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The computation of transient electromagnetic fields in three-dimensional conductors is an important 
technique for the interpretation of transient electromagnetic data in applied geophysics. In the present 
study we will review the current methods of computation. 

For computing transient 3-D fields we have the choice between at least three modelling techniques: 

• Modelling in the frequency domain followed by a Fourier transform into the time 
domain 
For a suitable number n1 (approx. 20 - 30) of logarithmically equidistant frequencies we compute 
the 3-D frequency response and transform it by a Fast Hankel Transform into the time domain. 
Although excellent 3-D frequency domain codes are freely available (e.g. from Randy Mackie), the 
requirement of n, 3-D forward models drastically speeds down its performance. This method will 
not be considered in this study. 

• Continuation of initial values by time-stepping (FDTD) 
Assuming a shut-off of sources t = 0, we continue the initial values at time t = o+ to time t > 0. 
Whereas explicit FDTD time stepping methods for the diffusion equation are stable only for very 
small time steps, explicit FDTD methods with a reasonable time step become possible introducing 
a fictitious displacement current. The Courant-Friedrichs criterion still imposes an upper limit on 
time step Llt, which, however, can increase with time. The presentation in this study is mostly 
based on Wang & Hohmann (1993). 

• Continuat ion of the initial fie ld with spectral finite differences (SLDM) 
This method (Spectral Lanczos Decomposition Method) has been developped by Druskin & Knizh­
nerman (1988). The initial values are approximated by a system of orthogonal decay modes ('Ritz 
vectors') with decay constants ('Ritz values'), resulting as eigenvectors and eigenvalues from a low 
dimensional subspace approximation of the high dimensional system matrix . The evolution of the 
fields for t > 0 is then easily available. The dimension of the subspace required for convergence 
significantly increases with time. 

1. Model Description 
1.1 Bas ic Equations and Spatial Discretization 
The basic equations read in the quasistatic approximation 

v x E = -13, 

or after elimination of B 

(1) 

(2) 

(3) 

E and B are the vectors of the electric and magnetic fi~ld and Je is the source current density, which is 
shut-off at time t = 0. The dotted variables denote time derivatives . 

We assume Cartesian coordinates with z pointing downwards. The Earth with the locally varying conduc­
tivity o-(r) > 0 occupies the half-space z > 0. The air half-space z < 0 is assumed to be non-conducting. 
For the spatial discretization we use Yee cells (Yee 1966), in which the electric field components are 
localized at the edges of the prismatic cell and the magnetic field components in the centers of the faces 
of the cell (see. Fig. 1). 
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Fig. 1: Localization of the electromagnetic field components in the Yee cell 

1.2 Spatial Averages of Conductivities 
When casting the basic equations into their finite difference version, we integrate, e.g., the x-component 
of (2) over a prism with dimension ai in x-direction, bi+½ in y-direction and ck+½ in z-direction (see 
Fig. 2). The prism is centered around Ex(i,j +½,k +½) and calculate the arithmetic average of the 
conductivity 'lfx(i , j +½k +½) along the current path (Fig. 2) 
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Fig . 2 : Geometry for averaging conductivities with current flow in x-direction. 
The averaging area is shaded. 
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1.3 Boundary Conditions 
The conductivity distribution in the Earth z > 0 is assumed to be confined to the prism n 

{ 

0:::; X:::; Lz, 
n = 0:::; y:::; Ly, 

0:::; z:::; Lz 

with perfectly conducting walls except at z = 0. Therefore we put at the boundaries an inside the Earth 

ft x E = 0, 

This boundary condition implies on using (1) 

n•B=0, 

rE an. 

r E an. 
At the boundary z = 0 to the air-halfspace we apply an integral boundary condition in B, which saves 
the treatment of the air-halfspace z < 0. This boundary condition expresses z x Bin the level z = -ci/2 
through z · B = Bz in the level z = 0. Since 'v x B = 0 in z < 0, B is a potential field, B = - '\74>, which 
implies 

4>(ro) = ~ 1 r+oo z. 'v4>(r) <Fr 
21r Loo lr - rol 

yielding 

Bz(ro) = ~ I r+oo (x - Xo)Bz(r) d2r 
21r Loo lr - rol3 

' 

~ 11+00 (y -yo)Bz(r) d2r 
21r - oo lr - rol3 

(4) 

