H. Rodemann, GGA. Hannover.

Beispiele für die Abhängigkeit der Parameterfehler von Meßfehlern

bei 2- und 3-Schichtfällen und bei vertikalen Diskontinuitäten

(Geoelektrik. Halb- und Schlumberger-Auslagen)

Einleitung:

Eine Inversion führt bei gegebenem Meßwertsatz (ρ_s -Werte) auf einen Satz von Modellparametern (beste Approximation). Im Rahmen eines Meßfehlerschlauchs existieren viele äquivalente Parametersätze. Meßwertintervalle führen damit zu Parameterintervallen, die als Genauigkeitsmaße angesehen werden können. Zusätzlich zu einer Suche nach diesen Intervallen bei gegebenen Meßfehlern kann, ausgehend von gegebenen "wahren" Modellparametern geprüft werden, welche Abweichungen ("Fehler") in den synthetisch berechneten ρ_s -Werten nach systematischer Variation der Parameter auftreten. Einige Ergebnisse werden im folgenden gezeigt. Die Größen werden im SI-System angegeben.

Geometrie von Schlumberger- und Halbauslagen:

*	*	*	-*	*>	k	Α,Β,Ο]=	Elektroden	
A'	A	ΜZ	N	BH	3'	С	=	Elektrode "im unendl."	
						M,N	=	Sonden	
						Z	=	Sondierungsmittelpunkt	
						AMNB	=	Schlumberger-Auslage	
						A'MNB	'=	Auslage mit groesserem A'B'	
						AMNC	=	linke Halbmessung	
		C		0.03		CMNB	=	rechte Halbmessung	

1D-Untergrund-Modell:

n Schichten (hier 2 oder 3):

 $\rho(i)$, i=1..n $\rho(i)$ ist der spez. Widerstand der i-ten Schicht.

h(i), i=1..n-1 h(i) ist die Mächtigkeit der i-ten Schicht.

Es werden dabei nur Schlumbergerauslagen betrachtet. MN wird in den Rechnungen gegen AB vernachlässigt.

2D-Deich-Modell:

In einen Halbraum (Deichumgebung) mit dem spez. Widerstand ρ (Umgebung) ist ein "Deich" mit dem spez. Widerstand ρ (Deich) eingefügt. Er erstreckt sich (Kart. Koordinatensystem) in y von y-Linker Rand bis y-Rechter Rand, in z von 0 bis ∞ . Die Struktur ist von x unabhängig (2D-Struktur). Hier werden nur Beispiele für den Fall symmetrisch über dem Deich angeordneter Halbmessungen gezeigt (C ist nicht dargestellt)

A MZN B * * * * * ------> y | . | rho(Umg.) | rho(Deich) | rho(Umg.) | z | Für die Schlumberger-Modelle wurden die Routinen zur Vorwärtsrechnung von MUN-DRY (1985) und MUNDRY & DENNERT (1980.1983) mit 20 bzw. 139 Filterkoeffizienten verwendet. Für die analytischen Modellrechnungen zum Deichmodell wurde ein Programm von (HANSTEIN. Uni Köln. pers. Mitteilung) benutzt. Für beide Geometrien wird jeweils ein ρ_s (scheinbarer Widerstand) für eine Reihe von AB/2-Werten berechnet (AB/2=halbe AB-Distanz). Die AB/2-Werte variieren in Form einer geometrischen Folge mit wählbarem Anfangs- und Endwert und mit wählbarer Zahl von Werten pro Dekade.

Verwendete Fehlernormen:

- 1. Maximum-Norm: Für jedes AB/2 wird der Betrag der rel. Abweichung zwischen "wahrem" und "verfälschtem" ρ_s berechnet. Der resultierende rel. Fehler (bzw. die rel. Abweichung) ist das Maximum über alle AB/2.
- 2. Quadratisches Mittel (L2-Norm): Hier wird die Wurzel aus dem Mittelwert über die Quadrate der rel. Abweichungen als rel. Fehler genommen.

Graphische Darstellungen:

Die Größe der rel. Fehler wird in eine Farbe bzw. einen Grauwert umgerechnet. Die Farbe wechselt bei Erhöhung des rel. Fehlers um den Faktor 2. Die Verteilungen werden zweidimensional dargestellt. Entsprechend können nur Paare von Parametern bzw. von Parametergruppen variiert werden. Die Originalparameter sind in den Graphiken angegeben.

