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SUMMARY

With an a priori distribution of the te: :or element confidence limits the distribution of any impedance
based parameter can be determined - using the Jacobi-matrix transformation of random variables.
Independently, it is well known that e linear error propagation of the parameter - function of t!-ﬂ
tensor elements - will be true if these . = independent variables with small relative errors.

In the present work, I derived the ;  ability distribution of the regional skew parameter of Bahr
(1991), as it is a continuos and differe  :ble function of the impedance tensor elements.

A Gaussian distribution with a 68% - fidence limit is assumed for the spectral analysis of MT data
measured in the Bolivian Altiplanc after processing with Egbert’s (1998) code with a remote
reference station.

For MT sites located in the Bolivian: Altiplano, the skew parameter with its confidence limit is
compared with its respective linear propagated errors. Also, the regional strike angles of Bahr with
their respective linear propagated errors are compared with those from Chave's (1993) decomposition
code, giving the strike of the possible two-dimensional structure.

I INTRODUCTION.

- When determining a parameter function of the impedance tensor, its respective error is
normally not taken into account.

- One specific example treated here is the regional skew parameter defined by Bahr (1991)
which estimate the 2-D impedance phase deviation.

- I derive the confidence limit of the regional skew by expressing its distribution functlon in

terms of the tensor element {Z, }density functions using the Jacobi-matrix transformation of

random variables.

- The results are tested with measured data from the Ancorp-profile of the Bolivian Altiplano
assuming that the tensor elements have uncorrelated errors and that they are Gaussian
distributed.

- The hypothesis will fail with significant correlation of the tensor element distributions
and/or with few number of sample data recorded at the respective frequency range. It is
actually possible to obtain the probability distribution of the skew parameter when the
covariance matrix of the impedance tensor is known. The function will be expressed as a
complicated system of integral complex equations, but it will be possible to resolve them
numerically.

1I. DERIVATION OF THE PROBABILITY DISTRIBUTION OF THE
REGIONAL SKEW PARAMETER

Regional skew (77) is a continuous function of the tensor elements and continuous
differentiable. It has the following expression:
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where, ‘
x =Re{Z_} x,=Re{Z} =x,= Re{Z,} x,=Re{Z}
xs=Im{Z.} x,=Im{Z,} x,=Im{Z,} x =Im{Z  }

and the variables correspond to the real and imaginary part of the impedance tensor elements
defined in magnetollurics:

A
_| = o

yx b2

77 is rotationally invariant and in case of two dimensionality it is reduced to its minimum
value 0, which means that each pair Zxx,Zyx and Z,y,Zy, has equally phases, respectively.

Assuming a known density function distribution f for the tensor elements —defined as

random variables-, we can derive the function distribution of 77 in terms of Z using the Jacobi-
matrix. The transformation is valid as 77 is continuously differentiable in Z.

The density function g of 77 has thus the form:
g () =1 detlJ (x/m)]1-f (x) X = (%00 %3)

The space transformation will be determined by inverting one of the x’s element into the
space of 77:

( x 3 (x, )

1

X,(0)=|x,, —ot={x

x, ()

. Ty

in this way the Jacobi-matrix will be expressed as:

0 O 0
0 1 0 0
< SRR (R 0
V1= i
ox, ai _ ox, ox,
| ox,  Ox, ox,, 07
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_Because it is a diagonal matrix on the first (p-1) rows, its determinant reduces to a simple

form:
ox
det[J]= ’—"
a7

It follows to determine the proper x , Vvariable for a valid transformation of spaces in order to

assert the equivalence of density function integration between the x , and the ¢ vector spaces.

Thus the variable function x » Should accomplish the following conditions:
ox

P

is always positive which means that x, is strictly monotonous with respect to 77,
e, 71:—>x,(1n,)<x,(n,) with n, <7,.
an [axp )

= This is true for x;,x,,x; and x, having partial derivatives of the form:

}fo;, I[ _ Iln . [(xz =X )x.- (Fe—2;) ]‘ (p,)=(17),(4,6),(5,3),(8,2)

1

In consequence, choosing x, will be arbitrary in the transformation because of the symmetry

o
observed in aJ:;’ . Note that these variables are the diagonal impedance elements A

(see Fig. 1), meanwhile 77 encounters a minimal & maximal local extreme in the anti-
diagonal elements Z,,Z  (Fig. 2).