(5) 

with r := (x , y,0) and ro := (xo,Yo, -ci/2) . These are the boundary conditions applied for FDTD (see 
Sect. 2.2). For SLDM (Sect. 3.2) we use a boundary condition in E, which is obtained from (4) and (5) 
by (1), i.e. by 'v x E = - B: 

1 I 100 

(x - xo) <Fr = -2 {8zEy(r) - ayEz(r)} I _ !3 , 
7r -oo r ro 

1 I 100 

(y - Yo) <Fr = -2 {azEy(r) - ayEz(r )} I _ l3 • 
1r - oo r ro 

(6) 

(7) 

In practice, the infinite range of integration is restricted to a finite range and the resulting discretized 
convolution integrals are easily evaluated by an FFT . 

1.4 Initial Cond itions 
The source is assumed to lie in z 2': 0 and is shut-off at t = 0, i.e. 

Je(t) = Je(t = o- ) · 0( - t) , je(t) = - Je(t = o-) · c>(t) 

where 0(t) is the Heaviside function and c>(t) the Dirac delta function. Integrating the basic equation 
(3) between t = o- and t = o+, we obtain 

E(t = o+) = E(t = o-) + (l/e1)J e(t = o-) + (1/(µ 0e1)] · ['v x B(t = o+) - 'v x B(t = o- )]. 

For an inductive source the electric field is initially mostly confined to the position of the loop, where 
- by Lenz's rule - the induced current try to counteract the current shut-off and therefore flow in the 
same direction as the source currents at t = o-. The second RHS term takes into account the induced 
currents outside the source immediately after the shut-off. In a uniform full space the induced fields show 
the typical exp[- µoe1R2 /(4t)] behaviour (with Ras separation between source and measuring point) and 
therefore would vanish fort • o+). However, due to the presence of the insolating air-halfspace (e1 = 0) 
one observes for all points at the surface z = 0 a signal also for t = o+. This signal rapidly decays with 
depth~ exp((-µoe1z 2 /(4t)] and therefore will be small when integrated over a vertical grid width. To a 
first approximation it is neglected. 

Therefore the initial conditions are 
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a) for an inductive source (loop) with E(t = o-) = 0 

(8) 

b) for a galvanic -indu ct ive source (grounded electric dipole) with E(t = o-) = -v'<!> as direct 
current field · 

(9) 

2. FDTD Time-Stepping 
2.1 Artificial Displacement Current and Constraints on the Time Step 
A continuation of the initial electric field E(t = o+) by means of the diffusion type basic equation (3) 

after the simple Euler method 

v' x v' x E + µ0(jE = 0 

At 
E~+Arj = EW - v'xv'xEW · ­

µo(j 

is stable only, if the time step At is sufficiently small. ff As is the spatial discretization of the v' x v'x­
operator , then in the simplest case of a uniform full space the condition 

At~ µo(jA s2 /4 

has to be satisfied (e.g. Oristaglio & Hohmann, 1984). For (j = 0.01 S/m and As = 10 m we obtain 
A t = 3 · 10- 7 s. 

Following Du Fort & Frankel (1953), Oristaglio & Hohmann (1984) and Wang & Hohmann (1993) a 
greater time step is possible by introducing a fictitious displacement current ,E. Then Eq. (3) is 
modified to 

v' x v' x E + µo((jE + ,E) = 0 (10) 

Instead of solving this second order equation in time and space, Wang & Hohmann (1993) propose to 
solve the coupled first order system 

,E = -(jE + v' x B/µo 

B = -v'xE . 
(11) 
(12) 

Let At be the time step and tn := n • At. Then E is determined for integer n and B for half-integer n, 

E n __,_ Bn+½ __,_ En+l 
~ Eq.(12) ~ Eq.(11) (13) 

H As min is the smallest grid spacing, then the Du Fort-Frankel method is stable if 

3 ( At )
2 

,2::- --
µo Asmin 

1 A smin 
or v :=--<--

v'fi?y - -/3At 
(14) 

This corresponds to the Courant-Friedrichs criter ion, which states that the grid velocity As/ At should be 
greater than /75 times the wave velocity v, where D is the dimensionality of the problem (here D = 3). 
Without fictitious displacement current (, = 0), the wave velocity is infinite and the Courant-Friedrichs 
criterion cannot be satisfied. 
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In classical electrodynamics the diffusive character of the field prevails after an impulsive excitation at 
t = 0 for time lags much greater than 2€/ a, which is twice the free decay time of charges. Replacing f. by 
, this means on using (14) that the diffusive field character is conserved for 

