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We consider 2-D models with anisotropic sections using the finite element (FE) technique. Part 
1 gives the boundary value problem, Part 2 describes the numerical realization of the FE algorit hm , 
Part 3 compares results from the FE algorithm with the finite difference solution of Pek & Verner 
(1997). Part 4 presents modelling results for various types of anisotropy: horizontal, vertical and 
dipping anisotropy. 

1 The boundary value problem 

The two basic second-order differential equations for the field components E,, and H,, in strike direction 
(Fig. 1) are 

where 

_I_ 'il 2 E + GE + A 8H,, _ B8H,, 
iwµo " " 8y oz = 0, 

~ ( ~H ) . H o(AE,,) o(BE,,) 
v · :z: v z + iwµo x - J:i + J:i 

- uy uz = 0, 

D = ClyyClzz - ClyzClzy, 

B = (crzzCTyz - ClyzClzz)/D, 

A= (cryxCTzy - ClzzClyy)/D, 

C = Clxz + ClzyB + ClzzA, 

:[ = ~ ( Clyy Clyz ) • 
- D Clzy Clzz 

(1) 

(2) 

Because of the anisotropy, the equations for E,, and Hz are coupled through the first-order partial 
derivatives. Consequently, there are no separate TE and TM-modes in the general anisotropic case. 
Hence, equations (1) and (2) must be solved jointly towards E,, and H,,. 

The boundary conditions for electric and magnetic fields are as follows: On the outer boundary of the 
model, Dirichlet boundary conditions are set, constructed from 1-D solutions for the corresponding 
layered Earth at the left and right hand side of the model. On inner boundaries (layer boundaries 
and section boundaries), the tangential components of both electric and magnetic fields, Et and Ht, 
must be continuous. 

2 The finite element method 

The numerical evaluation of the problem, posed by eqs. (1) and (2), is based on the finite element 
approach. The approximation is performed on a model area n that entirely embraces the zone of the 
2-D inhomogeneities, and extends far enough in all directions for the anomalous fields to fade out to 
sufficient smallness on the external boundary of n. To avoid the singularity of (2) due to vanishing 
conductivity within the insulating air layer above the earth, we assume that the air has a very small , 
but non-zero conductivity. 
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F ig. 1 2D anisotropic inhomogeneity in an N layered earth, which can be in general anisotropic 
and different for either hand side of the model. 

The method of weighted residuals is used to derive the integral equations from the differential equa­
tions (1) and (2). Eq. (1) is multiplied by an arbitrary variation of the electric field oEx and integrated 
over the model area n: 

{ ( -. 
1
-v' 2 Ex + CEx + A aHx - B aHx) oEx df2 = 0. lo iwµo ay az 

(3) 

In this equation , the first term of the integrand contains second-order partial derivatives , and can be 
simplified by using Green's formula 

l l::,uvdn = h :: vdI'- l 'vu -v'vdn. 

Eq . (3) can then be written in the equivalent form 

1 1 1 1 aHx -. - v' Ex· v'oEx df2 - CEx oEx df2 - A--;s- oEx df2 
iwµo O O O uy 

+ { BaHx oEx df2 - -. 1- { aEx oEx dI' = 0. 
lo az iwµo lr an 

(4) 

Similarly, equation (2) is multiplied by an arbitrary variation of the magnetic component oHx and 
integrated over the region n, and , subsequently , modified by using the following formula 

l v'·uvdfl = i u -n vdr- l U·v'vdfl, 

which eventually leads to the following integral equation 

l v'oH x . (fv' Hx) dn - l iwµo Hx oHx dn + l p·v'oHx dfl 

-i ( f a! x + p · n) oHx dI' = 0, (5) 

where p = -AExey + BE xez, ey and ez are the unit vectors along they- and z - axis , respectively. 