Die für die Variation ausgewählten Parameter werden mit den Faktoren fl (horizontal dargestellte Variation) bzw. f2 (vertikal dargestellte Variation) multipliziert. Dabei sind ebenfalls Anfangs- und Endwert wählbar (meistens 0.5 und 2). Die Faktoren variieren logarithmisch äquidistant. Sie werden auf ein Raster abgebildet, das sukzessive bis zu einem VGA-Pixel-Raster verfeinert wird. Die Berechnung kann vorher abgebrochen werden, wenn die erzielte Auflösung ausreicht. Bei den 1D-Beispielen werden die Parametergrenzen für eine vorgebbare ρ_s -Fehlerschranke in der oberen Zeile dargestellt. Dabei wird ein ungefährer Raster-bezogener Fehler für die Parametergrenzen angegeben.

In der Graphik werden 2 Diagonalen dargestellt. Im Falle der Darstellung von Mächtigkeit und spez. Widerstand einer Schicht sind dies die "Dünnschichtlinien" nach MUNDRY(1985). Bei einer hochohmigen dünnen Schicht handelt es sich um die Hyperbel $\rho(i)$ *h(i)=konst., logarithmiert um eine Gerade mit -45 Grad Steigung. Bei einer niederohmigen dünnen Schicht ergibt sich die Gerade h(i)/ $\rho(i)$ =konst., logarithmiert also eine Gerade mit +45 Grad Steigung. Zur besseren Ablesung der Parametervariationen sind in der Mitte der Graphik ein oder zwei Quadrate eingezeichnet. Das kleinere Quadrat zeigt eine Parametervariation von +10% (nach rechts und oben) und von -9.1% (nach links und unten) an, das größere Quadrat eine Variation von 33% und -25%.

Abb. 1 zeigt die Fehlerverteilung für einen Zweischichtfall. Dabei wird in der Horizontalen die Mächtigkeitsvariation der 1. Schicht dargestellt. In der Vertikalen wird die Variation beider spez. Widerstände mit dem gleichen Faktor f2 gezeigt. In der Regel ergibt dies die maximal mögliche Parametervariation, etwa im Vergleich zu dem Fall, bei dem nur ein spez. Widerstand variiert wird. Es wird die Maximum-Norm benutzt.

Man erkennt eine Reihe von Parallelogramm-ähnlichen Figuren. Sie können mit Hilfe einer analytischen "Rampennäherung" erklärt werden (RODEMANN 1997), auf die hier aus Platzgründen nicht genauer eingegangen wird. Für den im folgenden benutzten Vergleich wird die entsprechende Formel in vereinfachter Form verwendet. Bei einer angenommenen ρ_s -Grenze von 3% ergibt sich eine Mächtigkeitsvariation von ca. -11.5..12.9 % und eine Variation der beiden spez. Widerstände von ca. -3..3 %. Im Zusammenhang mit der Rampennäherung resultiert die Fehlerverstärkung für die Mächtigkeit näherungsweise als der doppelte $\cot g(\alpha)$, wobei α der maximale Steigungswinkel der ρ_s -Kurve ist.

Abb. 2: Es wird ein Dreischichtfall mit einer dicken 2. Schicht betrachtet. Dabei werden in der Horizontalen beide Mächtigkeiten um den gleichen Faktor variiert. In der Vertikalen werden die drei spez. Widerstände verändert. Man kann diesen Fall näherungsweise als Überlagerung zweier Zweischichtfälle ansehen, bei denen je eine parallelogrammähnliche Fehlerkontur entsteht. Die Überlagerung dieser beiden Parallelogramme führt auf einen Rhombus, der "auf einer Spitze steht". Dem entspricht die gezeigte Fehlerverteilung.

$$\epsilon_{h+} \approx ((1+\epsilon_{\rho})/(1-\epsilon_{\rho}))^{ctg(\alpha)} - 1$$

und $\epsilon_{\rho}=3\%$ den Wert $\epsilon_{h+}\approx 13.1\%$ in guter Übereinstimmung mit dem numerischen Wert. Dabei wurden die Werte in (RODEMANN 1997) durch genauere Werte ersetzt.