6 ( At )
2 

t » 2,/amin 2'. --- · ~ 
µoam in uSmin 

or 

(15) 

[ Oristaglio & Hohmann (1984), Ahidjaja & Hohmann (1989), Wang & Hohmann (1993) ]. Putting 

the numerical experiments of Wang & Hohmann have shown that a = 0.05 ... 0.1 gives already very 
satisfactory results. The time steps can increase with time. From 

At 
An = /3vt, /3 := a✓µoaminASmin 

we obtain by integration the approximate number n( t) of time steps required to reach the time t, starting 
at to, 

2 
n(t) '.::'. ~ · (vt - v'to) (16) 

2.2 The Time-Stepping Equations 
In this section we shall derive the the time-stepping equations for the coupled system (11) and (12). 
According to (13) the electric field is computed at integer time steps nAt and the magnetic field at 
half-integer time steps (n +½)At. 

We start with the update of the magnetic field. The x-component of (12) reads 

i3 _ 8Ey _ 8Ez 
z - oz 8y 

or discretized in time 

B n+½ _ Bn-½ + (8Ey _ 8Ez)n At 
z - z 8z 8y · (17) 

For non-uniform time spacing At is replaced by (Atn-l + Atn)/2. Considering the spatial discretization, 
Eq. (17) is extended to 

Bn+½(' ½ . k) Bn-½(' . k) z i + , J, = z i +½,J, 

(
Ey(i +½,j, k +½) - Ey(i +½,j, k -½) _ Ez(i +½,j +½, k) - Ez(i +½,j -½, k))n A + ~-----~----- b u t . 

Ck i 

Wang & Hohmann (1993) point out that the magnetic solenoidal condition 'v • B = 0, which in theory 
should be inforced by Faraday's law (1) by imposing the intial condition 'v • B(t = 0) = 0, is in fact 
easily violated at late time because E approaches a potential field, such that 'v x E '.::'. 0. Therefore they 
propose to satisfy the solenoidal condition explicitly by replacing Bz-update by 

Bn+½(' . k ) Bn+½c· . k 1 ) z i,J, +½ = z i,J, -2 

(
Bz(i +½,i , k) - Bz(i -½,j, k) By(i,j +½, k) - By(i,j -½, k))n+½ 

-Ck ------------
ai bi 
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In our implementation we are taking a weighted mean of both versions, posing at later time higher weights 
onto the latter. 

Turning now to the time-stepping of the electric field, we consider the x-component of (11) 

and integrate it over t from tn to tn+l, 

This yields the electric field time-stepping formula 

with 

En+l = k En k (8Bz - 8By)n+½ 
X 1 X + 2 OY OZ 

k _ 21 -aAt 
1 

- 2,+aAt ' 

(18) 

(19) 

The spatial derivatives are approximated using the staggered grid geometry of Fig. 1 and averaged con­
ductivities are introduced . 

When applying the time stepping equations derived above, it is used that the tangential electric field 
and the normal magnetic field is vanishing at the perfectly conducting boundaries inside the Earth (see 
Sect. 1.2). A problem arises when time stepping the tangential electric field at the surface of the Earth . 
Here Ex requires By half a grid width above the air-earth interface and Ey requires Bx at the same level 
inside the air-halfspace . These values are obtained using using the integral boundary conditions ( 4) and 
(5) and evaluating them by an FFT. 

2.3 The Initial Condition 
In Sect. 1.3 we have advocated as initial condition the electric and magnetic field, which essentially are 
copies of the field at t = o- prior to shut-off. Because of the introduction of the artificial displacement 
currents this might no longer be a good choice. Therefore we are following Hohmann & Wang (1993) and 
and calculate the diffusive field at a short time to after shut-off, when the 'smoke rings of the source' are 
about one grid width below the surface. Hence our choice is 

where O"o is the background conductivity and c1 is the grid spacing in the uppermost part of the grid. By 
selecting ao, it is assumed that there are no outcropping conductivity anomalies. Otherwise to has to be 
adjusted to this situation! More specific, the electric field should be calculated for t0 and the magnetic 
field for to+ At/2 . - For ao = 0.01 S/m and c1 = 10 m we have t0 !:::'. 10- 6 s. 

