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Abstract 

Well-known Dey & Morrison's [l] finite difference (FD ) algorithm for the 2-D modelling of direct 
currents is modified for generally anisotropic 2-D structures. By Fourier transforming the general 
current conservation equation with respect to the strike coordinate, the original 2½-D problem for 
the potential of a single feeding electrode is decomposed into an infinite number of 2-D problems 
in the wave number domain. Applying the area discretization (volu.me integration) scheme to the 
transformed 2-D PDEs, a 9-point FD stencil is obtained at each mesh node within the anisotropic 
structure, with generally complex elements for the direct neighbours of the central node. The resulting 
FD matrix is banded, 9-diagonal, complex and non-symmetric, but Hermitian. Gaussian elimination 
for real, symmetric and banded matrices is slightly modified to apply to the Hermitian matrices, and 
used to solve for the wave number potential components . Numerical tests and modelling examples of 
2-D anisotropic structures are presented. Extension of the technique to 3-D models with anisotropy 
is discussed. 

1 Introduction 

Recently, increased attention has been paid to studies on various aspects of the electrical anisotropy in the 
earth, motivated in particular by new refined interpretations of deep crustal geoelectrical measurements. 
Results of several recent regional electromagnetic induction studies, and particularly those accumulated 
within the KTB project, have considerablely contributed to the recognition of the electrical macro­
anisotropy as a real and significant factor of the earth's structure on the crustal scale. 

While the large-scale and large-magnitude electrical anisotropy within the deeper earth has been 
accepted only relatively slowly, the situation in shallow geoelectrical studies is quite different. In the 
applied geoelectricity, anisotropic rock formations are weil known and weil documented in many geological 
environments. The structure and texture of, in particular, the sedimentary and metamorphic rocks often 
displays directionally non-homogeneous patterns , which, in turn , result in the effective anisotropy of the 
bulk. Typical anisotropies of common sediments , measured by the anisotropy ratio >. = ✓(f!max/f!min), 
does usually not exceed 2. There are, however, exceptional cases ofrocks with extremly high anisotropies. 
E.g., Karous [2] reports a case of alternating horizons of quartzites and graphitic phyllites from the locality 
Zlate Hory in the Ash Mountains (Jeseniky), Moravia, with >. greater than 5. 

Numerical simulations are known tobe an efficient tool · both for analyzing various hypothetic struc­
tural settings and for interpreting practical data. For magnetotelluric studies, two general numerical 
modelling algorithms for anisotropic structures have been published lately , for 2-D [3) as well as for 
3-D models [4]. To the best of our knowledge, no analogous simulation technique has been as yet pre­
sented for the numerical modelling of direct currents in laterally inhomogeneous anisotropic media. lt is 
the ambition of this paper to fi.11 in this gap , at least for the 2-D structural settings at the moment. 

The structure of the paper is as foilows: In Section 2, we summarize the gov~rning equations for the 
propagation of direct currents in generally inhomogeneous media, and formulate the mathematical model 
for the specific problem of the potential distribution in 2-D anisotropic structures. Section 3 deals with 
various aspects of the FD approximation of this problem, and with its numerical solution. Section 4 
presents simple tests of the algorithm developed, and Section 5 shows an example of the numerical 
modelling for a simple synthetic model with multiple anisotropic structures involved. Finally, Section 6 
discusses possible ways of extending the developed procedure to generally 3-D anisotropic structures. 
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2 Mathematical model of the problem 

Let us assume a 2-D horizontally inhomogeneous and generally anisotropic model of the ea.rth with a 
plane surface that separates the conductive earth from the air, which is considered a perfect insulator. 
The axes x and y of a Cartesian coordinate system identify the earth's surface, the vertical axis z points 
down into the earth. The electrical conductivity inside the earth is described by a symmetric, positive 
definite conductivity tensor o-(r), which can always be represented in terms of a diagonal matrix and 
three successive elementary Euler's rotations, 

where <7{, i = 1, 2, 3, are the principal conductivities, and Ra(cr) is the matrix ofthe elementary rotation 
around the current axis a by er. The superscript T is for the transposed matrix. If a simple dyke model 
of the anisotropic structure is considered, the directions as, av and aL can easily be identified with the 
physically illustrative anisotropy strike, dip and slant, respectively (Fig. 1). 

