $\left|Z_{x^{\prime} x^{\prime}}\right|$ and $\left|Z_{y^{\prime} y^{\prime}}\right|$ exist except $\alpha_{s}=0^{0}$ and 90°, and become greater for greater deflections of the anisotopy strike α_{s} from the structural strike of the model;
3) far from the inhomogeneity, where the anomalous field fades out, the off-diagonal elements become equal and the diagonal elements disappear. When passing through the edge of the anisotropic block towards the homogeneous half-space, a certain reduction of the impedances take place within a transition zone where the above directional pattern can be severely distorted, especially if large anisotropies and shallow anomalous conductors are involved.
Vertical anisotropy The orientation of principal axes as before, but $\rho_{x^{\prime}}=\rho_{y^{\prime}}$, yielding different conductivity in vertical and any horizontal direction. Identical with special dipping anisotropy from above, if $\alpha_{d}=90^{\circ}$.

5 conclusion

We have presented an algorithm for numerical modelling of magnetotelluric fields in generally anisotropic 2-D structures. There are the following special features of our numerical scheme:

1) the conductivity tensor of each anisotropic block is represented by a symmetric 3×3 matrix, thus general, horizontal, vertical and dipping anisotropies can be considerated;
2) the algorithm is based upon the finite element (FE) method which is better suited to sloping boundaries and topography;
3) assuming the air conductivity very small and positive, the air layer can be integrated into the conductive model. The equations for both modes can be approximated in the entire model area, which makes the approximation process much more simple;
4) the modified conjugated gradient technique is used to solve the equation system (8) which is complex symmetric. We found that a simple diagonal scaling (Jacobi Scaling) is a sufficient preconditioner;

$$
\begin{aligned}
& \alpha_{s}=90^{\circ} \quad 1 \quad+\quad+\quad+\quad+\quad+1 \\
& 60^{\circ}+1+\underset{y}{\gamma} \text { 年 }
\end{aligned}
$$

$$
\begin{aligned}
& 30^{\circ}+1 \text { I I I + }+1 \\
& 0^{0}+1+1+1+1+1+1 \\
& \begin{array}{llllllll}
-3 & -2 & -1 & 0 & 1 & 2 & 3 & \mathrm{y}(\mathrm{~km})
\end{array}
\end{aligned}
$$

Fig. 8 MT principal axes for various strike angles α_{s} at $T=10$ s from Fig. 7. Cross - absolutre values $Z_{x^{\prime} y^{\prime}}, Z_{y^{\prime} x^{\prime}}$; Crossbars - absolute values $Z_{x^{\prime} x^{\prime}}, Z_{y^{\prime} y^{\prime}}$; Rotated coordinates (x^{\prime}, y^{\prime}) according to Swift.
5) the spatial derivatives are computed numerically by the spline interpolation.

Acknowledgments I would like to express thanks to Dr. U. Schmucker and Dr. J. Pek for many stimulating discussions. Dr. J. Pek also provided the 1-D forward program for $M T$ anisotropic structure and the FD results for the test model.

References

[1] Li,Y., 2000. Numerische Modellierungen von elektromagnetischen Feldern in 2- and 3dimenionalen anisotropen Leitfähigkeitsstrukturen der Erde nach der Methode der Finiten Elemente, Ph.D. thesis, in Vorbereitung.
[2] Osella,A.M. and Martinelli,P., 1993. Magnetotelluric response of anisotropic 2-D structures, Geophys. J. Int., 115, 819-828.
[3] Pek,J. and Verner,T., 1997. Finite-difference modelling of magnetotelluric fields in twodimensional anisotropic media, Geophys. J. Int., 128, 505-521.
[4] Reddy,I.K. and Rankin,D., 1975. Magnetotelluric response of laterally inhomogeneous and anisotropic media, Geophysics, 40, 1035-1045.
[5] Schmucker,U., 1994. 2-D Modellrechnungen zur Induktion in inhomogenen dünnen Schichten über anisotropen geschichteten Halbräumen, in Protokoll Koll. erdmagnetische Tiefenforschung, Höchst in Odenwald, edited by Bahr,K. and Junge, A., 3-26.
[6] Schwarz, H. R., 1991. Methode der finiten Elemente, Teubner Verlag, Stuttgart .
[7] Siemon,B., 1997. An interpretation technique for superimposed induction anomalies, Geophys. J. Int., 130, 73-88.