The model area n is subdivided into rectangular elements. Within the FE approximation , we assume 
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Fig. 2 Sub-element (a) and parent element (b). 

that the electric field Ex and the magnetic field H x are linear function s of y and z in each of the 
elements, and can be approximated by 

4 

Ex = L NiEx, , 
i =l 

4 

Hx = LNiHx,· 
i=l 

where Ex; and Hx, are the electric and magnetic fields at the corner point i, i 
sub-element (Fig. 2(a)), and Ni are linear shape functions defined as 

1 
Ni = 4(1 + ~i~)(l + 1/iTJ), i = 1, · · -, 4, 

(6) 

1, · · ·, 4, of the 

(7) 

where {i and 1/i are the coordinates of the corner point i, i = 1, • • •, 4, of the parent element (Fig. 2(b) ). 
The coordinate transformation between the parent element and a particular sub-element is 

a b 
y =Yo+ 2{, z = zo + 21/, 

where Yo and zo are the coordinates of the center of the sub-element, and a and b are the width and 
height of the rectangular element respectively. 

The integrals in (4) and (5) are evaluated in the parent element by using equations (6) and (7). 
Finally, we get a system of 2nd linear equations 

where 

K= ( Ku 
K21 

KU 0, (8) 

), U=(!:), 
in which K 11 and K 22 are symmetric square matrices of the order nd (nd is the total number of nodal 
points in the entire model area !1), and K 12 and K 21 are non-symmetric square matrices of the order 
nd that, however , satisfy the symmetry relation K12 = K2 1 T_ Hence, the 2nd x 2nd matrix K is 
symmetric and sparse ly occupied. 

Substituting the boundary condition on the outer boundary into the equations (8), these equations 
can be solved for the field components Ex and Hx at the internal mesh nodes. The derived field 
components Ey, Ez, Hy and Hz are computed according to these forms: 

= _l_o Ex H _ __ l_oEx 
Hy iwµ0 oz ' z - iwµo oy ' 

0-yz OHx 0-zz oHx BE 
Ey n oy +n7h+ x, 

Ez = _ 0-yy OHx _ 0-zy OHx + AEx. 
D oy D oz 
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Fig . 3 Test model for comparison of FD and FE solutions: Outcropping anisotropic block 
underlain by an anisotropic layer. 

The appropriate derivatives are evaluated numerically by the spline interpolation in our algorithm. 
The apparent resistivity and impedance phases are: 

Pii 

</>ij i,j =x ,y. 

3 Numerical test 

In order to test our theory and program, the computed FE results for a test model were compared 
with those obtained by the finite difference method (F D). 

Figure 3 shows the test model presented by Pek & Verner (1997). A horizontally anisotropic layer 
underlies an outcropping horizontally anisotropic 2-D block. The anisotropy strikes of the two struc­
tures involved are perpendicular to one another, and unaligned with the structural strike of the 2-D 
model. The model was chosen in order to demonstrate serious distortions of the MT data caused by 
a complicated anisotropic situation. In Fig. 4, the computed FE results for the period of 30 s are 
compared with those of Pek & Verner (1997). The results show an excellent agreement. 

4 Effects of the anisotropy 

A 2-D anisotropic slab model is embedded into an isotropic homogeneous halfspace with p0 = 10000m. 
The following basic forms of ansiotropy are distinguished: 
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Fig. 4 Apparent resistivities (top) and phases (bottom) for the model in Fig. 3. Diamonds - results of the 
FD algorithm ( Pek & Verner 1997); solid line - results of here presented FE algorithm . 
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Fig . 5 A 2D slab with dipping anisotropy in an isotropic homogeneous halfspace with 
p0 = 1000nm. The conductivity tensor of the slab is givien by the principal resistivities 

Px' /Py'/ Pz' = 500/10/500nm and the dipping angles O!d. 