Figure 1: Simulation of the electrical anisotropy by means of a dyke model. The characteristic directions 
as (anisotropy strike), av (anisotropy dip) and etL (anisotropy slant) are illustrated for one dyke. The 
rotation axis for each elementary rotation step is encircled. 

The stationary electric field in the model is supposed to be generated by a system of Nq point 
electrodes, which are situated at positions rc inside the conductive halfspace or on its surface (zc ~ 0) 
and feed the medium with the stationary currents Ic, c = 1, 2, ... , Nq. Then, the general equation for 
the current conservation law within the medium reads 

v' · J(r) = Q(r), (1) 

with the source term in the form 
Nq 

Q(r) = L Ico(r - rc), 
c=l 

Assuming further a standard ·linear relationship between the current density and the intensity of the 
electric field, and employing the stationarity of the problem, which allows us to express the electric field 
in terms of a scalar potential, 

J(r) = o-(r)E(r), E(r) = -v'<I>(r), 

we finally can write (1) as 
v' • [o-(r) v'<I>(r)] = -Q(r), (2) 

or, in the expanded form, 

(3) 
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For a 2-D conductivity distribution, u = u(y, z), the generally 3-D problem -(3) can be substantially 
simplified by applying to (3) the Fourier transform with respect to the structural strike coordinate x, 
:F„f(x) = J~

00 
J(x) exp(-i{x) dx. Then, the 3-D problem (3) gets decomposed into an infinite number of 

mutually independent 2-D problems in the {-wave-number domain with the following governing equations 

+z{ ( CTxy~ + CTxz~) + i{ ~(<Tyx</>) + i{¾(<Tzx<f>) = -q({, Y, z), { E (-oo, oo ), (4) 

0 
where </>({, y, z) = :Fx~(x, y, z) and q((, y, z) = :F„Q(x, y, z) = I:~ 1 Ic6(y-yc)6(z - zc) exp (-ix c{) . The 
terms in eq. ( 4) have been rearranged to form three groups, which express specific aspects of the relation 
between the anisotropy and the potential. Except for different diffusion coefficients in the individual 
terms, the first part of (4), IT], is identical with the corresponding equation for the isotropic case. 

The part II], with the conductivity elements <Tyz and <Tzy(= <Tyz), reflects the influence of the dipping 

anisotropy. In the simplified dyke model, the terms of II] arise due to oblique dykes t~at run, however, 
parallel to the structural strike of the model. If the anisotropy strike differs from that of the 2-D model, 
terms in [fil appear, which are always complex, and cause the wave number components of the potential, 
</>({, y, z), tobe complex for { # 0 in generally anisotropic media. 

The infinite set of 2-D PDEs (4) represents the basis of the mathematical model of our problem. 
For its solution , the conditions for the potential components </>({, y, z) on both the internal and external 
boundaries of the model must be further provided. These conditions are of general character, and 
require, for any wave number { E (-00,00), the potentials <f>({,y,z) and the normal current densities, 
in({, y, z) = -n · u(y, z)v'2</>({, y, z), tobe continuous at any internal boundary, n being the unit normal 
vector to the boundary, and v'2 = (i{, 8/öy, 8/öz). The latter condition also applies to the normal 
currents on the earth's surface, where it reduces to iz = -i{crzx<f> - CTzyÖ</>/Öy - CTzzÖ</>/oz = 0, due to 
the zero conductivity of the air. The conductivities of the medium from immediately below the earth's 
surface, i.e. at (y, z • 0+ ), are considered in this condition. Exceptions to this condition are singular 
points through which the currents are injected into the model , i.e. points at which the feeding point 
electrodes are situated. 

There is more freedom in choosing the external boundary conditions at y • ±oo and z • +oo. In 
our model formulation, we impose the simple Dirichlet condition, </> = 0, at those external boundaries. 