Zu Abb. 1, Forts.:

 $[\]alpha$ besitzt hier, bei einem Widerstandsverhältnis $\rho 2/\rho 1=3$. ca. den Wert 26.0 Grad. der sich numerisch aus der ρ_s -Kurve entnehmen läßt. Damit ist $\tan(\alpha) \approx 0.489$ und die Fehlerverstärkung 2*ctg(α) \approx 4.1. Hieraus resultiert ein mittlerer Wert der Mächtigkeitsvariation von ca. 4.1*3=12.3%, näherungsweise den oben angegeben Werten entsprechend. Die genauere Formel für die h-Fehler ergibt z.B. bei kleinen positiven ϵ_{o} -Werten mit

Abb. 3: Hier wird ein Dreischichtfall mit einer dünnen bzw. "halbdünnen" zweiten Schicht betrachtet $\rho(1)=\rho(3)=10$, $\rho(2)=40$ Ohm*m. Variiert wurde h(2) horizontal und $\rho(2)$ vertikal. Es ergeben sich u.a. folgende Details:

Bei kleinem ρ_s -Fehler, z.B. 3% ist die Linie der Parameterfehler begrenzt. Sie ist Linsen-ähnlich. Die Mächtigkeit variiert von ca. -25 bis 25 %, der spez. Widerstand von -14 bis 25 %. Eine Verkleinerung des ρ_s -Fehlers führt zu einer entsprechenden Verkleinerung der Parameterfehler. Eine Variation anderer Parameter wird hier nicht betrachtet. Die Fehlerverstärkung ist wesentlich größer als bei Dickschichtfällen. Die Linie ist gegen die Dünnschichtgerade $\log(\rho(2)*h(2))=$ konst deutlich gekippt. Eine Suche nach der Linie auf der Dünnschichtgeraden würde deshalb ein falsches Maximum ergeben. Bei größeren Mächtigkeiten weicht die Linie der Parameterfehler zunehmend von der Dünnschichtlinie ab.

Bei großem ρ_s -Fehler, z.B. 24 %, ist die Linie der Parameterfehler (zumindest im Rahmen der Abbildung) zu kleineren Mächtigkeiten hin unbegrenzt. Es ist ein halbunendlicher Streifen erkennbar, aus dessen Breite auf den Fehler des kombinierten Parameters $\rho(2)^*h(2)$, also des Querwiderstands (vgl. MUNDRY (1985)) geschlossen werden kann. In Richtung größerer Mächtigkeiten ist die Linie der Parameterfehler jedoch begrenzt. Es ist damit eine halbseitige Eingrenzung der Parameterfehler möglich.

Abb. 4: Diese Abbildung zeigt die gleiche Situation wie die Abb. 3. Es wird jetzt statt der Maximum-Norm die L2-Norm verwendet. Während die Maximum-Norm in der Regel zu eckigen Figuren führt, ergibt die L2-Norm Verrundungen. Weiterhin sind die resultierenden rel. Fehler erheblich größer als die Maximum-Norm-Fehler (hier um den Faktor 2 und mehr). Die wesentlichen Details des Dünnschichtfalls werden jedoch entsprechend wiedergegeben.

Abb. 5: Es wird ein Dünnschichtfall bzw. "Halbdünn"-Schichtfall betrachtet. diesmal mit einer niederohmigen dünnen Schicht. ($\rho(2)$ viermal kleiner als $\rho(1)$ und $\rho(3)$). Ein Vergleich mit Abb. 3 zeigt, daß die Graphiken nach Spiegelung in vielen Details übereinstimmen. Für kleine ρ_s -Fehler sind die linsenförmigen Linien der Parameterfehler jetzt gegen die zweite "Dünnschichtlinie", $\log(h(2)/\rho(2))=$ konst. (konst. Längsleitfähigkeit) gekippt. Bei einer Veränderung (hier Vergrößerung) von $\rho(2)$ um den Faktor 4 und mehr ergibt sich ein Übergang zum Einschichtfall, dem sich ein Dreischichtfall mit $\rho(2) > \rho(1) = \rho(3)$ (umgekehrter Kontrast) anschließt. Wegen der geringen Zahl der Graustufen ist dies in der Graphik nicht direkt zu erkennen.

