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SUMMARY 

With an a priori distribution of the te; -;or element confidence limits the distribution of any impedance 
based parameter can be determined - '! using the Jacobi-matrix transformation of random variable s. 
Independently , it is we11 known that ne linear error propagation of the parameter - function of the 
tensor elements - will be true if these . :'; independent variables with small relative errors. 

In the present work, I derived the r 
(1991), as it is a continuos and differe 

,ability distribution of the regional skew parameter of Bahr 
1ble function of the impedance tensor elements. 

A Gaussian distribution with a 68% • .Ji.dence limit is assumed for the spectral analysis of MT data 
measured in the Bolivian Altiplanc after processing with Egbert's (1998) code with a remote 
reference station . 

For MT sites located in the Boliviai.--i Altiplano, the skew parameter with its confidence limit is 
compared with its respective linear propagated errors. Also, the regional strike angles of Bahr with 
their respective linear propagated errors are compared with those from Chave's (1993) decomposition 
code, giving the strike of the possible two-dimensional structure . 

I. INTRODUCTION. 

- When determining a parameter function of the irnpedance tensor, its respective error is 
normally not taken into account. 
- One specific example treated here is the regional skew parameter defined by Bahr (1991) 
which estirnate the 2-D irnpedance phase deviation. 
- I derive the confidence lirnit of the regional skew by expressing its distribution function in 
terms of the tensor elernent { Zii} density function_~ using the Jacobi-rnatrix transformation of 

randorn variables. 
- The results are tested with rneasured data frorn the Ancorp-profile of the Bolivian Altiplano 
assurning that the tensor elernents have uncorrelated errors and that they are Gaussian 
distributed. 
- The hypothesis will fail with significant correlation of the tensor element distributions 
and/or with few number of sample data recorded at the respective frequency range. lt is 
actually possible to obtain the probability distribution of the skew parameter when the 
covariance rnatrix of the impedance tensor is known. The function will be expressed as a 
complicated system of integral complex equations, but it will be possible to resolve them 
numerically. 

II. DERIVATION OF THE PROBABILITY DISTRIBUTION OF THE 
REGIONAL SKEW PARAMETER 

Regional skew (7]) is a continuous function of the tensor elements and continuous 
differentiable. lt has the following expression: 
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where, 
x 1 = Re{Z:a} x 2 = Re{Zxy} 

X5 =Im{Z;a} X5 =Im{Zxy} 

x3 = Re{Z yx} 

X7 =Im{Zyx} 

x4 =Re{Zyy} 

X g = Im{Zyy} 

and the variables correspond to the real and imaginary part of the impedance tensor elements 
defined in magnetollurics: 

7J is rotationally invariant and in case of two dimensionality it is reduced to its minimum 
value 0, which means that each pair Zxx,0x and Zx_y,Zyy has equally phases, respectively. 

Assuming a known density function distribution f for the tensor elements -defined as 

random variables-, we can derive the function distribution of 7J in terms of Z using the Jacobi­
matrix. The transformation is valid as 77 is continuously differentiable in Z. 

The density function g of 77 has thus the form : 

- -
g(7]) =I det[J(x/17)] 1 ·f(x) X= (X1 , •• , X 8 ) 

-
The space transformation will be determined by inverting one of the x ' s element into the 
space of 7J: 

J J 

in this way the Jacobi-matrix will be expressed as: 

1 0 0 0 

0 1 0 0 

[1]= 0 1 0 

1 
axp dXP dXP axp 

ax, dX2 dXp-1 o17 
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. Because it is a diagonal matrix on the first (p-1) rows, its determinant reduces to a simple 
form : 

dX 
det[J] = a; 

lt follows to determine the proper x P variable for a valid transformation of spaces in order to 
. 

assert the equivalence of density function integration between the x P and the t vector spaces . 

Thus the variable function x P should accomplish the following conditions: 

dX 
_P_ is always positive which means that x P is strictly monotonous with respect to 'T/, 
d'Tf 

i.e., 1}: • xp(1Ja)<xp('T/b) with 1Ja <T7b. 

• This is true for x1 , x4 , x5 and x8 having partial derivatives of the form: 

(p, i) = (1,7), ( 4,6) , (5,3), (8,2) 

In consequence, choosing x P will be arbitrary in the transformation because of the symmetry 

observed in dx P • Note that these variables are the diagonal impedance elements Z .xx , Z YY 

d1J 
(see Fig . 1), meanwhile 1] encounters a minimal & maximal local extreme in the anti­

diagonal elements Zxy,Zyx (Fig. 2). 

REGIONAL SKEW • SITE CAL T= 102 s 
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Fig. 1.- Regional skew 
parameter (T/) as function of 
the real and imaginary part 
of the tensor element Z .xx , 

while the other tensor 
elements were kept fixed. 
The parameter has no 
extreme minimum neither 
maximum. This is also true 
for the other diagonal tensor 

element Z YY • 

The symmetrical shape of 
the curve indicates the 
arbitrarly Jacobi­
transformation by using any 
of these 4 elements. 
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REGIONAL SKEW - SITE CAL (T= 102 s) 

/oca/ extrem 

' data "---
........ 

Fig. 2.- Regional skew 
parameter (17) as function of 
the real and imaginary part 
of the tensor element Z xy , 

while the other tensor 
elements were kept fixed. 
The parameter has local 
positive & negative extreme. 
This is also true for the other 
anti-diagonal tensor element 

Z yx • These 4 elements 

cannot be used in the 
Jacobi-transformation (see 
text). 