3 FD approximation of the problem, numerical solution 

3.1 Approximation by the area discretization (volume integration) 

To solve the problem (4) numerically , we use the FD technique in essentially the same way as it was 
used for solving the 2-D problem for isotropic structures by Dey & Morrison [l] . At first , the model 
is overlaid with an non-regular orthogonal FD mesh, consisting of (Ny+ 1) vertical mesh lines y = Yi, 
j = 0, 1, .. _, Ny, and (Nz + 1) horizontal mesh lines z = Zk, k = 0, 1, ___ , Nz- The mesh divides the model 
domain into a system of rectangular mesh cells Gjk, j = 1, 2, __ . , Ny, k = 1, 2, ... , Nz, with the widths 
h)y) = Yi -Yj-1, j > 0, and heights hkz) = Zk -Zk-1, k > 0. For simplicity, we assume that the mesh cells 
are homogeneous, with a local conductivity tensor Ujk, and that the internal model boundaries coincide 
with sections of the mesh lines. 

The top horizontal mesh line, z = z0 = 0, coincides with the earth's surface. The marginal mesh lines, 
y = Yo, y = YNy and z = ZN,, are supposed to be situated far enough from the 2-D inhomogenei t ies, 
as well as from the current sources, to allow us to apply the Dirichlet conditions </> = 0 on the outer 
boundaries of the finite model domain, except the earth's surface where the vertical current density must 
vanish. 

In order to FD approximate the PDEs (4) in the vicinity of an arbitrary mesh node , we have adopted 
the 'area discretization scheme' of Dey & Morrison [l], more commonly known as a volume integration 
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Figure 2: A section of the FD mesh in the vicinity of the (j, k )-th mesh node, and the integration cell 
Üj k · For relevant points, the formulae used in the course of the approximate evaluation of integral (5) 
are shown. 

approach. Principally, this scheme, instead of treating directly the differential equations ( 4) , approximates 
the integral form of the current conservation law in a close vicinity of the mesh node involved. Across a 
local rectangular integration cell, specifically Üjk = (YJ - ½hJy), Yi + ½hJ~1 ) x (zk - ½hkz), Zk + ½h1t ) 
for the (j , k)-th node (see Fig. 2) , we suppose 

Li• {'v 2 • [u(y, z)'v2</>((, y, z)] + q(( , y, z)} dydz = 0, { E (-00 ,00), (5) 

where the integrand of (5) is a more compactly written , but equivalent form of (4). 
Although tedious , the algebra involved in the evaluation of the above integrals is rather straightfor­

ward. The individual terms of (5) are integrated separately across the homogeneous sub-rectangles of the 
integration cell Üjk, and connected via the general bounda ry conditions on the internal interfaces. For 
the mesh nodes located on the earth's surface, the integration is carried out across the lower half of the 
integration cell only, and the boundary condition iz ((, y, z • 0+) = 0 is made use of. At marginal nodes 
of the model domain, the respect ive boundary conditions are substituted for the potential values along 
the outer boundaries. In Fig. 2, the basic formulae are listed used to approximate the potential and its 
spatial derivatives at specific points of the integration cell. 

Without going into detail of the individual evaluation steps, we will present only the results of the 
approximation procedur e here. Evaluating the integral (5), and carrying out the approximations as shown 
schematically in Fig. 2, leads eventually , at each internal or surface mesh node (j , k) E {l, 2, ... , Ny -
l} x {O, 1, . .. , Nz - 1}, to one FD linear algebraic equation, which relates, in general, the potential at the 
central node to all its eight neighbours in the mesh. The resulting 9-point FD stencil is shown in Fig. 3. 
Comparing this stencil with that for the isotropic problem , the main differences can be summarized as 
follows: 

a) The positions of the diagonal neighbours of the central node are occupied by coefficients that depend 
Oll <Tyz only, i.e. these coefficients result from the dipping anisotropy (terms @J in eq. (4)). They 
also contribute to the central node coefficient through .Ayz (j, k). 