REGIONAL SKEW -SITECAL T=102s Fig. 1.- Regional skew
parameter () as function of

the real and imaginary part

% of the tensor element Z_,
. while the other tensor
SRR elements were kept fixed.

1} N >
SR ' “,’ The parameter has no
hfi_' % “‘3&.}“‘-“%"‘; extreme minimum neither
RS &‘*—m%_‘%?ﬁﬁg:}\‘;ﬁn v S maximum. This is also true
R X\:‘“{:;} S NS for the other diagonal tensor

element Z -

The symmetrical shape of
the curve indicates the
arbitrarly Jacobi-
transformation by using any
of these 4 elements.
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REGIONAL SKEW - SITE CAL (T=1025s)

Fig. 2.- Regional skew
parameter (77) as function of
the real and imaginary part
of the tensor element Z -

while the other tensor
elements were kept fixed.
The parameter has local
positive & negative extreme.
This is also true for the other
anti-diagonal tensor element

Z,. These 4 elements

cannot be wused in the
Jacobi-transformation (see
text).

After the previous analysis, we can express the probability distribution of 77 as
function of f -the probability density function of [Z]- as following:

G(m,) = rj‘og(mdn = Tj.{]: T I"'-J:Jaxp(n,xp—p“’xl)l (X Xy X)X, dX o "-dxl}dn

on

—co —c0

Kplbhfon oo o x,(7)
= .[ J,[”.Jf(xp’xp-l’"’xi)dxp—ldxp—z'“dxl }kp = J-g(ﬂ(xp))‘dxp

—ca —oco—oo

*)

(2)

This means, the function G(77,)=P(17<7,) can be expressed directly in terms of x,, and thus

the system is considerably simplified. But it is conditioned to the other tensor elements, which
means to have a priori information of their expected values.

III. NORMAL DISTRIBUTION OF UNCORRELATED DATA

In case of normal distribution for the random variables [Z] and assuming the simplest case of
independence within the tensor elements, then the statistical density function f will be
simplified to a factorisation of 8 Gaussian density functions:

FG)=0(x,,1;,0,) - O(%y0 1y, 0,) -+ B(Xg  Ug, Op)

where u,,...,u, are the respective expected values of [Z]and 0'12,...,0'32 the variances. In
our case, the expected values are the measured Z; data with known o ? variances.
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_Then the integration part (a) written on equation (*) will be reduced to:

—oo

[T T :‘:f(xp,xp_l,..,x])dxp_ldxp_2 ..-d_lez I¢(x1)dx1 I¢(x2)dx2 T¢(-"p_:)dxp_; =

Resulting in:

x,(71,) x (na)_u
G(n,)=Pn<n,)= j(i"(xp)ixp =y, P—O_"p-) (**)

p o

where y, is the well known standard distribution of variance 1 and mean 0.

The confidence limit C.L. of 77 laying between a certain range [77, ,7,] is defined:

P(T]a <1, <77b) ZWa(f@)_WO[Mw= CL.= 2y/0 [MW_I

lo} o
P J P J ? J

because y, is symmetrical, the desired confidence limit C.L. will accomplish the
relationship:

x, (1) =1, _#, = %,(1,)

o, o,

= x, (M) +x,(M,)=2-u, ,

and both limits are found for the desired confidence limit C.L.

4, CL+1 S OLE
x, (M) =w,"( )0, o x, @)=, (

)-o, tu,

a) 95% CONFIDENCE LIMIT

Itis chosen x, as x; =Re{Z_, ). Using Eq.(**) the variable x,(77) takes the following form:

2 ~ ~ ~ ~ ~ A
A A~ - n [ ~ A \2 A A ] (x4x6 = x2x8 +x3x5)
X, (n,xp_l,...)=x1(n,x2,..,x3) ——2}—-- (x2 —x3) +(x6 —Jc.,.)2 + 2
G| T

where each %, is the measured data considered to be the respective expected value.