2.4 Numerical Example 
We finnish the presentation of the time stepping method with a numerical example (Fig. 3). The conductor 
is a ID model consisting of a 330 m thick 10 nm-layer at a depth of 30 m immersed in a uniform halfspace 
of 100 nm . The transmitter stands over the center of the conductor. The crosses show the results of 
FDTD for three time lags along a central profile. These results are compared with the analytical ID 
model (full lines) . The agreement is acceptable . The model consisted of 64 cells in all three directions 
(oversampled in the vertical direction) and has required 1000 time steps . 
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Fig . 3: Comparison of numerical 3D-results with analytical ID-data. Shown are the central profiles 
over the loop for three time lags. The agreement is satifactory, but could be better. 
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3. The Spectral Finite Difference Method 
3.1 Introductory Remarks 
This method has been developped by Druskin & Knizhnerman (1988). The initial values are approx­
imated by a system of orthogonal decay modes ('Ritz vectors ') with decay constants ('Ritz values'), 
resulting as eigenvectors and eigenvalues from a low dimensional subspace approximation of the high 
dimensional system matrix. The evolution of the fields for t > 0 is then easily available. The key pro­
cedure is the subspace approximation of the system matrix by the Lanczos method. A construction of 
an orthonormal set of approximation vectors is only possible with 'infinite precision arithmetics ' . In 
practice the orthonormality is destroyed after a few (10 - 20) iterations ('Lanczos phenomenon'), see e.q. 
Parlett (1980), Grubert (1992). Fortunately the Lanczos phenomenon does not make the Lanczos process 
inapplicable , it only increases the required dimension of the subspace to reach convergence at late time. 
Papers related to the spectral finite difference method are Druskin & Knizhnerman (1994), Druskin et 
al. (1999), Hordt et al. (1992), Amason (1999) and Remis & van den Berg (1997,1998). The paper of 
Druskin et al. (1999) is of particular interest, because it shows a way to circumvent the poor convergence 
properties at late time by basing the subspace iteration on the inverse of the system matrix . 

3.2 The System Matrix 
The system matrix is the FD-version of the basic equation (3). This equation connects thirteen field 
components, such that the system matrix has at most thirteen entries in each row or column. Due to the 
self-adjoint 'v x 'v x-operator (including boundary conditions) the system matrix is symmet ric. 

The symmetry is conserved by the transformations 

ex(i,j +½,k +½) .- J µoaibi+½ck+½ax(i,j +½,k +½)Ex(i,j +½, k +½), 

ey(i +½,j, k +½) .- J µobjck+½ai+½ay(i +½,j, k +½)Ey(i +½,j, k +½), 

ez(i +½,j +½, k) .- ✓ µockai+½bi+½az(i +½,j +½, k)Ez(i +½,j +½, k) . 

(20) 

(21) 

(22) 

The weights are essentially the square root of the conductivity integrated over the prism centered around 
the electric field component in the staggered grid approximation of Fig. 1. 

For a basic domain consisting of cell numbers nz, ny and nz in x-, y- and z-direction the number N 
of nontrivial field components (i.e. excluding the vanishing tangential field components at the perfectly 
conducting walls) is easily counted : 

N = nx(ny - l)nz + (nx - l)nynz + (nx - l)(ny - l)nz. 

Assembling the N nontrivial electric field components in the N-dimensional vector f and denoting the 
transformed N x N system matrix by A, the basic equation (3) reduces fort> 0 to a system of evolution 
equations for f_(t) with the initial condition f_(0+) =: L , 

14!.(t) + [(t) = 0, t > 0, (23) 

The matrix A has the following properties 

• symmetric 

• non-negative eigenvalues 

• high dimensional (N ~ 3nxnynz ~ 105 to 106) 

• sparse (at most 13 entries per row or column (apart from Ex and Ey at the air-earth interface, see 
below) 

If if> and An are the eigenvectors and eigenvalues of A, then the exact solution of (23) is 
-n -

N 

f_(t) = '"f)P.~L)P.n exp(-.Xnt) . (24) 
n=l 
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In practice , however, the eigenvectors and eigenvalues of this high dimensional matrix are difficult to 
obtain. Therefore a recourse to approximate solutions is required. Before doing this we look at the 
treatment of the air halfspace. 