b) The effect of the anisotropy strike and slant (or, more exactly , of the conductivity elements <T:r:y 

and <r::z, terms (I] in eq. (4)) is expressed by modified coefficients for the direct neighbours of the 
central node. Due to the anisotropy, these coefficients are in general complex. Due to the symmetr y 
ofthe condu ctivity tensor , the conductivity elements <T:r:y and <T:r:z do not directly affect the central 
node coefficient. 

c) In the isotropic case, the evident relations RJk = QJ,k+l and Sjk = P1+1,k guaranteed the symmetr y 
of the matrix of the linear FD equations (with proper ordering of the nodes throughout the mesh 
assumed) . For anisotropic models , only the real parts ofthe coefficients within th e FD stencil meet 
the above symmetry conditions. The imaginary parts are, however, antisymmetric, so that the 
above relations change to 

R 2 ·cR (:r:z) (Q 2; cQ (:r:z) )* 
jk + t._ jk = j ,k+l - .._ j ,k+l > S . 2;c5(:r:y ) - (P · 2 ·cp(:r:y ) )* 

Jk + .._ jk - J+l ,k - i._ j+l,k , (6) 
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Pj:y) = [u.:ry(j,k)h1z) + lT.:ry(j, k + l)h 11i]f 4, 

Q;:z> = [17.:rz(j, k)h)y) + 11'.:rz(i + 1, k)h)~i]/4, 

R):z> = [cr.:rz(i, k + l)h]Yl + 11'.:rz(i + 1, k + l)hJ~ 1]/4, 

sj:y) = [u.:ry(j + l,k)h1z ) + CT.:ry(i + l,k + l)h11i]/4, 

( . k) [ (. k)h(y)h(z) (. k )h(y)h(z) (. k)h(y) h(z) (. 1 k )h(y) h(z) ]/ 
S.:r.:r J, = CT.:r.:r J, j k + CT.:r.:r J, + 1 j k+I + CT.:r.:r J + 1, j+l k + CT.:r.:r J + , + 1 j+I k+I 4, _ 

Ayz(i, k) = [lTyz(j, k) - lTyz(j + 1, k) - 11'yz(j, k + 1) + lTyz(i + 1, k + l)]/2. 

Figure 3: 9-point stencil for the node (j, k), resulting from the FD approximation of eq. (4). 

where the asterisk means complex conjugation. With (6), the system of FD equations is complex, 
non-symmetric, but Hermitian, if the nodes are ordered properly. 

Iniegrating the source term in (5), we obtain 

f (e ) d d - { ICE exp(-i:i:cEe), if (YcE' ZcE) E Ü.jk, 
Jn;k q 'Y, z y z - 0, if no electrode is located inside Ü.jk• 

With a known configuration of the current electrodes, .Jhe above source term approximations are com­
pletely known, and contribute to the right-hand side of the FD equation system only. Moreover, con­
sidering the superposition principle , a multiple-source solution can always be obtained as a sum of cor­
respoding single-source solutions. Then, with one feeding electrode only, the coordinate system can be 
always shifted along the strike of the 2-D model to have XcE = 0, avoiding thus the inconvenience of a 
complex right-hand side of the FD system. 

3.2 Structure and solution of the FD equation system 

The complete set of the linear FD equations, obtained at the individual mesh nodes, is further arranged 
into a system of linear algebraic equations for the approximate potentials <l>(e, Yi, zk)- The form of the 
matrix of this system depends on in which way the nodes are ordered throughout the mesh. For the 
traditional column-wise ordering, the indices of internal and surface mesh nodes are mapped onto a 
one-dimensional array of ordinal numbers by 

1 {(j,k) li = 1, . . , ,Ny -1 , z = 0, .. . ,Nz -1} 1• 1 {fit = (j- l)Nz +k+ l,f = 1, ... , (Ny- l)Nz} 1· 

With this arrangement of the mesh nodes, the matrix of the FD linear system is a 9-diagonal , sparse and 
banded matrix, with the band width 2Nz + 3. In general, it is complex , non-symmetric, but Hermitian. 