Dipping anisotropy (Fig. 5) One principal axis x' of the conductivity tensor is horizontal and 
parallel to the strike direction x, the remaining two principal axes y' and z' are in the vertical plane 
(y, z) with dipping angles ad with respect to the y axis. The principal resistivities of the anisotropic 
inhomogeneity are Px' /Py'/ Pz' = 500/10/500, in nm. Figure 6 shows the apparent resistivities for 
various dip angles O!d at the period of 10 s, when half space skindepth is 50km. This figure indicates 
that: 

1) the apparent resistivities Pxy are independent of the dip angle ad, as the magnetotelluric field 
depends solely on Pxx = Px' in this case and is not affected by the anisotropy; 

2) the apparent resistivities Pyx are affected considerably by O!d- The Pyx curves are not symmetric 
with respect to the center of the model, the minimum of the curves is off-center and shifted to 
one side depending on the sign of the dip. This shift increases with increasing deviation of the 
dip from either the horizontal or vertial direction; 

3) if O!d = 0, Pyx corresponds to the apparent resistivity produced by a model with the resistivities 
10 nm along y direction and 500 nm along the x and z directions. Similarly, if O!d = 90°, Pyx 
corresponds to that produced by a model with vertical anisotropy, with the resistivities 500 nm 
along x and y directions and 10 nm along z direction. 

Horizontal anisotropy (Fig. 7) One principal axis z' of the conductivity tensor is vertical , the 
remaining two principal axes x' and y' are in the horizontal plane (x, y) with strike angles a 5 with 
respect to the x axis. The principal resistivities of the anisotropic inhomogeneity are Px' /Py'/ Pz' = 
100/10/100, in nm. According to a procedure proposed by Siemon (Siemon 1997), the magnitudes of 
the rotated off-diagonal impedance elements, IZx' y' I and IZY, x' I, are plotted along the coordinate axes, 
rotated into the Swift principal direction, and the diagonal impedances, IZx' x' I and IZY, y' I attached to 
them as cross-bars. Figure 8 shows the magnetotelluric impedances in Siemon's representation along 
a surface profile for various strike angles a 5 at a period of 10 s. From Fig. 8 we can conclude that 

1) immediately above the anisotropic block, the minimum and maximum axes indicate the direction 
of high and low conductivity, respectively ; 
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Fig. 7 A 2D slab with horizontal anisotropy in an isotropic homogeneous halfspace with 
p0 = 1000Om. The conductivity tensor of the slab is givien by the principal resistiv ities 

p,,, /Py'/ Pz' = 500/10/500Om and the anisotropic strikes as. 

2) significant diagonal elements of the impedance tensor IZ:z:'z' I and IZy'y' I exist except as = 0° 
and 90°, and become greater for greater deflections of the anisotopy strike as from the structural 
strike of the model; 

3) far from the inhomogeneity , where the anomalous field fades out, the off-diagonal elements 
become equal and the diagonal elements disappear. When passing through the edge of the 
anisotropic block towards the homogeneous half-space, a certain reduction of the impedances 
take place within a transition zone where the above directional pattern can be severely distorted , 
especially if large anisotropies and shallow anomalous conductors are involved. 

Vertical anisotropy The orientation of principal axes as before, but Pz' = Py', yielding different 
conductivity in vertical and any horizontal direction. Identical with special dipping anisotropy from 
above, if ad = 90°. 

5 conclusion 

We have presented an algorithm for numerical modelling of magnetotelluric fields in generally anisotropic 
2-D structures. There are the following special features of our numerical scheme: 

1) the conductivity tensor of each anisotropic block is represented by a symmetric 3 x 3 matrix , 
thus general, horizontal , vertical and dipping anisotropies can be considerated; 

2) the algorithm is based upon the finite element (FE) method which is better suited to sloping 
boundaries and topography; 

3) assuming the air conductivity very small and positive, the air layer can be integrated into the 
conductive model. The equations for both modes can be approximated in the entire model area , 
which makes the approximation process much more simple; 

4) the modified conjugated gradient technique is used to solve the equation system (8) which is 
complex symmetric. We found that a simple diagonal scaling (Jacobi Scaling) is a sufficient 
preconditioner; 
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Fig . 8 MT principal axes for various strike angles et 5 at T = 10s from Fig . 7. Cross - absolutre 
values Zx'y', Zy'x'; Crossbars - absolute values Zx'x', Zy'y'; Rotated coordinates (x', y') according to 

Swift. 

5) the spatial derivatives are computed numerically by the spline interpo lation. 
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