The first equation of Sect. 3.2 shows that Ex at z = 0 is connected with By at half the vertical width in 
the air-halfspace, i.e. at z = -ci/2. Our task ist to express 

iJ _ oEz _ oEx 
y - OX oz 

at z = -c i/2 in terms of Ex and Ey at z = 0, which is formally solved by (7). This formula is equivalent 
to (5). In this case Ex and Ey at the surface are connected with all nx(ny- l) + (nx - l)ny surface values 
of Ex and Ey , 

3.3 The Lanczos Method 
In practice, an approximate solution of (23) is sought in an M-dimensional subspace of the N-dimensional 
space spanned by 4. This subspace is defined by the Krylov vectors 

L, AL , A2L, A3L, ... , AM-1 L 

as suggested by 
00 1 

f_(t) = exp(-tA)L = L m! (-tAr L· 
m=O 

Although this series is convergent for all t > 0, it is applicable only for moderate values of tAmax, since 
otherwise the (small) result drowns in numerical errors due to fact that the terms in the series (with 
alternating signs!) first increase to very high values until 1/m! pulls them down. The intricacy of com­
puting matrix exponentials is discussed by Moler & van Loan (1978). 

From the M Krylov vectors is formed an orthonormal Basis 

11' ... ,g_M , 

which is formally achieved by the elegant Lanczos process [ e.g. Parlett (1980), Grubert (1992) ]. It is 
based on the observation that 

Aq.=q. 1/3i-1+q .ai+q.+ 1/3i __ , _,_ _, -i 

leading to the following algorithm : 

Let 41 := L and /Jo = ILi -# 0. Then we have for j = 1, 2, .. , M 

g_j = r.j-if /3j-l 
U· =Aq. 
-1 =-1 

r_j = Y.j - g_j-1/Jj-l 
. - T 

Cl'.3 - g_j r.j 

r.j = r.j - Cl'.jg_j 

/3j = lr.jl 

<1o = 0) 

(25) 

With Q := (g,1 , ... ,g_M), QTQ = l,M' where l,M is the M-dimensional unit matrix, we have as a conse-
quenceof (25) - -

where H is the tridiagonal matrix 

f3M -2 Cl'.Af-1 f3M - l 
f3M-l Cl'.M 
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se-

and R the remainder 
R = f3M:J.M+l (0, 0, ... , 1), 

where the last vector has M elements. With the approximation 

and the ansatz 
M 

[_(t) = Q4:.(t) = L:1.JXJ(t) 
j=l 

(23) is reduced to the much simpler M-dimensional tridiagonal problem 

H K(t) + i(t) = o, K(o+) = llol(l, o, o, ... , of 

taking into account that Lo = llol:J.1. In analogy to (24) this problem is solved by 

M 

4:.(t) = L ')'m~m exp(-'!9mt), ')'m := llols1m, 
m=l 

where ~m and '19m are the eigenvectors and eigenvalues of H. Summarizing we have 

M M 

[(t)::: L:!.JXJ(t) = L 1m'P_m exp(-'!9mt) 
j=l m=l 

with 
M 

Xm(t) = L ')'mSjm exp(-'!9mt), 
m=l 

(26) 

The Ritz vectors 1/; with 1/;T 1/; = 8mn are approximate orthogonal decay modes with the Ritz values 
-m -m-n 

'19m as decay constants . 

The orthogonality of the Ritz vectors is in view of the symmetry transformations (20) to (22) an expression 
of the weighted orthogonality of decay modes Em(r) and Em(r) in the continuum description , 

Due to numerical approximations, the decay constants can become even slightly negative . In practice [ see 
also Druskin & Knizhnerman (1994)] we ignore all eigenvalues (and corresponding eigenvectors) below a 
certain threshold, which is given by an estimate of the smallest decay constant, 

1r2 

'19min ~ L2 , 
µol7maz maz 

where Lmaz is the greatest dimension (space diagonal!) of the model. 