For the solution of the above linear system of the FD equations, the well known algorithm of the 
Gaussian elimination for symmetric banded matrices, slightly modified to deal with Hermitian matrices, 
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can be used, if the numerical problem is of reasonable size, of course. The advafltage of solving systems 
with multiple right-hand sides (e.g., for multiple feeding electrodes, or for parameter sensitiv ities) at 
substantially reduced costs is preserved in the modi:fied elimination algorithm. Moreover, in the initial 
stage of the algorithm design, it is advantageous to use a direct method for the solution of the !arge 
FD linear system , as difliculties with distinguishing the deficiencies of the numerical solution resulting 
from a defect approximation scheme on the one hand from those originated in poor properties of an 
iterative solver on the other can be avoided. 

3.3 Fourier synthesis of the potential 

Due to the complexity of the FD matrix in the anisotropic case, the resulting potential compo nents 
</J(e, Yi, Zk) will be complex as well, except for ( = 0. In virtue of the Special Hermitian symmetry 
of the FD matrix , induced by the antisymmetry of the imaginary wave-number-dependent terms in the 
FD stencil in Fig. 3, the potential componets conform the condition ip(-f,, Yi, zk) = ip*(f,, Yi , zk) for any (. 
Thus, the resulting total potential ~( x, Yi, Zk), given by the Fourier synthesis , 

(7) 

is a real function, as required by the problem 's physics. 
For different wave numbers ( , different FD approximate equations are obtained by the approximation 

described in section 3.1. The wave number ( enters into the coeflicients of the central node and of its 
direct neighbours in the FD stencil (Fig. 3) , and , consequently , into both the diagonal and non-diagonal 
elements of the FD matrix. For each individual wave number f,, one system of the FD equations mus t 
be solved in füll, which makes the total costs of the problem solution to be highly dependent on the 
selection of the particular wave number spectrum used for the potential approximation. For isotropic 2-D 
modelling algorithms , very economical sets of cautiously selected wave numbers have been suggested to 
approximate the total potential with high accuracy by not more than ten wave number components [1]. 
That possibility is given by the real and monotonous character of the wave number potential components 
ip((, y , z) as functions of ( in the isotropic case. With a coarse wave number spectrum, Dey & Morrison [1) 
could achieve high accuracy results by piece-wise approximating the wave number potential ip(f,, y, z) by. 
exponentials, and , subsequently , by integrating the isotropic analogue of (7) analytically. 

Unfortunately , the above mentioned properties of the potential are no more valid for models with 
anisotropy. The Fourier synthesis for this case is expressed by formula (7), with ~[ip(e, y , z)) =p 0 in 
general. Moreover, neither !lt[</J((, y, z)) nor ~[</J(f,, y, z)] are monotonous functions of f,. Alread y for 
the simple case of a homogeneous anisotropic halfspace with a general anisotropy strike cxs and with 
resistivities l2L along and l2T transversaly to the anisotropy strike , both the real and imaginary parts of 
</J(f,, y, z) oscillate along the (-axis. The origin of the oscillations can be easily seen from the analytical 
formula for the simple model considered [5], 

,;..(,: ) _ I✓(l2Ll2T) K (✓(>..2y2 +; 2
z

2
) ,:) (· (l-A 2)sincxscoscxs ,:) 

'I' .,, y, z - o 2 „ exp iy 
2 

., , 
1r; i i 

where A2 = l2T /l2L (with l2L < l2T assumed) , ; 2 = cos2 cxs + A2 sin 2 cxs, and Ko is the modi:fied Bessel 
function of the order zero. The current electrode is supposed tobe located at rE = (0, 0, 0). The oscilla­
tions result from the exponential term in the above formula, and are modulated by the rapidl y decreasing , 
but positive Ka-term. The frequency of the oscillations depends on the distance from the source electrode 
y, as well as on the anisotropy parameters . The oscillatory character of </J(f,, y , z) disappears for A = 1 
(isotropic case) and for cxs = 0° or 90° (strike-parallel or strike-perpendicular anisotropy , respectively). 