After the previous analysis, we can express the probability distribution of T/ as 
function of f -the probability density function of [z ]- as following: 

(*) 

(a) 

This means , the function G(T]
0

) = P(TJ < TJ
0

) can be expressed directly in terms of x P , and thus 

the system is considerably simplified. But it is conditioned to the other tensor elements, which 
means to have a priori information of their expected values. 

ill . NORMAL DISTRIBUTION OF UNCORRELATED DATA 

In case of normal distribution for the random variables [z] and assuming the simplest case of 

independence within the tensor elements, then the statistical density function f will be 

simplified to a factorisation of 8 Gaussian density functions: 

-
f(x) =</>(xi ,ui,er1)' </J(X2,U2,er2)· ··</J(xg,Ug,erg) 

where ui, ... ,u 8 are the respective expected values of [Z]and er/ , .. . ,er/ the variances . In 

our case, the expected values are the measured Zij data with known o 2 variances. 
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. Then the integration part (a) written on equation (*) will be reduced to: 

Resulting in: 

(**) 

where 1fJ O is the weil known standard distribution of variance 1 and mean 0. 

Tue confidence limit C.L. of 1} laying between a certain range [1} a. , 1} b] is defined: 

because 1fJ O is symmetrical, the desired confidence limit C.L. will accomplish the 
relati onshi p: 

• 

and both limits are found for the desired confidence limit C.L. 

a) 95% CONFIDENCE LIMIT 

lt is chosen x P as x 1 = Re{Zx.J. Using Eq.(**) the variable x1 (7}) takes the following form: 

where each X; is the measured data considered to be the respective expected value. 

We want to estimate the 95% confidence limit of 1} . lt will be resolved by subtracting the 
standard distributions at the values of 0.975 and 0.025 respectively: 

1P o lo.91s -lp o lo.025 

which can be obtained from any statistical table 
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where uxx = Re{Zxx} ,i.e., the measured data and o xx its corresponding error. 

IV. APPLICATION OF THE THEORY ON DATA MEASURED IN THE 
BOLIVIAN ALTIPLANO 

Tue data were processed with the robust code of Egbert (1998) which includes a remote 
reference station. The spectral analysis is realised assuming Gaussian distribution with a 68% 
confidence limit. The code computes a covariance matrix for the MT tensor which is expected 
to be asymptotically Gaussian. Thus we assume anormal distribution on [z] and take the 
simplest case of independence within the tensor elements. 
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Fig.3- Regional skew parameter (77) with its linear propagated errors in function of period for 4 
sites of the Ancorp-profile. Shown is the 95% confidence limit (see text). Observe the general 
agreement between the linear propagated errors and the 95% confidence limit, mainly at mid 
period bands. 
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4. 

4. 
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Fig.5.a)- X2-misfit of Chave MT 
&magnetic tensor decomposition 
realised with fixed strike angles. 

The minimum misfits are 
found for angles between -20° 
and 0°. 

Fig.5.b).- X2-misfit of Chave MT 
&magnetic tensor decomposition 
realised with fixed strike angles. 

The mIrnmum misfits 
along the period band are found 
at angles between -15°and 0° . 

Fig. 5.c)- x2.misfit of Chave MT 
&magnetic tensor decomposition 
realised with fixed strike angles . 

No tendency of minimal 
misfit is observed along the period 
band for a certain angle range . 



Real lnduction Arrows - ANCORP profile 

68'W 67'W 

68'W 67'W 

Re(Z/H) 500 s 
orig inal 
corrected 

Re(Z/H) 5000 s 
original 
corrected 

Fig.6.-Real lnduction arrows of measured data (original) and the ones corrected by Chave 
decomposition code which included both impedance & magnetic transfer functions, realised 
with all parameters free. Data of period 500 s and 5000 s are shown above and below, 
respectively. There is almost no difference between corrected and original data for shorter 
period bands, whereas only data of longer periods seem to be corrected. The corresponding 
X2-misfits are shown for 3 sites in Fig.4. 
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. Fig.3 shows an application of the previous confidence limit hypothesis for real data measured 
in the Bolivian Altiplano . 

CONCLUSIONS AND PERSPECTIVES 

By taking into account the measured data errors, regional 2-D dimensionality may be assumed 
with a higher certainty when the confidence limits of the parameters involved in the analysis 
are estimated. This can be done by Jacobi-matrix transformation of random variables, which 
is applicable for the parameter whose function is continuous and differentiable on the tensor 
elements , provided a known statistical distribution of the impedance tensor. 

The hypothesis of Gaussian distribution of the impedance elements seems to be valid at 
periods where the number of sample data was higher enough to deal with the assumption of 
asymptotically Gaussian distribution. 

Assuming uncorrelated tensor elements might be a good approximation when the parameter 
confidence limit is within its linear propagated error (see Fig . 3). Anyhow, it is still possible 
to calculate the probability distribution of the based tensor element parameter by considering 
correlated error, if the covariance matrix of the measured data is known. 

Tue Jacobi-transformation for the regional skew parameter is also applicable to a Fisher 
distribution of the tensor elements, provided that the number of sample data is known. 

Tensor decomposition applied in measured data of the Bolivian Altiplano (Figs. 4 and 5) 
indicates 2-D dimensionality with a streng tendency of approx. N-S regional strike (i.e. -0°) 
for sites located on the westem and central profile (see Fig.6). 

The westem sites of the profile have regional skew values below 0.2-0.3 with at least 95% · 
probability for the period band 20-4000 s (Fig. 3), thus indicating a 2-D regional structure 
with high certainty. 
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