Abb. 6: Hier wird ein Zweischichtfall mit zu kleinem AB/2-Intervall gezeigt. AB/2 variiert zwischen 1 und 100 m. Die Mächtigkeit der ersten Schicht ist mit 30 m so gewählt. daß die ρ_s -Kurve nicht auf den Wert des Halbraumwiderstand ansteigen kann. Wie bei den diskutierten Dünnschichtfällen kann sich dabei eine Schicht nicht voll in der ρ_s -Kurve ausprägen. In der Horizontalen wird die Mächtigkeit der 1. Schicht variiert, in der Vertikalen der spez. Widerstand des Halbraums. Ähnliche Effekte können auch bei Mehrschichtfällen auftreten und dazu führen. daß gerade die letzte Mächtigkeit und der letzte spez. Widerstand mit großen Fehlern behaftet sind, weil die Messungen mit den größten AB/2-Werten mit dem größten Aufwand verbunden sind und deshalb u. U. nicht durchgeführt werden können. Eine linsenähnliche Linie der Parameterfehler tritt auch hier auf und bringt erhebliche Fehlerverstärkungen mit sich.

Abb. 7: Das Modell eines Deichs ist eines der einfachsten zweidimensionalen Modelle. Meßanordnung und Geometrie wurden oben beschrieben. Zunächst wird ein Modell betrachtet, bei dem ρ -Deich mit 10 Ω^* m halb so groß ist wie ρ -Umgebung. Der Deich soll sich von y=-10 bis 10 m erstrecken. y=0 ist der Sondierungsmittelpunkt. Die Linie der Parameterfehler ist bei kleinem ρ_s -Fehler näherungsweise ein Parallelogramm, ähnlich wie beim 1D-Zweischichtfall. Für größere ρ_s -Fehler ändert sich die Form im Unterschied zum Zweischichtfall zu einer nichtlinearen Begrenzung.

Abb. 8: Die Parameter werden in Richtung eines möglichen Dünnschichtfalls verändert. Hierzu wird ein Widerstandskontrast 1:100 gewählt. weiterhin eine Deichbreite von 2 m (y=-1..1m). Es ergibt sich im Prinzip das gleiche Bild wie in Abb. 7. Allerdings ist bei kleinen ρ_s -Fehlern das Parallelogramm wesentlich steiler gestellt. Bei 24 % ρ_s -Fehlern ist die Linie der Parameterfehler im Unterschied zu Abb. 7 jetzt begrenzt.

Eine deutliche Ahnlichkeit zu den Graphiken für Dünnschichtfälle ist bisher nicht zu erkennen. Bei den Abb. 7 und 8 handelt es sich um erste Ergebnisse. Es sollen sich Rechnungen zu asymmetrischen Fällen anschließen. Weiter soll geklärt werden, welche Wirkung die Steigungssprünge (Knicke, Spitzen) auf die Linien der Parameterfehler haben.

Literatur

- MUNDRY, E. (1985): Gleichstromverfahren.- In: BENDER, F. (Hrsg), Angewandte Geowissenschaften, Band II. Methoden der angewandten Geophysik und mathematische Verfahren in den Geowissenschaften: 299-338, Enke Verlag, Stuttgart.
- MUNDRY, E. & DENNERT, U. (1980): Das Umkehrproblem in der Geoelektrik. Geol. Jb., Reihe E, 19: 19-38. Schweizerbartsche Verlagsbuchhandlung, Stuttgart.

MUNDRY, E. & DENNERT, U. (1983): Ein Programm zur Inversion geoelektrischer Sondierungskurven für horizontal geschichteten Untergrund (INGESO 81). - NLfB-Archiv, Bericht Nr. 92 894, Hannover.

RODEMANN, H. (1997): Einfluß von Meßfehlern auf die Fehler von Modellparametern bei einfachen 1D-Schlumberger-Geoelektrik- Fällen.- In: Jacobs, F.: Tagungsband des VI. Arbeitsseminars Hochauflösende Geoelektrik in Bucha/Sachsen, 4.-6.11.1997. Universität Leipzig, Institut für Geophysik und Geologie.