For 2-D models with general anisotropy , the frequency of the oscillations is unpredictable, so that it is 
hardly possible to suggest one simple set of wave numbers, which would represent the total potential with 
suflicient accuracy in the wave number domain. Moreover, the oscillatory character of </J((, y, z), with 
unknown frequency, must be considered in any attempt to locally approximate the potential by analytical 
functions. We admit that we have not solved this problem satisfactorily as yet , and have applied a rather 
brute force approach, by selecting an excessively !arge set of 30 to 50 densely log-regularly distributed 
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wave numbers to approximate the potential and compute the integral (7) by- the simple trapezoidal 
integration rule. This approach increases the computation costs of the algorithm considerably _ Further 
experiments are being carried out at present to find a more convenient and cheaper representation of the 
potential in the wave number domain. 

4 N umerical tests of the algorithm 

So far, only basic tests of the algorithm for the 2-D modelling of direct currents in anisotropic structures 
have been performed_ The only 2-D model for which an analytical solution is available is that of the 
homogeneous anisotropic halfspace [5]. Recently, quasi-analytical solutions have been presented for two 
more model types, specifically a two-layer anisotropic medium [6] and vertical contacts in an anisotropic 
halfspace [7]1, which we intend to use for further testing. 

PLPr(cos' a, +1' sin 'a , ) 
12 +()-1 2

)
2 sin'a, cos'a, 

-16 -12 -8 -4 0 4. 8 12 16 
Distance from the electrode (m) 

-3 -2 -1 - 0 

1 

-16 -12 -8 -4 0 4 8 12 16 
Distance from the electrode (m) 

2 3 

Figure 4: Comparison of the pole-pole apparent resistivities predicted from the potentials computed nu­
merically with those obtained from known analytical formulae for the model of a homogeneous anisotropic 
halfspace. The gray-shade plots show the difference between the numerical and the corresponding an­
alytical values in per cent. Left-hand panel-The anisotropy strike differs from the structural strike, 
o:s E (0°, 90°). In the top panel, the model is schematicall y shown by a dyke scheme, and the corre­
sponding analytical formula from [5] is given as well. Right -hand panel-Analogous comparison of the 
numerical and analytical results for a model with dipping anisotropy, O:D E (0°, 90°). 

In Fig. 4, we test the accuracy of the potential computations performed by our numerical procedure 
by comparing our results with the corresponding values computed analytically for two simple models of 
the anisotropic halfspace, one with different strikes of the anisotropy and the structure, and the other 
with dipping anisotropy. The computations were performed for a single current electrode in the center of 
the model. The FD mesh was designed quasi-homogeneously (i.e. with mostly regular horizontal steps, 
but with slightly higher mesh line density in the immediate vicinity of the feeding electrode) across the 
area of the model shown in the figure. Further towards the vertica.l boundaries of the model, as weil 
as down into the earth, the mesh steps increased progressively with the factor of 1.2. Fourty five wave 
numbers were used to represent the potential, distributed log-regularly within the interval 10- 3 to about 
50 m- 1. The obtained results show a good coincidence of the pole-pole apparent resistivities recovered 
from the numerically calculated potential and those obtained analytically. The differences do not exceed 
3 per cent for any parameter combination within the displayed area. 

1The authors wish to express their thanks to Dr. Klaus Spitzer , BGR Hannover, for providing them with the reference 
to P. Li's and N. F. Uren 's latest publications on the DC anisotropy subject. 
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5 Examples of 2-D numerical simulations 

As the algorithm is still in the phase of development, we have not so far used any experimental data to 
demonstrate its performance. We have computed several schematic m~dels to get an idea about possible 
effects of anisotropic structures on DC data . As an example , we present here a model example , which we 
earlier studied, on a !arger scale, by our 2-D modelling algorithm for magneto telluric fields [3]. The model 
consists of a buried anisotropic layer and an outcropping anisotropic block, which rest s on top of the layer. 
The anisotropies of the two bodies are , in general, different, both as to the principal conductivities and 
the anisotropy directions. 