We want to estimate the 95% confidence limit of 7. It will be resolved by subtracting the
standard distributions at the values of 0.975 and 0.025 respectively:

¥, losrs =¥, looes

which can be obtained from any statistical table
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x1(nb)_un
o

)=1.96

p,| ) e ) g75 o
o O_ - /

xx

where u_ =Re {Zﬂ} J1.e., the measured data and o, its corresponding error.

IV. APPLICATION OF THE THEORY ON DATA MEASURED IN THE
BOLIVIAN ALTIPLANO

The data were processed with the robust code of Egbert (1998) which includes a remote
reference station. The spectral analysis is realised assuming Gaussian distribution with a 68%
confidence limit. The code computes a covariance matrix for the MT tensor which is expected

to be asymptotically Gaussian. Thus we assume a normal distribution on [Z] and take the
simplest case of independence within the tensor elements.
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Fig.3- Regional skew parameter (1) with its linear propagated errors in function of period for 4
sites of the Ancorp-profile. Shown is the 95% confidence limit (see text). Observe the general

agreement between the linear propagated errors and the 95% confidence limit, mainly at mid
period bands.
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Fig.5.a)- X2-misfit of Chave MT
&magnetic tensor decomposition
realised with fixed strike angles.

The minimum misfits are
found for angles between -20°
and 0°.

Fig.5.b).- X2-misfit of Chave MT
&magnetic tensor decomposition
realised with fixed strike angles.
The minimum  misfits
along the period band are found
at angles between -15°and 0°.

Fig. 5.¢)- X2misfit of Chave MT
&magnetic tensor decomposition
realised with fixed strike angles.

No tendency of minimal

misfit is observed along the period
band for a certain angle range .



Real Induction Arows - ANCORP profile

Re(Z/H) 500 s

original

corrected ——
0.4

Re(Z/H) 5000 s
original
corrected ———

Fig.6.- Real Induction arrows of measured data (original) and the ones corrected by Chave
decomposition code which included both impedance & magnetic transfer functions, realised
with all parameters free. Data of period 500 s and 5000 s are shown above and below,
respectively. There is almost no difference between corrected and original data for shorter
period bands, whereas only data of longer periods seem to be corrected. The corresponding
X2-misfits are shown for 3 sites in Fig.4.
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_Fig.3 shows an application of the previous confidence limit hypothesis for real data measured
in the Bolivian Altiplano.

CONCLUSIONS AND PERSPECTIVES

By taking into account the measured data errors, regional 2-D dimensionality may be assumed
with a higher certainty when the confidence limits of the parameters involved in the analysis
are estimated. This can be done by Jacobi-matrix transformation of random variables, which
is applicable for the parameter whose function is continuous and differentiable on the tensor
elements, provided a known statistical distribution of the impedance tensor.

The hypothesis of Gaussian distribution of the impedance elements seems to be valid at
periods where the number of sample data was higher enough to deal with the assumption of
asymptotically Gaussian distribution.

Assuming uncorrelated tensor elements might be a good approximation when the parameter
confidence limit is within its linear propagated error (see Fig. 3). Anyhow, it is still possible
to calculate the probability distribution of the based tensor element parameter by considering
correlated error, if the covariance matrix of the measured data is known.

The Jacobi-transformation for the regional skew parameter is also applicable to a Fisher
distribution of the tensor elements, provided that the number of sample data is known.

Tensor decomposition applied in measured data of the Bolivian Altiplano (Figs. 4 and 5)
indicates 2-D dimensionality with a strong tendency of approx. N-S regional strike (i.e. ~0°)
for sites located on the western and central profile (see Fig.6).

The western sites of the profile have regional skew values below 0.2-0.3 with at least 95%
probability for the period band 20-4000 s (Fig. 3), thus indicating a 2-D regional structure
with high certainty.
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