3.4 Convergence Estima t es 
The computational load of the spectral finite difference technique depends on the dimension N of the 
matrix A and the dimension M of the approximating subspace and is mostly required to the M-fold 
computation of the product A q . in the Lanczos process. For fixed N the efficiency of the spectral 

--J 
method therefore depends on the dimension M. Druskin & Knizhnerman (1988, 1994) show that in 
exact arithmetics 
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For tmaz = 10- 3 s, <1min = 0.01 S/m, Asmin = 15 m this gives M » 75. Since in ordinary arithmetics the 
orthogonality of the vectors qi breaks down after 20 to 30 iterations (Lanczos phenomenon), the number 
of required iterations significantly exceeds this bound . In numerical expriments with the parameters 
mentioned above, it was found that M = 600 was appropriate. 

3.5 Examples 
We finnish this section with two examples. 

• The first example (Fig. 4) is the same ID model shown in Fig . 3 with the results of FDTD. It 
consists of a 330 m thick 10 nm-layer at a depth of 30 m immersed in a uniform halfspace of 100 
nm , terminated at a depth of 480 m by a perfect conductor . The transmitter stands over the center 
of the conductor. We have taken 64 uniform cubes (grid width 15 m) in x- and y- direction and 
32 cubes in z-direction. The crosses show the results of the spectral method for three time lags 
along a central profile. These results are compared with the analytical ID model (full lines). The 
agreement is excellent ( except at early time close to the loop, where the initial field computed as in 
Sect. 1.3 might be inadequate). M = 600 subspace iterations were required to obtain convergence 
for t = 10- 3 s. 

• The next example shows a typical spectrum of the Ritz values {)m for the model of Fig. 3, but 
with a coarser spacing As = 30 m. The subspace iteration was carried out until M = 200. Fig. 5 
displays the spectrum for 1 :::; m :::; M = 200. Most decay constants are of the order of 106 1/s , 
belong to the decay of small gid size eddies and are without significance for time lags t > 10- 5 s. 
In this time range only the smaller decay constants contribute , say m > 150. Note that there is an 
isolated smallest decay constant close to zero, which might belong to a potential field E = - v' ~ , 
being also an eigensolution of the problem . The arbitrarily chosen Ritz vectors for m = 50, 100 and 
150 are shown in Fig. 6. Displayed is only the field Bz in the surface layer , which already gives a 
good expression of the nature of these modes. Since these modes are generated in a Krylov-Lanczos 
process by the square loop in the center the domain, they all show this symmetry. 

The mode m = 50, displayed in Fig. 6 (top) shows much of the small-scale detail. Thick lines mark 
the lines Bz = 0. The regular pattern does not coincide with the grid structure (32x32). The 
decay modem= 100 (Fig. 6, center) shows already more large scale structure. This becomes even 
more dominant in the modem= 150 in Fig. 6 (bottom). 

Conclusion 
The finite difference time domain method and the spectral finite difference method are acceptable meth­
ods for modelling 3D-transients , where the latter method was found to be more efficient. In both cases, 
the computational load increases with v't, such that the transient late time response is difficult to access 
(many time steps in FDTD and many iterations in SLDM). 

The Lanczos method used here provides a good estimate of the large eigenvalues and the corresponding 
eigenvectors (decay modes), which unfortunatel y decay too fast to be of interest for late time. As an 
alternative one may apply the Lanczos method not to the eigenvalue problem 

but to the modified problem 

1 
µ=--, 

A-T 

which has the same eigenvectors as the original problem , but modified eigenvalues (shift and invert 
technique) . In the modified problem the best estimates are obtained for lµI • oo, which corresponds 
to A • r. An important subcase of this method is the case r = 0, treated by Druskin et al. (1999). 
If interested in late time transients , the number of iterations might be quite small. However, for this 
decrease of iterations we pay the extra amount of determining in iteration j the vector Yj by 

y,_i = B <J.i or (,4- rLN)y,_i = <J.i' 

which is a particular 3D-modelling problem . 
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Fig. 4: Comparison of numerical spectral finite difference 3D-results with analytical ID-dat a. Shown 
are the central profiles over the loop for three time lags. The agreement is accepta ble. 
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Fig . 5: Typical spectrum of the Ritz values ,{)m for subspace dimension M = 200. Most decay constants 
describe small grid size eddies. Only the smaller decay constants (m > 150) appear be relevant for 
t > 10- 5 s. . 
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Fig. _6: The Ritz vectors form= 50 (top), m = 100 (center) and m = 150 (bottom) . Displayed is 
Bz(t) at the surface. Thick lines mark the lines Bz = 0. 
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