Fig. 5 shows the apparent resistivity contours for three variants of this model. The apparent resis­
t ivities are computed for a multi-electrode measurement configuration , with an array of 33 equidistantly 
positioned electrodes , spacing 1 m. The electrodes are used alternately as feeding and potential electrodes, 

· and produce apparent resistivities corresponding to a combined Schlumberger and Wenner profiling. The 
distance between the current electrodes varies so as to cover 12 depth levels. · 

0 5 10 15 20 25 30 
Distance (m) 

~~ ·~ ., .. 
0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 

LOG1 O (Apparont rasistivity (On )] 

Figure 5: Apparent resistivity contours for a model of an anisotropic layer with an outcropping anisotropic 
block on top of it. The layer is at the depth of 1.65 m , and is 3.2 m thick. The out crop is 10 m wide and 
is situated between the surface and the top boundary of the layer. The position of the anisotropic bodies 
is indicated by bold rectangles in all -the plots. The resistivity of the host medium is 300 nm. In the 
left-hand panel, both bodies are only horizontally anisotropic , with the the same electrical parameters: 
longitudinal resistivity UL = 10 nm , transversal resistivity {!T = 100 nm , and anisotropy strike as = 45° . 
with respect to the structural strike of the model. In the central panel , the block is the same as above, 
but the anisotropy strike of the underlying layer changed to a~yer = 135°, i.e . the directions of the 
preferred conducti vity in the block andin the layer are perpendicular to one another. In the right-hand 
panel, anisotropy dip is introduced into the previous model. The anisotropy directions are: a~lock = 45°, 
a~yer = 135° , and a1Bock = a~yer = 30°. 

For simplicity, we assume the anisotropic resistivity of both the bodies involved to be defined via two 
different principal resistivities only-gL parallel to the anisotropy strike , and llT in the perpendicular 
direction. Moreover , we set UL = 10 nm and {lT = 100 nm in both structures. The anisotropic block, 
10 m wide and 1.65 m thick, is just at the lower limit of the depth resolution ofthe simulated measurement 
configuration. The underlying anisotropic layer, 3.20 m thick, is expected to dominate most of the upper 
part of the resistivity pseudosection. 

In the left panel ofFig. 5, both the layer and the block are only horizontally anisotropic, both with the 
identical anisotropy strike o:s = 45° with respect to the structural strike of the model. The outcropping 
block affects the central part of the pseudosection by decreasing the resistivities to about 13.5 nm, the 
value for the anisotropic halfspace with the same electrical parameters, at the top of the section. The 
effect of the outcrop diminishes with depth, and the pseudosection gets homogenized, with resistivities 
of 50 to 60 nm. 

The central panel of Fig. 5 shows a similar situation as the previous example , only the anisotropy 
strike of the anisotropic layer is changed to a~yer = 135°. Thus, the anisotropy strike of the block 
and that of the underlying layer are perpendicular to one another. This model produces anomalous 
apparent resistivities , in particular near the edges of the anisotropic block , where narrow side lobes with 
anomalously low resistivities app ear, as low as 6 Üm at the centers of the lobes. This anomalous effect is 
further amplified if the plane of the preferred conductivity of the anisotropic structures is deflected from 
the vertical. Results in the right-hand panel of Fig. 5 were obtained for the previous model with the 
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anisotropy dip cr.v = 30° additionaly applied to the conductivity tensor of each of the anisotropic domains . 
As a result, the pseudosection becomes non-symmetric, with the low resistivity side lobe developed more 
intensely below the left edge of the block (minimum resistivity of about 1.6 üm), and reduced below the 
oposite edge (to about 12 üm at the center). 

Though highly artificial , the above modelling example shows that the anisotropy within the geoelec­
trical section can cause serious distortions of the DC potentials on the surface. More practice-oriented 
model sirnulations are, however, required to rnake rnore qualified conclusions as to the real in:fluence of 
anisotropic structures on DC measurements. 

6 3-D perspectives of the problem 

lt is logical to finish the description of the algorithm by giving an idea about its possible extensions , 
especially to the 3-D rnedia. A generalization of the 2-D numerical rnodelling procedure , described in 
the previous text, to 3-D models does not, in principle, represent any serious problem. As there is 
no qualitative change in the formulation of the problern when passing from two to three dimensions, 
the theoretical and approximation phase of the 3-D problem seems to be even simpler than that of 
the 2-D case, as the certain 'anisotropy' , introduced by the exclusiveness of the strike coordinate in 2-D, 
disappears. We can present here a few prelirninary results ofthe approxirnation phase for the 3-D problem, 
which can be a good starting point for a nurnerical realization ofthe 3-D rnodelling algorithrn in the future . 

( i - 1 )-th rnesh plane i-th mesh plane (i + 1)-th mesh plane 
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Figure 6: Slices, along the x-axis, of the 19-point FD stencil resulting frorn the FD approximation of 
the 3-D PDE (3) at the (i,j , k)-th rnesh node. The central node is provided with a double frame, its 
direct neighbours are single framed, and its near-diagonal neighbours, arising due to anisotropy, are 
marked by dashed frames . The far-diagonal positions , like, e.g. , (i + 1,j - 1, k + 1), are unoccupied in 
this discretization scheme. 

Applying the volume integration approach in the very same way as we did in the 2-D case, we can 
quickly arrive at the FD approxirnation scheme for the general 3-D equation (3). The resulting 19-point 
FD stencil for the ( i, j , k )-th mesh node is shown in Fig. 6 in the form of three successive slices along the 
x-coordinate axis. A general cyclic rule can be deduced according to which the coeffi.cients in this stencil 
can be easily constructed , and, e.g., 

PCY [<ryy{i,j + 1, k)h}"')hkz) + Uyy(i + 1,j + 1, k)h}~1hkz) + Uyy{i,j + 1, k + l)h}"')hk1t + 

+ Uyy(i + 1, j + 1, k + l)h}~1 hitl/( 4h)~1), 

R~;' = [uxy(i + 1, j, k)hkz) + Uxy(i + 1,j, k + l)hkt]/8 , 

and 
C = -(P:;, + P!x + P;J; + Pty + P;'; + Pfz) - 2(R~m - Rr;: - R";J' + R:t)-

-2(R~m - R:": - R';'! + R:~) - 2(R~m - R~";' - R';! + R~~)-
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Using the column-wise ordering of the mesh nodes throughout the mesh, the approximation of 
the 3-D problem results in a !arge system of linear FD equations, with a 19-diagonal , sparse and banded, 
symmetric real matrix. The size of the matrix is (Nr - l)(Ny - l)Nz, and its bandwidth 2NyNz + 1. 
Even for moderate-size problems, the linear system is very !arge , and iteration solvers must be used 
to find its solution. Spitzer & Wurmstich (8] made a thorough comparison of various CG-like solvers 
with preconditioning for the 3-D FD modelling in isotropic structures. The anisotropy, in general, in­
creases the condition number of the normal FD matrix (9], making the linear system more diffi.cult to 
solve. A thorough selection of suitable preconditioners and coeffi.cient adaptive mesh transformations 
have been recommended to improve the numerical properties of the iterative solvers for large anisotropic 
problems [9]. 

7 Conclusion 

In this paper, a basic form of an algorithm for the 2-D modelling of direct currents in anisotropic 
· structures has been presented. The volume integration version of the FD method was used to numerically 
approximate the problem. As compared to the isotropic case, two differences are worth mentio ning for 
anisotropic models. First, the problem leads to a 9-point FD stencil, with diagonal neighbours of the 
central node involved, and, second, the normal FD matrix for the wave number potential components is 
complex and non-symmetric, but Hermitian. With this type of symmetry, the procedure for solving the 
anisotropic problem does not differ substantially from that used in the isotropic case. 

The procedure presented here is still a preliminary version of the algorithm. Several important steps 
are still tobe done, in particular (i) improving estimates of the accuracy of the algorithm, and testing it on 
2-D analytical data for more complex models with anisotropy, (ii) optimizing the inverse Fourier transform 
of the wave number potential components, and (iii) testing more accurate asymptotic conditions, with 
the aim to reduce the mesh size for the problem. 
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